src/cpu/sparc/vm/assembler_sparc.hpp

changeset 435
a61af66fc99e
child 548
ba764ed4b6f2
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/cpu/sparc/vm/assembler_sparc.hpp	Sat Dec 01 00:00:00 2007 +0000
     1.3 @@ -0,0 +1,2254 @@
     1.4 +/*
     1.5 + * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    1.23 + * CA 95054 USA or visit www.sun.com if you need additional information or
    1.24 + * have any questions.
    1.25 + *
    1.26 + */
    1.27 +
    1.28 +class BiasedLockingCounters;
    1.29 +
    1.30 +// <sys/trap.h> promises that the system will not use traps 16-31
    1.31 +#define ST_RESERVED_FOR_USER_0 0x10
    1.32 +
    1.33 +/* Written: David Ungar 4/19/97 */
    1.34 +
    1.35 +// Contains all the definitions needed for sparc assembly code generation.
    1.36 +
    1.37 +// Register aliases for parts of the system:
    1.38 +
    1.39 +// 64 bit values can be kept in g1-g5, o1-o5 and o7 and all 64 bits are safe
    1.40 +// across context switches in V8+ ABI.  Of course, there are no 64 bit regs
    1.41 +// in V8 ABI. All 64 bits are preserved in V9 ABI for all registers.
    1.42 +
    1.43 +// g2-g4 are scratch registers called "application globals".  Their
    1.44 +// meaning is reserved to the "compilation system"--which means us!
    1.45 +// They are are not supposed to be touched by ordinary C code, although
    1.46 +// highly-optimized C code might steal them for temps.  They are safe
    1.47 +// across thread switches, and the ABI requires that they be safe
    1.48 +// across function calls.
    1.49 +//
    1.50 +// g1 and g3 are touched by more modules.  V8 allows g1 to be clobbered
    1.51 +// across func calls, and V8+ also allows g5 to be clobbered across
    1.52 +// func calls.  Also, g1 and g5 can get touched while doing shared
    1.53 +// library loading.
    1.54 +//
    1.55 +// We must not touch g7 (it is the thread-self register) and g6 is
    1.56 +// reserved for certain tools.  g0, of course, is always zero.
    1.57 +//
    1.58 +// (Sources:  SunSoft Compilers Group, thread library engineers.)
    1.59 +
    1.60 +// %%%% The interpreter should be revisited to reduce global scratch regs.
    1.61 +
    1.62 +// This global always holds the current JavaThread pointer:
    1.63 +
    1.64 +REGISTER_DECLARATION(Register, G2_thread , G2);
    1.65 +
    1.66 +// The following globals are part of the Java calling convention:
    1.67 +
    1.68 +REGISTER_DECLARATION(Register, G5_method             , G5);
    1.69 +REGISTER_DECLARATION(Register, G5_megamorphic_method , G5_method);
    1.70 +REGISTER_DECLARATION(Register, G5_inline_cache_reg   , G5_method);
    1.71 +
    1.72 +// The following globals are used for the new C1 & interpreter calling convention:
    1.73 +REGISTER_DECLARATION(Register, Gargs        , G4); // pointing to the last argument
    1.74 +
    1.75 +// This local is used to preserve G2_thread in the interpreter and in stubs:
    1.76 +REGISTER_DECLARATION(Register, L7_thread_cache , L7);
    1.77 +
    1.78 +// These globals are used as scratch registers in the interpreter:
    1.79 +
    1.80 +REGISTER_DECLARATION(Register, Gframe_size   , G1); // SAME REG as G1_scratch
    1.81 +REGISTER_DECLARATION(Register, G1_scratch    , G1); // also SAME
    1.82 +REGISTER_DECLARATION(Register, G3_scratch    , G3);
    1.83 +REGISTER_DECLARATION(Register, G4_scratch    , G4);
    1.84 +
    1.85 +// These globals are used as short-lived scratch registers in the compiler:
    1.86 +
    1.87 +REGISTER_DECLARATION(Register, Gtemp  , G5);
    1.88 +
    1.89 +// The compiler requires that G5_megamorphic_method is G5_inline_cache_klass,
    1.90 +// because a single patchable "set" instruction (NativeMovConstReg,
    1.91 +// or NativeMovConstPatching for compiler1) instruction
    1.92 +// serves to set up either quantity, depending on whether the compiled
    1.93 +// call site is an inline cache or is megamorphic.  See the function
    1.94 +// CompiledIC::set_to_megamorphic.
    1.95 +//
    1.96 +// On the other hand, G5_inline_cache_klass must differ from G5_method,
    1.97 +// because both registers are needed for an inline cache that calls
    1.98 +// an interpreted method.
    1.99 +//
   1.100 +// Note that G5_method is only the method-self for the interpreter,
   1.101 +// and is logically unrelated to G5_megamorphic_method.
   1.102 +//
   1.103 +// Invariants on G2_thread (the JavaThread pointer):
   1.104 +//  - it should not be used for any other purpose anywhere
   1.105 +//  - it must be re-initialized by StubRoutines::call_stub()
   1.106 +//  - it must be preserved around every use of call_VM
   1.107 +
   1.108 +// We can consider using g2/g3/g4 to cache more values than the
   1.109 +// JavaThread, such as the card-marking base or perhaps pointers into
   1.110 +// Eden.  It's something of a waste to use them as scratch temporaries,
   1.111 +// since they are not supposed to be volatile.  (Of course, if we find
   1.112 +// that Java doesn't benefit from application globals, then we can just
   1.113 +// use them as ordinary temporaries.)
   1.114 +//
   1.115 +// Since g1 and g5 (and/or g6) are the volatile (caller-save) registers,
   1.116 +// it makes sense to use them routinely for procedure linkage,
   1.117 +// whenever the On registers are not applicable.  Examples:  G5_method,
   1.118 +// G5_inline_cache_klass, and a double handful of miscellaneous compiler
   1.119 +// stubs.  This means that compiler stubs, etc., should be kept to a
   1.120 +// maximum of two or three G-register arguments.
   1.121 +
   1.122 +
   1.123 +// stub frames
   1.124 +
   1.125 +REGISTER_DECLARATION(Register, Lentry_args      , L0); // pointer to args passed to callee (interpreter) not stub itself
   1.126 +
   1.127 +// Interpreter frames
   1.128 +
   1.129 +#ifdef CC_INTERP
   1.130 +REGISTER_DECLARATION(Register, Lstate           , L0); // interpreter state object pointer
   1.131 +REGISTER_DECLARATION(Register, L1_scratch       , L1); // scratch
   1.132 +REGISTER_DECLARATION(Register, Lmirror          , L1); // mirror (for native methods only)
   1.133 +REGISTER_DECLARATION(Register, L2_scratch       , L2);
   1.134 +REGISTER_DECLARATION(Register, L3_scratch       , L3);
   1.135 +REGISTER_DECLARATION(Register, L4_scratch       , L4);
   1.136 +REGISTER_DECLARATION(Register, Lscratch         , L5); // C1 uses
   1.137 +REGISTER_DECLARATION(Register, Lscratch2        , L6); // C1 uses
   1.138 +REGISTER_DECLARATION(Register, L7_scratch       , L7); // constant pool cache
   1.139 +REGISTER_DECLARATION(Register, O5_savedSP       , O5);
   1.140 +REGISTER_DECLARATION(Register, I5_savedSP       , I5); // Saved SP before bumping for locals.  This is simply
   1.141 +                                                       // a copy SP, so in 64-bit it's a biased value.  The bias
   1.142 +                                                       // is added and removed as needed in the frame code.
   1.143 +// Interface to signature handler
   1.144 +REGISTER_DECLARATION(Register, Llocals          , L7); // pointer to locals for signature handler
   1.145 +REGISTER_DECLARATION(Register, Lmethod          , L6); // methodOop when calling signature handler
   1.146 +
   1.147 +#else
   1.148 +REGISTER_DECLARATION(Register, Lesp             , L0); // expression stack pointer
   1.149 +REGISTER_DECLARATION(Register, Lbcp             , L1); // pointer to next bytecode
   1.150 +REGISTER_DECLARATION(Register, Lmethod          , L2);
   1.151 +REGISTER_DECLARATION(Register, Llocals          , L3);
   1.152 +REGISTER_DECLARATION(Register, Largs            , L3); // pointer to locals for signature handler
   1.153 +                                                       // must match Llocals in asm interpreter
   1.154 +REGISTER_DECLARATION(Register, Lmonitors        , L4);
   1.155 +REGISTER_DECLARATION(Register, Lbyte_code       , L5);
   1.156 +// When calling out from the interpreter we record SP so that we can remove any extra stack
   1.157 +// space allocated during adapter transitions. This register is only live from the point
   1.158 +// of the call until we return.
   1.159 +REGISTER_DECLARATION(Register, Llast_SP         , L5);
   1.160 +REGISTER_DECLARATION(Register, Lscratch         , L5);
   1.161 +REGISTER_DECLARATION(Register, Lscratch2        , L6);
   1.162 +REGISTER_DECLARATION(Register, LcpoolCache      , L6); // constant pool cache
   1.163 +
   1.164 +REGISTER_DECLARATION(Register, O5_savedSP       , O5);
   1.165 +REGISTER_DECLARATION(Register, I5_savedSP       , I5); // Saved SP before bumping for locals.  This is simply
   1.166 +                                                       // a copy SP, so in 64-bit it's a biased value.  The bias
   1.167 +                                                       // is added and removed as needed in the frame code.
   1.168 +REGISTER_DECLARATION(Register, IdispatchTables  , I4); // Base address of the bytecode dispatch tables
   1.169 +REGISTER_DECLARATION(Register, IdispatchAddress , I3); // Register which saves the dispatch address for each bytecode
   1.170 +REGISTER_DECLARATION(Register, ImethodDataPtr   , I2); // Pointer to the current method data
   1.171 +#endif /* CC_INTERP */
   1.172 +
   1.173 +// NOTE: Lscratch2 and LcpoolCache point to the same registers in
   1.174 +//       the interpreter code. If Lscratch2 needs to be used for some
   1.175 +//       purpose than LcpoolCache should be restore after that for
   1.176 +//       the interpreter to work right
   1.177 +// (These assignments must be compatible with L7_thread_cache; see above.)
   1.178 +
   1.179 +// Since Lbcp points into the middle of the method object,
   1.180 +// it is temporarily converted into a "bcx" during GC.
   1.181 +
   1.182 +// Exception processing
   1.183 +// These registers are passed into exception handlers.
   1.184 +// All exception handlers require the exception object being thrown.
   1.185 +// In addition, an nmethod's exception handler must be passed
   1.186 +// the address of the call site within the nmethod, to allow
   1.187 +// proper selection of the applicable catch block.
   1.188 +// (Interpreter frames use their own bcp() for this purpose.)
   1.189 +//
   1.190 +// The Oissuing_pc value is not always needed.  When jumping to a
   1.191 +// handler that is known to be interpreted, the Oissuing_pc value can be
   1.192 +// omitted.  An actual catch block in compiled code receives (from its
   1.193 +// nmethod's exception handler) the thrown exception in the Oexception,
   1.194 +// but it doesn't need the Oissuing_pc.
   1.195 +//
   1.196 +// If an exception handler (either interpreted or compiled)
   1.197 +// discovers there is no applicable catch block, it updates
   1.198 +// the Oissuing_pc to the continuation PC of its own caller,
   1.199 +// pops back to that caller's stack frame, and executes that
   1.200 +// caller's exception handler.  Obviously, this process will
   1.201 +// iterate until the control stack is popped back to a method
   1.202 +// containing an applicable catch block.  A key invariant is
   1.203 +// that the Oissuing_pc value is always a value local to
   1.204 +// the method whose exception handler is currently executing.
   1.205 +//
   1.206 +// Note:  The issuing PC value is __not__ a raw return address (I7 value).
   1.207 +// It is a "return pc", the address __following__ the call.
   1.208 +// Raw return addresses are converted to issuing PCs by frame::pc(),
   1.209 +// or by stubs.  Issuing PCs can be used directly with PC range tables.
   1.210 +//
   1.211 +REGISTER_DECLARATION(Register, Oexception  , O0); // exception being thrown
   1.212 +REGISTER_DECLARATION(Register, Oissuing_pc , O1); // where the exception is coming from
   1.213 +
   1.214 +
   1.215 +// These must occur after the declarations above
   1.216 +#ifndef DONT_USE_REGISTER_DEFINES
   1.217 +
   1.218 +#define Gthread             AS_REGISTER(Register, Gthread)
   1.219 +#define Gmethod             AS_REGISTER(Register, Gmethod)
   1.220 +#define Gmegamorphic_method AS_REGISTER(Register, Gmegamorphic_method)
   1.221 +#define Ginline_cache_reg   AS_REGISTER(Register, Ginline_cache_reg)
   1.222 +#define Gargs               AS_REGISTER(Register, Gargs)
   1.223 +#define Lthread_cache       AS_REGISTER(Register, Lthread_cache)
   1.224 +#define Gframe_size         AS_REGISTER(Register, Gframe_size)
   1.225 +#define Gtemp               AS_REGISTER(Register, Gtemp)
   1.226 +
   1.227 +#ifdef CC_INTERP
   1.228 +#define Lstate              AS_REGISTER(Register, Lstate)
   1.229 +#define Lesp                AS_REGISTER(Register, Lesp)
   1.230 +#define L1_scratch          AS_REGISTER(Register, L1_scratch)
   1.231 +#define Lmirror             AS_REGISTER(Register, Lmirror)
   1.232 +#define L2_scratch          AS_REGISTER(Register, L2_scratch)
   1.233 +#define L3_scratch          AS_REGISTER(Register, L3_scratch)
   1.234 +#define L4_scratch          AS_REGISTER(Register, L4_scratch)
   1.235 +#define Lscratch            AS_REGISTER(Register, Lscratch)
   1.236 +#define Lscratch2           AS_REGISTER(Register, Lscratch2)
   1.237 +#define L7_scratch          AS_REGISTER(Register, L7_scratch)
   1.238 +#define Ostate              AS_REGISTER(Register, Ostate)
   1.239 +#else
   1.240 +#define Lesp                AS_REGISTER(Register, Lesp)
   1.241 +#define Lbcp                AS_REGISTER(Register, Lbcp)
   1.242 +#define Lmethod             AS_REGISTER(Register, Lmethod)
   1.243 +#define Llocals             AS_REGISTER(Register, Llocals)
   1.244 +#define Lmonitors           AS_REGISTER(Register, Lmonitors)
   1.245 +#define Lbyte_code          AS_REGISTER(Register, Lbyte_code)
   1.246 +#define Lscratch            AS_REGISTER(Register, Lscratch)
   1.247 +#define Lscratch2           AS_REGISTER(Register, Lscratch2)
   1.248 +#define LcpoolCache         AS_REGISTER(Register, LcpoolCache)
   1.249 +#endif /* ! CC_INTERP */
   1.250 +
   1.251 +#define Lentry_args         AS_REGISTER(Register, Lentry_args)
   1.252 +#define I5_savedSP          AS_REGISTER(Register, I5_savedSP)
   1.253 +#define O5_savedSP          AS_REGISTER(Register, O5_savedSP)
   1.254 +#define IdispatchAddress    AS_REGISTER(Register, IdispatchAddress)
   1.255 +#define ImethodDataPtr      AS_REGISTER(Register, ImethodDataPtr)
   1.256 +#define IdispatchTables     AS_REGISTER(Register, IdispatchTables)
   1.257 +
   1.258 +#define Oexception          AS_REGISTER(Register, Oexception)
   1.259 +#define Oissuing_pc         AS_REGISTER(Register, Oissuing_pc)
   1.260 +
   1.261 +
   1.262 +#endif
   1.263 +
   1.264 +// Address is an abstraction used to represent a memory location.
