src/cpu/sparc/vm/sparc.ad

changeset 435
a61af66fc99e
child 516
dee7a3f3dc9d
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/cpu/sparc/vm/sparc.ad	Sat Dec 01 00:00:00 2007 +0000
     1.3 @@ -0,0 +1,8824 @@
     1.4 +//
     1.5 +// Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
     1.6 +// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 +//
     1.8 +// This code is free software; you can redistribute it and/or modify it
     1.9 +// under the terms of the GNU General Public License version 2 only, as
    1.10 +// published by the Free Software Foundation.
    1.11 +//
    1.12 +// This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 +// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 +// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 +// version 2 for more details (a copy is included in the LICENSE file that
    1.16 +// accompanied this code).
    1.17 +//
    1.18 +// You should have received a copy of the GNU General Public License version
    1.19 +// 2 along with this work; if not, write to the Free Software Foundation,
    1.20 +// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 +//
    1.22 +// Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    1.23 +// CA 95054 USA or visit www.sun.com if you need additional information or
    1.24 +// have any questions.
    1.25 +//
    1.26 +//
    1.27 +
    1.28 +// SPARC Architecture Description File
    1.29 +
    1.30 +//----------REGISTER DEFINITION BLOCK------------------------------------------
    1.31 +// This information is used by the matcher and the register allocator to
    1.32 +// describe individual registers and classes of registers within the target
    1.33 +// archtecture.
    1.34 +register %{
    1.35 +//----------Architecture Description Register Definitions----------------------
    1.36 +// General Registers
    1.37 +// "reg_def"  name ( register save type, C convention save type,
    1.38 +//                   ideal register type, encoding, vm name );
    1.39 +// Register Save Types:
    1.40 +//
    1.41 +// NS  = No-Save:       The register allocator assumes that these registers
    1.42 +//                      can be used without saving upon entry to the method, &
    1.43 +//                      that they do not need to be saved at call sites.
    1.44 +//
    1.45 +// SOC = Save-On-Call:  The register allocator assumes that these registers
    1.46 +//                      can be used without saving upon entry to the method,
    1.47 +//                      but that they must be saved at call sites.
    1.48 +//
    1.49 +// SOE = Save-On-Entry: The register allocator assumes that these registers
    1.50 +//                      must be saved before using them upon entry to the
    1.51 +//                      method, but they do not need to be saved at call
    1.52 +//                      sites.
    1.53 +//
    1.54 +// AS  = Always-Save:   The register allocator assumes that these registers
    1.55 +//                      must be saved before using them upon entry to the
    1.56 +//                      method, & that they must be saved at call sites.
    1.57 +//
    1.58 +// Ideal Register Type is used to determine how to save & restore a
    1.59 +// register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    1.60 +// spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    1.61 +//
    1.62 +// The encoding number is the actual bit-pattern placed into the opcodes.
    1.63 +
    1.64 +
    1.65 +// ----------------------------
    1.66 +// Integer/Long Registers
    1.67 +// ----------------------------
    1.68 +
    1.69 +// Need to expose the hi/lo aspect of 64-bit registers
    1.70 +// This register set is used for both the 64-bit build and
    1.71 +// the 32-bit build with 1-register longs.
    1.72 +
    1.73 +// Global Registers 0-7
    1.74 +reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    1.75 +reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    1.76 +reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    1.77 +reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    1.78 +reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    1.79 +reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    1.80 +reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    1.81 +reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    1.82 +reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    1.83 +reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    1.84 +reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    1.85 +reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    1.86 +reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    1.87 +reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    1.88 +reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    1.89 +reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    1.90 +
    1.91 +// Output Registers 0-7
    1.92 +reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    1.93 +reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    1.94 +reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    1.95 +reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    1.96 +reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    1.97 +reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    1.98 +reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    1.99 +reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
   1.100 +reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
   1.101 +reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
   1.102 +reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   1.103 +reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   1.104 +reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   1.105 +reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   1.106 +reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   1.107 +reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   1.108 +
   1.109 +// Local Registers 0-7
   1.110 +reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   1.111 +reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   1.112 +reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   1.113 +reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   1.114 +reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   1.115 +reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   1.116 +reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   1.117 +reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   1.118 +reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   1.119 +reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   1.120 +reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   1.121 +reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   1.122 +reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   1.123 +reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   1.124 +reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   1.125 +reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   1.126 +
   1.127 +// Input Registers 0-7
   1.128 +reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   1.129 +reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   1.130 +reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   1.131 +reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   1.132 +reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   1.133 +reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   1.134 +reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   1.135 +reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   1.136 +reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   1.137 +reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   1.138 +reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   1.139 +reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   1.140 +reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   1.141 +reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   1.142 +reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   1.143 +reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   1.144 +
   1.145 +// ----------------------------
   1.146 +// Float/Double Registers
   1.147 +// ----------------------------
   1.148 +
   1.149 +// Float Registers
   1.150 +reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   1.151 +reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   1.152 +reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   1.153 +reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   1.154 +reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   1.155 +reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   1.156 +reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   1.157 +reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   1.158 +reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   1.159 +reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   1.160 +reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   1.161 +reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   1.162 +reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   1.163 +reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   1.164 +reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   1.165 +reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   1.166 +reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   1.167 +reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   1.168 +reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   1.169 +reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   1.170 +reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   1.171 +reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   1.172 +reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   1.173 +reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   1.174 +reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   1.175 +reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   1.176 +reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   1.177 +reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   1.178 +reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   1.179 +reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   1.180 +reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   1.181 +reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   1.182 +
   1.183 +// Double Registers
   1.184 +// The rules of ADL require that double registers be defined in pairs.
   1.185 +// Each pair must be two 32-bit values, but not necessarily a pair of
   1.186 +// single float registers.  In each pair, ADLC-assigned register numbers
   1.187 +// must be adjacent, with the lower number even.  Finally, when the
   1.188 +// CPU stores such a register pair to memory, the word associated with
   1.189 +// the lower ADLC-assigned number must be stored to the lower address.
   1.190 +
   1.191 +// These definitions specify the actual bit encodings of the sparc
   1.192 +// double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   1.193 +// wants 0-63, so we have to convert every time we want to use fp regs
   1.194 +// with the macroassembler, using reg_to_DoubleFloatRegister_object().
   1.195 +// 255 is a flag meaning 'dont go here'.
   1.196 +// I believe we can't handle callee-save doubles D32 and up until
   1.197 +// the place in the sparc stack crawler that asserts on the 255 is
   1.198 +// fixed up.
   1.199 +reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg());
   1.200 +reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg()->next());
   1.201 +reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg());
   1.202 +reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg()->next());
   1.203 +reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg());
   1.204 +reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg()->next());
   1.205 +reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg());
   1.206 +reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg()->next());
   1.207 +reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg());
   1.208 +reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg()->next());
   1.209 +reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg());
   1.210 +reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg()->next());
   1.211 +reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg());
   1.212 +reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg()->next());
   1.213 +reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg());
   1.214 +reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg()->next());
   1.215 +reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg());
   1.216 +reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg()->next());
   1.217 +reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg());
   1.218 +reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg()->next());
   1.219 +reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg());
   1.220 +reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg()->next());
   1.221 +reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg());
   1.222 +reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg()->next());
   1.223 +reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg());
   1.224 +reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg()->next());
   1.225 +reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg());
   1.226 +reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg()->next());
   1.227 +reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg());
   1.228 +reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg()->next());
   1.229 +reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg());
   1.230 +reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg()->next());
   1.231 +
   1.232 +
   1.233 +// ----------------------------
   1.234 +// Special Registers
   1.235 +// Condition Codes Flag Registers
   1.236 +// I tried to break out ICC and XCC but it's not very pretty.
   1.237 +// Every Sparc instruction which defs/kills one also kills the other.
   1.238 +// Hence every compare instruction which defs one kind of flags ends
   1.239 +// up needing a kill of the other.
   1.240 +reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   1.241 +
   1.242 +reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   1.243 +reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   1.244 +reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   1.245 +reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   1.246 +
   1.247 +// ----------------------------
   1.248 +// Specify the enum values for the registers.  These enums are only used by the
   1.249 +// OptoReg "class". We can convert these enum values at will to VMReg when needed
   1.250 +// for visibility to the rest of the vm. The order of this enum influences the
   1.251 +// register allocator so having the freedom to set this order and not be stuck
   1.252 +// with the order that is natural for the rest of the vm is worth it.
   1.253 +alloc_class chunk0(
   1.254 +  R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   1.255 +  R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   1.256 +  R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   1.257 +  R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   1.258 +
   1.259 +// Note that a register is not allocatable unless it is also mentioned
   1.260 +// in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   1.261 +
   1.262 +alloc_class chunk1(
   1.263 +  // The first registers listed here are those most likely to be used
   1.264 +  // as temporaries.  We move F0..F7 away from the front of the list,
   1.265 +  // to reduce the likelihood of interferences with parameters and
   1.266 +  // return values.  Likewise, we avoid using F0/F1 for parameters,
   1.267 +  // since they are used for return values.
   1.268 +  // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   1.269 +  R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   1.270 +  R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   1.271 +  R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   1.272 +  R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   1.273 +  R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   1.274 +  R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   1.275 +  R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   1.276 +  R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   1.277 +
   1.278 +alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   1.279 +
   1.280 +//----------Architecture Description Register Classes--------------------------
   1.281 +// Several register classes are automatically defined based upon information in
   1.282 +// this architecture description.
   1.283 +// 1) reg_class inline_cache_reg           ( as defined in frame section )
   1.284 +// 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   1.285 +// 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   1.286 +//
   1.287 +
   1.288 +// G0 is not included in integer class since it has special meaning.
   1.289 +reg_class g0_reg(R_G0);
   1.290 +
   1.291 +// ----------------------------
   1.292 +// Integer Register Classes
   1.293 +// ----------------------------
   1.294 +// Exclusions from i_reg:
   1.295 +// R_G0: hardwired zero
   1.296 +// R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   1.297 +// R_G6: reserved by Solaris ABI to tools
   1.298 +// R_G7: reserved by Solaris ABI to libthread
   1.299 +// R_O7: Used as a temp in many encodings
   1.300 +reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   1.301 +
   1.302 +// Class for all integer registers, except the G registers.  This is used for
   1.303 +// encodings which use G registers as temps.  The regular inputs to such
   1.304 +// instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   1.305 +// will not put an input into a temp register.
   1.306 +reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   1.307 +
   1.308 +reg_class g1_regI(R_G1);
   1.309 +reg_class g3_regI(R_G3);
   1.310 +reg_class g4_regI(R_G4);
   1.311 +reg_class o0_regI(R_O0);
   1.312 +reg_class o7_regI(R_O7);
   1.313 +
   1.314 +// ----------------------------
   1.315 +// Pointer Register Classes
   1.316 +// ----------------------------
   1.317 +#ifdef _LP64
   1.318 +// 64-bit build means 64-bit pointers means hi/lo pairs
   1.319 +reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   1.320 +                  R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   1.321 +                  R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   1.322 +                  R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   1.323 +// Lock encodings use G3 and G4 internally
   1.324 +reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   1.325 +                  R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   1.326 +                  R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   1.327 +                  R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   1.328 +// Special class for storeP instructions, which can store SP or RPC to TLS.
   1.329 +// It is also used for memory addressing, allowing direct TLS addressing.
   1.330 +reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   1.331 +                  R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   1.332 +                  R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   1.333 +                  R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   1.334 +// R_L7 is the lowest-priority callee-save (i.e., NS) register
   1.335 +// We use it to save R_G2 across calls out of Java.
   1.336 +reg_class l7_regP(R_L7H,R_L7);
   1.337 +
   1.338 +// Other special pointer regs
   1.339 +reg_class g1_regP(R_G1H,R_G1);
   1.340 +reg_class g2_regP(R_G2H,R_G2);
   1.341 +reg_class g3_regP(R_G3H,R_G3);
   1.342 +reg_class g4_regP(R_G4H,R_G4);
   1.343 +reg_class g5_regP(R_G5H,R_G5);
   1.344 +reg_class i0_regP(R_I0H,R_I0);
   1.345 +reg_class o0_regP(R_O0H,R_O0);
   1.346 +reg_class o1_regP(R_O1H,R_O1);
   1.347 +reg_class o2_regP(R_O2H,R_O2);
   1.348 +reg_class o7_regP(R_O7H,R_O7);
   1.349 +
   1.350 +#else // _LP64
   1.351 +// 32-bit build means 32-bit pointers means 1 register.
   1.352 +reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   1.353 +                  R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   1.354 +                  R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   1.355 +                  R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   1.356 +// Lock encodings use G3 and G4 internally
   1.357 +reg_class lock_ptr_reg(R_G1,               R_G5,
   1.358 +                  R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   1.359 +                  R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   1.360 +                  R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   1.361 +// Special class for storeP instructions, which can store SP or RPC to TLS.
   1.362 +// It is also used for memory addressing, allowing direct TLS addressing.
   1.363 +reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   1.364 +                  R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   1.365 +                  R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   1.366 +                  R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   1.367 +// R_L7 is the lowest-priority callee-save (i.e., NS) register
   1.368 +// We use it to save R_G2 across calls out of Java.
   1.369 +reg_class l7_regP(R_L7);
   1.370 +
   1.371 +// Other special pointer regs
   1.372 +reg_class g1_regP(R_G1);
   1.373 +reg_class g2_regP(R_G2);
   1.374 +reg_class g3_regP(R_G3);
   1.375 +reg_class g4_regP(R_G4);
   1.376 +reg_class g5_regP(R_G5);
   1.377 +reg_class i0_regP(R_I0);
   1.378 +reg_class o0_regP(R_O0);
   1.379 +reg_class o1_regP(R_O1);
   1.380 +reg_class o2_regP(R_O2);
   1.381 +reg_class o7_regP(R_O7);
   1.382 +#endif // _LP64
   1.383 +
   1.384 +
   1.385 +// ----------------------------
   1.386 +// Long Register Classes
   1.387 +// ----------------------------
   1.388 +// Longs in 1 register.  Aligned adjacent hi/lo pairs.
   1.389 +// Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   1.390 +reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   1.391 +                   ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   1.392 +#ifdef _LP64
   1.393 +// 64-bit, longs in 1 register: use all 64-bit integer registers
   1.394 +// 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   1.395 +                   ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   1.396 +                   ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   1.397 +#endif // _LP64
   1.398 +                  );
   1.399 +
   1.400 +reg_class g1_regL(R_G1H,R_G1);
   1.401 +reg_class o2_regL(R_O2H,R_O2);
   1.402 +reg_class o7_regL(R_O7H,R_O7);
   1.403 +
   1.404 +// ----------------------------
   1.405 +// Special Class for Condition Code Flags Register
   1.406 +reg_class int_flags(CCR);
   1.407 +reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   1.408 +reg_class float_flag0(FCC0);
   1.409 +
   1.410 +
   1.411 +// ----------------------------
   1.412 +// Float Point Register Classes
   1.413 +// ----------------------------
   1.414 +// Skip F30/F31, they are reserved for mem-mem copies
   1.415 +reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   1.416 +
   1.417 +// Paired floating point registers--they show up in the same order as the floats,
   1.418 +// but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   1.419 +reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   1.420 +                   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   1.421 +                   /* Use extra V9 double registers; this AD file does not support V8 */
   1.422 +                   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   1.423 +                   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   1.424 +                   );
   1.425 +
   1.426 +// Paired floating point registers--they show up in the same order as the floats,
   1.427 +// but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   1.428 +// This class is usable for mis-aligned loads as happen in I2C adapters.
   1.429 +reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   1.430 +                   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31 );
   1.431 +%}
   1.432 +
   1.433 +//----------DEFINITION BLOCK---------------------------------------------------
   1.434 +// Define name --> value mappings to inform the ADLC of an integer valued name
   1.435 +// Current support includes integer values in the range [0, 0x7FFFFFFF]
   1.436 +// Format:
   1.437 +//        int_def  <name>         ( <int_value>, <expression>);
   1.438 +// Generated Code in ad_<arch>.hpp
   1.439 +//        #define  <name>   (<expression>)
   1.440 +//        // value == <int_value>
   1.441 +// Generated code in ad_<arch>.cpp adlc_verification()
   1.442 +//        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   1.443 +//
   1.444 +definitions %{
   1.445 +// The default cost (of an ALU instruction).
   1.446 +  int_def DEFAULT_COST      (    100,     100);
   1.447 +  int_def HUGE_COST         (1000000, 1000000);
   1.448 +
   1.449 +// Memory refs are twice as expensive as run-of-the-mill.
   1.450 +  int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   1.451 +
   1.452 +// Branches are even more expensive.
   1.453 +  int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   1.454 +  int_def CALL_COST         (    300, DEFAULT_COST * 3);
   1.455 +%}
   1.456 +
   1.457 +
   1.458 +//----------SOURCE BLOCK-------------------------------------------------------
   1.459 +// This is a block of C++ code which provides values, functions, and
   1.460 +// definitions necessary in the rest of the architecture description
   1.461 +source_hpp %{
   1.462 +// Must be visible to the DFA in dfa_sparc.cpp
   1.463 +extern bool can_branch_register( Node *bol, Node *cmp );
   1.464 +
   1.465 +// Macros to extract hi & lo halves from a long pair.
   1.466 +// G0 is not part of any long pair, so assert on that.
   1.467 +// Prevents accidently using G1 instead of G0.
   1.468 +#define LONG_HI_REG(x) (x)
   1.469 +#define LONG_LO_REG(x) (x)
   1.470 +
   1.471 +%}
   1.472 +
   1.473 +source %{
   1.474 +#define __ _masm.
   1.475 +
   1.476 +// tertiary op of a LoadP or StoreP encoding
   1.477 +#define REGP_OP true
   1.478 +
   1.479 +static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   1.480 +static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   1.481 +static Register reg_to_register_object(int register_encoding);
   1.482 +
   1.483 +// Used by the DFA in dfa_sparc.cpp.
   1.484 +// Check for being able to use a V9 branch-on-register.  Requires a
   1.485 +// compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   1.486 +// extended.  Doesn't work following an integer ADD, for example, because of
   1.487 +// overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   1.488 +// 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   1.489 +// replace them with zero, which could become sign-extension in a different OS
   1.490 +// release.  There's no obvious reason why an interrupt will ever fill these
   1.491 +// bits with non-zero junk (the registers are reloaded with standard LD
   1.492 +// instructions which either zero-fill or sign-fill).
   1.493 +bool can_branch_register( Node *bol, Node *cmp ) {
   1.494 +  if( !BranchOnRegister ) return false;
   1.495 +#ifdef _LP64
   1.496 +  if( cmp->Opcode() == Op_CmpP )
   1.497 +    return true;  // No problems with pointer compares
   1.498 +#endif
   1.499 +  if( cmp->Opcode() == Op_CmpL )
   1.500 +    return true;  // No problems with long compares
   1.501 +
   1.502 +  if( !SparcV9RegsHiBitsZero ) return false;
   1.503 +  if( bol->as_Bool()->_test._test != BoolTest::ne &&
   1.504 +      bol->as_Bool()->_test._test != BoolTest::eq )
   1.505 +     return false;
   1.506 +
   1.507 +  // Check for comparing against a 'safe' value.  Any operation which
   1.508 +  // clears out the high word is safe.  Thus, loads and certain shifts
   1.509 +  // are safe, as are non-negative constants.  Any operation which
   1.510 +  // preserves zero bits in the high word is safe as long as each of its
   1.511 +  // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   1.512 +  // inputs are safe.  At present, the only important case to recognize
   1.513 +  // seems to be loads.  Constants should fold away, and shifts &
   1.514 +  // logicals can use the 'cc' forms.
   1.515 +  Node *x = cmp->in(1);
   1.516 +  if( x->is_Load() ) return true;
   1.517 +  if( x->is_Phi() ) {
   1.518 +    for( uint i = 1; i < x->req(); i++ )
   1.519 +      if( !x->in(i)->is_Load() )
   1.520 +        return false;
   1.521 +    return true;
   1.522 +  }
   1.523 +  return false;
   1.524 +}
   1.525 +
   1.526 +// ****************************************************************************
   1.527 +
   1.528 +// REQUIRED FUNCTIONALITY
   1.529 +
   1.530 +// !!!!! Special hack to get all type of calls to specify the byte offset
   1.531 +//       from the start of the call to the point where the return address
   1.532 +//       will point.
   1.533 +//       The "return address" is the address of the call instruction, plus 8.
   1.534 +
   1.535 +int MachCallStaticJavaNode::ret_addr_offset() {
   1.536 +  return NativeCall::instruction_size;  // call; delay slot
   1.537 +}
   1.538 +
   1.539 +int MachCallDynamicJavaNode::ret_addr_offset() {
   1.540 +  int vtable_index = this->_vtable_index;
   1.541 +  if (vtable_index < 0) {
   1.542 +    // must be invalid_vtable_index, not nonvirtual_vtable_index
   1.543 +    assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
   1.544 +    return (NativeMovConstReg::instruction_size +
   1.545 +           NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   1.546 +  } else {
   1.547 +    assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   1.548 +    int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   1.549 +    int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   1.550 +    if( Assembler::is_simm13(v_off) ) {
   1.551 +      return (3*BytesPerInstWord +           // ld_ptr, ld_ptr, ld_ptr
   1.552 +             NativeCall::instruction_size);  // call; delay slot
   1.553 +    } else {
   1.554 +      return (5*BytesPerInstWord +           // ld_ptr, set_hi, set, ld_ptr, ld_ptr
   1.555 +             NativeCall::instruction_size);  // call; delay slot
   1.556 +    }
   1.557 +  }
   1.558 +}
   1.559 +
   1.560 +int MachCallRuntimeNode::ret_addr_offset() {
   1.561 +#ifdef _LP64
   1.562 +  return NativeFarCall::instruction_size;  // farcall; delay slot
   1.563 +#else
   1.564 +  return NativeCall::instruction_size;  // call; delay slot
   1.565 +#endif
   1.566 +}
   1.567 +
   1.568 +// Indicate if the safepoint node needs the polling page as an input.
   1.569 +// Since Sparc does not have absolute addressing, it does.
   1.570 +bool SafePointNode::needs_polling_address_input() {
   1.571 +  return true;
   1.572 +}
   1.573 +
   1.574 +// emit an interrupt that is caught by the debugger (for debugging compiler)
   1.575 +void emit_break(CodeBuffer &cbuf) {
   1.576 +  MacroAssembler _masm(&cbuf);
   1.577 +  __ breakpoint_trap();
   1.578 +}
   1.579 +
   1.580 +#ifndef PRODUCT
   1.581 +void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   1.582 +  st->print("TA");
   1.583 +}
   1.584 +#endif
   1.585 +
   1.586 +void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   1.587 +  emit_break(cbuf);
   1.588 +}
   1.589 +
   1.590 +uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   1.591 +  return MachNode::size(ra_);
   1.592 +}
   1.593 +
   1.594 +// Traceable jump
   1.595 +void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   1.596 +  MacroAssembler _masm(&cbuf);
   1.597 +  Register rdest = reg_to_register_object(jump_target);
   1.598 +  __ JMP(rdest, 0);
   1.599 +  __ delayed()->nop();
   1.600 +}
   1.601 +
   1.602 +// Traceable jump and set exception pc
   1.603 +void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   1.604 +  MacroAssembler _masm(&cbuf);
   1.605 +  Register rdest = reg_to_register_object(jump_target);
   1.606 +  __ JMP(rdest, 0);
   1.607 +  __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   1.608 +}
   1.609 +
   1.610 +void emit_nop(CodeBuffer &cbuf) {
   1.611 +  MacroAssembler _masm(&cbuf);
   1.612 +  __ nop();
   1.613 +}
   1.614 +
   1.615 +void emit_illtrap(CodeBuffer &cbuf) {
   1.616 +  MacroAssembler _masm(&cbuf);
   1.617 +  __ illtrap(0);
   1.618 +}
   1.619 +
   1.620 +
   1.621 +intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   1.622 +  assert(n->rule() != loadUB_rule, "");
   1.623 +
   1.624 +  intptr_t offset = 0;
   1.625 +  const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   1.626 +  const Node* addr = n->get_base_and_disp(offset, adr_type);
   1.627 +  assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   1.628 +  assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   1.629 +  assert(addr->bottom_type()->isa_oopptr() == atype, "");
   1.630 +  atype = atype->add_offset(offset);
   1.631 +  assert(disp32 == offset, "wrong disp32");
   1.632 +  return atype->_offset;
   1.633 +}
   1.634 +
   1.635 +
   1.636 +intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   1.637 +  assert(n->rule() != loadUB_rule, "");
   1.638 +
   1.639 +  intptr_t offset = 0;
   1.640 +  Node* addr = n->in(2);
   1.641 +  assert(addr->bottom_type()->isa_oopptr() == atype, "");
   1.642 +  if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   1.643 +    Node* a = addr->in(2/*AddPNode::Address*/);
   1.644 +    Node* o = addr->in(3/*AddPNode::Offset*/);
   1.645 +    offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   1.646 +    atype = a->bottom_type()->is_ptr()->add_offset(offset);
   1.647 +    assert(atype->isa_oop_ptr(), "still an oop");
   1.648 +  }
   1.649 +  offset = atype->is_ptr()->_offset;
   1.650 +  if (offset != Type::OffsetBot)  offset += disp32;
   1.651 +  return offset;
   1.652 +}
   1.653 +
   1.654 +// Standard Sparc opcode form2 field breakdown
   1.655 +static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   1.656 +  f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   1.657 +  int op = (f30 << 30) |
   1.658 +           (f29 << 29) |
   1.659 +           (f25 << 25) |
   1.660 +           (f22 << 22) |
   1.661 +           (f20 << 20) |
   1.662 +           (f19 << 19) |
   1.663 +           (f0  <<  0);
   1.664 +  *((int*)(cbuf.code_end())) = op;
   1.665 +  cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   1.666 +}
   1.667 +
   1.668 +// Standard Sparc opcode form2 field breakdown
   1.669 +static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   1.670 +  f0 >>= 10;           // Drop 10 bits
   1.671 +  f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   1.672 +  int op = (f30 << 30) |
   1.673 +           (f25 << 25) |
   1.674 +           (f22 << 22) |
   1.675 +           (f0  <<  0);
   1.676 +  *((int*)(cbuf.code_end())) = op;
   1.677 +  cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   1.678 +}
   1.679 +
   1.680 +// Standard Sparc opcode form3 field breakdown
   1.681 +static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   1.682 +  int op = (f30 << 30) |
   1.683 +           (f25 << 25) |
   1.684 +           (f19 << 19) |
   1.685 +           (f14 << 14) |
   1.686 +           (f5  <<  5) |
   1.687 +           (f0  <<  0);
   1.688 +  *((int*)(cbuf.code_end())) = op;
   1.689 +  cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   1.690 +}
   1.691 +
   1.692 +// Standard Sparc opcode form3 field breakdown
   1.693 +static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   1.694 +  simm13 &= (1<<13)-1; // Mask to 13 bits
   1.695 +  int op = (f30 << 30) |
   1.696 +           (f25 << 25) |
   1.697 +           (f19 << 19) |
   1.698 +           (f14 << 14) |
   1.699 +           (1   << 13) | // bit to indicate immediate-mode
   1.700 +           (simm13<<0);
   1.701 +  *((int*)(cbuf.code_end())) = op;
   1.702 +  cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   1.703 +}
   1.704 +
   1.705 +static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   1.706 +  simm10 &= (1<<10)-1; // Mask to 10 bits
   1.707 +  emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   1.708 +}
   1.709 +
   1.710 +#ifdef ASSERT
   1.711 +// Helper function for VerifyOops in emit_form3_mem_reg
   1.712 +void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   1.713 +  warning("VerifyOops encountered unexpected instruction:");
   1.714 +  n->dump(2);
   1.715 +  warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   1.716 +}
   1.717 +#endif
   1.718 +
   1.719 +
   1.720 +void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   1.721 +                        int src1_enc, int disp32, int src2_enc, int dst_enc) {
   1.722 +
   1.723 +#ifdef ASSERT
   1.724 +  // The following code implements the +VerifyOops feature.
   1.725 +  // It verifies oop values which are loaded into or stored out of
   1.726 +  // the current method activation.  +VerifyOops complements techniques
   1.727 +  // like ScavengeALot, because it eagerly inspects oops in transit,
   1.728 +  // as they enter or leave the stack, as opposed to ScavengeALot,
   1.729 +  // which inspects oops "at rest", in the stack or heap, at safepoints.
   1.730 +  // For this reason, +VerifyOops can sometimes detect bugs very close
   1.731 +  // to their point of creation.  It can also serve as a cross-check
   1.732 +  // on the validity of oop maps, when used toegether with ScavengeALot.
   1.733 +
   1.734 +  // It would be good to verify oops at other points, especially
   1.735 +  // when an oop is used as a base pointer for a load or store.
   1.736 +  // This is presently difficult, because it is hard to know when
   1.737 +  // a base address is biased or not.  (If we had such information,
   1.738 +  // it would be easy and useful to make a two-argument version of
   1.739 +  // verify_oop which unbiases the base, and performs verification.)
   1.740 +
   1.741 +  assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   1.742 +  bool is_verified_oop_base  = false;
   1.743 +  bool is_verified_oop_load  = false;
   1.744 +  bool is_verified_oop_store = false;
   1.745 +  int tmp_enc = -1;
   1.746 +  if (VerifyOops && src1_enc != R_SP_enc) {
   1.747 +    // classify the op, mainly for an assert check
   1.748 +    int st_op = 0, ld_op = 0;
   1.749 +    switch (primary) {
   1.750 +    case Assembler::stb_op3:  st_op = Op_StoreB; break;
   1.751 +    case Assembler::sth_op3:  st_op = Op_StoreC; break;
   1.752 +    case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   1.753 +    case Assembler::stw_op3:  st_op = Op_StoreI; break;
   1.754 +    case Assembler::std_op3:  st_op = Op_StoreL; break;
   1.755 +    case Assembler::stf_op3:  st_op = Op_StoreF; break;
   1.756 +    case Assembler::stdf_op3: st_op = Op_StoreD; break;
   1.757 +
   1.758 +    case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   1.759 +    case Assembler::lduh_op3: ld_op = Op_LoadC; break;
   1.760 +    case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   1.761 +    case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   1.762 +    case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   1.763 +    case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   1.764 +    case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   1.765 +    case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   1.766 +    case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   1.767 +    case Assembler::ldub_op3: ld_op = Op_LoadB; break;
   1.768 +    case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   1.769 +
   1.770 +    default: ShouldNotReachHere();
   1.771 +    }
   1.772 +    if (tertiary == REGP_OP) {
   1.773 +      if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   1.774 +      else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   1.775 +      else                          ShouldNotReachHere();
   1.776 +      if (st_op) {
   1.777 +        // a store
   1.778 +        // inputs are (0:control, 1:memory, 2:address, 3:value)
   1.779 +        Node* n2 = n->in(3);
   1.780 +        if (n2 != NULL) {
   1.781 +          const Type* t = n2->bottom_type();
   1.782 +          is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   1.783 +        }
   1.784 +      } else {
   1.785 +        // a load
   1.786 +        const Type* t = n->bottom_type();
   1.787 +        is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   1.788 +      }
   1.789 +    }
   1.790 +
   1.791 +    if (ld_op) {
   1.792 +      // a Load
   1.793 +      // inputs are (0:control, 1:memory, 2:address)
   1.794 +      if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   1.795 +          !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
   1.796 +          !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   1.797 +          !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   1.798 +          !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   1.799 +          !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   1.800 +          !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   1.801 +          !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   1.802 +          !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   1.803 +          !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   1.804 +          !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   1.805 +          !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   1.806 +          !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   1.807 +          !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   1.808 +          !(n->rule() == loadUB_rule)) {
   1.809 +        verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   1.810 +      }
   1.811 +    } else if (st_op) {
   1.812 +      // a Store
   1.813 +      // inputs are (0:control, 1:memory, 2:address, 3:value)
   1.814 +      if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   1.815 +          !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   1.816 +          !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   1.817 +          !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   1.818 +          !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   1.819 +          !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   1.820 +        verify_oops_warning(n, n->ideal_Opcode(), st_op);
   1.821 +      }
   1.822 +    }
   1.823 +
   1.824 +    if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   1.825 +      Node* addr = n->in(2);
   1.826 +      if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   1.827 +        const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   1.828 +        if (atype != NULL) {
   1.829 +          intptr_t offset = get_offset_from_base(n, atype, disp32);
   1.830 +          intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   1.831 +          if (offset != offset_2) {
   1.832 +            get_offset_from_base(n, atype, disp32);
   1.833 +            get_offset_from_base_2(n, atype, disp32);
   1.834 +          }
   1.835 +          assert(offset == offset_2, "different offsets");
   1.836 +          if (offset == disp32) {
   1.837 +            // we now know that src1 is a true oop pointer
   1.838 +            is_verified_oop_base = true;
   1.839 +            if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   1.840 +              if( primary == Assembler::ldd_op3 ) {
   1.841 +                is_verified_oop_base = false; // Cannot 'ldd' into O7
   1.842 +              } else {
   1.843 +                tmp_enc = dst_enc;
   1.844 +                dst_enc = R_O7_enc; // Load into O7; preserve source oop
   1.845 +                assert(src1_enc != dst_enc, "");
   1.846 +              }
   1.847 +            }
   1.848 +          }
   1.849 +          if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   1.850 +                       || offset == oopDesc::mark_offset_in_bytes())) {
   1.851 +                      // loading the mark should not be allowed either, but
   1.852 +                      // we don't check this since it conflicts with InlineObjectHash
   1.853 +                      // usage of LoadINode to get the mark. We could keep the
   1.854 +                      // check if we create a new LoadMarkNode
   1.855 +            // but do not verify the object before its header is initialized
   1.856 +            ShouldNotReachHere();
   1.857 +          }
   1.858 +        }
   1.859 +      }
   1.860 +    }
   1.861 +  }
   1.862 +#endif
   1.863 +
   1.864 +  uint instr;
   1.865 +  instr = (Assembler::ldst_op << 30)
   1.866 +        | (dst_enc        << 25)
   1.867 +        | (primary        << 19)
   1.868 +        | (src1_enc       << 14);
   1.869 +
   1.870 +  uint index = src2_enc;
   1.871 +  int disp = disp32;
   1.872 +
   1.873 +  if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   1.874 +    disp += STACK_BIAS;
   1.875 +
   1.876 +  // We should have a compiler bailout here rather than a guarantee.
   1.877 +  // Better yet would be some mechanism to handle variable-size matches correctly.
   1.878 +  guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   1.879 +
   1.880 +  if( disp == 0 ) {
   1.881 +    // use reg-reg form
   1.882 +    // bit 13 is already zero
   1.883 +    instr |= index;
   1.884 +  } else {
   1.885 +    // use reg-imm form
   1.886 +    instr |= 0x00002000;          // set bit 13 to one
   1.887 +    instr |= disp & 0x1FFF;
   1.888 +  }
   1.889 +
   1.890 +  uint *code = (uint*)cbuf.code_end();
   1.891 +  *code = instr;
   1.892 +  cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   1.893 +
   1.894 +#ifdef ASSERT
   1.895 +  {
   1.896 +    MacroAssembler _masm(&cbuf);
   1.897 +    if (is_verified_oop_base) {
   1.898 +      __ verify_oop(reg_to_register_object(src1_enc));
   1.899 +    }
   1.900 +    if (is_verified_oop_store) {
   1.901 +      __ verify_oop(reg_to_register_object(dst_enc));
   1.902 +    }
   1.903 +    if (tmp_enc != -1) {
   1.904 +      __ mov(O7, reg_to_register_object(tmp_enc));
   1.905 +    }
   1.906 +    if (is_verified_oop_load) {
   1.907 +      __ verify_oop(reg_to_register_object(dst_enc));
   1.908 +    }
   1.909 +  }
   1.910 +#endif
   1.911 +}
   1.912 +
   1.913 +void emit_form3_mem_reg_asi(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   1.914 +                        int src1_enc, int disp32, int src2_enc, int dst_enc, int asi) {
   1.915 +
   1.916 +  uint instr;
   1.917 +  instr = (Assembler::ldst_op << 30)
   1.918 +        | (dst_enc        << 25)
   1.919 +        | (primary        << 19)
   1.920 +        | (src1_enc       << 14);
   1.921 +
   1.922 +  int disp = disp32;
   1.923 +  int index    = src2_enc;
   1.924 +
   1.925 +  if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   1.926 +    disp += STACK_BIAS;
   1.927 +
   1.928 +  // We should have a compiler bailout here rather than a guarantee.
   1.929 +  // Better yet would be some mechanism to handle variable-size matches correctly.
   1.930 +  guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   1.931 +
   1.932 +  if( disp != 0 ) {
   1.933 +    // use reg-reg form
   1.934 +    // set src2=R_O7 contains offset
   1.935 +    index = R_O7_enc;
   1.936 +    emit3_simm13( cbuf, Assembler::arith_op, index, Assembler::or_op3, 0, disp);
   1.937 +  }
   1.938 +  instr |= (asi << 5);
   1.939 +  instr |= index;
   1.940 +  uint *code = (uint*)cbuf.code_end();
   1.941 +  *code = instr;
   1.942 +  cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   1.943 +}
   1.944 +
   1.945 +void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false, bool force_far_call = false) {
   1.946 +  // The method which records debug information at every safepoint
   1.947 +  // expects the call to be the first instruction in the snippet as
   1.948 +  // it creates a PcDesc structure which tracks the offset of a call
   1.949 +  // from the start of the codeBlob. This offset is computed as
   1.950 +  // code_end() - code_begin() of the code which has been emitted
   1.951 +  // so far.
   1.952 +  // In this particular case we have skirted around the problem by
   1.953 +  // putting the "mov" instruction in the delay slot but the problem
   1.954 +  // may bite us again at some other point and a cleaner/generic
   1.955 +  // solution using relocations would be needed.
   1.956 +  MacroAssembler _masm(&cbuf);
   1.957 +  __ set_inst_mark();
   1.958 +
   1.959 +  // We flush the current window just so that there is a valid stack copy
   1.960 +  // the fact that the current window becomes active again instantly is
   1.961 +  // not a problem there is nothing live in it.
   1.962 +
   1.963 +#ifdef ASSERT
   1.964 +  int startpos = __ offset();
   1.965 +#endif /* ASSERT */
   1.966 +
   1.967 +#ifdef _LP64
   1.968 +  // Calls to the runtime or native may not be reachable from compiled code,
   1.969 +  // so we generate the far call sequence on 64 bit sparc.
   1.970 +  // This code sequence is relocatable to any address, even on LP64.
   1.971 +  if ( force_far_call ) {
   1.972 +    __ relocate(rtype);
   1.973 +    Address dest(O7, (address)entry_point);
   1.974 +    __ jumpl_to(dest, O7);
   1.975 +  }
   1.976 +  else
   1.977 +#endif
   1.978 +  {
   1.979 +     __ call((address)entry_point, rtype);
   1.980 +  }
   1.981 +
   1.982 +  if (preserve_g2)   __ delayed()->mov(G2, L7);
   1.983 +  else __ delayed()->nop();
   1.984 +
   1.985 +  if (preserve_g2)   __ mov(L7, G2);
   1.986 +
   1.987 +#ifdef ASSERT
   1.988 +  if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   1.989 +#ifdef _LP64
   1.990 +    // Trash argument dump slots.
   1.991 +    __ set(0xb0b8ac0db0b8ac0d, G1);
   1.992 +    __ mov(G1, G5);
   1.993 +    __ stx(G1, SP, STACK_BIAS + 0x80);
   1.994 +    __ stx(G1, SP, STACK_BIAS + 0x88);
   1.995 +    __ stx(G1, SP, STACK_BIAS + 0x90);
   1.996 +    __ stx(G1, SP, STACK_BIAS + 0x98);
   1.997 +    __ stx(G1, SP, STACK_BIAS + 0xA0);
   1.998 +    __ stx(G1, SP, STACK_BIAS + 0xA8);
   1.999 +#else // _LP64
  1.1000 +    // this is also a native call, so smash the first 7 stack locations,
  1.1001 +    // and the various registers
  1.1002 +
  1.1003 +    // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
  1.1004 +    // while [SP+0x44..0x58] are the argument dump slots.
  1.1005 +    __ set((intptr_t)0xbaadf00d, G1);
  1.1006 +    __ mov(G1, G5);
  1.1007 +    __ sllx(G1, 32, G1);
  1.1008 +    __ or3(G1, G5, G1);
  1.1009 +    __ mov(G1, G5);
  1.1010 +    __ stx(G1, SP, 0x40);
  1.1011 +    __ stx(G1, SP, 0x48);
  1.1012 +    __ stx(G1, SP, 0x50);
  1.1013 +    __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1.1014 +#endif // _LP64
  1.1015 +  }
  1.1016 +#endif /*ASSERT*/
  1.1017 +}
  1.1018 +
  1.1019 +//=============================================================================
  1.1020 +// REQUIRED FUNCTIONALITY for encoding
  1.1021 +void emit_lo(CodeBuffer &cbuf, int val) {  }
  1.1022 +void emit_hi(CodeBuffer &cbuf, int val) {  }
  1.1023 +
  1.1024 +void emit_ptr(CodeBuffer &cbuf, intptr_t val, Register reg, bool ForceRelocatable) {
  1.1025 +  MacroAssembler _masm(&cbuf);
  1.1026 +  if (ForceRelocatable) {
  1.1027 +    Address addr(reg, (address)val);
  1.1028 +    __ sethi(addr, ForceRelocatable);
  1.1029 +    __ add(addr, reg);
  1.1030 +  } else {
  1.1031 +    __ set(val, reg);
  1.1032 +  }
  1.1033 +}
  1.1034 +
  1.1035 +
  1.1036 +//=============================================================================
  1.1037 +
  1.1038 +#ifndef PRODUCT
  1.1039 +void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1.1040 +  Compile* C = ra_->C;
  1.1041 +
  1.1042 +  for (int i = 0; i < OptoPrologueNops; i++) {
  1.1043 +    st->print_cr("NOP"); st->print("\t");
  1.1044 +  }
  1.1045 +
  1.1046 +  if( VerifyThread ) {
  1.1047 +    st->print_cr("Verify_Thread"); st->print("\t");
  1.1048 +  }
  1.1049 +
  1.1050 +  size_t framesize = C->frame_slots() << LogBytesPerInt;
  1.1051 +
  1.1052 +  // Calls to C2R adapters often do not accept exceptional returns.
  1.1053 +  // We require that their callers must bang for them.  But be careful, because
  1.1054 +  // some VM calls (such as call site linkage) can use several kilobytes of
  1.1055 +  // stack.  But the stack safety zone should account for that.
  1.1056 +  // See bugs 4446381, 4468289, 4497237.
  1.1057 +  if (C->need_stack_bang(framesize)) {
  1.1058 +    st->print_cr("! stack bang"); st->print("\t");
  1.1059 +  }
  1.1060 +
  1.1061 +  if (Assembler::is_simm13(-framesize)) {
  1.1062 +    st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1.1063 +  } else {
  1.1064 +    st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1.1065 +    st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1.1066 +    st->print   ("SAVE   R_SP,R_G3,R_SP");
  1.1067 +  }
  1.1068 +
  1.1069 +}
  1.1070 +#endif
  1.1071 +
  1.1072 +void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1.1073 +  Compile* C = ra_->C;
  1.1074 +  MacroAssembler _masm(&cbuf);
  1.1075 +
  1.1076 +  for (int i = 0; i < OptoPrologueNops; i++) {
  1.1077 +    __ nop();
  1.1078 +  }
  1.1079 +
  1.1080 +  __ verify_thread();
  1.1081 +
  1.1082 +  size_t framesize = C->frame_slots() << LogBytesPerInt;
  1.1083 +  assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1.1084 +  assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1.1085 +
  1.1086 +  // Calls to C2R adapters often do not accept exceptional returns.
  1.1087 +  // We require that their callers must bang for them.  But be careful, because
  1.1088 +  // some VM calls (such as call site linkage) can use several kilobytes of
  1.1089 +  // stack.  But the stack safety zone should account for that.
  1.1090 +  // See bugs 4446381, 4468289, 4497237.
  1.1091 +  if (C->need_stack_bang(framesize)) {
  1.1092 +    __ generate_stack_overflow_check(framesize);
  1.1093 +  }
  1.1094 +
  1.1095 +  if (Assembler::is_simm13(-framesize)) {
  1.1096 +    __ save(SP, -framesize, SP);
  1.1097 +  } else {
  1.1098 +    __ sethi(-framesize & ~0x3ff, G3);
  1.1099 +    __ add(G3, -framesize & 0x3ff, G3);
  1.1100 +    __ save(SP, G3, SP);
  1.1101 +  }
  1.1102 +  C->set_frame_complete( __ offset() );
  1.1103 +}
  1.1104 +
  1.1105 +uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1.1106 +  return MachNode::size(ra_);
  1.1107 +}
  1.1108 +
  1.1109 +int MachPrologNode::reloc() const {
  1.1110 +  return 10; // a large enough number
  1.1111 +}
  1.1112 +
  1.1113 +//=============================================================================
  1.1114 +#ifndef PRODUCT
  1.1115 +void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1.1116 +  Compile* C = ra_->C;
  1.1117 +
  1.1118 +  if( do_polling() && ra_->C->is_method_compilation() ) {
  1.1119 +    st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1.1120 +#ifdef _LP64
  1.1121 +    st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1.1122 +#else
  1.1123 +    st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1.1124 +#endif
  1.1125 +  }
  1.1126 +
  1.1127 +  if( do_polling() )
  1.1128 +    st->print("RET\n\t");
  1.1129 +
  1.1130 +  st->print("RESTORE");
  1.1131 +}
  1.1132 +#endif
  1.1133 +
  1.1134 +void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1.1135 +  MacroAssembler _masm(&cbuf);
  1.1136 +  Compile* C = ra_->C;
  1.1137 +
  1.1138 +  __ verify_thread();
  1.1139 +
  1.1140 +  // If this does safepoint polling, then do it here
  1.1141 +  if( do_polling() && ra_->C->is_method_compilation() ) {
  1.1142 +    Address polling_page(L0, (address)os::get_polling_page());
  1.1143 +    __ sethi(polling_page, false);
  1.1144 +    __ relocate(relocInfo::poll_return_type);
  1.1145 +    __ ld_ptr( L0, 0, G0 );
  1.1146 +  }
  1.1147 +
  1.1148 +  // If this is a return, then stuff the restore in the delay slot
  1.1149 +  if( do_polling() ) {
  1.1150 +    __ ret();
  1.1151 +    __ delayed()->restore();
  1.1152 +  } else {
  1.1153 +    __ restore();
  1.1154 +  }
  1.1155 +}
  1.1156 +
  1.1157 +uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1.1158 +  return MachNode::size(ra_);
  1.1159 +}
  1.1160 +
  1.1161 +int MachEpilogNode::reloc() const {
  1.1162 +  return 16; // a large enough number
  1.1163 +}
  1.1164 +
  1.1165 +const Pipeline * MachEpilogNode::pipeline() const {
  1.1166 +  return MachNode::pipeline_class();
  1.1167 +}
  1.1168 +
  1.1169 +int MachEpilogNode::safepoint_offset() const {
  1.1170 +  assert( do_polling(), "no return for this epilog node");
  1.1171 +  return MacroAssembler::size_of_sethi(os::get_polling_page());
  1.1172 +}
  1.1173 +
  1.1174 +//=============================================================================
  1.1175 +
  1.1176 +// Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1.1177 +enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1.1178 +static enum RC rc_class( OptoReg::Name reg ) {
  1.1179 +  if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1.1180 +  if (OptoReg::is_stack(reg)) return rc_stack;
  1.1181 +  VMReg r = OptoReg::as_VMReg(reg);
  1.1182 +  if (r->is_Register()) return rc_int;
  1.1183 +  assert(r->is_FloatRegister(), "must be");
  1.1184 +  return rc_float;
  1.1185 +}
  1.1186 +
  1.1187 +static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1.1188 +  if( cbuf ) {
  1.1189 +    // Better yet would be some mechanism to handle variable-size matches correctly
  1.1190 +    if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1.1191 +      ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1.1192 +    } else {
  1.1193 +      emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1.1194 +    }
  1.1195 +  }
  1.1196 +#ifndef PRODUCT
  1.1197 +  else if( !do_size ) {
  1.1198 +    if( size != 0 ) st->print("\n\t");
  1.1199 +    if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1.1200 +    else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1.1201 +  }
  1.1202 +#endif
  1.1203 +  return size+4;
  1.1204 +}
  1.1205 +
  1.1206 +static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1.1207 +  if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1.1208 +#ifndef PRODUCT
  1.1209 +  else if( !do_size ) {
  1.1210 +    if( size != 0 ) st->print("\n\t");
  1.1211 +    st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1.1212 +  }
  1.1213 +#endif
  1.1214 +  return size+4;
  1.1215 +}
  1.1216 +
  1.1217 +uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1.1218 +                                        PhaseRegAlloc *ra_,
  1.1219 +                                        bool do_size,
  1.1220 +                                        outputStream* st ) const {
  1.1221 +  // Get registers to move
  1.1222 +  OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1.1223 +  OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1.1224 +  OptoReg::Name dst_second = ra_->get_reg_second(this );
  1.1225 +  OptoReg::Name dst_first = ra_->get_reg_first(this );
  1.1226 +
  1.1227 +  enum RC src_second_rc = rc_class(src_second);
  1.1228 +  enum RC src_first_rc = rc_class(src_first);
  1.1229 +  enum RC dst_second_rc = rc_class(dst_second);
  1.1230 +  enum RC dst_first_rc = rc_class(dst_first);
  1.1231 +
  1.1232 +  assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1.1233 +
  1.1234 +  // Generate spill code!
