src/share/vm/c1/c1_IR.cpp

changeset 435
a61af66fc99e
child 863
334969144810
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/share/vm/c1/c1_IR.cpp	Sat Dec 01 00:00:00 2007 +0000
     1.3 @@ -0,0 +1,1323 @@
     1.4 +/*
     1.5 + * Copyright 1999-2006 Sun Microsystems, Inc.  All Rights Reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    1.23 + * CA 95054 USA or visit www.sun.com if you need additional information or
    1.24 + * have any questions.
    1.25 + *
    1.26 + */
    1.27 +
    1.28 +# include "incls/_precompiled.incl"
    1.29 +# include "incls/_c1_IR.cpp.incl"
    1.30 +
    1.31 +
    1.32 +// Implementation of XHandlers
    1.33 +//
    1.34 +// Note: This code could eventually go away if we are
    1.35 +//       just using the ciExceptionHandlerStream.
    1.36 +
    1.37 +XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) {
    1.38 +  ciExceptionHandlerStream s(method);
    1.39 +  while (!s.is_done()) {
    1.40 +    _list.append(new XHandler(s.handler()));
    1.41 +    s.next();
    1.42 +  }
    1.43 +  assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent");
    1.44 +}
    1.45 +
    1.46 +// deep copy of all XHandler contained in list
    1.47 +XHandlers::XHandlers(XHandlers* other) :
    1.48 +  _list(other->length())
    1.49 +{
    1.50 +  for (int i = 0; i < other->length(); i++) {
    1.51 +    _list.append(new XHandler(other->handler_at(i)));
    1.52 +  }
    1.53 +}
    1.54 +
    1.55 +// Returns whether a particular exception type can be caught.  Also
    1.56 +// returns true if klass is unloaded or any exception handler
    1.57 +// classes are unloaded.  type_is_exact indicates whether the throw
    1.58 +// is known to be exactly that class or it might throw a subtype.
    1.59 +bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const {
    1.60 +  // the type is unknown so be conservative
    1.61 +  if (!klass->is_loaded()) {
    1.62 +    return true;
    1.63 +  }
    1.64 +
    1.65 +  for (int i = 0; i < length(); i++) {
    1.66 +    XHandler* handler = handler_at(i);
    1.67 +    if (handler->is_catch_all()) {
    1.68 +      // catch of ANY
    1.69 +      return true;
    1.70 +    }
    1.71 +    ciInstanceKlass* handler_klass = handler->catch_klass();
    1.72 +    // if it's unknown it might be catchable
    1.73 +    if (!handler_klass->is_loaded()) {
    1.74 +      return true;
    1.75 +    }
    1.76 +    // if the throw type is definitely a subtype of the catch type
    1.77 +    // then it can be caught.
    1.78 +    if (klass->is_subtype_of(handler_klass)) {
    1.79 +      return true;
    1.80 +    }
    1.81 +    if (!type_is_exact) {
    1.82 +      // If the type isn't exactly known then it can also be caught by
    1.83 +      // catch statements where the inexact type is a subtype of the
    1.84 +      // catch type.
    1.85 +      // given: foo extends bar extends Exception
    1.86 +      // throw bar can be caught by catch foo, catch bar, and catch
    1.87 +      // Exception, however it can't be caught by any handlers without
    1.88 +      // bar in its type hierarchy.
    1.89 +      if (handler_klass->is_subtype_of(klass)) {
    1.90 +        return true;
    1.91 +      }
    1.92 +    }
    1.93 +  }
    1.94 +
    1.95 +  return false;
    1.96 +}
    1.97 +
    1.98 +
    1.99 +bool XHandlers::equals(XHandlers* others) const {
   1.100 +  if (others == NULL) return false;
   1.101 +  if (length() != others->length()) return false;
   1.102 +
   1.103 +  for (int i = 0; i < length(); i++) {
   1.104 +    if (!handler_at(i)->equals(others->handler_at(i))) return false;
   1.105 +  }
   1.106 +  return true;
   1.107 +}
   1.108 +
   1.109 +bool XHandler::equals(XHandler* other) const {
   1.110 +  assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco");
   1.111 +
   1.112 +  if (entry_pco() != other->entry_pco()) return false;
   1.113 +  if (scope_count() != other->scope_count()) return false;
   1.114 +  if (_desc != other->_desc) return false;
   1.115 +
   1.116 +  assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal");
   1.117 +  return true;
   1.118 +}
   1.119 +
   1.120 +
   1.121 +// Implementation of IRScope
   1.122 +
   1.123 +BlockBegin* IRScope::header_block(BlockBegin* entry, BlockBegin::Flag f, ValueStack* state) {
   1.124 +  if (entry == NULL) return NULL;
   1.125 +  assert(entry->is_set(f), "entry/flag mismatch");
   1.126 +  // create header block
   1.127 +  BlockBegin* h = new BlockBegin(entry->bci());
   1.128 +  BlockEnd* g = new Goto(entry, false);
   1.129 +  h->set_next(g, entry->bci());
   1.130 +  h->set_end(g);
   1.131 +  h->set(f);
   1.132 +  // setup header block end state
   1.133 +  ValueStack* s = state->copy(); // can use copy since stack is empty (=> no phis)
   1.134 +  assert(s->stack_is_empty(), "must have empty stack at entry point");
   1.135 +  g->set_state(s);
   1.136 +  return h;
   1.137 +}
   1.138 +
   1.139 +
   1.140 +BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) {
   1.141 +  GraphBuilder gm(compilation, this);
   1.142 +  NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats());
   1.143 +  if (compilation->bailed_out()) return NULL;
   1.144 +  return gm.start();
   1.145 +}
   1.146 +
   1.147 +
   1.148 +IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph)
   1.149 +: _callees(2)
   1.150 +, _compilation(compilation)
   1.151 +, _lock_stack_size(-1)
   1.152 +, _requires_phi_function(method->max_locals())
   1.153 +{
   1.154 +  _caller             = caller;
   1.155 +  _caller_bci         = caller == NULL ? -1 : caller_bci;
   1.156 +  _caller_state       = NULL; // Must be set later if needed
   1.157 +  _level              = caller == NULL ?  0 : caller->level() + 1;
   1.158 +  _method             = method;
   1.159 +  _xhandlers          = new XHandlers(method);
   1.160 +  _number_of_locks    = 0;
   1.161 +  _monitor_pairing_ok = method->has_balanced_monitors();
   1.162 +  _start              = NULL;
   1.163 +
   1.164 +  if (osr_bci == -1) {
   1.165 +    _requires_phi_function.clear();
   1.166 +  } else {
   1.167 +        // selective creation of phi functions is not possibel in osr-methods
   1.168 +    _requires_phi_function.set_range(0, method->max_locals());
   1.169 +  }
   1.170 +
   1.171 +  assert(method->holder()->is_loaded() , "method holder must be loaded");
   1.172 +
   1.173 +  // build graph if monitor pairing is ok
   1.174 +  if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci);
   1.175 +}
   1.176 +
   1.177 +
   1.178 +int IRScope::max_stack() const {
   1.179 +  int my_max = method()->max_stack();
   1.180 +  int callee_max = 0;
   1.181 +  for (int i = 0; i < number_of_callees(); i++) {
   1.182 +    callee_max = MAX2(callee_max, callee_no(i)->max_stack());
   1.183 +  }
   1.184 +  return my_max + callee_max;
   1.185 +}
   1.186 +
   1.187 +
   1.188 +void IRScope::compute_lock_stack_size() {