   1.265 +//
   1.266 +// Note: A register location is represented via a Register, not
   1.267 +//       via an address for efficiency & simplicity reasons.
   1.268 +
   1.269 +class Address VALUE_OBJ_CLASS_SPEC {
   1.270 + private:
   1.271 +  Register              _base;
   1.272 +#ifdef _LP64
   1.273 +  int                   _hi32;          // bits 63::32
   1.274 +  int                   _low32;         // bits 31::0
   1.275 +#endif
   1.276 +  int                   _hi;
   1.277 +  int                   _disp;
   1.278 +  RelocationHolder      _rspec;
   1.279 +
   1.280 +  RelocationHolder rspec_from_rtype(relocInfo::relocType rt, address a = NULL) {
   1.281 +    switch (rt) {
   1.282 +    case relocInfo::external_word_type:
   1.283 +      return external_word_Relocation::spec(a);
   1.284 +    case relocInfo::internal_word_type:
   1.285 +      return internal_word_Relocation::spec(a);
   1.286 +#ifdef _LP64
   1.287 +    case relocInfo::opt_virtual_call_type:
   1.288 +      return opt_virtual_call_Relocation::spec();
   1.289 +    case relocInfo::static_call_type:
   1.290 +      return static_call_Relocation::spec();
   1.291 +    case relocInfo::runtime_call_type:
   1.292 +      return runtime_call_Relocation::spec();
   1.293 +#endif
   1.294 +    case relocInfo::none:
   1.295 +      return RelocationHolder();
   1.296 +    default:
   1.297 +      ShouldNotReachHere();
   1.298 +      return RelocationHolder();
   1.299 +    }
   1.300 +  }
   1.301 +
   1.302 + public:
   1.303 +  Address(Register b, address a, relocInfo::relocType rt = relocInfo::none)
   1.304 +    : _rspec(rspec_from_rtype(rt, a))
   1.305 +  {
   1.306 +    _base  = b;
   1.307 +#ifdef _LP64
   1.308 +    _hi32  = (intptr_t)a >> 32;    // top 32 bits in 64 bit word
   1.309 +    _low32 = (intptr_t)a & ~0;     // low 32 bits in 64 bit word
   1.310 +#endif
   1.311 +    _hi    = (intptr_t)a & ~0x3ff; // top    22 bits in low word
   1.312 +    _disp  = (intptr_t)a &  0x3ff; // bottom 10 bits
   1.313 +  }
   1.314 +
   1.315 +  Address(Register b, address a, RelocationHolder const& rspec)
   1.316 +    : _rspec(rspec)
   1.317 +  {
   1.318 +    _base  = b;
   1.319 +#ifdef _LP64
   1.320 +    _hi32  = (intptr_t)a >> 32;    // top 32 bits in 64 bit word
   1.321 +    _low32 = (intptr_t)a & ~0;     // low 32 bits in 64 bit word
   1.322 +#endif
   1.323 +    _hi    = (intptr_t)a & ~0x3ff; // top    22 bits
   1.324 +    _disp  = (intptr_t)a &  0x3ff; // bottom 10 bits
   1.325 +  }
   1.326 +
   1.327 +  Address(Register b, intptr_t h, intptr_t d, RelocationHolder const& rspec = RelocationHolder())
   1.328 +    : _rspec(rspec)
   1.329 +  {
   1.330 +    _base  = b;
   1.331 +#ifdef _LP64
   1.332 +// [RGV] Put in Assert to force me to check usage of this constructor
   1.333 +     assert( h == 0, "Check usage of this constructor" );
   1.334 +    _hi32  = h;
   1.335 +    _low32 = d;
   1.336 +    _hi    = h;
   1.337 +    _disp  = d;
   1.338 +#else
   1.339 +    _hi    = h;
   1.340 +    _disp  = d;
   1.341 +#endif
   1.342 +  }
   1.343 +
   1.344 +  Address()
   1.345 +    : _rspec(RelocationHolder())
   1.346 +  {
   1.347 +    _base  = G0;
   1.348 +#ifdef _LP64
   1.349 +    _hi32  = 0;
   1.350 +    _low32 = 0;
   1.351 +#endif
   1.352 +    _hi    = 0;
   1.353 +    _disp  = 0;
   1.354 +  }
   1.355 +
   1.356 +  // fancier constructors
   1.357 +
   1.358 +  enum addr_type {
   1.359 +    extra_in_argument,  // in the In registers
   1.360 +    extra_out_argument  // in the Outs
   1.361 +  };
   1.362 +
   1.363 +  Address( addr_type, int );
   1.364 +
   1.365 +  // accessors
   1.366 +
   1.367 +  Register               base() const { return _base; }
   1.368 +#ifdef _LP64
   1.369 +  int                   hi32()  const { return _hi32; }
   1.370 +  int                   low32() const { return _low32; }
   1.371 +#endif
   1.372 +  int                      hi() const { return _hi;  }
   1.373 +  int                    disp() const { return _disp; }
   1.374 +#ifdef _LP64
   1.375 +  intptr_t              value() const { return ((intptr_t)_hi32 << 32) |
   1.376 +                                                (intptr_t)(uint32_t)_low32; }
   1.377 +#else
   1.378 +  int                   value() const { return _hi | _disp; }
   1.379 +#endif
   1.380 +  const relocInfo::relocType  rtype() { return _rspec.type(); }
   1.381 +  const RelocationHolder&     rspec() { return _rspec; }
   1.382 +
   1.383 +  RelocationHolder      rspec(int offset) const {
   1.384 +    return offset == 0 ? _rspec : _rspec.plus(offset);
   1.385 +  }
   1.386 +
   1.387 +  inline bool is_simm13(int offset = 0);  // check disp+offset for overflow
   1.388 +
   1.389 +  Address split_disp() const {            // deal with disp overflow
   1.390 +    Address a = (*this);
   1.391 +    int hi_disp = _disp & ~0x3ff;
   1.392 +    if (hi_disp != 0) {
   1.393 +      a._disp -= hi_disp;
   1.394 +      a._hi   += hi_disp;
   1.395 +    }
   1.396 +    return a;
   1.397 +  }
   1.398 +
   1.399 +  Address after_save() const {
   1.400 +    Address a = (*this);
   1.401 +    a._base = a._base->after_save();
   1.402 +    return a;
   1.403 +  }
   1.404 +
   1.405 +  Address after_restore() const {
   1.406 +    Address a = (*this);
   1.407 +    a._base = a._base->after_restore();
   1.408 +    return a;
   1.409 +  }
   1.410 +
   1.411 +  friend class Assembler;
   1.412 +};
   1.413 +
   1.414 +
   1.415 +inline Address RegisterImpl::address_in_saved_window() const {
   1.416 +   return (Address(SP, 0, (sp_offset_in_saved_window() * wordSize) + STACK_BIAS));
   1.417 +}
   1.418 +
   1.419 +
   1.420 +
   1.421 +// Argument is an abstraction used to represent an outgoing
   1.422 +// actual argument or an incoming formal parameter, whether
   1.423 +// it resides in memory or in a register, in a manner consistent
   1.424 +// with the SPARC Application Binary Interface, or ABI.  This is
   1.425 +// often referred to as the native or C calling convention.
   1.426 +
   1.427 +class Argument VALUE_OBJ_CLASS_SPEC {
   1.428 + private:
   1.429 +  int _number;
   1.430 +  bool _is_in;
   1.431 +
   1.432 + public:
   1.433 +#ifdef _LP64
   1.434 +  enum {
   1.435 +    n_register_parameters = 6,          // only 6 registers may contain integer parameters
   1.436 +    n_float_register_parameters = 16    // Can have up to 16 floating registers
   1.437 +  };
   1.438 +#else
   1.439 +  enum {
   1.440 +    n_register_parameters = 6           // only 6 registers may contain integer parameters
   1.441 +  };
   1.442 +#endif
   1.443 +
   1.444 +  // creation
   1.445 +  Argument(int number, bool is_in) : _number(number), _is_in(is_in) {}
   1.446 +
   1.447 +  int  number() const  { return _number;  }
   1.448 +  bool is_in()  const  { return _is_in;   }
   1.449 +  bool is_out() const  { return !is_in(); }
   1.450 +
   1.451 +  Argument successor() const  { return Argument(number() + 1, is_in()); }
   1.452 +  Argument as_in()     const  { return Argument(number(), true ); }
   1.453 +  Argument as_out()    const  { return Argument(number(), false); }
   1.454 +
   1.455 +  // locating register-based arguments:
   1.456 +  bool is_register() const { return _number < n_register_parameters; }
   1.457 +
   1.458 +#ifdef _LP64
   1.459 +  // locating Floating Point register-based arguments:
   1.460 +  bool is_float_register() const { return _number < n_float_register_parameters; }
   1.461 +
   1.462 +  FloatRegister as_float_register() const {
   1.463 +    assert(is_float_register(), "must be a register argument");
   1.464 +    return as_FloatRegister(( number() *2 ) + 1);
   1.465 +  }
   1.466 +  FloatRegister as_double_register() const {
   1.467 +    assert(is_float_register(), "must be a register argument");
   1.468 +    return as_FloatRegister(( number() *2 ));
   1.469 +  }
   1.470 +#endif
   1.471 +
   1.472 +  Register as_register() const {
   1.473 +    assert(is_register(), "must be a register argument");
   1.474 +    return is_in() ? as_iRegister(number()) : as_oRegister(number());
   1.475 +  }
   1.476 +
   1.477 +  // locating memory-based arguments
   1.478 +  Address as_address() const {
   1.479 +    assert(!is_register(), "must be a memory argument");
   1.480 +    return address_in_frame();
   1.481 +  }
   1.482 +
   1.483 +  // When applied to a register-based argument, give the corresponding address
   1.484 +  // into the 6-word area "into which callee may store register arguments"
   1.485 +  // (This is a different place than the corresponding register-save area location.)
   1.486 +  Address address_in_frame() const {
   1.487 +    return Address( is_in()   ? Address::extra_in_argument
   1.488 +                              : Address::extra_out_argument,
   1.489 +                    _number );
   1.490 +  }
   1.491 +
   1.492 +  // debugging
   1.493 +  const char* name() const;
   1.494 +
   1.495 +  friend class Assembler;
   1.496 +};
   1.497 +
   1.498 +
   1.499 +// The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
   1.500 +// level; i.e., what you write
   1.501 +// is what you get. The Assembler is generating code into a CodeBuffer.
