src/share/vm/code/dependencies.hpp

changeset 435
a61af66fc99e
child 1558
167c2986d91b
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/share/vm/code/dependencies.hpp	Sat Dec 01 00:00:00 2007 +0000
     1.3 @@ -0,0 +1,550 @@
     1.4 +/*
     1.5 + * Copyright 2005-2006 Sun Microsystems, Inc.  All Rights Reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    1.23 + * CA 95054 USA or visit www.sun.com if you need additional information or
    1.24 + * have any questions.
    1.25 + *
    1.26 + */
    1.27 +
    1.28 +//** Dependencies represent assertions (approximate invariants) within
    1.29 +// the class hierarchy.  An example is an assertion that a given
    1.30 +// method is not overridden; another example is that a type has only
    1.31 +// one concrete subtype.  Compiled code which relies on such
    1.32 +// assertions must be discarded if they are overturned by changes in
    1.33 +// the class hierarchy.  We can think of these assertions as
    1.34 +// approximate invariants, because we expect them to be overturned
    1.35 +// very infrequently.  We are willing to perform expensive recovery
    1.36 +// operations when they are overturned.  The benefit, of course, is
    1.37 +// performing optimistic optimizations (!) on the object code.
    1.38 +//
    1.39 +// Changes in the class hierarchy due to dynamic linking or
    1.40 +// class evolution can violate dependencies.  There is enough
    1.41 +// indexing between classes and nmethods to make dependency
    1.42 +// checking reasonably efficient.
    1.43 +
    1.44 +class ciEnv;
    1.45 +class nmethod;
    1.46 +class OopRecorder;
    1.47 +class xmlStream;
    1.48 +class CompileLog;
    1.49 +class DepChange;
    1.50 +class No_Safepoint_Verifier;
    1.51 +
    1.52 +class Dependencies: public ResourceObj {
    1.53 + public:
    1.54 +  // Note: In the comments on dependency types, most uses of the terms
    1.55 +  // subtype and supertype are used in a "non-strict" or "inclusive"
    1.56 +  // sense, and are starred to remind the reader of this fact.
    1.57 +  // Strict uses of the terms use the word "proper".
    1.58 +  //
    1.59 +  // Specifically, every class is its own subtype* and supertype*.
    1.60 +  // (This trick is easier than continually saying things like "Y is a
    1.61 +  // subtype of X or X itself".)
    1.62 +  //
    1.63 +  // Sometimes we write X > Y to mean X is a proper supertype of Y.
    1.64 +  // The notation X > {Y, Z} means X has proper subtypes Y, Z.
    1.65 +  // The notation X.m > Y means that Y inherits m from X, while
    1.66 +  // X.m > Y.m means Y overrides X.m.  A star denotes abstractness,
    1.67 +  // as *I > A, meaning (abstract) interface I is a super type of A,
    1.68 +  // or A.*m > B.m, meaning B.m implements abstract method A.m.
    1.69 +  //
    1.70 +  // In this module, the terms "subtype" and "supertype" refer to
    1.71 +  // Java-level reference type conversions, as detected by
    1.72 +  // "instanceof" and performed by "checkcast" operations.  The method
    1.73 +  // Klass::is_subtype_of tests these relations.  Note that "subtype"
    1.74 +  // is richer than "subclass" (as tested by Klass::is_subclass_of),
    1.75 +  // since it takes account of relations involving interface and array
    1.76 +  // types.
    1.77 +  //
    1.78 +  // To avoid needless complexity, dependencies involving array types
    1.79 +  // are not accepted.  If you need to make an assertion about an
    1.80 +  // array type, make the assertion about its corresponding element
    1.81 +  // types.  Any assertion that might change about an array type can
    1.82 +  // be converted to an assertion about its element type.
    1.83 +  //
    1.84 +  // Most dependencies are evaluated over a "context type" CX, which
    1.85 +  // stands for the set Subtypes(CX) of every Java type that is a subtype*
    1.86 +  // of CX.  When the system loads a new class or interface N, it is
    1.87 +  // responsible for re-evaluating changed dependencies whose context
    1.88 +  // type now includes N, that is, all super types of N.