   1.189 +  if (!InlineMethodsWithExceptionHandlers) {
   1.190 +    _lock_stack_size = 0;
   1.191 +    return;
   1.192 +  }
   1.193 +
   1.194 +  // Figure out whether we have to preserve expression stack elements
   1.195 +  // for parent scopes, and if so, how many
   1.196 +  IRScope* cur_scope = this;
   1.197 +  while (cur_scope != NULL && !cur_scope->xhandlers()->has_handlers()) {
   1.198 +    cur_scope = cur_scope->caller();
   1.199 +  }
   1.200 +  _lock_stack_size = (cur_scope == NULL ? 0 :
   1.201 +                      (cur_scope->caller_state() == NULL ? 0 :
   1.202 +                       cur_scope->caller_state()->stack_size()));
   1.203 +}
   1.204 +
   1.205 +int IRScope::top_scope_bci() const {
   1.206 +  assert(!is_top_scope(), "no correct answer for top scope possible");
   1.207 +  const IRScope* scope = this;
   1.208 +  while (!scope->caller()->is_top_scope()) {
   1.209 +    scope = scope->caller();
   1.210 +  }
   1.211 +  return scope->caller_bci();
   1.212 +}
   1.213 +
   1.214 +
   1.215 +
   1.216 +// Implementation of CodeEmitInfo
   1.217 +
   1.218 +// Stack must be NON-null
   1.219 +CodeEmitInfo::CodeEmitInfo(int bci, ValueStack* stack, XHandlers* exception_handlers)
   1.220 +  : _scope(stack->scope())
   1.221 +  , _bci(bci)
   1.222 +  , _scope_debug_info(NULL)
   1.223 +  , _oop_map(NULL)
   1.224 +  , _stack(stack)
   1.225 +  , _exception_handlers(exception_handlers)
   1.226 +  , _next(NULL)
   1.227 +  , _id(-1) {
   1.228 +  assert(_stack != NULL, "must be non null");
   1.229 +  assert(_bci == SynchronizationEntryBCI || Bytecodes::is_defined(scope()->method()->java_code_at_bci(_bci)), "make sure bci points at a real bytecode");
   1.230 +}
   1.231 +
   1.232 +
   1.233 +CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, bool lock_stack_only)
   1.234 +  : _scope(info->_scope)
   1.235 +  , _exception_handlers(NULL)
   1.236 +  , _bci(info->_bci)
   1.237 +  , _scope_debug_info(NULL)
   1.238 +  , _oop_map(NULL) {
   1.239 +  if (lock_stack_only) {
   1.240 +    if (info->_stack != NULL) {
   1.241 +      _stack = info->_stack->copy_locks();
   1.242 +    } else {
   1.243 +      _stack = NULL;
   1.244 +    }
   1.245 +  } else {
   1.246 +    _stack = info->_stack;
   1.247 +  }
   1.248 +
   1.249 +  // deep copy of exception handlers
   1.250 +  if (info->_exception_handlers != NULL) {
   1.251 +    _exception_handlers = new XHandlers(info->_exception_handlers);
   1.252 +  }
   1.253 +}
   1.254 +
   1.255 +
   1.256 +void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
   1.257 +  // record the safepoint before recording the debug info for enclosing scopes
   1.258 +  recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
   1.259 +  _scope_debug_info->record_debug_info(recorder, pc_offset);
   1.260 +  recorder->end_safepoint(pc_offset);
   1.261 +}
   1.262 +
   1.263 +
   1.264 +void CodeEmitInfo::add_register_oop(LIR_Opr opr) {
   1.265 +  assert(_oop_map != NULL, "oop map must already exist");
   1.266 +  assert(opr->is_single_cpu(), "should not call otherwise");
   1.267 +
   1.268 +  int frame_size = frame_map()->framesize();
   1.269 +  int arg_count = frame_map()->oop_map_arg_count();
   1.270 +  VMReg name = frame_map()->regname(opr);
   1.271 +  _oop_map->set_oop(name);
   1.272 +}
   1.273 +
   1.274 +
   1.275 +
   1.276 +
   1.277 +// Implementation of IR
   1.278 +
   1.279 +IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
   1.280 +    _locals_size(in_WordSize(-1))
   1.281 +  , _num_loops(0) {
   1.282 +  // initialize data structures
   1.283 +  ValueType::initialize();
   1.284 +  Instruction::initialize();
   1.285 +  BlockBegin::initialize();
   1.286 +  GraphBuilder::initialize();
   1.287 +  // setup IR fields
   1.288 +  _compilation = compilation;
   1.289 +  _top_scope   = new IRScope(compilation, NULL, -1, method, osr_bci, true);
   1.290 +  _code        = NULL;
   1.291 +}
   1.292 +
   1.293 +
   1.294 +void IR::optimize() {
   1.295 +  Optimizer opt(this);
   1.296 +  if (DoCEE) {
   1.297 +    opt.eliminate_conditional_expressions();
   1.298 +#ifndef PRODUCT
   1.299 +    if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); }
   1.300 +    if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); }
   1.301 +#endif
   1.302 +  }
   1.303 +  if (EliminateBlocks) {
   1.304 +    opt.eliminate_blocks();
   1.305 +#ifndef PRODUCT
   1.306 +    if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); }
   1.307 +    if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); }
   1.308 +#endif
   1.309 +  }
   1.310 +  if (EliminateNullChecks) {
   1.311 +    opt.eliminate_null_checks();
   1.312 +#ifndef PRODUCT
   1.313 +    if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); }
   1.314 +    if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); }
   1.315 +#endif
   1.316 +  }
   1.317 +}
   1.318 +
   1.319 +
   1.320 +static int sort_pairs(BlockPair** a, BlockPair** b) {
   1.321 +  if ((*a)->from() == (*b)->from()) {
   1.322 +    return (*a)->to()->block_id() - (*b)->to()->block_id();
   1.323 +  } else {
   1.324 +    return (*a)->from()->block_id() - (*b)->from()->block_id();
   1.325 +  }
   1.326 +}
   1.327 +
   1.328 +
   1.329 +class CriticalEdgeFinder: public BlockClosure {
   1.330 +  BlockPairList blocks;
   1.331 +  IR*       _ir;
   1.332 +
   1.333 + public:
   1.334 +  CriticalEdgeFinder(IR* ir): _ir(ir) {}
   1.335 +  void block_do(BlockBegin* bb) {
   1.336 +    BlockEnd* be = bb->end();
   1.337 +    int nos = be->number_of_sux();
   1.338 +    if (nos >= 2) {
   1.339 +      for (int i = 0; i < nos; i++) {
   1.340 +        BlockBegin* sux = be->sux_at(i);
   1.341 +        if (sux->number_of_preds() >= 2) {
   1.342 +          blocks.append(new BlockPair(bb, sux));
   1.343 +        }
   1.344 +      }
   1.345 +    }
   1.346 +  }
   1.347 +
   1.348 +  void split_edges() {
   1.349 +    BlockPair* last_pair = NULL;
   1.350 +    blocks.sort(sort_pairs);
   1.351 +    for (int i = 0; i < blocks.length(); i++) {
   1.352 +      BlockPair* pair = blocks.at(i);
   1.353 +      if (last_pair != NULL && pair->is_same(last_pair)) continue;
   1.354 +      BlockBegin* from = pair->from();
   1.355 +      BlockBegin* to = pair->to();
   1.356 +      BlockBegin* split = from->insert_block_between(to);
   1.357 +#ifndef PRODUCT
   1.358 +      if ((PrintIR || PrintIR1) && Verbose) {
   1.359 +        tty->print_cr("Split critical edge B%d -> B%d (new block B%d)",
   1.360 +                      from->block_id(), to->block_id(), split->block_id());
   1.361 +      }
   1.362 +#endif
   1.363 +      last_pair = pair;
   1.364 +    }
   1.365 +  }
   1.366 +};
   1.367 +
   1.368 +void IR::split_critical_edges() {
   1.369 +  CriticalEdgeFinder cef(this);
   1.370 +
   1.371 +  iterate_preorder(&cef);
   1.372 +  cef.split_edges();
   1.373 +}
   1.374 +
   1.375 +
   1.376 +class UseCountComputer: public AllStatic {