   1.502 +
   1.503 +class Assembler : public AbstractAssembler  {
   1.504 + protected:
   1.505 +
   1.506 +  static void print_instruction(int inst);
   1.507 +  static int  patched_branch(int dest_pos, int inst, int inst_pos);
   1.508 +  static int  branch_destination(int inst, int pos);
   1.509 +
   1.510 +
   1.511 +  friend class AbstractAssembler;
   1.512 +
   1.513 +  // code patchers need various routines like inv_wdisp()
   1.514 +  friend class NativeInstruction;
   1.515 +  friend class NativeGeneralJump;
   1.516 +  friend class Relocation;
   1.517 +  friend class Label;
   1.518 +
   1.519 + public:
   1.520 +  // op carries format info; see page 62 & 267
   1.521 +
   1.522 +  enum ops {
   1.523 +    call_op   = 1, // fmt 1
   1.524 +    branch_op = 0, // also sethi (fmt2)
   1.525 +    arith_op  = 2, // fmt 3, arith & misc
   1.526 +    ldst_op   = 3  // fmt 3, load/store
   1.527 +  };
   1.528 +
   1.529 +  enum op2s {
   1.530 +    bpr_op2   = 3,
   1.531 +    fb_op2    = 6,
   1.532 +    fbp_op2   = 5,
   1.533 +    br_op2    = 2,
   1.534 +    bp_op2    = 1,
   1.535 +    cb_op2    = 7, // V8
   1.536 +    sethi_op2 = 4
   1.537 +  };
   1.538 +
   1.539 +  enum op3s {
   1.540 +    // selected op3s
   1.541 +    add_op3      = 0x00,
   1.542 +    and_op3      = 0x01,
   1.543 +    or_op3       = 0x02,
   1.544 +    xor_op3      = 0x03,
   1.545 +    sub_op3      = 0x04,
   1.546 +    andn_op3     = 0x05,
   1.547 +    orn_op3      = 0x06,
   1.548 +    xnor_op3     = 0x07,
   1.549 +    addc_op3     = 0x08,
   1.550 +    mulx_op3     = 0x09,
   1.551 +    umul_op3     = 0x0a,
   1.552 +    smul_op3     = 0x0b,
   1.553 +    subc_op3     = 0x0c,
   1.554 +    udivx_op3    = 0x0d,
   1.555 +    udiv_op3     = 0x0e,
   1.556 +    sdiv_op3     = 0x0f,
   1.557 +
   1.558 +    addcc_op3    = 0x10,
   1.559 +    andcc_op3    = 0x11,
   1.560 +    orcc_op3     = 0x12,
   1.561 +    xorcc_op3    = 0x13,
   1.562 +    subcc_op3    = 0x14,
   1.563 +    andncc_op3   = 0x15,
   1.564 +    orncc_op3    = 0x16,
   1.565 +    xnorcc_op3   = 0x17,
   1.566 +    addccc_op3   = 0x18,
   1.567 +    umulcc_op3   = 0x1a,
   1.568 +    smulcc_op3   = 0x1b,
   1.569 +    subccc_op3   = 0x1c,
   1.570 +    udivcc_op3   = 0x1e,
   1.571 +    sdivcc_op3   = 0x1f,
   1.572 +
   1.573 +    taddcc_op3   = 0x20,
   1.574 +    tsubcc_op3   = 0x21,
   1.575 +    taddcctv_op3 = 0x22,
   1.576 +    tsubcctv_op3 = 0x23,
   1.577 +    mulscc_op3   = 0x24,
   1.578 +    sll_op3      = 0x25,
   1.579 +    sllx_op3     = 0x25,
   1.580 +    srl_op3      = 0x26,
   1.581 +    srlx_op3     = 0x26,
   1.582 +    sra_op3      = 0x27,
   1.583 +    srax_op3     = 0x27,
   1.584 +    rdreg_op3    = 0x28,
   1.585 +    membar_op3   = 0x28,
   1.586 +
   1.587 +    flushw_op3   = 0x2b,
   1.588 +    movcc_op3    = 0x2c,
   1.589 +    sdivx_op3    = 0x2d,
   1.590 +    popc_op3     = 0x2e,
   1.591 +    movr_op3     = 0x2f,
   1.592 +
   1.593 +    sir_op3      = 0x30,
   1.594 +    wrreg_op3    = 0x30,
   1.595 +    saved_op3    = 0x31,
   1.596 +
   1.597 +    fpop1_op3    = 0x34,
   1.598 +    fpop2_op3    = 0x35,
   1.599 +    impdep1_op3  = 0x36,
   1.600 +    impdep2_op3  = 0x37,
   1.601 +    jmpl_op3     = 0x38,
   1.602 +    rett_op3     = 0x39,
   1.603 +    trap_op3     = 0x3a,
   1.604 +    flush_op3    = 0x3b,
   1.605 +    save_op3     = 0x3c,
   1.606 +    restore_op3  = 0x3d,
   1.607 +    done_op3     = 0x3e,
   1.608 +    retry_op3    = 0x3e,
   1.609 +
   1.610 +    lduw_op3     = 0x00,
   1.611 +    ldub_op3     = 0x01,
   1.612 +    lduh_op3     = 0x02,
   1.613 +    ldd_op3      = 0x03,
   1.614 +    stw_op3      = 0x04,
   1.615 +    stb_op3      = 0x05,
   1.616 +    sth_op3      = 0x06,
   1.617 +    std_op3      = 0x07,
   1.618 +    ldsw_op3     = 0x08,
   1.619 +    ldsb_op3     = 0x09,
   1.620 +    ldsh_op3     = 0x0a,
   1.621 +    ldx_op3      = 0x0b,
   1.622 +
   1.623 +    ldstub_op3   = 0x0d,
   1.624 +    stx_op3      = 0x0e,
   1.625 +    swap_op3     = 0x0f,
   1.626 +
   1.627 +    lduwa_op3    = 0x10,
   1.628 +    ldxa_op3     = 0x1b,
   1.629 +
   1.630 +    stwa_op3     = 0x14,
   1.631 +    stxa_op3     = 0x1e,
   1.632 +
   1.633 +    ldf_op3      = 0x20,
   1.634 +    ldfsr_op3    = 0x21,
   1.635 +    ldqf_op3     = 0x22,
   1.636 +    lddf_op3     = 0x23,
   1.637 +    stf_op3      = 0x24,
   1.638 +    stfsr_op3    = 0x25,
   1.639 +    stqf_op3     = 0x26,
   1.640 +    stdf_op3     = 0x27,
   1.641 +
   1.642 +    prefetch_op3 = 0x2d,
   1.643 +
   1.644 +
   1.645 +    ldc_op3      = 0x30,
   1.646 +    ldcsr_op3    = 0x31,
   1.647 +    lddc_op3     = 0x33,
   1.648 +    stc_op3      = 0x34,
   1.649 +    stcsr_op3    = 0x35,
   1.650 +    stdcq_op3    = 0x36,
   1.651 +    stdc_op3     = 0x37,
   1.652 +
   1.653 +    casa_op3     = 0x3c,
   1.654 +    casxa_op3    = 0x3e,
   1.655 +
   1.656 +    alt_bit_op3  = 0x10,
   1.657 +     cc_bit_op3  = 0x10
   1.658 +  };
   1.659 +
   1.660 +  enum opfs {
   1.661 +    // selected opfs
   1.662 +    fmovs_opf   = 0x01,
   1.663 +    fmovd_opf   = 0x02,
   1.664 +
   1.665 +    fnegs_opf   = 0x05,
   1.666 +    fnegd_opf   = 0x06,
   1.667 +
   1.668 +    fadds_opf   = 0x41,
   1.669 +    faddd_opf   = 0x42,
   1.670 +    fsubs_opf   = 0x45,
   1.671 +    fsubd_opf   = 0x46,
   1.672 +
   1.673 +    fmuls_opf   = 0x49,
   1.674 +    fmuld_opf   = 0x4a,
   1.675 +    fdivs_opf   = 0x4d,
   1.676 +    fdivd_opf   = 0x4e,
   1.677 +
   1.678 +    fcmps_opf   = 0x51,
   1.679 +    fcmpd_opf   = 0x52,
   1.680 +
   1.681 +    fstox_opf   = 0x81,
   1.682 +    fdtox_opf   = 0x82,
   1.683 +    fxtos_opf   = 0x84,
   1.684 +    fxtod_opf   = 0x88,
   1.685 +    fitos_opf   = 0xc4,
   1.686 +    fdtos_opf   = 0xc6,
   1.687 +    fitod_opf   = 0xc8,
   1.688 +    fstod_opf   = 0xc9,
   1.689 +    fstoi_opf   = 0xd1,
   1.690 +    fdtoi_opf   = 0xd2
   1.691 +  };
   1.692 +
   1.693 +  enum RCondition {  rc_z = 1,  rc_lez = 2,  rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7  };
   1.694 +
   1.695 +  enum Condition {
   1.696 +     // for FBfcc & FBPfcc instruction
   1.697 +    f_never                     = 0,
   1.698 +    f_notEqual                  = 1,
   1.699 +    f_notZero                   = 1,
   1.700 +    f_lessOrGreater             = 2,
   1.701 +    f_unorderedOrLess           = 3,
   1.702 +    f_less                      = 4,
   1.703 +    f_unorderedOrGreater        = 5,
   1.704 +    f_greater                   = 6,
   1.705 +    f_unordered                 = 7,
   1.706 +    f_always                    = 8,
   1.707 +    f_equal                     = 9,
   1.708 +    f_zero                      = 9,
   1.709 +    f_unorderedOrEqual          = 10,
   1.710 +    f_greaterOrEqual            = 11,
   1.711 +    f_unorderedOrGreaterOrEqual = 12,
   1.712 +    f_lessOrEqual               = 13,
   1.713 +    f_unorderedOrLessOrEqual    = 14,
   1.714 +    f_ordered                   = 15,
   1.715 +
   1.716 +    // V8 coproc, pp 123 v8 manual
   1.717 +
   1.718 +    cp_always  = 8,
   1.719 +    cp_never   = 0,
   1.720 +    cp_3       = 7,
   1.721 +    cp_2       = 6,
   1.722 +    cp_2or3    = 5,
   1.723 +    cp_1       = 4,
   1.724 +    cp_1or3    = 3,
   1.725 +    cp_1or2    = 2,
   1.726 +    cp_1or2or3 = 1,
   1.727 +    cp_0       = 9,
   1.728 +    cp_0or3    = 10,
   1.729 +    cp_0or2    = 11,
   1.730 +    cp_0or2or3 = 12,
   1.731 +    cp_0or1    = 13,
   1.732 +    cp_0or1or3 = 14,
   1.733 +    cp_0or1or2 = 15,
   1.734 +
   1.735 +
   1.736 +    // for integers
   1.737 +
   1.738 +    never                 =  0,
   1.739 +    equal                 =  1,
   1.740 +    zero                  =  1,
   1.741 +    lessEqual             =  2,
   1.742 +    less                  =  3,
   1.743 +    lessEqualUnsigned     =  4,
   1.744 +    lessUnsigned          =  5,
   1.745 +    carrySet              =  5,
   1.746 +    negative              =  6,
   1.747 +    overflowSet           =  7,
   1.748 +    always                =  8,
   1.749 +    notEqual              =  9,
   1.750 +    notZero               =  9,
   1.751 +    greater               =  10,
   1.752 +    greaterEqual          =  11,
   1.753 +    greaterUnsigned       =  12,
   1.754 +    greaterEqualUnsigned  =  13,
   1.755 +    carryClear            =  13,
   1.756 +    positive              =  14,
   1.757 +    overflowClear         =  15
   1.758 +  };
   1.759 +
   1.760 +  enum CC {
   1.761 +    icc  = 0,  xcc  = 2,
   1.762 +    // ptr_cc is the correct condition code for a pointer or intptr_t:
   1.763 +    ptr_cc = NOT_LP64(icc) LP64_ONLY(xcc),
   1.764 +    fcc0 = 0,  fcc1 = 1, fcc2 = 2, fcc3 = 3
   1.765 +  };
   1.766 +
   1.767 +  enum PrefetchFcn {
   1.768 +    severalReads = 0,  oneRead = 1,  severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4
   1.769 +  };
   1.770 +
   1.771 + public:
   1.772 +  // Helper functions for groups of instructions
   1.773 +
   1.774 +  enum Predict { pt = 1, pn = 0 }; // pt = predict taken
   1.775 +
   1.776 +  enum Membar_mask_bits { // page 184, v9
   1.777 +    StoreStore = 1 << 3,
   1.778 +    LoadStore  = 1 << 2,
   1.779 +    StoreLoad  = 1 << 1,
   1.780 +    LoadLoad   = 1 << 0,
   1.781 +
   1.782 +    Sync       = 1 << 6,
   1.783 +    MemIssue   = 1 << 5,
   1.784 +    Lookaside  = 1 << 4
   1.785 +  };
   1.786 +
   1.787 +  // test if x is within signed immediate range for nbits
   1.788 +  static bool is_simm(int x, int nbits) { return -( 1 << nbits-1 )  <= x   &&   x  <  ( 1 << nbits-1 ); }
   1.789 +
   1.790 +  // test if -4096 <= x <= 4095
   1.791 +  static bool is_simm13(int x) { return is_simm(x, 13); }
   1.792 +
   1.793 +  enum ASIs { // page 72, v9
   1.794 +    ASI_PRIMARY        = 0x80,
   1.795 +    ASI_PRIMARY_LITTLE = 0x88
   1.796 +    // add more from book as needed
   1.797 +  };
   1.798 +
   1.799 + protected:
   1.800 +  // helpers
   1.801 +
   1.802 +  // x is supposed to fit in a field "nbits" wide
   1.803 +  // and be sign-extended. Check the range.