  1.1235 +  int size = 0;
  1.1236 +
  1.1237 +  if( src_first == dst_first && src_second == dst_second )
  1.1238 +    return size;            // Self copy, no move
  1.1239 +
  1.1240 +  // --------------------------------------
  1.1241 +  // Check for mem-mem move.  Load into unused float registers and fall into
  1.1242 +  // the float-store case.
  1.1243 +  if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1.1244 +    int offset = ra_->reg2offset(src_first);
  1.1245 +    // Further check for aligned-adjacent pair, so we can use a double load
  1.1246 +    if( (src_first&1)==0 && src_first+1 == src_second ) {
  1.1247 +      src_second    = OptoReg::Name(R_F31_num);
  1.1248 +      src_second_rc = rc_float;
  1.1249 +      size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1.1250 +    } else {
  1.1251 +      size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1.1252 +    }
  1.1253 +    src_first    = OptoReg::Name(R_F30_num);
  1.1254 +    src_first_rc = rc_float;
  1.1255 +  }
  1.1256 +
  1.1257 +  if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1.1258 +    int offset = ra_->reg2offset(src_second);
  1.1259 +    size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1.1260 +    src_second    = OptoReg::Name(R_F31_num);
  1.1261 +    src_second_rc = rc_float;
  1.1262 +  }
  1.1263 +
  1.1264 +  // --------------------------------------
  1.1265 +  // Check for float->int copy; requires a trip through memory
  1.1266 +  if( src_first_rc == rc_float && dst_first_rc == rc_int ) {
  1.1267 +    int offset = frame::register_save_words*wordSize;
  1.1268 +    if( cbuf ) {
  1.1269 +      emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1.1270 +      impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1.1271 +      impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1.1272 +      emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1.1273 +    }
  1.1274 +#ifndef PRODUCT
  1.1275 +    else if( !do_size ) {
  1.1276 +      if( size != 0 ) st->print("\n\t");
  1.1277 +      st->print(  "SUB    R_SP,16,R_SP\n");
  1.1278 +      impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1.1279 +      impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1.1280 +      st->print("\tADD    R_SP,16,R_SP\n");
  1.1281 +    }
  1.1282 +#endif
  1.1283 +    size += 16;
  1.1284 +  }
  1.1285 +
  1.1286 +  // --------------------------------------
  1.1287 +  // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1.1288 +  // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1.1289 +  // hardware does the flop for me.  Doubles are always aligned, so no problem
  1.1290 +  // there.  Misaligned sources only come from native-long-returns (handled
  1.1291 +  // special below).
  1.1292 +#ifndef _LP64
  1.1293 +  if( src_first_rc == rc_int &&     // source is already big-endian
  1.1294 +      src_second_rc != rc_bad &&    // 64-bit move
  1.1295 +      ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1.1296 +    assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1.1297 +    // Do the big-endian flop.
  1.1298 +    OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1.1299 +    enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1.1300 +  }
  1.1301 +#endif
  1.1302 +
  1.1303 +  // --------------------------------------
  1.1304 +  // Check for integer reg-reg copy
  1.1305 +  if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1.1306 +#ifndef _LP64
  1.1307 +    if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1.1308 +      // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1.1309 +      //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1.1310 +      //       operand contains the least significant word of the 64-bit value and vice versa.
  1.1311 +      OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1.1312 +      assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1.1313 +      // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1.1314 +      if( cbuf ) {
  1.1315 +        emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1.1316 +        emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1.1317 +        emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1.1318 +#ifndef PRODUCT
  1.1319 +      } else if( !do_size ) {
  1.1320 +        if( size != 0 ) st->print("\n\t");
  1.1321 +        st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1.1322 +        st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1.1323 +        st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1.1324 +#endif
  1.1325 +      }
  1.1326 +      return size+12;
  1.1327 +    }
  1.1328 +    else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1.1329 +      // returning a long value in I0/I1
  1.1330 +      // a SpillCopy must be able to target a return instruction's reg_class
  1.1331 +      // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1.1332 +      //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1.1333 +      //       operand contains the least significant word of the 64-bit value and vice versa.
  1.1334 +      OptoReg::Name tdest = dst_first;
  1.1335 +
  1.1336 +      if (src_first == dst_first) {
  1.1337 +        tdest = OptoReg::Name(R_O7_num);
  1.1338 +        size += 4;
  1.1339 +      }
  1.1340 +
  1.1341 +      if( cbuf ) {
  1.1342 +        assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1.1343 +        // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1.1344 +        // ShrL_reg_imm6
  1.1345 +        emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1.1346 +        // ShrR_reg_imm6  src, 0, dst
  1.1347 +        emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1.1348 +        if (tdest != dst_first) {
  1.1349 +          emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1.1350 +        }
  1.1351 +      }
  1.1352 +#ifndef PRODUCT
  1.1353 +      else if( !do_size ) {
  1.1354 +        if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1.1355 +        st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1.1356 +        st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1.1357 +        if (tdest != dst_first) {
  1.1358 +          st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1.1359 +        }
  1.1360 +      }
  1.1361 +#endif // PRODUCT
  1.1362 +      return size+8;
  1.1363 +    }
  1.1364 +#endif // !_LP64
  1.1365 +    // Else normal reg-reg copy
  1.1366 +    assert( src_second != dst_first, "smashed second before evacuating it" );
  1.1367 +    size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1.1368 +    assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1.1369 +    // This moves an aligned adjacent pair.
  1.1370 +    // See if we are done.
  1.1371 +    if( src_first+1 == src_second && dst_first+1 == dst_second )
  1.1372 +      return size;
  1.1373 +  }
  1.1374 +
  1.1375 +  // Check for integer store
  1.1376 +  if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1.1377 +    int offset = ra_->reg2offset(dst_first);
  1.1378 +    // Further check for aligned-adjacent pair, so we can use a double store
  1.1379 +    if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1.1380 +      return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1.1381 +    size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1.1382 +  }
  1.1383 +
  1.1384 +  // Check for integer load
  1.1385 +  if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1.1386 +    int offset = ra_->reg2offset(src_first);
  1.1387 +    // Further check for aligned-adjacent pair, so we can use a double load
  1.1388 +    if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1.1389 +      return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1.1390 +    size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1.1391 +  }
  1.1392 +
  1.1393 +  // Check for float reg-reg copy
  1.1394 +  if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1.1395 +    // Further check for aligned-adjacent pair, so we can use a double move
  1.1396 +    if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1.1397 +      return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1.1398 +    size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1.1399 +  }
  1.1400 +
  1.1401 +  // Check for float store
  1.1402 +  if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1.1403 +    int offset = ra_->reg2offset(dst_first);
  1.1404 +    // Further check for aligned-adjacent pair, so we can use a double store
  1.1405 +    if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1.1406 +      return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1.1407 +    size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1.1408 +  }
  1.1409 +
  1.1410 +  // Check for float load
  1.1411 +  if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1.1412 +    int offset = ra_->reg2offset(src_first);
  1.1413 +    // Further check for aligned-adjacent pair, so we can use a double load
  1.1414 +    if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1.1415 +      return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1.1416 +    size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1.1417 +  }
  1.1418 +
  1.1419 +  // --------------------------------------------------------------------
  1.1420 +  // Check for hi bits still needing moving.  Only happens for misaligned
  1.1421 +  // arguments to native calls.
  1.1422 +  if( src_second == dst_second )
  1.1423 +    return size;               // Self copy; no move
  1.1424 +  assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1.1425 +
  1.1426 +#ifndef _LP64
  1.1427 +  // In the LP64 build, all registers can be moved as aligned/adjacent
  1.1428 +  // pairs, so there's never any need to move the high bits seperately.
  1.1429 +  // The 32-bit builds have to deal with the 32-bit ABI which can force
  1.1430 +  // all sorts of silly alignment problems.
  1.1431 +
  1.1432 +  // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1.1433 +  // 32-bits of a 64-bit register, but are needed in low bits of another
  1.1434 +  // register (else it's a hi-bits-to-hi-bits copy which should have
  1.1435 +  // happened already as part of a 64-bit move)
  1.1436 +  if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1.1437 +    assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1.1438 +    assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1.1439 +    // Shift src_second down to dst_second's low bits.
  1.1440 +    if( cbuf ) {
  1.1441 +      emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1.1442 +#ifndef PRODUCT
  1.1443 +    } else if( !do_size ) {
  1.1444 +      if( size != 0 ) st->print("\n\t");
  1.1445 +      st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1.1446 +#endif
  1.1447 +    }
  1.1448 +    return size+4;
  1.1449 +  }
  1.1450 +
  1.1451 +  // Check for high word integer store.  Must down-shift the hi bits
  1.1452 +  // into a temp register, then fall into the case of storing int bits.
  1.1453 +  if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1.1454 +    // Shift src_second down to dst_second's low bits.
  1.1455 +    if( cbuf ) {
  1.1456 +      emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1.1457 +#ifndef PRODUCT
  1.1458 +    } else if( !do_size ) {
  1.1459 +      if( size != 0 ) st->print("\n\t");
  1.1460 +      st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1.1461 +#endif
  1.1462 +    }
  1.1463 +    size+=4;
  1.1464 +    src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1.1465 +  }
  1.1466 +
  1.1467 +  // Check for high word integer load
  1.1468 +  if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1.1469 +    return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1.1470 +
  1.1471 +  // Check for high word integer store
  1.1472 +  if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1.1473 +    return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1.1474 +
  1.1475 +  // Check for high word float store
  1.1476 +  if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1.1477 +    return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1.1478 +
  1.1479 +#endif // !_LP64
  1.1480 +
  1.1481 +  Unimplemented();
  1.1482 +}
  1.1483 +
  1.1484 +#ifndef PRODUCT
  1.1485 +void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1.1486 +  implementation( NULL, ra_, false, st );
  1.1487 +}
  1.1488 +#endif
  1.1489 +
  1.1490 +void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1.1491 +  implementation( &cbuf, ra_, false, NULL );
  1.1492 +}
  1.1493 +
  1.1494 +uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1.1495 +  return implementation( NULL, ra_, true, NULL );
  1.1496 +}
  1.1497 +
  1.1498 +//=============================================================================
  1.1499 +#ifndef PRODUCT
  1.1500 +void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1.1501 +  st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1.1502 +}
  1.1503 +#endif
  1.1504 +
  1.1505 +void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1.1506 +  MacroAssembler _masm(&cbuf);
  1.1507 +  for(int i = 0; i < _count; i += 1) {
  1.1508 +    __ nop();
  1.1509 +  }
  1.1510 +}
  1.1511 +
  1.1512 +uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1.1513 +  return 4 * _count;
  1.1514 +}
  1.1515 +
  1.1516 +
  1.1517 +//=============================================================================
  1.1518 +#ifndef PRODUCT
  1.1519 +void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1.1520 +  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1.1521 +  int reg = ra_->get_reg_first(this);
  1.1522 +  st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1.1523 +}
  1.1524 +#endif
  1.1525 +
  1.1526 +void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1.1527 +  MacroAssembler _masm(&cbuf);
  1.1528 +  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1.1529 +  int reg = ra_->get_encode(this);
  1.1530 +
  1.1531 +  if (Assembler::is_simm13(offset)) {
  1.1532 +     __ add(SP, offset, reg_to_register_object(reg));
  1.1533 +  } else {
  1.1534 +     __ set(offset, O7);
  1.1535 +     __ add(SP, O7, reg_to_register_object(reg));
  1.1536 +  }
  1.1537 +}
  1.1538 +
  1.1539 +uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1.1540 +  // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1.1541 +  assert(ra_ == ra_->C->regalloc(), "sanity");
  1.1542 +  return ra_->C->scratch_emit_size(this);
  1.1543 +}
  1.1544 +
  1.1545 +//=============================================================================
  1.1546 +
  1.1547 +// emit call stub, compiled java to interpretor
  1.1548 +void emit_java_to_interp(CodeBuffer &cbuf ) {
  1.1549 +
  1.1550 +  // Stub is fixed up when the corresponding call is converted from calling
  1.1551 +  // compiled code to calling interpreted code.
  1.1552 +  // set (empty), G5
  1.1553 +  // jmp -1
  1.1554 +
  1.1555 +  address mark = cbuf.inst_mark();  // get mark within main instrs section
  1.1556 +
  1.1557 +  MacroAssembler _masm(&cbuf);
  1.1558 +
  1.1559 +  address base =
  1.1560 +  __ start_a_stub(Compile::MAX_stubs_size);
  1.1561 +  if (base == NULL)  return;  // CodeBuffer::expand failed
  1.1562 +
  1.1563 +  // static stub relocation stores the instruction address of the call
  1.1564 +  __ relocate(static_stub_Relocation::spec(mark));
  1.1565 +
  1.1566 +  __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
  1.1567 +
  1.1568 +  __ set_inst_mark();
  1.1569 +  Address a(G3, (address)-1);
  1.1570 +  __ JUMP(a, 0);
  1.1571 +
  1.1572 +  __ delayed()->nop();
  1.1573 +
  1.1574 +  // Update current stubs pointer and restore code_end.
  1.1575 +  __ end_a_stub();
  1.1576 +}
  1.1577 +
  1.1578 +// size of call stub, compiled java to interpretor
  1.1579 +uint size_java_to_interp() {
  1.1580 +  // This doesn't need to be accurate but it must be larger or equal to
  1.1581 +  // the real size of the stub.
  1.1582 +  return (NativeMovConstReg::instruction_size +  // sethi/setlo;
  1.1583 +          NativeJump::instruction_size + // sethi; jmp; nop
  1.1584 +          (TraceJumps ? 20 * BytesPerInstWord : 0) );
  1.1585 +}
  1.1586 +// relocation entries for call stub, compiled java to interpretor
  1.1587 +uint reloc_java_to_interp() {
  1.1588 +  return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
  1.1589 +}
  1.1590 +
  1.1591 +
  1.1592 +//=============================================================================
  1.1593 +#ifndef PRODUCT
  1.1594 +void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1.1595 +  st->print_cr("\nUEP:");
  1.1596 +#ifdef    _LP64
  1.1597 +  st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1.1598 +  st->print_cr("\tCMP    R_G5,R_G3" );
  1.1599 +  st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1.1600 +#else  // _LP64
  1.1601 +  st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1.1602 +  st->print_cr("\tCMP    R_G5,R_G3" );
  1.1603 +  st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1.1604 +#endif // _LP64
  1.1605 +}
  1.1606 +#endif
  1.1607 +
  1.1608 +void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1.1609 +  MacroAssembler _masm(&cbuf);
  1.1610 +  Label L;
  1.1611 +  Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1.1612 +  Register temp_reg   = G3;
  1.1613 +  assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1.1614 +
  1.1615 +  // Load klass from reciever
  1.1616 +  __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg);
  1.1617 +  // Compare against expected klass
  1.1618 +  __ cmp(temp_reg, G5_ic_reg);
  1.1619 +  // Branch to miss code, checks xcc or icc depending
  1.1620 +  __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1.1621 +}
  1.1622 +
  1.1623 +uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1.1624 +  return MachNode::size(ra_);
  1.1625 +}
  1.1626 +
  1.1627 +
  1.1628 +//=============================================================================
  1.1629 +
  1.1630 +uint size_exception_handler() {
  1.1631 +  if (TraceJumps) {
  1.1632 +    return (400); // just a guess
  1.1633 +  }
  1.1634 +  return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1.1635 +}
  1.1636 +
  1.1637 +uint size_deopt_handler() {
  1.1638 +  if (TraceJumps) {
  1.1639 +    return (400); // just a guess
  1.1640 +  }
  1.1641 +  return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1.1642 +}
  1.1643 +
  1.1644 +// Emit exception handler code.
  1.1645 +int emit_exception_handler(CodeBuffer& cbuf) {
  1.1646 +  Register temp_reg = G3;
  1.1647 +  Address exception_blob(temp_reg, OptoRuntime::exception_blob()->instructions_begin());
  1.1648 +  MacroAssembler _masm(&cbuf);
  1.1649 +
  1.1650 +  address base =
  1.1651 +  __ start_a_stub(size_exception_handler());
  1.1652 +  if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1.1653 +
  1.1654 +  int offset = __ offset();
  1.1655 +
  1.1656 +  __ JUMP(exception_blob, 0); // sethi;jmp
  1.1657 +  __ delayed()->nop();
  1.1658 +
  1.1659 +  assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1.1660 +
  1.1661 +  __ end_a_stub();
  1.1662 +
  1.1663 +  return offset;
  1.1664 +}
  1.1665 +
  1.1666 +int emit_deopt_handler(CodeBuffer& cbuf) {
  1.1667 +  // Can't use any of the current frame's registers as we may have deopted
  1.1668 +  // at a poll and everything (including G3) can be live.
  1.1669 +  Register temp_reg = L0;
  1.1670 +  Address deopt_blob(temp_reg, SharedRuntime::deopt_blob()->unpack());
  1.1671 +  MacroAssembler _masm(&cbuf);
  1.1672 +
  1.1673 +  address base =
  1.1674 +  __ start_a_stub(size_deopt_handler());
  1.1675 +  if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1.1676 +
  1.1677 +  int offset = __ offset();
  1.1678 +  __ save_frame(0);
  1.1679 +  __ JUMP(deopt_blob, 0); // sethi;jmp
  1.1680 +  __ delayed()->restore();
  1.1681 +
  1.1682 +  assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1.1683 +
  1.1684 +  __ end_a_stub();
  1.1685 +  return offset;
  1.1686 +
  1.1687 +}
  1.1688 +
  1.1689 +// Given a register encoding, produce a Integer Register object
  1.1690 +static Register reg_to_register_object(int register_encoding) {
  1.1691 +  assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1.1692 +  return as_Register(register_encoding);
  1.1693 +}
  1.1694 +
  1.1695 +// Given a register encoding, produce a single-precision Float Register object
  1.1696 +static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1.1697 +  assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1.1698 +  return as_SingleFloatRegister(register_encoding);
  1.1699 +}
  1.1700 +
  1.1701 +// Given a register encoding, produce a double-precision Float Register object
  1.1702 +static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1.1703 +  assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1.1704 +  assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1.1705 +  return as_DoubleFloatRegister(register_encoding);
  1.1706 +}
  1.1707 +
  1.1708 +int Matcher::regnum_to_fpu_offset(int regnum) {
  1.1709 +  return regnum - 32; // The FP registers are in the second chunk
  1.1710 +}
  1.1711 +
  1.1712 +#ifdef ASSERT
  1.1713 +address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1.1714 +#endif
  1.1715 +
  1.1716 +// Vector width in bytes
  1.1717 +const uint Matcher::vector_width_in_bytes(void) {
  1.1718 +  return 8;
  1.1719 +}
  1.1720 +
  1.1721 +// Vector ideal reg
  1.1722 +const uint Matcher::vector_ideal_reg(void) {
  1.1723 +  return Op_RegD;
  1.1724 +}
  1.1725 +
  1.1726 +// USII supports fxtof through the whole range of number, USIII doesn't
  1.1727 +const bool Matcher::convL2FSupported(void) {
  1.1728 +  return VM_Version::has_fast_fxtof();
  1.1729 +}
  1.1730 +
  1.1731 +// Is this branch offset short enough that a short branch can be used?
  1.1732 +//
  1.1733 +// NOTE: If the platform does not provide any short branch variants, then
  1.1734 +//       this method should return false for offset 0.
  1.1735 +bool Matcher::is_short_branch_offset(int offset) {
  1.1736 +  return false;
  1.1737 +}
  1.1738 +
  1.1739 +const bool Matcher::isSimpleConstant64(jlong value) {
  1.1740 +  // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1.1741 +  // Depends on optimizations in MacroAssembler::setx.
  1.1742 +  int hi = (int)(value >> 32);
  1.1743 +  int lo = (int)(value & ~0);
  1.1744 +  return (hi == 0) || (hi == -1) || (lo == 0);
  1.1745 +}
  1.1746 +
  1.1747 +// No scaling for the parameter the ClearArray node.
  1.1748 +const bool Matcher::init_array_count_is_in_bytes = true;
  1.1749 +
  1.1750 +// Threshold size for cleararray.
  1.1751 +const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1.1752 +
  1.1753 +// Should the Matcher clone shifts on addressing modes, expecting them to
  1.1754 +// be subsumed into complex addressing expressions or compute them into
  1.1755 +// registers?  True for Intel but false for most RISCs
  1.1756 +const bool Matcher::clone_shift_expressions = false;
  1.1757 +
  1.1758 +// Is it better to copy float constants, or load them directly from memory?
  1.1759 +// Intel can load a float constant from a direct address, requiring no
  1.1760 +// extra registers.  Most RISCs will have to materialize an address into a
  1.1761 +// register first, so they would do better to copy the constant from stack.
  1.1762 +const bool Matcher::rematerialize_float_constants = false;
  1.1763 +
  1.1764 +// If CPU can load and store mis-aligned doubles directly then no fixup is
  1.1765 +// needed.  Else we split the double into 2 integer pieces and move it
  1.1766 +// piece-by-piece.  Only happens when passing doubles into C code as the
  1.1767 +// Java calling convention forces doubles to be aligned.
  1.1768 +#ifdef _LP64
  1.1769 +const bool Matcher::misaligned_doubles_ok = true;
  1.1770 +#else
  1.1771 +const bool Matcher::misaligned_doubles_ok = false;
  1.1772 +#endif
  1.1773 +
  1.1774 +// No-op on SPARC.
  1.1775 +void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1.1776 +}
  1.1777 +
  1.1778 +// Advertise here if the CPU requires explicit rounding operations
  1.1779 +// to implement the UseStrictFP mode.
  1.1780 +const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1.1781 +
  1.1782 +// Do floats take an entire double register or just half?
  1.1783 +const bool Matcher::float_in_double = false;
  1.1784 +
  1.1785 +// Do ints take an entire long register or just half?
  1.1786 +// Note that we if-def off of _LP64.
  1.1787 +// The relevant question is how the int is callee-saved.  In _LP64
  1.1788 +// the whole long is written but de-opt'ing will have to extract
  1.1789 +// the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1.1790 +#ifdef _LP64
  1.1791 +const bool Matcher::int_in_long = true;
  1.1792 +#else
  1.1793 +const bool Matcher::int_in_long = false;
  1.1794 +#endif
  1.1795 +
  1.1796 +// Return whether or not this register is ever used as an argument.  This
  1.1797 +// function is used on startup to build the trampoline stubs in generateOptoStub.
  1.1798 +// Registers not mentioned will be killed by the VM call in the trampoline, and
  1.1799 +// arguments in those registers not be available to the callee.
  1.1800 +bool Matcher::can_be_java_arg( int reg ) {
  1.1801 +  // Standard sparc 6 args in registers
  1.1802 +  if( reg == R_I0_num ||
  1.1803 +      reg == R_I1_num ||
  1.1804 +      reg == R_I2_num ||
  1.1805 +      reg == R_I3_num ||
  1.1806 +      reg == R_I4_num ||
  1.1807 +      reg == R_I5_num ) return true;
  1.1808 +#ifdef _LP64
  1.1809 +  // 64-bit builds can pass 64-bit pointers and longs in
  1.1810 +  // the high I registers
  1.1811 +  if( reg == R_I0H_num ||
  1.1812 +      reg == R_I1H_num ||
  1.1813 +      reg == R_I2H_num ||
  1.1814 +      reg == R_I3H_num ||
  1.1815 +      reg == R_I4H_num ||
  1.1816 +      reg == R_I5H_num ) return true;
  1.1817 +#else
  1.1818 +  // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  1.1819 +  // Longs cannot be passed in O regs, because O regs become I regs
  1.1820 +  // after a 'save' and I regs get their high bits chopped off on
  1.1821 +  // interrupt.
  1.1822 +  if( reg == R_G1H_num || reg == R_G1_num ) return true;
  1.1823 +  if( reg == R_G4H_num || reg == R_G4_num ) return true;
  1.1824 +#endif
  1.1825 +  // A few float args in registers
  1.1826 +  if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  1.1827 +
  1.1828 +  return false;
  1.1829 +}
  1.1830 +
  1.1831 +bool Matcher::is_spillable_arg( int reg ) {
  1.1832 +  return can_be_java_arg(reg);
  1.1833 +}
  1.1834 +
  1.1835 +// Register for DIVI projection of divmodI
  1.1836 +RegMask Matcher::divI_proj_mask() {
  1.1837 +  ShouldNotReachHere();
  1.1838 +  return RegMask();
  1.1839 +}
  1.1840 +
  1.1841 +// Register for MODI projection of divmodI
  1.1842 +RegMask Matcher::modI_proj_mask() {
  1.1843 +  ShouldNotReachHere();
  1.1844 +  return RegMask();
  1.1845 +}
  1.1846 +
  1.1847 +// Register for DIVL projection of divmodL
  1.1848 +RegMask Matcher::divL_proj_mask() {
  1.1849 +  ShouldNotReachHere();
  1.1850 +  return RegMask();
  1.1851 +}
  1.1852 +
  1.1853 +// Register for MODL projection of divmodL
  1.1854 +RegMask Matcher::modL_proj_mask() {
  1.1855 +  ShouldNotReachHere();
  1.1856 +  return RegMask();
  1.1857 +}
  1.1858 +
  1.1859 +%}
  1.1860 +
  1.1861 +
  1.1862 +// The intptr_t operand types, defined by textual substitution.
  1.1863 +// (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  1.1864 +#ifdef _LP64
  1.1865 +#define immX    immL
  1.1866 +#define immX13  immL13
  1.1867 +#define iRegX   iRegL
  1.1868 +#define g1RegX  g1RegL
  1.1869 +#else
  1.1870 +#define immX    immI
  1.1871 +#define immX13  immI13
  1.1872 +#define iRegX   iRegI
  1.1873 +#define g1RegX  g1RegI
  1.1874 +#endif
  1.1875 +
  1.1876 +//----------ENCODING BLOCK-----------------------------------------------------
  1.1877 +// This block specifies the encoding classes used by the compiler to output
  1.1878 +// byte streams.  Encoding classes are parameterized macros used by
  1.1879 +// Machine Instruction Nodes in order to generate the bit encoding of the
  1.1880 +// instruction.  Operands specify their base encoding interface with the
  1.1881 +// interface keyword.  There are currently supported four interfaces,
  1.1882 +// REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1.1883 +// operand to generate a function which returns its register number when
  1.1884 +// queried.   CONST_INTER causes an operand to generate a function which
  1.1885 +// returns the value of the constant when queried.  MEMORY_INTER causes an
  1.1886 +// operand to generate four functions which return the Base Register, the
  1.1887 +// Index Register, the Scale Value, and the Offset Value of the operand when
  1.1888 +// queried.  COND_INTER causes an operand to generate six functions which
  1.1889 +// return the encoding code (ie - encoding bits for the instruction)
  1.1890 +// associated with each basic boolean condition for a conditional instruction.
  1.1891 +//
  1.1892 +// Instructions specify two basic values for encoding.  Again, a function
  1.1893 +// is available to check if the constant displacement is an oop. They use the
  1.1894 +// ins_encode keyword to specify their encoding classes (which must be
  1.1895 +// a sequence of enc_class names, and their parameters, specified in
  1.1896 +// the encoding block), and they use the
  1.1897 +// opcode keyword to specify, in order, their primary, secondary, and
  1.1898 +// tertiary opcode.  Only the opcode sections which a particular instruction
  1.1899 +// needs for encoding need to be specified.
  1.1900 +encode %{
  1.1901 +  enc_class enc_untested %{
  1.1902 +#ifdef ASSERT
  1.1903 +    MacroAssembler _masm(&cbuf);
  1.1904 +    __ untested("encoding");
  1.1905 +#endif
  1.1906 +  %}
  1.1907 +
  1.1908 +  enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  1.1909 +    emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  1.1910 +                       $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  1.1911 +  %}
  1.1912 +
  1.1913 +  enc_class form3_mem_reg_little( memory mem, iRegI dst) %{
  1.1914 +    emit_form3_mem_reg_asi(cbuf, this, $primary, $tertiary,
  1.1915 +                     $mem$$base, $mem$$disp, $mem$$index, $dst$$reg, Assembler::ASI_PRIMARY_LITTLE);
  1.1916 +  %}
  1.1917 +
  1.1918 +  enc_class form3_mem_prefetch_read( memory mem ) %{
  1.1919 +    emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  1.1920 +                       $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  1.1921 +  %}
  1.1922 +
  1.1923 +  enc_class form3_mem_prefetch_write( memory mem ) %{
  1.1924 +    emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  1.1925 +                       $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  1.1926 +  %}
  1.1927 +
  1.1928 +  enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  1.1929 +    assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  1.1930 +    assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  1.1931 +    guarantee($mem$$index == R_G0_enc, "double index?");
  1.1932 +    emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  1.1933 +    emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  1.1934 +    emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  1.1935 +    emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  1.1936 +  %}
  1.1937 +
  1.1938 +  enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  1.1939 +    assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  1.1940 +    assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  1.1941 +    guarantee($mem$$index == R_G0_enc, "double index?");
  1.1942 +    // Load long with 2 instructions
  1.1943 +    emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  1.1944 +    emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  1.1945 +  %}
  1.1946 +
  1.1947 +  //%%% form3_mem_plus_4_reg is a hack--get rid of it
  1.1948 +  enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  1.1949 +    guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  1.1950 +    emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  1.1951 +  %}
  1.1952 +
  1.1953 +  enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  1.1954 +    // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1.1955 +    if( $rs2$$reg != $rd$$reg )
  1.1956 +      emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  1.1957 +  %}
  1.1958 +
  1.1959 +  // Target lo half of long
  1.1960 +  enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  1.1961 +    // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1.1962 +    if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  1.1963 +      emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  1.1964 +  %}
  1.1965 +
  1.1966 +  // Source lo half of long
  1.1967 +  enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  1.1968 +    // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1.1969 +    if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  1.1970 +      emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  1.1971 +  %}
  1.1972 +
  1.1973 +  // Target hi half of long
  1.1974 +  enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  1.1975 +    emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  1.1976 +  %}
  1.1977 +
  1.1978 +  // Source lo half of long, and leave it sign extended.
  1.1979 +  enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  1.1980 +    // Sign extend low half
  1.1981 +    emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  1.1982 +  %}
  1.1983 +
  1.1984 +  // Source hi half of long, and leave it sign extended.
  1.1985 +  enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  1.1986 +    // Shift high half to low half
  1.1987 +    emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  1.1988 +  %}
  1.1989 +
  1.1990 +  // Source hi half of long
  1.1991 +  enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  1.1992 +    // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1.1993 +    if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  1.1994 +      emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  1.1995 +  %}
  1.1996 +
  1.1997 +  enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  1.1998 +    emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  1.1999 +  %}
  1.2000 +
  1.2001 +  enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  1.2002 +    emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  1.2003 +    emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  1.2004 +  %}
  1.2005 +
  1.2006 +  enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  1.2007 +    emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  1.2008 +    // clear if nothing else is happening
  1.2009 +    emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  1.2010 +    // blt,a,pn done
  1.2011 +    emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  1.2012 +    // mov dst,-1 in delay slot
  1.2013 +    emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  1.2014 +  %}
  1.2015 +
  1.2016 +  enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  1.2017 +    emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  1.2018 +  %}
  1.2019 +
  1.2020 +  enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  1.2021 +    emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  1.2022 +  %}
  1.2023 +
  1.2024 +  enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  1.2025 +    emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  1.2026 +  %}
  1.2027 +
  1.2028 +  enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  1.2029 +    emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  1.2030 +  %}
  1.2031 +
  1.2032 +  enc_class move_return_pc_to_o1() %{
  1.2033 +    emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  1.2034 +  %}
  1.2035 +
  1.2036 +#ifdef _LP64
  1.2037 +  /* %%% merge with enc_to_bool */
  1.2038 +  enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  1.2039 +    MacroAssembler _masm(&cbuf);
  1.2040 +
  1.2041 +    Register   src_reg = reg_to_register_object($src$$reg);
  1.2042 +    Register   dst_reg = reg_to_register_object($dst$$reg);
  1.2043 +    __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  1.2044 +  %}
  1.2045 +#endif
  1.2046 +
  1.2047 +  enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  1.2048 +    // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  1.2049 +    MacroAssembler _masm(&cbuf);
  1.2050 +
  1.2051 +    Register   p_reg = reg_to_register_object($p$$reg);
  1.2052 +    Register   q_reg = reg_to_register_object($q$$reg);
  1.2053 +    Register   y_reg = reg_to_register_object($y$$reg);
  1.2054 +    Register tmp_reg = reg_to_register_object($tmp$$reg);
  1.2055 +
  1.2056 +    __ subcc( p_reg, q_reg,   p_reg );
  1.2057 +    __ add  ( p_reg, y_reg, tmp_reg );
  1.2058 +    __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  1.2059 +  %}
  1.2060 +
  1.2061 +  enc_class form_d2i_helper(regD src, regF dst) %{
  1.2062 +    // fcmp %fcc0,$src,$src
  1.2063 +    emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  1.2064 +    // branch %fcc0 not-nan, predict taken
  1.2065 +    emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  1.2066 +    // fdtoi $src,$dst
  1.2067 +    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  1.2068 +    // fitos $dst,$dst (if nan)
  1.2069 +    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  1.2070 +    // clear $dst (if nan)
  1.2071 +    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  1.2072 +    // carry on here...
  1.2073 +  %}
  1.2074 +
  1.2075 +  enc_class form_d2l_helper(regD src, regD dst) %{
  1.2076 +    // fcmp %fcc0,$src,$src  check for NAN
  1.2077 +    emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  1.2078 +    // branch %fcc0 not-nan, predict taken
  1.2079 +    emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  1.2080 +    // fdtox $src,$dst   convert in delay slot
  1.2081 +    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  1.2082 +    // fxtod $dst,$dst  (if nan)
  1.2083 +    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  1.2084 +    // clear $dst (if nan)
  1.2085 +    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  1.2086 +    // carry on here...
  1.2087 +  %}
  1.2088 +
  1.2089 +  enc_class form_f2i_helper(regF src, regF dst) %{
  1.2090 +    // fcmps %fcc0,$src,$src
  1.2091 +    emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  1.2092 +    // branch %fcc0 not-nan, predict taken
  1.2093 +    emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  1.2094 +    // fstoi $src,$dst
  1.2095 +    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  1.2096 +    // fitos $dst,$dst (if nan)
  1.2097 +    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  1.2098 +    // clear $dst (if nan)
  1.2099 +    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  1.2100 +    // carry on here...
  1.2101 +  %}
  1.2102 +
  1.2103 +  enc_class form_f2l_helper(regF src, regD dst) %{
  1.2104 +    // fcmps %fcc0,$src,$src
  1.2105 +    emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  1.2106 +    // branch %fcc0 not-nan, predict taken
  1.2107 +    emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  1.2108 +    // fstox $src,$dst
  1.2109 +    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  1.2110 +    // fxtod $dst,$dst (if nan)
  1.2111 +    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  1.2112 +    // clear $dst (if nan)
  1.2113 +    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  1.2114 +    // carry on here...
  1.2115 +  %}
  1.2116 +
  1.2117 +  enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  1.2118 +  enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  1.2119 +  enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  1.2120 +  enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  1.2121 +
  1.2122 +  enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  1.2123 +
  1.2124 +  enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  1.2125 +  enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  1.2126 +
  1.2127 +  enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  1.2128 +    emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  1.2129 +  %}
  1.2130 +
  1.2131 +  enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  1.2132 +    emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  1.2133 +  %}
  1.2134 +
  1.2135 +  enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  1.2136 +    emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  1.2137 +  %}
  1.2138 +
  1.2139 +  enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  1.2140 +    emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  1.2141 +  %}
  1.2142 +
  1.2143 +  enc_class form3_convI2F(regF rs2, regF rd) %{
  1.2144 +    emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  1.2145 +  %}
  1.2146 +
  1.2147 +  // Encloding class for traceable jumps
  1.2148 +  enc_class form_jmpl(g3RegP dest) %{
  1.2149 +    emit_jmpl(cbuf, $dest$$reg);
  1.2150 +  %}
  1.2151 +
  1.2152 +  enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  1.2153 +    emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  1.2154 +  %}
  1.2155 +
  1.2156 +  enc_class form2_nop() %{
  1.2157 +    emit_nop(cbuf);
  1.2158 +  %}
  1.2159 +
  1.2160 +  enc_class form2_illtrap() %{
  1.2161 +    emit_illtrap(cbuf);
  1.2162 +  %}
  1.2163 +
  1.2164 +
  1.2165 +  // Compare longs and convert into -1, 0, 1.
  1.2166 +  enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  1.2167 +    // CMP $src1,$src2
  1.2168 +    emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  1.2169 +    // blt,a,pn done
  1.2170 +    emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  1.2171 +    // mov dst,-1 in delay slot
  1.2172 +    emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  1.2173 +    // bgt,a,pn done
  1.2174 +    emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  1.2175 +    // mov dst,1 in delay slot
  1.2176 +    emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  1.2177 +    // CLR    $dst
  1.2178 +    emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  1.2179 +  %}
  1.2180 +
  1.2181 +  enc_class enc_PartialSubtypeCheck() %{
  1.2182 +    MacroAssembler _masm(&cbuf);
  1.2183 +    __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  1.2184 +    __ delayed()->nop();
  1.2185 +  %}
  1.2186 +
  1.2187 +  enc_class enc_bp( Label labl, cmpOp cmp, flagsReg cc ) %{
  1.2188 +    MacroAssembler _masm(&cbuf);
  1.2189 +    Label &L = *($labl$$label);
  1.2190 +    Assembler::Predict predict_taken =
  1.2191 +      cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  1.2192 +
  1.2193 +    __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, L);
  1.2194 +    __ delayed()->nop();
  1.2195 +  %}
  1.2196 +
  1.2197 +  enc_class enc_bpl( Label labl, cmpOp cmp, flagsRegL cc ) %{
  1.2198 +    MacroAssembler _masm(&cbuf);
  1.2199 +    Label &L = *($labl$$label);
  1.2200 +    Assembler::Predict predict_taken =
  1.2201 +      cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  1.2202 +
  1.2203 +    __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, L);
  1.2204 +    __ delayed()->nop();
  1.2205 +  %}
  1.2206 +
  1.2207 +  enc_class enc_bpx( Label labl, cmpOp cmp, flagsRegP cc ) %{
  1.2208 +    MacroAssembler _masm(&cbuf);
  1.2209 +    Label &L = *($labl$$label);
  1.2210 +    Assembler::Predict predict_taken =
  1.2211 +      cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  1.2212 +
  1.2213 +    __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, L);
  1.2214 +    __ delayed()->nop();
  1.2215 +  %}
  1.2216 +
  1.2217 +  enc_class enc_fbp( Label labl, cmpOpF cmp, flagsRegF cc ) %{
  1.2218 +    MacroAssembler _masm(&cbuf);
  1.2219 +    Label &L = *($labl$$label);
  1.2220 +    Assembler::Predict predict_taken =
  1.2221 +      cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  1.2222 +
  1.2223 +    __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($cc$$reg), predict_taken, L);
  1.2224 +    __ delayed()->nop();
  1.2225 +  %}
  1.2226 +
  1.2227 +  enc_class jump_enc( iRegX switch_val, o7RegI table) %{
  1.2228 +    MacroAssembler _masm(&cbuf);
  1.2229 +
  1.2230 +    Register switch_reg       = as_Register($switch_val$$reg);
  1.2231 +    Register table_reg        = O7;
  1.2232 +
  1.2233 +    address table_base = __ address_table_constant(_index2label);
  1.2234 +    RelocationHolder rspec = internal_word_Relocation::spec(table_base);
  1.2235 +
  1.2236 +    // Load table address
  1.2237 +    Address the_pc(table_reg, table_base, rspec);
  1.2238 +    __ load_address(the_pc);
  1.2239 +
  1.2240 +    // Jump to base address + switch value
  1.2241 +    __ ld_ptr(table_reg, switch_reg, table_reg);
  1.2242 +    __ jmp(table_reg, G0);
  1.2243 +    __ delayed()->nop();
  1.2244 +
  1.2245 +  %}
  1.2246 +
  1.2247 +  enc_class enc_ba( Label labl ) %{
  1.2248 +    MacroAssembler _masm(&cbuf);
  1.2249 +    Label &L = *($labl$$label);
  1.2250 +    __ ba(false, L);
  1.2251 +    __ delayed()->nop();
  1.2252 +  %}
  1.2253 +
  1.2254 +  enc_class enc_bpr( Label labl, cmpOp_reg cmp, iRegI op1 ) %{
  1.2255 +    MacroAssembler _masm(&cbuf);
  1.2256 +    Label &L = *$labl$$label;
  1.2257 +    Assembler::Predict predict_taken =
  1.2258 +      cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  1.2259 +
  1.2260 +    __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), L);
  1.2261 +    __ delayed()->nop();
  1.2262 +  %}
  1.2263 +
  1.2264 +  enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  1.2265 +    int op = (Assembler::arith_op << 30) |
  1.2266 +             ($dst$$reg << 25) |
  1.2267 +             (Assembler::movcc_op3 << 19) |
  1.2268 +             (1 << 18) |                    // cc2 bit for 'icc'
  1.2269 +             ($cmp$$cmpcode << 14) |
  1.2270 +             (0 << 13) |                    // select register move
  1.2271 +             ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  1.2272 +             ($src$$reg << 0);
  1.2273 +    *((int*)(cbuf.code_end())) = op;
  1.2274 +    cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  1.2275 +  %}
  1.2276 +
  1.2277 +  enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  1.2278 +    int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  1.2279 +    int op = (Assembler::arith_op << 30) |
  1.2280 +             ($dst$$reg << 25) |
  1.2281 +             (Assembler::movcc_op3 << 19) |
  1.2282 +             (1 << 18) |                    // cc2 bit for 'icc'
  1.2283 +             ($cmp$$cmpcode << 14) |
  1.2284 +             (1 << 13) |                    // select immediate move
  1.2285 +             ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  1.2286 +             (simm11 << 0);
  1.2287 +    *((int*)(cbuf.code_end())) = op;
  1.2288 +    cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  1.2289 +  %}
  1.2290 +
  1.2291 +  enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  1.2292 +    int op = (Assembler::arith_op << 30) |
  1.2293 +             ($dst$$reg << 25) |
  1.2294 +             (Assembler::movcc_op3 << 19) |
  1.2295 +             (0 << 18) |                    // cc2 bit for 'fccX'
  1.2296 +             ($cmp$$cmpcode << 14) |
  1.2297 +             (0 << 13) |                    // select register move
  1.2298 +             ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  1.2299 +             ($src$$reg << 0);
  1.2300 +    *((int*)(cbuf.code_end())) = op;
  1.2301 +    cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  1.2302 +  %}
  1.2303 +
  1.2304 +  enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  1.2305 +    int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  1.2306 +    int op = (Assembler::arith_op << 30) |
  1.2307 +             ($dst$$reg << 25) |
  1.2308 +             (Assembler::movcc_op3 << 19) |
  1.2309 +             (0 << 18) |                    // cc2 bit for 'fccX'
  1.2310 +             ($cmp$$cmpcode << 14) |
  1.2311 +             (1 << 13) |                    // select immediate move
  1.2312 +             ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  1.2313 +             (simm11 << 0);
  1.2314 +    *((int*)(cbuf.code_end())) = op;
  1.2315 +    cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  1.2316 +  %}
  1.2317 +
  1.2318 +  enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  1.2319 +    int op = (Assembler::arith_op << 30) |
  1.2320 +             ($dst$$reg << 25) |
  1.2321 +             (Assembler::fpop2_op3 << 19) |
  1.2322 +             (0 << 18) |
  1.2323 +             ($cmp$$cmpcode << 14) |
  1.2324 +             (1 << 13) |                    // select register move
  1.2325 +             ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  1.2326 +             ($primary << 5) |              // select single, double or quad
  1.2327 +             ($src$$reg << 0);
  1.2328 +    *((int*)(cbuf.code_end())) = op;
  1.2329 +    cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  1.2330 +  %}
  1.2331 +
  1.2332 +  enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  1.2333 +    int op = (Assembler::arith_op << 30) |
  1.2334 +             ($dst$$reg << 25) |
  1.2335 +             (Assembler::fpop2_op3 << 19) |
  1.2336 +             (0 << 18) |
  1.2337 +             ($cmp$$cmpcode << 14) |
  1.2338 +             ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  1.2339 +             ($primary << 5) |              // select single, double or quad
  1.2340 +             ($src$$reg << 0);
  1.2341 +    *((int*)(cbuf.code_end())) = op;
  1.2342 +    cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  1.2343 +  %}
  1.2344 +
  1.2345 +  // Used by the MIN/MAX encodings.  Same as a CMOV, but
  1.2346 +  // the condition comes from opcode-field instead of an argument.