    1.89 +  //
    1.90 +  enum DepType {
    1.91 +    end_marker = 0,
    1.92 +
    1.93 +    // An 'evol' dependency simply notes that the contents of the
    1.94 +    // method were used.  If it evolves (is replaced), the nmethod
    1.95 +    // must be recompiled.  No other dependencies are implied.
    1.96 +    evol_method,
    1.97 +    FIRST_TYPE = evol_method,
    1.98 +
    1.99 +    // A context type CX is a leaf it if has no proper subtype.
   1.100 +    leaf_type,
   1.101 +
   1.102 +    // An abstract class CX has exactly one concrete subtype CC.
   1.103 +    abstract_with_unique_concrete_subtype,
   1.104 +
   1.105 +    // The type CX is purely abstract, with no concrete subtype* at all.
   1.106 +    abstract_with_no_concrete_subtype,
   1.107 +
   1.108 +    // The concrete CX is free of concrete proper subtypes.
   1.109 +    concrete_with_no_concrete_subtype,
   1.110 +
   1.111 +    // Given a method M1 and a context class CX, the set MM(CX, M1) of
   1.112 +    // "concrete matching methods" in CX of M1 is the set of every
   1.113 +    // concrete M2 for which it is possible to create an invokevirtual
   1.114 +    // or invokeinterface call site that can reach either M1 or M2.
   1.115 +    // That is, M1 and M2 share a name, signature, and vtable index.
   1.116 +    // We wish to notice when the set MM(CX, M1) is just {M1}, or
   1.117 +    // perhaps a set of two {M1,M2}, and issue dependencies on this.
   1.118 +
   1.119 +    // The set MM(CX, M1) can be computed by starting with any matching
   1.120 +    // concrete M2 that is inherited into CX, and then walking the
   1.121 +    // subtypes* of CX looking for concrete definitions.
   1.122 +
   1.123 +    // The parameters to this dependency are the method M1 and the
   1.124 +    // context class CX.  M1 must be either inherited in CX or defined
   1.125 +    // in a subtype* of CX.  It asserts that MM(CX, M1) is no greater
   1.126 +    // than {M1}.
   1.127 +    unique_concrete_method,       // one unique concrete method under CX
   1.128 +
   1.129 +    // An "exclusive" assertion concerns two methods or subtypes, and
   1.130 +    // declares that there are at most two (or perhaps later N>2)
   1.131 +    // specific items that jointly satisfy the restriction.
   1.132 +    // We list all items explicitly rather than just giving their
   1.133 +    // count, for robustness in the face of complex schema changes.
   1.134 +
   1.135 +    // A context class CX (which may be either abstract or concrete)
   1.136 +    // has two exclusive concrete subtypes* C1, C2 if every concrete
   1.137 +    // subtype* of CX is either C1 or C2.  Note that if neither C1 or C2
   1.138 +    // are equal to CX, then CX itself must be abstract.  But it is
   1.139 +    // also possible (for example) that C1 is CX (a concrete class)
   1.140 +    // and C2 is a proper subtype of C1.
   1.141 +    abstract_with_exclusive_concrete_subtypes_2,
   1.142 +
   1.143 +    // This dependency asserts that MM(CX, M1) is no greater than {M1,M2}.
   1.144 +    exclusive_concrete_methods_2,
   1.145 +
   1.146 +    // This dependency asserts that no instances of class or it's
   1.147 +    // subclasses require finalization registration.
   1.148 +    no_finalizable_subclasses,
   1.149 +
   1.150 +    TYPE_LIMIT
   1.151 +  };
   1.152 +  enum {
   1.153 +    LG2_TYPE_LIMIT = 4,  // assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT))
   1.154 +
   1.155 +    // handy categorizations of dependency types:
   1.156 +    all_types      = ((1<<TYPE_LIMIT)-1) & ((-1)<<FIRST_TYPE),
   1.157 +    non_ctxk_types = (1<<evol_method),
   1.158 +    ctxk_types     = all_types & ~non_ctxk_types,
   1.159 +
   1.160 +    max_arg_count = 3,   // current maximum number of arguments (incl. ctxk)
   1.161 +
   1.162 +    // A "context type" is a class or interface that
   1.163 +    // provides context for evaluating a dependency.