   1.804 +
   1.805 +  static void assert_signed_range(intptr_t x, int nbits) {
   1.806 +    assert( nbits == 32
   1.807 +        ||  -(1 << nbits-1) <= x  &&  x < ( 1 << nbits-1),
   1.808 +      "value out of range");
   1.809 +  }
   1.810 +
   1.811 +  static void assert_signed_word_disp_range(intptr_t x, int nbits) {
   1.812 +    assert( (x & 3) == 0, "not word aligned");
   1.813 +    assert_signed_range(x, nbits + 2);
   1.814 +  }
   1.815 +
   1.816 +  static void assert_unsigned_const(int x, int nbits) {
   1.817 +    assert( juint(x)  <  juint(1 << nbits), "unsigned constant out of range");
   1.818 +  }
   1.819 +
   1.820 +  // fields: note bits numbered from LSB = 0,
   1.821 +  //  fields known by inclusive bit range
   1.822 +
   1.823 +  static int fmask(juint hi_bit, juint lo_bit) {
   1.824 +    assert( hi_bit >= lo_bit  &&  0 <= lo_bit  &&  hi_bit < 32, "bad bits");
   1.825 +    return (1 << ( hi_bit-lo_bit + 1 )) - 1;
   1.826 +  }
   1.827 +
   1.828 +  // inverse of u_field
   1.829 +
   1.830 +  static int inv_u_field(int x, int hi_bit, int lo_bit) {
   1.831 +    juint r = juint(x) >> lo_bit;
   1.832 +    r &= fmask( hi_bit, lo_bit);
   1.833 +    return int(r);
   1.834 +  }
   1.835 +
   1.836 +
   1.837 +  // signed version: extract from field and sign-extend
   1.838 +
   1.839 +  static int inv_s_field(int x, int hi_bit, int lo_bit) {
   1.840 +    int sign_shift = 31 - hi_bit;
   1.841 +    return inv_u_field( ((x << sign_shift) >> sign_shift), hi_bit, lo_bit);
   1.842 +  }
   1.843 +
   1.844 +  // given a field that ranges from hi_bit to lo_bit (inclusive,
   1.845 +  // LSB = 0), and an unsigned value for the field,
   1.846 +  // shift it into the field
   1.847 +
   1.848 +#ifdef ASSERT
   1.849 +  static int u_field(int x, int hi_bit, int lo_bit) {
   1.850 +    assert( ( x & ~fmask(hi_bit, lo_bit))  == 0,
   1.851 +            "value out of range");
   1.852 +    int r = x << lo_bit;
   1.853 +    assert( inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
   1.854 +    return r;
   1.855 +  }
   1.856 +#else
   1.857 +  // make sure this is inlined as it will reduce code size significantly
   1.858 +  #define u_field(x, hi_bit, lo_bit)   ((x) << (lo_bit))
   1.859 +#endif
   1.860 +
   1.861 +  static int inv_op(  int x ) { return inv_u_field(x, 31, 30); }
   1.862 +  static int inv_op2( int x ) { return inv_u_field(x, 24, 22); }
   1.863 +  static int inv_op3( int x ) { return inv_u_field(x, 24, 19); }
   1.864 +  static int inv_cond( int x ){ return inv_u_field(x, 28, 25); }
   1.865 +
   1.866 +  static bool inv_immed( int x ) { return (x & Assembler::immed(true)) != 0; }
   1.867 +
   1.868 +  static Register inv_rd(  int x ) { return as_Register(inv_u_field(x, 29, 25)); }
   1.869 +  static Register inv_rs1( int x ) { return as_Register(inv_u_field(x, 18, 14)); }
   1.870 +  static Register inv_rs2( int x ) { return as_Register(inv_u_field(x,  4,  0)); }
   1.871 +
   1.872 +  static int op(       int         x)  { return  u_field(x,             31, 30); }
   1.873 +  static int rd(       Register    r)  { return  u_field(r->encoding(), 29, 25); }
   1.874 +  static int fcn(      int         x)  { return  u_field(x,             29, 25); }
   1.875 +  static int op3(      int         x)  { return  u_field(x,             24, 19); }
   1.876 +  static int rs1(      Register    r)  { return  u_field(r->encoding(), 18, 14); }
   1.877 +  static int rs2(      Register    r)  { return  u_field(r->encoding(),  4,  0); }
   1.878 +  static int annul(    bool        a)  { return  u_field(a ? 1 : 0,     29, 29); }
   1.879 +  static int cond(     int         x)  { return  u_field(x,             28, 25); }
   1.880 +  static int cond_mov( int         x)  { return  u_field(x,             17, 14); }
   1.881 +  static int rcond(    RCondition  x)  { return  u_field(x,             12, 10); }
   1.882 +  static int op2(      int         x)  { return  u_field(x,             24, 22); }
   1.883 +  static int predict(  bool        p)  { return  u_field(p ? 1 : 0,     19, 19); }
   1.884 +  static int branchcc( CC       fcca)  { return  u_field(fcca,          21, 20); }
   1.885 +  static int cmpcc(    CC       fcca)  { return  u_field(fcca,          26, 25); }
   1.886 +  static int imm_asi(  int         x)  { return  u_field(x,             12,  5); }
   1.887 +  static int immed(    bool        i)  { return  u_field(i ? 1 : 0,     13, 13); }
   1.888 +  static int opf_low6( int         w)  { return  u_field(w,             10,  5); }
   1.889 +  static int opf_low5( int         w)  { return  u_field(w,              9,  5); }
   1.890 +  static int trapcc(   CC         cc)  { return  u_field(cc,            12, 11); }
   1.891 +  static int sx(       int         i)  { return  u_field(i,             12, 12); } // shift x=1 means 64-bit
   1.892 +  static int opf(      int         x)  { return  u_field(x,             13,  5); }
   1.893 +
   1.894 +  static int opf_cc(   CC          c, bool useFloat ) { return u_field((useFloat ? 0 : 4) + c, 13, 11); }
   1.895 +  static int mov_cc(   CC          c, bool useFloat ) { return u_field(useFloat ? 0 : 1,  18, 18) | u_field(c, 12, 11); }
   1.896 +
   1.897 +  static int fd( FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); };
   1.898 +  static int fs1(FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); };
   1.899 +  static int fs2(FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa),  4,  0); };
   1.900 +
   1.901 +  // some float instructions use this encoding on the op3 field
   1.902 +  static int alt_op3(int op, FloatRegisterImpl::Width w) {
   1.903 +    int r;
   1.904 +    switch(w) {
   1.905 +     case FloatRegisterImpl::S: r = op + 0;  break;
   1.906 +     case FloatRegisterImpl::D: r = op + 3;  break;
   1.907 +     case FloatRegisterImpl::Q: r = op + 2;  break;
   1.908 +     default: ShouldNotReachHere(); break;
   1.909 +    }
   1.910 +    return op3(r);
   1.911 +  }
   1.912 +
   1.913 +
   1.914 +  // compute inverse of simm
   1.915 +  static int inv_simm(int x, int nbits) {
   1.916 +    return (int)(x << (32 - nbits)) >> (32 - nbits);
   1.917 +  }
   1.918 +
   1.919 +  static int inv_simm13( int x ) { return inv_simm(x, 13); }
   1.920 +
   1.921 +  // signed immediate, in low bits, nbits long
   1.922 +  static int simm(int x, int nbits) {
   1.923 +    assert_signed_range(x, nbits);
   1.924 +    return x  &  (( 1 << nbits ) - 1);
   1.925 +  }
   1.926 +
   1.927 +  // compute inverse of wdisp16
   1.928 +  static intptr_t inv_wdisp16(int x, intptr_t pos) {
   1.929 +    int lo = x & (( 1 << 14 ) - 1);
   1.930 +    int hi = (x >> 20) & 3;
   1.931 +    if (hi >= 2) hi |= ~1;
   1.932 +    return (((hi << 14) | lo) << 2) + pos;
   1.933 +  }
   1.934 +
   1.935 +  // word offset, 14 bits at LSend, 2 bits at B21, B20
   1.936 +  static int wdisp16(intptr_t x, intptr_t off) {
   1.937 +    intptr_t xx = x - off;
   1.938 +    assert_signed_word_disp_range(xx, 16);
   1.939 +    int r =  (xx >> 2) & ((1 << 14) - 1)
   1.940 +           |  (  ( (xx>>(2+14)) & 3 )  <<  20 );
   1.941 +    assert( inv_wdisp16(r, off) == x,  "inverse is not inverse");
   1.942 +    return r;
   1.943 +  }
   1.944 +
   1.945 +
   1.946 +  // word displacement in low-order nbits bits
   1.947 +
   1.948 +  static intptr_t inv_wdisp( int x, intptr_t pos, int nbits ) {
   1.949 +    int pre_sign_extend = x & (( 1 << nbits ) - 1);
   1.950 +    int r =  pre_sign_extend >= ( 1 << (nbits-1) )
   1.951 +       ?   pre_sign_extend | ~(( 1 << nbits ) - 1)
   1.952 +       :   pre_sign_extend;
   1.953 +    return (r << 2) + pos;
   1.954 +  }
   1.955 +
   1.956 +  static int wdisp( intptr_t x, intptr_t off, int nbits ) {
   1.957 +    intptr_t xx = x - off;
   1.958 +    assert_signed_word_disp_range(xx, nbits);
   1.959 +    int r =  (xx >> 2) & (( 1 << nbits ) - 1);
   1.960 +    assert( inv_wdisp( r, off, nbits )  ==  x, "inverse not inverse");
   1.961 +    return r;
   1.962 +  }
   1.963 +
   1.964 +
   1.965 +  // Extract the top 32 bits in a 64 bit word
   1.966 +  static int32_t hi32( int64_t x ) {
   1.967 +    int32_t r = int32_t( (uint64_t)x >> 32 );
   1.968 +    return r;
   1.969 +  }
   1.970 +
   1.971 +  // given a sethi instruction, extract the constant, left-justified
   1.972 +  static int inv_hi22( int x ) {
   1.973 +    return x << 10;
   1.974 +  }
   1.975 +
   1.976 +  // create an imm22 field, given a 32-bit left-justified constant
   1.977 +  static int hi22( int x ) {
   1.978 +    int r = int( juint(x) >> 10 );
   1.979 +    assert( (r & ~((1 << 22) - 1))  ==  0, "just checkin'");
   1.980 +    return r;
   1.981 +  }
   1.982 +
   1.983 +  // create a low10 __value__ (not a field) for a given a 32-bit constant
   1.984 +  static int low10( int x ) {
   1.985 +    return x & ((1 << 10) - 1);
   1.986 +  }
   1.987 +
   1.988 +  // instruction only in v9
   1.989 +  static void v9_only() { assert( VM_Version::v9_instructions_work(), "This instruction only works on SPARC V9"); }
   1.990 +
   1.991 +  // instruction only in v8
   1.992 +  static void v8_only() { assert( VM_Version::v8_instructions_work(), "This instruction only works on SPARC V8"); }
   1.993 +
   1.994 +  // instruction deprecated in v9
   1.995 +  static void v9_dep()  { } // do nothing for now
   1.996 +
   1.997 +  // some float instructions only exist for single prec. on v8
   1.998 +  static void v8_s_only(FloatRegisterImpl::Width w)  { if (w != FloatRegisterImpl::S)  v9_only(); }
   1.999 +
  1.1000 +  // v8 has no CC field
  1.1001 +  static void v8_no_cc(CC cc)  { if (cc)  v9_only(); }
  1.1002 +
  1.1003 + protected:
  1.1004 +  // Simple delay-slot scheme:
  1.1005 +  // In order to check the programmer, the assembler keeps track of deley slots.
  1.1006 +  // It forbids CTIs in delay slots (conservative, but should be OK).
  1.1007 +  // Also, when putting an instruction into a delay slot, you must say
  1.1008 +  // asm->delayed()->add(...), in order to check that you don't omit
  1.1009 +  // delay-slot instructions.
  1.1010 +  // To implement this, we use a simple FSA
  1.1011 +
  1.1012 +#ifdef ASSERT
  1.1013 +  #define CHECK_DELAY
  1.1014 +#endif
  1.1015 +#ifdef CHECK_DELAY
  1.1016 +  enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state;
  1.1017 +#endif
  1.1018 +
  1.1019 + public:
  1.1020 +  // Tells assembler next instruction must NOT be in delay slot.
  1.1021 +  // Use at start of multinstruction macros.
  1.1022 +  void assert_not_delayed() {
  1.1023 +    // This is a separate overloading to avoid creation of string constants
  1.1024 +    // in non-asserted code--with some compilers this pollutes the object code.
  1.1025 +#ifdef CHECK_DELAY
  1.1026 +    assert_not_delayed("next instruction should not be a delay slot");
  1.1027 +#endif
  1.1028 +  }
  1.1029 +  void assert_not_delayed(const char* msg) {
  1.1030 +#ifdef CHECK_DELAY
  1.1031 +    assert_msg ( delay_state == no_delay, msg);
  1.1032 +#endif
  1.1033 +  }
  1.1034 +
  1.1035 + protected:
  1.1036 +  // Delay slot helpers
  1.1037 +  // cti is called when emitting control-transfer instruction,
  1.1038 +  // BEFORE doing the emitting.
  1.1039 +  // Only effective when assertion-checking is enabled.
  1.1040 +  void cti() {
  1.1041 +#ifdef CHECK_DELAY
  1.1042 +    assert_not_delayed("cti should not be in delay slot");
  1.1043 +#endif
  1.1044 +  }
  1.1045 +
  1.1046 +  // called when emitting cti with a delay slot, AFTER emitting
  1.1047 +  void has_delay_slot() {
  1.1048 +#ifdef CHECK_DELAY
  1.1049 +    assert_not_delayed("just checking");
  1.1050 +    delay_state = at_delay_slot;
  1.1051 +#endif
  1.1052 +  }
  1.1053 +
  1.1054 +public:
  1.1055 +  // Tells assembler you know that next instruction is delayed
  1.1056 +  Assembler* delayed() {
  1.1057 +#ifdef CHECK_DELAY
  1.1058 +    assert ( delay_state == at_delay_slot, "delayed instruction is not in delay slot");
  1.1059 +    delay_state = filling_delay_slot;
  1.1060 +#endif
  1.1061 +    return this;
  1.1062 +  }
  1.1063 +
  1.1064 +  void flush() {
  1.1065 +#ifdef CHECK_DELAY
  1.1066 +    assert ( delay_state == no_delay, "ending code with a delay slot");
  1.1067 +#endif
  1.1068 +    AbstractAssembler::flush();
  1.1069 +  }
  1.1070 +
  1.1071 +  inline void emit_long(int);  // shadows AbstractAssembler::emit_long
  1.1072 +  inline void emit_data(int x) { emit_long(x); }
  1.1073 +  inline void emit_data(int, RelocationHolder const&);
  1.1074 +  inline void emit_data(int, relocInfo::relocType rtype);
  1.1075 +  // helper for above fcns
  1.1076 +  inline void check_delay();
  1.1077 +
  1.1078 +
  1.1079 + public:
  1.1080 +  // instructions, refer to page numbers in the SPARC Architecture Manual, V9
  1.1081 +
  1.1082 +  // pp 135 (addc was addx in v8)
  1.1083 +
  1.1084 +  inline void add(    Register s1, Register s2, Register d );
  1.1085 +  inline void add(    Register s1, int simm13a, Register d, relocInfo::relocType rtype = relocInfo::none);
  1.1086 +  inline void add(    Register s1, int simm13a, Register d, RelocationHolder const& rspec);
  1.1087 +  inline void add(    const Address&  a,              Register d, int offset = 0);
  1.1088 +
  1.1089 +  void addcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1.1090 +  void addcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1091 +  void addc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3             ) | rs1(s1) | rs2(s2) ); }
  1.1092 +  void addc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1093 +  void addccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1.1094 +  void addccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1095 +
  1.1096 +  // pp 136
  1.1097 +
  1.1098 +  inline void bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none );
  1.1099 +  inline void bpr( RCondition c, bool a, Predict p, Register s1, Label& L);
  1.1100 +
  1.1101 + protected: // use MacroAssembler::br instead
  1.1102 +
  1.1103 +  // pp 138
  1.1104 +
  1.1105 +  inline void fb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
  1.1106 +  inline void fb( Condition c, bool a, Label& L );
  1.1107 +
  1.1108 +  // pp 141
  1.1109 +
  1.1110 +  inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
  1.1111 +  inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
  1.1112 +
  1.1113 + public:
  1.1114 +
  1.1115 +  // pp 144
  1.1116 +
  1.1117 +  inline void br( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
  1.1118 +  inline void br( Condition c, bool a, Label& L );
  1.1119 +
  1.1120 +  // pp 146
  1.1121 +
  1.1122 +  inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
  1.1123 +  inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
  1.1124 +
  1.1125 +  // pp 121 (V8)
  1.1126 +
  1.1127 +  inline void cb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
  1.1128 +  inline void cb( Condition c, bool a, Label& L );
  1.1129 +
  1.1130 +  // pp 149
  1.1131 +
  1.1132 +  inline void call( address d,  relocInfo::relocType rt = relocInfo::runtime_call_type );
  1.1133 +  inline void call( Label& L,   relocInfo::relocType rt = relocInfo::runtime_call_type );
  1.1134 +
  1.1135 +  // pp 150
  1.1136 +
  1.1137 +  // These instructions compare the contents of s2 with the contents of
  1.1138 +  // memory at address in s1. If the values are equal, the contents of memory
  1.1139 +  // at address s1 is swapped with the data in d. If the values are not equal,
  1.1140 +  // the the contents of memory at s1 is loaded into d, without the swap.