   1.377 + private:
   1.378 +  static void update_use_count(Value* n) {
   1.379 +    // Local instructions and Phis for expression stack values at the
   1.380 +    // start of basic blocks are not added to the instruction list
   1.381 +    if ((*n)->bci() == -99 && (*n)->as_Local() == NULL &&
   1.382 +        (*n)->as_Phi() == NULL) {
   1.383 +      assert(false, "a node was not appended to the graph");
   1.384 +      Compilation::current_compilation()->bailout("a node was not appended to the graph");
   1.385 +    }
   1.386 +    // use n's input if not visited before
   1.387 +    if (!(*n)->is_pinned() && !(*n)->has_uses()) {
   1.388 +      // note: a) if the instruction is pinned, it will be handled by compute_use_count
   1.389 +      //       b) if the instruction has uses, it was touched before
   1.390 +      //       => in both cases we don't need to update n's values
   1.391 +      uses_do(n);
   1.392 +    }
   1.393 +    // use n
   1.394 +    (*n)->_use_count++;
   1.395 +  }
   1.396 +
   1.397 +  static Values* worklist;
   1.398 +  static int depth;
   1.399 +  enum {
   1.400 +    max_recurse_depth = 20
   1.401 +  };
   1.402 +
   1.403 +  static void uses_do(Value* n) {
   1.404 +    depth++;
   1.405 +    if (depth > max_recurse_depth) {
   1.406 +      // don't allow the traversal to recurse too deeply
   1.407 +      worklist->push(*n);
   1.408 +    } else {
   1.409 +      (*n)->input_values_do(update_use_count);
   1.410 +      // special handling for some instructions
   1.411 +      if ((*n)->as_BlockEnd() != NULL) {
   1.412 +        // note on BlockEnd:
   1.413 +        //   must 'use' the stack only if the method doesn't
   1.414 +        //   terminate, however, in those cases stack is empty
   1.415 +        (*n)->state_values_do(update_use_count);
   1.416 +      }
   1.417 +    }
   1.418 +    depth--;
   1.419 +  }
   1.420 +
   1.421 +  static void basic_compute_use_count(BlockBegin* b) {
   1.422 +    depth = 0;
   1.423 +    // process all pinned nodes as the roots of expression trees
   1.424 +    for (Instruction* n = b; n != NULL; n = n->next()) {
   1.425 +      if (n->is_pinned()) uses_do(&n);
   1.426 +    }
   1.427 +    assert(depth == 0, "should have counted back down");
   1.428 +
   1.429 +    // now process any unpinned nodes which recursed too deeply
   1.430 +    while (worklist->length() > 0) {
   1.431 +      Value t = worklist->pop();
   1.432 +      if (!t->is_pinned()) {
   1.433 +        // compute the use count
   1.434 +        uses_do(&t);
   1.435 +
   1.436 +        // pin the instruction so that LIRGenerator doesn't recurse
   1.437 +        // too deeply during it's evaluation.
   1.438 +        t->pin();
   1.439 +      }
   1.440 +    }
   1.441 +    assert(depth == 0, "should have counted back down");
   1.442 +  }
   1.443 +
   1.444 + public:
   1.445 +  static void compute(BlockList* blocks) {
   1.446 +    worklist = new Values();
   1.447 +    blocks->blocks_do(basic_compute_use_count);
   1.448 +    worklist = NULL;
   1.449 +  }
   1.450 +};
   1.451 +
   1.452 +
   1.453 +Values* UseCountComputer::worklist = NULL;
   1.454 +int UseCountComputer::depth = 0;
   1.455 +
   1.456 +// helper macro for short definition of trace-output inside code
   1.457 +#ifndef PRODUCT
   1.458 +  #define TRACE_LINEAR_SCAN(level, code)       \
   1.459 +    if (TraceLinearScanLevel >= level) {       \
   1.460 +      code;                                    \
   1.461 +    }
   1.462 +#else
   1.463 +  #define TRACE_LINEAR_SCAN(level, code)
   1.464 +#endif
   1.465 +
   1.466 +class ComputeLinearScanOrder : public StackObj {
   1.467 + private:
   1.468 +  int        _max_block_id;        // the highest block_id of a block
   1.469 +  int        _num_blocks;          // total number of blocks (smaller than _max_block_id)
   1.470 +  int        _num_loops;           // total number of loops
   1.471 +  bool       _iterative_dominators;// method requires iterative computation of dominatiors
   1.472 +
   1.473 +  BlockList* _linear_scan_order;   // the resulting list of blocks in correct order
   1.474 +
   1.475 +  BitMap     _visited_blocks;      // used for recursive processing of blocks
   1.476 +  BitMap     _active_blocks;       // used for recursive processing of blocks
   1.477 +  BitMap     _dominator_blocks;    // temproary BitMap used for computation of dominator
   1.478 +  intArray   _forward_branches;    // number of incoming forward branches for each block
   1.479 +  BlockList  _loop_end_blocks;     // list of all loop end blocks collected during count_edges
   1.480 +  BitMap2D   _loop_map;            // two-dimensional bit set: a bit is set if a block is contained in a loop
   1.481 +  BlockList  _work_list;           // temporary list (used in mark_loops and compute_order)
   1.482 +
   1.483 +  // accessors for _visited_blocks and _active_blocks
   1.484 +  void init_visited()                     { _active_blocks.clear(); _visited_blocks.clear(); }
   1.485 +  bool is_visited(BlockBegin* b) const    { return _visited_blocks.at(b->block_id()); }
   1.486 +  bool is_active(BlockBegin* b) const     { return _active_blocks.at(b->block_id()); }
   1.487 +  void set_visited(BlockBegin* b)         { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); }
   1.488 +  void set_active(BlockBegin* b)          { assert(!is_active(b), "already set");  _active_blocks.set_bit(b->block_id()); }
   1.489 +  void clear_active(BlockBegin* b)        { assert(is_active(b), "not already");   _active_blocks.clear_bit(b->block_id()); }
   1.490 +
   1.491 +  // accessors for _forward_branches
   1.492 +  void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); }
   1.493 +  int  dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); }
   1.494 +
   1.495 +  // accessors for _loop_map
   1.496 +  bool is_block_in_loop   (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); }
   1.497 +  void set_block_in_loop  (int loop_idx, BlockBegin* b)       { _loop_map.set_bit(loop_idx, b->block_id()); }
   1.498 +  void clear_block_in_loop(int loop_idx, int block_id)        { _loop_map.clear_bit(loop_idx, block_id); }
   1.499 +
   1.500 +  // count edges between blocks
   1.501 +  void count_edges(BlockBegin* cur, BlockBegin* parent);
   1.502 +
   1.503 +  // loop detection
   1.504 +  void mark_loops();
   1.505 +  void clear_non_natural_loops(BlockBegin* start_block);
   1.506 +  void assign_loop_depth(BlockBegin* start_block);
   1.507 +
   1.508 +  // computation of final block order
   1.509 +  BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b);
   1.510 +  void compute_dominator(BlockBegin* cur, BlockBegin* parent);
   1.511 +  int  compute_weight(BlockBegin* cur);
   1.512 +  bool ready_for_processing(BlockBegin* cur);
   1.513 +  void sort_into_work_list(BlockBegin* b);
   1.514 +  void append_block(BlockBegin* cur);
   1.515 +  void compute_order(BlockBegin* start_block);