   1.164 +    // When present, it is one of the arguments (dep_context_arg).
   1.165 +    //
   1.166 +    // If a dependency does not have a context type, there is a
   1.167 +    // default context, depending on the type of the dependency.
   1.168 +    // This bit signals that a default context has been compressed away.
   1.169 +    default_context_type_bit = (1<<LG2_TYPE_LIMIT)
   1.170 +  };
   1.171 +
   1.172 +  static const char* dep_name(DepType dept);
   1.173 +  static int         dep_args(DepType dept);
   1.174 +  static int  dep_context_arg(DepType dept) {
   1.175 +    return dept_in_mask(dept, ctxk_types)? 0: -1;
   1.176 +  }
   1.177 +
   1.178 + private:
   1.179 +  // State for writing a new set of dependencies:
   1.180 +  GrowableArray<int>*       _dep_seen;  // (seen[h->ident] & (1<<dept))
   1.181 +  GrowableArray<ciObject*>* _deps[TYPE_LIMIT];
   1.182 +
   1.183 +  static const char* _dep_name[TYPE_LIMIT];
   1.184 +  static int         _dep_args[TYPE_LIMIT];
   1.185 +
   1.186 +  static bool dept_in_mask(DepType dept, int mask) {
   1.187 +    return (int)dept >= 0 && dept < TYPE_LIMIT && ((1<<dept) & mask) != 0;
   1.188 +  }
   1.189 +
   1.190 +  bool note_dep_seen(int dept, ciObject* x) {
   1.191 +    assert(dept < BitsPerInt, "oob");
   1.192 +    int x_id = x->ident();
   1.193 +    assert(_dep_seen != NULL, "deps must be writable");
   1.194 +    int seen = _dep_seen->at_grow(x_id, 0);
   1.195 +    _dep_seen->at_put(x_id, seen | (1<<dept));
   1.196 +    // return true if we've already seen dept/x
   1.197 +    return (seen & (1<<dept)) != 0;
   1.198 +  }
   1.199 +
   1.200 +  bool maybe_merge_ctxk(GrowableArray<ciObject*>* deps,
   1.201 +                        int ctxk_i, ciKlass* ctxk);
   1.202 +
   1.203 +  void sort_all_deps();
   1.204 +  size_t estimate_size_in_bytes();
   1.205 +
   1.206 +  // Initialize _deps, etc.
   1.207 +  void initialize(ciEnv* env);
   1.208 +
   1.209 +  // State for making a new set of dependencies:
   1.210 +  OopRecorder* _oop_recorder;
   1.211 +
   1.212 +  // Logging support
   1.213 +  CompileLog* _log;
   1.214 +
   1.215 +  address  _content_bytes;  // everything but the oop references, encoded
   1.216 +  size_t   _size_in_bytes;
   1.217 +
   1.218 + public:
   1.219 +  // Make a new empty dependencies set.
   1.220 +  Dependencies(ciEnv* env) {
   1.221 +    initialize(env);
   1.222 +  }
   1.223 +
   1.224 + private:
   1.225 +  // Check for a valid context type.
   1.226 +  // Enforce the restriction against array types.