  1.1141 +
  1.1142 +  void casa(  Register s1, Register s2, Register d, int ia = -1 ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(casa_op3 ) | rs1(s1) | (ia == -1  ? immed(true) : imm_asi(ia)) | rs2(s2)); }
  1.1143 +  void casxa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(casxa_op3) | rs1(s1) | (ia == -1  ? immed(true) : imm_asi(ia)) | rs2(s2)); }
  1.1144 +
  1.1145 +  // pp 152
  1.1146 +
  1.1147 +  void udiv(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3             ) | rs1(s1) | rs2(s2)); }
  1.1148 +  void udiv(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1149 +  void sdiv(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3             ) | rs1(s1) | rs2(s2)); }
  1.1150 +  void sdiv(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1151 +  void udivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
  1.1152 +  void udivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1153 +  void sdivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
  1.1154 +  void sdivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1155 +
  1.1156 +  // pp 155
  1.1157 +
  1.1158 +  void done()  { v9_only();  cti();  emit_long( op(arith_op) | fcn(0) | op3(done_op3) ); }
  1.1159 +  void retry() { v9_only();  cti();  emit_long( op(arith_op) | fcn(1) | op3(retry_op3) ); }
  1.1160 +
  1.1161 +  // pp 156
  1.1162 +
  1.1163 +  void fadd( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x40 + w) | fs2(s2, w)); }
  1.1164 +  void fsub( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x44 + w) | fs2(s2, w)); }
  1.1165 +
  1.1166 +  // pp 157
  1.1167 +
  1.1168 +  void fcmp(  FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc);  emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x50 + w) | fs2(s2, w)); }
  1.1169 +  void fcmpe( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc);  emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x54 + w) | fs2(s2, w)); }
  1.1170 +
  1.1171 +  // pp 159
  1.1172 +
  1.1173 +  void ftox( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w) | fs2(s, w)); }
  1.1174 +  void ftoi( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) {             emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xd0 + w) | fs2(s, w)); }
  1.1175 +
  1.1176 +  // pp 160
  1.1177 +
  1.1178 +  void ftof( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | opf(0xc0 + sw + dw*4) | fs2(s, sw)); }
  1.1179 +
  1.1180 +  // pp 161
  1.1181 +
  1.1182 +  void fxtof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w*4) | fs2(s, w)); }
  1.1183 +  void fitof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) {             emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xc0 + w*4) | fs2(s, w)); }
  1.1184 +
  1.1185 +  // pp 162
  1.1186 +
  1.1187 +  void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x00 + w) | fs2(s, w)); }
  1.1188 +
  1.1189 +  void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(s, w)); }
  1.1190 +
  1.1191 +  // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fnegs is the only instruction available
  1.1192 +  // on v8 to do negation of single, double and quad precision floats.
  1.1193 +
  1.1194 +  void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) |  opf(0x05) | fs2(sd, w)); }
  1.1195 +
  1.1196 +  void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(s, w)); }
  1.1197 +
  1.1198 +  // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fabss is the only instruction available
  1.1199 +  // on v8 to do abs operation on single/double/quad precision floats.
  1.1200 +
  1.1201 +  void fabs( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x09) | fs2(sd, w)); }
  1.1202 +
  1.1203 +  // pp 163
  1.1204 +
  1.1205 +  void fmul( FloatRegisterImpl::Width w,                            FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w)  | op3(fpop1_op3) | fs1(s1, w)  | opf(0x48 + w)         | fs2(s2, w)); }
  1.1206 +  void fmul( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw,  FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | fs1(s1, sw) | opf(0x60 + sw + dw*4) | fs2(s2, sw)); }
  1.1207 +  void fdiv( FloatRegisterImpl::Width w,                            FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w)  | op3(fpop1_op3) | fs1(s1, w)  | opf(0x4c + w)         | fs2(s2, w)); }
  1.1208 +
  1.1209 +  // pp 164
  1.1210 +
  1.1211 +  void fsqrt( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x28 + w) | fs2(s, w)); }
  1.1212 +
  1.1213 +  // pp 165
  1.1214 +
  1.1215 +  inline void flush( Register s1, Register s2 );
  1.1216 +  inline void flush( Register s1, int simm13a);
  1.1217 +
  1.1218 +  // pp 167
  1.1219 +
  1.1220 +  void flushw() { v9_only();  emit_long( op(arith_op) | op3(flushw_op3) ); }
  1.1221 +
  1.1222 +  // pp 168
  1.1223 +
  1.1224 +  void illtrap( int const22a) { if (const22a != 0) v9_only();  emit_long( op(branch_op) | u_field(const22a, 21, 0) ); }
  1.1225 +  // v8 unimp == illtrap(0)
  1.1226 +
  1.1227 +  // pp 169
  1.1228 +
  1.1229 +  void impdep1( int id1, int const19a ) { v9_only();  emit_long( op(arith_op) | fcn(id1) | op3(impdep1_op3) | u_field(const19a, 18, 0)); }
  1.1230 +  void impdep2( int id1, int const19a ) { v9_only();  emit_long( op(arith_op) | fcn(id1) | op3(impdep2_op3) | u_field(const19a, 18, 0)); }
  1.1231 +
  1.1232 +  // pp 149 (v8)
  1.1233 +
  1.1234 +  void cpop1( int opc, int cr1, int cr2, int crd ) { v8_only();  emit_long( op(arith_op) | fcn(crd) | op3(impdep1_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
  1.1235 +  void cpop2( int opc, int cr1, int cr2, int crd ) { v8_only();  emit_long( op(arith_op) | fcn(crd) | op3(impdep2_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
  1.1236 +
  1.1237 +  // pp 170
  1.1238 +
  1.1239 +  void jmpl( Register s1, Register s2, Register d );
  1.1240 +  void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() );
  1.1241 +
  1.1242 +  inline void jmpl( Address& a, Register d, int offset = 0);
  1.1243 +
  1.1244 +  // 171
  1.1245 +
  1.1246 +  inline void ldf(    FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d );
  1.1247 +  inline void ldf(    FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d );
  1.1248 +
  1.1249 +  inline void ldf(    FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset = 0);
  1.1250 +
  1.1251 +
  1.1252 +  inline void ldfsr(  Register s1, Register s2 );
  1.1253 +  inline void ldfsr(  Register s1, int simm13a);
  1.1254 +  inline void ldxfsr( Register s1, Register s2 );
  1.1255 +  inline void ldxfsr( Register s1, int simm13a);
  1.1256 +
  1.1257 +  // pp 94 (v8)
  1.1258 +
  1.1259 +  inline void ldc(   Register s1, Register s2, int crd );
  1.1260 +  inline void ldc(   Register s1, int simm13a, int crd);
  1.1261 +  inline void lddc(  Register s1, Register s2, int crd );
  1.1262 +  inline void lddc(  Register s1, int simm13a, int crd);
  1.1263 +  inline void ldcsr( Register s1, Register s2, int crd );
  1.1264 +  inline void ldcsr( Register s1, int simm13a, int crd);
  1.1265 +
  1.1266 +
  1.1267 +  // 173
  1.1268 +
  1.1269 +  void ldfa(  FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1.1270 +  void ldfa(  FloatRegisterImpl::Width w, Register s1, int simm13a,         FloatRegister d ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1271 +
  1.1272 +  // pp 175, lduw is ld on v8
  1.1273 +
  1.1274 +  inline void ldsb(  Register s1, Register s2, Register d );
  1.1275 +  inline void ldsb(  Register s1, int simm13a, Register d);
  1.1276 +  inline void ldsh(  Register s1, Register s2, Register d );
  1.1277 +  inline void ldsh(  Register s1, int simm13a, Register d);
  1.1278 +  inline void ldsw(  Register s1, Register s2, Register d );
  1.1279 +  inline void ldsw(  Register s1, int simm13a, Register d);
  1.1280 +  inline void ldub(  Register s1, Register s2, Register d );
  1.1281 +  inline void ldub(  Register s1, int simm13a, Register d);
  1.1282 +  inline void lduh(  Register s1, Register s2, Register d );
  1.1283 +  inline void lduh(  Register s1, int simm13a, Register d);
  1.1284 +  inline void lduw(  Register s1, Register s2, Register d );
  1.1285 +  inline void lduw(  Register s1, int simm13a, Register d);
  1.1286 +  inline void ldx(   Register s1, Register s2, Register d );
  1.1287 +  inline void ldx(   Register s1, int simm13a, Register d);
  1.1288 +  inline void ld(    Register s1, Register s2, Register d );
  1.1289 +  inline void ld(    Register s1, int simm13a, Register d);
  1.1290 +  inline void ldd(   Register s1, Register s2, Register d );
  1.1291 +  inline void ldd(   Register s1, int simm13a, Register d);
  1.1292 +
  1.1293 +  inline void ldsb( const Address& a, Register d, int offset = 0 );
  1.1294 +  inline void ldsh( const Address& a, Register d, int offset = 0 );
  1.1295 +  inline void ldsw( const Address& a, Register d, int offset = 0 );
  1.1296 +  inline void ldub( const Address& a, Register d, int offset = 0 );
  1.1297 +  inline void lduh( const Address& a, Register d, int offset = 0 );
  1.1298 +  inline void lduw( const Address& a, Register d, int offset = 0 );
  1.1299 +  inline void ldx(  const Address& a, Register d, int offset = 0 );
  1.1300 +  inline void ld(   const Address& a, Register d, int offset = 0 );
  1.1301 +  inline void ldd(  const Address& a, Register d, int offset = 0 );
  1.1302 +
  1.1303 +  // pp 177
  1.1304 +
  1.1305 +  void ldsba(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1.1306 +  void ldsba(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1307 +  void ldsha(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1.1308 +  void ldsha(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1309 +  void ldswa(  Register s1, Register s2, int ia, Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1.1310 +  void ldswa(  Register s1, int simm13a,         Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1311 +  void lduba(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1.1312 +  void lduba(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1313 +  void lduha(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1.1314 +  void lduha(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1315 +  void lduwa(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1.1316 +  void lduwa(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1317 +  void ldxa(   Register s1, Register s2, int ia, Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3  | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1.1318 +  void ldxa(   Register s1, int simm13a,         Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3  | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1319 +  void ldda(   Register s1, Register s2, int ia, Register d ) { v9_dep();   emit_long( op(ldst_op) | rd(d) | op3(ldd_op3  | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1.1320 +  void ldda(   Register s1, int simm13a,         Register d ) { v9_dep();   emit_long( op(ldst_op) | rd(d) | op3(ldd_op3  | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1321 +
  1.1322 +  // pp 179
  1.1323 +
  1.1324 +  inline void ldstub(  Register s1, Register s2, Register d );
  1.1325 +  inline void ldstub(  Register s1, int simm13a, Register d);
  1.1326 +
  1.1327 +  // pp 180
  1.1328 +
  1.1329 +  void ldstuba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1.1330 +  void ldstuba( Register s1, int simm13a,         Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1331 +
  1.1332 +  // pp 181
  1.1333 +
  1.1334 +  void and3(     Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3               ) | rs1(s1) | rs2(s2) ); }
  1.1335 +  void and3(     Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3               ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1336 +  void andcc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1.1337 +  void andcc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1338 +  void andn(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | rs2(s2) ); }
  1.1339 +  void andn(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1340 +  void andncc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1.1341 +  void andncc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1342 +  void or3(      Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3               ) | rs1(s1) | rs2(s2) ); }
  1.1343 +  void or3(      Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3               ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1344 +  void orcc(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3   | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1.1345 +  void orcc(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3   | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1346 +  void orn(     Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | rs2(s2) ); }
  1.1347 +  void orn(     Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1348 +  void orncc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1.1349 +  void orncc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1350 +  void xor3(     Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3              ) | rs1(s1) | rs2(s2) ); }
  1.1351 +  void xor3(     Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1352 +  void xorcc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1.1353 +  void xorcc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1354 +  void xnor(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3             ) | rs1(s1) | rs2(s2) ); }
  1.1355 +  void xnor(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1356 +  void xnorcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1.1357 +  void xnorcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1358 +
  1.1359 +  // pp 183
  1.1360 +
  1.1361 +  void membar( Membar_mask_bits const7a ) { v9_only(); emit_long( op(arith_op) | op3(membar_op3) | rs1(O7) | immed(true) | u_field( int(const7a), 6, 0)); }
  1.1362 +
  1.1363 +  // pp 185
  1.1364 +
  1.1365 +  void fmov( FloatRegisterImpl::Width w, Condition c,  bool floatCC, CC cca, FloatRegister s2, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | cond_mov(c) | opf_cc(cca, floatCC) | opf_low6(w) | fs2(s2, w)); }
  1.1366 +
  1.1367 +  // pp 189
  1.1368 +
  1.1369 +  void fmov( FloatRegisterImpl::Width w, RCondition c, Register s1,  FloatRegister s2, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | rs1(s1) | rcond(c) | opf_low5(4 + w) | fs2(s2, w)); }
  1.1370 +
  1.1371 +  // pp 191
  1.1372 +
  1.1373 +  void movcc( Condition c, bool floatCC, CC cca, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | rs2(s2) ); }
  1.1374 +  void movcc( Condition c, bool floatCC, CC cca, int simm11a, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | immed(true) | simm(simm11a, 11) ); }
  1.1375 +
  1.1376 +  // pp 195
  1.1377 +
  1.1378 +  void movr( RCondition c, Register s1, Register s2,  Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | rs2(s2) ); }
  1.1379 +  void movr( RCondition c, Register s1, int simm10a,  Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | immed(true) | simm(simm10a, 10) ); }
  1.1380 +
  1.1381 +  // pp 196
  1.1382 +
  1.1383 +  void mulx(  Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | rs2(s2) ); }
  1.1384 +  void mulx(  Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1385 +  void sdivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | rs2(s2) ); }
  1.1386 +  void sdivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1387 +  void udivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | rs2(s2) ); }
  1.1388 +  void udivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1389 +
  1.1390 +  // pp 197
  1.1391 +
  1.1392 +  void umul(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3             ) | rs1(s1) | rs2(s2) ); }
  1.1393 +  void umul(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1394 +  void smul(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3             ) | rs1(s1) | rs2(s2) ); }
  1.1395 +  void smul(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1396 +  void umulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1.1397 +  void umulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1398 +  void smulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1.1399 +  void smulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1400 +
  1.1401 +  // pp 199
  1.1402 +
  1.1403 +  void mulscc(   Register s1, Register s2, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | rs2(s2) ); }
  1.1404 +  void mulscc(   Register s1, int simm13a, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1405 +
  1.1406 +  // pp 201
  1.1407 +
  1.1408 +  void nop() { emit_long( op(branch_op) | op2(sethi_op2) ); }
  1.1409 +
  1.1410 +
  1.1411 +  // pp 202
  1.1412 +
  1.1413 +  void popc( Register s,  Register d) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); }
  1.1414 +  void popc( int simm13a, Register d) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); }
  1.1415 +
  1.1416 +  // pp 203
  1.1417 +
  1.1418 +  void prefetch(   Register s1, Register s2,         PrefetchFcn f);
  1.1419 +  void prefetch(   Register s1, int simm13a,         PrefetchFcn f);
  1.1420 +  void prefetcha(  Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1.1421 +  void prefetcha(  Register s1, int simm13a,         PrefetchFcn f ) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1422 +
  1.1423 +  inline void prefetch(const Address& a, PrefetchFcn F, int offset = 0);
  1.1424 +
  1.1425 +  // pp 208
  1.1426 +
  1.1427 +  // not implementing read privileged register
  1.1428 +
  1.1429 +  inline void rdy(    Register d) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(0, 18, 14)); }
  1.1430 +  inline void rdccr(  Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(2, 18, 14)); }
  1.1431 +  inline void rdasi(  Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(3, 18, 14)); }
  1.1432 +  inline void rdtick( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(4, 18, 14)); } // Spoon!