   1.516 +
   1.517 +  // fixup of dominators for non-natural loops
   1.518 +  bool compute_dominators_iter();
   1.519 +  void compute_dominators();
   1.520 +
   1.521 +  // debug functions
   1.522 +  NOT_PRODUCT(void print_blocks();)
   1.523 +  DEBUG_ONLY(void verify();)
   1.524 +
   1.525 + public:
   1.526 +  ComputeLinearScanOrder(BlockBegin* start_block);
   1.527 +
   1.528 +  // accessors for final result
   1.529 +  BlockList* linear_scan_order() const    { return _linear_scan_order; }
   1.530 +  int        num_loops() const            { return _num_loops; }
   1.531 +};
   1.532 +
   1.533 +
   1.534 +ComputeLinearScanOrder::ComputeLinearScanOrder(BlockBegin* start_block) :
   1.535 +  _max_block_id(BlockBegin::number_of_blocks()),
   1.536 +  _num_blocks(0),
   1.537 +  _num_loops(0),
   1.538 +  _iterative_dominators(false),
   1.539 +  _visited_blocks(_max_block_id),
   1.540 +  _active_blocks(_max_block_id),
   1.541 +  _dominator_blocks(_max_block_id),
   1.542 +  _forward_branches(_max_block_id, 0),
   1.543 +  _loop_end_blocks(8),
   1.544 +  _work_list(8),
   1.545 +  _linear_scan_order(NULL), // initialized later with correct size
   1.546 +  _loop_map(0, 0)           // initialized later with correct size
   1.547 +{
   1.548 +  TRACE_LINEAR_SCAN(2, "***** computing linear-scan block order");
   1.549 +
   1.550 +  init_visited();
   1.551 +  count_edges(start_block, NULL);
   1.552 +
   1.553 +  if (_num_loops > 0) {
   1.554 +    mark_loops();
   1.555 +    clear_non_natural_loops(start_block);
   1.556 +    assign_loop_depth(start_block);
   1.557 +  }
   1.558 +
   1.559 +  compute_order(start_block);
   1.560 +  compute_dominators();
   1.561 +
   1.562 +  NOT_PRODUCT(print_blocks());
   1.563 +  DEBUG_ONLY(verify());
   1.564 +}
   1.565 +
   1.566 +
   1.567 +// Traverse the CFG:
   1.568 +// * count total number of blocks
   1.569 +// * count all incoming edges and backward incoming edges
   1.570 +// * number loop header blocks
   1.571 +// * create a list with all loop end blocks
   1.572 +void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
   1.573 +  TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != NULL ? parent->block_id() : -1));
   1.574 +  assert(cur->dominator() == NULL, "dominator already initialized");
   1.575 +
   1.576 +  if (is_active(cur)) {
   1.577 +    TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch"));
   1.578 +    assert(is_visited(cur), "block must be visisted when block is active");
   1.579 +    assert(parent != NULL, "must have parent");
   1.580 +    assert(parent->number_of_sux() == 1, "loop end blocks must have one successor (critical edges are split)");
   1.581 +
   1.582 +    cur->set(BlockBegin::linear_scan_loop_header_flag);
   1.583 +    cur->set(BlockBegin::backward_branch_target_flag);
   1.584 +
   1.585 +    parent->set(BlockBegin::linear_scan_loop_end_flag);
   1.586 +    _loop_end_blocks.append(parent);
   1.587 +    return;
   1.588 +  }
   1.589 +
   1.590 +  // increment number of incoming forward branches
   1.591 +  inc_forward_branches(cur);
   1.592 +
   1.593 +  if (is_visited(cur)) {
   1.594 +    TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited"));
   1.595 +    return;
   1.596 +  }
   1.597 +
   1.598 +  _num_blocks++;
   1.599 +  set_visited(cur);
   1.600 +  set_active(cur);
   1.601 +
   1.602 +  // recursive call for all successors
   1.603 +  int i;
   1.604 +  for (i = cur->number_of_sux() - 1; i >= 0; i--) {
   1.605 +    count_edges(cur->sux_at(i), cur);
   1.606 +  }
   1.607 +  for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
   1.608 +    count_edges(cur->exception_handler_at(i), cur);
   1.609 +  }
   1.610 +
   1.611 +  clear_active(cur);
   1.612 +
   1.613 +  // Each loop has a unique number.
   1.614 +  // When multiple loops are nested, assign_loop_depth assumes that the
   1.615 +  // innermost loop has the lowest number. This is guaranteed by setting
   1.616 +  // the loop number after the recursive calls for the successors above
   1.617 +  // have returned.
   1.618 +  if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
   1.619 +    assert(cur->loop_index() == -1, "cannot set loop-index twice");
   1.620 +    TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
   1.621 +
   1.622 +    cur->set_loop_index(_num_loops);
   1.623 +    _num_loops++;
   1.624 +  }
   1.625 +
   1.626 +  TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id()));
   1.627 +}
   1.628 +
   1.629 +
   1.630 +void ComputeLinearScanOrder::mark_loops() {
   1.631 +  TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops"));
   1.632 +
   1.633 +  _loop_map = BitMap2D(_num_loops, _max_block_id);
   1.634 +  _loop_map.clear();
   1.635 +
   1.636 +  for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) {
   1.637 +    BlockBegin* loop_end   = _loop_end_blocks.at(i);
   1.638 +    BlockBegin* loop_start = loop_end->sux_at(0);
   1.639 +    int         loop_idx   = loop_start->loop_index();
   1.640 +
   1.641 +    TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx));
   1.642 +    assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set");
   1.643 +    assert(loop_end->number_of_sux() == 1, "incorrect number of successors");
   1.644 +    assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set");
   1.645 +    assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set");
   1.646 +    assert(_work_list.is_empty(), "work list must be empty before processing");
   1.647 +
   1.648 +    // add the end-block of the loop to the working list
   1.649 +    _work_list.push(loop_end);
   1.650 +    set_block_in_loop(loop_idx, loop_end);
   1.651 +    do {
   1.652 +      BlockBegin* cur = _work_list.pop();
   1.653 +
   1.654 +      TRACE_LINEAR_SCAN(3, tty->print_cr("    processing B%d", cur->block_id()));
   1.655 +      assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list");
   1.656 +
   1.657 +      // recursive processing of all predecessors ends when start block of loop is reached
   1.658 +      if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) {
   1.659 +        for (int j = cur->number_of_preds() - 1; j >= 0; j--) {
   1.660 +          BlockBegin* pred = cur->pred_at(j);
   1.661 +
   1.662 +          if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) {
   1.663 +            // this predecessor has not been processed yet, so add it to work list
   1.664 +            TRACE_LINEAR_SCAN(3, tty->print_cr("    pushing B%d", pred->block_id()));
   1.665 +            _work_list.push(pred);
   1.666 +            set_block_in_loop(loop_idx, pred);
   1.667 +          }
   1.668 +        }
   1.669 +      }
   1.670 +    } while (!_work_list.is_empty());
   1.671 +  }
   1.672 +}
   1.673 +
   1.674 +
   1.675 +// check for non-natural loops (loops where the loop header does not dominate
   1.676 +// all other loop blocks = loops with mulitple entries).