   1.227 +  static void check_ctxk(ciKlass* ctxk) {
   1.228 +    assert(ctxk->is_instance_klass(), "java types only");
   1.229 +  }
   1.230 +  static void check_ctxk_concrete(ciKlass* ctxk) {
   1.231 +    assert(is_concrete_klass(ctxk->as_instance_klass()), "must be concrete");
   1.232 +  }
   1.233 +  static void check_ctxk_abstract(ciKlass* ctxk) {
   1.234 +    check_ctxk(ctxk);
   1.235 +    assert(!is_concrete_klass(ctxk->as_instance_klass()), "must be abstract");
   1.236 +  }
   1.237 +
   1.238 +  void assert_common_1(DepType dept, ciObject* x);
   1.239 +  void assert_common_2(DepType dept, ciKlass* ctxk, ciObject* x);
   1.240 +  void assert_common_3(DepType dept, ciKlass* ctxk, ciObject* x, ciObject* x2);
   1.241 +
   1.242 + public:
   1.243 +  // Adding assertions to a new dependency set at compile time:
   1.244 +  void assert_evol_method(ciMethod* m);
   1.245 +  void assert_leaf_type(ciKlass* ctxk);
   1.246 +  void assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck);
   1.247 +  void assert_abstract_with_no_concrete_subtype(ciKlass* ctxk);
   1.248 +  void assert_concrete_with_no_concrete_subtype(ciKlass* ctxk);
   1.249 +  void assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm);
   1.250 +  void assert_abstract_with_exclusive_concrete_subtypes(ciKlass* ctxk, ciKlass* k1, ciKlass* k2);
   1.251 +  void assert_exclusive_concrete_methods(ciKlass* ctxk, ciMethod* m1, ciMethod* m2);
   1.252 +  void assert_has_no_finalizable_subclasses(ciKlass* ctxk);
   1.253 +
   1.254 +  // Define whether a given method or type is concrete.
   1.255 +  // These methods define the term "concrete" as used in this module.
   1.256 +  // For this module, an "abstract" class is one which is non-concrete.
   1.257 +  //
   1.258 +  // Future optimizations may allow some classes to remain
   1.259 +  // non-concrete until their first instantiation, and allow some
   1.260 +  // methods to remain non-concrete until their first invocation.
   1.261 +  // In that case, there would be a middle ground between concrete
   1.262 +  // and abstract (as defined by the Java language and VM).
   1.263 +  static bool is_concrete_klass(klassOop k);    // k is instantiable
   1.264 +  static bool is_concrete_method(methodOop m);  // m is invocable
   1.265 +  static Klass* find_finalizable_subclass(Klass* k);
   1.266 +
   1.267 +  // These versions of the concreteness queries work through the CI.
   1.268 +  // The CI versions are allowed to skew sometimes from the VM
   1.269 +  // (oop-based) versions.  The cost of such a difference is a
   1.270 +  // (safely) aborted compilation, or a deoptimization, or a missed
   1.271 +  // optimization opportunity.
   1.272 +  //
   1.273 +  // In order to prevent spurious assertions, query results must
   1.274 +  // remain stable within any single ciEnv instance.  (I.e., they must
   1.275 +  // not go back into the VM to get their value; they must cache the
   1.276 +  // bit in the CI, either eagerly or lazily.)
   1.277 +  static bool is_concrete_klass(ciInstanceKlass* k); // k appears instantiable
   1.278 +  static bool is_concrete_method(ciMethod* m);       // m appears invocable
   1.279 +  static bool has_finalizable_subclass(ciInstanceKlass* k);
   1.280 +
   1.281 +  // As a general rule, it is OK to compile under the assumption that
   1.282 +  // a given type or method is concrete, even if it at some future
   1.283 +  // point becomes abstract.  So dependency checking is one-sided, in
   1.284 +  // that it permits supposedly concrete classes or methods to turn up
   1.285 +  // as really abstract.  (This shouldn't happen, except during class
   1.286 +  // evolution, but that's the logic of the checking.)  However, if a
   1.287 +  // supposedly abstract class or method suddenly becomes concrete, a
   1.288 +  // dependency on it must fail.