  1.2347 +  enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  1.2348 +    int op = (Assembler::arith_op << 30) |
  1.2349 +             ($dst$$reg << 25) |
  1.2350 +             (Assembler::movcc_op3 << 19) |
  1.2351 +             (1 << 18) |                    // cc2 bit for 'icc'
  1.2352 +             ($primary << 14) |
  1.2353 +             (0 << 13) |                    // select register move
  1.2354 +             (0 << 11) |                    // cc1, cc0 bits for 'icc'
  1.2355 +             ($src$$reg << 0);
  1.2356 +    *((int*)(cbuf.code_end())) = op;
  1.2357 +    cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  1.2358 +  %}
  1.2359 +
  1.2360 +  enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  1.2361 +    int op = (Assembler::arith_op << 30) |
  1.2362 +             ($dst$$reg << 25) |
  1.2363 +             (Assembler::movcc_op3 << 19) |
  1.2364 +             (6 << 16) |                    // cc2 bit for 'xcc'
  1.2365 +             ($primary << 14) |
  1.2366 +             (0 << 13) |                    // select register move
  1.2367 +             (0 << 11) |                    // cc1, cc0 bits for 'icc'
  1.2368 +             ($src$$reg << 0);
  1.2369 +    *((int*)(cbuf.code_end())) = op;
  1.2370 +    cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  1.2371 +  %}
  1.2372 +
  1.2373 +  // Utility encoding for loading a 64 bit Pointer into a register
  1.2374 +  // The 64 bit pointer is stored in the generated code stream
  1.2375 +  enc_class SetPtr( immP src, iRegP rd ) %{
  1.2376 +    Register dest = reg_to_register_object($rd$$reg);
  1.2377 +    // [RGV] This next line should be generated from ADLC
  1.2378 +    if ( _opnds[1]->constant_is_oop() ) {
  1.2379 +      intptr_t val = $src$$constant;
  1.2380 +      MacroAssembler _masm(&cbuf);
  1.2381 +      __ set_oop_constant((jobject)val, dest);
  1.2382 +    } else {          // non-oop pointers, e.g. card mark base, heap top
  1.2383 +      emit_ptr(cbuf, $src$$constant, dest, /*ForceRelocatable=*/ false);
  1.2384 +    }
  1.2385 +  %}
  1.2386 +
  1.2387 +  enc_class Set13( immI13 src, iRegI rd ) %{
  1.2388 +    emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  1.2389 +  %}
  1.2390 +
  1.2391 +  enc_class SetHi22( immI src, iRegI rd ) %{
  1.2392 +    emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  1.2393 +  %}
  1.2394 +
  1.2395 +  enc_class Set32( immI src, iRegI rd ) %{
  1.2396 +    MacroAssembler _masm(&cbuf);
  1.2397 +    __ set($src$$constant, reg_to_register_object($rd$$reg));
  1.2398 +  %}
  1.2399 +
  1.2400 +  enc_class SetNull( iRegI rd ) %{
  1.2401 +    emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0 );
  1.2402 +  %}
  1.2403 +
  1.2404 +  enc_class call_epilog %{
  1.2405 +    if( VerifyStackAtCalls ) {
  1.2406 +      MacroAssembler _masm(&cbuf);
  1.2407 +      int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  1.2408 +      Register temp_reg = G3;
  1.2409 +      __ add(SP, framesize, temp_reg);
  1.2410 +      __ cmp(temp_reg, FP);
  1.2411 +      __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  1.2412 +    }
  1.2413 +  %}
  1.2414 +
  1.2415 +  // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  1.2416 +  // to G1 so the register allocator will not have to deal with the misaligned register
  1.2417 +  // pair.
  1.2418 +  enc_class adjust_long_from_native_call %{
  1.2419 +#ifndef _LP64
  1.2420 +    if (returns_long()) {
  1.2421 +      //    sllx  O0,32,O0
  1.2422 +      emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  1.2423 +      //    srl   O1,0,O1
  1.2424 +      emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  1.2425 +      //    or    O0,O1,G1
  1.2426 +      emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  1.2427 +    }
  1.2428 +#endif
  1.2429 +  %}
  1.2430 +
  1.2431 +  enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  1.2432 +    // CALL directly to the runtime
  1.2433 +    // The user of this is responsible for ensuring that R_L7 is empty (killed).
  1.2434 +    emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  1.2435 +                    /*preserve_g2=*/true, /*force far call*/true);
  1.2436 +  %}
  1.2437 +
  1.2438 +  enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  1.2439 +    // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1.2440 +    // who we intended to call.
  1.2441 +    if ( !_method ) {
  1.2442 +      emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  1.2443 +    } else if (_optimized_virtual) {
  1.2444 +      emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  1.2445 +    } else {
  1.2446 +      emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  1.2447 +    }
  1.2448 +    if( _method ) {  // Emit stub for static call
  1.2449 +      emit_java_to_interp(cbuf);
  1.2450 +    }
  1.2451 +  %}
  1.2452 +
  1.2453 +  enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  1.2454 +    MacroAssembler _masm(&cbuf);
  1.2455 +    __ set_inst_mark();
  1.2456 +    int vtable_index = this->_vtable_index;
  1.2457 +    // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  1.2458 +    if (vtable_index < 0) {
  1.2459 +      // must be invalid_vtable_index, not nonvirtual_vtable_index
  1.2460 +      assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
  1.2461 +      Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1.2462 +      assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  1.2463 +      assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  1.2464 +      // !!!!!
  1.2465 +      // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
  1.2466 +      // emit_call_dynamic_prologue( cbuf );
  1.2467 +      __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
  1.2468 +
  1.2469 +      address  virtual_call_oop_addr = __ inst_mark();
  1.2470 +      // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1.2471 +      // who we intended to call.
  1.2472 +      __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  1.2473 +      emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
  1.2474 +    } else {
  1.2475 +      assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  1.2476 +      // Just go thru the vtable
  1.2477 +      // get receiver klass (receiver already checked for non-null)
  1.2478 +      // If we end up going thru a c2i adapter interpreter expects method in G5
  1.2479 +      int off = __ offset();
  1.2480 +      __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), G3_scratch);
  1.2481 +      int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  1.2482 +      int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  1.2483 +      if( __ is_simm13(v_off) ) {
  1.2484 +        __ ld_ptr(G3, v_off, G5_method);
  1.2485 +      } else {
  1.2486 +        // Generate 2 instructions
  1.2487 +        __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  1.2488 +        __ or3(G5_method, v_off & 0x3ff, G5_method);
  1.2489 +        // ld_ptr, set_hi, set
  1.2490 +        assert(__ offset() - off == 3*BytesPerInstWord, "Unexpected instruction size(s)");
  1.2491 +        __ ld_ptr(G3, G5_method, G5_method);
  1.2492 +      }
  1.2493 +      // NOTE: for vtable dispatches, the vtable entry will never be null.
  1.2494 +      // However it may very well end up in handle_wrong_method if the
  1.2495 +      // method is abstract for the particular class.
  1.2496 +      __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
  1.2497 +      // jump to target (either compiled code or c2iadapter)
  1.2498 +      __ jmpl(G3_scratch, G0, O7);
  1.2499 +      __ delayed()->nop();
  1.2500 +    }
  1.2501 +  %}
  1.2502 +
  1.2503 +  enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  1.2504 +    MacroAssembler _masm(&cbuf);
  1.2505 +
  1.2506 +    Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1.2507 +    Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  1.2508 +                              // we might be calling a C2I adapter which needs it.
  1.2509 +
  1.2510 +    assert(temp_reg != G5_ic_reg, "conflicting registers");
  1.2511 +    // Load nmethod
  1.2512 +    __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
  1.2513 +
  1.2514 +    // CALL to compiled java, indirect the contents of G3
  1.2515 +    __ set_inst_mark();
  1.2516 +    __ callr(temp_reg, G0);
  1.2517 +    __ delayed()->nop();
  1.2518 +  %}
  1.2519 +
  1.2520 +enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  1.2521 +    MacroAssembler _masm(&cbuf);
  1.2522 +    Register Rdividend = reg_to_register_object($src1$$reg);
  1.2523 +    Register Rdivisor = reg_to_register_object($src2$$reg);
  1.2524 +    Register Rresult = reg_to_register_object($dst$$reg);
  1.2525 +
  1.2526 +    __ sra(Rdivisor, 0, Rdivisor);
  1.2527 +    __ sra(Rdividend, 0, Rdividend);
  1.2528 +    __ sdivx(Rdividend, Rdivisor, Rresult);
  1.2529 +%}
  1.2530 +
  1.2531 +enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  1.2532 +    MacroAssembler _masm(&cbuf);
  1.2533 +
  1.2534 +    Register Rdividend = reg_to_register_object($src1$$reg);
  1.2535 +    int divisor = $imm$$constant;
  1.2536 +    Register Rresult = reg_to_register_object($dst$$reg);
  1.2537 +
  1.2538 +    __ sra(Rdividend, 0, Rdividend);
  1.2539 +    __ sdivx(Rdividend, divisor, Rresult);
  1.2540 +%}
  1.2541 +
  1.2542 +enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  1.2543 +    MacroAssembler _masm(&cbuf);
  1.2544 +    Register Rsrc1 = reg_to_register_object($src1$$reg);
  1.2545 +    Register Rsrc2 = reg_to_register_object($src2$$reg);
  1.2546 +    Register Rdst  = reg_to_register_object($dst$$reg);
  1.2547 +
  1.2548 +    __ sra( Rsrc1, 0, Rsrc1 );
  1.2549 +    __ sra( Rsrc2, 0, Rsrc2 );
  1.2550 +    __ mulx( Rsrc1, Rsrc2, Rdst );
  1.2551 +    __ srlx( Rdst, 32, Rdst );
  1.2552 +%}
  1.2553 +
  1.2554 +enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  1.2555 +    MacroAssembler _masm(&cbuf);
  1.2556 +    Register Rdividend = reg_to_register_object($src1$$reg);
  1.2557 +    Register Rdivisor = reg_to_register_object($src2$$reg);
  1.2558 +    Register Rresult = reg_to_register_object($dst$$reg);
  1.2559 +    Register Rscratch = reg_to_register_object($scratch$$reg);
  1.2560 +
  1.2561 +    assert(Rdividend != Rscratch, "");
  1.2562 +    assert(Rdivisor  != Rscratch, "");
  1.2563 +
  1.2564 +    __ sra(Rdividend, 0, Rdividend);
  1.2565 +    __ sra(Rdivisor, 0, Rdivisor);
  1.2566 +    __ sdivx(Rdividend, Rdivisor, Rscratch);
  1.2567 +    __ mulx(Rscratch, Rdivisor, Rscratch);
  1.2568 +    __ sub(Rdividend, Rscratch, Rresult);
  1.2569 +%}
  1.2570 +
  1.2571 +enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  1.2572 +    MacroAssembler _masm(&cbuf);
  1.2573 +
  1.2574 +    Register Rdividend = reg_to_register_object($src1$$reg);
  1.2575 +    int divisor = $imm$$constant;
  1.2576 +    Register Rresult = reg_to_register_object($dst$$reg);
  1.2577 +    Register Rscratch = reg_to_register_object($scratch$$reg);
  1.2578 +
  1.2579 +    assert(Rdividend != Rscratch, "");
  1.2580 +
  1.2581 +    __ sra(Rdividend, 0, Rdividend);
  1.2582 +    __ sdivx(Rdividend, divisor, Rscratch);
  1.2583 +    __ mulx(Rscratch, divisor, Rscratch);
  1.2584 +    __ sub(Rdividend, Rscratch, Rresult);
  1.2585 +%}
  1.2586 +
  1.2587 +enc_class fabss (sflt_reg dst, sflt_reg src) %{
  1.2588 +    MacroAssembler _masm(&cbuf);
  1.2589 +
  1.2590 +    FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  1.2591 +    FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  1.2592 +
  1.2593 +    __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  1.2594 +%}
  1.2595 +
  1.2596 +enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  1.2597 +    MacroAssembler _masm(&cbuf);
  1.2598 +
  1.2599 +    FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  1.2600 +    FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  1.2601 +
  1.2602 +    __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  1.2603 +%}
  1.2604 +
  1.2605 +enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  1.2606 +    MacroAssembler _masm(&cbuf);
  1.2607 +
  1.2608 +    FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  1.2609 +    FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  1.2610 +
  1.2611 +    __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  1.2612 +%}
  1.2613 +
  1.2614 +enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  1.2615 +    MacroAssembler _masm(&cbuf);
  1.2616 +
  1.2617 +    FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  1.2618 +    FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  1.2619 +
  1.2620 +    __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  1.2621 +%}
  1.2622 +
  1.2623 +enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  1.2624 +    MacroAssembler _masm(&cbuf);
  1.2625 +
  1.2626 +    FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  1.2627 +    FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  1.2628 +
  1.2629 +    __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  1.2630 +%}
  1.2631 +
  1.2632 +enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  1.2633 +    MacroAssembler _masm(&cbuf);
  1.2634 +
  1.2635 +    FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  1.2636 +    FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  1.2637 +
  1.2638 +    __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  1.2639 +%}
  1.2640 +
  1.2641 +enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  1.2642 +    MacroAssembler _masm(&cbuf);
  1.2643 +
  1.2644 +    FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  1.2645 +    FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  1.2646 +
  1.2647 +    __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  1.2648 +%}
  1.2649 +
  1.2650 +enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  1.2651 +    MacroAssembler _masm(&cbuf);
  1.2652 +
  1.2653 +    Register Roop  = reg_to_register_object($oop$$reg);
  1.2654 +    Register Rbox  = reg_to_register_object($box$$reg);
  1.2655 +    Register Rscratch = reg_to_register_object($scratch$$reg);
  1.2656 +    Register Rmark =    reg_to_register_object($scratch2$$reg);
  1.2657 +
  1.2658 +    assert(Roop  != Rscratch, "");
  1.2659 +    assert(Roop  != Rmark, "");
  1.2660 +    assert(Rbox  != Rscratch, "");
  1.2661 +    assert(Rbox  != Rmark, "");
  1.2662 +
  1.2663 +    __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters);
  1.2664 +%}
  1.2665 +
  1.2666 +enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  1.2667 +    MacroAssembler _masm(&cbuf);
  1.2668 +
  1.2669 +    Register Roop  = reg_to_register_object($oop$$reg);
  1.2670 +    Register Rbox  = reg_to_register_object($box$$reg);
  1.2671 +    Register Rscratch = reg_to_register_object($scratch$$reg);
  1.2672 +    Register Rmark =    reg_to_register_object($scratch2$$reg);
  1.2673 +
  1.2674 +    assert(Roop  != Rscratch, "");
  1.2675 +    assert(Roop  != Rmark, "");
  1.2676 +    assert(Rbox  != Rscratch, "");
  1.2677 +    assert(Rbox  != Rmark, "");
  1.2678 +
  1.2679 +    __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch);
  1.2680 +  %}
  1.2681 +
  1.2682 +  enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  1.2683 +    MacroAssembler _masm(&cbuf);
  1.2684 +    Register Rmem = reg_to_register_object($mem$$reg);
  1.2685 +    Register Rold = reg_to_register_object($old$$reg);
  1.2686 +    Register Rnew = reg_to_register_object($new$$reg);
  1.2687 +
  1.2688 +    // casx_under_lock picks 1 of 3 encodings:
  1.2689 +    // For 32-bit pointers you get a 32-bit CAS
  1.2690 +    // For 64-bit pointers you get a 64-bit CASX
  1.2691 +    __ casx_under_lock(Rmem, Rold, Rnew, // Swap(*Rmem,Rnew) if *Rmem == Rold
  1.2692 +                        (address) StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  1.2693 +    __ cmp( Rold, Rnew );
  1.2694 +  %}
  1.2695 +
  1.2696 +  enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  1.2697 +    Register Rmem = reg_to_register_object($mem$$reg);
  1.2698 +    Register Rold = reg_to_register_object($old$$reg);
  1.2699 +    Register Rnew = reg_to_register_object($new$$reg);
  1.2700 +
  1.2701 +    MacroAssembler _masm(&cbuf);
  1.2702 +    __ mov(Rnew, O7);
  1.2703 +    __ casx(Rmem, Rold, O7);
  1.2704 +    __ cmp( Rold, O7 );
  1.2705 +  %}
  1.2706 +
  1.2707 +  // raw int cas, used for compareAndSwap
  1.2708 +  enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  1.2709 +    Register Rmem = reg_to_register_object($mem$$reg);
  1.2710 +    Register Rold = reg_to_register_object($old$$reg);
  1.2711 +    Register Rnew = reg_to_register_object($new$$reg);
  1.2712 +
  1.2713 +    MacroAssembler _masm(&cbuf);
  1.2714 +    __ mov(Rnew, O7);
  1.2715 +    __ cas(Rmem, Rold, O7);
  1.2716 +    __ cmp( Rold, O7 );
  1.2717 +  %}
  1.2718 +
  1.2719 +  enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  1.2720 +    Register Rres = reg_to_register_object($res$$reg);
  1.2721 +
  1.2722 +    MacroAssembler _masm(&cbuf);
  1.2723 +    __ mov(1, Rres);
  1.2724 +    __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  1.2725 +  %}
  1.2726 +
  1.2727 +  enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  1.2728 +    Register Rres = reg_to_register_object($res$$reg);
  1.2729 +
  1.2730 +    MacroAssembler _masm(&cbuf);
  1.2731 +    __ mov(1, Rres);
  1.2732 +    __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  1.2733 +  %}
  1.2734 +
  1.2735 +  enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  1.2736 +    MacroAssembler _masm(&cbuf);
  1.2737 +    Register Rdst = reg_to_register_object($dst$$reg);
  1.2738 +    FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  1.2739 +                                     : reg_to_DoubleFloatRegister_object($src1$$reg);
  1.2740 +    FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  1.2741 +                                     : reg_to_DoubleFloatRegister_object($src2$$reg);
  1.2742 +
  1.2743 +    // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  1.2744 +    __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  1.2745 +  %}
  1.2746 +
  1.2747 +  enc_class LdImmL (immL src, iRegL dst, o7RegL tmp) %{   // Load Immediate
  1.2748 +    MacroAssembler _masm(&cbuf);
  1.2749 +    Register dest = reg_to_register_object($dst$$reg);
  1.2750 +    Register temp = reg_to_register_object($tmp$$reg);
  1.2751 +    __ set64( $src$$constant, dest, temp );
  1.2752 +  %}
  1.2753 +
  1.2754 +  enc_class LdImmF(immF src, regF dst, o7RegP tmp) %{    // Load Immediate
  1.2755 +    address float_address = MacroAssembler(&cbuf).float_constant($src$$constant);
  1.2756 +    RelocationHolder rspec = internal_word_Relocation::spec(float_address);
  1.2757 +#ifdef _LP64
  1.2758 +    Register   tmp_reg = reg_to_register_object($tmp$$reg);
  1.2759 +    cbuf.relocate(cbuf.code_end(), rspec, 0);
  1.2760 +    emit_ptr(cbuf, (intptr_t)float_address, tmp_reg, /*ForceRelocatable=*/ true);
  1.2761 +    emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::ldf_op3, $tmp$$reg, 0 );
  1.2762 +#else  // _LP64
  1.2763 +    uint *code;
  1.2764 +    int tmp_reg = $tmp$$reg;
  1.2765 +
  1.2766 +    cbuf.relocate(cbuf.code_end(), rspec, 0);
  1.2767 +    emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) float_address );
  1.2768 +
  1.2769 +    cbuf.relocate(cbuf.code_end(), rspec, 0);
  1.2770 +    emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::ldf_op3, tmp_reg, (intptr_t) float_address );
  1.2771 +#endif // _LP64
  1.2772 +  %}
  1.2773 +
  1.2774 +  enc_class LdImmD(immD src, regD dst, o7RegP tmp) %{    // Load Immediate
  1.2775 +    address double_address = MacroAssembler(&cbuf).double_constant($src$$constant);
  1.2776 +    RelocationHolder rspec = internal_word_Relocation::spec(double_address);
  1.2777 +#ifdef _LP64
  1.2778 +    Register   tmp_reg = reg_to_register_object($tmp$$reg);
  1.2779 +    cbuf.relocate(cbuf.code_end(), rspec, 0);
  1.2780 +    emit_ptr(cbuf, (intptr_t)double_address, tmp_reg, /*ForceRelocatable=*/ true);
  1.2781 +    emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, $tmp$$reg, 0 );
  1.2782 +#else // _LP64
  1.2783 +    uint *code;
  1.2784 +    int tmp_reg = $tmp$$reg;
  1.2785 +
  1.2786 +    cbuf.relocate(cbuf.code_end(), rspec, 0);
  1.2787 +    emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) double_address );
  1.2788 +
  1.2789 +    cbuf.relocate(cbuf.code_end(), rspec, 0);
  1.2790 +    emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, tmp_reg, (intptr_t) double_address );
  1.2791 +#endif // _LP64
  1.2792 +  %}
  1.2793 +
  1.2794 +  enc_class LdReplImmI(immI src, regD dst, o7RegP tmp, int count, int width) %{
  1.2795 +    // Load a constant replicated "count" times with width "width"
  1.2796 +    int bit_width = $width$$constant * 8;
  1.2797 +    jlong elt_val = $src$$constant;
  1.2798 +    elt_val  &= (((jlong)1) << bit_width) - 1; // mask off sign bits
  1.2799 +    jlong val = elt_val;
  1.2800 +    for (int i = 0; i < $count$$constant - 1; i++) {
  1.2801 +        val <<= bit_width;
  1.2802 +        val |= elt_val;
  1.2803 +    }
  1.2804 +    jdouble dval = *(jdouble*)&val; // coerce to double type
  1.2805 +    address double_address = MacroAssembler(&cbuf).double_constant(dval);
  1.2806 +    RelocationHolder rspec = internal_word_Relocation::spec(double_address);
  1.2807 +#ifdef _LP64
  1.2808 +    Register   tmp_reg = reg_to_register_object($tmp$$reg);
  1.2809 +    cbuf.relocate(cbuf.code_end(), rspec, 0);
  1.2810 +    emit_ptr(cbuf, (intptr_t)double_address, tmp_reg, /*ForceRelocatable=*/ true);
  1.2811 +    emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, $tmp$$reg, 0 );
  1.2812 +#else // _LP64
  1.2813 +    uint *code;
  1.2814 +    int tmp_reg = $tmp$$reg;
  1.2815 +
  1.2816 +    cbuf.relocate(cbuf.code_end(), rspec, 0);
  1.2817 +    emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) double_address );
  1.2818 +
  1.2819 +    cbuf.relocate(cbuf.code_end(), rspec, 0);
  1.2820 +    emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, tmp_reg, (intptr_t) double_address );
  1.2821 +#endif // _LP64
  1.2822 +  %}
  1.2823 +
  1.2824 +
  1.2825 +  enc_class ShouldNotEncodeThis ( ) %{
  1.2826 +    ShouldNotCallThis();
  1.2827 +  %}
  1.2828 +
  1.2829 +  // Compiler ensures base is doubleword aligned and cnt is count of doublewords
  1.2830 +  enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
  1.2831 +    MacroAssembler _masm(&cbuf);
  1.2832 +    Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
  1.2833 +    Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
  1.2834 +    Register    base_pointer_arg = reg_to_register_object($base$$reg);
  1.2835 +
  1.2836 +    Label loop;
  1.2837 +    __ mov(nof_bytes_arg, nof_bytes_tmp);
  1.2838 +
  1.2839 +    // Loop and clear, walking backwards through the array.
  1.2840 +    // nof_bytes_tmp (if >0) is always the number of bytes to zero
  1.2841 +    __ bind(loop);
  1.2842 +    __ deccc(nof_bytes_tmp, 8);
  1.2843 +    __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
  1.2844 +    __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
  1.2845 +    // %%%% this mini-loop must not cross a cache boundary!
  1.2846 +  %}
  1.2847 +
  1.2848 +
  1.2849 +  enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result) %{
  1.2850 +    Label Ldone, Lloop;
  1.2851 +    MacroAssembler _masm(&cbuf);
  1.2852 +
  1.2853 +    Register   str1_reg = reg_to_register_object($str1$$reg);
  1.2854 +    Register   str2_reg = reg_to_register_object($str2$$reg);
  1.2855 +    Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  1.2856 +    Register   tmp2_reg = reg_to_register_object($tmp2$$reg);
  1.2857 +    Register result_reg = reg_to_register_object($result$$reg);
  1.2858 +
  1.2859 +    // Get the first character position in both strings
  1.2860 +    //         [8] char array, [12] offset, [16] count
  1.2861 +    int  value_offset = java_lang_String:: value_offset_in_bytes();
  1.2862 +    int offset_offset = java_lang_String::offset_offset_in_bytes();
  1.2863 +    int  count_offset = java_lang_String:: count_offset_in_bytes();
  1.2864 +
  1.2865 +    // load str1 (jchar*) base address into tmp1_reg
  1.2866 +    __ ld_ptr(Address(str1_reg, 0,  value_offset), tmp1_reg);
  1.2867 +    __ ld(Address(str1_reg, 0, offset_offset), result_reg);
  1.2868 +    __ add(tmp1_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1_reg);
  1.2869 +    __    ld(Address(str1_reg, 0, count_offset), str1_reg); // hoisted
  1.2870 +    __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
  1.2871 +    __    ld_ptr(Address(str2_reg, 0,  value_offset), tmp2_reg); // hoisted
  1.2872 +    __ add(result_reg, tmp1_reg, tmp1_reg);
  1.2873 +
  1.2874 +    // load str2 (jchar*) base address into tmp2_reg
  1.2875 +    // __ ld_ptr(Address(str2_reg, 0,  value_offset), tmp2_reg); // hoisted
  1.2876 +    __ ld(Address(str2_reg, 0, offset_offset), result_reg);
  1.2877 +    __ add(tmp2_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp2_reg);
  1.2878 +    __    ld(Address(str2_reg, 0, count_offset), str2_reg); // hoisted
  1.2879 +    __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
  1.2880 +    __   subcc(str1_reg, str2_reg, O7); // hoisted
  1.2881 +    __ add(result_reg, tmp2_reg, tmp2_reg);
  1.2882 +
  1.2883 +    // Compute the minimum of the string lengths(str1_reg) and the
  1.2884 +    // difference of the string lengths (stack)
  1.2885 +
  1.2886 +    // discard string base pointers, after loading up the lengths
  1.2887 +    // __ ld(Address(str1_reg, 0, count_offset), str1_reg); // hoisted
  1.2888 +    // __ ld(Address(str2_reg, 0, count_offset), str2_reg); // hoisted
  1.2889 +
  1.2890 +    // See if the lengths are different, and calculate min in str1_reg.
  1.2891 +    // Stash diff in O7 in case we need it for a tie-breaker.
  1.2892 +    Label Lskip;
  1.2893 +    // __ subcc(str1_reg, str2_reg, O7); // hoisted
  1.2894 +    __ sll(str1_reg, exact_log2(sizeof(jchar)), str1_reg); // scale the limit
  1.2895 +    __ br(Assembler::greater, true, Assembler::pt, Lskip);
  1.2896 +    // str2 is shorter, so use its count:
  1.2897 +    __ delayed()->sll(str2_reg, exact_log2(sizeof(jchar)), str1_reg); // scale the limit
  1.2898 +    __ bind(Lskip);
  1.2899 +
  1.2900 +    // reallocate str1_reg, str2_reg, result_reg
  1.2901 +    // Note:  limit_reg holds the string length pre-scaled by 2
  1.2902 +    Register limit_reg =   str1_reg;
  1.2903 +    Register  chr2_reg =   str2_reg;
  1.2904 +    Register  chr1_reg = result_reg;
  1.2905 +    // tmp{12} are the base pointers
  1.2906 +
  1.2907 +    // Is the minimum length zero?
  1.2908 +    __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  1.2909 +    __ br(Assembler::equal, true, Assembler::pn, Ldone);
  1.2910 +    __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  1.2911 +
  1.2912 +    // Load first characters
  1.2913 +    __ lduh(tmp1_reg, 0, chr1_reg);
  1.2914 +    __ lduh(tmp2_reg, 0, chr2_reg);
  1.2915 +
  1.2916 +    // Compare first characters
  1.2917 +    __ subcc(chr1_reg, chr2_reg, chr1_reg);
  1.2918 +    __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  1.2919 +    assert(chr1_reg == result_reg, "result must be pre-placed");
  1.2920 +    __ delayed()->nop();
  1.2921 +
  1.2922 +    {
  1.2923 +      // Check after comparing first character to see if strings are equivalent
  1.2924 +      Label LSkip2;
  1.2925 +      // Check if the strings start at same location
  1.2926 +      __ cmp(tmp1_reg, tmp2_reg);
  1.2927 +      __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  1.2928 +      __ delayed()->nop();
  1.2929 +
  1.2930 +      // Check if the length difference is zero (in O7)
  1.2931 +      __ cmp(G0, O7);
  1.2932 +      __ br(Assembler::equal, true, Assembler::pn, Ldone);
  1.2933 +      __ delayed()->mov(G0, result_reg);  // result is zero
  1.2934 +
  1.2935 +      // Strings might not be equal
  1.2936 +      __ bind(LSkip2);
  1.2937 +    }
  1.2938 +
  1.2939 +    __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  1.2940 +    __ br(Assembler::equal, true, Assembler::pn, Ldone);
  1.2941 +    __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  1.2942 +
  1.2943 +    // Shift tmp1_reg and tmp2_reg to the end of the arrays, negate limit
  1.2944 +    __ add(tmp1_reg, limit_reg, tmp1_reg);
  1.2945 +    __ add(tmp2_reg, limit_reg, tmp2_reg);
  1.2946 +    __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  1.2947 +
  1.2948 +    // Compare the rest of the characters
  1.2949 +    __ lduh(tmp1_reg, limit_reg, chr1_reg);
  1.2950 +    __ bind(Lloop);
  1.2951 +    // __ lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
  1.2952 +    __ lduh(tmp2_reg, limit_reg, chr2_reg);
  1.2953 +    __ subcc(chr1_reg, chr2_reg, chr1_reg);
  1.2954 +    __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  1.2955 +    assert(chr1_reg == result_reg, "result must be pre-placed");
  1.2956 +    __ delayed()->inccc(limit_reg, sizeof(jchar));
  1.2957 +    // annul LDUH if branch is not taken to prevent access past end of string
  1.2958 +    __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  1.2959 +    __ delayed()->lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
  1.2960 +
  1.2961 +    // If strings are equal up to min length, return the length difference.
  1.2962 +    __ mov(O7, result_reg);
  1.2963 +
  1.2964 +    // Otherwise, return the difference between the first mismatched chars.
  1.2965 +    __ bind(Ldone);
  1.2966 +  %}
  1.2967 +
  1.2968 +  enc_class enc_rethrow() %{
  1.2969 +    cbuf.set_inst_mark();
  1.2970 +    Register temp_reg = G3;
  1.2971 +    Address rethrow_stub(temp_reg, OptoRuntime::rethrow_stub());
  1.2972 +    assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  1.2973 +    MacroAssembler _masm(&cbuf);
  1.2974 +#ifdef ASSERT
  1.2975 +    __ save_frame(0);
  1.2976 +    Address last_rethrow_addr(L1, (address)&last_rethrow);
  1.2977 +    __ sethi(last_rethrow_addr);
  1.2978 +    __ get_pc(L2);
  1.2979 +    __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  1.2980 +    __ st_ptr(L2, last_rethrow_addr);
  1.2981 +    __ restore();
  1.2982 +#endif
  1.2983 +    __ JUMP(rethrow_stub, 0); // sethi;jmp
  1.2984 +    __ delayed()->nop();
  1.2985 +  %}
  1.2986 +
  1.2987 +  enc_class emit_mem_nop() %{
  1.2988 +    // Generates the instruction LDUXA [o6,g0],#0x82,g0
  1.2989 +    unsigned int *code = (unsigned int*)cbuf.code_end();
  1.2990 +    *code = (unsigned int)0xc0839040;
  1.2991 +    cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  1.2992 +  %}
  1.2993 +
  1.2994 +  enc_class emit_fadd_nop() %{
  1.2995 +    // Generates the instruction FMOVS f31,f31
  1.2996 +    unsigned int *code = (unsigned int*)cbuf.code_end();
  1.2997 +    *code = (unsigned int)0xbfa0003f;
  1.2998 +    cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  1.2999 +  %}
  1.3000 +
  1.3001 +  enc_class emit_br_nop() %{
  1.3002 +    // Generates the instruction BPN,PN .
  1.3003 +    unsigned int *code = (unsigned int*)cbuf.code_end();
  1.3004 +    *code = (unsigned int)0x00400000;
  1.3005 +    cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  1.3006 +  %}
  1.3007 +
  1.3008 +  enc_class enc_membar_acquire %{
  1.3009 +    MacroAssembler _masm(&cbuf);
  1.3010 +    __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  1.3011 +  %}
  1.3012 +
  1.3013 +  enc_class enc_membar_release %{
  1.3014 +    MacroAssembler _masm(&cbuf);
  1.3015 +    __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  1.3016 +  %}
  1.3017 +
  1.3018 +  enc_class enc_membar_volatile %{
  1.3019 +    MacroAssembler _masm(&cbuf);
  1.3020 +    __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  1.3021 +  %}
  1.3022 +  enc_class enc_repl8b( iRegI src, iRegL dst ) %{
  1.3023 +    MacroAssembler _masm(&cbuf);
  1.3024 +    Register src_reg = reg_to_register_object($src$$reg);
  1.3025 +    Register dst_reg = reg_to_register_object($dst$$reg);
  1.3026 +    __ sllx(src_reg, 56, dst_reg);
  1.3027 +    __ srlx(dst_reg,  8, O7);
  1.3028 +    __ or3 (dst_reg, O7, dst_reg);
  1.3029 +    __ srlx(dst_reg, 16, O7);
  1.3030 +    __ or3 (dst_reg, O7, dst_reg);
  1.3031 +    __ srlx(dst_reg, 32, O7);
  1.3032 +    __ or3 (dst_reg, O7, dst_reg);
  1.3033 +  %}
  1.3034 +
  1.3035 +  enc_class enc_repl4b( iRegI src, iRegL dst ) %{
  1.3036 +    MacroAssembler _masm(&cbuf);
  1.3037 +    Register src_reg = reg_to_register_object($src$$reg);
  1.3038 +    Register dst_reg = reg_to_register_object($dst$$reg);
  1.3039 +    __ sll(src_reg, 24, dst_reg);
  1.3040 +    __ srl(dst_reg,  8, O7);
  1.3041 +    __ or3(dst_reg, O7, dst_reg);
  1.3042 +    __ srl(dst_reg, 16, O7);
  1.3043 +    __ or3(dst_reg, O7, dst_reg);
  1.3044 +  %}
  1.3045 +
  1.3046 +  enc_class enc_repl4s( iRegI src, iRegL dst ) %{
  1.3047 +    MacroAssembler _masm(&cbuf);
  1.3048 +    Register src_reg = reg_to_register_object($src$$reg);
  1.3049 +    Register dst_reg = reg_to_register_object($dst$$reg);
  1.3050 +    __ sllx(src_reg, 48, dst_reg);
  1.3051 +    __ srlx(dst_reg, 16, O7);
  1.3052 +    __ or3 (dst_reg, O7, dst_reg);
  1.3053 +    __ srlx(dst_reg, 32, O7);
  1.3054 +    __ or3 (dst_reg, O7, dst_reg);
  1.3055 +  %}
  1.3056 +
  1.3057 +  enc_class enc_repl2i( iRegI src, iRegL dst ) %{
  1.3058 +    MacroAssembler _masm(&cbuf);
  1.3059 +    Register src_reg = reg_to_register_object($src$$reg);
  1.3060 +    Register dst_reg = reg_to_register_object($dst$$reg);
  1.3061 +    __ sllx(src_reg, 32, dst_reg);
  1.3062 +    __ srlx(dst_reg, 32, O7);
  1.3063 +    __ or3 (dst_reg, O7, dst_reg);
  1.3064 +  %}
  1.3065 +
  1.3066 +%}
  1.3067 +
  1.3068 +//----------FRAME--------------------------------------------------------------
  1.3069 +// Definition of frame structure and management information.
  1.3070 +//
  1.3071 +//  S T A C K   L A Y O U T    Allocators stack-slot number
  1.3072 +//                             |   (to get allocators register number
  1.3073 +//  G  Owned by    |        |  v    add VMRegImpl::stack0)
  1.3074 +//  r   CALLER     |        |
  1.3075 +//  o     |        +--------+      pad to even-align allocators stack-slot
  1.3076 +//  w     V        |  pad0  |        numbers; owned by CALLER
  1.3077 +//  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  1.3078 +//  h     ^        |   in   |  5
  1.3079 +//        |        |  args  |  4   Holes in incoming args owned by SELF
  1.3080 +//  |     |        |        |  3
  1.3081 +//  |     |        +--------+
  1.3082 +//  V     |        | old out|      Empty on Intel, window on Sparc
  1.3083 +//        |    old |preserve|      Must be even aligned.
  1.3084 +//        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  1.3085 +//        |        |   in   |  3   area for Intel ret address
  1.3086 +//     Owned by    |preserve|      Empty on Sparc.
  1.3087 +//       SELF      +--------+
  1.3088 +//        |        |  pad2  |  2   pad to align old SP
  1.3089 +//        |        +--------+  1
  1.3090 +//        |        | locks  |  0
  1.3091 +//        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  1.3092 +//        |        |  pad1  | 11   pad to align new SP
  1.3093 +//        |        +--------+
  1.3094 +//        |        |        | 10
  1.3095 +//        |        | spills |  9   spills
  1.3096 +//        V        |        |  8   (pad0 slot for callee)
  1.3097 +//      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  1.3098 +//        ^        |  out   |  7
  1.3099 +//        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  1.3100 +//     Owned by    +--------+
  1.3101 +//      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  1.3102 +//        |    new |preserve|      Must be even-aligned.
  1.3103 +//        |     SP-+--------+----> Matcher::_new_SP, even aligned
  1.3104 +//        |        |        |
  1.3105 +//
  1.3106 +// Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  1.3107 +//         known from SELF's arguments and the Java calling convention.
  1.3108 +//         Region 6-7 is determined per call site.
  1.3109 +// Note 2: If the calling convention leaves holes in the incoming argument
  1.3110 +//         area, those holes are owned by SELF.  Holes in the outgoing area
  1.3111 +//         are owned by the CALLEE.  Holes should not be nessecary in the
  1.3112 +//         incoming area, as the Java calling convention is completely under
  1.3113 +//         the control of the AD file.  Doubles can be sorted and packed to
  1.3114 +//         avoid holes.  Holes in the outgoing arguments may be nessecary for
  1.3115 +//         varargs C calling conventions.
  1.3116 +// Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  1.3117 +//         even aligned with pad0 as needed.
  1.3118 +//         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  1.3119 +//         region 6-11 is even aligned; it may be padded out more so that
  1.3120 +//         the region from SP to FP meets the minimum stack alignment.
  1.3121 +
  1.3122 +frame %{
  1.3123 +  // What direction does stack grow in (assumed to be same for native & Java)
  1.3124 +  stack_direction(TOWARDS_LOW);
  1.3125 +
  1.3126 +  // These two registers define part of the calling convention
  1.3127 +  // between compiled code and the interpreter.
  1.3128 +  inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
  1.3129 +  interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  1.3130 +
  1.3131 +  // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  1.3132 +  cisc_spilling_operand_name(indOffset);
  1.3133 +
  1.3134 +  // Number of stack slots consumed by a Monitor enter
  1.3135 +#ifdef _LP64
  1.3136 +  sync_stack_slots(2);
  1.3137 +#else
  1.3138 +  sync_stack_slots(1);
  1.3139 +#endif
  1.3140 +
  1.3141 +  // Compiled code's Frame Pointer
  1.3142 +  frame_pointer(R_SP);
  1.3143 +
  1.3144 +  // Stack alignment requirement
  1.3145 +  stack_alignment(StackAlignmentInBytes);
  1.3146 +  //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  1.3147 +  // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  1.3148 +
  1.3149 +  // Number of stack slots between incoming argument block and the start of
  1.3150 +  // a new frame.  The PROLOG must add this many slots to the stack.  The
  1.3151 +  // EPILOG must remove this many slots.
  1.3152 +  in_preserve_stack_slots(0);
  1.3153 +
  1.3154 +  // Number of outgoing stack slots killed above the out_preserve_stack_slots
  1.3155 +  // for calls to C.  Supports the var-args backing area for register parms.
  1.3156 +  // ADLC doesn't support parsing expressions, so I folded the math by hand.
  1.3157 +#ifdef _LP64
  1.3158 +  // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  1.3159 +  varargs_C_out_slots_killed(12);
  1.3160 +#else
  1.3161 +  // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  1.3162 +  varargs_C_out_slots_killed( 7);
  1.3163 +#endif
  1.3164 +
  1.3165 +  // The after-PROLOG location of the return address.  Location of
  1.3166 +  // return address specifies a type (REG or STACK) and a number
  1.3167 +  // representing the register number (i.e. - use a register name) or
  1.3168 +  // stack slot.
  1.3169 +  return_addr(REG R_I7);          // Ret Addr is in register I7
  1.3170 +
  1.3171 +  // Body of function which returns an OptoRegs array locating
  1.3172 +  // arguments either in registers or in stack slots for calling
  1.3173 +  // java
  1.3174 +  calling_convention %{
  1.3175 +    (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  1.3176 +
  1.3177 +  %}
  1.3178 +
  1.3179 +  // Body of function which returns an OptoRegs array locating
  1.3180 +  // arguments either in registers or in stack slots for callin
  1.3181 +  // C.
  1.3182 +  c_calling_convention %{
  1.3183 +    // This is obviously always outgoing
  1.3184 +    (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  1.3185 +  %}
  1.3186 +
  1.3187 +  // Location of native (C/C++) and interpreter return values.  This is specified to
  1.3188 +  // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  1.3189 +  // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  1.3190 +  // to and from the register pairs is done by the appropriate call and epilog
  1.3191 +  // opcodes.  This simplifies the register allocator.
  1.3192 +  c_return_value %{
  1.3193 +    assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  1.3194 +#ifdef     _LP64
  1.3195 +    static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  1.3196 +    static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  1.3197 +    static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  1.3198 +    static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  1.3199 +#else  // !_LP64
  1.3200 +    static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  1.3201 +    static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  1.3202 +    static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  1.3203 +    static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  1.3204 +#endif
  1.3205 +    return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  1.3206 +                        (is_outgoing?lo_out:lo_in)[ideal_reg] );
  1.3207 +  %}
  1.3208 +
  1.3209 +  // Location of compiled Java return values.  Same as C
  1.3210 +  return_value %{
  1.3211 +    assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  1.3212 +#ifdef     _LP64
  1.3213 +    static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  1.3214 +    static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  1.3215 +    static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  1.3216 +    static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  1.3217 +#else  // !_LP64
  1.3218 +    static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  1.3219 +    static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  1.3220 +    static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  1.3221 +    static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  1.3222 +#endif
  1.3223 +    return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  1.3224 +                        (is_outgoing?lo_out:lo_in)[ideal_reg] );
  1.3225 +  %}
  1.3226 +
  1.3227 +%}
  1.3228 +
  1.3229 +
  1.3230 +//----------ATTRIBUTES---------------------------------------------------------
  1.3231 +//----------Operand Attributes-------------------------------------------------
  1.3232 +op_attrib op_cost(1);          // Required cost attribute
  1.3233 +
  1.3234 +//----------Instruction Attributes---------------------------------------------
  1.3235 +ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  1.3236 +ins_attrib ins_size(32);       // Required size attribute (in bits)
  1.3237 +ins_attrib ins_pc_relative(0); // Required PC Relative flag
  1.3238 +ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  1.3239 +                                // non-matching short branch variant of some
  1.3240 +                                                            // long branch?
  1.3241 +
  1.3242 +//----------OPERANDS-----------------------------------------------------------
  1.3243 +// Operand definitions must precede instruction definitions for correct parsing
  1.3244 +// in the ADLC because operands constitute user defined types which are used in
  1.3245 +// instruction definitions.