   1.677 +// such loops are ignored
   1.678 +void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
   1.679 +  for (int i = _num_loops - 1; i >= 0; i--) {
   1.680 +    if (is_block_in_loop(i, start_block)) {
   1.681 +      // loop i contains the entry block of the method
   1.682 +      // -> this is not a natural loop, so ignore it
   1.683 +      TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
   1.684 +
   1.685 +      for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
   1.686 +        clear_block_in_loop(i, block_id);
   1.687 +      }
   1.688 +      _iterative_dominators = true;
   1.689 +    }
   1.690 +  }
   1.691 +}
   1.692 +
   1.693 +void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) {
   1.694 +  TRACE_LINEAR_SCAN(3, "----- computing loop-depth and weight");
   1.695 +  init_visited();
   1.696 +
   1.697 +  assert(_work_list.is_empty(), "work list must be empty before processing");
   1.698 +  _work_list.append(start_block);
   1.699 +
   1.700 +  do {
   1.701 +    BlockBegin* cur = _work_list.pop();
   1.702 +
   1.703 +    if (!is_visited(cur)) {
   1.704 +      set_visited(cur);
   1.705 +      TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id()));
   1.706 +
   1.707 +      // compute loop-depth and loop-index for the block
   1.708 +      assert(cur->loop_depth() == 0, "cannot set loop-depth twice");
   1.709 +      int i;
   1.710 +      int loop_depth = 0;
   1.711 +      int min_loop_idx = -1;
   1.712 +      for (i = _num_loops - 1; i >= 0; i--) {
   1.713 +        if (is_block_in_loop(i, cur)) {
   1.714 +          loop_depth++;
   1.715 +          min_loop_idx = i;
   1.716 +        }
   1.717 +      }
   1.718 +      cur->set_loop_depth(loop_depth);
   1.719 +      cur->set_loop_index(min_loop_idx);
   1.720 +
   1.721 +      // append all unvisited successors to work list
   1.722 +      for (i = cur->number_of_sux() - 1; i >= 0; i--) {
   1.723 +        _work_list.append(cur->sux_at(i));
   1.724 +      }
   1.725 +      for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
   1.726 +        _work_list.append(cur->exception_handler_at(i));
   1.727 +      }
   1.728 +    }
   1.729 +  } while (!_work_list.is_empty());
   1.730 +}
   1.731 +
   1.732 +
   1.733 +BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) {
   1.734 +  assert(a != NULL && b != NULL, "must have input blocks");
   1.735 +
   1.736 +  _dominator_blocks.clear();
   1.737 +  while (a != NULL) {
   1.738 +    _dominator_blocks.set_bit(a->block_id());
   1.739 +    assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized");
   1.740 +    a = a->dominator();
   1.741 +  }
   1.742 +  while (b != NULL && !_dominator_blocks.at(b->block_id())) {
   1.743 +    assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized");
   1.744 +    b = b->dominator();
   1.745 +  }
   1.746 +
   1.747 +  assert(b != NULL, "could not find dominator");
   1.748 +  return b;
   1.749 +}
   1.750 +
   1.751 +void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) {
   1.752 +  if (cur->dominator() == NULL) {
   1.753 +    TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id()));
   1.754 +    cur->set_dominator(parent);
   1.755 +
   1.756 +  } else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
   1.757 +    TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
   1.758 +    assert(cur->number_of_preds() > 1, "");
   1.759 +    cur->set_dominator(common_dominator(cur->dominator(), parent));
   1.760 +  }
   1.761 +}
   1.762 +
   1.763 +
   1.764 +int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) {
   1.765 +  BlockBegin* single_sux = NULL;
   1.766 +  if (cur->number_of_sux() == 1) {
   1.767 +    single_sux = cur->sux_at(0);
   1.768 +  }
   1.769 +
   1.770 +  // limit loop-depth to 15 bit (only for security reason, it will never be so big)
   1.771 +  int weight = (cur->loop_depth() & 0x7FFF) << 16;
   1.772 +
   1.773 +  // general macro for short definition of weight flags
   1.774 +  // the first instance of INC_WEIGHT_IF has the highest priority
   1.775 +  int cur_bit = 15;
   1.776 +  #define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--;
   1.777 +
   1.778 +  // this is necessery for the (very rare) case that two successing blocks have
   1.779 +  // the same loop depth, but a different loop index (can happen for endless loops
   1.780 +  // with exception handlers)
   1.781 +  INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag));
   1.782 +
   1.783 +  // loop end blocks (blocks that end with a backward branch) are added
   1.784 +  // after all other blocks of the loop.
   1.785 +  INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag));
   1.786 +
   1.787 +  // critical edge split blocks are prefered because than they have a bigger
   1.788 +  // proability to be completely empty
   1.789 +  INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag));
   1.790 +
   1.791 +  // exceptions should not be thrown in normal control flow, so these blocks
   1.792 +  // are added as late as possible
   1.793 +  INC_WEIGHT_IF(cur->end()->as_Throw() == NULL  && (single_sux == NULL || single_sux->end()->as_Throw()  == NULL));
   1.794 +  INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL));
   1.795 +
   1.796 +  // exceptions handlers are added as late as possible
   1.797 +  INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag));
   1.798 +
   1.799 +  // guarantee that weight is > 0
   1.800 +  weight |= 1;
   1.801 +
   1.802 +  #undef INC_WEIGHT_IF
   1.803 +  assert(cur_bit >= 0, "too many flags");
   1.804 +  assert(weight > 0, "weight cannot become negative");
   1.805 +
   1.806 +  return weight;
   1.807 +}
   1.808 +
   1.809 +bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) {
   1.810 +  // Discount the edge just traveled.