   1.289 +
   1.290 +  // Checking old assertions at run-time (in the VM only):
   1.291 +  static klassOop check_evol_method(methodOop m);
   1.292 +  static klassOop check_leaf_type(klassOop ctxk);
   1.293 +  static klassOop check_abstract_with_unique_concrete_subtype(klassOop ctxk, klassOop conck,
   1.294 +                                                              DepChange* changes = NULL);
   1.295 +  static klassOop check_abstract_with_no_concrete_subtype(klassOop ctxk,
   1.296 +                                                          DepChange* changes = NULL);
   1.297 +  static klassOop check_concrete_with_no_concrete_subtype(klassOop ctxk,
   1.298 +                                                          DepChange* changes = NULL);
   1.299 +  static klassOop check_unique_concrete_method(klassOop ctxk, methodOop uniqm,
   1.300 +                                               DepChange* changes = NULL);
   1.301 +  static klassOop check_abstract_with_exclusive_concrete_subtypes(klassOop ctxk, klassOop k1, klassOop k2,
   1.302 +                                                                  DepChange* changes = NULL);
   1.303 +  static klassOop check_exclusive_concrete_methods(klassOop ctxk, methodOop m1, methodOop m2,
   1.304 +                                                   DepChange* changes = NULL);
   1.305 +  static klassOop check_has_no_finalizable_subclasses(klassOop ctxk,
   1.306 +                                                      DepChange* changes = NULL);
   1.307 +  // A returned klassOop is NULL if the dependency assertion is still
   1.308 +  // valid.  A non-NULL klassOop is a 'witness' to the assertion
   1.309 +  // failure, a point in the class hierarchy where the assertion has
   1.310 +  // been proven false.  For example, if check_leaf_type returns
   1.311 +  // non-NULL, the value is a subtype of the supposed leaf type.  This
   1.312 +  // witness value may be useful for logging the dependency failure.
   1.313 +  // Note that, when a dependency fails, there may be several possible
   1.314 +  // witnesses to the failure.  The value returned from the check_foo
   1.315 +  // method is chosen arbitrarily.
   1.316 +
   1.317 +  // The 'changes' value, if non-null, requests a limited spot-check
   1.318 +  // near the indicated recent changes in the class hierarchy.
   1.319 +  // It is used by DepStream::spot_check_dependency_at.
   1.320 +
   1.321 +  // Detecting possible new assertions:
   1.322 +  static klassOop  find_unique_concrete_subtype(klassOop ctxk);
   1.323 +  static methodOop find_unique_concrete_method(klassOop ctxk, methodOop m);
   1.324 +  static int       find_exclusive_concrete_subtypes(klassOop ctxk, int klen, klassOop k[]);
   1.325 +  static int       find_exclusive_concrete_methods(klassOop ctxk, int mlen, methodOop m[]);
   1.326 +
   1.327 +  // Create the encoding which will be stored in an nmethod.
   1.328 +  void encode_content_bytes();
   1.329 +
   1.330 +  address content_bytes() {
   1.331 +    assert(_content_bytes != NULL, "encode it first");
   1.332 +    return _content_bytes;
   1.333 +  }
   1.334 +  size_t size_in_bytes() {
   1.335 +    assert(_content_bytes != NULL, "encode it first");
   1.336 +    return _size_in_bytes;
   1.337 +  }
   1.338 +
   1.339 +  OopRecorder* oop_recorder() { return _oop_recorder; }
   1.340 +  CompileLog*  log()          { return _log; }
   1.341 +
   1.342 +  void copy_to(nmethod* nm);
   1.343 +
   1.344 +  void log_all_dependencies();
   1.345 +  void log_dependency(DepType dept, int nargs, ciObject* args[]) {
   1.346 +    write_dependency_to(log(), dept, nargs, args);
   1.347 +  }
   1.348 +  void log_dependency(DepType dept,
   1.349 +                      ciObject* x0,
   1.350 +                      ciObject* x1 = NULL,
   1.351 +                      ciObject* x2 = NULL) {
   1.352 +    if (log() == NULL)  return;
   1.353 +    ciObject* args[max_arg_count];
   1.354 +    args[0] = x0;
   1.355 +    args[1] = x1;
   1.356 +    args[2] = x2;
   1.357 +    assert(2 < max_arg_count, "");
   1.358 +    log_dependency(dept, dep_args(dept), args);
   1.359 +  }
   1.360 +
   1.361 +  static void write_dependency_to(CompileLog* log,
   1.362 +                                  DepType dept,
   1.363 +                                  int nargs, ciObject* args[],
   1.364 +                                  klassOop witness = NULL);
   1.365 +  static void write_dependency_to(CompileLog* log,
   1.366 +                                  DepType dept,
   1.367 +                                  int nargs, oop args[],
   1.368 +                                  klassOop witness = NULL);
   1.369 +  static void write_dependency_to(xmlStream* xtty,
   1.370 +                                  DepType dept,
   1.371 +                                  int nargs, oop args[],
   1.372 +                                  klassOop witness = NULL);
   1.373 +  static void print_dependency(DepType dept,
   1.374 +                               int nargs, oop args[],
   1.375 +                               klassOop witness = NULL);
   1.376 +
   1.377 + private:
   1.378 +  // helper for encoding common context types as zero:
   1.379 +  static ciKlass* ctxk_encoded_as_null(DepType dept, ciObject* x);
   1.380 +
   1.381 +  static klassOop ctxk_encoded_as_null(DepType dept, oop x);
   1.382 +
   1.383 + public:
   1.384 +  // Use this to iterate over an nmethod's dependency set.