  1.3246 +
  1.3247 +//----------Simple Operands----------------------------------------------------
  1.3248 +// Immediate Operands
  1.3249 +// Integer Immediate: 32-bit
  1.3250 +operand immI() %{
  1.3251 +  match(ConI);
  1.3252 +
  1.3253 +  op_cost(0);
  1.3254 +  // formats are generated automatically for constants and base registers
  1.3255 +  format %{ %}
  1.3256 +  interface(CONST_INTER);
  1.3257 +%}
  1.3258 +
  1.3259 +// Integer Immediate: 13-bit
  1.3260 +operand immI13() %{
  1.3261 +  predicate(Assembler::is_simm13(n->get_int()));
  1.3262 +  match(ConI);
  1.3263 +  op_cost(0);
  1.3264 +
  1.3265 +  format %{ %}
  1.3266 +  interface(CONST_INTER);
  1.3267 +%}
  1.3268 +
  1.3269 +// Unsigned (positive) Integer Immediate: 13-bit
  1.3270 +operand immU13() %{
  1.3271 +  predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  1.3272 +  match(ConI);
  1.3273 +  op_cost(0);
  1.3274 +
  1.3275 +  format %{ %}
  1.3276 +  interface(CONST_INTER);
  1.3277 +%}
  1.3278 +
  1.3279 +// Integer Immediate: 6-bit
  1.3280 +operand immU6() %{
  1.3281 +  predicate(n->get_int() >= 0 && n->get_int() <= 63);
  1.3282 +  match(ConI);
  1.3283 +  op_cost(0);
  1.3284 +  format %{ %}
  1.3285 +  interface(CONST_INTER);
  1.3286 +%}
  1.3287 +
  1.3288 +// Integer Immediate: 11-bit
  1.3289 +operand immI11() %{
  1.3290 +  predicate(Assembler::is_simm(n->get_int(),11));
  1.3291 +  match(ConI);
  1.3292 +  op_cost(0);
  1.3293 +  format %{ %}
  1.3294 +  interface(CONST_INTER);
  1.3295 +%}
  1.3296 +
  1.3297 +// Integer Immediate: 0-bit
  1.3298 +operand immI0() %{
  1.3299 +  predicate(n->get_int() == 0);
  1.3300 +  match(ConI);
  1.3301 +  op_cost(0);
  1.3302 +
  1.3303 +  format %{ %}
  1.3304 +  interface(CONST_INTER);
  1.3305 +%}
  1.3306 +
  1.3307 +// Integer Immediate: the value 10
  1.3308 +operand immI10() %{
  1.3309 +  predicate(n->get_int() == 10);
  1.3310 +  match(ConI);
  1.3311 +  op_cost(0);
  1.3312 +
  1.3313 +  format %{ %}
  1.3314 +  interface(CONST_INTER);
  1.3315 +%}
  1.3316 +
  1.3317 +// Integer Immediate: the values 0-31
  1.3318 +operand immU5() %{
  1.3319 +  predicate(n->get_int() >= 0 && n->get_int() <= 31);
  1.3320 +  match(ConI);
  1.3321 +  op_cost(0);
  1.3322 +
  1.3323 +  format %{ %}
  1.3324 +  interface(CONST_INTER);
  1.3325 +%}
  1.3326 +
  1.3327 +// Integer Immediate: the values 1-31
  1.3328 +operand immI_1_31() %{
  1.3329 +  predicate(n->get_int() >= 1 && n->get_int() <= 31);
  1.3330 +  match(ConI);
  1.3331 +  op_cost(0);
  1.3332 +
  1.3333 +  format %{ %}
  1.3334 +  interface(CONST_INTER);
  1.3335 +%}
  1.3336 +
  1.3337 +// Integer Immediate: the values 32-63
  1.3338 +operand immI_32_63() %{
  1.3339 +  predicate(n->get_int() >= 32 && n->get_int() <= 63);
  1.3340 +  match(ConI);
  1.3341 +  op_cost(0);
  1.3342 +
  1.3343 +  format %{ %}
  1.3344 +  interface(CONST_INTER);
  1.3345 +%}
  1.3346 +
  1.3347 +// Integer Immediate: the value 255
  1.3348 +operand immI_255() %{
  1.3349 +  predicate( n->get_int() == 255 );
  1.3350 +  match(ConI);
  1.3351 +  op_cost(0);
  1.3352 +
  1.3353 +  format %{ %}
  1.3354 +  interface(CONST_INTER);
  1.3355 +%}
  1.3356 +
  1.3357 +// Long Immediate: the value FF
  1.3358 +operand immL_FF() %{
  1.3359 +  predicate( n->get_long() == 0xFFL );
  1.3360 +  match(ConL);
  1.3361 +  op_cost(0);
  1.3362 +
  1.3363 +  format %{ %}
  1.3364 +  interface(CONST_INTER);
  1.3365 +%}
  1.3366 +
  1.3367 +// Long Immediate: the value FFFF
  1.3368 +operand immL_FFFF() %{
  1.3369 +  predicate( n->get_long() == 0xFFFFL );
  1.3370 +  match(ConL);
  1.3371 +  op_cost(0);
  1.3372 +
  1.3373 +  format %{ %}
  1.3374 +  interface(CONST_INTER);
  1.3375 +%}
  1.3376 +
  1.3377 +// Pointer Immediate: 32 or 64-bit
  1.3378 +operand immP() %{
  1.3379 +  match(ConP);
  1.3380 +
  1.3381 +  op_cost(5);
  1.3382 +  // formats are generated automatically for constants and base registers
  1.3383 +  format %{ %}
  1.3384 +  interface(CONST_INTER);
  1.3385 +%}
  1.3386 +
  1.3387 +operand immP13() %{
  1.3388 +  predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  1.3389 +  match(ConP);
  1.3390 +  op_cost(0);
  1.3391 +
  1.3392 +  format %{ %}
  1.3393 +  interface(CONST_INTER);
  1.3394 +%}
  1.3395 +
  1.3396 +operand immP0() %{
  1.3397 +  predicate(n->get_ptr() == 0);
  1.3398 +  match(ConP);
  1.3399 +  op_cost(0);
  1.3400 +
  1.3401 +  format %{ %}
  1.3402 +  interface(CONST_INTER);
  1.3403 +%}
  1.3404 +
  1.3405 +operand immP_poll() %{
  1.3406 +  predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  1.3407 +  match(ConP);
  1.3408 +
  1.3409 +  // formats are generated automatically for constants and base registers
  1.3410 +  format %{ %}
  1.3411 +  interface(CONST_INTER);
  1.3412 +%}
  1.3413 +
  1.3414 +operand immL() %{
  1.3415 +  match(ConL);
  1.3416 +  op_cost(40);
  1.3417 +  // formats are generated automatically for constants and base registers
  1.3418 +  format %{ %}
  1.3419 +  interface(CONST_INTER);
  1.3420 +%}
  1.3421 +
  1.3422 +operand immL0() %{
  1.3423 +  predicate(n->get_long() == 0L);
  1.3424 +  match(ConL);
  1.3425 +  op_cost(0);
  1.3426 +  // formats are generated automatically for constants and base registers
  1.3427 +  format %{ %}
  1.3428 +  interface(CONST_INTER);
  1.3429 +%}
  1.3430 +
  1.3431 +// Long Immediate: 13-bit
  1.3432 +operand immL13() %{
  1.3433 +  predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  1.3434 +  match(ConL);
  1.3435 +  op_cost(0);
  1.3436 +
  1.3437 +  format %{ %}
  1.3438 +  interface(CONST_INTER);
  1.3439 +%}
  1.3440 +
  1.3441 +// Long Immediate: low 32-bit mask
  1.3442 +operand immL_32bits() %{
  1.3443 +  predicate(n->get_long() == 0xFFFFFFFFL);
  1.3444 +  match(ConL);
  1.3445 +  op_cost(0);
  1.3446 +
  1.3447 +  format %{ %}
  1.3448 +  interface(CONST_INTER);
  1.3449 +%}
  1.3450 +
  1.3451 +// Double Immediate
  1.3452 +operand immD() %{
  1.3453 +  match(ConD);
  1.3454 +
  1.3455 +  op_cost(40);
  1.3456 +  format %{ %}
  1.3457 +  interface(CONST_INTER);
  1.3458 +%}
  1.3459 +
  1.3460 +operand immD0() %{
  1.3461 +#ifdef _LP64
  1.3462 +  // on 64-bit architectures this comparision is faster
  1.3463 +  predicate(jlong_cast(n->getd()) == 0);
  1.3464 +#else
  1.3465 +  predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  1.3466 +#endif
  1.3467 +  match(ConD);
  1.3468 +
  1.3469 +  op_cost(0);
  1.3470 +  format %{ %}
  1.3471 +  interface(CONST_INTER);
  1.3472 +%}
  1.3473 +
  1.3474 +// Float Immediate
  1.3475 +operand immF() %{
  1.3476 +  match(ConF);
  1.3477 +
  1.3478 +  op_cost(20);
  1.3479 +  format %{ %}
  1.3480 +  interface(CONST_INTER);
  1.3481 +%}
  1.3482 +
  1.3483 +// Float Immediate: 0
  1.3484 +operand immF0() %{
  1.3485 +  predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  1.3486 +  match(ConF);
  1.3487 +
  1.3488 +  op_cost(0);
  1.3489 +  format %{ %}
  1.3490 +  interface(CONST_INTER);
  1.3491 +%}
  1.3492 +
  1.3493 +// Integer Register Operands
  1.3494 +// Integer Register
  1.3495 +operand iRegI() %{
  1.3496 +  constraint(ALLOC_IN_RC(int_reg));
  1.3497 +  match(RegI);
  1.3498 +
  1.3499 +  match(notemp_iRegI);
  1.3500 +  match(g1RegI);
  1.3501 +  match(o0RegI);
  1.3502 +  match(iRegIsafe);
  1.3503 +
  1.3504 +  format %{ %}
  1.3505 +  interface(REG_INTER);
  1.3506 +%}
  1.3507 +
  1.3508 +operand notemp_iRegI() %{
  1.3509 +  constraint(ALLOC_IN_RC(notemp_int_reg));
  1.3510 +  match(RegI);
  1.3511 +
  1.3512 +  match(o0RegI);
  1.3513 +
  1.3514 +  format %{ %}
  1.3515 +  interface(REG_INTER);
  1.3516 +%}
  1.3517 +
  1.3518 +operand o0RegI() %{
  1.3519 +  constraint(ALLOC_IN_RC(o0_regI));
  1.3520 +  match(iRegI);
  1.3521 +
  1.3522 +  format %{ %}
  1.3523 +  interface(REG_INTER);
  1.3524 +%}
  1.3525 +
  1.3526 +// Pointer Register
  1.3527 +operand iRegP() %{
  1.3528 +  constraint(ALLOC_IN_RC(ptr_reg));
  1.3529 +  match(RegP);
  1.3530 +
  1.3531 +  match(lock_ptr_RegP);
  1.3532 +  match(g1RegP);
  1.3533 +  match(g2RegP);
  1.3534 +  match(g3RegP);
  1.3535 +  match(g4RegP);
  1.3536 +  match(i0RegP);
  1.3537 +  match(o0RegP);
  1.3538 +  match(o1RegP);
  1.3539 +  match(l7RegP);
  1.3540 +
  1.3541 +  format %{ %}
  1.3542 +  interface(REG_INTER);
  1.3543 +%}
  1.3544 +
  1.3545 +operand sp_ptr_RegP() %{
  1.3546 +  constraint(ALLOC_IN_RC(sp_ptr_reg));
  1.3547 +  match(RegP);
  1.3548 +  match(iRegP);
  1.3549 +
  1.3550 +  format %{ %}
  1.3551 +  interface(REG_INTER);
  1.3552 +%}
  1.3553 +
  1.3554 +operand lock_ptr_RegP() %{
  1.3555 +  constraint(ALLOC_IN_RC(lock_ptr_reg));
  1.3556 +  match(RegP);
  1.3557 +  match(i0RegP);
  1.3558 +  match(o0RegP);
  1.3559 +  match(o1RegP);
  1.3560 +  match(l7RegP);
  1.3561 +
  1.3562 +  format %{ %}
  1.3563 +  interface(REG_INTER);
  1.3564 +%}
  1.3565 +
  1.3566 +operand g1RegP() %{
  1.3567 +  constraint(ALLOC_IN_RC(g1_regP));
  1.3568 +  match(iRegP);
  1.3569 +
  1.3570 +  format %{ %}
  1.3571 +  interface(REG_INTER);
  1.3572 +%}
  1.3573 +
  1.3574 +operand g2RegP() %{
  1.3575 +  constraint(ALLOC_IN_RC(g2_regP));
  1.3576 +  match(iRegP);
  1.3577 +
  1.3578 +  format %{ %}
  1.3579 +  interface(REG_INTER);
  1.3580 +%}
  1.3581 +
  1.3582 +operand g3RegP() %{
  1.3583 +  constraint(ALLOC_IN_RC(g3_regP));
  1.3584 +  match(iRegP);
  1.3585 +
  1.3586 +  format %{ %}
  1.3587 +  interface(REG_INTER);
  1.3588 +%}
  1.3589 +
  1.3590 +operand g1RegI() %{
  1.3591 +  constraint(ALLOC_IN_RC(g1_regI));
  1.3592 +  match(iRegI);
  1.3593 +
  1.3594 +  format %{ %}
  1.3595 +  interface(REG_INTER);
  1.3596 +%}
  1.3597 +
  1.3598 +operand g3RegI() %{
  1.3599 +  constraint(ALLOC_IN_RC(g3_regI));
  1.3600 +  match(iRegI);
  1.3601 +
  1.3602 +  format %{ %}
  1.3603 +  interface(REG_INTER);
  1.3604 +%}
  1.3605 +
  1.3606 +operand g4RegI() %{
  1.3607 +  constraint(ALLOC_IN_RC(g4_regI));
  1.3608 +  match(iRegI);
  1.3609 +
  1.3610 +  format %{ %}
  1.3611 +  interface(REG_INTER);
  1.3612 +%}
  1.3613 +
  1.3614 +operand g4RegP() %{
  1.3615 +  constraint(ALLOC_IN_RC(g4_regP));
  1.3616 +  match(iRegP);
  1.3617 +
  1.3618 +  format %{ %}
  1.3619 +  interface(REG_INTER);
  1.3620 +%}
  1.3621 +
  1.3622 +operand i0RegP() %{
  1.3623 +  constraint(ALLOC_IN_RC(i0_regP));
  1.3624 +  match(iRegP);
  1.3625 +
  1.3626 +  format %{ %}
  1.3627 +  interface(REG_INTER);
  1.3628 +%}
  1.3629 +
  1.3630 +operand o0RegP() %{
  1.3631 +  constraint(ALLOC_IN_RC(o0_regP));
  1.3632 +  match(iRegP);
  1.3633 +
  1.3634 +  format %{ %}
  1.3635 +  interface(REG_INTER);
  1.3636 +%}
  1.3637 +
  1.3638 +operand o1RegP() %{
  1.3639 +  constraint(ALLOC_IN_RC(o1_regP));
  1.3640 +  match(iRegP);
  1.3641 +
  1.3642 +  format %{ %}
  1.3643 +  interface(REG_INTER);
  1.3644 +%}
  1.3645 +
  1.3646 +operand o2RegP() %{
  1.3647 +  constraint(ALLOC_IN_RC(o2_regP));
  1.3648 +  match(iRegP);
  1.3649 +
  1.3650 +  format %{ %}
  1.3651 +  interface(REG_INTER);
  1.3652 +%}
  1.3653 +
  1.3654 +operand o7RegP() %{
  1.3655 +  constraint(ALLOC_IN_RC(o7_regP));
  1.3656 +  match(iRegP);
  1.3657 +
  1.3658 +  format %{ %}
  1.3659 +  interface(REG_INTER);
  1.3660 +%}
  1.3661 +
  1.3662 +operand l7RegP() %{
  1.3663 +  constraint(ALLOC_IN_RC(l7_regP));
  1.3664 +  match(iRegP);
  1.3665 +
  1.3666 +  format %{ %}
  1.3667 +  interface(REG_INTER);
  1.3668 +%}
  1.3669 +
  1.3670 +operand o7RegI() %{
  1.3671 +  constraint(ALLOC_IN_RC(o7_regI));
  1.3672 +  match(iRegI);
  1.3673 +
  1.3674 +  format %{ %}
  1.3675 +  interface(REG_INTER);
  1.3676 +%}
  1.3677 +
  1.3678 +// Long Register
  1.3679 +operand iRegL() %{
  1.3680 +  constraint(ALLOC_IN_RC(long_reg));
  1.3681 +  match(RegL);
  1.3682 +
  1.3683 +  format %{ %}
  1.3684 +  interface(REG_INTER);
  1.3685 +%}
  1.3686 +
  1.3687 +operand o2RegL() %{
  1.3688 +  constraint(ALLOC_IN_RC(o2_regL));
  1.3689 +  match(iRegL);
  1.3690 +
  1.3691 +  format %{ %}
  1.3692 +  interface(REG_INTER);
  1.3693 +%}
  1.3694 +
  1.3695 +operand o7RegL() %{
  1.3696 +  constraint(ALLOC_IN_RC(o7_regL));
  1.3697 +  match(iRegL);
  1.3698 +
  1.3699 +  format %{ %}
  1.3700 +  interface(REG_INTER);
  1.3701 +%}
  1.3702 +
  1.3703 +operand g1RegL() %{
  1.3704 +  constraint(ALLOC_IN_RC(g1_regL));
  1.3705 +  match(iRegL);
  1.3706 +
  1.3707 +  format %{ %}
  1.3708 +  interface(REG_INTER);
  1.3709 +%}
  1.3710 +
  1.3711 +// Int Register safe
  1.3712 +// This is 64bit safe
  1.3713 +operand iRegIsafe() %{
  1.3714 +  constraint(ALLOC_IN_RC(long_reg));
  1.3715 +
  1.3716 +  match(iRegI);
  1.3717 +
  1.3718 +  format %{ %}
  1.3719 +  interface(REG_INTER);
  1.3720 +%}
  1.3721 +
  1.3722 +// Condition Code Flag Register
  1.3723 +operand flagsReg() %{
  1.3724 +  constraint(ALLOC_IN_RC(int_flags));
  1.3725 +  match(RegFlags);
  1.3726 +
  1.3727 +  format %{ "ccr" %} // both ICC and XCC
  1.3728 +  interface(REG_INTER);
  1.3729 +%}
  1.3730 +
  1.3731 +// Condition Code Register, unsigned comparisons.
  1.3732 +operand flagsRegU() %{
  1.3733 +  constraint(ALLOC_IN_RC(int_flags));
  1.3734 +  match(RegFlags);
  1.3735 +
  1.3736 +  format %{ "icc_U" %}
  1.3737 +  interface(REG_INTER);
  1.3738 +%}
  1.3739 +
  1.3740 +// Condition Code Register, pointer comparisons.
  1.3741 +operand flagsRegP() %{
  1.3742 +  constraint(ALLOC_IN_RC(int_flags));
  1.3743 +  match(RegFlags);
  1.3744 +
  1.3745 +#ifdef _LP64
  1.3746 +  format %{ "xcc_P" %}
  1.3747 +#else
  1.3748 +  format %{ "icc_P" %}
  1.3749 +#endif
  1.3750 +  interface(REG_INTER);
  1.3751 +%}
  1.3752 +
  1.3753 +// Condition Code Register, long comparisons.
  1.3754 +operand flagsRegL() %{
  1.3755 +  constraint(ALLOC_IN_RC(int_flags));
  1.3756 +  match(RegFlags);
  1.3757 +
  1.3758 +  format %{ "xcc_L" %}
  1.3759 +  interface(REG_INTER);
  1.3760 +%}
  1.3761 +
  1.3762 +// Condition Code Register, floating comparisons, unordered same as "less".
  1.3763 +operand flagsRegF() %{
  1.3764 +  constraint(ALLOC_IN_RC(float_flags));
  1.3765 +  match(RegFlags);
  1.3766 +  match(flagsRegF0);
  1.3767 +
  1.3768 +  format %{ %}
  1.3769 +  interface(REG_INTER);
  1.3770 +%}
  1.3771 +
  1.3772 +operand flagsRegF0() %{
  1.3773 +  constraint(ALLOC_IN_RC(float_flag0));
  1.3774 +  match(RegFlags);
  1.3775 +
  1.3776 +  format %{ %}
  1.3777 +  interface(REG_INTER);
  1.3778 +%}
  1.3779 +
  1.3780 +
  1.3781 +// Condition Code Flag Register used by long compare
  1.3782 +operand flagsReg_long_LTGE() %{
  1.3783 +  constraint(ALLOC_IN_RC(int_flags));
  1.3784 +  match(RegFlags);
  1.3785 +  format %{ "icc_LTGE" %}
  1.3786 +  interface(REG_INTER);
  1.3787 +%}
  1.3788 +operand flagsReg_long_EQNE() %{
  1.3789 +  constraint(ALLOC_IN_RC(int_flags));
  1.3790 +  match(RegFlags);
  1.3791 +  format %{ "icc_EQNE" %}
  1.3792 +  interface(REG_INTER);
  1.3793 +%}
  1.3794 +operand flagsReg_long_LEGT() %{
  1.3795 +  constraint(ALLOC_IN_RC(int_flags));
  1.3796 +  match(RegFlags);
  1.3797 +  format %{ "icc_LEGT" %}
  1.3798 +  interface(REG_INTER);
  1.3799 +%}
  1.3800 +
  1.3801 +
  1.3802 +operand regD() %{
  1.3803 +  constraint(ALLOC_IN_RC(dflt_reg));
  1.3804 +  match(RegD);
  1.3805 +
  1.3806 +  format %{ %}
  1.3807 +  interface(REG_INTER);
  1.3808 +%}
  1.3809 +
  1.3810 +operand regF() %{
  1.3811 +  constraint(ALLOC_IN_RC(sflt_reg));
  1.3812 +  match(RegF);
  1.3813 +
  1.3814 +  format %{ %}
  1.3815 +  interface(REG_INTER);
  1.3816 +%}
  1.3817 +
  1.3818 +operand regD_low() %{
  1.3819 +  constraint(ALLOC_IN_RC(dflt_low_reg));
  1.3820 +  match(RegD);
  1.3821 +
  1.3822 +  format %{ %}
  1.3823 +  interface(REG_INTER);
  1.3824 +%}
  1.3825 +
  1.3826 +// Special Registers
  1.3827 +
  1.3828 +// Method Register
  1.3829 +operand inline_cache_regP(iRegP reg) %{
  1.3830 +  constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  1.3831 +  match(reg);
  1.3832 +  format %{ %}
  1.3833 +  interface(REG_INTER);
  1.3834 +%}
  1.3835 +
  1.3836 +operand interpreter_method_oop_regP(iRegP reg) %{
  1.3837 +  constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  1.3838 +  match(reg);
  1.3839 +  format %{ %}
  1.3840 +  interface(REG_INTER);
  1.3841 +%}
  1.3842 +
  1.3843 +
  1.3844 +//----------Complex Operands---------------------------------------------------
  1.3845 +// Indirect Memory Reference
  1.3846 +operand indirect(sp_ptr_RegP reg) %{
  1.3847 +  constraint(ALLOC_IN_RC(sp_ptr_reg));
  1.3848 +  match(reg);
  1.3849 +
  1.3850 +  op_cost(100);
  1.3851 +  format %{ "[$reg]" %}
  1.3852 +  interface(MEMORY_INTER) %{
  1.3853 +    base($reg);
  1.3854 +    index(0x0);
  1.3855 +    scale(0x0);
  1.3856 +    disp(0x0);
  1.3857 +  %}
  1.3858 +%}
  1.3859 +
  1.3860 +// Indirect with Offset
  1.3861 +operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  1.3862 +  constraint(ALLOC_IN_RC(sp_ptr_reg));
  1.3863 +  match(AddP reg offset);
  1.3864 +
  1.3865 +  op_cost(100);
  1.3866 +  format %{ "[$reg + $offset]" %}
  1.3867 +  interface(MEMORY_INTER) %{
  1.3868 +    base($reg);
  1.3869 +    index(0x0);
  1.3870 +    scale(0x0);
  1.3871 +    disp($offset);
  1.3872 +  %}
  1.3873 +%}
  1.3874 +
  1.3875 +// Note:  Intel has a swapped version also, like this:
  1.3876 +//operand indOffsetX(iRegI reg, immP offset) %{
  1.3877 +//  constraint(ALLOC_IN_RC(int_reg));
  1.3878 +//  match(AddP offset reg);
  1.3879 +//
  1.3880 +//  op_cost(100);
  1.3881 +//  format %{ "[$reg + $offset]" %}
  1.3882 +//  interface(MEMORY_INTER) %{
  1.3883 +//    base($reg);
  1.3884 +//    index(0x0);
  1.3885 +//    scale(0x0);
  1.3886 +//    disp($offset);
  1.3887 +//  %}
  1.3888 +//%}
  1.3889 +//// However, it doesn't make sense for SPARC, since
  1.3890 +// we have no particularly good way to embed oops in
  1.3891 +// single instructions.
  1.3892 +
  1.3893 +// Indirect with Register Index
  1.3894 +operand indIndex(iRegP addr, iRegX index) %{
  1.3895 +  constraint(ALLOC_IN_RC(ptr_reg));
  1.3896 +  match(AddP addr index);
  1.3897 +
  1.3898 +  op_cost(100);
  1.3899 +  format %{ "[$addr + $index]" %}
  1.3900 +  interface(MEMORY_INTER) %{
  1.3901 +    base($addr);
  1.3902 +    index($index);
  1.3903 +    scale(0x0);
  1.3904 +    disp(0x0);
  1.3905 +  %}
  1.3906 +%}
  1.3907 +
  1.3908 +//----------Special Memory Operands--------------------------------------------
  1.3909 +// Stack Slot Operand - This operand is used for loading and storing temporary
  1.3910 +//                      values on the stack where a match requires a value to
  1.3911 +//                      flow through memory.
  1.3912 +operand stackSlotI(sRegI reg) %{
  1.3913 +  constraint(ALLOC_IN_RC(stack_slots));
  1.3914 +  op_cost(100);
  1.3915 +  //match(RegI);
  1.3916 +  format %{ "[$reg]" %}
  1.3917 +  interface(MEMORY_INTER) %{
  1.3918 +    base(0xE);   // R_SP
  1.3919 +    index(0x0);
  1.3920 +    scale(0x0);
  1.3921 +    disp($reg);  // Stack Offset
  1.3922 +  %}
  1.3923 +%}
  1.3924 +
  1.3925 +operand stackSlotP(sRegP reg) %{
  1.3926 +  constraint(ALLOC_IN_RC(stack_slots));
  1.3927 +  op_cost(100);
  1.3928 +  //match(RegP);
  1.3929 +  format %{ "[$reg]" %}
  1.3930 +  interface(MEMORY_INTER) %{
  1.3931 +    base(0xE);   // R_SP
  1.3932 +    index(0x0);
  1.3933 +    scale(0x0);
  1.3934 +    disp($reg);  // Stack Offset
  1.3935 +  %}
  1.3936 +%}
  1.3937 +
  1.3938 +operand stackSlotF(sRegF reg) %{
  1.3939 +  constraint(ALLOC_IN_RC(stack_slots));
  1.3940 +  op_cost(100);
  1.3941 +  //match(RegF);
  1.3942 +  format %{ "[$reg]" %}
  1.3943 +  interface(MEMORY_INTER) %{
  1.3944 +    base(0xE);   // R_SP
  1.3945 +    index(0x0);
  1.3946 +    scale(0x0);
  1.3947 +    disp($reg);  // Stack Offset
  1.3948 +  %}
  1.3949 +%}
  1.3950 +operand stackSlotD(sRegD reg) %{
  1.3951 +  constraint(ALLOC_IN_RC(stack_slots));
  1.3952 +  op_cost(100);
  1.3953 +  //match(RegD);
  1.3954 +  format %{ "[$reg]" %}
  1.3955 +  interface(MEMORY_INTER) %{
  1.3956 +    base(0xE);   // R_SP
  1.3957 +    index(0x0);
  1.3958 +    scale(0x0);
  1.3959 +    disp($reg);  // Stack Offset
  1.3960 +  %}
  1.3961 +%}
  1.3962 +operand stackSlotL(sRegL reg) %{
  1.3963 +  constraint(ALLOC_IN_RC(stack_slots));
  1.3964 +  op_cost(100);
  1.3965 +  //match(RegL);
  1.3966 +  format %{ "[$reg]" %}
  1.3967 +  interface(MEMORY_INTER) %{
  1.3968 +    base(0xE);   // R_SP
  1.3969 +    index(0x0);
  1.3970 +    scale(0x0);
  1.3971 +    disp($reg);  // Stack Offset
  1.3972 +  %}
  1.3973 +%}
  1.3974 +
  1.3975 +// Operands for expressing Control Flow
  1.3976 +// NOTE:  Label is a predefined operand which should not be redefined in
  1.3977 +//        the AD file.  It is generically handled within the ADLC.
  1.3978 +
  1.3979 +//----------Conditional Branch Operands----------------------------------------
  1.3980 +// Comparison Op  - This is the operation of the comparison, and is limited to
  1.3981 +//                  the following set of codes:
  1.3982 +//                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  1.3983 +//
  1.3984 +// Other attributes of the comparison, such as unsignedness, are specified
  1.3985 +// by the comparison instruction that sets a condition code flags register.
  1.3986 +// That result is represented by a flags operand whose subtype is appropriate
  1.3987 +// to the unsignedness (etc.) of the comparison.
  1.3988 +//
  1.3989 +// Later, the instruction which matches both the Comparison Op (a Bool) and
  1.3990 +// the flags (produced by the Cmp) specifies the coding of the comparison op
  1.3991 +// by matching a specific subtype of Bool operand below, such as cmpOpU.
  1.3992 +
  1.3993 +operand cmpOp() %{
  1.3994 +  match(Bool);
  1.3995 +
  1.3996 +  format %{ "" %}
  1.3997 +  interface(COND_INTER) %{
  1.3998 +    equal(0x1);
  1.3999 +    not_equal(0x9);
  1.4000 +    less(0x3);
  1.4001 +    greater_equal(0xB);
  1.4002 +    less_equal(0x2);
  1.4003 +    greater(0xA);
  1.4004 +  %}
  1.4005 +%}
  1.4006 +
  1.4007 +// Comparison Op, unsigned
  1.4008 +operand cmpOpU() %{
  1.4009 +  match(Bool);
  1.4010 +
  1.4011 +  format %{ "u" %}
  1.4012 +  interface(COND_INTER) %{
  1.4013 +    equal(0x1);
  1.4014 +    not_equal(0x9);
  1.4015 +    less(0x5);
  1.4016 +    greater_equal(0xD);
  1.4017 +    less_equal(0x4);
  1.4018 +    greater(0xC);
  1.4019 +  %}
  1.4020 +%}
  1.4021 +
  1.4022 +// Comparison Op, pointer (same as unsigned)
  1.4023 +operand cmpOpP() %{
  1.4024 +  match(Bool);
  1.4025 +
  1.4026 +  format %{ "p" %}
  1.4027 +  interface(COND_INTER) %{
  1.4028 +    equal(0x1);
  1.4029 +    not_equal(0x9);
  1.4030 +    less(0x5);
  1.4031 +    greater_equal(0xD);
  1.4032 +    less_equal(0x4);
  1.4033 +    greater(0xC);
  1.4034 +  %}
  1.4035 +%}
  1.4036 +
  1.4037 +// Comparison Op, branch-register encoding
  1.4038 +operand cmpOp_reg() %{
  1.4039 +  match(Bool);
  1.4040 +
  1.4041 +  format %{ "" %}
  1.4042 +  interface(COND_INTER) %{
  1.4043 +    equal        (0x1);
  1.4044 +    not_equal    (0x5);
  1.4045 +    less         (0x3);
  1.4046 +    greater_equal(0x7);
  1.4047 +    less_equal   (0x2);
  1.4048 +    greater      (0x6);
  1.4049 +  %}
  1.4050 +%}
  1.4051 +
  1.4052 +// Comparison Code, floating, unordered same as less
  1.4053 +operand cmpOpF() %{
  1.4054 +  match(Bool);
  1.4055 +
  1.4056 +  format %{ "fl" %}
  1.4057 +  interface(COND_INTER) %{
  1.4058 +    equal(0x9);
  1.4059 +    not_equal(0x1);
  1.4060 +    less(0x3);
  1.4061 +    greater_equal(0xB);
  1.4062 +    less_equal(0xE);
  1.4063 +    greater(0x6);
  1.4064 +  %}
  1.4065 +%}
  1.4066 +
  1.4067 +// Used by long compare
  1.4068 +operand cmpOp_commute() %{
  1.4069 +  match(Bool);
  1.4070 +
  1.4071 +  format %{ "" %}
  1.4072 +  interface(COND_INTER) %{
  1.4073 +    equal(0x1);
  1.4074 +    not_equal(0x9);
  1.4075 +    less(0xA);
  1.4076 +    greater_equal(0x2);
  1.4077 +    less_equal(0xB);
  1.4078 +    greater(0x3);
  1.4079 +  %}
  1.4080 +%}
  1.4081 +
  1.4082 +//----------OPERAND CLASSES----------------------------------------------------
  1.4083 +// Operand Classes are groups of operands that are used to simplify
  1.4084 +// instruction definitions by not requiring the AD writer to specify seperate
  1.4085 +// instructions for every form of operand when the instruction accepts
  1.4086 +// multiple operand types with the same basic encoding and format.  The classic
  1.4087 +// case of this is memory operands.
  1.4088 +// Indirect is not included since its use is limited to Compare & Swap
  1.4089 +opclass memory( indirect, indOffset13, indIndex );
  1.4090 +
  1.4091 +//----------PIPELINE-----------------------------------------------------------
  1.4092 +pipeline %{
  1.4093 +
  1.4094 +//----------ATTRIBUTES---------------------------------------------------------
  1.4095 +attributes %{
  1.4096 +  fixed_size_instructions;           // Fixed size instructions
  1.4097 +  branch_has_delay_slot;             // Branch has delay slot following
  1.4098 +  max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  1.4099 +  instruction_unit_size = 4;         // An instruction is 4 bytes long
  1.4100 +  instruction_fetch_unit_size = 16;  // The processor fetches one line
  1.4101 +  instruction_fetch_units = 1;       // of 16 bytes
  1.4102 +
  1.4103 +  // List of nop instructions
  1.4104 +  nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  1.4105 +%}
  1.4106 +
  1.4107 +//----------RESOURCES----------------------------------------------------------
  1.4108 +// Resources are the functional units available to the machine
  1.4109 +resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  1.4110 +
  1.4111 +//----------PIPELINE DESCRIPTION-----------------------------------------------
  1.4112 +// Pipeline Description specifies the stages in the machine's pipeline
  1.4113 +
  1.4114 +pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  1.4115 +
  1.4116 +//----------PIPELINE CLASSES---------------------------------------------------
  1.4117 +// Pipeline Classes describe the stages in which input and output are
  1.4118 +// referenced by the hardware pipeline.
  1.4119 +
  1.4120 +// Integer ALU reg-reg operation
  1.4121 +pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  1.4122 +    single_instruction;
  1.4123 +    dst   : E(write);
  1.4124 +    src1  : R(read);
  1.4125 +    src2  : R(read);
  1.4126 +    IALU  : R;
  1.4127 +%}
  1.4128 +
  1.4129 +// Integer ALU reg-reg long operation
  1.4130 +pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  1.4131 +    instruction_count(2);
  1.4132 +    dst   : E(write);
  1.4133 +    src1  : R(read);
  1.4134 +    src2  : R(read);
  1.4135 +    IALU  : R;
  1.4136 +    IALU  : R;
  1.4137 +%}
  1.4138 +
  1.4139 +// Integer ALU reg-reg long dependent operation
  1.4140 +pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  1.4141 +    instruction_count(1); multiple_bundles;
  1.4142 +    dst   : E(write);
  1.4143 +    src1  : R(read);
  1.4144 +    src2  : R(read);
  1.4145 +    cr    : E(write);
  1.4146 +    IALU  : R(2);
  1.4147 +%}
  1.4148 +
  1.4149 +// Integer ALU reg-imm operaion
  1.4150 +pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  1.4151 +    single_instruction;
  1.4152 +    dst   : E(write);
  1.4153 +    src1  : R(read);
  1.4154 +    IALU  : R;
  1.4155 +%}
  1.4156 +
  1.4157 +// Integer ALU reg-reg operation with condition code
  1.4158 +pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  1.4159 +    single_instruction;
  1.4160 +    dst   : E(write);
  1.4161 +    cr    : E(write);
  1.4162 +    src1  : R(read);
  1.4163 +    src2  : R(read);
  1.4164 +    IALU  : R;
  1.4165 +%}
  1.4166 +
  1.4167 +// Integer ALU reg-imm operation with condition code
  1.4168 +pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  1.4169 +    single_instruction;
  1.4170 +    dst   : E(write);
  1.4171 +    cr    : E(write);
  1.4172 +    src1  : R(read);
  1.4173 +    IALU  : R;
  1.4174 +%}
  1.4175 +
  1.4176 +// Integer ALU zero-reg operation
  1.4177 +pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  1.4178 +    single_instruction;
  1.4179 +    dst   : E(write);
  1.4180 +    src2  : R(read);
  1.4181 +    IALU  : R;
  1.4182 +%}
  1.4183 +
  1.4184 +// Integer ALU zero-reg operation with condition code only
  1.4185 +pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  1.4186 +    single_instruction;
  1.4187 +    cr    : E(write);
  1.4188 +    src   : R(read);
  1.4189 +    IALU  : R;
  1.4190 +%}
  1.4191 +
  1.4192 +// Integer ALU reg-reg operation with condition code only
  1.4193 +pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  1.4194 +    single_instruction;
  1.4195 +    cr    : E(write);
  1.4196 +    src1  : R(read);
  1.4197 +    src2  : R(read);
  1.4198 +    IALU  : R;
  1.4199 +%}
  1.4200 +
  1.4201 +// Integer ALU reg-imm operation with condition code only
  1.4202 +pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  1.4203 +    single_instruction;
  1.4204 +    cr    : E(write);
  1.4205 +    src1  : R(read);
  1.4206 +    IALU  : R;
  1.4207 +%}
  1.4208 +
  1.4209 +// Integer ALU reg-reg-zero operation with condition code only
  1.4210 +pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  1.4211 +    single_instruction;
  1.4212 +    cr    : E(write);
  1.4213 +    src1  : R(read);
  1.4214 +    src2  : R(read);
  1.4215 +    IALU  : R;
  1.4216 +%}
  1.4217 +
  1.4218 +// Integer ALU reg-imm-zero operation with condition code only
  1.4219 +pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  1.4220 +    single_instruction;
  1.4221 +    cr    : E(write);
  1.4222 +    src1  : R(read);
  1.4223 +    IALU  : R;
  1.4224 +%}
  1.4225 +
  1.4226 +// Integer ALU reg-reg operation with condition code, src1 modified
  1.4227 +pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  1.4228 +    single_instruction;
  1.4229 +    cr    : E(write);
  1.4230 +    src1  : E(write);
  1.4231 +    src1  : R(read);
  1.4232 +    src2  : R(read);
  1.4233 +    IALU  : R;
  1.4234 +%}
  1.4235 +
  1.4236 +// Integer ALU reg-imm operation with condition code, src1 modified
  1.4237 +pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  1.4238 +    single_instruction;
  1.4239 +    cr    : E(write);
  1.4240 +    src1  : E(write);
  1.4241 +    src1  : R(read);
  1.4242 +    IALU  : R;
  1.4243 +%}
  1.4244 +
  1.4245 +pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  1.4246 +    multiple_bundles;
  1.4247 +    dst   : E(write)+4;
  1.4248 +    cr    : E(write);
  1.4249 +    src1  : R(read);
  1.4250 +    src2  : R(read);
  1.4251 +    IALU  : R(3);
  1.4252 +    BR    : R(2);
  1.4253 +%}
  1.4254 +
  1.4255 +// Integer ALU operation
  1.4256 +pipe_class ialu_none(iRegI dst) %{
  1.4257 +    single_instruction;
  1.4258 +    dst   : E(write);
  1.4259 +    IALU  : R;
  1.4260 +%}
  1.4261 +
  1.4262 +// Integer ALU reg operation
  1.4263 +pipe_class ialu_reg(iRegI dst, iRegI src) %{
  1.4264 +    single_instruction; may_have_no_code;
  1.4265 +    dst   : E(write);
  1.4266 +    src   : R(read);
  1.4267 +    IALU  : R;
  1.4268 +%}
  1.4269 +
  1.4270 +// Integer ALU reg conditional operation
  1.4271 +// This instruction has a 1 cycle stall, and cannot execute
  1.4272 +// in the same cycle as the instruction setting the condition
  1.4273 +// code. We kludge this by pretending to read the condition code
  1.4274 +// 1 cycle earlier, and by marking the functional units as busy
  1.4275 +// for 2 cycles with the result available 1 cycle later than
  1.4276 +// is really the case.
  1.4277 +pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  1.4278 +    single_instruction;
  1.4279 +    op2_out : C(write);
  1.4280 +    op1     : R(read);
  1.4281 +    cr      : R(read);       // This is really E, with a 1 cycle stall
  1.4282 +    BR      : R(2);
  1.4283 +    MS      : R(2);
  1.4284 +%}
  1.4285 +
  1.4286 +#ifdef _LP64
  1.4287 +pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  1.4288 +    instruction_count(1); multiple_bundles;
  1.4289 +    dst     : C(write)+1;
  1.4290 +    src     : R(read)+1;
  1.4291 +    IALU    : R(1);
  1.4292 +    BR      : E(2);
  1.4293 +    MS      : E(2);
  1.4294 +%}
  1.4295 +#endif
  1.4296 +
  1.4297 +// Integer ALU reg operation
  1.4298 +pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  1.4299 +    single_instruction; may_have_no_code;
  1.4300 +    dst   : E(write);
  1.4301 +    src   : R(read);
  1.4302 +    IALU  : R;
  1.4303 +%}
  1.4304 +pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  1.4305 +    single_instruction; may_have_no_code;
  1.4306 +    dst   : E(write);
  1.4307 +    src   : R(read);
  1.4308 +    IALU  : R;
  1.4309 +%}
  1.4310 +
  1.4311 +// Two integer ALU reg operations
  1.4312 +pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  1.4313 +    instruction_count(2);
  1.4314 +    dst   : E(write);
  1.4315 +    src   : R(read);
  1.4316 +    A0    : R;
  1.4317 +    A1    : R;
  1.4318 +%}
  1.4319 +
  1.4320 +// Two integer ALU reg operations
  1.4321 +pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  1.4322 +    instruction_count(2); may_have_no_code;
  1.4323 +    dst   : E(write);
  1.4324 +    src   : R(read);
  1.4325 +    A0    : R;
  1.4326 +    A1    : R;
  1.4327 +%}
  1.4328 +
  1.4329 +// Integer ALU imm operation
  1.4330 +pipe_class ialu_imm(iRegI dst, immI13 src) %{
  1.4331 +    single_instruction;
  1.4332 +    dst   : E(write);
  1.4333 +    IALU  : R;
  1.4334 +%}
  1.4335 +
  1.4336 +// Integer ALU reg-reg with carry operation
  1.4337 +pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  1.4338 +    single_instruction;
  1.4339 +    dst   : E(write);
  1.4340 +    src1  : R(read);
  1.4341 +    src2  : R(read);
  1.4342 +    IALU  : R;
  1.4343 +%}
  1.4344 +
  1.4345 +// Integer ALU cc operation
  1.4346 +pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  1.4347 +    single_instruction;
  1.4348 +    dst   : E(write);
  1.4349 +    cc    : R(read);
  1.4350 +    IALU  : R;
  1.4351 +%}
  1.4352 +
  1.4353 +// Integer ALU cc / second IALU operation
  1.4354 +pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  1.4355 +    instruction_count(1); multiple_bundles;
  1.4356 +    dst   : E(write)+1;
  1.4357 +    src   : R(read);
  1.4358 +    IALU  : R;
  1.4359 +%}
  1.4360 +
  1.4361 +// Integer ALU cc / second IALU operation
  1.4362 +pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  1.4363 +    instruction_count(1); multiple_bundles;
  1.4364 +    dst   : E(write)+1;
  1.4365 +    p     : R(read);
  1.4366 +    q     : R(read);
  1.4367 +    IALU  : R;
  1.4368 +%}
  1.4369 +
  1.4370 +// Integer ALU hi-lo-reg operation
  1.4371 +pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  1.4372 +    instruction_count(1); multiple_bundles;
  1.4373 +    dst   : E(write)+1;
  1.4374 +    IALU  : R(2);
  1.4375 +%}
  1.4376 +
  1.4377 +// Float ALU hi-lo-reg operation (with temp)
  1.4378 +pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  1.4379 +    instruction_count(1); multiple_bundles;
  1.4380 +    dst   : E(write)+1;
  1.4381 +    IALU  : R(2);
  1.4382 +%}
  1.4383 +
  1.4384 +// Long Constant
  1.4385 +pipe_class loadConL( iRegL dst, immL src ) %{
  1.4386 +    instruction_count(2); multiple_bundles;
  1.4387 +    dst   : E(write)+1;
  1.4388 +    IALU  : R(2);
  1.4389 +    IALU  : R(2);
  1.4390 +%}
  1.4391 +
  1.4392 +// Pointer Constant
  1.4393 +pipe_class loadConP( iRegP dst, immP src ) %{
  1.4394 +    instruction_count(0); multiple_bundles;
  1.4395 +    fixed_latency(6);
  1.4396 +%}
  1.4397 +
  1.4398 +// Polling Address
  1.4399 +pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  1.4400 +#ifdef _LP64
  1.4401 +    instruction_count(0); multiple_bundles;
  1.4402 +    fixed_latency(6);
  1.4403 +#else
  1.4404 +    dst   : E(write);
  1.4405 +    IALU  : R;
  1.4406 +#endif
  1.4407 +%}
  1.4408 +
  1.4409 +// Long Constant small
  1.4410 +pipe_class loadConLlo( iRegL dst, immL src ) %{
  1.4411 +    instruction_count(2);
  1.4412 +    dst   : E(write);
  1.4413 +    IALU  : R;
  1.4414 +    IALU  : R;
  1.4415 +%}
  1.4416 +
  1.4417 +// [PHH] This is wrong for 64-bit.  See LdImmF/D.