   1.811 +  // When the number drops to zero, all forward branches were processed
   1.812 +  if (dec_forward_branches(cur) != 0) {
   1.813 +    return false;
   1.814 +  }
   1.815 +
   1.816 +  assert(_linear_scan_order->index_of(cur) == -1, "block already processed (block can be ready only once)");
   1.817 +  assert(_work_list.index_of(cur) == -1, "block already in work-list (block can be ready only once)");
   1.818 +  return true;
   1.819 +}
   1.820 +
   1.821 +void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) {
   1.822 +  assert(_work_list.index_of(cur) == -1, "block already in work list");
   1.823 +
   1.824 +  int cur_weight = compute_weight(cur);
   1.825 +
   1.826 +  // the linear_scan_number is used to cache the weight of a block
   1.827 +  cur->set_linear_scan_number(cur_weight);
   1.828 +
   1.829 +#ifndef PRODUCT
   1.830 +  if (StressLinearScan) {
   1.831 +    _work_list.insert_before(0, cur);
   1.832 +    return;
   1.833 +  }
   1.834 +#endif
   1.835 +
   1.836 +  _work_list.append(NULL); // provide space for new element
   1.837 +
   1.838 +  int insert_idx = _work_list.length() - 1;
   1.839 +  while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) {
   1.840 +    _work_list.at_put(insert_idx, _work_list.at(insert_idx - 1));
   1.841 +    insert_idx--;
   1.842 +  }
   1.843 +  _work_list.at_put(insert_idx, cur);
   1.844 +
   1.845 +  TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id()));
   1.846 +  TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d  weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number()));
   1.847 +
   1.848 +#ifdef ASSERT
   1.849 +  for (int i = 0; i < _work_list.length(); i++) {
   1.850 +    assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set");
   1.851 +    assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist");
   1.852 +  }
   1.853 +#endif
   1.854 +}
   1.855 +
   1.856 +void ComputeLinearScanOrder::append_block(BlockBegin* cur) {
   1.857 +  TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number()));
   1.858 +  assert(_linear_scan_order->index_of(cur) == -1, "cannot add the same block twice");
   1.859 +
   1.860 +  // currently, the linear scan order and code emit order are equal.
   1.861 +  // therefore the linear_scan_number and the weight of a block must also
   1.862 +  // be equal.
   1.863 +  cur->set_linear_scan_number(_linear_scan_order->length());
   1.864 +  _linear_scan_order->append(cur);
   1.865 +}
   1.866 +
   1.867 +void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
   1.868 +  TRACE_LINEAR_SCAN(3, "----- computing final block order");
   1.869 +
   1.870 +  // the start block is always the first block in the linear scan order
   1.871 +  _linear_scan_order = new BlockList(_num_blocks);
   1.872 +  append_block(start_block);
   1.873 +
   1.874 +  assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction");
   1.875 +  BlockBegin* std_entry = ((Base*)start_block->end())->std_entry();
   1.876 +  BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry();
   1.877 +
   1.878 +  BlockBegin* sux_of_osr_entry = NULL;
   1.879 +  if (osr_entry != NULL) {
   1.880 +    // special handling for osr entry:
   1.881 +    // ignore the edge between the osr entry and its successor for processing
   1.882 +    // the osr entry block is added manually below
   1.883 +    assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor");
   1.884 +    assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow");
   1.885 +
   1.886 +    sux_of_osr_entry = osr_entry->sux_at(0);
   1.887 +    dec_forward_branches(sux_of_osr_entry);
   1.888 +
   1.889 +    compute_dominator(osr_entry, start_block);
   1.890 +    _iterative_dominators = true;
   1.891 +  }
   1.892 +  compute_dominator(std_entry, start_block);
   1.893 +
   1.894 +  // start processing with standard entry block
   1.895 +  assert(_work_list.is_empty(), "list must be empty before processing");
   1.896 +
   1.897 +  if (ready_for_processing(std_entry)) {
   1.898 +    sort_into_work_list(std_entry);
   1.899 +  } else {
   1.900 +    assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)");
   1.901 +  }
   1.902 +
   1.903 +  do {
   1.904 +    BlockBegin* cur = _work_list.pop();
   1.905 +
   1.906 +    if (cur == sux_of_osr_entry) {
   1.907 +      // the osr entry block is ignored in normal processing, it is never added to the
   1.908 +      // work list. Instead, it is added as late as possible manually here.
   1.909 +      append_block(osr_entry);
   1.910 +      compute_dominator(cur, osr_entry);
   1.911 +    }
   1.912 +    append_block(cur);
   1.913 +
   1.914 +    int i;
   1.915 +    int num_sux = cur->number_of_sux();
   1.916 +    // changed loop order to get "intuitive" order of if- and else-blocks
   1.917 +    for (i = 0; i < num_sux; i++) {
   1.918 +      BlockBegin* sux = cur->sux_at(i);
   1.919 +      compute_dominator(sux, cur);
   1.920 +      if (ready_for_processing(sux)) {
   1.921 +        sort_into_work_list(sux);
   1.922 +      }
   1.923 +    }
   1.924 +    num_sux = cur->number_of_exception_handlers();
   1.925 +    for (i = 0; i < num_sux; i++) {
   1.926 +      BlockBegin* sux = cur->exception_handler_at(i);
   1.927 +      compute_dominator(sux, cur);
   1.928 +      if (ready_for_processing(sux)) {
   1.929 +        sort_into_work_list(sux);
   1.930 +      }
   1.931 +    }
   1.932 +  } while (_work_list.length() > 0);
   1.933 +}
   1.934 +
   1.935 +
   1.936 +bool ComputeLinearScanOrder::compute_dominators_iter() {
   1.937 +  bool changed = false;
   1.938 +  int num_blocks = _linear_scan_order->length();
   1.939 +
   1.940 +  assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator");
   1.941 +  assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors");
   1.942 +  for (int i = 1; i < num_blocks; i++) {
   1.943 +    BlockBegin* block = _linear_scan_order->at(i);
   1.944 +
   1.945 +    BlockBegin* dominator = block->pred_at(0);
   1.946 +    int num_preds = block->number_of_preds();
   1.947 +    for (int i = 1; i < num_preds; i++) {
   1.948 +      dominator = common_dominator(dominator, block->pred_at(i));
   1.949 +    }
   1.950 +
   1.951 +    if (dominator != block->dominator()) {
   1.952 +      TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id()));
   1.953 +
   1.954 +      block->set_dominator(dominator);
   1.955 +      changed = true;
   1.956 +    }
   1.957 +  }
   1.958 +  return changed;
   1.959 +}
   1.960 +
   1.961 +void ComputeLinearScanOrder::compute_dominators() {
   1.962 +  TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators));
   1.963 +
   1.964 +  // iterative computation of dominators is only required for methods with non-natural loops
   1.965 +  // and OSR-methods. For all other methods, the dominators computed when generating the
   1.966 +  // linear scan block order are correct.