   1.385 +  // Works on new and old dependency sets.
   1.386 +  // Usage:
   1.387 +  //
   1.388 +  // ;
   1.389 +  // Dependencies::DepType dept;
   1.390 +  // for (Dependencies::DepStream deps(nm); deps.next(); ) {
   1.391 +  //   ...
   1.392 +  // }
   1.393 +  //
   1.394 +  // The caller must be in the VM, since oops are not wrapped in handles.
   1.395 +  class DepStream {
   1.396 +  private:
   1.397 +    nmethod*              _code;   // null if in a compiler thread
   1.398 +    Dependencies*         _deps;   // null if not in a compiler thread
   1.399 +    CompressedReadStream  _bytes;
   1.400 +#ifdef ASSERT
   1.401 +    size_t                _byte_limit;
   1.402 +#endif
   1.403 +
   1.404 +    // iteration variables:
   1.405 +    DepType               _type;
   1.406 +    int                   _xi[max_arg_count+1];
   1.407 +
   1.408 +    void initial_asserts(size_t byte_limit) NOT_DEBUG({});
   1.409 +
   1.410 +    inline oop recorded_oop_at(int i);
   1.411 +        // => _code? _code->oop_at(i): *_deps->_oop_recorder->handle_at(i)
   1.412 +
   1.413 +    klassOop check_dependency_impl(DepChange* changes);
   1.414 +
   1.415 +  public:
   1.416 +    DepStream(Dependencies* deps)
   1.417 +      : _deps(deps),
   1.418 +        _code(NULL),
   1.419 +        _bytes(deps->content_bytes())
   1.420 +    {
   1.421 +      initial_asserts(deps->size_in_bytes());
   1.422 +    }
   1.423 +    DepStream(nmethod* code)
   1.424 +      : _deps(NULL),
   1.425 +        _code(code),
   1.426 +        _bytes(code->dependencies_begin())
   1.427 +    {
   1.428 +      initial_asserts(code->dependencies_size());
   1.429 +    }
   1.430 +
   1.431 +    bool next();
   1.432 +
   1.433 +    DepType type()               { return _type; }
   1.434 +    int argument_count()         { return dep_args(type()); }
   1.435 +    int argument_index(int i)    { assert(0 <= i && i < argument_count(), "oob");
   1.436 +                                   return _xi[i]; }
   1.437 +    oop argument(int i);         // => recorded_oop_at(argument_index(i))
   1.438 +    klassOop context_type();
   1.439 +
   1.440 +    methodOop method_argument(int i) {
   1.441 +      oop x = argument(i);
   1.442 +      assert(x->is_method(), "type");
   1.443 +      return (methodOop) x;
   1.444 +    }
   1.445 +    klassOop type_argument(int i) {
   1.446 +      oop x = argument(i);
   1.447 +      assert(x->is_klass(), "type");
   1.448 +      return (klassOop) x;
   1.449 +    }
   1.450 +
   1.451 +    // The point of the whole exercise:  Is this dep is still OK?
   1.452 +    klassOop check_dependency() {
   1.453 +      return check_dependency_impl(NULL);
   1.454 +    }
   1.455 +    // A lighter version:  Checks only around recent changes in a class
   1.456 +    // hierarchy.  (See Universe::flush_dependents_on.)
   1.457 +    klassOop spot_check_dependency_at(DepChange& changes);
   1.458 +
   1.459 +    // Log the current dependency to xtty or compilation log.