  1.1433 +  inline void rdpc(   Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(5, 18, 14)); }
  1.1434 +  inline void rdfprs( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(6, 18, 14)); }
  1.1435 +
  1.1436 +  // pp 213
  1.1437 +
  1.1438 +  inline void rett( Register s1, Register s2);
  1.1439 +  inline void rett( Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none);
  1.1440 +
  1.1441 +  // pp 214
  1.1442 +
  1.1443 +  void save(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | rs2(s2) ); }
  1.1444 +  void save(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1445 +
  1.1446 +  void restore( Register s1 = G0,  Register s2 = G0, Register d = G0 ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | rs2(s2) ); }
  1.1447 +  void restore( Register s1,       int simm13a,      Register d      ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1448 +
  1.1449 +  // pp 216
  1.1450 +
  1.1451 +  void saved()    { v9_only();  emit_long( op(arith_op) | fcn(0) | op3(saved_op3)); }
  1.1452 +  void restored() { v9_only();  emit_long( op(arith_op) | fcn(1) | op3(saved_op3)); }
  1.1453 +
  1.1454 +  // pp 217
  1.1455 +
  1.1456 +  inline void sethi( int imm22a, Register d, RelocationHolder const& rspec = RelocationHolder() );
  1.1457 +  // pp 218
  1.1458 +
  1.1459 +  void sll(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
  1.1460 +  void sll(  Register s1, int imm5a,   Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
  1.1461 +  void srl(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
  1.1462 +  void srl(  Register s1, int imm5a,   Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
  1.1463 +  void sra(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
  1.1464 +  void sra(  Register s1, int imm5a,   Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
  1.1465 +
  1.1466 +  void sllx( Register s1, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
  1.1467 +  void sllx( Register s1, int imm6a,   Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
  1.1468 +  void srlx( Register s1, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
  1.1469 +  void srlx( Register s1, int imm6a,   Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
  1.1470 +  void srax( Register s1, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
  1.1471 +  void srax( Register s1, int imm6a,   Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
  1.1472 +
  1.1473 +  // pp 220
  1.1474 +
  1.1475 +  void sir( int simm13a ) { emit_long( op(arith_op) | fcn(15) | op3(sir_op3) | immed(true) | simm(simm13a, 13)); }
  1.1476 +
  1.1477 +  // pp 221
  1.1478 +
  1.1479 +  void stbar() { emit_long( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); }
  1.1480 +
  1.1481 +  // pp 222
  1.1482 +
  1.1483 +  inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2 );
  1.1484 +  inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
  1.1485 +  inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset = 0);
  1.1486 +
  1.1487 +  inline void stfsr(  Register s1, Register s2 );
  1.1488 +  inline void stfsr(  Register s1, int simm13a);
  1.1489 +  inline void stxfsr( Register s1, Register s2 );
  1.1490 +  inline void stxfsr( Register s1, int simm13a);
  1.1491 +
  1.1492 +  //  pp 224
  1.1493 +
  1.1494 +  void stfa(  FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1.1495 +  void stfa(  FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a         ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1496 +
  1.1497 +  // p 226
  1.1498 +
  1.1499 +  inline void stb(  Register d, Register s1, Register s2 );
  1.1500 +  inline void stb(  Register d, Register s1, int simm13a);
  1.1501 +  inline void sth(  Register d, Register s1, Register s2 );
  1.1502 +  inline void sth(  Register d, Register s1, int simm13a);
  1.1503 +  inline void stw(  Register d, Register s1, Register s2 );
  1.1504 +  inline void stw(  Register d, Register s1, int simm13a);
  1.1505 +  inline void st(   Register d, Register s1, Register s2 );
  1.1506 +  inline void st(   Register d, Register s1, int simm13a);
  1.1507 +  inline void stx(  Register d, Register s1, Register s2 );
  1.1508 +  inline void stx(  Register d, Register s1, int simm13a);
  1.1509 +  inline void std(  Register d, Register s1, Register s2 );
  1.1510 +  inline void std(  Register d, Register s1, int simm13a);
  1.1511 +
  1.1512 +  inline void stb(  Register d, const Address& a, int offset = 0 );
  1.1513 +  inline void sth(  Register d, const Address& a, int offset = 0 );
  1.1514 +  inline void stw(  Register d, const Address& a, int offset = 0 );
  1.1515 +  inline void stx(  Register d, const Address& a, int offset = 0 );
  1.1516 +  inline void st(   Register d, const Address& a, int offset = 0 );
  1.1517 +  inline void std(  Register d, const Address& a, int offset = 0 );
  1.1518 +
  1.1519 +  // pp 177
  1.1520 +
  1.1521 +  void stba(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1.1522 +  void stba(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1523 +  void stha(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1.1524 +  void stha(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1525 +  void stwa(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1.1526 +  void stwa(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1527 +  void stxa(  Register d, Register s1, Register s2, int ia ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1.1528 +  void stxa(  Register d, Register s1, int simm13a         ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1529 +  void stda(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1.1530 +  void stda(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1531 +
  1.1532 +  // pp 97 (v8)
  1.1533 +
  1.1534 +  inline void stc(   int crd, Register s1, Register s2 );
  1.1535 +  inline void stc(   int crd, Register s1, int simm13a);
  1.1536 +  inline void stdc(  int crd, Register s1, Register s2 );
  1.1537 +  inline void stdc(  int crd, Register s1, int simm13a);
  1.1538 +  inline void stcsr( int crd, Register s1, Register s2 );
  1.1539 +  inline void stcsr( int crd, Register s1, int simm13a);
  1.1540 +  inline void stdcq( int crd, Register s1, Register s2 );
  1.1541 +  inline void stdcq( int crd, Register s1, int simm13a);
  1.1542 +
  1.1543 +  // pp 230
  1.1544 +
  1.1545 +  void sub(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | rs2(s2) ); }
  1.1546 +  void sub(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1547 +  void subcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); }
  1.1548 +  void subcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1549 +  void subc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3             ) | rs1(s1) | rs2(s2) ); }
  1.1550 +  void subc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1551 +  void subccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1.1552 +  void subccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1553 +
  1.1554 +  // pp 231
  1.1555 +
  1.1556 +  inline void swap( Register s1, Register s2, Register d );
  1.1557 +  inline void swap( Register s1, int simm13a, Register d);
  1.1558 +  inline void swap( Address& a,               Register d, int offset = 0 );
  1.1559 +
  1.1560 +  // pp 232
  1.1561 +
  1.1562 +  void swapa(   Register s1, Register s2, int ia, Register d ) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1.1563 +  void swapa(   Register s1, int simm13a,         Register d ) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1564 +
  1.1565 +  // pp 234, note op in book is wrong, see pp 268
  1.1566 +
  1.1567 +  void taddcc(    Register s1, Register s2, Register d ) {            emit_long( op(arith_op) | rd(d) | op3(taddcc_op3  ) | rs1(s1) | rs2(s2) ); }
  1.1568 +  void taddcc(    Register s1, int simm13a, Register d ) {            emit_long( op(arith_op) | rd(d) | op3(taddcc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1569 +  void taddcctv(  Register s1, Register s2, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | rs2(s2) ); }
  1.1570 +  void taddcctv(  Register s1, int simm13a, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1571 +
  1.1572 +  // pp 235
  1.1573 +
  1.1574 +  void tsubcc(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3  ) | rs1(s1) | rs2(s2) ); }
  1.1575 +  void tsubcc(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1576 +  void tsubcctv(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | rs2(s2) ); }
  1.1577 +  void tsubcctv(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1578 +
  1.1579 +  // pp 237
  1.1580 +
  1.1581 +  void trap( Condition c, CC cc, Register s1, Register s2 ) { v8_no_cc(cc);  emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | rs2(s2)); }
  1.1582 +  void trap( Condition c, CC cc, Register s1, int trapa   ) { v8_no_cc(cc);  emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | immed(true) | u_field(trapa, 6, 0)); }
  1.1583 +  // simple uncond. trap
  1.1584 +  void trap( int trapa ) { trap( always, icc, G0, trapa ); }
  1.1585 +
  1.1586 +  // pp 239 omit write priv register for now
  1.1587 +
  1.1588 +  inline void wry(    Register d) { v9_dep();  emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(0, 29, 25)); }
  1.1589 +  inline void wrccr(Register s) { v9_only(); emit_long( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25)); }
  1.1590 +  inline void wrccr(Register s, int simm13a) { v9_only(); emit_long( op(arith_op) |
  1.1591 +                                                                           rs1(s) |
  1.1592 +                                                                           op3(wrreg_op3) |
  1.1593 +                                                                           u_field(2, 29, 25) |
  1.1594 +                                                                           u_field(1, 13, 13) |
  1.1595 +                                                                           simm(simm13a, 13)); }
  1.1596 +  inline void wrasi(  Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25)); }
  1.1597 +  inline void wrfprs( Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(6, 29, 25)); }
  1.1598 +
  1.1599 +
  1.1600 +  // Creation
  1.1601 +  Assembler(CodeBuffer* code) : AbstractAssembler(code) {
  1.1602 +#ifdef CHECK_DELAY
  1.1603 +    delay_state = no_delay;
  1.1604 +#endif
  1.1605 +  }
  1.1606 +
  1.1607 +  // Testing
  1.1608 +#ifndef PRODUCT
  1.1609 +  void test_v9();
  1.1610 +  void test_v8_onlys();
  1.1611 +#endif
  1.1612 +};
  1.1613 +
  1.1614 +
  1.1615 +class RegistersForDebugging : public StackObj {
  1.1616 + public:
  1.1617 +  intptr_t i[8], l[8], o[8], g[8];
  1.1618 +  float    f[32];
  1.1619 +  double   d[32];
  1.1620 +
  1.1621 +  void print(outputStream* s);
  1.1622 +
  1.1623 +  static int i_offset(int j) { return offset_of(RegistersForDebugging, i[j]); }
  1.1624 +  static int l_offset(int j) { return offset_of(RegistersForDebugging, l[j]); }
  1.1625 +  static int o_offset(int j) { return offset_of(RegistersForDebugging, o[j]); }
  1.1626 +  static int g_offset(int j) { return offset_of(RegistersForDebugging, g[j]); }
  1.1627 +  static int f_offset(int j) { return offset_of(RegistersForDebugging, f[j]); }
  1.1628 +  static int d_offset(int j) { return offset_of(RegistersForDebugging, d[j / 2]); }
  1.1629 +
  1.1630 +  // gen asm code to save regs
  1.1631 +  static void save_registers(MacroAssembler* a);
  1.1632 +
  1.1633 +  // restore global registers in case C code disturbed them
  1.1634 +  static void restore_registers(MacroAssembler* a, Register r);
  1.1635 +};
  1.1636 +
  1.1637 +
  1.1638 +// MacroAssembler extends Assembler by a few frequently used macros.
  1.1639 +//
  1.1640 +// Most of the standard SPARC synthetic ops are defined here.
  1.1641 +// Instructions for which a 'better' code sequence exists depending
  1.1642 +// on arguments should also go in here.
  1.1643 +
  1.1644 +#define JMP2(r1, r2) jmp(r1, r2, __FILE__, __LINE__)
  1.1645 +#define JMP(r1, off) jmp(r1, off, __FILE__, __LINE__)
  1.1646 +#define JUMP(a, off)     jump(a, off, __FILE__, __LINE__)
  1.1647 +#define JUMPL(a, d, off) jumpl(a, d, off, __FILE__, __LINE__)
  1.1648 +
  1.1649 +
  1.1650 +class MacroAssembler: public Assembler {
  1.1651 + protected:
  1.1652 +  // Support for VM calls
  1.1653 +  // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  1.1654 +  // may customize this version by overriding it for its purposes (e.g., to save/restore
  1.1655 +  // additional registers when doing a VM call).
  1.1656 +#ifdef CC_INTERP
  1.1657 +  #define VIRTUAL
  1.1658 +#else
  1.1659 +  #define VIRTUAL virtual
  1.1660 +#endif
  1.1661 +
  1.1662 +  VIRTUAL void call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments);
  1.1663 +
  1.1664 +  //
  1.1665 +  // It is imperative that all calls into the VM are handled via the call_VM macros.
  1.1666 +  // They make sure that the stack linkage is setup correctly. call_VM's correspond
  1.1667 +  // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
  1.1668 +  //
  1.1669 +  // This is the base routine called by the different versions of call_VM. The interpreter
  1.1670 +  // may customize this version by overriding it for its purposes (e.g., to save/restore
  1.1671 +  // additional registers when doing a VM call).
  1.1672 +  //
  1.1673 +  // A non-volatile java_thread_cache register should be specified so
  1.1674 +  // that the G2_thread value can be preserved across the call.
  1.1675 +  // (If java_thread_cache is noreg, then a slow get_thread call
  1.1676 +  // will re-initialize the G2_thread.) call_VM_base returns the register that contains the
  1.1677 +  // thread.
  1.1678 +  //
  1.1679 +  // If no last_java_sp is specified (noreg) than SP will be used instead.
  1.1680 +
  1.1681 +  virtual void call_VM_base(
  1.1682 +    Register        oop_result,             // where an oop-result ends up if any; use noreg otherwise
  1.1683 +    Register        java_thread_cache,      // the thread if computed before     ; use noreg otherwise
  1.1684 +    Register        last_java_sp,           // to set up last_Java_frame in stubs; use noreg otherwise
  1.1685 +    address         entry_point,            // the entry point
  1.1686 +    int             number_of_arguments,    // the number of arguments (w/o thread) to pop after call
  1.1687 +    bool            check_exception=true    // flag which indicates if exception should be checked
  1.1688 +  );
  1.1689 +
  1.1690 +  // This routine should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  1.1691 +  // The implementation is only non-empty for the InterpreterMacroAssembler,
  1.1692 +  // as only the interpreter handles and ForceEarlyReturn PopFrame requests.
  1.1693 +  virtual void check_and_handle_popframe(Register scratch_reg);
  1.1694 +  virtual void check_and_handle_earlyret(Register scratch_reg);
  1.1695 +
  1.1696 + public:
  1.1697 +  MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  1.1698 +
  1.1699 +  // Support for NULL-checks
  1.1700 +  //
  1.1701 +  // Generates code that causes a NULL OS exception if the content of reg is NULL.
  1.1702 +  // If the accessed location is M[reg + offset] and the offset is known, provide the
  1.1703 +  // offset.  No explicit code generation is needed if the offset is within a certain
  1.1704 +  // range (0 <= offset <= page_size).
  1.1705 +  //
  1.1706 +  // %%%%%% Currently not done for SPARC
  1.1707 +
  1.1708 +  void null_check(Register reg, int offset = -1);
  1.1709 +  static bool needs_explicit_null_check(intptr_t offset);
  1.1710 +
  1.1711 +  // support for delayed instructions
  1.1712 +  MacroAssembler* delayed() { Assembler::delayed();  return this; }
  1.1713 +
  1.1714 +  // branches that use right instruction for v8 vs. v9
  1.1715 +  inline void br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
  1.1716 +  inline void br( Condition c, bool a, Predict p, Label& L );
  1.1717 +  inline void fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
  1.1718 +  inline void fb( Condition c, bool a, Predict p, Label& L );
  1.1719 +
  1.1720 +  // compares register with zero and branches (V9 and V8 instructions)
  1.1721 +  void br_zero( Condition c, bool a, Predict p, Register s1, Label& L);
  1.1722 +  // Compares a pointer register with zero and branches on (not)null.
