src/share/vm/runtime/vframeArray.hpp

changeset 0
f90c822e73f8
child 6876
710a3c8b516e
equal deleted inserted replaced
-1:000000000000 0:f90c822e73f8
1 /*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_VM_RUNTIME_VFRAMEARRAY_HPP
26 #define SHARE_VM_RUNTIME_VFRAMEARRAY_HPP
27
28 #include "oops/arrayOop.hpp"
29 #include "runtime/deoptimization.hpp"
30 #include "runtime/frame.inline.hpp"
31 #include "runtime/monitorChunk.hpp"
32 #include "utilities/growableArray.hpp"
33
34 // A vframeArray is an array used for momentarily storing off stack Java method activations
35 // during deoptimization. Essentially it is an array of vframes where each vframe
36 // data is stored off stack. This structure will never exist across a safepoint so
37 // there is no need to gc any oops that are stored in the structure.
38
39
40 class LocalsClosure;
41 class ExpressionStackClosure;
42 class MonitorStackClosure;
43 class MonitorArrayElement;
44 class StackValueCollection;
45
46 // A vframeArrayElement is an element of a vframeArray. Each element
47 // represent an interpreter frame which will eventually be created.
48
49 class vframeArrayElement : public _ValueObj {
50 friend class VMStructs;
51
52 private:
53
54 frame _frame; // the interpreter frame we will unpack into
55 int _bci; // raw bci for this vframe
56 bool _reexecute; // whether sould we reexecute this bytecode
57 Method* _method; // the method for this vframe
58 MonitorChunk* _monitors; // active monitors for this vframe
59 StackValueCollection* _locals;
60 StackValueCollection* _expressions;
61
62 public:
63
64 frame* iframe(void) { return &_frame; }
65
66 int bci(void) const;
67
68 int raw_bci(void) const { return _bci; }
69 bool should_reexecute(void) const { return _reexecute; }
70
71 Method* method(void) const { return _method; }
72
73 MonitorChunk* monitors(void) const { return _monitors; }
74
75 void free_monitors(JavaThread* jt);
76
77 StackValueCollection* locals(void) const { return _locals; }
78
79 StackValueCollection* expressions(void) const { return _expressions; }
80
81 void fill_in(compiledVFrame* vf);
82
83 // Formerly part of deoptimizedVFrame
84
85
86 // Returns the on stack word size for this frame
87 // callee_parameters is the number of callee locals residing inside this frame
88 int on_stack_size(int callee_parameters,
89 int callee_locals,
90 bool is_top_frame,
91 int popframe_extra_stack_expression_els) const;
92
93 // Unpacks the element to skeletal interpreter frame
94 void unpack_on_stack(int caller_actual_parameters,
95 int callee_parameters,
96 int callee_locals,
97 frame* caller,
98 bool is_top_frame,
99 bool is_bottom_frame,
100 int exec_mode);
101
102 #ifndef PRODUCT
103 void print(outputStream* st);
104 #endif /* PRODUCT */
105 };
106
107 // this can be a ResourceObj if we don't save the last one...
108 // but it does make debugging easier even if we can't look
109 // at the data in each vframeElement
110
111 class vframeArray: public CHeapObj<mtCompiler> {
112 friend class VMStructs;
113
114 private:
115
116
117 // Here is what a vframeArray looks like in memory
118
119 /*
120 fixed part
121 description of the original frame
122 _frames - number of vframes in this array
123 adapter info
124 callee register save area
125 variable part
126 vframeArrayElement [ 0 ]
127 ...
128 vframeArrayElement [_frames - 1]
129
130 */
131
132 JavaThread* _owner_thread;
133 vframeArray* _next;
134 frame _original; // the original frame of the deoptee
135 frame _caller; // caller of root frame in vframeArray
136 frame _sender;
137
138 Deoptimization::UnrollBlock* _unroll_block;
139 int _frame_size;
140
141 int _frames; // number of javavframes in the array (does not count any adapter)
142
143 intptr_t _callee_registers[RegisterMap::reg_count];
144 unsigned char _valid[RegisterMap::reg_count];
145
146 vframeArrayElement _elements[1]; // First variable section.
147
148 void fill_in_element(int index, compiledVFrame* vf);
149
150 bool is_location_valid(int i) const { return _valid[i] != 0; }
151 void set_location_valid(int i, bool valid) { _valid[i] = valid; }
152
153 public:
154
155
156 // Tells whether index is within bounds.
157 bool is_within_bounds(int index) const { return 0 <= index && index < frames(); }
158
159 // Accessores for instance variable
160 int frames() const { return _frames; }
161
162 static vframeArray* allocate(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk,
163 RegisterMap* reg_map, frame sender, frame caller, frame self);
164
165
166 vframeArrayElement* element(int index) { assert(is_within_bounds(index), "Bad index"); return &_elements[index]; }
167
168 // Allocates a new vframe in the array and fills the array with vframe information in chunk
169 void fill_in(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk, const RegisterMap *reg_map);
170
171 // Returns the owner of this vframeArray
172 JavaThread* owner_thread() const { return _owner_thread; }
173
174 // Accessors for next
175 vframeArray* next() const { return _next; }
176 void set_next(vframeArray* value) { _next = value; }
177
178 // Accessors for sp
179 intptr_t* sp() const { return _original.sp(); }
180
181 intptr_t* unextended_sp() const { return _original.unextended_sp(); }
182
183 address original_pc() const { return _original.pc(); }
184
185 frame original() const { return _original; }
186
187 frame caller() const { return _caller; }
188
189 frame sender() const { return _sender; }
190
191 // Accessors for unroll block
192 Deoptimization::UnrollBlock* unroll_block() const { return _unroll_block; }
193 void set_unroll_block(Deoptimization::UnrollBlock* block) { _unroll_block = block; }
194
195 // Returns the size of the frame that got deoptimized
196 int frame_size() const { return _frame_size; }
197
198 // Unpack the array on the stack passed in stack interval
199 void unpack_to_stack(frame &unpack_frame, int exec_mode, int caller_actual_parameters);
200
201 // Deallocates monitor chunks allocated during deoptimization.
202 // This should be called when the array is not used anymore.
203 void deallocate_monitor_chunks();
204
205
206
207 // Accessor for register map
208 address register_location(int i) const;
209
210 void print_on_2(outputStream* st) PRODUCT_RETURN;
211 void print_value_on(outputStream* st) const PRODUCT_RETURN;
212
213 #ifndef PRODUCT
214 // Comparing
215 bool structural_compare(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk);
216 #endif
217
218 };
219
220 #endif // SHARE_VM_RUNTIME_VFRAMEARRAY_HPP

mercurial