  1.4418 +pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  1.4419 +    instruction_count(1); multiple_bundles;
  1.4420 +    src   : R(read);
  1.4421 +    dst   : M(write)+1;
  1.4422 +    IALU  : R;
  1.4423 +    MS    : E;
  1.4424 +%}
  1.4425 +
  1.4426 +// Integer ALU nop operation
  1.4427 +pipe_class ialu_nop() %{
  1.4428 +    single_instruction;
  1.4429 +    IALU  : R;
  1.4430 +%}
  1.4431 +
  1.4432 +// Integer ALU nop operation
  1.4433 +pipe_class ialu_nop_A0() %{
  1.4434 +    single_instruction;
  1.4435 +    A0    : R;
  1.4436 +%}
  1.4437 +
  1.4438 +// Integer ALU nop operation
  1.4439 +pipe_class ialu_nop_A1() %{
  1.4440 +    single_instruction;
  1.4441 +    A1    : R;
  1.4442 +%}
  1.4443 +
  1.4444 +// Integer Multiply reg-reg operation
  1.4445 +pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  1.4446 +    single_instruction;
  1.4447 +    dst   : E(write);
  1.4448 +    src1  : R(read);
  1.4449 +    src2  : R(read);
  1.4450 +    MS    : R(5);
  1.4451 +%}
  1.4452 +
  1.4453 +// Integer Multiply reg-imm operation
  1.4454 +pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  1.4455 +    single_instruction;
  1.4456 +    dst   : E(write);
  1.4457 +    src1  : R(read);
  1.4458 +    MS    : R(5);
  1.4459 +%}
  1.4460 +
  1.4461 +pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  1.4462 +    single_instruction;
  1.4463 +    dst   : E(write)+4;
  1.4464 +    src1  : R(read);
  1.4465 +    src2  : R(read);
  1.4466 +    MS    : R(6);
  1.4467 +%}
  1.4468 +
  1.4469 +pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  1.4470 +    single_instruction;
  1.4471 +    dst   : E(write)+4;
  1.4472 +    src1  : R(read);
  1.4473 +    MS    : R(6);
  1.4474 +%}
  1.4475 +
  1.4476 +// Integer Divide reg-reg
  1.4477 +pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  1.4478 +    instruction_count(1); multiple_bundles;
  1.4479 +    dst   : E(write);
  1.4480 +    temp  : E(write);
  1.4481 +    src1  : R(read);
  1.4482 +    src2  : R(read);
  1.4483 +    temp  : R(read);
  1.4484 +    MS    : R(38);
  1.4485 +%}
  1.4486 +
  1.4487 +// Integer Divide reg-imm
  1.4488 +pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  1.4489 +    instruction_count(1); multiple_bundles;
  1.4490 +    dst   : E(write);
  1.4491 +    temp  : E(write);
  1.4492 +    src1  : R(read);
  1.4493 +    temp  : R(read);
  1.4494 +    MS    : R(38);
  1.4495 +%}
  1.4496 +
  1.4497 +// Long Divide
  1.4498 +pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  1.4499 +    dst  : E(write)+71;
  1.4500 +    src1 : R(read);
  1.4501 +    src2 : R(read)+1;
  1.4502 +    MS   : R(70);
  1.4503 +%}
  1.4504 +
  1.4505 +pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  1.4506 +    dst  : E(write)+71;
  1.4507 +    src1 : R(read);
  1.4508 +    MS   : R(70);
  1.4509 +%}
  1.4510 +
  1.4511 +// Floating Point Add Float
  1.4512 +pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  1.4513 +    single_instruction;
  1.4514 +    dst   : X(write);
  1.4515 +    src1  : E(read);
  1.4516 +    src2  : E(read);
  1.4517 +    FA    : R;
  1.4518 +%}
  1.4519 +
  1.4520 +// Floating Point Add Double
  1.4521 +pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  1.4522 +    single_instruction;
  1.4523 +    dst   : X(write);
  1.4524 +    src1  : E(read);
  1.4525 +    src2  : E(read);
  1.4526 +    FA    : R;
  1.4527 +%}
  1.4528 +
  1.4529 +// Floating Point Conditional Move based on integer flags
  1.4530 +pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  1.4531 +    single_instruction;
  1.4532 +    dst   : X(write);
  1.4533 +    src   : E(read);
  1.4534 +    cr    : R(read);
  1.4535 +    FA    : R(2);
  1.4536 +    BR    : R(2);
  1.4537 +%}
  1.4538 +
  1.4539 +// Floating Point Conditional Move based on integer flags
  1.4540 +pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  1.4541 +    single_instruction;
  1.4542 +    dst   : X(write);
  1.4543 +    src   : E(read);
  1.4544 +    cr    : R(read);
  1.4545 +    FA    : R(2);
  1.4546 +    BR    : R(2);
  1.4547 +%}
  1.4548 +
  1.4549 +// Floating Point Multiply Float
  1.4550 +pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  1.4551 +    single_instruction;
  1.4552 +    dst   : X(write);
  1.4553 +    src1  : E(read);
  1.4554 +    src2  : E(read);
  1.4555 +    FM    : R;
  1.4556 +%}
  1.4557 +
  1.4558 +// Floating Point Multiply Double
  1.4559 +pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  1.4560 +    single_instruction;
  1.4561 +    dst   : X(write);
  1.4562 +    src1  : E(read);
  1.4563 +    src2  : E(read);
  1.4564 +    FM    : R;
  1.4565 +%}
  1.4566 +
  1.4567 +// Floating Point Divide Float
  1.4568 +pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  1.4569 +    single_instruction;
  1.4570 +    dst   : X(write);
  1.4571 +    src1  : E(read);
  1.4572 +    src2  : E(read);
  1.4573 +    FM    : R;
  1.4574 +    FDIV  : C(14);
  1.4575 +%}
  1.4576 +
  1.4577 +// Floating Point Divide Double
  1.4578 +pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  1.4579 +    single_instruction;
  1.4580 +    dst   : X(write);
  1.4581 +    src1  : E(read);
  1.4582 +    src2  : E(read);
  1.4583 +    FM    : R;
  1.4584 +    FDIV  : C(17);
  1.4585 +%}
  1.4586 +
  1.4587 +// Floating Point Move/Negate/Abs Float
  1.4588 +pipe_class faddF_reg(regF dst, regF src) %{
  1.4589 +    single_instruction;
  1.4590 +    dst   : W(write);
  1.4591 +    src   : E(read);
  1.4592 +    FA    : R(1);
  1.4593 +%}
  1.4594 +
  1.4595 +// Floating Point Move/Negate/Abs Double
  1.4596 +pipe_class faddD_reg(regD dst, regD src) %{
  1.4597 +    single_instruction;
  1.4598 +    dst   : W(write);
  1.4599 +    src   : E(read);
  1.4600 +    FA    : R;
  1.4601 +%}
  1.4602 +
  1.4603 +// Floating Point Convert F->D
  1.4604 +pipe_class fcvtF2D(regD dst, regF src) %{
  1.4605 +    single_instruction;
  1.4606 +    dst   : X(write);
  1.4607 +    src   : E(read);
  1.4608 +    FA    : R;
  1.4609 +%}
  1.4610 +
  1.4611 +// Floating Point Convert I->D
  1.4612 +pipe_class fcvtI2D(regD dst, regF src) %{
  1.4613 +    single_instruction;
  1.4614 +    dst   : X(write);
  1.4615 +    src   : E(read);
  1.4616 +    FA    : R;
  1.4617 +%}
  1.4618 +
  1.4619 +// Floating Point Convert LHi->D
  1.4620 +pipe_class fcvtLHi2D(regD dst, regD src) %{
  1.4621 +    single_instruction;
  1.4622 +    dst   : X(write);
  1.4623 +    src   : E(read);
  1.4624 +    FA    : R;
  1.4625 +%}
  1.4626 +
  1.4627 +// Floating Point Convert L->D
  1.4628 +pipe_class fcvtL2D(regD dst, regF src) %{
  1.4629 +    single_instruction;
  1.4630 +    dst   : X(write);
  1.4631 +    src   : E(read);
  1.4632 +    FA    : R;
  1.4633 +%}
  1.4634 +
  1.4635 +// Floating Point Convert L->F
  1.4636 +pipe_class fcvtL2F(regD dst, regF src) %{
  1.4637 +    single_instruction;
  1.4638 +    dst   : X(write);
  1.4639 +    src   : E(read);
  1.4640 +    FA    : R;
  1.4641 +%}
  1.4642 +
  1.4643 +// Floating Point Convert D->F
  1.4644 +pipe_class fcvtD2F(regD dst, regF src) %{
  1.4645 +    single_instruction;
  1.4646 +    dst   : X(write);
  1.4647 +    src   : E(read);
  1.4648 +    FA    : R;
  1.4649 +%}
  1.4650 +
  1.4651 +// Floating Point Convert I->L
  1.4652 +pipe_class fcvtI2L(regD dst, regF src) %{
  1.4653 +    single_instruction;
  1.4654 +    dst   : X(write);
  1.4655 +    src   : E(read);
  1.4656 +    FA    : R;
  1.4657 +%}
  1.4658 +
  1.4659 +// Floating Point Convert D->F
  1.4660 +pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  1.4661 +    instruction_count(1); multiple_bundles;
  1.4662 +    dst   : X(write)+6;
  1.4663 +    src   : E(read);
  1.4664 +    FA    : R;
  1.4665 +%}
  1.4666 +
  1.4667 +// Floating Point Convert D->L
  1.4668 +pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  1.4669 +    instruction_count(1); multiple_bundles;
  1.4670 +    dst   : X(write)+6;
  1.4671 +    src   : E(read);
  1.4672 +    FA    : R;
  1.4673 +%}
  1.4674 +
  1.4675 +// Floating Point Convert F->I
  1.4676 +pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  1.4677 +    instruction_count(1); multiple_bundles;
  1.4678 +    dst   : X(write)+6;
  1.4679 +    src   : E(read);
  1.4680 +    FA    : R;
  1.4681 +%}
  1.4682 +
  1.4683 +// Floating Point Convert F->L
  1.4684 +pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  1.4685 +    instruction_count(1); multiple_bundles;
  1.4686 +    dst   : X(write)+6;
  1.4687 +    src   : E(read);
  1.4688 +    FA    : R;
  1.4689 +%}
  1.4690 +
  1.4691 +// Floating Point Convert I->F
  1.4692 +pipe_class fcvtI2F(regF dst, regF src) %{
  1.4693 +    single_instruction;
  1.4694 +    dst   : X(write);
  1.4695 +    src   : E(read);
  1.4696 +    FA    : R;
  1.4697 +%}
  1.4698 +
  1.4699 +// Floating Point Compare
  1.4700 +pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  1.4701 +    single_instruction;
  1.4702 +    cr    : X(write);
  1.4703 +    src1  : E(read);
  1.4704 +    src2  : E(read);
  1.4705 +    FA    : R;
  1.4706 +%}
  1.4707 +
  1.4708 +// Floating Point Compare
  1.4709 +pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  1.4710 +    single_instruction;
  1.4711 +    cr    : X(write);
  1.4712 +    src1  : E(read);
  1.4713 +    src2  : E(read);
  1.4714 +    FA    : R;
  1.4715 +%}
  1.4716 +
  1.4717 +// Floating Add Nop
  1.4718 +pipe_class fadd_nop() %{
  1.4719 +    single_instruction;
  1.4720 +    FA  : R;
  1.4721 +%}
  1.4722 +
  1.4723 +// Integer Store to Memory
  1.4724 +pipe_class istore_mem_reg(memory mem, iRegI src) %{
  1.4725 +    single_instruction;
  1.4726 +    mem   : R(read);
  1.4727 +    src   : C(read);
  1.4728 +    MS    : R;
  1.4729 +%}
  1.4730 +
  1.4731 +// Integer Store to Memory
  1.4732 +pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  1.4733 +    single_instruction;
  1.4734 +    mem   : R(read);
  1.4735 +    src   : C(read);
  1.4736 +    MS    : R;
  1.4737 +%}
  1.4738 +
  1.4739 +// Integer Store Zero to Memory
  1.4740 +pipe_class istore_mem_zero(memory mem, immI0 src) %{
  1.4741 +    single_instruction;
  1.4742 +    mem   : R(read);
  1.4743 +    MS    : R;
  1.4744 +%}
  1.4745 +
  1.4746 +// Special Stack Slot Store
  1.4747 +pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  1.4748 +    single_instruction;
  1.4749 +    stkSlot : R(read);
  1.4750 +    src     : C(read);
  1.4751 +    MS      : R;
  1.4752 +%}
  1.4753 +
  1.4754 +// Special Stack Slot Store
  1.4755 +pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  1.4756 +    instruction_count(2); multiple_bundles;
  1.4757 +    stkSlot : R(read);
  1.4758 +    src     : C(read);
  1.4759 +    MS      : R(2);
  1.4760 +%}
  1.4761 +
  1.4762 +// Float Store
  1.4763 +pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  1.4764 +    single_instruction;
  1.4765 +    mem : R(read);
  1.4766 +    src : C(read);
  1.4767 +    MS  : R;
  1.4768 +%}
  1.4769 +
  1.4770 +// Float Store
  1.4771 +pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  1.4772 +    single_instruction;
  1.4773 +    mem : R(read);
  1.4774 +    MS  : R;
  1.4775 +%}
  1.4776 +
  1.4777 +// Double Store
  1.4778 +pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  1.4779 +    instruction_count(1);
  1.4780 +    mem : R(read);
  1.4781 +    src : C(read);
  1.4782 +    MS  : R;
  1.4783 +%}
  1.4784 +
  1.4785 +// Double Store
  1.4786 +pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  1.4787 +    single_instruction;
  1.4788 +    mem : R(read);
  1.4789 +    MS  : R;
  1.4790 +%}
  1.4791 +
  1.4792 +// Special Stack Slot Float Store
  1.4793 +pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  1.4794 +    single_instruction;
  1.4795 +    stkSlot : R(read);
  1.4796 +    src     : C(read);
  1.4797 +    MS      : R;
  1.4798 +%}
  1.4799 +
  1.4800 +// Special Stack Slot Double Store
  1.4801 +pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  1.4802 +    single_instruction;
  1.4803 +    stkSlot : R(read);
  1.4804 +    src     : C(read);
  1.4805 +    MS      : R;
  1.4806 +%}
  1.4807 +
  1.4808 +// Integer Load (when sign bit propagation not needed)
  1.4809 +pipe_class iload_mem(iRegI dst, memory mem) %{
  1.4810 +    single_instruction;
  1.4811 +    mem : R(read);
  1.4812 +    dst : C(write);
  1.4813 +    MS  : R;
  1.4814 +%}
  1.4815 +
  1.4816 +// Integer Load from stack operand
  1.4817 +pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  1.4818 +    single_instruction;
  1.4819 +    mem : R(read);
  1.4820 +    dst : C(write);
  1.4821 +    MS  : R;
  1.4822 +%}
  1.4823 +
  1.4824 +// Integer Load (when sign bit propagation or masking is needed)
  1.4825 +pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  1.4826 +    single_instruction;
  1.4827 +    mem : R(read);
  1.4828 +    dst : M(write);
  1.4829 +    MS  : R;
  1.4830 +%}
  1.4831 +
  1.4832 +// Float Load
  1.4833 +pipe_class floadF_mem(regF dst, memory mem) %{
  1.4834 +    single_instruction;
  1.4835 +    mem : R(read);
  1.4836 +    dst : M(write);
  1.4837 +    MS  : R;
  1.4838 +%}
  1.4839 +
  1.4840 +// Float Load
  1.4841 +pipe_class floadD_mem(regD dst, memory mem) %{
  1.4842 +    instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  1.4843 +    mem : R(read);
  1.4844 +    dst : M(write);
  1.4845 +    MS  : R;
  1.4846 +%}
  1.4847 +
  1.4848 +// Float Load
  1.4849 +pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  1.4850 +    single_instruction;
  1.4851 +    stkSlot : R(read);
  1.4852 +    dst : M(write);
  1.4853 +    MS  : R;
  1.4854 +%}
  1.4855 +
  1.4856 +// Float Load
  1.4857 +pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  1.4858 +    single_instruction;
  1.4859 +    stkSlot : R(read);
  1.4860 +    dst : M(write);
  1.4861 +    MS  : R;
  1.4862 +%}
  1.4863 +
  1.4864 +// Memory Nop
  1.4865 +pipe_class mem_nop() %{
  1.4866 +    single_instruction;
  1.4867 +    MS  : R;
  1.4868 +%}
  1.4869 +
  1.4870 +pipe_class sethi(iRegP dst, immI src) %{
  1.4871 +    single_instruction;
  1.4872 +    dst  : E(write);
  1.4873 +    IALU : R;
  1.4874 +%}
  1.4875 +
  1.4876 +pipe_class loadPollP(iRegP poll) %{
  1.4877 +    single_instruction;
  1.4878 +    poll : R(read);
  1.4879 +    MS   : R;
  1.4880 +%}
  1.4881 +
  1.4882 +pipe_class br(Universe br, label labl) %{
  1.4883 +    single_instruction_with_delay_slot;
  1.4884 +    BR  : R;
  1.4885 +%}
  1.4886 +
  1.4887 +pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  1.4888 +    single_instruction_with_delay_slot;
  1.4889 +    cr    : E(read);
  1.4890 +    BR    : R;
  1.4891 +%}
  1.4892 +
  1.4893 +pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  1.4894 +    single_instruction_with_delay_slot;
  1.4895 +    op1 : E(read);
  1.4896 +    BR  : R;
  1.4897 +    MS  : R;
  1.4898 +%}
  1.4899 +
  1.4900 +pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  1.4901 +    single_instruction_with_delay_slot;
  1.4902 +    cr    : E(read);
  1.4903 +    BR    : R;
  1.4904 +%}
  1.4905 +
  1.4906 +pipe_class br_nop() %{
  1.4907 +    single_instruction;
  1.4908 +    BR  : R;
  1.4909 +%}
  1.4910 +
  1.4911 +pipe_class simple_call(method meth) %{
  1.4912 +    instruction_count(2); multiple_bundles; force_serialization;
  1.4913 +    fixed_latency(100);
  1.4914 +    BR  : R(1);
  1.4915 +    MS  : R(1);
  1.4916 +    A0  : R(1);
  1.4917 +%}
  1.4918 +
  1.4919 +pipe_class compiled_call(method meth) %{
  1.4920 +    instruction_count(1); multiple_bundles; force_serialization;
  1.4921 +    fixed_latency(100);
  1.4922 +    MS  : R(1);
  1.4923 +%}
  1.4924 +
  1.4925 +pipe_class call(method meth) %{
  1.4926 +    instruction_count(0); multiple_bundles; force_serialization;
  1.4927 +    fixed_latency(100);
  1.4928 +%}
  1.4929 +
  1.4930 +pipe_class tail_call(Universe ignore, label labl) %{
  1.4931 +    single_instruction; has_delay_slot;
  1.4932 +    fixed_latency(100);
  1.4933 +    BR  : R(1);
  1.4934 +    MS  : R(1);
  1.4935 +%}
  1.4936 +
  1.4937 +pipe_class ret(Universe ignore) %{
  1.4938 +    single_instruction; has_delay_slot;
  1.4939 +    BR  : R(1);
  1.4940 +    MS  : R(1);
  1.4941 +%}
  1.4942 +
  1.4943 +pipe_class ret_poll(g3RegP poll) %{
  1.4944 +    instruction_count(3); has_delay_slot;
  1.4945 +    poll : E(read);
  1.4946 +    MS   : R;
  1.4947 +%}
  1.4948 +
  1.4949 +// The real do-nothing guy
  1.4950 +pipe_class empty( ) %{
  1.4951 +    instruction_count(0);
  1.4952 +%}
  1.4953 +
  1.4954 +pipe_class long_memory_op() %{
  1.4955 +    instruction_count(0); multiple_bundles; force_serialization;
  1.4956 +    fixed_latency(25);
  1.4957 +    MS  : R(1);
  1.4958 +%}
  1.4959 +
  1.4960 +// Check-cast
  1.4961 +pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  1.4962 +    array : R(read);
  1.4963 +    match  : R(read);
  1.4964 +    IALU   : R(2);
  1.4965 +    BR     : R(2);
  1.4966 +    MS     : R;
  1.4967 +%}
  1.4968 +
  1.4969 +// Convert FPU flags into +1,0,-1
  1.4970 +pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  1.4971 +    src1  : E(read);
  1.4972 +    src2  : E(read);
  1.4973 +    dst   : E(write);
  1.4974 +    FA    : R;
  1.4975 +    MS    : R(2);
  1.4976 +    BR    : R(2);
  1.4977 +%}
  1.4978 +
  1.4979 +// Compare for p < q, and conditionally add y
  1.4980 +pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  1.4981 +    p     : E(read);
  1.4982 +    q     : E(read);
  1.4983 +    y     : E(read);
  1.4984 +    IALU  : R(3)
  1.4985 +%}
  1.4986 +
  1.4987 +// Perform a compare, then move conditionally in a branch delay slot.
  1.4988 +pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  1.4989 +    src2   : E(read);
  1.4990 +    srcdst : E(read);
  1.4991 +    IALU   : R;
  1.4992 +    BR     : R;
  1.4993 +%}
  1.4994 +
  1.4995 +// Define the class for the Nop node
  1.4996 +define %{
  1.4997 +   MachNop = ialu_nop;
  1.4998 +%}
  1.4999 +
  1.5000 +%}
  1.5001 +
  1.5002 +//----------INSTRUCTIONS-------------------------------------------------------
  1.5003 +
  1.5004 +//------------Special Stack Slot instructions - no match rules-----------------
  1.5005 +instruct stkI_to_regF(regF dst, stackSlotI src) %{
  1.5006 +  // No match rule to avoid chain rule match.
  1.5007 +  effect(DEF dst, USE src);
  1.5008 +  ins_cost(MEMORY_REF_COST);
  1.5009 +  size(4);
  1.5010 +  format %{ "LDF    $src,$dst\t! stkI to regF" %}
  1.5011 +  opcode(Assembler::ldf_op3);
  1.5012 +  ins_encode(form3_mem_reg(src, dst));
  1.5013 +  ins_pipe(floadF_stk);
  1.5014 +%}
  1.5015 +
  1.5016 +instruct stkL_to_regD(regD dst, stackSlotL src) %{
  1.5017 +  // No match rule to avoid chain rule match.
  1.5018 +  effect(DEF dst, USE src);
  1.5019 +  ins_cost(MEMORY_REF_COST);
  1.5020 +  size(4);
  1.5021 +  format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  1.5022 +  opcode(Assembler::lddf_op3);
  1.5023 +  ins_encode(form3_mem_reg(src, dst));
  1.5024 +  ins_pipe(floadD_stk);
  1.5025 +%}
  1.5026 +
  1.5027 +instruct regF_to_stkI(stackSlotI dst, regF src) %{
  1.5028 +  // No match rule to avoid chain rule match.
  1.5029 +  effect(DEF dst, USE src);
  1.5030 +  ins_cost(MEMORY_REF_COST);
  1.5031 +  size(4);
  1.5032 +  format %{ "STF    $src,$dst\t! regF to stkI" %}
  1.5033 +  opcode(Assembler::stf_op3);
  1.5034 +  ins_encode(form3_mem_reg(dst, src));
  1.5035 +  ins_pipe(fstoreF_stk_reg);
  1.5036 +%}
  1.5037 +
  1.5038 +instruct regD_to_stkL(stackSlotL dst, regD src) %{
  1.5039 +  // No match rule to avoid chain rule match.
  1.5040 +  effect(DEF dst, USE src);
  1.5041 +  ins_cost(MEMORY_REF_COST);
  1.5042 +  size(4);
  1.5043 +  format %{ "STDF   $src,$dst\t! regD to stkL" %}
  1.5044 +  opcode(Assembler::stdf_op3);
  1.5045 +  ins_encode(form3_mem_reg(dst, src));
  1.5046 +  ins_pipe(fstoreD_stk_reg);
  1.5047 +%}
  1.5048 +
  1.5049 +instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  1.5050 +  effect(DEF dst, USE src);
  1.5051 +  ins_cost(MEMORY_REF_COST*2);
  1.5052 +  size(8);
  1.5053 +  format %{ "STW    $src,$dst.hi\t! long\n\t"
  1.5054 +            "STW    R_G0,$dst.lo" %}
  1.5055 +  opcode(Assembler::stw_op3);
  1.5056 +  ins_encode(form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  1.5057 +  ins_pipe(lstoreI_stk_reg);
  1.5058 +%}
  1.5059 +
  1.5060 +instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  1.5061 +  // No match rule to avoid chain rule match.
  1.5062 +  effect(DEF dst, USE src);
  1.5063 +  ins_cost(MEMORY_REF_COST);
  1.5064 +  size(4);
  1.5065 +  format %{ "STX    $src,$dst\t! regL to stkD" %}
  1.5066 +  opcode(Assembler::stx_op3);
  1.5067 +  ins_encode( form3_mem_reg( dst, src ) );
  1.5068 +  ins_pipe(istore_stk_reg);
  1.5069 +%}
  1.5070 +
  1.5071 +//---------- Chain stack slots between similar types --------
  1.5072 +
  1.5073 +// Load integer from stack slot
  1.5074 +instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  1.5075 +  match(Set dst src);
  1.5076 +  ins_cost(MEMORY_REF_COST);
  1.5077 +
  1.5078 +  size(4);
  1.5079 +  format %{ "LDUW   $src,$dst\t!stk" %}
  1.5080 +  opcode(Assembler::lduw_op3);
  1.5081 +  ins_encode( form3_mem_reg( src, dst ) );
  1.5082 +  ins_pipe(iload_mem);
  1.5083 +%}
  1.5084 +
  1.5085 +// Store integer to stack slot
  1.5086 +instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  1.5087 +  match(Set dst src);
  1.5088 +  ins_cost(MEMORY_REF_COST);
  1.5089 +
  1.5090 +  size(4);
  1.5091 +  format %{ "STW    $src,$dst\t!stk" %}
  1.5092 +  opcode(Assembler::stw_op3);
  1.5093 +  ins_encode( form3_mem_reg( dst, src ) );
  1.5094 +  ins_pipe(istore_mem_reg);
  1.5095 +%}
  1.5096 +
  1.5097 +// Load long from stack slot
  1.5098 +instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  1.5099 +  match(Set dst src);
  1.5100 +
  1.5101 +  ins_cost(MEMORY_REF_COST);
  1.5102 +  size(4);
  1.5103 +  format %{ "LDX    $src,$dst\t! long" %}
  1.5104 +  opcode(Assembler::ldx_op3);
  1.5105 +  ins_encode( form3_mem_reg( src, dst ) );
  1.5106 +  ins_pipe(iload_mem);
  1.5107 +%}
  1.5108 +
  1.5109 +// Store long to stack slot
  1.5110 +instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  1.5111 +  match(Set dst src);
  1.5112 +
  1.5113 +  ins_cost(MEMORY_REF_COST);
  1.5114 +  size(4);
  1.5115 +  format %{ "STX    $src,$dst\t! long" %}
  1.5116 +  opcode(Assembler::stx_op3);
  1.5117 +  ins_encode( form3_mem_reg( dst, src ) );
  1.5118 +  ins_pipe(istore_mem_reg);
  1.5119 +%}
  1.5120 +
  1.5121 +#ifdef _LP64
  1.5122 +// Load pointer from stack slot, 64-bit encoding
  1.5123 +instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  1.5124 +  match(Set dst src);
  1.5125 +  ins_cost(MEMORY_REF_COST);
  1.5126 +  size(4);
  1.5127 +  format %{ "LDX    $src,$dst\t!ptr" %}
  1.5128 +  opcode(Assembler::ldx_op3);
  1.5129 +  ins_encode( form3_mem_reg( src, dst ) );
  1.5130 +  ins_pipe(iload_mem);
  1.5131 +%}
  1.5132 +
  1.5133 +// Store pointer to stack slot
  1.5134 +instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  1.5135 +  match(Set dst src);
  1.5136 +  ins_cost(MEMORY_REF_COST);
  1.5137 +  size(4);
  1.5138 +  format %{ "STX    $src,$dst\t!ptr" %}
  1.5139 +  opcode(Assembler::stx_op3);
  1.5140 +  ins_encode( form3_mem_reg( dst, src ) );
  1.5141 +  ins_pipe(istore_mem_reg);
  1.5142 +%}
  1.5143 +#else // _LP64
  1.5144 +// Load pointer from stack slot, 32-bit encoding
  1.5145 +instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  1.5146 +  match(Set dst src);
  1.5147 +  ins_cost(MEMORY_REF_COST);
  1.5148 +  format %{ "LDUW   $src,$dst\t!ptr" %}
  1.5149 +  opcode(Assembler::lduw_op3, Assembler::ldst_op);
  1.5150 +  ins_encode( form3_mem_reg( src, dst ) );
  1.5151 +  ins_pipe(iload_mem);
  1.5152 +%}
  1.5153 +
  1.5154 +// Store pointer to stack slot
  1.5155 +instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  1.5156 +  match(Set dst src);
  1.5157 +  ins_cost(MEMORY_REF_COST);
  1.5158 +  format %{ "STW    $src,$dst\t!ptr" %}
  1.5159 +  opcode(Assembler::stw_op3, Assembler::ldst_op);
  1.5160 +  ins_encode( form3_mem_reg( dst, src ) );
  1.5161 +  ins_pipe(istore_mem_reg);
  1.5162 +%}
  1.5163 +#endif // _LP64
  1.5164 +
  1.5165 +//------------Special Nop instructions for bundling - no match rules-----------
  1.5166 +// Nop using the A0 functional unit
  1.5167 +instruct Nop_A0() %{
  1.5168 +  ins_cost(0);
  1.5169 +
  1.5170 +  format %{ "NOP    ! Alu Pipeline" %}
  1.5171 +  opcode(Assembler::or_op3, Assembler::arith_op);
  1.5172 +  ins_encode( form2_nop() );
  1.5173 +  ins_pipe(ialu_nop_A0);
  1.5174 +%}
  1.5175 +
  1.5176 +// Nop using the A1 functional unit
  1.5177 +instruct Nop_A1( ) %{
  1.5178 +  ins_cost(0);
  1.5179 +
  1.5180 +  format %{ "NOP    ! Alu Pipeline" %}
  1.5181 +  opcode(Assembler::or_op3, Assembler::arith_op);
  1.5182 +  ins_encode( form2_nop() );
  1.5183 +  ins_pipe(ialu_nop_A1);
  1.5184 +%}
  1.5185 +
  1.5186 +// Nop using the memory functional unit
  1.5187 +instruct Nop_MS( ) %{
  1.5188 +  ins_cost(0);
  1.5189 +
  1.5190 +  format %{ "NOP    ! Memory Pipeline" %}
  1.5191 +  ins_encode( emit_mem_nop );
  1.5192 +  ins_pipe(mem_nop);
  1.5193 +%}
  1.5194 +
  1.5195 +// Nop using the floating add functional unit
  1.5196 +instruct Nop_FA( ) %{
  1.5197 +  ins_cost(0);
  1.5198 +
  1.5199 +  format %{ "NOP    ! Floating Add Pipeline" %}
  1.5200 +  ins_encode( emit_fadd_nop );
  1.5201 +  ins_pipe(fadd_nop);
  1.5202 +%}
  1.5203 +
  1.5204 +// Nop using the branch functional unit
  1.5205 +instruct Nop_BR( ) %{
  1.5206 +  ins_cost(0);
  1.5207 +
  1.5208 +  format %{ "NOP    ! Branch Pipeline" %}
  1.5209 +  ins_encode( emit_br_nop );
  1.5210 +  ins_pipe(br_nop);
  1.5211 +%}
  1.5212 +
  1.5213 +//----------Load/Store/Move Instructions---------------------------------------
  1.5214 +//----------Load Instructions--------------------------------------------------
  1.5215 +// Load Byte (8bit signed)
  1.5216 +instruct loadB(iRegI dst, memory mem) %{
  1.5217 +  match(Set dst (LoadB mem));
  1.5218 +  ins_cost(MEMORY_REF_COST);
  1.5219 +
  1.5220 +  size(4);
  1.5221 +  format %{ "LDSB   $mem,$dst" %}
  1.5222 +  opcode(Assembler::ldsb_op3);
  1.5223 +  ins_encode( form3_mem_reg( mem, dst ) );
  1.5224 +  ins_pipe(iload_mask_mem);
  1.5225 +%}
  1.5226 +
  1.5227 +// Load Byte (8bit UNsigned) into an int reg
  1.5228 +instruct loadUB(iRegI dst, memory mem, immI_255 bytemask) %{
  1.5229 +  match(Set dst (AndI (LoadB mem) bytemask));
  1.5230 +  ins_cost(MEMORY_REF_COST);
  1.5231 +
  1.5232 +  size(4);
  1.5233 +  format %{ "LDUB   $mem,$dst" %}
  1.5234 +  opcode(Assembler::ldub_op3);
  1.5235 +  ins_encode( form3_mem_reg( mem, dst ) );
  1.5236 +  ins_pipe(iload_mask_mem);
  1.5237 +%}
  1.5238 +
  1.5239 +// Load Byte (8bit UNsigned) into a Long Register
  1.5240 +instruct loadUBL(iRegL dst, memory mem, immL_FF bytemask) %{
  1.5241 +  match(Set dst (AndL (ConvI2L (LoadB mem)) bytemask));
  1.5242 +  ins_cost(MEMORY_REF_COST);
  1.5243 +
  1.5244 +  size(4);
  1.5245 +  format %{ "LDUB   $mem,$dst" %}
  1.5246 +  opcode(Assembler::ldub_op3);
  1.5247 +  ins_encode( form3_mem_reg( mem, dst ) );
  1.5248 +  ins_pipe(iload_mask_mem);
  1.5249 +%}
  1.5250 +
  1.5251 +// Load Char (16bit UNsigned) into a Long Register
  1.5252 +instruct loadUCL(iRegL dst, memory mem, immL_FFFF bytemask) %{
  1.5253 +  match(Set dst (AndL (ConvI2L (LoadC mem)) bytemask));
  1.5254 +  ins_cost(MEMORY_REF_COST);
  1.5255 +
  1.5256 +  size(4);
  1.5257 +  format %{ "LDUH   $mem,$dst" %}
  1.5258 +  opcode(Assembler::lduh_op3);
  1.5259 +  ins_encode( form3_mem_reg( mem, dst ) );
  1.5260 +  ins_pipe(iload_mask_mem);
  1.5261 +%}
  1.5262 +
  1.5263 +// Load Char (16bit unsigned)
  1.5264 +instruct loadC(iRegI dst, memory mem) %{
  1.5265 +  match(Set dst (LoadC mem));
  1.5266 +  ins_cost(MEMORY_REF_COST);
  1.5267 +
  1.5268 +  size(4);
  1.5269 +  format %{ "LDUH   $mem,$dst" %}
  1.5270 +  opcode(Assembler::lduh_op3);
  1.5271 +  ins_encode( form3_mem_reg( mem, dst ) );
  1.5272 +  ins_pipe(iload_mask_mem);
  1.5273 +%}
  1.5274 +
  1.5275 +// Load Integer
  1.5276 +instruct loadI(iRegI dst, memory mem) %{
  1.5277 +  match(Set dst (LoadI mem));
  1.5278 +  ins_cost(MEMORY_REF_COST);
  1.5279 +  size(4);
  1.5280 +
  1.5281 +  format %{ "LDUW   $mem,$dst" %}
  1.5282 +  opcode(Assembler::lduw_op3);
  1.5283 +  ins_encode( form3_mem_reg( mem, dst ) );
  1.5284 +  ins_pipe(iload_mem);
  1.5285 +%}
  1.5286 +
  1.5287 +// Load Long - aligned
  1.5288 +instruct loadL(iRegL dst, memory mem ) %{
  1.5289 +  match(Set dst (LoadL mem));
  1.5290 +  ins_cost(MEMORY_REF_COST);
  1.5291 +  size(4);
  1.5292 +  format %{ "LDX    $mem,$dst\t! long" %}
  1.5293 +  opcode(Assembler::ldx_op3);
  1.5294 +  ins_encode( form3_mem_reg( mem, dst ) );
  1.5295 +  ins_pipe(iload_mem);
  1.5296 +%}
  1.5297 +
  1.5298 +// Load Long - UNaligned
  1.5299 +instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  1.5300 +  match(Set dst (LoadL_unaligned mem));
  1.5301 +  effect(KILL tmp);
  1.5302 +  ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  1.5303 +  size(16);
  1.5304 +  format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  1.5305 +          "\tLDUW   $mem  ,$dst\n"
  1.5306 +          "\tSLLX   #32, $dst, $dst\n"
  1.5307 +          "\tOR     $dst, R_O7, $dst" %}
  1.5308 +  opcode(Assembler::lduw_op3);
  1.5309 +  ins_encode( form3_mem_reg_long_unaligned_marshal( mem, dst ));
  1.5310 +  ins_pipe(iload_mem);
  1.5311 +%}
  1.5312 +
  1.5313 +// Load Aligned Packed Byte into a Double Register
  1.5314 +instruct loadA8B(regD dst, memory mem) %{
  1.5315 +  match(Set dst (Load8B mem));
  1.5316 +  ins_cost(MEMORY_REF_COST);
  1.5317 +  size(4);
  1.5318 +  format %{ "LDDF   $mem,$dst\t! packed8B" %}
  1.5319 +  opcode(Assembler::lddf_op3);
  1.5320 +  ins_encode( form3_mem_reg( mem, dst ) );
  1.5321 +  ins_pipe(floadD_mem);
  1.5322 +%}
  1.5323 +
  1.5324 +// Load Aligned Packed Char into a Double Register
  1.5325 +instruct loadA4C(regD dst, memory mem) %{
  1.5326 +  match(Set dst (Load4C mem));
  1.5327 +  ins_cost(MEMORY_REF_COST);
  1.5328 +  size(4);
  1.5329 +  format %{ "LDDF   $mem,$dst\t! packed4C" %}
  1.5330 +  opcode(Assembler::lddf_op3);
  1.5331 +  ins_encode( form3_mem_reg( mem, dst ) );
  1.5332 +  ins_pipe(floadD_mem);
  1.5333 +%}
  1.5334 +
  1.5335 +// Load Aligned Packed Short into a Double Register
  1.5336 +instruct loadA4S(regD dst, memory mem) %{
  1.5337 +  match(Set dst (Load4S mem));
  1.5338 +  ins_cost(MEMORY_REF_COST);
  1.5339 +  size(4);
  1.5340 +  format %{ "LDDF   $mem,$dst\t! packed4S" %}
  1.5341 +  opcode(Assembler::lddf_op3);
  1.5342 +  ins_encode( form3_mem_reg( mem, dst ) );
  1.5343 +  ins_pipe(floadD_mem);
  1.5344 +%}
  1.5345 +
  1.5346 +// Load Aligned Packed Int into a Double Register
  1.5347 +instruct loadA2I(regD dst, memory mem) %{
  1.5348 +  match(Set dst (Load2I mem));
  1.5349 +  ins_cost(MEMORY_REF_COST);
  1.5350 +  size(4);
  1.5351 +  format %{ "LDDF   $mem,$dst\t! packed2I" %}
  1.5352 +  opcode(Assembler::lddf_op3);
  1.5353 +  ins_encode( form3_mem_reg( mem, dst ) );
  1.5354 +  ins_pipe(floadD_mem);
  1.5355 +%}
  1.5356 +
  1.5357 +// Load Range
  1.5358 +instruct loadRange(iRegI dst, memory mem) %{
  1.5359 +  match(Set dst (LoadRange mem));
  1.5360 +  ins_cost(MEMORY_REF_COST);
  1.5361 +
  1.5362 +  size(4);
  1.5363 +  format %{ "LDUW   $mem,$dst\t! range" %}
  1.5364 +  opcode(Assembler::lduw_op3);
  1.5365 +  ins_encode( form3_mem_reg( mem, dst ) );
  1.5366 +  ins_pipe(iload_mem);
  1.5367 +%}
  1.5368 +
  1.5369 +// Load Integer into %f register (for fitos/fitod)
  1.5370 +instruct loadI_freg(regF dst, memory mem) %{
  1.5371 +  match(Set dst (LoadI mem));
  1.5372 +  ins_cost(MEMORY_REF_COST);
  1.5373 +  size(4);
  1.5374 +
  1.5375 +  format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  1.5376 +  opcode(Assembler::ldf_op3);
  1.5377 +  ins_encode( form3_mem_reg( mem, dst ) );
  1.5378 +  ins_pipe(floadF_mem);
  1.5379 +%}
  1.5380 +
  1.5381 +// Load Pointer
  1.5382 +instruct loadP(iRegP dst, memory mem) %{
  1.5383 +  match(Set dst (LoadP mem));
  1.5384 +  ins_cost(MEMORY_REF_COST);
  1.5385 +  size(4);
  1.5386 +
  1.5387 +#ifndef _LP64
  1.5388 +  format %{ "LDUW   $mem,$dst\t! ptr" %}
  1.5389 +  opcode(Assembler::lduw_op3, 0, REGP_OP);
  1.5390 +#else
  1.5391 +  format %{ "LDX    $mem,$dst\t! ptr" %}
  1.5392 +  opcode(Assembler::ldx_op3, 0, REGP_OP);
  1.5393 +#endif
  1.5394 +  ins_encode( form3_mem_reg( mem, dst ) );
  1.5395 +  ins_pipe(iload_mem);
  1.5396 +%}
  1.5397 +
  1.5398 +// Load Klass Pointer
  1.5399 +instruct loadKlass(iRegP dst, memory mem) %{
  1.5400 +  match(Set dst (LoadKlass mem));
  1.5401 +  ins_cost(MEMORY_REF_COST);
  1.5402 +  size(4);
  1.5403 +
  1.5404 +#ifndef _LP64
  1.5405 +  format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  1.5406 +  opcode(Assembler::lduw_op3, 0, REGP_OP);
  1.5407 +#else
  1.5408 +  format %{ "LDX    $mem,$dst\t! klass ptr" %}
  1.5409 +  opcode(Assembler::ldx_op3, 0, REGP_OP);
  1.5410 +#endif
  1.5411 +  ins_encode( form3_mem_reg( mem, dst ) );
  1.5412 +  ins_pipe(iload_mem);
  1.5413 +%}
  1.5414 +
  1.5415 +// Load Short (16bit signed)
  1.5416 +instruct loadS(iRegI dst, memory mem) %{
  1.5417 +  match(Set dst (LoadS mem));
  1.5418 +  ins_cost(MEMORY_REF_COST);
  1.5419 +
  1.5420 +  size(4);
  1.5421 +  format %{ "LDSH   $mem,$dst" %}
  1.5422 +  opcode(Assembler::ldsh_op3);
  1.5423 +  ins_encode( form3_mem_reg( mem, dst ) );
  1.5424 +  ins_pipe(iload_mask_mem);
  1.5425 +%}
  1.5426 +
  1.5427 +// Load Double
  1.5428 +instruct loadD(regD dst, memory mem) %{
  1.5429 +  match(Set dst (LoadD mem));
  1.5430 +  ins_cost(MEMORY_REF_COST);
  1.5431 +
  1.5432 +  size(4);
  1.5433 +  format %{ "LDDF   $mem,$dst" %}
  1.5434 +  opcode(Assembler::lddf_op3);
  1.5435 +  ins_encode( form3_mem_reg( mem, dst ) );
  1.5436 +  ins_pipe(floadD_mem);
  1.5437 +%}
  1.5438 +
  1.5439 +// Load Double - UNaligned
  1.5440 +instruct loadD_unaligned(regD_low dst, memory mem ) %{
  1.5441 +  match(Set dst (LoadD_unaligned mem));
  1.5442 +  ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  1.5443 +  size(8);
  1.5444 +  format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  1.5445 +          "\tLDF    $mem+4,$dst.lo\t!" %}
  1.5446 +  opcode(Assembler::ldf_op3);
  1.5447 +  ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  1.5448 +  ins_pipe(iload_mem);
  1.5449 +%}
  1.5450 +
  1.5451 +// Load Float
  1.5452 +instruct loadF(regF dst, memory mem) %{
  1.5453 +  match(Set dst (LoadF mem));
  1.5454 +  ins_cost(MEMORY_REF_COST);
  1.5455 +
  1.5456 +  size(4);
  1.5457 +  format %{ "LDF    $mem,$dst" %}
  1.5458 +  opcode(Assembler::ldf_op3);
  1.5459 +  ins_encode( form3_mem_reg( mem, dst ) );
  1.5460 +  ins_pipe(floadF_mem);
  1.5461 +%}
  1.5462 +
  1.5463 +// Load Constant
  1.5464 +instruct loadConI( iRegI dst, immI src ) %{
  1.5465 +  match(Set dst src);
  1.5466 +  ins_cost(DEFAULT_COST * 3/2);
  1.5467 +  format %{ "SET    $src,$dst" %}
  1.5468 +  ins_encode( Set32(src, dst) );
  1.5469 +  ins_pipe(ialu_hi_lo_reg);
  1.5470 +%}
  1.5471 +
  1.5472 +instruct loadConI13( iRegI dst, immI13 src ) %{
  1.5473 +  match(Set dst src);
  1.5474 +
  1.5475 +  size(4);
  1.5476 +  format %{ "MOV    $src,$dst" %}
  1.5477 +  ins_encode( Set13( src, dst ) );
  1.5478 +  ins_pipe(ialu_imm);
  1.5479 +%}
  1.5480 +
  1.5481 +instruct loadConP(iRegP dst, immP src) %{
  1.5482 +  match(Set dst src);
  1.5483 +  ins_cost(DEFAULT_COST * 3/2);
  1.5484 +  format %{ "SET    $src,$dst\t!ptr" %}
  1.5485 +  // This rule does not use "expand" unlike loadConI because then
  1.5486 +  // the result type is not known to be an Oop.  An ADLC
  1.5487 +  // enhancement will be needed to make that work - not worth it!
  1.5488 +
  1.5489 +  ins_encode( SetPtr( src, dst ) );
  1.5490 +  ins_pipe(loadConP);
  1.5491 +
  1.5492 +%}
  1.5493 +
  1.5494 +instruct loadConP0(iRegP dst, immP0 src) %{
  1.5495 +  match(Set dst src);
  1.5496 +
  1.5497 +  size(4);
  1.5498 +  format %{ "CLR    $dst\t!ptr" %}
  1.5499 +  ins_encode( SetNull( dst ) );
  1.5500 +  ins_pipe(ialu_imm);
  1.5501 +%}
  1.5502 +
  1.5503 +instruct loadConP_poll(iRegP dst, immP_poll src) %{
  1.5504 +  match(Set dst src);
  1.5505 +  ins_cost(DEFAULT_COST);
  1.5506 +  format %{ "SET    $src,$dst\t!ptr" %}
  1.5507 +  ins_encode %{
  1.5508 +    Address polling_page(reg_to_register_object($dst$$reg), (address)os::get_polling_page());
  1.5509 +    __ sethi(polling_page, false );
  1.5510 +  %}
  1.5511 +  ins_pipe(loadConP_poll);
  1.5512 +%}
  1.5513 +
  1.5514 +instruct loadConL(iRegL dst, immL src, o7RegL tmp) %{
  1.5515 +  // %%% maybe this should work like loadConD
  1.5516 +  match(Set dst src);
  1.5517 +  effect(KILL tmp);
  1.5518 +  ins_cost(DEFAULT_COST * 4);
  1.5519 +  format %{ "SET64   $src,$dst KILL $tmp\t! long" %}
  1.5520 +  ins_encode( LdImmL(src, dst, tmp) );
  1.5521 +  ins_pipe(loadConL);
  1.5522 +%}
  1.5523 +
  1.5524 +instruct loadConL0( iRegL dst, immL0 src ) %{
  1.5525 +  match(Set dst src);
  1.5526 +  ins_cost(DEFAULT_COST);
  1.5527 +  size(4);
  1.5528 +  format %{ "CLR    $dst\t! long" %}
  1.5529 +  ins_encode( Set13( src, dst ) );
  1.5530 +  ins_pipe(ialu_imm);
  1.5531 +%}
  1.5532 +
  1.5533 +instruct loadConL13( iRegL dst, immL13 src ) %{
  1.5534 +  match(Set dst src);
  1.5535 +  ins_cost(DEFAULT_COST * 2);
  1.5536 +
  1.5537 +  size(4);
  1.5538 +  format %{ "MOV    $src,$dst\t! long" %}
  1.5539 +  ins_encode( Set13( src, dst ) );
  1.5540 +  ins_pipe(ialu_imm);
  1.5541 +%}
  1.5542 +
  1.5543 +instruct loadConF(regF dst, immF src, o7RegP tmp) %{
  1.5544 +  match(Set dst src);
  1.5545 +  effect(KILL tmp);
  1.5546 +
  1.5547 +#ifdef _LP64
  1.5548 +  size(36);
  1.5549 +#else
  1.5550 +  size(8);
  1.5551 +#endif
  1.5552 +
  1.5553 +  format %{ "SETHI  hi(&$src),$tmp\t!get float $src from table\n\t"
  1.5554 +            "LDF    [$tmp+lo(&$src)],$dst" %}
  1.5555 +  ins_encode( LdImmF(src, dst, tmp) );
  1.5556 +  ins_pipe(loadConFD);
  1.5557 +%}
  1.5558 +
  1.5559 +instruct loadConD(regD dst, immD src, o7RegP tmp) %{
  1.5560 +  match(Set dst src);
  1.5561 +  effect(KILL tmp);
  1.5562 +
  1.5563 +#ifdef _LP64
  1.5564 +  size(36);
  1.5565 +#else
  1.5566 +  size(8);
  1.5567 +#endif
  1.5568 +
  1.5569 +  format %{ "SETHI  hi(&$src),$tmp\t!get double $src from table\n\t"
  1.5570 +            "LDDF   [$tmp+lo(&$src)],$dst" %}
  1.5571 +  ins_encode( LdImmD(src, dst, tmp) );
  1.5572 +  ins_pipe(loadConFD);
  1.5573 +%}
  1.5574 +
  1.5575 +// Prefetch instructions.
  1.5576 +// Must be safe to execute with invalid address (cannot fault).