   1.460 +    void log_dependency(klassOop witness = NULL);
   1.461 +
   1.462 +    // Print the current dependency to tty.
   1.463 +    void print_dependency(klassOop witness = NULL, bool verbose = false);
   1.464 +  };
   1.465 +  friend class Dependencies::DepStream;
   1.466 +
   1.467 +  static void print_statistics() PRODUCT_RETURN;
   1.468 +};
   1.469 +
   1.470 +// A class hierarchy change coming through the VM (under the Compile_lock).
   1.471 +// The change is structured as a single new type with any number of supers
   1.472 +// and implemented interface types.  Other than the new type, any of the
   1.473 +// super types can be context types for a relevant dependency, which the
   1.474 +// new type could invalidate.
   1.475 +class DepChange : public StackObj {
   1.476 + private:
   1.477 +  enum ChangeType {
   1.478 +    NO_CHANGE = 0,              // an uninvolved klass
   1.479 +    Change_new_type,            // a newly loaded type
   1.480 +    Change_new_sub,             // a super with a new subtype
   1.481 +    Change_new_impl,            // an interface with a new implementation
   1.482 +    CHANGE_LIMIT,
   1.483 +    Start_Klass = CHANGE_LIMIT  // internal indicator for ContextStream
   1.484 +  };
   1.485 +
   1.486 +  // each change set is rooted in exactly one new type (at present):
   1.487 +  KlassHandle _new_type;
   1.488 +
   1.489 +  void initialize();
   1.490 +
   1.491 + public:
   1.492 +  // notes the new type, marks it and all its super-types
   1.493 +  DepChange(KlassHandle new_type)
   1.494 +    : _new_type(new_type)
   1.495 +  {
   1.496 +    initialize();
   1.497 +  }
   1.498 +
   1.499 +  // cleans up the marks
   1.500 +  ~DepChange();
   1.501 +
   1.502 +  klassOop new_type()                   { return _new_type(); }
   1.503 +
   1.504 +  // involves_context(k) is true if k is new_type or any of the super types
   1.505 +  bool involves_context(klassOop k);
   1.506 +
   1.507 +  // Usage:
   1.508 +  // for (DepChange::ContextStream str(changes); str.next(); ) {
   1.509 +  //   klassOop k = str.klass();
   1.510 +  //   switch (str.change_type()) {
   1.511 +  //     ...
   1.512 +  //   }
   1.513 +  // }
   1.514 +  class ContextStream : public StackObj {
   1.515 +   private:
   1.516 +    DepChange&       _changes;
   1.517 +    friend class DepChange;
   1.518 +
   1.519 +    // iteration variables:
   1.520 +    ChangeType            _change_type;
   1.521 +    klassOop              _klass;
   1.522 +    objArrayOop           _ti_base;    // i.e., transitive_interfaces
   1.523 +    int                   _ti_index;
   1.524 +    int                   _ti_limit;
   1.525 +
   1.526 +    // start at the beginning:
   1.527 +    void start() {
   1.528 +      klassOop new_type = _changes.new_type();
   1.529 +      _change_type = (new_type == NULL ? NO_CHANGE: Start_Klass);
   1.530 +      _klass = new_type;
   1.531 +      _ti_base = NULL;
   1.532 +      _ti_index = 0;
   1.533 +      _ti_limit = 0;
   1.534 +    }
   1.535 +
   1.536 +    ContextStream(DepChange& changes)
   1.537 +      : _changes(changes)
   1.538 +    { start(); }
   1.539 +
   1.540 +   public:
   1.541 +    ContextStream(DepChange& changes, No_Safepoint_Verifier& nsv)
   1.542 +      : _changes(changes)
   1.543 +      // the nsv argument makes it safe to hold oops like _klass
   1.544 +    { start(); }
   1.545 +
   1.546 +    bool next();
   1.547 +
   1.548 +    klassOop   klass()           { return _klass; }
   1.549 +  };
   1.550 +  friend class DepChange::ContextStream;
   1.551 +
   1.552 +  void print();
   1.553 +};

mercurial