  1.1723 +  // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
  1.1724 +  void br_null   ( Register s1, bool a, Predict p, Label& L );
  1.1725 +  void br_notnull( Register s1, bool a, Predict p, Label& L );
  1.1726 +
  1.1727 +  inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
  1.1728 +  inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
  1.1729 +
  1.1730 +  // Branch that tests xcc in LP64 and icc in !LP64
  1.1731 +  inline void brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
  1.1732 +  inline void brx( Condition c, bool a, Predict p, Label& L );
  1.1733 +
  1.1734 +  // unconditional short branch
  1.1735 +  inline void ba( bool a, Label& L );
  1.1736 +
  1.1737 +  // Branch that tests fp condition codes
  1.1738 +  inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
  1.1739 +  inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
  1.1740 +
  1.1741 +  // get PC the best way
  1.1742 +  inline int get_pc( Register d );
  1.1743 +
  1.1744 +  // Sparc shorthands(pp 85, V8 manual, pp 289 V9 manual)
  1.1745 +  inline void cmp(  Register s1, Register s2 ) { subcc( s1, s2, G0 ); }
  1.1746 +  inline void cmp(  Register s1, int simm13a ) { subcc( s1, simm13a, G0 ); }
  1.1747 +
  1.1748 +  inline void jmp( Register s1, Register s2 );
  1.1749 +  inline void jmp( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
  1.1750 +
  1.1751 +  inline void call( address d,  relocInfo::relocType rt = relocInfo::runtime_call_type );
  1.1752 +  inline void call( Label& L,   relocInfo::relocType rt = relocInfo::runtime_call_type );
  1.1753 +  inline void callr( Register s1, Register s2 );
  1.1754 +  inline void callr( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
  1.1755 +
  1.1756 +  // Emits nothing on V8
  1.1757 +  inline void iprefetch( address d, relocInfo::relocType rt = relocInfo::none );
  1.1758 +  inline void iprefetch( Label& L);
  1.1759 +
  1.1760 +  inline void tst( Register s ) { orcc( G0, s, G0 ); }
  1.1761 +
  1.1762 +#ifdef PRODUCT
  1.1763 +  inline void ret(  bool trace = TraceJumps )   { if (trace) {
  1.1764 +                                                    mov(I7, O7); // traceable register
  1.1765 +                                                    JMP(O7, 2 * BytesPerInstWord);
  1.1766 +                                                  } else {
  1.1767 +                                                    jmpl( I7, 2 * BytesPerInstWord, G0 );
  1.1768 +                                                  }
  1.1769 +                                                }
  1.1770 +
  1.1771 +  inline void retl( bool trace = TraceJumps )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
  1.1772 +                                                 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
  1.1773 +#else
  1.1774 +  void ret(  bool trace = TraceJumps );
  1.1775 +  void retl( bool trace = TraceJumps );
  1.1776 +#endif /* PRODUCT */
  1.1777 +
  1.1778 +  // Required platform-specific helpers for Label::patch_instructions.
  1.1779 +  // They _shadow_ the declarations in AbstractAssembler, which are undefined.
  1.1780 +  void pd_patch_instruction(address branch, address target);
  1.1781 +#ifndef PRODUCT
  1.1782 +  static void pd_print_patched_instruction(address branch);
  1.1783 +#endif
  1.1784 +
  1.1785 +  // sethi Macro handles optimizations and relocations
  1.1786 +  void sethi( Address& a, bool ForceRelocatable = false );
  1.1787 +  void sethi( intptr_t imm22a, Register d, bool ForceRelocatable = false, RelocationHolder const& rspec = RelocationHolder());
  1.1788 +
  1.1789 +  // compute the size of a sethi/set
  1.1790 +  static int  size_of_sethi( address a, bool worst_case = false );
  1.1791 +  static int  worst_case_size_of_set();
  1.1792 +
  1.1793 +  // set may be either setsw or setuw (high 32 bits may be zero or sign)
  1.1794 +  void set(    intptr_t value, Register d, RelocationHolder const& rspec = RelocationHolder() );
  1.1795 +  void setsw(  int value, Register d, RelocationHolder const& rspec = RelocationHolder() );
  1.1796 +  void set64(  jlong value, Register d, Register tmp);
  1.1797 +
  1.1798 +  // sign-extend 32 to 64
  1.1799 +  inline void signx( Register s, Register d ) { sra( s, G0, d); }
  1.1800 +  inline void signx( Register d )             { sra( d, G0, d); }
  1.1801 +
  1.1802 +  inline void not1( Register s, Register d ) { xnor( s, G0, d ); }
  1.1803 +  inline void not1( Register d )             { xnor( d, G0, d ); }
  1.1804 +
  1.1805 +  inline void neg( Register s, Register d ) { sub( G0, s, d ); }
  1.1806 +  inline void neg( Register d )             { sub( G0, d, d ); }
  1.1807 +
  1.1808 +  inline void cas(  Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY); }
  1.1809 +  inline void casx( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY); }
  1.1810 +  // Functions for isolating 64 bit atomic swaps for LP64
  1.1811 +  // cas_ptr will perform cas for 32 bit VM's and casx for 64 bit VM's
  1.1812 +  inline void cas_ptr(  Register s1, Register s2, Register d) {
  1.1813 +#ifdef _LP64
  1.1814 +    casx( s1, s2, d );
  1.1815 +#else
  1.1816 +    cas( s1, s2, d );
  1.1817 +#endif
  1.1818 +  }
  1.1819 +
  1.1820 +  // Functions for isolating 64 bit shifts for LP64
  1.1821 +  inline void sll_ptr( Register s1, Register s2, Register d );
  1.1822 +  inline void sll_ptr( Register s1, int imm6a,   Register d );
  1.1823 +  inline void srl_ptr( Register s1, Register s2, Register d );
  1.1824 +  inline void srl_ptr( Register s1, int imm6a,   Register d );
  1.1825 +
  1.1826 +  // little-endian
  1.1827 +  inline void casl(  Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY_LITTLE); }
  1.1828 +  inline void casxl( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY_LITTLE); }
  1.1829 +
  1.1830 +  inline void inc(   Register d,  int const13 = 1 ) { add(   d, const13, d); }
  1.1831 +  inline void inccc( Register d,  int const13 = 1 ) { addcc( d, const13, d); }
  1.1832 +
  1.1833 +  inline void dec(   Register d,  int const13 = 1 ) { sub(   d, const13, d); }
  1.1834 +  inline void deccc( Register d,  int const13 = 1 ) { subcc( d, const13, d); }
  1.1835 +
  1.1836 +  inline void btst( Register s1,  Register s2 ) { andcc( s1, s2, G0 ); }
  1.1837 +  inline void btst( int simm13a,  Register s )  { andcc( s,  simm13a, G0 ); }
  1.1838 +
  1.1839 +  inline void bset( Register s1,  Register s2 ) { or3( s1, s2, s2 ); }
  1.1840 +  inline void bset( int simm13a,  Register s )  { or3( s,  simm13a, s ); }
  1.1841 +
  1.1842 +  inline void bclr( Register s1,  Register s2 ) { andn( s1, s2, s2 ); }
  1.1843 +  inline void bclr( int simm13a,  Register s )  { andn( s,  simm13a, s ); }
  1.1844 +
  1.1845 +  inline void btog( Register s1,  Register s2 ) { xor3( s1, s2, s2 ); }
  1.1846 +  inline void btog( int simm13a,  Register s )  { xor3( s,  simm13a, s ); }
  1.1847 +
  1.1848 +  inline void clr( Register d ) { or3( G0, G0, d ); }
  1.1849 +
  1.1850 +  inline void clrb( Register s1, Register s2);
  1.1851 +  inline void clrh( Register s1, Register s2);
  1.1852 +  inline void clr(  Register s1, Register s2);
  1.1853 +  inline void clrx( Register s1, Register s2);
  1.1854 +
  1.1855 +  inline void clrb( Register s1, int simm13a);
  1.1856 +  inline void clrh( Register s1, int simm13a);
  1.1857 +  inline void clr(  Register s1, int simm13a);
  1.1858 +  inline void clrx( Register s1, int simm13a);
  1.1859 +
  1.1860 +  // copy & clear upper word
  1.1861 +  inline void clruw( Register s, Register d ) { srl( s, G0, d); }
  1.1862 +  // clear upper word
  1.1863 +  inline void clruwu( Register d ) { srl( d, G0, d); }
  1.1864 +
  1.1865 +  // membar psuedo instruction.  takes into account target memory model.
  1.1866 +  inline void membar( Assembler::Membar_mask_bits const7a );
  1.1867 +
  1.1868 +  // returns if membar generates anything.
  1.1869 +  inline bool membar_has_effect( Assembler::Membar_mask_bits const7a );
  1.1870 +
  1.1871 +  // mov pseudo instructions
  1.1872 +  inline void mov( Register s,  Register d) {
  1.1873 +    if ( s != d )    or3( G0, s, d);
  1.1874 +    else             assert_not_delayed();  // Put something useful in the delay slot!
  1.1875 +  }
  1.1876 +
  1.1877 +  inline void mov_or_nop( Register s,  Register d) {
  1.1878 +    if ( s != d )    or3( G0, s, d);
  1.1879 +    else             nop();
  1.1880 +  }
  1.1881 +
  1.1882 +  inline void mov( int simm13a, Register d) { or3( G0, simm13a, d); }
  1.1883 +
  1.1884 +  // address pseudos: make these names unlike instruction names to avoid confusion
  1.1885 +  inline void split_disp(    Address& a, Register temp );
  1.1886 +  inline intptr_t load_pc_address( Register reg, int bytes_to_skip );
  1.1887 +  inline void load_address(  Address& a, int offset = 0 );
  1.1888 +  inline void load_contents( Address& a, Register d, int offset = 0 );
  1.1889 +  inline void load_ptr_contents( Address& a, Register d, int offset = 0 );
  1.1890 +  inline void store_contents( Register s, Address& a, int offset = 0 );
  1.1891 +  inline void store_ptr_contents( Register s, Address& a, int offset = 0 );
  1.1892 +  inline void jumpl_to( Address& a, Register d, int offset = 0 );
  1.1893 +  inline void jump_to(  Address& a,             int offset = 0 );
  1.1894 +
  1.1895 +  // ring buffer traceable jumps
  1.1896 +
  1.1897 +  void jmp2( Register r1, Register r2, const char* file, int line );
  1.1898 +  void jmp ( Register r1, int offset,  const char* file, int line );
  1.1899 +
  1.1900 +  void jumpl( Address& a, Register d, int offset, const char* file, int line );
  1.1901 +  void jump ( Address& a,             int offset, const char* file, int line );
  1.1902 +
  1.1903 +
  1.1904 +  // argument pseudos:
  1.1905 +
  1.1906 +  inline void load_argument( Argument& a, Register  d );
  1.1907 +  inline void store_argument( Register s, Argument& a );
  1.1908 +  inline void store_ptr_argument( Register s, Argument& a );
  1.1909 +  inline void store_float_argument( FloatRegister s, Argument& a );
  1.1910 +  inline void store_double_argument( FloatRegister s, Argument& a );
  1.1911 +  inline void store_long_argument( Register s, Argument& a );
  1.1912 +
  1.1913 +  // handy macros:
  1.1914 +
  1.1915 +  inline void round_to( Register r, int modulus ) {
  1.1916 +    assert_not_delayed();
  1.1917 +    inc( r, modulus - 1 );
  1.1918 +    and3( r, -modulus, r );
  1.1919 +  }
  1.1920 +
  1.1921 +  // --------------------------------------------------
  1.1922 +
  1.1923 +  // Functions for isolating 64 bit loads for LP64
  1.1924 +  // ld_ptr will perform ld for 32 bit VM's and ldx for 64 bit VM's
  1.1925 +  // st_ptr will perform st for 32 bit VM's and stx for 64 bit VM's
  1.1926 +  inline void ld_ptr(   Register s1, Register s2, Register d );
  1.1927 +  inline void ld_ptr(   Register s1, int simm13a, Register d);
  1.1928 +  inline void ld_ptr(  const Address& a, Register d, int offset = 0 );
  1.1929 +  inline void st_ptr(  Register d, Register s1, Register s2 );
  1.1930 +  inline void st_ptr(  Register d, Register s1, int simm13a);
  1.1931 +  inline void st_ptr(  Register d, const Address& a, int offset = 0 );
  1.1932 +
  1.1933 +  // ld_long will perform ld for 32 bit VM's and ldx for 64 bit VM's
  1.1934 +  // st_long will perform st for 32 bit VM's and stx for 64 bit VM's
  1.1935 +  inline void ld_long( Register s1, Register s2, Register d );
  1.1936 +  inline void ld_long( Register s1, int simm13a, Register d );
  1.1937 +  inline void ld_long( const Address& a, Register d, int offset = 0 );
  1.1938 +  inline void st_long( Register d, Register s1, Register s2 );
  1.1939 +  inline void st_long( Register d, Register s1, int simm13a );
  1.1940 +  inline void st_long( Register d, const Address& a, int offset = 0 );
  1.1941 +
  1.1942 +  // --------------------------------------------------
  1.1943 +
  1.1944 + public:
  1.1945 +  // traps as per trap.h (SPARC ABI?)
  1.1946 +
  1.1947 +  void breakpoint_trap();
  1.1948 +  void breakpoint_trap(Condition c, CC cc = icc);
  1.1949 +  void flush_windows_trap();
  1.1950 +  void clean_windows_trap();
  1.1951 +  void get_psr_trap();
  1.1952 +  void set_psr_trap();
  1.1953 +
  1.1954 +  // V8/V9 flush_windows
  1.1955 +  void flush_windows();
  1.1956 +
  1.1957 +  // Support for serializing memory accesses between threads
  1.1958 +  void serialize_memory(Register thread, Register tmp1, Register tmp2);
  1.1959 +
  1.1960 +  // Stack frame creation/removal
  1.1961 +  void enter();
  1.1962 +  void leave();
  1.1963 +
  1.1964 +  // V8/V9 integer multiply
  1.1965 +  void mult(Register s1, Register s2, Register d);
  1.1966 +  void mult(Register s1, int simm13a, Register d);
  1.1967 +
  1.1968 +  // V8/V9 read and write of condition codes.