  1.5577 +
  1.5578 +instruct prefetchr( memory mem ) %{
  1.5579 +  match( PrefetchRead mem );
  1.5580 +  ins_cost(MEMORY_REF_COST);
  1.5581 +
  1.5582 +  format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  1.5583 +  opcode(Assembler::prefetch_op3);
  1.5584 +  ins_encode( form3_mem_prefetch_read( mem ) );
  1.5585 +  ins_pipe(iload_mem);
  1.5586 +%}
  1.5587 +
  1.5588 +instruct prefetchw( memory mem ) %{
  1.5589 +  match( PrefetchWrite mem );
  1.5590 +  ins_cost(MEMORY_REF_COST);
  1.5591 +
  1.5592 +  format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  1.5593 +  opcode(Assembler::prefetch_op3);
  1.5594 +  ins_encode( form3_mem_prefetch_write( mem ) );
  1.5595 +  ins_pipe(iload_mem);
  1.5596 +%}
  1.5597 +
  1.5598 +
  1.5599 +//----------Store Instructions-------------------------------------------------
  1.5600 +// Store Byte
  1.5601 +instruct storeB(memory mem, iRegI src) %{
  1.5602 +  match(Set mem (StoreB mem src));
  1.5603 +  ins_cost(MEMORY_REF_COST);
  1.5604 +
  1.5605 +  size(4);
  1.5606 +  format %{ "STB    $src,$mem\t! byte" %}
  1.5607 +  opcode(Assembler::stb_op3);
  1.5608 +  ins_encode( form3_mem_reg( mem, src ) );
  1.5609 +  ins_pipe(istore_mem_reg);
  1.5610 +%}
  1.5611 +
  1.5612 +instruct storeB0(memory mem, immI0 src) %{
  1.5613 +  match(Set mem (StoreB mem src));
  1.5614 +  ins_cost(MEMORY_REF_COST);
  1.5615 +
  1.5616 +  size(4);
  1.5617 +  format %{ "STB    $src,$mem\t! byte" %}
  1.5618 +  opcode(Assembler::stb_op3);
  1.5619 +  ins_encode( form3_mem_reg( mem, R_G0 ) );
  1.5620 +  ins_pipe(istore_mem_zero);
  1.5621 +%}
  1.5622 +
  1.5623 +instruct storeCM0(memory mem, immI0 src) %{
  1.5624 +  match(Set mem (StoreCM mem src));
  1.5625 +  ins_cost(MEMORY_REF_COST);
  1.5626 +
  1.5627 +  size(4);
  1.5628 +  format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  1.5629 +  opcode(Assembler::stb_op3);
  1.5630 +  ins_encode( form3_mem_reg( mem, R_G0 ) );
  1.5631 +  ins_pipe(istore_mem_zero);
  1.5632 +%}
  1.5633 +
  1.5634 +// Store Char/Short
  1.5635 +instruct storeC(memory mem, iRegI src) %{
  1.5636 +  match(Set mem (StoreC mem src));
  1.5637 +  ins_cost(MEMORY_REF_COST);
  1.5638 +
  1.5639 +  size(4);
  1.5640 +  format %{ "STH    $src,$mem\t! short" %}
  1.5641 +  opcode(Assembler::sth_op3);
  1.5642 +  ins_encode( form3_mem_reg( mem, src ) );
  1.5643 +  ins_pipe(istore_mem_reg);
  1.5644 +%}
  1.5645 +
  1.5646 +instruct storeC0(memory mem, immI0 src) %{
  1.5647 +  match(Set mem (StoreC mem src));
  1.5648 +  ins_cost(MEMORY_REF_COST);
  1.5649 +
  1.5650 +  size(4);
  1.5651 +  format %{ "STH    $src,$mem\t! short" %}
  1.5652 +  opcode(Assembler::sth_op3);
  1.5653 +  ins_encode( form3_mem_reg( mem, R_G0 ) );
  1.5654 +  ins_pipe(istore_mem_zero);
  1.5655 +%}
  1.5656 +
  1.5657 +// Store Integer
  1.5658 +instruct storeI(memory mem, iRegI src) %{
  1.5659 +  match(Set mem (StoreI mem src));
  1.5660 +  ins_cost(MEMORY_REF_COST);
  1.5661 +
  1.5662 +  size(4);
  1.5663 +  format %{ "STW    $src,$mem" %}
  1.5664 +  opcode(Assembler::stw_op3);
  1.5665 +  ins_encode( form3_mem_reg( mem, src ) );
  1.5666 +  ins_pipe(istore_mem_reg);
  1.5667 +%}
  1.5668 +
  1.5669 +// Store Long
  1.5670 +instruct storeL(memory mem, iRegL src) %{
  1.5671 +  match(Set mem (StoreL mem src));
  1.5672 +  ins_cost(MEMORY_REF_COST);
  1.5673 +  size(4);
  1.5674 +  format %{ "STX    $src,$mem\t! long" %}
  1.5675 +  opcode(Assembler::stx_op3);
  1.5676 +  ins_encode( form3_mem_reg( mem, src ) );
  1.5677 +  ins_pipe(istore_mem_reg);
  1.5678 +%}
  1.5679 +
  1.5680 +instruct storeI0(memory mem, immI0 src) %{
  1.5681 +  match(Set mem (StoreI mem src));
  1.5682 +  ins_cost(MEMORY_REF_COST);
  1.5683 +
  1.5684 +  size(4);
  1.5685 +  format %{ "STW    $src,$mem" %}
  1.5686 +  opcode(Assembler::stw_op3);
  1.5687 +  ins_encode( form3_mem_reg( mem, R_G0 ) );
  1.5688 +  ins_pipe(istore_mem_zero);
  1.5689 +%}
  1.5690 +
  1.5691 +instruct storeL0(memory mem, immL0 src) %{
  1.5692 +  match(Set mem (StoreL mem src));
  1.5693 +  ins_cost(MEMORY_REF_COST);
  1.5694 +
  1.5695 +  size(4);
  1.5696 +  format %{ "STX    $src,$mem" %}
  1.5697 +  opcode(Assembler::stx_op3);
  1.5698 +  ins_encode( form3_mem_reg( mem, R_G0 ) );
  1.5699 +  ins_pipe(istore_mem_zero);
  1.5700 +%}
  1.5701 +
  1.5702 +// Store Integer from float register (used after fstoi)
  1.5703 +instruct storeI_Freg(memory mem, regF src) %{
  1.5704 +  match(Set mem (StoreI mem src));
  1.5705 +  ins_cost(MEMORY_REF_COST);
  1.5706 +
  1.5707 +  size(4);
  1.5708 +  format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  1.5709 +  opcode(Assembler::stf_op3);
  1.5710 +  ins_encode( form3_mem_reg( mem, src ) );
  1.5711 +  ins_pipe(fstoreF_mem_reg);
  1.5712 +%}
  1.5713 +
  1.5714 +// Store Pointer
  1.5715 +instruct storeP(memory dst, sp_ptr_RegP src) %{
  1.5716 +  match(Set dst (StoreP dst src));
  1.5717 +  ins_cost(MEMORY_REF_COST);
  1.5718 +  size(4);
  1.5719 +
  1.5720 +#ifndef _LP64
  1.5721 +  format %{ "STW    $src,$dst\t! ptr" %}
  1.5722 +  opcode(Assembler::stw_op3, 0, REGP_OP);
  1.5723 +#else
  1.5724 +  format %{ "STX    $src,$dst\t! ptr" %}
  1.5725 +  opcode(Assembler::stx_op3, 0, REGP_OP);
  1.5726 +#endif
  1.5727 +  ins_encode( form3_mem_reg( dst, src ) );
  1.5728 +  ins_pipe(istore_mem_spORreg);
  1.5729 +%}
  1.5730 +
  1.5731 +instruct storeP0(memory dst, immP0 src) %{
  1.5732 +  match(Set dst (StoreP dst src));
  1.5733 +  ins_cost(MEMORY_REF_COST);
  1.5734 +  size(4);
  1.5735 +
  1.5736 +#ifndef _LP64
  1.5737 +  format %{ "STW    $src,$dst\t! ptr" %}
  1.5738 +  opcode(Assembler::stw_op3, 0, REGP_OP);
  1.5739 +#else
  1.5740 +  format %{ "STX    $src,$dst\t! ptr" %}
  1.5741 +  opcode(Assembler::stx_op3, 0, REGP_OP);
  1.5742 +#endif
  1.5743 +  ins_encode( form3_mem_reg( dst, R_G0 ) );
  1.5744 +  ins_pipe(istore_mem_zero);
  1.5745 +%}
  1.5746 +
  1.5747 +// Store Double
  1.5748 +instruct storeD( memory mem, regD src) %{
  1.5749 +  match(Set mem (StoreD mem src));
  1.5750 +  ins_cost(MEMORY_REF_COST);
  1.5751 +
  1.5752 +  size(4);
  1.5753 +  format %{ "STDF   $src,$mem" %}
  1.5754 +  opcode(Assembler::stdf_op3);
  1.5755 +  ins_encode( form3_mem_reg( mem, src ) );
  1.5756 +  ins_pipe(fstoreD_mem_reg);
  1.5757 +%}
  1.5758 +
  1.5759 +instruct storeD0( memory mem, immD0 src) %{
  1.5760 +  match(Set mem (StoreD mem src));
  1.5761 +  ins_cost(MEMORY_REF_COST);
  1.5762 +
  1.5763 +  size(4);
  1.5764 +  format %{ "STX    $src,$mem" %}
  1.5765 +  opcode(Assembler::stx_op3);
  1.5766 +  ins_encode( form3_mem_reg( mem, R_G0 ) );
  1.5767 +  ins_pipe(fstoreD_mem_zero);
  1.5768 +%}
  1.5769 +
  1.5770 +// Store Float
  1.5771 +instruct storeF( memory mem, regF src) %{
  1.5772 +  match(Set mem (StoreF mem src));
  1.5773 +  ins_cost(MEMORY_REF_COST);
  1.5774 +
  1.5775 +  size(4);
  1.5776 +  format %{ "STF    $src,$mem" %}
  1.5777 +  opcode(Assembler::stf_op3);
  1.5778 +  ins_encode( form3_mem_reg( mem, src ) );
  1.5779 +  ins_pipe(fstoreF_mem_reg);
  1.5780 +%}
  1.5781 +
  1.5782 +instruct storeF0( memory mem, immF0 src) %{
  1.5783 +  match(Set mem (StoreF mem src));
  1.5784 +  ins_cost(MEMORY_REF_COST);
  1.5785 +
  1.5786 +  size(4);
  1.5787 +  format %{ "STW    $src,$mem\t! storeF0" %}
  1.5788 +  opcode(Assembler::stw_op3);
  1.5789 +  ins_encode( form3_mem_reg( mem, R_G0 ) );
  1.5790 +  ins_pipe(fstoreF_mem_zero);
  1.5791 +%}
  1.5792 +
  1.5793 +// Store Aligned Packed Bytes in Double register to memory
  1.5794 +instruct storeA8B(memory mem, regD src) %{
  1.5795 +  match(Set mem (Store8B mem src));
  1.5796 +  ins_cost(MEMORY_REF_COST);
  1.5797 +  size(4);
  1.5798 +  format %{ "STDF   $src,$mem\t! packed8B" %}
  1.5799 +  opcode(Assembler::stdf_op3);
  1.5800 +  ins_encode( form3_mem_reg( mem, src ) );
  1.5801 +  ins_pipe(fstoreD_mem_reg);
  1.5802 +%}
  1.5803 +
  1.5804 +// Store Zero into Aligned Packed Bytes
  1.5805 +instruct storeA8B0(memory mem, immI0 zero) %{
  1.5806 +  match(Set mem (Store8B mem zero));
  1.5807 +  ins_cost(MEMORY_REF_COST);
  1.5808 +  size(4);
  1.5809 +  format %{ "STX    $zero,$mem\t! packed8B" %}
  1.5810 +  opcode(Assembler::stx_op3);
  1.5811 +  ins_encode( form3_mem_reg( mem, R_G0 ) );
  1.5812 +  ins_pipe(fstoreD_mem_zero);
  1.5813 +%}
  1.5814 +
  1.5815 +// Store Aligned Packed Chars/Shorts in Double register to memory
  1.5816 +instruct storeA4C(memory mem, regD src) %{
  1.5817 +  match(Set mem (Store4C mem src));
  1.5818 +  ins_cost(MEMORY_REF_COST);
  1.5819 +  size(4);
  1.5820 +  format %{ "STDF   $src,$mem\t! packed4C" %}
  1.5821 +  opcode(Assembler::stdf_op3);
  1.5822 +  ins_encode( form3_mem_reg( mem, src ) );
  1.5823 +  ins_pipe(fstoreD_mem_reg);
  1.5824 +%}
  1.5825 +
  1.5826 +// Store Zero into Aligned Packed Chars/Shorts
  1.5827 +instruct storeA4C0(memory mem, immI0 zero) %{
  1.5828 +  match(Set mem (Store4C mem (Replicate4C zero)));
  1.5829 +  ins_cost(MEMORY_REF_COST);
  1.5830 +  size(4);
  1.5831 +  format %{ "STX    $zero,$mem\t! packed4C" %}
  1.5832 +  opcode(Assembler::stx_op3);
  1.5833 +  ins_encode( form3_mem_reg( mem, R_G0 ) );
  1.5834 +  ins_pipe(fstoreD_mem_zero);
  1.5835 +%}
  1.5836 +
  1.5837 +// Store Aligned Packed Ints in Double register to memory
  1.5838 +instruct storeA2I(memory mem, regD src) %{
  1.5839 +  match(Set mem (Store2I mem src));
  1.5840 +  ins_cost(MEMORY_REF_COST);
  1.5841 +  size(4);
  1.5842 +  format %{ "STDF   $src,$mem\t! packed2I" %}
  1.5843 +  opcode(Assembler::stdf_op3);
  1.5844 +  ins_encode( form3_mem_reg( mem, src ) );
  1.5845 +  ins_pipe(fstoreD_mem_reg);
  1.5846 +%}
  1.5847 +
  1.5848 +// Store Zero into Aligned Packed Ints
  1.5849 +instruct storeA2I0(memory mem, immI0 zero) %{
  1.5850 +  match(Set mem (Store2I mem zero));
  1.5851 +  ins_cost(MEMORY_REF_COST);
  1.5852 +  size(4);
  1.5853 +  format %{ "STX    $zero,$mem\t! packed2I" %}
  1.5854 +  opcode(Assembler::stx_op3);
  1.5855 +  ins_encode( form3_mem_reg( mem, R_G0 ) );
  1.5856 +  ins_pipe(fstoreD_mem_zero);
  1.5857 +%}
  1.5858 +
  1.5859 +
  1.5860 +//----------MemBar Instructions-----------------------------------------------
  1.5861 +// Memory barrier flavors
  1.5862 +
  1.5863 +instruct membar_acquire() %{
  1.5864 +  match(MemBarAcquire);
  1.5865 +  ins_cost(4*MEMORY_REF_COST);
  1.5866 +
  1.5867 +  size(0);
  1.5868 +  format %{ "MEMBAR-acquire" %}
  1.5869 +  ins_encode( enc_membar_acquire );
  1.5870 +  ins_pipe(long_memory_op);
  1.5871 +%}
  1.5872 +
  1.5873 +instruct membar_acquire_lock() %{
  1.5874 +  match(MemBarAcquire);
  1.5875 +  predicate(Matcher::prior_fast_lock(n));
  1.5876 +  ins_cost(0);
  1.5877 +
  1.5878 +  size(0);
  1.5879 +  format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  1.5880 +  ins_encode( );
  1.5881 +  ins_pipe(empty);
  1.5882 +%}
  1.5883 +
  1.5884 +instruct membar_release() %{
  1.5885 +  match(MemBarRelease);
  1.5886 +  ins_cost(4*MEMORY_REF_COST);
  1.5887 +
  1.5888 +  size(0);
  1.5889 +  format %{ "MEMBAR-release" %}
  1.5890 +  ins_encode( enc_membar_release );
  1.5891 +  ins_pipe(long_memory_op);
  1.5892 +%}
  1.5893 +
  1.5894 +instruct membar_release_lock() %{
  1.5895 +  match(MemBarRelease);
  1.5896 +  predicate(Matcher::post_fast_unlock(n));
  1.5897 +  ins_cost(0);
  1.5898 +
  1.5899 +  size(0);
  1.5900 +  format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  1.5901 +  ins_encode( );
  1.5902 +  ins_pipe(empty);
  1.5903 +%}
  1.5904 +
  1.5905 +instruct membar_volatile() %{
  1.5906 +  match(MemBarVolatile);
  1.5907 +  ins_cost(4*MEMORY_REF_COST);
  1.5908 +
  1.5909 +  size(4);
  1.5910 +  format %{ "MEMBAR-volatile" %}
  1.5911 +  ins_encode( enc_membar_volatile );
  1.5912 +  ins_pipe(long_memory_op);
  1.5913 +%}
  1.5914 +
  1.5915 +instruct unnecessary_membar_volatile() %{
  1.5916 +  match(MemBarVolatile);
  1.5917 +  predicate(Matcher::post_store_load_barrier(n));
  1.5918 +  ins_cost(0);
  1.5919 +
  1.5920 +  size(0);
  1.5921 +  format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  1.5922 +  ins_encode( );
  1.5923 +  ins_pipe(empty);
  1.5924 +%}
  1.5925 +
  1.5926 +//----------Register Move Instructions-----------------------------------------
  1.5927 +instruct roundDouble_nop(regD dst) %{
  1.5928 +  match(Set dst (RoundDouble dst));
  1.5929 +  ins_cost(0);
  1.5930 +  // SPARC results are already "rounded" (i.e., normal-format IEEE)
  1.5931 +  ins_encode( );
  1.5932 +  ins_pipe(empty);
  1.5933 +%}
  1.5934 +
  1.5935 +
  1.5936 +instruct roundFloat_nop(regF dst) %{
  1.5937 +  match(Set dst (RoundFloat dst));
  1.5938 +  ins_cost(0);
  1.5939 +  // SPARC results are already "rounded" (i.e., normal-format IEEE)
  1.5940 +  ins_encode( );
  1.5941 +  ins_pipe(empty);
  1.5942 +%}
  1.5943 +
  1.5944 +
  1.5945 +// Cast Index to Pointer for unsafe natives
  1.5946 +instruct castX2P(iRegX src, iRegP dst) %{
  1.5947 +  match(Set dst (CastX2P src));
  1.5948 +
  1.5949 +  format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  1.5950 +  ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  1.5951 +  ins_pipe(ialu_reg);
  1.5952 +%}
  1.5953 +
  1.5954 +// Cast Pointer to Index for unsafe natives
  1.5955 +instruct castP2X(iRegP src, iRegX dst) %{
  1.5956 +  match(Set dst (CastP2X src));
  1.5957 +
  1.5958 +  format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  1.5959 +  ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  1.5960 +  ins_pipe(ialu_reg);
  1.5961 +%}
  1.5962 +
  1.5963 +instruct stfSSD(stackSlotD stkSlot, regD src) %{
  1.5964 +  // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  1.5965 +  match(Set stkSlot src);   // chain rule
  1.5966 +  ins_cost(MEMORY_REF_COST);
  1.5967 +  format %{ "STDF   $src,$stkSlot\t!stk" %}
  1.5968 +  opcode(Assembler::stdf_op3);
  1.5969 +  ins_encode(form3_mem_reg(stkSlot, src));
  1.5970 +  ins_pipe(fstoreD_stk_reg);
  1.5971 +%}
  1.5972 +
  1.5973 +instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  1.5974 +  // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  1.5975 +  match(Set dst stkSlot);   // chain rule
  1.5976 +  ins_cost(MEMORY_REF_COST);
  1.5977 +  format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  1.5978 +  opcode(Assembler::lddf_op3);
  1.5979 +  ins_encode(form3_mem_reg(stkSlot, dst));
  1.5980 +  ins_pipe(floadD_stk);
  1.5981 +%}
  1.5982 +
  1.5983 +instruct stfSSF(stackSlotF stkSlot, regF src) %{
  1.5984 +  // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  1.5985 +  match(Set stkSlot src);   // chain rule
  1.5986 +  ins_cost(MEMORY_REF_COST);
  1.5987 +  format %{ "STF   $src,$stkSlot\t!stk" %}
  1.5988 +  opcode(Assembler::stf_op3);
  1.5989 +  ins_encode(form3_mem_reg(stkSlot, src));
  1.5990 +  ins_pipe(fstoreF_stk_reg);
  1.5991 +%}
  1.5992 +
  1.5993 +//----------Conditional Move---------------------------------------------------
  1.5994 +// Conditional move
  1.5995 +instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  1.5996 +  match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  1.5997 +  ins_cost(150);
  1.5998 +  format %{ "MOV$cmp $pcc,$src,$dst" %}
  1.5999 +  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  1.6000 +  ins_pipe(ialu_reg);
  1.6001 +%}
  1.6002 +
  1.6003 +instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  1.6004 +  match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  1.6005 +  ins_cost(140);
  1.6006 +  format %{ "MOV$cmp $pcc,$src,$dst" %}
  1.6007 +  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  1.6008 +  ins_pipe(ialu_imm);
  1.6009 +%}
  1.6010 +
  1.6011 +instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  1.6012 +  match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  1.6013 +  ins_cost(150);
  1.6014 +  size(4);
  1.6015 +  format %{ "MOV$cmp  $icc,$src,$dst" %}
  1.6016 +  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  1.6017 +  ins_pipe(ialu_reg);
  1.6018 +%}
  1.6019 +
  1.6020 +instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  1.6021 +  match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  1.6022 +  ins_cost(140);
  1.6023 +  size(4);
  1.6024 +  format %{ "MOV$cmp  $icc,$src,$dst" %}
  1.6025 +  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  1.6026 +  ins_pipe(ialu_imm);
  1.6027 +%}
  1.6028 +
  1.6029 +instruct cmovII_U_reg(cmpOp cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  1.6030 +  match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  1.6031 +  ins_cost(150);
  1.6032 +  size(4);
  1.6033 +  format %{ "MOV$cmp  $icc,$src,$dst" %}
  1.6034 +  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  1.6035 +  ins_pipe(ialu_reg);
  1.6036 +%}
  1.6037 +
  1.6038 +instruct cmovII_U_imm(cmpOp cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  1.6039 +  match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  1.6040 +  ins_cost(140);
  1.6041 +  size(4);
  1.6042 +  format %{ "MOV$cmp  $icc,$src,$dst" %}
  1.6043 +  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  1.6044 +  ins_pipe(ialu_imm);
  1.6045 +%}
  1.6046 +
  1.6047 +instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  1.6048 +  match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  1.6049 +  ins_cost(150);
  1.6050 +  size(4);
  1.6051 +  format %{ "MOV$cmp $fcc,$src,$dst" %}
  1.6052 +  ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  1.6053 +  ins_pipe(ialu_reg);
  1.6054 +%}
  1.6055 +
  1.6056 +instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  1.6057 +  match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  1.6058 +  ins_cost(140);
  1.6059 +  size(4);
  1.6060 +  format %{ "MOV$cmp $fcc,$src,$dst" %}
  1.6061 +  ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  1.6062 +  ins_pipe(ialu_imm);
  1.6063 +%}
  1.6064 +
  1.6065 +// Conditional move
  1.6066 +instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  1.6067 +  match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  1.6068 +  ins_cost(150);
  1.6069 +  format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  1.6070 +  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  1.6071 +  ins_pipe(ialu_reg);
  1.6072 +%}
  1.6073 +
  1.6074 +instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  1.6075 +  match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  1.6076 +  ins_cost(140);
  1.6077 +  format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  1.6078 +  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  1.6079 +  ins_pipe(ialu_imm);
  1.6080 +%}
  1.6081 +
  1.6082 +instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  1.6083 +  match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  1.6084 +  ins_cost(150);
  1.6085 +
  1.6086 +  size(4);
  1.6087 +  format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  1.6088 +  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  1.6089 +  ins_pipe(ialu_reg);
  1.6090 +%}
  1.6091 +
  1.6092 +instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  1.6093 +  match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  1.6094 +  ins_cost(140);
  1.6095 +
  1.6096 +  size(4);
  1.6097 +  format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  1.6098 +  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  1.6099 +  ins_pipe(ialu_imm);
  1.6100 +%}
  1.6101 +
  1.6102 +instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  1.6103 +  match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  1.6104 +  ins_cost(150);
  1.6105 +  size(4);
  1.6106 +  format %{ "MOV$cmp $fcc,$src,$dst" %}
  1.6107 +  ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  1.6108 +  ins_pipe(ialu_imm);
  1.6109 +%}
  1.6110 +
  1.6111 +instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  1.6112 +  match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  1.6113 +  ins_cost(140);
  1.6114 +  size(4);
  1.6115 +  format %{ "MOV$cmp $fcc,$src,$dst" %}
  1.6116 +  ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  1.6117 +  ins_pipe(ialu_imm);
  1.6118 +%}
  1.6119 +
  1.6120 +// Conditional move
  1.6121 +instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  1.6122 +  match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  1.6123 +  ins_cost(150);
  1.6124 +  opcode(0x101);
  1.6125 +  format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  1.6126 +  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  1.6127 +  ins_pipe(int_conditional_float_move);
  1.6128 +%}
  1.6129 +
  1.6130 +instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  1.6131 +  match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  1.6132 +  ins_cost(150);
  1.6133 +
  1.6134 +  size(4);
  1.6135 +  format %{ "FMOVS$cmp $icc,$src,$dst" %}
  1.6136 +  opcode(0x101);
  1.6137 +  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  1.6138 +  ins_pipe(int_conditional_float_move);
  1.6139 +%}
  1.6140 +
  1.6141 +// Conditional move,
  1.6142 +instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  1.6143 +  match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  1.6144 +  ins_cost(150);
  1.6145 +  size(4);
  1.6146 +  format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  1.6147 +  opcode(0x1);
  1.6148 +  ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  1.6149 +  ins_pipe(int_conditional_double_move);
  1.6150 +%}
  1.6151 +
  1.6152 +// Conditional move
  1.6153 +instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  1.6154 +  match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  1.6155 +  ins_cost(150);
  1.6156 +  size(4);
  1.6157 +  opcode(0x102);
  1.6158 +  format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  1.6159 +  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  1.6160 +  ins_pipe(int_conditional_double_move);
  1.6161 +%}
  1.6162 +
  1.6163 +instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  1.6164 +  match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  1.6165 +  ins_cost(150);
  1.6166 +
  1.6167 +  size(4);
  1.6168 +  format %{ "FMOVD$cmp $icc,$src,$dst" %}
  1.6169 +  opcode(0x102);
  1.6170 +  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  1.6171 +  ins_pipe(int_conditional_double_move);
  1.6172 +%}
  1.6173 +
  1.6174 +// Conditional move,
  1.6175 +instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  1.6176 +  match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  1.6177 +  ins_cost(150);
  1.6178 +  size(4);
  1.6179 +  format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  1.6180 +  opcode(0x2);
  1.6181 +  ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  1.6182 +  ins_pipe(int_conditional_double_move);
  1.6183 +%}
  1.6184 +
  1.6185 +// Conditional move
  1.6186 +instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  1.6187 +  match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  1.6188 +  ins_cost(150);
  1.6189 +  format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  1.6190 +  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  1.6191 +  ins_pipe(ialu_reg);
  1.6192 +%}
  1.6193 +
  1.6194 +instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  1.6195 +  match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  1.6196 +  ins_cost(140);
  1.6197 +  format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  1.6198 +  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  1.6199 +  ins_pipe(ialu_imm);
  1.6200 +%}
  1.6201 +
  1.6202 +instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  1.6203 +  match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  1.6204 +  ins_cost(150);
  1.6205 +
  1.6206 +  size(4);
  1.6207 +  format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  1.6208 +  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  1.6209 +  ins_pipe(ialu_reg);
  1.6210 +%}
  1.6211 +
  1.6212 +
  1.6213 +instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  1.6214 +  match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  1.6215 +  ins_cost(150);
  1.6216 +
  1.6217 +  size(4);
  1.6218 +  format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  1.6219 +  ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  1.6220 +  ins_pipe(ialu_reg);
  1.6221 +%}
  1.6222 +
  1.6223 +
  1.6224 +
  1.6225 +//----------OS and Locking Instructions----------------------------------------
  1.6226 +
  1.6227 +// This name is KNOWN by the ADLC and cannot be changed.
  1.6228 +// The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  1.6229 +// for this guy.
  1.6230 +instruct tlsLoadP(g2RegP dst) %{
  1.6231 +  match(Set dst (ThreadLocal));
  1.6232 +
  1.6233 +  size(0);
  1.6234 +  ins_cost(0);
  1.6235 +  format %{ "# TLS is in G2" %}
  1.6236 +  ins_encode( /*empty encoding*/ );
  1.6237 +  ins_pipe(ialu_none);
  1.6238 +%}
  1.6239 +
  1.6240 +instruct checkCastPP( iRegP dst ) %{
  1.6241 +  match(Set dst (CheckCastPP dst));
  1.6242 +
  1.6243 +  size(0);
  1.6244 +  format %{ "# checkcastPP of $dst" %}
  1.6245 +  ins_encode( /*empty encoding*/ );
  1.6246 +  ins_pipe(empty);
  1.6247 +%}
  1.6248 +
  1.6249 +
  1.6250 +instruct castPP( iRegP dst ) %{
  1.6251 +  match(Set dst (CastPP dst));
  1.6252 +  format %{ "# castPP of $dst" %}
  1.6253 +  ins_encode( /*empty encoding*/ );
  1.6254 +  ins_pipe(empty);
  1.6255 +%}
  1.6256 +
  1.6257 +instruct castII( iRegI dst ) %{
  1.6258 +  match(Set dst (CastII dst));
  1.6259 +  format %{ "# castII of $dst" %}
  1.6260 +  ins_encode( /*empty encoding*/ );
  1.6261 +  ins_cost(0);
  1.6262 +  ins_pipe(empty);
  1.6263 +%}
  1.6264 +
  1.6265 +//----------Arithmetic Instructions--------------------------------------------
  1.6266 +// Addition Instructions
  1.6267 +// Register Addition
  1.6268 +instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  1.6269 +  match(Set dst (AddI src1 src2));
  1.6270 +
  1.6271 +  size(4);
  1.6272 +  format %{ "ADD    $src1,$src2,$dst" %}
  1.6273 +  ins_encode %{
  1.6274 +    __ add($src1$$Register, $src2$$Register, $dst$$Register);
  1.6275 +  %}
  1.6276 +  ins_pipe(ialu_reg_reg);
  1.6277 +%}
  1.6278 +
  1.6279 +// Immediate Addition
  1.6280 +instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  1.6281 +  match(Set dst (AddI src1 src2));
  1.6282 +
  1.6283 +  size(4);
  1.6284 +  format %{ "ADD    $src1,$src2,$dst" %}
  1.6285 +  opcode(Assembler::add_op3, Assembler::arith_op);
  1.6286 +  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  1.6287 +  ins_pipe(ialu_reg_imm);
  1.6288 +%}
  1.6289 +
  1.6290 +// Pointer Register Addition
  1.6291 +instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  1.6292 +  match(Set dst (AddP src1 src2));
  1.6293 +
  1.6294 +  size(4);
  1.6295 +  format %{ "ADD    $src1,$src2,$dst" %}
  1.6296 +  opcode(Assembler::add_op3, Assembler::arith_op);
  1.6297 +  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  1.6298 +  ins_pipe(ialu_reg_reg);
  1.6299 +%}
  1.6300 +
  1.6301 +// Pointer Immediate Addition
  1.6302 +instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  1.6303 +  match(Set dst (AddP src1 src2));
  1.6304 +
  1.6305 +  size(4);
  1.6306 +  format %{ "ADD    $src1,$src2,$dst" %}
  1.6307 +  opcode(Assembler::add_op3, Assembler::arith_op);
  1.6308 +  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  1.6309 +  ins_pipe(ialu_reg_imm);
  1.6310 +%}
  1.6311 +
  1.6312 +// Long Addition
  1.6313 +instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  1.6314 +  match(Set dst (AddL src1 src2));
  1.6315 +
  1.6316 +  size(4);
  1.6317 +  format %{ "ADD    $src1,$src2,$dst\t! long" %}
  1.6318 +  opcode(Assembler::add_op3, Assembler::arith_op);
  1.6319 +  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  1.6320 +  ins_pipe(ialu_reg_reg);
  1.6321 +%}
  1.6322 +
  1.6323 +instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  1.6324 +  match(Set dst (AddL src1 con));
  1.6325 +
  1.6326 +  size(4);
  1.6327 +  format %{ "ADD    $src1,$con,$dst" %}
  1.6328 +  opcode(Assembler::add_op3, Assembler::arith_op);
  1.6329 +  ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  1.6330 +  ins_pipe(ialu_reg_imm);
  1.6331 +%}
  1.6332 +
  1.6333 +//----------Conditional_store--------------------------------------------------
  1.6334 +// Conditional-store of the updated heap-top.
  1.6335 +// Used during allocation of the shared heap.
  1.6336 +// Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  1.6337 +
  1.6338 +// LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  1.6339 +instruct loadPLocked(iRegP dst, memory mem) %{
  1.6340 +  match(Set dst (LoadPLocked mem));
  1.6341 +  ins_cost(MEMORY_REF_COST);
  1.6342 +
  1.6343 +#ifndef _LP64
  1.6344 +  size(4);
  1.6345 +  format %{ "LDUW   $mem,$dst\t! ptr" %}
  1.6346 +  opcode(Assembler::lduw_op3, 0, REGP_OP);
  1.6347 +#else
  1.6348 +  format %{ "LDX    $mem,$dst\t! ptr" %}
  1.6349 +  opcode(Assembler::ldx_op3, 0, REGP_OP);
  1.6350 +#endif
  1.6351 +  ins_encode( form3_mem_reg( mem, dst ) );
  1.6352 +  ins_pipe(iload_mem);
  1.6353 +%}
  1.6354 +
  1.6355 +// LoadL-locked.  Same as a regular long load when used with a compare-swap
  1.6356 +instruct loadLLocked(iRegL dst, memory mem) %{
  1.6357 +  match(Set dst (LoadLLocked mem));
  1.6358 +  ins_cost(MEMORY_REF_COST);
  1.6359 +  size(4);
  1.6360 +  format %{ "LDX    $mem,$dst\t! long" %}
  1.6361 +  opcode(Assembler::ldx_op3);
  1.6362 +  ins_encode( form3_mem_reg( mem, dst ) );
  1.6363 +  ins_pipe(iload_mem);
  1.6364 +%}
  1.6365 +
  1.6366 +instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  1.6367 +  match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  1.6368 +  effect( KILL newval );
  1.6369 +  format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  1.6370 +            "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  1.6371 +  ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  1.6372 +  ins_pipe( long_memory_op );
  1.6373 +%}
  1.6374 +
  1.6375 +instruct storeLConditional_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  1.6376 +  match(Set res (StoreLConditional mem_ptr (Binary oldval newval)));
  1.6377 +  effect( USE mem_ptr, KILL ccr, KILL tmp1);
  1.6378 +  // Marshal the register pairs into V9 64-bit registers, then do the compare-and-swap
  1.6379 +  format %{
  1.6380 +            "MOV    $newval,R_O7\n\t"
  1.6381 +            "CASXA  [$mem_ptr],$oldval,R_O7\t! If $oldval==[$mem_ptr] Then store R_O7 into [$mem_ptr], set R_O7=[$mem_ptr] in any case\n\t"
  1.6382 +            "CMP    $oldval,R_O7\t\t! See if we made progress\n\t"
  1.6383 +            "MOV    1,$res\n\t"
  1.6384 +            "MOVne  xcc,R_G0,$res"
  1.6385 +  %}
  1.6386 +  ins_encode( enc_casx(mem_ptr, oldval, newval),
  1.6387 +              enc_lflags_ne_to_boolean(res) );
  1.6388 +  ins_pipe( long_memory_op );
  1.6389 +%}
  1.6390 +
  1.6391 +instruct storeLConditional_flags(iRegP mem_ptr, iRegL oldval, iRegL newval, flagsRegL xcc, o7RegI tmp1, immI0 zero) %{
  1.6392 +  match(Set xcc (CmpI (StoreLConditional mem_ptr (Binary oldval newval)) zero));
  1.6393 +  effect( USE mem_ptr, KILL tmp1);
  1.6394 +  // Marshal the register pairs into V9 64-bit registers, then do the compare-and-swap
  1.6395 +  format %{
  1.6396 +            "MOV    $newval,R_O7\n\t"
  1.6397 +            "CASXA  [$mem_ptr],$oldval,R_O7\t! If $oldval==[$mem_ptr] Then store R_O7 into [$mem_ptr], set R_O7=[$mem_ptr] in any case\n\t"
  1.6398 +            "CMP    $oldval,R_O7\t\t! See if we made progress"
  1.6399 +  %}
  1.6400 +  ins_encode( enc_casx(mem_ptr, oldval, newval));
  1.6401 +  ins_pipe( long_memory_op );
  1.6402 +%}
  1.6403 +
  1.6404 +// No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  1.6405 +
  1.6406 +instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  1.6407 +  match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  1.6408 +  effect( USE mem_ptr, KILL ccr, KILL tmp1);
  1.6409 +  format %{
  1.6410 +            "MOV    $newval,O7\n\t"
  1.6411 +            "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  1.6412 +            "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  1.6413 +            "MOV    1,$res\n\t"
  1.6414 +            "MOVne  xcc,R_G0,$res"
  1.6415 +  %}
  1.6416 +  ins_encode( enc_casx(mem_ptr, oldval, newval),
  1.6417 +              enc_lflags_ne_to_boolean(res) );
  1.6418 +  ins_pipe( long_memory_op );
  1.6419 +%}
  1.6420 +
  1.6421 +
  1.6422 +instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  1.6423 +  match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  1.6424 +  effect( USE mem_ptr, KILL ccr, KILL tmp1);
  1.6425 +  format %{
  1.6426 +            "MOV    $newval,O7\n\t"
  1.6427 +            "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  1.6428 +            "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  1.6429 +            "MOV    1,$res\n\t"
  1.6430 +            "MOVne  icc,R_G0,$res"
  1.6431 +  %}
  1.6432 +  ins_encode( enc_casi(mem_ptr, oldval, newval),
  1.6433 +              enc_iflags_ne_to_boolean(res) );
  1.6434 +  ins_pipe( long_memory_op );
  1.6435 +%}
  1.6436 +
  1.6437 +instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  1.6438 +  match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  1.6439 +  effect( USE mem_ptr, KILL ccr, KILL tmp1);
  1.6440 +#ifdef _LP64
  1.6441 +  format %{
  1.6442 +            "MOV    $newval,O7\n\t"
  1.6443 +            "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  1.6444 +            "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  1.6445 +            "MOV    1,$res\n\t"
  1.6446 +            "MOVne  xcc,R_G0,$res"
  1.6447 +  %}
  1.6448 +  ins_encode( enc_casx(mem_ptr, oldval, newval),
  1.6449 +              enc_lflags_ne_to_boolean(res) );
  1.6450 +#else
  1.6451 +  format %{
  1.6452 +            "MOV    $newval,O7\n\t"
  1.6453 +            "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  1.6454 +            "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  1.6455 +            "MOV    1,$res\n\t"
  1.6456 +            "MOVne  icc,R_G0,$res"
  1.6457 +  %}
  1.6458 +  ins_encode( enc_casi(mem_ptr, oldval, newval),
  1.6459 +              enc_iflags_ne_to_boolean(res) );
  1.6460 +#endif
  1.6461 +  ins_pipe( long_memory_op );
  1.6462 +%}
  1.6463 +
  1.6464 +//---------------------
  1.6465 +// Subtraction Instructions
  1.6466 +// Register Subtraction
  1.6467 +instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  1.6468 +  match(Set dst (SubI src1 src2));
  1.6469 +
  1.6470 +  size(4);
  1.6471 +  format %{ "SUB    $src1,$src2,$dst" %}
  1.6472 +  opcode(Assembler::sub_op3, Assembler::arith_op);
  1.6473 +  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  1.6474 +  ins_pipe(ialu_reg_reg);
  1.6475 +%}
  1.6476 +
  1.6477 +// Immediate Subtraction
  1.6478 +instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  1.6479 +  match(Set dst (SubI src1 src2));
  1.6480 +
  1.6481 +  size(4);
  1.6482 +  format %{ "SUB    $src1,$src2,$dst" %}
  1.6483 +  opcode(Assembler::sub_op3, Assembler::arith_op);
  1.6484 +  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  1.6485 +  ins_pipe(ialu_reg_imm);
  1.6486 +%}
  1.6487 +
  1.6488 +instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  1.6489 +  match(Set dst (SubI zero src2));
  1.6490 +
  1.6491 +  size(4);
  1.6492 +  format %{ "NEG    $src2,$dst" %}
  1.6493 +  opcode(Assembler::sub_op3, Assembler::arith_op);
  1.6494 +  ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  1.6495 +  ins_pipe(ialu_zero_reg);
  1.6496 +%}
  1.6497 +
  1.6498 +// Long subtraction
  1.6499 +instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  1.6500 +  match(Set dst (SubL src1 src2));
  1.6501 +
  1.6502 +  size(4);
  1.6503 +  format %{ "SUB    $src1,$src2,$dst\t! long" %}
  1.6504 +  opcode(Assembler::sub_op3, Assembler::arith_op);
  1.6505 +  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  1.6506 +  ins_pipe(ialu_reg_reg);
  1.6507 +%}
  1.6508 +
  1.6509 +// Immediate Subtraction
  1.6510 +instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  1.6511 +  match(Set dst (SubL src1 con));
  1.6512 +
  1.6513 +  size(4);
  1.6514 +  format %{ "SUB    $src1,$con,$dst\t! long" %}
  1.6515 +  opcode(Assembler::sub_op3, Assembler::arith_op);
  1.6516 +  ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  1.6517 +  ins_pipe(ialu_reg_imm);
  1.6518 +%}
  1.6519 +
  1.6520 +// Long negation
  1.6521 +instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  1.6522 +  match(Set dst (SubL zero src2));
  1.6523 +
  1.6524 +  size(4);
  1.6525 +  format %{ "NEG    $src2,$dst\t! long" %}
  1.6526 +  opcode(Assembler::sub_op3, Assembler::arith_op);
  1.6527 +  ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  1.6528 +  ins_pipe(ialu_zero_reg);
  1.6529 +%}
  1.6530 +
  1.6531 +// Multiplication Instructions
  1.6532 +// Integer Multiplication
  1.6533 +// Register Multiplication
  1.6534 +instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  1.6535 +  match(Set dst (MulI src1 src2));
  1.6536 +
  1.6537 +  size(4);
  1.6538 +  format %{ "MULX   $src1,$src2,$dst" %}
  1.6539 +  opcode(Assembler::mulx_op3, Assembler::arith_op);
  1.6540 +  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  1.6541 +  ins_pipe(imul_reg_reg);
  1.6542 +%}
  1.6543 +
  1.6544 +// Immediate Multiplication
  1.6545 +instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  1.6546 +  match(Set dst (MulI src1 src2));
  1.6547 +
  1.6548 +  size(4);
  1.6549 +  format %{ "MULX   $src1,$src2,$dst" %}
  1.6550 +  opcode(Assembler::mulx_op3, Assembler::arith_op);
  1.6551 +  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  1.6552 +  ins_pipe(imul_reg_imm);
  1.6553 +%}
  1.6554 +
  1.6555 +instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  1.6556 +  match(Set dst (MulL src1 src2));
  1.6557 +  ins_cost(DEFAULT_COST * 5);
  1.6558 +  size(4);
  1.6559 +  format %{ "MULX   $src1,$src2,$dst\t! long" %}
  1.6560 +  opcode(Assembler::mulx_op3, Assembler::arith_op);
  1.6561 +  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  1.6562 +  ins_pipe(mulL_reg_reg);
  1.6563 +%}
  1.6564 +
  1.6565 +// Immediate Multiplication
  1.6566 +instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  1.6567 +  match(Set dst (MulL src1 src2));
  1.6568 +  ins_cost(DEFAULT_COST * 5);
  1.6569 +  size(4);
  1.6570 +  format %{ "MULX   $src1,$src2,$dst" %}
  1.6571 +  opcode(Assembler::mulx_op3, Assembler::arith_op);
  1.6572 +  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  1.6573 +  ins_pipe(mulL_reg_imm);
  1.6574 +%}
  1.6575 +
  1.6576 +// Integer Division
  1.6577 +// Register Division
  1.6578 +instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  1.6579 +  match(Set dst (DivI src1 src2));
  1.6580 +  ins_cost((2+71)*DEFAULT_COST);
  1.6581 +
  1.6582 +  format %{ "SRA     $src2,0,$src2\n\t"
  1.6583 +            "SRA     $src1,0,$src1\n\t"
  1.6584 +            "SDIVX   $src1,$src2,$dst" %}
  1.6585 +  ins_encode( idiv_reg( src1, src2, dst ) );
  1.6586 +  ins_pipe(sdiv_reg_reg);
  1.6587 +%}
  1.6588 +
  1.6589 +// Immediate Division
  1.6590 +instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  1.6591 +  match(Set dst (DivI src1 src2));
  1.6592 +  ins_cost((2+71)*DEFAULT_COST);
  1.6593 +
  1.6594 +  format %{ "SRA     $src1,0,$src1\n\t"
  1.6595 +            "SDIVX   $src1,$src2,$dst" %}
  1.6596 +  ins_encode( idiv_imm( src1, src2, dst ) );
  1.6597 +  ins_pipe(sdiv_reg_imm);
  1.6598 +%}
  1.6599 +
  1.6600 +//----------Div-By-10-Expansion------------------------------------------------
  1.6601 +// Extract hi bits of a 32x32->64 bit multiply.