   1.967 +  if (_iterative_dominators) {
   1.968 +    do {
   1.969 +      TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation"));
   1.970 +    } while (compute_dominators_iter());
   1.971 +  }
   1.972 +
   1.973 +  // check that dominators are correct
   1.974 +  assert(!compute_dominators_iter(), "fix point not reached");
   1.975 +}
   1.976 +
   1.977 +
   1.978 +#ifndef PRODUCT
   1.979 +void ComputeLinearScanOrder::print_blocks() {
   1.980 +  if (TraceLinearScanLevel >= 2) {
   1.981 +    tty->print_cr("----- loop information:");
   1.982 +    for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
   1.983 +      BlockBegin* cur = _linear_scan_order->at(block_idx);
   1.984 +
   1.985 +      tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id());
   1.986 +      for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
   1.987 +        tty->print ("%d ", is_block_in_loop(loop_idx, cur));
   1.988 +      }
   1.989 +      tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth());
   1.990 +    }
   1.991 +  }
   1.992 +
   1.993 +  if (TraceLinearScanLevel >= 1) {
   1.994 +    tty->print_cr("----- linear-scan block order:");
   1.995 +    for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
   1.996 +      BlockBegin* cur = _linear_scan_order->at(block_idx);
   1.997 +      tty->print("%4d: B%2d    loop: %2d  depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth());
   1.998 +
   1.999 +      tty->print(cur->is_set(BlockBegin::exception_entry_flag)         ? " ex" : "   ");
  1.1000 +      tty->print(cur->is_set(BlockBegin::critical_edge_split_flag)     ? " ce" : "   ");
  1.1001 +      tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : "   ");
  1.1002 +      tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag)    ? " le" : "   ");
  1.1003 +
  1.1004 +      if (cur->dominator() != NULL) {
  1.1005 +        tty->print("    dom: B%d ", cur->dominator()->block_id());
  1.1006 +      } else {
  1.1007 +        tty->print("    dom: NULL ");
  1.1008 +      }
  1.1009 +
  1.1010 +      if (cur->number_of_preds() > 0) {
  1.1011 +        tty->print("    preds: ");
  1.1012 +        for (int j = 0; j < cur->number_of_preds(); j++) {
  1.1013 +          BlockBegin* pred = cur->pred_at(j);
  1.1014 +          tty->print("B%d ", pred->block_id());
  1.1015 +        }
  1.1016 +      }
  1.1017 +      if (cur->number_of_sux() > 0) {
  1.1018 +        tty->print("    sux: ");
  1.1019 +        for (int j = 0; j < cur->number_of_sux(); j++) {
  1.1020 +          BlockBegin* sux = cur->sux_at(j);
  1.1021 +          tty->print("B%d ", sux->block_id());
  1.1022 +        }
  1.1023 +      }
  1.1024 +      if (cur->number_of_exception_handlers() > 0) {
  1.1025 +        tty->print("    ex: ");
  1.1026 +        for (int j = 0; j < cur->number_of_exception_handlers(); j++) {
  1.1027 +          BlockBegin* ex = cur->exception_handler_at(j);
  1.1028 +          tty->print("B%d ", ex->block_id());
  1.1029 +        }
  1.1030 +      }
  1.1031 +      tty->cr();
  1.1032 +    }
  1.1033 +  }
  1.1034 +}
  1.1035 +#endif
  1.1036 +
  1.1037 +#ifdef ASSERT
  1.1038 +void ComputeLinearScanOrder::verify() {
  1.1039 +  assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list");
  1.1040 +
  1.1041 +  if (StressLinearScan) {
  1.1042 +    // blocks are scrambled when StressLinearScan is used
  1.1043 +    return;
  1.1044 +  }
  1.1045 +
  1.1046 +  // check that all successors of a block have a higher linear-scan-number
  1.1047 +  // and that all predecessors of a block have a lower linear-scan-number
  1.1048 +  // (only backward branches of loops are ignored)
  1.1049 +  int i;
  1.1050 +  for (i = 0; i < _linear_scan_order->length(); i++) {
  1.1051 +    BlockBegin* cur = _linear_scan_order->at(i);
  1.1052 +
  1.1053 +    assert(cur->linear_scan_number() == i, "incorrect linear_scan_number");
  1.1054 +    assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->index_of(cur), "incorrect linear_scan_number");
  1.1055 +
  1.1056 +    int j;
  1.1057 +    for (j = cur->number_of_sux() - 1; j >= 0; j--) {
  1.1058 +      BlockBegin* sux = cur->sux_at(j);
  1.1059 +
  1.1060 +      assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->index_of(sux), "incorrect linear_scan_number");
  1.1061 +      if (!cur->is_set(BlockBegin::linear_scan_loop_end_flag)) {
  1.1062 +        assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
  1.1063 +      }
  1.1064 +      if (cur->loop_depth() == sux->loop_depth()) {
  1.1065 +        assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
  1.1066 +      }
  1.1067 +    }
  1.1068 +
  1.1069 +    for (j = cur->number_of_preds() - 1; j >= 0; j--) {
  1.1070 +      BlockBegin* pred = cur->pred_at(j);
  1.1071 +
  1.1072 +      assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->index_of(pred), "incorrect linear_scan_number");
  1.1073 +      if (!cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
  1.1074 +        assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
  1.1075 +      }
  1.1076 +      if (cur->loop_depth() == pred->loop_depth()) {
  1.1077 +        assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
  1.1078 +      }
  1.1079 +
  1.1080 +      assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors");
  1.1081 +    }
  1.1082 +
  1.1083 +    // check dominator
  1.1084 +    if (i == 0) {
  1.1085 +      assert(cur->dominator() == NULL, "first block has no dominator");
  1.1086 +    } else {
  1.1087 +      assert(cur->dominator() != NULL, "all but first block must have dominator");
  1.1088 +    }
  1.1089 +    assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0), "Single predecessor must also be dominator");
  1.1090 +  }
  1.1091 +
  1.1092 +  // check that all loops are continuous
  1.1093 +  for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
  1.1094 +    int block_idx = 0;
  1.1095 +    assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop");
  1.1096 +
  1.1097 +    // skip blocks before the loop
  1.1098 +    while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
  1.1099 +      block_idx++;
  1.1100 +    }
  1.1101 +    // skip blocks of loop
  1.1102 +    while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
  1.1103 +      block_idx++;
  1.1104 +    }
  1.1105 +    // after the first non-loop block, there must not be another loop-block
  1.1106 +    while (block_idx < _num_blocks) {
  1.1107 +      assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order");
  1.1108 +      block_idx++;
  1.1109 +    }
  1.1110 +  }
  1.1111 +}
  1.1112 +#endif
  1.1113 +
  1.1114 +
  1.1115 +void IR::compute_code() {
  1.1116 +  assert(is_valid(), "IR must be valid");
  1.1117 +
  1.1118 +  ComputeLinearScanOrder compute_order(start());
  1.1119 +  _num_loops = compute_order.num_loops();
  1.1120 +  _code = compute_order.linear_scan_order();
  1.1121 +}
  1.1122 +
  1.1123 +
  1.1124 +void IR::compute_use_counts() {
  1.1125 +  // make sure all values coming out of this block get evaluated.