  1.1969 +  void read_ccr(Register d);
  1.1970 +  void write_ccr(Register s);
  1.1971 +
  1.1972 +  // Manipulation of C++ bools
  1.1973 +  // These are idioms to flag the need for care with accessing bools but on
  1.1974 +  // this platform we assume byte size
  1.1975 +
  1.1976 +  inline void stbool( Register d, const Address& a, int offset = 0 ) { stb(d, a, offset); }
  1.1977 +  inline void ldbool( const Address& a, Register d, int offset = 0 ) { ldsb( a, d, offset ); }
  1.1978 +  inline void tstbool( Register s ) { tst(s); }
  1.1979 +  inline void movbool( bool boolconst, Register d) { mov( (int) boolconst, d); }
  1.1980 +
  1.1981 +  // Support for managing the JavaThread pointer (i.e.; the reference to
  1.1982 +  // thread-local information).
  1.1983 +  void get_thread();                                // load G2_thread
  1.1984 +  void verify_thread();                             // verify G2_thread contents
  1.1985 +  void save_thread   (const Register threache); // save to cache
  1.1986 +  void restore_thread(const Register thread_cache); // restore from cache
  1.1987 +
  1.1988 +  // Support for last Java frame (but use call_VM instead where possible)
  1.1989 +  void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
  1.1990 +  void reset_last_Java_frame(void);
  1.1991 +
  1.1992 +  // Call into the VM.
  1.1993 +  // Passes the thread pointer (in O0) as a prepended argument.
  1.1994 +  // Makes sure oop return values are visible to the GC.
  1.1995 +  void call_VM(Register oop_result, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
  1.1996 +  void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
  1.1997 +  void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
  1.1998 +  void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
  1.1999 +
  1.2000 +  // these overloadings are not presently used on SPARC:
  1.2001 +  void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
  1.2002 +  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
  1.2003 +  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
  1.2004 +  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
  1.2005 +
  1.2006 +  void call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments = 0);
  1.2007 +  void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1);
  1.2008 +  void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2);
  1.2009 +  void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3);
  1.2010 +
  1.2011 +  void get_vm_result  (Register oop_result);
  1.2012 +  void get_vm_result_2(Register oop_result);
  1.2013 +
  1.2014 +  // vm result is currently getting hijacked to for oop preservation
  1.2015 +  void set_vm_result(Register oop_result);
  1.2016 +
  1.2017 +  // if call_VM_base was called with check_exceptions=false, then call
  1.2018 +  // check_and_forward_exception to handle exceptions when it is safe
  1.2019 +  void check_and_forward_exception(Register scratch_reg);
  1.2020 +
  1.2021 + private:
  1.2022 +  // For V8
  1.2023 +  void read_ccr_trap(Register ccr_save);
  1.2024 +  void write_ccr_trap(Register ccr_save1, Register scratch1, Register scratch2);
  1.2025 +
  1.2026 +#ifdef ASSERT
  1.2027 +  // For V8 debugging.  Uses V8 instruction sequence and checks
  1.2028 +  // result with V9 insturctions rdccr and wrccr.
  1.2029 +  // Uses Gscatch and Gscatch2
  1.2030 +  void read_ccr_v8_assert(Register ccr_save);
  1.2031 +  void write_ccr_v8_assert(Register ccr_save);
  1.2032 +#endif // ASSERT
  1.2033 +
  1.2034 + public:
  1.2035 +  // Stores
  1.2036 +  void store_check(Register tmp, Register obj);                // store check for obj - register is destroyed afterwards
  1.2037 +  void store_check(Register tmp, Register obj, Register offset); // store check for obj - register is destroyed afterwards
  1.2038 +
  1.2039 +  // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  1.2040 +  void push_fTOS();
  1.2041 +
  1.2042 +  // pops double TOS element from CPU stack and pushes on FPU stack
  1.2043 +  void pop_fTOS();
  1.2044 +
  1.2045 +  void empty_FPU_stack();
  1.2046 +
  1.2047 +  void push_IU_state();
  1.2048 +  void pop_IU_state();
  1.2049 +
  1.2050 +  void push_FPU_state();
  1.2051 +  void pop_FPU_state();
  1.2052 +
  1.2053 +  void push_CPU_state();
  1.2054 +  void pop_CPU_state();
  1.2055 +
  1.2056 +  // Debugging
  1.2057 +  void _verify_oop(Register reg, const char * msg, const char * file, int line);
  1.2058 +  void _verify_oop_addr(Address addr, const char * msg, const char * file, int line);
  1.2059 +
  1.2060 +#define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__)
  1.2061 +#define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop addr ", __FILE__, __LINE__)
  1.2062 +
  1.2063 +        // only if +VerifyOops
  1.2064 +  void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
  1.2065 +        // only if +VerifyFPU
  1.2066 +  void stop(const char* msg);                          // prints msg, dumps registers and stops execution
  1.2067 +  void warn(const char* msg);                          // prints msg, but don't stop
  1.2068 +  void untested(const char* what = "");
  1.2069 +  void unimplemented(const char* what = "")              { char* b = new char[1024];  sprintf(b, "unimplemented: %s", what);  stop(b); }
  1.2070 +  void should_not_reach_here()                   { stop("should not reach here"); }
  1.2071 +  void print_CPU_state();
  1.2072 +
  1.2073 +  // oops in code
  1.2074 +  Address allocate_oop_address( jobject obj, Register d ); // allocate_index
  1.2075 +  Address constant_oop_address( jobject obj, Register d ); // find_index
  1.2076 +  inline void set_oop         ( jobject obj, Register d ); // uses allocate_oop_address
  1.2077 +  inline void set_oop_constant( jobject obj, Register d ); // uses constant_oop_address
  1.2078 +  inline void set_oop         ( Address obj_addr );        // same as load_address
  1.2079 +
  1.2080 +  // nop padding
  1.2081 +  void align(int modulus);
  1.2082 +
  1.2083 +  // declare a safepoint
  1.2084 +  void safepoint();
  1.2085 +
  1.2086 +  // factor out part of stop into subroutine to save space
  1.2087 +  void stop_subroutine();
  1.2088 +  // factor out part of verify_oop into subroutine to save space
  1.2089 +  void verify_oop_subroutine();
  1.2090 +
  1.2091 +  // side-door communication with signalHandler in os_solaris.cpp
  1.2092 +  static address _verify_oop_implicit_branch[3];
  1.2093 +
  1.2094 +#ifndef PRODUCT
  1.2095 +  static void test();
  1.2096 +#endif
  1.2097 +
  1.2098 +  // convert an incoming arglist to varargs format; put the pointer in d
  1.2099 +  void set_varargs( Argument a, Register d );
  1.2100 +
  1.2101 +  int total_frame_size_in_bytes(int extraWords);
  1.2102 +
  1.2103 +  // used when extraWords known statically
  1.2104 +  void save_frame(int extraWords);
  1.2105 +  void save_frame_c1(int size_in_bytes);
  1.2106 +  // make a frame, and simultaneously pass up one or two register value
  1.2107 +  // into the new register window
  1.2108 +  void save_frame_and_mov(int extraWords, Register s1, Register d1, Register s2 = Register(), Register d2 = Register());
  1.2109 +
  1.2110 +  // give no. (outgoing) params, calc # of words will need on frame
  1.2111 +  void calc_mem_param_words(Register Rparam_words, Register Rresult);
  1.2112 +
  1.2113 +  // used to calculate frame size dynamically
  1.2114 +  // result is in bytes and must be negated for save inst
  1.2115 +  void calc_frame_size(Register extraWords, Register resultReg);
  1.2116 +
  1.2117 +  // calc and also save
  1.2118 +  void calc_frame_size_and_save(Register extraWords, Register resultReg);
  1.2119 +
  1.2120 +  static void debug(char* msg, RegistersForDebugging* outWindow);
  1.2121 +
  1.2122 +  // implementations of bytecodes used by both interpreter and compiler
  1.2123 +
  1.2124 +  void lcmp( Register Ra_hi, Register Ra_low,
  1.2125 +             Register Rb_hi, Register Rb_low,
  1.2126 +             Register Rresult);
  1.2127 +
  1.2128 +  void lneg( Register Rhi, Register Rlow );
  1.2129 +
  1.2130 +  void lshl(  Register Rin_high,  Register Rin_low,  Register Rcount,
  1.2131 +              Register Rout_high, Register Rout_low, Register Rtemp );
  1.2132 +
  1.2133 +  void lshr(  Register Rin_high,  Register Rin_low,  Register Rcount,
  1.2134 +              Register Rout_high, Register Rout_low, Register Rtemp );
  1.2135 +
  1.2136 +  void lushr( Register Rin_high,  Register Rin_low,  Register Rcount,
  1.2137 +              Register Rout_high, Register Rout_low, Register Rtemp );
  1.2138 +
  1.2139 +#ifdef _LP64
  1.2140 +  void lcmp( Register Ra, Register Rb, Register Rresult);
  1.2141 +#endif
  1.2142 +
  1.2143 +  void float_cmp( bool is_float, int unordered_result,
  1.2144 +                  FloatRegister Fa, FloatRegister Fb,
  1.2145 +                  Register Rresult);
  1.2146 +
  1.2147 +  void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
  1.2148 +  void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { Assembler::fneg(w, sd); }
  1.2149 +  void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
  1.2150 +  void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
  1.2151 +
  1.2152 +  void save_all_globals_into_locals();
  1.2153 +  void restore_globals_from_locals();
  1.2154 +
  1.2155 +  void casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
  1.2156 +    address lock_addr=0, bool use_call_vm=false);
  1.2157 +  void cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
  1.2158 +    address lock_addr=0, bool use_call_vm=false);
  1.2159 +  void casn (Register addr_reg, Register cmp_reg, Register set_reg) ;
  1.2160 +
  1.2161 +  // These set the icc condition code to equal if the lock succeeded
  1.2162 +  // and notEqual if it failed and requires a slow case
  1.2163 +  void compiler_lock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch,
  1.2164 +                              BiasedLockingCounters* counters = NULL);
  1.2165 +  void compiler_unlock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch);
  1.2166 +
  1.2167 +  // Biased locking support
  1.2168 +  // Upon entry, lock_reg must point to the lock record on the stack,
  1.2169 +  // obj_reg must contain the target object, and mark_reg must contain
  1.2170 +  // the target object's header.
  1.2171 +  // Destroys mark_reg if an attempt is made to bias an anonymously
  1.2172 +  // biased lock. In this case a failure will go either to the slow
  1.2173 +  // case or fall through with the notEqual condition code set with
  1.2174 +  // the expectation that the slow case in the runtime will be called.
  1.2175 +  // In the fall-through case where the CAS-based lock is done,
  1.2176 +  // mark_reg is not destroyed.
  1.2177 +  void biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
  1.2178 +                            Label& done, Label* slow_case = NULL,
  1.2179 +                            BiasedLockingCounters* counters = NULL);
  1.2180 +  // Upon entry, the base register of mark_addr must contain the oop.
  1.2181 +  // Destroys temp_reg.
  1.2182 +
  1.2183 +  // If allow_delay_slot_filling is set to true, the next instruction
  1.2184 +  // emitted after this one will go in an annulled delay slot if the
  1.2185 +  // biased locking exit case failed.
  1.2186 +  void biased_locking_exit(Address mark_addr, Register temp_reg, Label& done, bool allow_delay_slot_filling = false);
  1.2187 +
  1.2188 +  // allocation
  1.2189 +  void eden_allocate(
  1.2190 +    Register obj,                      // result: pointer to object after successful allocation
  1.2191 +    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  1.2192 +    int      con_size_in_bytes,        // object size in bytes if   known at compile time
  1.2193 +    Register t1,                       // temp register
  1.2194 +    Register t2,                       // temp register
  1.2195 +    Label&   slow_case                 // continuation point if fast allocation fails
  1.2196 +  );
  1.2197 +  void tlab_allocate(
  1.2198 +    Register obj,                      // result: pointer to object after successful allocation
  1.2199 +    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  1.2200 +    int      con_size_in_bytes,        // object size in bytes if   known at compile time
  1.2201 +    Register t1,                       // temp register
  1.2202 +    Label&   slow_case                 // continuation point if fast allocation fails
  1.2203 +  );
  1.2204 +  void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
  1.2205 +
  1.2206 +  // Stack overflow checking
  1.2207 +
  1.2208 +  // Note: this clobbers G3_scratch
  1.2209 +  void bang_stack_with_offset(int offset) {
  1.2210 +    // stack grows down, caller passes positive offset
  1.2211 +    assert(offset > 0, "must bang with negative offset");
  1.2212 +    set((-offset)+STACK_BIAS, G3_scratch);
  1.2213 +    st(G0, SP, G3_scratch);
  1.2214 +  }
  1.2215 +
  1.2216 +  // Writes to stack successive pages until offset reached to check for
  1.2217 +  // stack overflow + shadow pages.  Clobbers tsp and scratch registers.
  1.2218 +  void bang_stack_size(Register Rsize, Register Rtsp, Register Rscratch);
  1.2219 +
  1.2220 +  void verify_tlab();
  1.2221 +
  1.2222 +  Condition negate_condition(Condition cond);
  1.2223 +
  1.2224 +  // Helper functions for statistics gathering.
  1.2225 +  // Conditionally (non-atomically) increments passed counter address, preserving condition codes.
  1.2226 +  void cond_inc(Condition cond, address counter_addr, Register Rtemp1, Register Rtemp2);
  1.2227 +  // Unconditional increment.
  1.2228 +  void inc_counter(address counter_addr, Register Rtemp1, Register Rtemp2);
  1.2229 +
  1.2230 +#undef VIRTUAL
  1.2231 +
  1.2232 +};
  1.2233 +
  1.2234 +/**
  1.2235 + * class SkipIfEqual:
  1.2236 + *
  1.2237 + * Instantiating this class will result in assembly code being output that will
  1.2238 + * jump around any code emitted between the creation of the instance and it's
  1.2239 + * automatic destruction at the end of a scope block, depending on the value of
  1.2240 + * the flag passed to the constructor, which will be checked at run-time.
  1.2241 + */
  1.2242 +class SkipIfEqual : public StackObj {
  1.2243 + private:
  1.2244 +  MacroAssembler* _masm;
  1.2245 +  Label _label;
  1.2246 +
  1.2247 + public:
  1.2248 +   // 'temp' is a temp register that this object can use (and trash)
  1.2249 +   SkipIfEqual(MacroAssembler*, Register temp,
  1.2250 +               const bool* flag_addr, Assembler::Condition condition);
  1.2251 +   ~SkipIfEqual();
  1.2252 +};
  1.2253 +
  1.2254 +#ifdef ASSERT
  1.2255 +// On RISC, there's no benefit to verifying instruction boundaries.
  1.2256 +inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
  1.2257 +#endif

mercurial