  1.6602 +// Expand rule only, not matched
  1.6603 +instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  1.6604 +  effect( DEF dst, USE src1, USE src2 );
  1.6605 +  format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  1.6606 +            "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  1.6607 +  ins_encode( enc_mul_hi(dst,src1,src2));
  1.6608 +  ins_pipe(sdiv_reg_reg);
  1.6609 +%}
  1.6610 +
  1.6611 +// Magic constant, reciprical of 10
  1.6612 +instruct loadConI_x66666667(iRegIsafe dst) %{
  1.6613 +  effect( DEF dst );
  1.6614 +
  1.6615 +  size(8);
  1.6616 +  format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  1.6617 +  ins_encode( Set32(0x66666667, dst) );
  1.6618 +  ins_pipe(ialu_hi_lo_reg);
  1.6619 +%}
  1.6620 +
  1.6621 +// Register Shift Right Arithmatic Long by 32-63
  1.6622 +instruct sra_31( iRegI dst, iRegI src ) %{
  1.6623 +  effect( DEF dst, USE src );
  1.6624 +  format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  1.6625 +  ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  1.6626 +  ins_pipe(ialu_reg_reg);
  1.6627 +%}
  1.6628 +
  1.6629 +// Arithmetic Shift Right by 8-bit immediate
  1.6630 +instruct sra_reg_2( iRegI dst, iRegI src ) %{
  1.6631 +  effect( DEF dst, USE src );
  1.6632 +  format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  1.6633 +  opcode(Assembler::sra_op3, Assembler::arith_op);
  1.6634 +  ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  1.6635 +  ins_pipe(ialu_reg_imm);
  1.6636 +%}
  1.6637 +
  1.6638 +// Integer DIV with 10
  1.6639 +instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  1.6640 +  match(Set dst (DivI src div));
  1.6641 +  ins_cost((6+6)*DEFAULT_COST);
  1.6642 +  expand %{
  1.6643 +    iRegIsafe tmp1;               // Killed temps;
  1.6644 +    iRegIsafe tmp2;               // Killed temps;
  1.6645 +    iRegI tmp3;                   // Killed temps;
  1.6646 +    iRegI tmp4;                   // Killed temps;
  1.6647 +    loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  1.6648 +    mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  1.6649 +    sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  1.6650 +    sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  1.6651 +    subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  1.6652 +  %}
  1.6653 +%}
  1.6654 +
  1.6655 +// Register Long Division
  1.6656 +instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  1.6657 +  match(Set dst (DivL src1 src2));
  1.6658 +  ins_cost(DEFAULT_COST*71);
  1.6659 +  size(4);
  1.6660 +  format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  1.6661 +  opcode(Assembler::sdivx_op3, Assembler::arith_op);
  1.6662 +  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  1.6663 +  ins_pipe(divL_reg_reg);
  1.6664 +%}
  1.6665 +
  1.6666 +// Register Long Division
  1.6667 +instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  1.6668 +  match(Set dst (DivL src1 src2));
  1.6669 +  ins_cost(DEFAULT_COST*71);
  1.6670 +  size(4);
  1.6671 +  format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  1.6672 +  opcode(Assembler::sdivx_op3, Assembler::arith_op);
  1.6673 +  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  1.6674 +  ins_pipe(divL_reg_imm);
  1.6675 +%}
  1.6676 +
  1.6677 +// Integer Remainder
  1.6678 +// Register Remainder
  1.6679 +instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  1.6680 +  match(Set dst (ModI src1 src2));
  1.6681 +  effect( KILL ccr, KILL temp);
  1.6682 +
  1.6683 +  format %{ "SREM   $src1,$src2,$dst" %}
  1.6684 +  ins_encode( irem_reg(src1, src2, dst, temp) );
  1.6685 +  ins_pipe(sdiv_reg_reg);
  1.6686 +%}
  1.6687 +
  1.6688 +// Immediate Remainder
  1.6689 +instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  1.6690 +  match(Set dst (ModI src1 src2));
  1.6691 +  effect( KILL ccr, KILL temp);
  1.6692 +
  1.6693 +  format %{ "SREM   $src1,$src2,$dst" %}
  1.6694 +  ins_encode( irem_imm(src1, src2, dst, temp) );
  1.6695 +  ins_pipe(sdiv_reg_imm);
  1.6696 +%}
  1.6697 +
  1.6698 +// Register Long Remainder
  1.6699 +instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  1.6700 +  effect(DEF dst, USE src1, USE src2);
  1.6701 +  size(4);
  1.6702 +  format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  1.6703 +  opcode(Assembler::sdivx_op3, Assembler::arith_op);
  1.6704 +  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  1.6705 +  ins_pipe(divL_reg_reg);
  1.6706 +%}
  1.6707 +
  1.6708 +// Register Long Division
  1.6709 +instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  1.6710 +  effect(DEF dst, USE src1, USE src2);
  1.6711 +  size(4);
  1.6712 +  format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  1.6713 +  opcode(Assembler::sdivx_op3, Assembler::arith_op);
  1.6714 +  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  1.6715 +  ins_pipe(divL_reg_imm);
  1.6716 +%}
  1.6717 +
  1.6718 +instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  1.6719 +  effect(DEF dst, USE src1, USE src2);
  1.6720 +  size(4);
  1.6721 +  format %{ "MULX   $src1,$src2,$dst\t! long" %}
  1.6722 +  opcode(Assembler::mulx_op3, Assembler::arith_op);
  1.6723 +  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  1.6724 +  ins_pipe(mulL_reg_reg);
  1.6725 +%}
  1.6726 +
  1.6727 +// Immediate Multiplication
  1.6728 +instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  1.6729 +  effect(DEF dst, USE src1, USE src2);
  1.6730 +  size(4);
  1.6731 +  format %{ "MULX   $src1,$src2,$dst" %}
  1.6732 +  opcode(Assembler::mulx_op3, Assembler::arith_op);
  1.6733 +  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  1.6734 +  ins_pipe(mulL_reg_imm);
  1.6735 +%}
  1.6736 +
  1.6737 +instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  1.6738 +  effect(DEF dst, USE src1, USE src2);
  1.6739 +  size(4);
  1.6740 +  format %{ "SUB    $src1,$src2,$dst\t! long" %}
  1.6741 +  opcode(Assembler::sub_op3, Assembler::arith_op);
  1.6742 +  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  1.6743 +  ins_pipe(ialu_reg_reg);
  1.6744 +%}
  1.6745 +
  1.6746 +instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  1.6747 +  effect(DEF dst, USE src1, USE src2);
  1.6748 +  size(4);
  1.6749 +  format %{ "SUB    $src1,$src2,$dst\t! long" %}
  1.6750 +  opcode(Assembler::sub_op3, Assembler::arith_op);
  1.6751 +  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  1.6752 +  ins_pipe(ialu_reg_reg);
  1.6753 +%}
  1.6754 +
  1.6755 +// Register Long Remainder
  1.6756 +instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  1.6757 +  match(Set dst (ModL src1 src2));
  1.6758 +  ins_cost(DEFAULT_COST*(71 + 6 + 1));
  1.6759 +  expand %{
  1.6760 +    iRegL tmp1;
  1.6761 +    iRegL tmp2;
  1.6762 +    divL_reg_reg_1(tmp1, src1, src2);
  1.6763 +    mulL_reg_reg_1(tmp2, tmp1, src2);
  1.6764 +    subL_reg_reg_1(dst,  src1, tmp2);
  1.6765 +  %}
  1.6766 +%}
  1.6767 +
  1.6768 +// Register Long Remainder
  1.6769 +instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  1.6770 +  match(Set dst (ModL src1 src2));
  1.6771 +  ins_cost(DEFAULT_COST*(71 + 6 + 1));
  1.6772 +  expand %{
  1.6773 +    iRegL tmp1;
  1.6774 +    iRegL tmp2;
  1.6775 +    divL_reg_imm13_1(tmp1, src1, src2);
  1.6776 +    mulL_reg_imm13_1(tmp2, tmp1, src2);
  1.6777 +    subL_reg_reg_2  (dst,  src1, tmp2);
  1.6778 +  %}
  1.6779 +%}
  1.6780 +
  1.6781 +// Integer Shift Instructions
  1.6782 +// Register Shift Left
  1.6783 +instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  1.6784 +  match(Set dst (LShiftI src1 src2));
  1.6785 +
  1.6786 +  size(4);
  1.6787 +  format %{ "SLL    $src1,$src2,$dst" %}
  1.6788 +  opcode(Assembler::sll_op3, Assembler::arith_op);
  1.6789 +  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  1.6790 +  ins_pipe(ialu_reg_reg);
  1.6791 +%}
  1.6792 +
  1.6793 +// Register Shift Left Immediate
  1.6794 +instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  1.6795 +  match(Set dst (LShiftI src1 src2));
  1.6796 +
  1.6797 +  size(4);
  1.6798 +  format %{ "SLL    $src1,$src2,$dst" %}
  1.6799 +  opcode(Assembler::sll_op3, Assembler::arith_op);
  1.6800 +  ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  1.6801 +  ins_pipe(ialu_reg_imm);
  1.6802 +%}
  1.6803 +
  1.6804 +// Register Shift Left
  1.6805 +instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  1.6806 +  match(Set dst (LShiftL src1 src2));
  1.6807 +
  1.6808 +  size(4);
  1.6809 +  format %{ "SLLX   $src1,$src2,$dst" %}
  1.6810 +  opcode(Assembler::sllx_op3, Assembler::arith_op);
  1.6811 +  ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  1.6812 +  ins_pipe(ialu_reg_reg);
  1.6813 +%}
  1.6814 +
  1.6815 +// Register Shift Left Immediate
  1.6816 +instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  1.6817 +  match(Set dst (LShiftL src1 src2));
  1.6818 +
  1.6819 +  size(4);
  1.6820 +  format %{ "SLLX   $src1,$src2,$dst" %}
  1.6821 +  opcode(Assembler::sllx_op3, Assembler::arith_op);
  1.6822 +  ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  1.6823 +  ins_pipe(ialu_reg_imm);
  1.6824 +%}
  1.6825 +
  1.6826 +// Register Arithmetic Shift Right
  1.6827 +instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  1.6828 +  match(Set dst (RShiftI src1 src2));
  1.6829 +  size(4);
  1.6830 +  format %{ "SRA    $src1,$src2,$dst" %}
  1.6831 +  opcode(Assembler::sra_op3, Assembler::arith_op);
  1.6832 +  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  1.6833 +  ins_pipe(ialu_reg_reg);
  1.6834 +%}
  1.6835 +
  1.6836 +// Register Arithmetic Shift Right Immediate
  1.6837 +instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  1.6838 +  match(Set dst (RShiftI src1 src2));
  1.6839 +
  1.6840 +  size(4);
  1.6841 +  format %{ "SRA    $src1,$src2,$dst" %}
  1.6842 +  opcode(Assembler::sra_op3, Assembler::arith_op);
  1.6843 +  ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  1.6844 +  ins_pipe(ialu_reg_imm);
  1.6845 +%}
  1.6846 +
  1.6847 +// Register Shift Right Arithmatic Long
  1.6848 +instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  1.6849 +  match(Set dst (RShiftL src1 src2));
  1.6850 +
  1.6851 +  size(4);
  1.6852 +  format %{ "SRAX   $src1,$src2,$dst" %}
  1.6853 +  opcode(Assembler::srax_op3, Assembler::arith_op);
  1.6854 +  ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  1.6855 +  ins_pipe(ialu_reg_reg);
  1.6856 +%}
  1.6857 +
  1.6858 +// Register Shift Left Immediate
  1.6859 +instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  1.6860 +  match(Set dst (RShiftL src1 src2));
  1.6861 +
  1.6862 +  size(4);
  1.6863 +  format %{ "SRAX   $src1,$src2,$dst" %}
  1.6864 +  opcode(Assembler::srax_op3, Assembler::arith_op);
  1.6865 +  ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  1.6866 +  ins_pipe(ialu_reg_imm);
  1.6867 +%}
  1.6868 +
  1.6869 +// Register Shift Right
  1.6870 +instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  1.6871 +  match(Set dst (URShiftI src1 src2));
  1.6872 +
  1.6873 +  size(4);
  1.6874 +  format %{ "SRL    $src1,$src2,$dst" %}
  1.6875 +  opcode(Assembler::srl_op3, Assembler::arith_op);
  1.6876 +  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  1.6877 +  ins_pipe(ialu_reg_reg);
  1.6878 +%}
  1.6879 +
  1.6880 +// Register Shift Right Immediate
  1.6881 +instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  1.6882 +  match(Set dst (URShiftI src1 src2));
  1.6883 +
  1.6884 +  size(4);
  1.6885 +  format %{ "SRL    $src1,$src2,$dst" %}
  1.6886 +  opcode(Assembler::srl_op3, Assembler::arith_op);
  1.6887 +  ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  1.6888 +  ins_pipe(ialu_reg_imm);
  1.6889 +%}
  1.6890 +
  1.6891 +// Register Shift Right
  1.6892 +instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  1.6893 +  match(Set dst (URShiftL src1 src2));
  1.6894 +
  1.6895 +  size(4);
  1.6896 +  format %{ "SRLX   $src1,$src2,$dst" %}
  1.6897 +  opcode(Assembler::srlx_op3, Assembler::arith_op);
  1.6898 +  ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  1.6899 +  ins_pipe(ialu_reg_reg);
  1.6900 +%}
  1.6901 +
  1.6902 +// Register Shift Right Immediate
  1.6903 +instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  1.6904 +  match(Set dst (URShiftL src1 src2));
  1.6905 +
  1.6906 +  size(4);
  1.6907 +  format %{ "SRLX   $src1,$src2,$dst" %}
  1.6908 +  opcode(Assembler::srlx_op3, Assembler::arith_op);
  1.6909 +  ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  1.6910 +  ins_pipe(ialu_reg_imm);
  1.6911 +%}
  1.6912 +
  1.6913 +// Register Shift Right Immediate with a CastP2X
  1.6914 +#ifdef _LP64
  1.6915 +instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  1.6916 +  match(Set dst (URShiftL (CastP2X src1) src2));
  1.6917 +  size(4);
  1.6918 +  format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  1.6919 +  opcode(Assembler::srlx_op3, Assembler::arith_op);
  1.6920 +  ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  1.6921 +  ins_pipe(ialu_reg_imm);
  1.6922 +%}
  1.6923 +#else
  1.6924 +instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  1.6925 +  match(Set dst (URShiftI (CastP2X src1) src2));
  1.6926 +  size(4);
  1.6927 +  format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  1.6928 +  opcode(Assembler::srl_op3, Assembler::arith_op);
  1.6929 +  ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  1.6930 +  ins_pipe(ialu_reg_imm);
  1.6931 +%}
  1.6932 +#endif
  1.6933 +
  1.6934 +
  1.6935 +//----------Floating Point Arithmetic Instructions-----------------------------
  1.6936 +
  1.6937 +//  Add float single precision
  1.6938 +instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  1.6939 +  match(Set dst (AddF src1 src2));
  1.6940 +
  1.6941 +  size(4);
  1.6942 +  format %{ "FADDS  $src1,$src2,$dst" %}
  1.6943 +  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  1.6944 +  ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  1.6945 +  ins_pipe(faddF_reg_reg);
  1.6946 +%}
  1.6947 +
  1.6948 +//  Add float double precision
  1.6949 +instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  1.6950 +  match(Set dst (AddD src1 src2));
  1.6951 +
  1.6952 +  size(4);
  1.6953 +  format %{ "FADDD  $src1,$src2,$dst" %}
  1.6954 +  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  1.6955 +  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  1.6956 +  ins_pipe(faddD_reg_reg);
  1.6957 +%}
  1.6958 +
  1.6959 +//  Sub float single precision
  1.6960 +instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  1.6961 +  match(Set dst (SubF src1 src2));
  1.6962 +
  1.6963 +  size(4);
  1.6964 +  format %{ "FSUBS  $src1,$src2,$dst" %}
  1.6965 +  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  1.6966 +  ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  1.6967 +  ins_pipe(faddF_reg_reg);
  1.6968 +%}
  1.6969 +
  1.6970 +//  Sub float double precision
  1.6971 +instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  1.6972 +  match(Set dst (SubD src1 src2));
  1.6973 +
  1.6974 +  size(4);
  1.6975 +  format %{ "FSUBD  $src1,$src2,$dst" %}
  1.6976 +  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  1.6977 +  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  1.6978 +  ins_pipe(faddD_reg_reg);
  1.6979 +%}
  1.6980 +
  1.6981 +//  Mul float single precision
  1.6982 +instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  1.6983 +  match(Set dst (MulF src1 src2));
  1.6984 +
  1.6985 +  size(4);
  1.6986 +  format %{ "FMULS  $src1,$src2,$dst" %}
  1.6987 +  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  1.6988 +  ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  1.6989 +  ins_pipe(fmulF_reg_reg);
  1.6990 +%}
  1.6991 +
  1.6992 +//  Mul float double precision
  1.6993 +instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  1.6994 +  match(Set dst (MulD src1 src2));
  1.6995 +
  1.6996 +  size(4);
  1.6997 +  format %{ "FMULD  $src1,$src2,$dst" %}
  1.6998 +  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  1.6999 +  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  1.7000 +  ins_pipe(fmulD_reg_reg);
  1.7001 +%}
  1.7002 +
  1.7003 +//  Div float single precision
  1.7004 +instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  1.7005 +  match(Set dst (DivF src1 src2));
  1.7006 +
  1.7007 +  size(4);
  1.7008 +  format %{ "FDIVS  $src1,$src2,$dst" %}
  1.7009 +  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  1.7010 +  ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  1.7011 +  ins_pipe(fdivF_reg_reg);
  1.7012 +%}
  1.7013 +
  1.7014 +//  Div float double precision
  1.7015 +instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  1.7016 +  match(Set dst (DivD src1 src2));
  1.7017 +
  1.7018 +  size(4);
  1.7019 +  format %{ "FDIVD  $src1,$src2,$dst" %}
  1.7020 +  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  1.7021 +  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  1.7022 +  ins_pipe(fdivD_reg_reg);
  1.7023 +%}
  1.7024 +
  1.7025 +//  Absolute float double precision
  1.7026 +instruct absD_reg(regD dst, regD src) %{
  1.7027 +  match(Set dst (AbsD src));
  1.7028 +
  1.7029 +  format %{ "FABSd  $src,$dst" %}
  1.7030 +  ins_encode(fabsd(dst, src));
  1.7031 +  ins_pipe(faddD_reg);
  1.7032 +%}
  1.7033 +
  1.7034 +//  Absolute float single precision
  1.7035 +instruct absF_reg(regF dst, regF src) %{
  1.7036 +  match(Set dst (AbsF src));
  1.7037 +
  1.7038 +  format %{ "FABSs  $src,$dst" %}
  1.7039 +  ins_encode(fabss(dst, src));
  1.7040 +  ins_pipe(faddF_reg);
  1.7041 +%}
  1.7042 +
  1.7043 +instruct negF_reg(regF dst, regF src) %{
  1.7044 +  match(Set dst (NegF src));
  1.7045 +
  1.7046 +  size(4);
  1.7047 +  format %{ "FNEGs  $src,$dst" %}
  1.7048 +  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  1.7049 +  ins_encode(form3_opf_rs2F_rdF(src, dst));
  1.7050 +  ins_pipe(faddF_reg);
  1.7051 +%}
  1.7052 +
  1.7053 +instruct negD_reg(regD dst, regD src) %{
  1.7054 +  match(Set dst (NegD src));
  1.7055 +
  1.7056 +  format %{ "FNEGd  $src,$dst" %}
  1.7057 +  ins_encode(fnegd(dst, src));
  1.7058 +  ins_pipe(faddD_reg);
  1.7059 +%}
  1.7060 +
  1.7061 +//  Sqrt float double precision
  1.7062 +instruct sqrtF_reg_reg(regF dst, regF src) %{
  1.7063 +  match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  1.7064 +
  1.7065 +  size(4);
  1.7066 +  format %{ "FSQRTS $src,$dst" %}
  1.7067 +  ins_encode(fsqrts(dst, src));
  1.7068 +  ins_pipe(fdivF_reg_reg);
  1.7069 +%}
  1.7070 +
  1.7071 +//  Sqrt float double precision
  1.7072 +instruct sqrtD_reg_reg(regD dst, regD src) %{
  1.7073 +  match(Set dst (SqrtD src));
  1.7074 +
  1.7075 +  size(4);
  1.7076 +  format %{ "FSQRTD $src,$dst" %}
  1.7077 +  ins_encode(fsqrtd(dst, src));
  1.7078 +  ins_pipe(fdivD_reg_reg);
  1.7079 +%}
  1.7080 +
  1.7081 +//----------Logical Instructions-----------------------------------------------
  1.7082 +// And Instructions
  1.7083 +// Register And
  1.7084 +instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  1.7085 +  match(Set dst (AndI src1 src2));
  1.7086 +
  1.7087 +  size(4);
  1.7088 +  format %{ "AND    $src1,$src2,$dst" %}
  1.7089 +  opcode(Assembler::and_op3, Assembler::arith_op);
  1.7090 +  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  1.7091 +  ins_pipe(ialu_reg_reg);
  1.7092 +%}
  1.7093 +
  1.7094 +// Immediate And
  1.7095 +instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  1.7096 +  match(Set dst (AndI src1 src2));
  1.7097 +
  1.7098 +  size(4);
  1.7099 +  format %{ "AND    $src1,$src2,$dst" %}
  1.7100 +  opcode(Assembler::and_op3, Assembler::arith_op);
  1.7101 +  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  1.7102 +  ins_pipe(ialu_reg_imm);
  1.7103 +%}
  1.7104 +
  1.7105 +// Register And Long
  1.7106 +instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  1.7107 +  match(Set dst (AndL src1 src2));
  1.7108 +
  1.7109 +  ins_cost(DEFAULT_COST);
  1.7110 +  size(4);
  1.7111 +  format %{ "AND    $src1,$src2,$dst\t! long" %}
  1.7112 +  opcode(Assembler::and_op3, Assembler::arith_op);
  1.7113 +  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  1.7114 +  ins_pipe(ialu_reg_reg);
  1.7115 +%}
  1.7116 +
  1.7117 +instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  1.7118 +  match(Set dst (AndL src1 con));
  1.7119 +
  1.7120 +  ins_cost(DEFAULT_COST);
  1.7121 +  size(4);
  1.7122 +  format %{ "AND    $src1,$con,$dst\t! long" %}
  1.7123 +  opcode(Assembler::and_op3, Assembler::arith_op);
  1.7124 +  ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  1.7125 +  ins_pipe(ialu_reg_imm);
  1.7126 +%}
  1.7127 +
  1.7128 +// Or Instructions
  1.7129 +// Register Or
  1.7130 +instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  1.7131 +  match(Set dst (OrI src1 src2));
  1.7132 +
  1.7133 +  size(4);
  1.7134 +  format %{ "OR     $src1,$src2,$dst" %}
  1.7135 +  opcode(Assembler::or_op3, Assembler::arith_op);
  1.7136 +  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  1.7137 +  ins_pipe(ialu_reg_reg);
  1.7138 +%}
  1.7139 +
  1.7140 +// Immediate Or
  1.7141 +instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  1.7142 +  match(Set dst (OrI src1 src2));
  1.7143 +
  1.7144 +  size(4);
  1.7145 +  format %{ "OR     $src1,$src2,$dst" %}
  1.7146 +  opcode(Assembler::or_op3, Assembler::arith_op);
  1.7147 +  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  1.7148 +  ins_pipe(ialu_reg_imm);
  1.7149 +%}
  1.7150 +
  1.7151 +// Register Or Long
  1.7152 +instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  1.7153 +  match(Set dst (OrL src1 src2));
  1.7154 +
  1.7155 +  ins_cost(DEFAULT_COST);
  1.7156 +  size(4);
  1.7157 +  format %{ "OR     $src1,$src2,$dst\t! long" %}
  1.7158 +  opcode(Assembler::or_op3, Assembler::arith_op);
  1.7159 +  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  1.7160 +  ins_pipe(ialu_reg_reg);
  1.7161 +%}
  1.7162 +
  1.7163 +instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  1.7164 +  match(Set dst (OrL src1 con));
  1.7165 +  ins_cost(DEFAULT_COST*2);
  1.7166 +
  1.7167 +  ins_cost(DEFAULT_COST);
  1.7168 +  size(4);
  1.7169 +  format %{ "OR     $src1,$con,$dst\t! long" %}
  1.7170 +  opcode(Assembler::or_op3, Assembler::arith_op);
  1.7171 +  ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  1.7172 +  ins_pipe(ialu_reg_imm);
  1.7173 +%}
  1.7174 +
  1.7175 +// Xor Instructions
  1.7176 +// Register Xor
  1.7177 +instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  1.7178 +  match(Set dst (XorI src1 src2));
  1.7179 +
  1.7180 +  size(4);
  1.7181 +  format %{ "XOR    $src1,$src2,$dst" %}
  1.7182 +  opcode(Assembler::xor_op3, Assembler::arith_op);
  1.7183 +  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  1.7184 +  ins_pipe(ialu_reg_reg);
  1.7185 +%}
  1.7186 +
  1.7187 +// Immediate Xor
  1.7188 +instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  1.7189 +  match(Set dst (XorI src1 src2));
  1.7190 +
  1.7191 +  size(4);
  1.7192 +  format %{ "XOR    $src1,$src2,$dst" %}
  1.7193 +  opcode(Assembler::xor_op3, Assembler::arith_op);
  1.7194 +  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  1.7195 +  ins_pipe(ialu_reg_imm);
  1.7196 +%}
  1.7197 +
  1.7198 +// Register Xor Long
  1.7199 +instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  1.7200 +  match(Set dst (XorL src1 src2));
  1.7201 +
  1.7202 +  ins_cost(DEFAULT_COST);
  1.7203 +  size(4);
  1.7204 +  format %{ "XOR    $src1,$src2,$dst\t! long" %}
  1.7205 +  opcode(Assembler::xor_op3, Assembler::arith_op);
  1.7206 +  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  1.7207 +  ins_pipe(ialu_reg_reg);
  1.7208 +%}
  1.7209 +
  1.7210 +instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  1.7211 +  match(Set dst (XorL src1 con));
  1.7212 +
  1.7213 +  ins_cost(DEFAULT_COST);
  1.7214 +  size(4);
  1.7215 +  format %{ "XOR    $src1,$con,$dst\t! long" %}
  1.7216 +  opcode(Assembler::xor_op3, Assembler::arith_op);
  1.7217 +  ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  1.7218 +  ins_pipe(ialu_reg_imm);
  1.7219 +%}
  1.7220 +
  1.7221 +//----------Convert to Boolean-------------------------------------------------
  1.7222 +// Nice hack for 32-bit tests but doesn't work for
  1.7223 +// 64-bit pointers.
  1.7224 +instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  1.7225 +  match(Set dst (Conv2B src));
  1.7226 +  effect( KILL ccr );
  1.7227 +  ins_cost(DEFAULT_COST*2);
  1.7228 +  format %{ "CMP    R_G0,$src\n\t"
  1.7229 +            "ADDX   R_G0,0,$dst" %}
  1.7230 +  ins_encode( enc_to_bool( src, dst ) );
  1.7231 +  ins_pipe(ialu_reg_ialu);
  1.7232 +%}
  1.7233 +
  1.7234 +#ifndef _LP64
  1.7235 +instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  1.7236 +  match(Set dst (Conv2B src));
  1.7237 +  effect( KILL ccr );
  1.7238 +  ins_cost(DEFAULT_COST*2);
  1.7239 +  format %{ "CMP    R_G0,$src\n\t"
  1.7240 +            "ADDX   R_G0,0,$dst" %}
  1.7241 +  ins_encode( enc_to_bool( src, dst ) );
  1.7242 +  ins_pipe(ialu_reg_ialu);
  1.7243 +%}
  1.7244 +#else
  1.7245 +instruct convP2B( iRegI dst, iRegP src ) %{
  1.7246 +  match(Set dst (Conv2B src));
  1.7247 +  ins_cost(DEFAULT_COST*2);
  1.7248 +  format %{ "MOV    $src,$dst\n\t"
  1.7249 +            "MOVRNZ $src,1,$dst" %}
  1.7250 +  ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  1.7251 +  ins_pipe(ialu_clr_and_mover);
  1.7252 +%}
  1.7253 +#endif
  1.7254 +
  1.7255 +instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  1.7256 +  match(Set dst (CmpLTMask p q));
  1.7257 +  effect( KILL ccr );
  1.7258 +  ins_cost(DEFAULT_COST*4);
  1.7259 +  format %{ "CMP    $p,$q\n\t"
  1.7260 +            "MOV    #0,$dst\n\t"
  1.7261 +            "BLT,a  .+8\n\t"
  1.7262 +            "MOV    #-1,$dst" %}
  1.7263 +  ins_encode( enc_ltmask(p,q,dst) );
  1.7264 +  ins_pipe(ialu_reg_reg_ialu);
  1.7265 +%}
  1.7266 +
  1.7267 +instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  1.7268 +  match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  1.7269 +  effect(KILL ccr, TEMP tmp);
  1.7270 +  ins_cost(DEFAULT_COST*3);
  1.7271 +
  1.7272 +  format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  1.7273 +            "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  1.7274 +            "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  1.7275 +  ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  1.7276 +  ins_pipe( cadd_cmpltmask );
  1.7277 +%}
  1.7278 +
  1.7279 +instruct cadd_cmpLTMask2( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  1.7280 +  match(Set p (AddI (SubI p q) (AndI (CmpLTMask p q) y)));
  1.7281 +  effect( KILL ccr, TEMP tmp);
  1.7282 +  ins_cost(DEFAULT_COST*3);
  1.7283 +
  1.7284 +  format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  1.7285 +            "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  1.7286 +            "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  1.7287 +  ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  1.7288 +  ins_pipe( cadd_cmpltmask );
  1.7289 +%}
  1.7290 +
  1.7291 +//----------Arithmetic Conversion Instructions---------------------------------
  1.7292 +// The conversions operations are all Alpha sorted.  Please keep it that way!
  1.7293 +
  1.7294 +instruct convD2F_reg(regF dst, regD src) %{
  1.7295 +  match(Set dst (ConvD2F src));
  1.7296 +  size(4);
  1.7297 +  format %{ "FDTOS  $src,$dst" %}
  1.7298 +  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  1.7299 +  ins_encode(form3_opf_rs2D_rdF(src, dst));
  1.7300 +  ins_pipe(fcvtD2F);
  1.7301 +%}
  1.7302 +
  1.7303 +
  1.7304 +// Convert a double to an int in a float register.
  1.7305 +// If the double is a NAN, stuff a zero in instead.
  1.7306 +instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  1.7307 +  effect(DEF dst, USE src, KILL fcc0);
  1.7308 +  format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  1.7309 +            "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  1.7310 +            "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  1.7311 +            "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  1.7312 +            "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  1.7313 +      "skip:" %}
  1.7314 +  ins_encode(form_d2i_helper(src,dst));
  1.7315 +  ins_pipe(fcvtD2I);
  1.7316 +%}
  1.7317 +
  1.7318 +instruct convD2I_reg(stackSlotI dst, regD src) %{
  1.7319 +  match(Set dst (ConvD2I src));
  1.7320 +  ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  1.7321 +  expand %{
  1.7322 +    regF tmp;
  1.7323 +    convD2I_helper(tmp, src);
  1.7324 +    regF_to_stkI(dst, tmp);
  1.7325 +  %}
  1.7326 +%}
  1.7327 +
  1.7328 +// Convert a double to a long in a double register.
  1.7329 +// If the double is a NAN, stuff a zero in instead.
  1.7330 +instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  1.7331 +  effect(DEF dst, USE src, KILL fcc0);
  1.7332 +  format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  1.7333 +            "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  1.7334 +            "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  1.7335 +            "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  1.7336 +            "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  1.7337 +      "skip:" %}
  1.7338 +  ins_encode(form_d2l_helper(src,dst));
  1.7339 +  ins_pipe(fcvtD2L);
  1.7340 +%}
  1.7341 +
  1.7342 +
  1.7343 +// Double to Long conversion
  1.7344 +instruct convD2L_reg(stackSlotL dst, regD src) %{
  1.7345 +  match(Set dst (ConvD2L src));
  1.7346 +  ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  1.7347 +  expand %{
  1.7348 +    regD tmp;
  1.7349 +    convD2L_helper(tmp, src);
  1.7350 +    regD_to_stkL(dst, tmp);
  1.7351 +  %}
  1.7352 +%}
  1.7353 +
  1.7354 +
  1.7355 +instruct convF2D_reg(regD dst, regF src) %{
  1.7356 +  match(Set dst (ConvF2D src));
  1.7357 +  format %{ "FSTOD  $src,$dst" %}
  1.7358 +  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  1.7359 +  ins_encode(form3_opf_rs2F_rdD(src, dst));
  1.7360 +  ins_pipe(fcvtF2D);
  1.7361 +%}
  1.7362 +
  1.7363 +
  1.7364 +instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  1.7365 +  effect(DEF dst, USE src, KILL fcc0);
  1.7366 +  format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  1.7367 +            "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  1.7368 +            "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  1.7369 +            "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  1.7370 +            "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  1.7371 +      "skip:" %}
  1.7372 +  ins_encode(form_f2i_helper(src,dst));
  1.7373 +  ins_pipe(fcvtF2I);
  1.7374 +%}
  1.7375 +
  1.7376 +instruct convF2I_reg(stackSlotI dst, regF src) %{
  1.7377 +  match(Set dst (ConvF2I src));
  1.7378 +  ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  1.7379 +  expand %{
  1.7380 +    regF tmp;
  1.7381 +    convF2I_helper(tmp, src);
  1.7382 +    regF_to_stkI(dst, tmp);
  1.7383 +  %}
  1.7384 +%}
  1.7385 +
  1.7386 +
  1.7387 +instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  1.7388 +  effect(DEF dst, USE src, KILL fcc0);
  1.7389 +  format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  1.7390 +            "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  1.7391 +            "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  1.7392 +            "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  1.7393 +            "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  1.7394 +      "skip:" %}
  1.7395 +  ins_encode(form_f2l_helper(src,dst));
  1.7396 +  ins_pipe(fcvtF2L);
  1.7397 +%}
  1.7398 +
  1.7399 +// Float to Long conversion
  1.7400 +instruct convF2L_reg(stackSlotL dst, regF src) %{
  1.7401 +  match(Set dst (ConvF2L src));
  1.7402 +  ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  1.7403 +  expand %{
  1.7404 +    regD tmp;
  1.7405 +    convF2L_helper(tmp, src);
  1.7406 +    regD_to_stkL(dst, tmp);
  1.7407 +  %}
  1.7408 +%}
  1.7409 +
  1.7410 +
  1.7411 +instruct convI2D_helper(regD dst, regF tmp) %{
  1.7412 +  effect(USE tmp, DEF dst);
  1.7413 +  format %{ "FITOD  $tmp,$dst" %}
  1.7414 +  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  1.7415 +  ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  1.7416 +  ins_pipe(fcvtI2D);
  1.7417 +%}
  1.7418 +
  1.7419 +instruct convI2D_reg(stackSlotI src, regD dst) %{
  1.7420 +  match(Set dst (ConvI2D src));
  1.7421 +  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  1.7422 +  expand %{
  1.7423 +    regF tmp;
  1.7424 +    stkI_to_regF( tmp, src);
  1.7425 +    convI2D_helper( dst, tmp);
  1.7426 +  %}
  1.7427 +%}
  1.7428 +
  1.7429 +instruct convI2D_mem( regD_low dst, memory mem ) %{
  1.7430 +  match(Set dst (ConvI2D (LoadI mem)));
  1.7431 +  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  1.7432 +  size(8);
  1.7433 +  format %{ "LDF    $mem,$dst\n\t"
  1.7434 +            "FITOD  $dst,$dst" %}
  1.7435 +  opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  1.7436 +  ins_encode( form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  1.7437 +  ins_pipe(floadF_mem);
  1.7438 +%}
  1.7439 +
  1.7440 +
  1.7441 +instruct convI2F_helper(regF dst, regF tmp) %{
  1.7442 +  effect(DEF dst, USE tmp);
  1.7443 +  format %{ "FITOS  $tmp,$dst" %}
  1.7444 +  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  1.7445 +  ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  1.7446 +  ins_pipe(fcvtI2F);
  1.7447 +%}
  1.7448 +
  1.7449 +instruct convI2F_reg( regF dst, stackSlotI src ) %{
  1.7450 +  match(Set dst (ConvI2F src));
  1.7451 +  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  1.7452 +  expand %{
  1.7453 +    regF tmp;
  1.7454 +    stkI_to_regF(tmp,src);
  1.7455 +    convI2F_helper(dst, tmp);
  1.7456 +  %}
  1.7457 +%}
  1.7458 +
  1.7459 +instruct convI2F_mem( regF dst, memory mem ) %{
  1.7460 +  match(Set dst (ConvI2F (LoadI mem)));
  1.7461 +  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  1.7462 +  size(8);
  1.7463 +  format %{ "LDF    $mem,$dst\n\t"
  1.7464 +            "FITOS  $dst,$dst" %}
  1.7465 +  opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  1.7466 +  ins_encode( form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  1.7467 +  ins_pipe(floadF_mem);
  1.7468 +%}
  1.7469 +
  1.7470 +
  1.7471 +instruct convI2L_reg(iRegL dst, iRegI src) %{
  1.7472 +  match(Set dst (ConvI2L src));
  1.7473 +  size(4);
  1.7474 +  format %{ "SRA    $src,0,$dst\t! int->long" %}
  1.7475 +  opcode(Assembler::sra_op3, Assembler::arith_op);
  1.7476 +  ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  1.7477 +  ins_pipe(ialu_reg_reg);
  1.7478 +%}
  1.7479 +
  1.7480 +// Zero-extend convert int to long
  1.7481 +instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  1.7482 +  match(Set dst (AndL (ConvI2L src) mask) );
  1.7483 +  size(4);
  1.7484 +  format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  1.7485 +  opcode(Assembler::srl_op3, Assembler::arith_op);
  1.7486 +  ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  1.7487 +  ins_pipe(ialu_reg_reg);
  1.7488 +%}
  1.7489 +
  1.7490 +// Zero-extend long
  1.7491 +instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  1.7492 +  match(Set dst (AndL src mask) );
  1.7493 +  size(4);
  1.7494 +  format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  1.7495 +  opcode(Assembler::srl_op3, Assembler::arith_op);
  1.7496 +  ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  1.7497 +  ins_pipe(ialu_reg_reg);
  1.7498 +%}
  1.7499 +
  1.7500 +instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  1.7501 +  match(Set dst (MoveF2I src));
  1.7502 +  effect(DEF dst, USE src);
  1.7503 +  ins_cost(MEMORY_REF_COST);
  1.7504 +
  1.7505 +  size(4);
  1.7506 +  format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  1.7507 +  opcode(Assembler::lduw_op3);
  1.7508 +  ins_encode( form3_mem_reg( src, dst ) );
  1.7509 +  ins_pipe(iload_mem);
  1.7510 +%}
  1.7511 +
  1.7512 +instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  1.7513 +  match(Set dst (MoveI2F src));
  1.7514 +  effect(DEF dst, USE src);
  1.7515 +  ins_cost(MEMORY_REF_COST);
  1.7516 +
  1.7517 +  size(4);
  1.7518 +  format %{ "LDF    $src,$dst\t! MoveI2F" %}
  1.7519 +  opcode(Assembler::ldf_op3);
  1.7520 +  ins_encode(form3_mem_reg(src, dst));
  1.7521 +  ins_pipe(floadF_stk);
  1.7522 +%}
  1.7523 +
  1.7524 +instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  1.7525 +  match(Set dst (MoveD2L src));
  1.7526 +  effect(DEF dst, USE src);
  1.7527 +  ins_cost(MEMORY_REF_COST);
  1.7528 +
  1.7529 +  size(4);
  1.7530 +  format %{ "LDX    $src,$dst\t! MoveD2L" %}
  1.7531 +  opcode(Assembler::ldx_op3);
  1.7532 +  ins_encode( form3_mem_reg( src, dst ) );
  1.7533 +  ins_pipe(iload_mem);
  1.7534 +%}
  1.7535 +
  1.7536 +instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  1.7537 +  match(Set dst (MoveL2D src));
  1.7538 +  effect(DEF dst, USE src);
  1.7539 +  ins_cost(MEMORY_REF_COST);
  1.7540 +
  1.7541 +  size(4);
  1.7542 +  format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  1.7543 +  opcode(Assembler::lddf_op3);
  1.7544 +  ins_encode(form3_mem_reg(src, dst));
  1.7545 +  ins_pipe(floadD_stk);
  1.7546 +%}
  1.7547 +
  1.7548 +instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  1.7549 +  match(Set dst (MoveF2I src));
  1.7550 +  effect(DEF dst, USE src);
  1.7551 +  ins_cost(MEMORY_REF_COST);
  1.7552 +
  1.7553 +  size(4);
  1.7554 +  format %{ "STF   $src,$dst\t!MoveF2I" %}
  1.7555 +  opcode(Assembler::stf_op3);
  1.7556 +  ins_encode(form3_mem_reg(dst, src));
  1.7557 +  ins_pipe(fstoreF_stk_reg);
  1.7558 +%}
  1.7559 +
  1.7560 +instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  1.7561 +  match(Set dst (MoveI2F src));
  1.7562 +  effect(DEF dst, USE src);
  1.7563 +  ins_cost(MEMORY_REF_COST);
  1.7564 +
  1.7565 +  size(4);
  1.7566 +  format %{ "STW    $src,$dst\t!MoveI2F" %}
  1.7567 +  opcode(Assembler::stw_op3);
  1.7568 +  ins_encode( form3_mem_reg( dst, src ) );
  1.7569 +  ins_pipe(istore_mem_reg);
  1.7570 +%}
  1.7571 +
  1.7572 +instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  1.7573 +  match(Set dst (MoveD2L src));
  1.7574 +  effect(DEF dst, USE src);
  1.7575 +  ins_cost(MEMORY_REF_COST);
  1.7576 +
  1.7577 +  size(4);
  1.7578 +  format %{ "STDF   $src,$dst\t!MoveD2L" %}
  1.7579 +  opcode(Assembler::stdf_op3);
  1.7580 +  ins_encode(form3_mem_reg(dst, src));
  1.7581 +  ins_pipe(fstoreD_stk_reg);
  1.7582 +%}
  1.7583 +
  1.7584 +instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  1.7585 +  match(Set dst (MoveL2D src));
  1.7586 +  effect(DEF dst, USE src);
  1.7587 +  ins_cost(MEMORY_REF_COST);
  1.7588 +
  1.7589 +  size(4);
  1.7590 +  format %{ "STX    $src,$dst\t!MoveL2D" %}
  1.7591 +  opcode(Assembler::stx_op3);
  1.7592 +  ins_encode( form3_mem_reg( dst, src ) );
  1.7593 +  ins_pipe(istore_mem_reg);
  1.7594 +%}
  1.7595 +
  1.7596 +
  1.7597 +//-----------
  1.7598 +// Long to Double conversion using V8 opcodes.
  1.7599 +// Still useful because cheetah traps and becomes
  1.7600 +// amazingly slow for some common numbers.
  1.7601 +
  1.7602 +// Magic constant, 0x43300000
  1.7603 +instruct loadConI_x43300000(iRegI dst) %{
  1.7604 +  effect(DEF dst);
  1.7605 +  size(4);
  1.7606 +  format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  1.7607 +  ins_encode(SetHi22(0x43300000, dst));
  1.7608 +  ins_pipe(ialu_none);
  1.7609 +%}
  1.7610 +
  1.7611 +// Magic constant, 0x41f00000
  1.7612 +instruct loadConI_x41f00000(iRegI dst) %{
  1.7613 +  effect(DEF dst);
  1.7614 +  size(4);
  1.7615 +  format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  1.7616 +  ins_encode(SetHi22(0x41f00000, dst));
  1.7617 +  ins_pipe(ialu_none);
  1.7618 +%}
  1.7619 +
  1.7620 +// Construct a double from two float halves
  1.7621 +instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  1.7622 +  effect(DEF dst, USE src1, USE src2);
  1.7623 +  size(8);
  1.7624 +  format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  1.7625 +            "FMOVS  $src2.lo,$dst.lo" %}
  1.7626 +  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  1.7627 +  ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  1.7628 +  ins_pipe(faddD_reg_reg);
  1.7629 +%}
  1.7630 +
  1.7631 +// Convert integer in high half of a double register (in the lower half of
  1.7632 +// the double register file) to double
  1.7633 +instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  1.7634 +  effect(DEF dst, USE src);
  1.7635 +  size(4);
  1.7636 +  format %{ "FITOD  $src,$dst" %}
  1.7637 +  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  1.7638 +  ins_encode(form3_opf_rs2D_rdD(src, dst));
  1.7639 +  ins_pipe(fcvtLHi2D);
  1.7640 +%}
  1.7641 +
  1.7642 +// Add float double precision
  1.7643 +instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  1.7644 +  effect(DEF dst, USE src1, USE src2);
  1.7645 +  size(4);
  1.7646 +  format %{ "FADDD  $src1,$src2,$dst" %}
  1.7647 +  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  1.7648 +  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  1.7649 +  ins_pipe(faddD_reg_reg);
  1.7650 +%}
  1.7651 +
  1.7652 +// Sub float double precision
  1.7653 +instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  1.7654 +  effect(DEF dst, USE src1, USE src2);
  1.7655 +  size(4);
  1.7656 +  format %{ "FSUBD  $src1,$src2,$dst" %}
  1.7657 +  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  1.7658 +  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  1.7659 +  ins_pipe(faddD_reg_reg);
  1.7660 +%}
  1.7661 +
  1.7662 +// Mul float double precision
  1.7663 +instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  1.7664 +  effect(DEF dst, USE src1, USE src2);
  1.7665 +  size(4);
  1.7666 +  format %{ "FMULD  $src1,$src2,$dst" %}
  1.7667 +  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  1.7668 +  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  1.7669 +  ins_pipe(fmulD_reg_reg);
  1.7670 +%}
  1.7671 +
  1.7672 +instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  1.7673 +  match(Set dst (ConvL2D src));
  1.7674 +  ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  1.7675 +
  1.7676 +  expand %{
  1.7677 +    regD_low   tmpsrc;
  1.7678 +    iRegI      ix43300000;
  1.7679 +    iRegI      ix41f00000;
  1.7680 +    stackSlotL lx43300000;
  1.7681 +    stackSlotL lx41f00000;
  1.7682 +    regD_low   dx43300000;
  1.7683 +    regD       dx41f00000;
  1.7684 +    regD       tmp1;
  1.7685 +    regD_low   tmp2;
  1.7686 +    regD       tmp3;
  1.7687 +    regD       tmp4;
  1.7688 +
  1.7689 +    stkL_to_regD(tmpsrc, src);
  1.7690 +
  1.7691 +    loadConI_x43300000(ix43300000);
  1.7692 +    loadConI_x41f00000(ix41f00000);
  1.7693 +    regI_to_stkLHi(lx43300000, ix43300000);
  1.7694 +    regI_to_stkLHi(lx41f00000, ix41f00000);
  1.7695 +    stkL_to_regD(dx43300000, lx43300000);
  1.7696 +    stkL_to_regD(dx41f00000, lx41f00000);
  1.7697 +
  1.7698 +    convI2D_regDHi_regD(tmp1, tmpsrc);
  1.7699 +    regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  1.7700 +    subD_regD_regD(tmp3, tmp2, dx43300000);
  1.7701 +    mulD_regD_regD(tmp4, tmp1, dx41f00000);
  1.7702 +    addD_regD_regD(dst, tmp3, tmp4);
  1.7703 +  %}
  1.7704 +%}
  1.7705 +
  1.7706 +// Long to Double conversion using fast fxtof
  1.7707 +instruct convL2D_helper(regD dst, regD tmp) %{
  1.7708 +  effect(DEF dst, USE tmp);
  1.7709 +  size(4);
  1.7710 +  format %{ "FXTOD  $tmp,$dst" %}
  1.7711 +  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  1.7712 +  ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  1.7713 +  ins_pipe(fcvtL2D);
  1.7714 +%}
  1.7715 +
  1.7716 +instruct convL2D_reg_fast_fxtof(regD dst, stackSlotL src) %{
  1.7717 +  predicate(VM_Version::has_fast_fxtof());
  1.7718 +  match(Set dst (ConvL2D src));
  1.7719 +  ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  1.7720 +  expand %{
  1.7721 +    regD tmp;
  1.7722 +    stkL_to_regD(tmp, src);
  1.7723 +    convL2D_helper(dst, tmp);
  1.7724 +  %}
  1.7725 +%}
  1.7726 +
  1.7727 +//-----------
  1.7728 +// Long to Float conversion using V8 opcodes.
  1.7729 +// Still useful because cheetah traps and becomes
  1.7730 +// amazingly slow for some common numbers.