  1.1126 +  int num_blocks = _code->length();
  1.1127 +  for (int i = 0; i < num_blocks; i++) {
  1.1128 +    _code->at(i)->end()->state()->pin_stack_for_linear_scan();
  1.1129 +  }
  1.1130 +
  1.1131 +  // compute use counts
  1.1132 +  UseCountComputer::compute(_code);
  1.1133 +}
  1.1134 +
  1.1135 +
  1.1136 +void IR::iterate_preorder(BlockClosure* closure) {
  1.1137 +  assert(is_valid(), "IR must be valid");
  1.1138 +  start()->iterate_preorder(closure);
  1.1139 +}
  1.1140 +
  1.1141 +
  1.1142 +void IR::iterate_postorder(BlockClosure* closure) {
  1.1143 +  assert(is_valid(), "IR must be valid");
  1.1144 +  start()->iterate_postorder(closure);
  1.1145 +}
  1.1146 +
  1.1147 +void IR::iterate_linear_scan_order(BlockClosure* closure) {
  1.1148 +  linear_scan_order()->iterate_forward(closure);
  1.1149 +}
  1.1150 +
  1.1151 +
  1.1152 +#ifndef PRODUCT
  1.1153 +class BlockPrinter: public BlockClosure {
  1.1154 + private:
  1.1155 +  InstructionPrinter* _ip;
  1.1156 +  bool                _cfg_only;
  1.1157 +  bool                _live_only;
  1.1158 +
  1.1159 + public:
  1.1160 +  BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) {
  1.1161 +    _ip       = ip;
  1.1162 +    _cfg_only = cfg_only;
  1.1163 +    _live_only = live_only;
  1.1164 +  }
  1.1165 +
  1.1166 +  virtual void block_do(BlockBegin* block) {
  1.1167 +    if (_cfg_only) {
  1.1168 +      _ip->print_instr(block); tty->cr();
  1.1169 +    } else {
  1.1170 +      block->print_block(*_ip, _live_only);
  1.1171 +    }
  1.1172 +  }
  1.1173 +};
  1.1174 +
  1.1175 +
  1.1176 +void IR::print(BlockBegin* start, bool cfg_only, bool live_only) {
  1.1177 +  ttyLocker ttyl;
  1.1178 +  InstructionPrinter ip(!cfg_only);
  1.1179 +  BlockPrinter bp(&ip, cfg_only, live_only);
  1.1180 +  start->iterate_preorder(&bp);
  1.1181 +  tty->cr();
  1.1182 +}
  1.1183 +
  1.1184 +void IR::print(bool cfg_only, bool live_only) {
  1.1185 +  if (is_valid()) {
  1.1186 +    print(start(), cfg_only, live_only);
  1.1187 +  } else {
  1.1188 +    tty->print_cr("invalid IR");
  1.1189 +  }
  1.1190 +}
  1.1191 +
  1.1192 +
  1.1193 +define_array(BlockListArray, BlockList*)
  1.1194 +define_stack(BlockListList, BlockListArray)
  1.1195 +
  1.1196 +class PredecessorValidator : public BlockClosure {
  1.1197 + private:
  1.1198 +  BlockListList* _predecessors;
  1.1199 +  BlockList*     _blocks;
  1.1200 +
  1.1201 +  static int cmp(BlockBegin** a, BlockBegin** b) {
  1.1202 +    return (*a)->block_id() - (*b)->block_id();
  1.1203 +  }
  1.1204 +
  1.1205 + public:
  1.1206 +  PredecessorValidator(IR* hir) {
  1.1207 +    ResourceMark rm;
  1.1208 +    _predecessors = new BlockListList(BlockBegin::number_of_blocks(), NULL);
  1.1209 +    _blocks = new BlockList();
  1.1210 +
  1.1211 +    int i;
  1.1212 +    hir->start()->iterate_preorder(this);
  1.1213 +    if (hir->code() != NULL) {
  1.1214 +      assert(hir->code()->length() == _blocks->length(), "must match");
  1.1215 +      for (i = 0; i < _blocks->length(); i++) {
  1.1216 +        assert(hir->code()->contains(_blocks->at(i)), "should be in both lists");
  1.1217 +      }
  1.1218 +    }
  1.1219 +
  1.1220 +    for (i = 0; i < _blocks->length(); i++) {
  1.1221 +      BlockBegin* block = _blocks->at(i);
  1.1222 +      BlockList* preds = _predecessors->at(block->block_id());
  1.1223 +      if (preds == NULL) {
  1.1224 +        assert(block->number_of_preds() == 0, "should be the same");
  1.1225 +        continue;
  1.1226 +      }
  1.1227 +
  1.1228 +      // clone the pred list so we can mutate it
  1.1229 +      BlockList* pred_copy = new BlockList();
  1.1230 +      int j;
  1.1231 +      for (j = 0; j < block->number_of_preds(); j++) {
  1.1232 +        pred_copy->append(block->pred_at(j));
  1.1233 +      }
  1.1234 +      // sort them in the same order
  1.1235 +      preds->sort(cmp);
  1.1236 +      pred_copy->sort(cmp);
  1.1237 +      int length = MIN2(preds->length(), block->number_of_preds());
  1.1238 +      for (j = 0; j < block->number_of_preds(); j++) {
  1.1239 +        assert(preds->at(j) == pred_copy->at(j), "must match");
  1.1240 +      }
  1.1241 +
  1.1242 +      assert(preds->length() == block->number_of_preds(), "should be the same");
  1.1243 +    }
  1.1244 +  }
  1.1245 +
  1.1246 +  virtual void block_do(BlockBegin* block) {
  1.1247 +    _blocks->append(block);
  1.1248 +    BlockEnd* be = block->end();
  1.1249 +    int n = be->number_of_sux();
  1.1250 +    int i;
  1.1251 +    for (i = 0; i < n; i++) {
  1.1252 +      BlockBegin* sux = be->sux_at(i);
  1.1253 +      assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler");
  1.1254 +
  1.1255 +      BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
  1.1256 +      if (preds == NULL) {
  1.1257 +        preds = new BlockList();
  1.1258 +        _predecessors->at_put(sux->block_id(), preds);
  1.1259 +      }
  1.1260 +      preds->append(block);
  1.1261 +    }
  1.1262 +
  1.1263 +    n = block->number_of_exception_handlers();
  1.1264 +    for (i = 0; i < n; i++) {
  1.1265 +      BlockBegin* sux = block->exception_handler_at(i);
  1.1266 +      assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler");
  1.1267 +
  1.1268 +      BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
  1.1269 +      if (preds == NULL) {
  1.1270 +        preds = new BlockList();
  1.1271 +        _predecessors->at_put(sux->block_id(), preds);
  1.1272 +      }
  1.1273 +      preds->append(block);
  1.1274 +    }
  1.1275 +  }
  1.1276 +};
  1.1277 +
  1.1278 +void IR::verify() {
  1.1279 +#ifdef ASSERT
  1.1280 +  PredecessorValidator pv(this);
  1.1281 +#endif
  1.1282 +}
  1.1283 +
  1.1284 +#endif // PRODUCT
  1.1285 +
  1.1286 +void SubstitutionResolver::substitute(Value* v) {
  1.1287 +  Value v0 = *v;
  1.1288 +  if (v0) {
  1.1289 +    Value vs = v0->subst();
  1.1290 +    if (vs != v0) {
  1.1291 +      *v = v0->subst();
  1.1292 +    }
  1.1293 +  }
  1.1294 +}
  1.1295 +
  1.1296 +#ifdef ASSERT
  1.1297 +void check_substitute(Value* v) {
  1.1298 +  Value v0 = *v;
  1.1299 +  if (v0) {
  1.1300 +    Value vs = v0->subst();
  1.1301 +    assert(vs == v0, "missed substitution");
  1.1302 +  }
  1.1303 +}
  1.1304 +#endif
  1.1305 +
  1.1306 +
  1.1307 +void SubstitutionResolver::block_do(BlockBegin* block) {
  1.1308 +  Instruction* last = NULL;
  1.1309 +  for (Instruction* n = block; n != NULL;) {
  1.1310 +    n->values_do(substitute);
  1.1311 +    // need to remove this instruction from the instruction stream
  1.1312 +    if (n->subst() != n) {
  1.1313 +      assert(last != NULL, "must have last");
  1.1314 +      last->set_next(n->next(), n->next()->bci());
  1.1315 +    } else {
  1.1316 +      last = n;
  1.1317 +    }
  1.1318 +    n = last->next();
  1.1319 +  }
  1.1320 +
  1.1321 +#ifdef ASSERT
  1.1322 +  if (block->state()) block->state()->values_do(check_substitute);
  1.1323 +  block->block_values_do(check_substitute);
  1.1324 +  if (block->end() && block->end()->state()) block->end()->state()->values_do(check_substitute);
  1.1325 +#endif
  1.1326 +}

mercurial