  1.7731 +
  1.7732 +// Long to Float conversion using fast fxtof
  1.7733 +instruct convL2F_helper(regF dst, regD tmp) %{
  1.7734 +  effect(DEF dst, USE tmp);
  1.7735 +  size(4);
  1.7736 +  format %{ "FXTOS  $tmp,$dst" %}
  1.7737 +  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  1.7738 +  ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  1.7739 +  ins_pipe(fcvtL2F);
  1.7740 +%}
  1.7741 +
  1.7742 +instruct convL2F_reg_fast_fxtof(regF dst, stackSlotL src) %{
  1.7743 +  match(Set dst (ConvL2F src));
  1.7744 +  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  1.7745 +  expand %{
  1.7746 +    regD tmp;
  1.7747 +    stkL_to_regD(tmp, src);
  1.7748 +    convL2F_helper(dst, tmp);
  1.7749 +  %}
  1.7750 +%}
  1.7751 +//-----------
  1.7752 +
  1.7753 +instruct convL2I_reg(iRegI dst, iRegL src) %{
  1.7754 +  match(Set dst (ConvL2I src));
  1.7755 +#ifndef _LP64
  1.7756 +  format %{ "MOV    $src.lo,$dst\t! long->int" %}
  1.7757 +  ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  1.7758 +  ins_pipe(ialu_move_reg_I_to_L);
  1.7759 +#else
  1.7760 +  size(4);
  1.7761 +  format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  1.7762 +  ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  1.7763 +  ins_pipe(ialu_reg);
  1.7764 +#endif
  1.7765 +%}
  1.7766 +
  1.7767 +// Register Shift Right Immediate
  1.7768 +instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  1.7769 +  match(Set dst (ConvL2I (RShiftL src cnt)));
  1.7770 +
  1.7771 +  size(4);
  1.7772 +  format %{ "SRAX   $src,$cnt,$dst" %}
  1.7773 +  opcode(Assembler::srax_op3, Assembler::arith_op);
  1.7774 +  ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  1.7775 +  ins_pipe(ialu_reg_imm);
  1.7776 +%}
  1.7777 +
  1.7778 +// Replicate scalar to packed byte values in Double register
  1.7779 +instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
  1.7780 +  effect(DEF dst, USE src);
  1.7781 +  format %{ "SLLX  $src,56,$dst\n\t"
  1.7782 +            "SRLX  $dst, 8,O7\n\t"
  1.7783 +            "OR    $dst,O7,$dst\n\t"
  1.7784 +            "SRLX  $dst,16,O7\n\t"
  1.7785 +            "OR    $dst,O7,$dst\n\t"
  1.7786 +            "SRLX  $dst,32,O7\n\t"
  1.7787 +            "OR    $dst,O7,$dst\t! replicate8B" %}
  1.7788 +  ins_encode( enc_repl8b(src, dst));
  1.7789 +  ins_pipe(ialu_reg);
  1.7790 +%}
  1.7791 +
  1.7792 +// Replicate scalar to packed byte values in Double register
  1.7793 +instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
  1.7794 +  match(Set dst (Replicate8B src));
  1.7795 +  expand %{
  1.7796 +    iRegL tmp;
  1.7797 +    Repl8B_reg_helper(tmp, src);
  1.7798 +    regL_to_stkD(dst, tmp);
  1.7799 +  %}
  1.7800 +%}
  1.7801 +
  1.7802 +// Replicate scalar constant to packed byte values in Double register
  1.7803 +instruct Repl8B_immI(regD dst, immI13 src, o7RegP tmp) %{
  1.7804 +  match(Set dst (Replicate8B src));
  1.7805 +#ifdef _LP64
  1.7806 +  size(36);
  1.7807 +#else
  1.7808 +  size(8);
  1.7809 +#endif
  1.7810 +  format %{ "SETHI  hi(&Repl8($src)),$tmp\t!get Repl8B($src) from table\n\t"
  1.7811 +            "LDDF   [$tmp+lo(&Repl8($src))],$dst" %}
  1.7812 +  ins_encode( LdReplImmI(src, dst, tmp, (8), (1)) );
  1.7813 +  ins_pipe(loadConFD);
  1.7814 +%}
  1.7815 +
  1.7816 +// Replicate scalar to packed char values into stack slot
  1.7817 +instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
  1.7818 +  effect(DEF dst, USE src);
  1.7819 +  format %{ "SLLX  $src,48,$dst\n\t"
  1.7820 +            "SRLX  $dst,16,O7\n\t"
  1.7821 +            "OR    $dst,O7,$dst\n\t"
  1.7822 +            "SRLX  $dst,32,O7\n\t"
  1.7823 +            "OR    $dst,O7,$dst\t! replicate4C" %}
  1.7824 +  ins_encode( enc_repl4s(src, dst) );
  1.7825 +  ins_pipe(ialu_reg);
  1.7826 +%}
  1.7827 +
  1.7828 +// Replicate scalar to packed char values into stack slot
  1.7829 +instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
  1.7830 +  match(Set dst (Replicate4C src));
  1.7831 +  expand %{
  1.7832 +    iRegL tmp;
  1.7833 +    Repl4C_reg_helper(tmp, src);
  1.7834 +    regL_to_stkD(dst, tmp);
  1.7835 +  %}
  1.7836 +%}
  1.7837 +
  1.7838 +// Replicate scalar constant to packed char values in Double register
  1.7839 +instruct Repl4C_immI(regD dst, immI src, o7RegP tmp) %{
  1.7840 +  match(Set dst (Replicate4C src));
  1.7841 +#ifdef _LP64
  1.7842 +  size(36);
  1.7843 +#else
  1.7844 +  size(8);
  1.7845 +#endif
  1.7846 +  format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4C($src) from table\n\t"
  1.7847 +            "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
  1.7848 +  ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
  1.7849 +  ins_pipe(loadConFD);
  1.7850 +%}
  1.7851 +
  1.7852 +// Replicate scalar to packed short values into stack slot
  1.7853 +instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
  1.7854 +  effect(DEF dst, USE src);
  1.7855 +  format %{ "SLLX  $src,48,$dst\n\t"
  1.7856 +            "SRLX  $dst,16,O7\n\t"
  1.7857 +            "OR    $dst,O7,$dst\n\t"
  1.7858 +            "SRLX  $dst,32,O7\n\t"
  1.7859 +            "OR    $dst,O7,$dst\t! replicate4S" %}
  1.7860 +  ins_encode( enc_repl4s(src, dst) );
  1.7861 +  ins_pipe(ialu_reg);
  1.7862 +%}
  1.7863 +
  1.7864 +// Replicate scalar to packed short values into stack slot
  1.7865 +instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
  1.7866 +  match(Set dst (Replicate4S src));
  1.7867 +  expand %{
  1.7868 +    iRegL tmp;
  1.7869 +    Repl4S_reg_helper(tmp, src);
  1.7870 +    regL_to_stkD(dst, tmp);
  1.7871 +  %}
  1.7872 +%}
  1.7873 +
  1.7874 +// Replicate scalar constant to packed short values in Double register
  1.7875 +instruct Repl4S_immI(regD dst, immI src, o7RegP tmp) %{
  1.7876 +  match(Set dst (Replicate4S src));
  1.7877 +#ifdef _LP64
  1.7878 +  size(36);
  1.7879 +#else
  1.7880 +  size(8);
  1.7881 +#endif
  1.7882 +  format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4S($src) from table\n\t"
  1.7883 +            "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
  1.7884 +  ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
  1.7885 +  ins_pipe(loadConFD);
  1.7886 +%}
  1.7887 +
  1.7888 +// Replicate scalar to packed int values in Double register
  1.7889 +instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
  1.7890 +  effect(DEF dst, USE src);
  1.7891 +  format %{ "SLLX  $src,32,$dst\n\t"
  1.7892 +            "SRLX  $dst,32,O7\n\t"
  1.7893 +            "OR    $dst,O7,$dst\t! replicate2I" %}
  1.7894 +  ins_encode( enc_repl2i(src, dst));
  1.7895 +  ins_pipe(ialu_reg);
  1.7896 +%}
  1.7897 +
  1.7898 +// Replicate scalar to packed int values in Double register
  1.7899 +instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
  1.7900 +  match(Set dst (Replicate2I src));
  1.7901 +  expand %{
  1.7902 +    iRegL tmp;
  1.7903 +    Repl2I_reg_helper(tmp, src);
  1.7904 +    regL_to_stkD(dst, tmp);
  1.7905 +  %}
  1.7906 +%}
  1.7907 +
  1.7908 +// Replicate scalar zero constant to packed int values in Double register
  1.7909 +instruct Repl2I_immI(regD dst, immI src, o7RegP tmp) %{
  1.7910 +  match(Set dst (Replicate2I src));
  1.7911 +#ifdef _LP64
  1.7912 +  size(36);
  1.7913 +#else
  1.7914 +  size(8);
  1.7915 +#endif
  1.7916 +  format %{ "SETHI  hi(&Repl2($src)),$tmp\t!get Repl2I($src) from table\n\t"
  1.7917 +            "LDDF   [$tmp+lo(&Repl2($src))],$dst" %}
  1.7918 +  ins_encode( LdReplImmI(src, dst, tmp, (2), (4)) );
  1.7919 +  ins_pipe(loadConFD);
  1.7920 +%}
  1.7921 +
  1.7922 +//----------Control Flow Instructions------------------------------------------
  1.7923 +// Compare Instructions
  1.7924 +// Compare Integers
  1.7925 +instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  1.7926 +  match(Set icc (CmpI op1 op2));
  1.7927 +  effect( DEF icc, USE op1, USE op2 );
  1.7928 +
  1.7929 +  size(4);
  1.7930 +  format %{ "CMP    $op1,$op2" %}
  1.7931 +  opcode(Assembler::subcc_op3, Assembler::arith_op);
  1.7932 +  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  1.7933 +  ins_pipe(ialu_cconly_reg_reg);
  1.7934 +%}
  1.7935 +
  1.7936 +instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  1.7937 +  match(Set icc (CmpU op1 op2));
  1.7938 +
  1.7939 +  size(4);
  1.7940 +  format %{ "CMP    $op1,$op2\t! unsigned" %}
  1.7941 +  opcode(Assembler::subcc_op3, Assembler::arith_op);
  1.7942 +  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  1.7943 +  ins_pipe(ialu_cconly_reg_reg);
  1.7944 +%}
  1.7945 +
  1.7946 +instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  1.7947 +  match(Set icc (CmpI op1 op2));
  1.7948 +  effect( DEF icc, USE op1 );
  1.7949 +
  1.7950 +  size(4);
  1.7951 +  format %{ "CMP    $op1,$op2" %}
  1.7952 +  opcode(Assembler::subcc_op3, Assembler::arith_op);
  1.7953 +  ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  1.7954 +  ins_pipe(ialu_cconly_reg_imm);
  1.7955 +%}
  1.7956 +
  1.7957 +instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  1.7958 +  match(Set icc (CmpI (AndI op1 op2) zero));
  1.7959 +
  1.7960 +  size(4);
  1.7961 +  format %{ "BTST   $op2,$op1" %}
  1.7962 +  opcode(Assembler::andcc_op3, Assembler::arith_op);
  1.7963 +  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  1.7964 +  ins_pipe(ialu_cconly_reg_reg_zero);
  1.7965 +%}
  1.7966 +
  1.7967 +instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  1.7968 +  match(Set icc (CmpI (AndI op1 op2) zero));
  1.7969 +
  1.7970 +  size(4);
  1.7971 +  format %{ "BTST   $op2,$op1" %}
  1.7972 +  opcode(Assembler::andcc_op3, Assembler::arith_op);
  1.7973 +  ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  1.7974 +  ins_pipe(ialu_cconly_reg_imm_zero);
  1.7975 +%}
  1.7976 +
  1.7977 +instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  1.7978 +  match(Set xcc (CmpL op1 op2));
  1.7979 +  effect( DEF xcc, USE op1, USE op2 );
  1.7980 +
  1.7981 +  size(4);
  1.7982 +  format %{ "CMP    $op1,$op2\t\t! long" %}
  1.7983 +  opcode(Assembler::subcc_op3, Assembler::arith_op);
  1.7984 +  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  1.7985 +  ins_pipe(ialu_cconly_reg_reg);
  1.7986 +%}
  1.7987 +
  1.7988 +instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  1.7989 +  match(Set xcc (CmpL op1 con));
  1.7990 +  effect( DEF xcc, USE op1, USE con );
  1.7991 +
  1.7992 +  size(4);
  1.7993 +  format %{ "CMP    $op1,$con\t\t! long" %}
  1.7994 +  opcode(Assembler::subcc_op3, Assembler::arith_op);
  1.7995 +  ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  1.7996 +  ins_pipe(ialu_cconly_reg_reg);
  1.7997 +%}
  1.7998 +
  1.7999 +instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  1.8000 +  match(Set xcc (CmpL (AndL op1 op2) zero));
  1.8001 +  effect( DEF xcc, USE op1, USE op2 );
  1.8002 +
  1.8003 +  size(4);
  1.8004 +  format %{ "BTST   $op1,$op2\t\t! long" %}
  1.8005 +  opcode(Assembler::andcc_op3, Assembler::arith_op);
  1.8006 +  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  1.8007 +  ins_pipe(ialu_cconly_reg_reg);
  1.8008 +%}
  1.8009 +
  1.8010 +// useful for checking the alignment of a pointer:
  1.8011 +instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  1.8012 +  match(Set xcc (CmpL (AndL op1 con) zero));
  1.8013 +  effect( DEF xcc, USE op1, USE con );
  1.8014 +
  1.8015 +  size(4);
  1.8016 +  format %{ "BTST   $op1,$con\t\t! long" %}
  1.8017 +  opcode(Assembler::andcc_op3, Assembler::arith_op);
  1.8018 +  ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  1.8019 +  ins_pipe(ialu_cconly_reg_reg);
  1.8020 +%}
  1.8021 +
  1.8022 +instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  1.8023 +  match(Set icc (CmpU op1 op2));
  1.8024 +
  1.8025 +  size(4);
  1.8026 +  format %{ "CMP    $op1,$op2\t! unsigned" %}
  1.8027 +  opcode(Assembler::subcc_op3, Assembler::arith_op);
  1.8028 +  ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  1.8029 +  ins_pipe(ialu_cconly_reg_imm);
  1.8030 +%}
  1.8031 +
  1.8032 +// Compare Pointers
  1.8033 +instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  1.8034 +  match(Set pcc (CmpP op1 op2));
  1.8035 +
  1.8036 +  size(4);
  1.8037 +  format %{ "CMP    $op1,$op2\t! ptr" %}
  1.8038 +  opcode(Assembler::subcc_op3, Assembler::arith_op);
  1.8039 +  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  1.8040 +  ins_pipe(ialu_cconly_reg_reg);
  1.8041 +%}
  1.8042 +
  1.8043 +instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  1.8044 +  match(Set pcc (CmpP op1 op2));
  1.8045 +
  1.8046 +  size(4);
  1.8047 +  format %{ "CMP    $op1,$op2\t! ptr" %}
  1.8048 +  opcode(Assembler::subcc_op3, Assembler::arith_op);
  1.8049 +  ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  1.8050 +  ins_pipe(ialu_cconly_reg_imm);
  1.8051 +%}
  1.8052 +
  1.8053 +//----------Max and Min--------------------------------------------------------
  1.8054 +// Min Instructions
  1.8055 +// Conditional move for min
  1.8056 +instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  1.8057 +  effect( USE_DEF op2, USE op1, USE icc );
  1.8058 +
  1.8059 +  size(4);
  1.8060 +  format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  1.8061 +  opcode(Assembler::less);
  1.8062 +  ins_encode( enc_cmov_reg_minmax(op2,op1) );
  1.8063 +  ins_pipe(ialu_reg_flags);
  1.8064 +%}
  1.8065 +
  1.8066 +// Min Register with Register.
  1.8067 +instruct minI_eReg(iRegI op1, iRegI op2) %{
  1.8068 +  match(Set op2 (MinI op1 op2));
  1.8069 +  ins_cost(DEFAULT_COST*2);
  1.8070 +  expand %{
  1.8071 +    flagsReg icc;
  1.8072 +    compI_iReg(icc,op1,op2);
  1.8073 +    cmovI_reg_lt(op2,op1,icc);
  1.8074 +  %}
  1.8075 +%}
  1.8076 +
  1.8077 +// Max Instructions
  1.8078 +// Conditional move for max
  1.8079 +instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  1.8080 +  effect( USE_DEF op2, USE op1, USE icc );
  1.8081 +  format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  1.8082 +  opcode(Assembler::greater);
  1.8083 +  ins_encode( enc_cmov_reg_minmax(op2,op1) );
  1.8084 +  ins_pipe(ialu_reg_flags);
  1.8085 +%}
  1.8086 +
  1.8087 +// Max Register with Register
  1.8088 +instruct maxI_eReg(iRegI op1, iRegI op2) %{
  1.8089 +  match(Set op2 (MaxI op1 op2));
  1.8090 +  ins_cost(DEFAULT_COST*2);
  1.8091 +  expand %{
  1.8092 +    flagsReg icc;
  1.8093 +    compI_iReg(icc,op1,op2);
  1.8094 +    cmovI_reg_gt(op2,op1,icc);
  1.8095 +  %}
  1.8096 +%}
  1.8097 +
  1.8098 +
  1.8099 +//----------Float Compares----------------------------------------------------
  1.8100 +// Compare floating, generate condition code
  1.8101 +instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  1.8102 +  match(Set fcc (CmpF src1 src2));
  1.8103 +
  1.8104 +  size(4);
  1.8105 +  format %{ "FCMPs  $fcc,$src1,$src2" %}
  1.8106 +  opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  1.8107 +  ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  1.8108 +  ins_pipe(faddF_fcc_reg_reg_zero);
  1.8109 +%}
  1.8110 +
  1.8111 +instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  1.8112 +  match(Set fcc (CmpD src1 src2));
  1.8113 +
  1.8114 +  size(4);
  1.8115 +  format %{ "FCMPd  $fcc,$src1,$src2" %}
  1.8116 +  opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  1.8117 +  ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  1.8118 +  ins_pipe(faddD_fcc_reg_reg_zero);
  1.8119 +%}
  1.8120 +
  1.8121 +
  1.8122 +// Compare floating, generate -1,0,1
  1.8123 +instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  1.8124 +  match(Set dst (CmpF3 src1 src2));
  1.8125 +  effect(KILL fcc0);
  1.8126 +  ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  1.8127 +  format %{ "fcmpl  $dst,$src1,$src2" %}
  1.8128 +  // Primary = float
  1.8129 +  opcode( true );
  1.8130 +  ins_encode( floating_cmp( dst, src1, src2 ) );
  1.8131 +  ins_pipe( floating_cmp );
  1.8132 +%}
  1.8133 +
  1.8134 +instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  1.8135 +  match(Set dst (CmpD3 src1 src2));
  1.8136 +  effect(KILL fcc0);
  1.8137 +  ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  1.8138 +  format %{ "dcmpl  $dst,$src1,$src2" %}
  1.8139 +  // Primary = double (not float)
  1.8140 +  opcode( false );
  1.8141 +  ins_encode( floating_cmp( dst, src1, src2 ) );
  1.8142 +  ins_pipe( floating_cmp );
  1.8143 +%}
  1.8144 +
  1.8145 +//----------Branches---------------------------------------------------------
  1.8146 +// Jump
  1.8147 +// (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  1.8148 +instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  1.8149 +  match(Jump switch_val);
  1.8150 +
  1.8151 +  ins_cost(350);
  1.8152 +
  1.8153 +  format %{  "SETHI  [hi(table_base)],O7\n\t"
  1.8154 +             "ADD    O7, lo(table_base), O7\n\t"
  1.8155 +             "LD     [O7+$switch_val], O7\n\t"
  1.8156 +             "JUMP   O7"
  1.8157 +         %}
  1.8158 +  ins_encode( jump_enc( switch_val, table) );
  1.8159 +  ins_pc_relative(1);
  1.8160 +  ins_pipe(ialu_reg_reg);
  1.8161 +%}
  1.8162 +
  1.8163 +// Direct Branch.  Use V8 version with longer range.
  1.8164 +instruct branch(label labl) %{
  1.8165 +  match(Goto);
  1.8166 +  effect(USE labl);
  1.8167 +
  1.8168 +  size(8);
  1.8169 +  ins_cost(BRANCH_COST);
  1.8170 +  format %{ "BA     $labl" %}
  1.8171 +  // Prim = bits 24-22, Secnd = bits 31-30, Tert = cond
  1.8172 +  opcode(Assembler::br_op2, Assembler::branch_op, Assembler::always);
  1.8173 +  ins_encode( enc_ba( labl ) );
  1.8174 +  ins_pc_relative(1);
  1.8175 +  ins_pipe(br);
  1.8176 +%}
  1.8177 +
  1.8178 +// Conditional Direct Branch
  1.8179 +instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  1.8180 +  match(If cmp icc);
  1.8181 +  effect(USE labl);
  1.8182 +
  1.8183 +  size(8);
  1.8184 +  ins_cost(BRANCH_COST);
  1.8185 +  format %{ "BP$cmp   $icc,$labl" %}
  1.8186 +  // Prim = bits 24-22, Secnd = bits 31-30
  1.8187 +  ins_encode( enc_bp( labl, cmp, icc ) );
  1.8188 +  ins_pc_relative(1);
  1.8189 +  ins_pipe(br_cc);
  1.8190 +%}
  1.8191 +
  1.8192 +// Branch-on-register tests all 64 bits.  We assume that values
  1.8193 +// in 64-bit registers always remains zero or sign extended
  1.8194 +// unless our code munges the high bits.  Interrupts can chop
  1.8195 +// the high order bits to zero or sign at any time.
  1.8196 +instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  1.8197 +  match(If cmp (CmpI op1 zero));
  1.8198 +  predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  1.8199 +  effect(USE labl);
  1.8200 +
  1.8201 +  size(8);
  1.8202 +  ins_cost(BRANCH_COST);
  1.8203 +  format %{ "BR$cmp   $op1,$labl" %}
  1.8204 +  ins_encode( enc_bpr( labl, cmp, op1 ) );
  1.8205 +  ins_pc_relative(1);
  1.8206 +  ins_pipe(br_reg);
  1.8207 +%}
  1.8208 +
  1.8209 +instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  1.8210 +  match(If cmp (CmpP op1 null));
  1.8211 +  predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  1.8212 +  effect(USE labl);
  1.8213 +
  1.8214 +  size(8);
  1.8215 +  ins_cost(BRANCH_COST);
  1.8216 +  format %{ "BR$cmp   $op1,$labl" %}
  1.8217 +  ins_encode( enc_bpr( labl, cmp, op1 ) );
  1.8218 +  ins_pc_relative(1);
  1.8219 +  ins_pipe(br_reg);
  1.8220 +%}
  1.8221 +
  1.8222 +instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  1.8223 +  match(If cmp (CmpL op1 zero));
  1.8224 +  predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  1.8225 +  effect(USE labl);
  1.8226 +
  1.8227 +  size(8);
  1.8228 +  ins_cost(BRANCH_COST);
  1.8229 +  format %{ "BR$cmp   $op1,$labl" %}
  1.8230 +  ins_encode( enc_bpr( labl, cmp, op1 ) );
  1.8231 +  ins_pc_relative(1);
  1.8232 +  ins_pipe(br_reg);
  1.8233 +%}
  1.8234 +
  1.8235 +instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  1.8236 +  match(If cmp icc);
  1.8237 +  effect(USE labl);
  1.8238 +
  1.8239 +  format %{ "BP$cmp  $icc,$labl" %}
  1.8240 +  // Prim = bits 24-22, Secnd = bits 31-30
  1.8241 +  ins_encode( enc_bp( labl, cmp, icc ) );
  1.8242 +  ins_pc_relative(1);
  1.8243 +  ins_pipe(br_cc);
  1.8244 +%}
  1.8245 +
  1.8246 +instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  1.8247 +  match(If cmp pcc);
  1.8248 +  effect(USE labl);
  1.8249 +
  1.8250 +  size(8);
  1.8251 +  ins_cost(BRANCH_COST);
  1.8252 +  format %{ "BP$cmp  $pcc,$labl" %}
  1.8253 +  // Prim = bits 24-22, Secnd = bits 31-30
  1.8254 +  ins_encode( enc_bpx( labl, cmp, pcc ) );
  1.8255 +  ins_pc_relative(1);
  1.8256 +  ins_pipe(br_cc);
  1.8257 +%}
  1.8258 +
  1.8259 +instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  1.8260 +  match(If cmp fcc);
  1.8261 +  effect(USE labl);
  1.8262 +
  1.8263 +  size(8);
  1.8264 +  ins_cost(BRANCH_COST);
  1.8265 +  format %{ "FBP$cmp $fcc,$labl" %}
  1.8266 +  // Prim = bits 24-22, Secnd = bits 31-30
  1.8267 +  ins_encode( enc_fbp( labl, cmp, fcc ) );
  1.8268 +  ins_pc_relative(1);
  1.8269 +  ins_pipe(br_fcc);
  1.8270 +%}
  1.8271 +
  1.8272 +instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  1.8273 +  match(CountedLoopEnd cmp icc);
  1.8274 +  effect(USE labl);
  1.8275 +
  1.8276 +  size(8);
  1.8277 +  ins_cost(BRANCH_COST);
  1.8278 +  format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  1.8279 +  // Prim = bits 24-22, Secnd = bits 31-30
  1.8280 +  ins_encode( enc_bp( labl, cmp, icc ) );
  1.8281 +  ins_pc_relative(1);
  1.8282 +  ins_pipe(br_cc);
  1.8283 +%}
  1.8284 +
  1.8285 +instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  1.8286 +  match(CountedLoopEnd cmp icc);
  1.8287 +  effect(USE labl);
  1.8288 +
  1.8289 +  size(8);
  1.8290 +  ins_cost(BRANCH_COST);
  1.8291 +  format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  1.8292 +  // Prim = bits 24-22, Secnd = bits 31-30
  1.8293 +  ins_encode( enc_bp( labl, cmp, icc ) );
  1.8294 +  ins_pc_relative(1);
  1.8295 +  ins_pipe(br_cc);
  1.8296 +%}
  1.8297 +
  1.8298 +// ============================================================================
  1.8299 +// Long Compare
  1.8300 +//
  1.8301 +// Currently we hold longs in 2 registers.  Comparing such values efficiently
  1.8302 +// is tricky.  The flavor of compare used depends on whether we are testing
  1.8303 +// for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  1.8304 +// The GE test is the negated LT test.  The LE test can be had by commuting
  1.8305 +// the operands (yielding a GE test) and then negating; negate again for the
  1.8306 +// GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  1.8307 +// NE test is negated from that.
  1.8308 +
  1.8309 +// Due to a shortcoming in the ADLC, it mixes up expressions like:
  1.8310 +// (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  1.8311 +// difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  1.8312 +// are collapsed internally in the ADLC's dfa-gen code.  The match for
  1.8313 +// (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  1.8314 +// foo match ends up with the wrong leaf.  One fix is to not match both
  1.8315 +// reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  1.8316 +// both forms beat the trinary form of long-compare and both are very useful
  1.8317 +// on Intel which has so few registers.
  1.8318 +
  1.8319 +instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  1.8320 +  match(If cmp xcc);
  1.8321 +  effect(USE labl);
  1.8322 +
  1.8323 +  size(8);
  1.8324 +  ins_cost(BRANCH_COST);
  1.8325 +  format %{ "BP$cmp   $xcc,$labl" %}
  1.8326 +  // Prim = bits 24-22, Secnd = bits 31-30
  1.8327 +  ins_encode( enc_bpl( labl, cmp, xcc ) );
  1.8328 +  ins_pc_relative(1);
  1.8329 +  ins_pipe(br_cc);
  1.8330 +%}
  1.8331 +
  1.8332 +// Manifest a CmpL3 result in an integer register.  Very painful.
  1.8333 +// This is the test to avoid.
  1.8334 +instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  1.8335 +  match(Set dst (CmpL3 src1 src2) );
  1.8336 +  effect( KILL ccr );
  1.8337 +  ins_cost(6*DEFAULT_COST);
  1.8338 +  size(24);
  1.8339 +  format %{ "CMP    $src1,$src2\t\t! long\n"
  1.8340 +          "\tBLT,a,pn done\n"
  1.8341 +          "\tMOV    -1,$dst\t! delay slot\n"
  1.8342 +          "\tBGT,a,pn done\n"
  1.8343 +          "\tMOV    1,$dst\t! delay slot\n"
  1.8344 +          "\tCLR    $dst\n"
  1.8345 +    "done:"     %}
  1.8346 +  ins_encode( cmpl_flag(src1,src2,dst) );
  1.8347 +  ins_pipe(cmpL_reg);
  1.8348 +%}
  1.8349 +
  1.8350 +// Conditional move
  1.8351 +instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  1.8352 +  match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  1.8353 +  ins_cost(150);
  1.8354 +  format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  1.8355 +  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  1.8356 +  ins_pipe(ialu_reg);
  1.8357 +%}
  1.8358 +
  1.8359 +instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  1.8360 +  match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  1.8361 +  ins_cost(140);
  1.8362 +  format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  1.8363 +  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  1.8364 +  ins_pipe(ialu_imm);
  1.8365 +%}
  1.8366 +
  1.8367 +instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  1.8368 +  match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  1.8369 +  ins_cost(150);
  1.8370 +  format %{ "MOV$cmp  $xcc,$src,$dst" %}
  1.8371 +  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  1.8372 +  ins_pipe(ialu_reg);
  1.8373 +%}
  1.8374 +
  1.8375 +instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  1.8376 +  match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  1.8377 +  ins_cost(140);
  1.8378 +  format %{ "MOV$cmp  $xcc,$src,$dst" %}
  1.8379 +  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  1.8380 +  ins_pipe(ialu_imm);
  1.8381 +%}
  1.8382 +
  1.8383 +instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  1.8384 +  match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  1.8385 +  ins_cost(150);
  1.8386 +  format %{ "MOV$cmp  $xcc,$src,$dst" %}
  1.8387 +  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  1.8388 +  ins_pipe(ialu_reg);
  1.8389 +%}
  1.8390 +
  1.8391 +instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  1.8392 +  match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  1.8393 +  ins_cost(140);
  1.8394 +  format %{ "MOV$cmp  $xcc,$src,$dst" %}
  1.8395 +  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  1.8396 +  ins_pipe(ialu_imm);
  1.8397 +%}
  1.8398 +
  1.8399 +instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  1.8400 +  match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  1.8401 +  ins_cost(150);
  1.8402 +  opcode(0x101);
  1.8403 +  format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  1.8404 +  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  1.8405 +  ins_pipe(int_conditional_float_move);
  1.8406 +%}
  1.8407 +
  1.8408 +instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  1.8409 +  match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  1.8410 +  ins_cost(150);
  1.8411 +  opcode(0x102);
  1.8412 +  format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  1.8413 +  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  1.8414 +  ins_pipe(int_conditional_float_move);
  1.8415 +%}
  1.8416 +
  1.8417 +// ============================================================================
  1.8418 +// Safepoint Instruction
  1.8419 +instruct safePoint_poll(iRegP poll) %{
  1.8420 +  match(SafePoint poll);
  1.8421 +  effect(USE poll);
  1.8422 +
  1.8423 +  size(4);
  1.8424 +#ifdef _LP64
  1.8425 +  format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  1.8426 +#else
  1.8427 +  format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  1.8428 +#endif
  1.8429 +  ins_encode %{
  1.8430 +    __ relocate(relocInfo::poll_type);
  1.8431 +    __ ld_ptr($poll$$Register, 0, G0);
  1.8432 +  %}
  1.8433 +  ins_pipe(loadPollP);
  1.8434 +%}
  1.8435 +
  1.8436 +// ============================================================================
  1.8437 +// Call Instructions
  1.8438 +// Call Java Static Instruction
  1.8439 +instruct CallStaticJavaDirect( method meth ) %{
  1.8440 +  match(CallStaticJava);
  1.8441 +  effect(USE meth);
  1.8442 +
  1.8443 +  size(8);
  1.8444 +  ins_cost(CALL_COST);
  1.8445 +  format %{ "CALL,static  ; NOP ==> " %}
  1.8446 +  ins_encode( Java_Static_Call( meth ), call_epilog );
  1.8447 +  ins_pc_relative(1);
  1.8448 +  ins_pipe(simple_call);
  1.8449 +%}
  1.8450 +
  1.8451 +// Call Java Dynamic Instruction
  1.8452 +instruct CallDynamicJavaDirect( method meth ) %{
  1.8453 +  match(CallDynamicJava);
  1.8454 +  effect(USE meth);
  1.8455 +
  1.8456 +  ins_cost(CALL_COST);
  1.8457 +  format %{ "SET    (empty),R_G5\n\t"
  1.8458 +            "CALL,dynamic  ; NOP ==> " %}
  1.8459 +  ins_encode( Java_Dynamic_Call( meth ), call_epilog );
  1.8460 +  ins_pc_relative(1);
  1.8461 +  ins_pipe(call);
  1.8462 +%}
  1.8463 +
  1.8464 +// Call Runtime Instruction
  1.8465 +instruct CallRuntimeDirect(method meth, l7RegP l7) %{
  1.8466 +  match(CallRuntime);
  1.8467 +  effect(USE meth, KILL l7);
  1.8468 +  ins_cost(CALL_COST);
  1.8469 +  format %{ "CALL,runtime" %}
  1.8470 +  ins_encode( Java_To_Runtime( meth ),
  1.8471 +              call_epilog, adjust_long_from_native_call );
  1.8472 +  ins_pc_relative(1);
  1.8473 +  ins_pipe(simple_call);
  1.8474 +%}
  1.8475 +
  1.8476 +// Call runtime without safepoint - same as CallRuntime
  1.8477 +instruct CallLeafDirect(method meth, l7RegP l7) %{
  1.8478 +  match(CallLeaf);
  1.8479 +  effect(USE meth, KILL l7);
  1.8480 +  ins_cost(CALL_COST);
  1.8481 +  format %{ "CALL,runtime leaf" %}
  1.8482 +  ins_encode( Java_To_Runtime( meth ),
  1.8483 +              call_epilog,
  1.8484 +              adjust_long_from_native_call );
  1.8485 +  ins_pc_relative(1);
  1.8486 +  ins_pipe(simple_call);
  1.8487 +%}
  1.8488 +
  1.8489 +// Call runtime without safepoint - same as CallLeaf
  1.8490 +instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
  1.8491 +  match(CallLeafNoFP);
  1.8492 +  effect(USE meth, KILL l7);
  1.8493 +  ins_cost(CALL_COST);
  1.8494 +  format %{ "CALL,runtime leaf nofp" %}
  1.8495 +  ins_encode( Java_To_Runtime( meth ),
  1.8496 +              call_epilog,
  1.8497 +              adjust_long_from_native_call );
  1.8498 +  ins_pc_relative(1);
  1.8499 +  ins_pipe(simple_call);
  1.8500 +%}
  1.8501 +
  1.8502 +// Tail Call; Jump from runtime stub to Java code.
  1.8503 +// Also known as an 'interprocedural jump'.
  1.8504 +// Target of jump will eventually return to caller.
  1.8505 +// TailJump below removes the return address.
  1.8506 +instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
  1.8507 +  match(TailCall jump_target method_oop );
  1.8508 +
  1.8509 +  ins_cost(CALL_COST);
  1.8510 +  format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
  1.8511 +  ins_encode(form_jmpl(jump_target));
  1.8512 +  ins_pipe(tail_call);
  1.8513 +%}
  1.8514 +
  1.8515 +
  1.8516 +// Return Instruction
  1.8517 +instruct Ret() %{
  1.8518 +  match(Return);
  1.8519 +
  1.8520 +  // The epilogue node did the ret already.
  1.8521 +  size(0);
  1.8522 +  format %{ "! return" %}
  1.8523 +  ins_encode();
  1.8524 +  ins_pipe(empty);
  1.8525 +%}
  1.8526 +
  1.8527 +
  1.8528 +// Tail Jump; remove the return address; jump to target.
  1.8529 +// TailCall above leaves the return address around.
  1.8530 +// TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
  1.8531 +// ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
  1.8532 +// "restore" before this instruction (in Epilogue), we need to materialize it
  1.8533 +// in %i0.
  1.8534 +instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
  1.8535 +  match( TailJump jump_target ex_oop );
  1.8536 +  ins_cost(CALL_COST);
  1.8537 +  format %{ "! discard R_O7\n\t"
  1.8538 +            "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
  1.8539 +  ins_encode(form_jmpl_set_exception_pc(jump_target));
  1.8540 +  // opcode(Assembler::jmpl_op3, Assembler::arith_op);
  1.8541 +  // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
  1.8542 +  // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
  1.8543 +  ins_pipe(tail_call);
  1.8544 +%}
  1.8545 +
  1.8546 +// Create exception oop: created by stack-crawling runtime code.
  1.8547 +// Created exception is now available to this handler, and is setup
  1.8548 +// just prior to jumping to this handler.  No code emitted.
  1.8549 +instruct CreateException( o0RegP ex_oop )
  1.8550 +%{
  1.8551 +  match(Set ex_oop (CreateEx));
  1.8552 +  ins_cost(0);
  1.8553 +
  1.8554 +  size(0);
  1.8555 +  // use the following format syntax
  1.8556 +  format %{ "! exception oop is in R_O0; no code emitted" %}
  1.8557 +  ins_encode();
  1.8558 +  ins_pipe(empty);
  1.8559 +%}
  1.8560 +
  1.8561 +
  1.8562 +// Rethrow exception:
  1.8563 +// The exception oop will come in the first argument position.
  1.8564 +// Then JUMP (not call) to the rethrow stub code.
  1.8565 +instruct RethrowException()
  1.8566 +%{
  1.8567 +  match(Rethrow);
  1.8568 +  ins_cost(CALL_COST);
  1.8569 +
  1.8570 +  // use the following format syntax
  1.8571 +  format %{ "Jmp    rethrow_stub" %}
  1.8572 +  ins_encode(enc_rethrow);
  1.8573 +  ins_pipe(tail_call);
  1.8574 +%}
  1.8575 +
  1.8576 +
  1.8577 +// Die now
  1.8578 +instruct ShouldNotReachHere( )
  1.8579 +%{
  1.8580 +  match(Halt);
  1.8581 +  ins_cost(CALL_COST);
  1.8582 +
  1.8583 +  size(4);
  1.8584 +  // Use the following format syntax
  1.8585 +  format %{ "ILLTRAP   ; ShouldNotReachHere" %}
  1.8586 +  ins_encode( form2_illtrap() );
  1.8587 +  ins_pipe(tail_call);
  1.8588 +%}
  1.8589 +
  1.8590 +// ============================================================================
  1.8591 +// The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
  1.8592 +// array for an instance of the superklass.  Set a hidden internal cache on a
  1.8593 +// hit (cache is checked with exposed code in gen_subtype_check()).  Return
  1.8594 +// not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
  1.8595 +instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
  1.8596 +  match(Set index (PartialSubtypeCheck sub super));
  1.8597 +  effect( KILL pcc, KILL o7 );
  1.8598 +  ins_cost(DEFAULT_COST*10);
  1.8599 +  format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
  1.8600 +  ins_encode( enc_PartialSubtypeCheck() );
  1.8601 +  ins_pipe(partial_subtype_check_pipe);
  1.8602 +%}
  1.8603 +
  1.8604 +instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
  1.8605 +  match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
  1.8606 +  effect( KILL idx, KILL o7 );
  1.8607 +  ins_cost(DEFAULT_COST*10);
  1.8608 +  format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
  1.8609 +  ins_encode( enc_PartialSubtypeCheck() );
  1.8610 +  ins_pipe(partial_subtype_check_pipe);
  1.8611 +%}
  1.8612 +
  1.8613 +// ============================================================================
  1.8614 +// inlined locking and unlocking
  1.8615 +
  1.8616 +instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  1.8617 +  match(Set pcc (FastLock object box));
  1.8618 +
  1.8619 +  effect(KILL scratch, TEMP scratch2);
  1.8620 +  ins_cost(100);
  1.8621 +
  1.8622 +  size(4*112);       // conservative overestimation ...
  1.8623 +  format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  1.8624 +  ins_encode( Fast_Lock(object, box, scratch, scratch2) );
  1.8625 +  ins_pipe(long_memory_op);
  1.8626 +%}
  1.8627 +
  1.8628 +
  1.8629 +instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  1.8630 +  match(Set pcc (FastUnlock object box));
  1.8631 +  effect(KILL scratch, TEMP scratch2);
  1.8632 +  ins_cost(100);
  1.8633 +
  1.8634 +  size(4*120);       // conservative overestimation ...
  1.8635 +  format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  1.8636 +  ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
  1.8637 +  ins_pipe(long_memory_op);
  1.8638 +%}
  1.8639 +
  1.8640 +// Count and Base registers are fixed because the allocator cannot
  1.8641 +// kill unknown registers.  The encodings are generic.
  1.8642 +instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
  1.8643 +  match(Set dummy (ClearArray cnt base));
  1.8644 +  effect(TEMP temp, KILL ccr);
  1.8645 +  ins_cost(300);
  1.8646 +  format %{ "MOV    $cnt,$temp\n"
  1.8647 +    "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
  1.8648 +    "        BRge   loop\t\t! Clearing loop\n"
  1.8649 +    "        STX    G0,[$base+$temp]\t! delay slot" %}
  1.8650 +  ins_encode( enc_Clear_Array(cnt, base, temp) );
  1.8651 +  ins_pipe(long_memory_op);
  1.8652 +%}
  1.8653 +
  1.8654 +instruct string_compare(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result, flagsReg ccr) %{
  1.8655 +  match(Set result (StrComp str1 str2));
  1.8656 +  effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL ccr);
  1.8657 +  ins_cost(300);
  1.8658 +  format %{ "String Compare $str1,$str2 -> $result" %}
  1.8659 +  ins_encode( enc_String_Compare(str1, str2, tmp1, tmp2, result) );
  1.8660 +  ins_pipe(long_memory_op);
  1.8661 +%}
  1.8662 +
  1.8663 +// ============================================================================
  1.8664 +//------------Bytes reverse--------------------------------------------------
  1.8665 +
  1.8666 +instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
  1.8667 +  match(Set dst (ReverseBytesI src));
  1.8668 +  effect(DEF dst, USE src);
  1.8669 +
  1.8670 +  // Op cost is artificially doubled to make sure that load or store
  1.8671 +  // instructions are preferred over this one which requires a spill
  1.8672 +  // onto a stack slot.
  1.8673 +  ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  1.8674 +  size(8);
  1.8675 +  format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  1.8676 +  opcode(Assembler::lduwa_op3);
  1.8677 +  ins_encode( form3_mem_reg_little(src, dst) );
  1.8678 +  ins_pipe( iload_mem );
  1.8679 +%}
  1.8680 +
  1.8681 +instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
  1.8682 +  match(Set dst (ReverseBytesL src));
  1.8683 +  effect(DEF dst, USE src);
  1.8684 +
  1.8685 +  // Op cost is artificially doubled to make sure that load or store
  1.8686 +  // instructions are preferred over this one which requires a spill
  1.8687 +  // onto a stack slot.
  1.8688 +  ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  1.8689 +  size(8);
  1.8690 +  format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  1.8691 +
  1.8692 +  opcode(Assembler::ldxa_op3);
  1.8693 +  ins_encode( form3_mem_reg_little(src, dst) );
  1.8694 +  ins_pipe( iload_mem );
  1.8695 +%}
  1.8696 +
  1.8697 +// Load Integer reversed byte order
  1.8698 +instruct loadI_reversed(iRegI dst, memory src) %{
  1.8699 +  match(Set dst (ReverseBytesI (LoadI src)));
  1.8700 +
  1.8701 +  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  1.8702 +  size(8);
  1.8703 +  format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  1.8704 +
  1.8705 +  opcode(Assembler::lduwa_op3);
  1.8706 +  ins_encode( form3_mem_reg_little( src, dst) );
  1.8707 +  ins_pipe(iload_mem);
  1.8708 +%}
  1.8709 +
  1.8710 +// Load Long - aligned and reversed
  1.8711 +instruct loadL_reversed(iRegL dst, memory src) %{
  1.8712 +  match(Set dst (ReverseBytesL (LoadL src)));
  1.8713 +
  1.8714 +  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  1.8715 +  size(8);
  1.8716 +  format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  1.8717 +
  1.8718 +  opcode(Assembler::ldxa_op3);
  1.8719 +  ins_encode( form3_mem_reg_little( src, dst ) );
  1.8720 +  ins_pipe(iload_mem);
  1.8721 +%}
  1.8722 +
  1.8723 +// Store Integer reversed byte order
  1.8724 +instruct storeI_reversed(memory dst, iRegI src) %{
  1.8725 +  match(Set dst (StoreI dst (ReverseBytesI src)));
  1.8726 +
  1.8727 +  ins_cost(MEMORY_REF_COST);
  1.8728 +  size(8);
  1.8729 +  format %{ "STWA   $src, $dst\t!asi=primary_little" %}
  1.8730 +
  1.8731 +  opcode(Assembler::stwa_op3);
  1.8732 +  ins_encode( form3_mem_reg_little( dst, src) );
  1.8733 +  ins_pipe(istore_mem_reg);
  1.8734 +%}
  1.8735 +
  1.8736 +// Store Long reversed byte order
  1.8737 +instruct storeL_reversed(memory dst, iRegL src) %{
  1.8738 +  match(Set dst (StoreL dst (ReverseBytesL src)));
  1.8739 +
  1.8740 +  ins_cost(MEMORY_REF_COST);
  1.8741 +  size(8);
  1.8742 +  format %{ "STXA   $src, $dst\t!asi=primary_little" %}
  1.8743 +
  1.8744 +  opcode(Assembler::stxa_op3);
  1.8745 +  ins_encode( form3_mem_reg_little( dst, src) );
  1.8746 +  ins_pipe(istore_mem_reg);
  1.8747 +%}
  1.8748 +
  1.8749 +//----------PEEPHOLE RULES-----------------------------------------------------
  1.8750 +// These must follow all instruction definitions as they use the names
  1.8751 +// defined in the instructions definitions.
  1.8752 +//
  1.8753 +// peepmatch ( root_instr_name [preceeding_instruction]* );
  1.8754 +//
  1.8755 +// peepconstraint %{
  1.8756 +// (instruction_number.operand_name relational_op instruction_number.operand_name
  1.8757 +//  [, ...] );
  1.8758 +// // instruction numbers are zero-based using left to right order in peepmatch
  1.8759 +//
  1.8760 +// peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
  1.8761 +// // provide an instruction_number.operand_name for each operand that appears
  1.8762 +// // in the replacement instruction's match rule
  1.8763 +//
  1.8764 +// ---------VM FLAGS---------------------------------------------------------
  1.8765 +//
  1.8766 +// All peephole optimizations can be turned off using -XX:-OptoPeephole
  1.8767 +//
  1.8768 +// Each peephole rule is given an identifying number starting with zero and
  1.8769 +// increasing by one in the order seen by the parser.  An individual peephole
  1.8770 +// can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
  1.8771 +// on the command-line.
  1.8772 +//
  1.8773 +// ---------CURRENT LIMITATIONS----------------------------------------------
  1.8774 +//
  1.8775 +// Only match adjacent instructions in same basic block
  1.8776 +// Only equality constraints
  1.8777 +// Only constraints between operands, not (0.dest_reg == EAX_enc)
  1.8778 +// Only one replacement instruction
  1.8779 +//
  1.8780 +// ---------EXAMPLE----------------------------------------------------------
  1.8781 +//
  1.8782 +// // pertinent parts of existing instructions in architecture description
  1.8783 +// instruct movI(eRegI dst, eRegI src) %{
  1.8784 +//   match(Set dst (CopyI src));
  1.8785 +// %}
  1.8786 +//
  1.8787 +// instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
  1.8788 +//   match(Set dst (AddI dst src));
  1.8789 +//   effect(KILL cr);
  1.8790 +// %}
  1.8791 +//
  1.8792 +// // Change (inc mov) to lea
  1.8793 +// peephole %{
  1.8794 +//   // increment preceeded by register-register move
  1.8795 +//   peepmatch ( incI_eReg movI );
  1.8796 +//   // require that the destination register of the increment
  1.8797 +//   // match the destination register of the move
  1.8798 +//   peepconstraint ( 0.dst == 1.dst );
  1.8799 +//   // construct a replacement instruction that sets
  1.8800 +//   // the destination to ( move's source register + one )
  1.8801 +//   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
  1.8802 +// %}
  1.8803 +//
  1.8804 +
  1.8805 +// // Change load of spilled value to only a spill
  1.8806 +// instruct storeI(memory mem, eRegI src) %{
  1.8807 +//   match(Set mem (StoreI mem src));
  1.8808 +// %}
  1.8809 +//
  1.8810 +// instruct loadI(eRegI dst, memory mem) %{
  1.8811 +//   match(Set dst (LoadI mem));
  1.8812 +// %}
  1.8813 +//
  1.8814 +// peephole %{
  1.8815 +//   peepmatch ( loadI storeI );
  1.8816 +//   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
  1.8817 +//   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
  1.8818 +// %}
  1.8819 +
  1.8820 +//----------SMARTSPILL RULES---------------------------------------------------
  1.8821 +// These must follow all instruction definitions as they use the names
  1.8822 +// defined in the instructions definitions.
  1.8823 +//
  1.8824 +// SPARC will probably not have any of these rules due to RISC instruction set.
  1.8825 +
  1.8826 +//----------PIPELINE-----------------------------------------------------------
  1.8827 +// Rules which define the behavior of the target architectures pipeline.

mercurial