src/share/vm/runtime/thread.cpp

changeset 0
f90c822e73f8
child 1
2d8a650513c2
equal deleted inserted replaced
-1:000000000000 0:f90c822e73f8
1 /*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "classfile/classLoader.hpp"
27 #include "classfile/javaClasses.hpp"
28 #include "classfile/systemDictionary.hpp"
29 #include "classfile/vmSymbols.hpp"
30 #include "code/scopeDesc.hpp"
31 #include "compiler/compileBroker.hpp"
32 #include "interpreter/interpreter.hpp"
33 #include "interpreter/linkResolver.hpp"
34 #include "interpreter/oopMapCache.hpp"
35 #include "jvmtifiles/jvmtiEnv.hpp"
36 #include "memory/gcLocker.inline.hpp"
37 #include "memory/metaspaceShared.hpp"
38 #include "memory/oopFactory.hpp"
39 #include "memory/universe.inline.hpp"
40 #include "oops/instanceKlass.hpp"
41 #include "oops/objArrayOop.hpp"
42 #include "oops/oop.inline.hpp"
43 #include "oops/symbol.hpp"
44 #include "prims/jvm_misc.hpp"
45 #include "prims/jvmtiExport.hpp"
46 #include "prims/jvmtiThreadState.hpp"
47 #include "prims/privilegedStack.hpp"
48 #include "runtime/arguments.hpp"
49 #include "runtime/biasedLocking.hpp"
50 #include "runtime/deoptimization.hpp"
51 #include "runtime/fprofiler.hpp"
52 #include "runtime/frame.inline.hpp"
53 #include "runtime/init.hpp"
54 #include "runtime/interfaceSupport.hpp"
55 #include "runtime/java.hpp"
56 #include "runtime/javaCalls.hpp"
57 #include "runtime/jniPeriodicChecker.hpp"
58 #include "runtime/memprofiler.hpp"
59 #include "runtime/mutexLocker.hpp"
60 #include "runtime/objectMonitor.hpp"
61 #include "runtime/osThread.hpp"
62 #include "runtime/safepoint.hpp"
63 #include "runtime/sharedRuntime.hpp"
64 #include "runtime/statSampler.hpp"
65 #include "runtime/stubRoutines.hpp"
66 #include "runtime/task.hpp"
67 #include "runtime/thread.inline.hpp"
68 #include "runtime/threadCritical.hpp"
69 #include "runtime/threadLocalStorage.hpp"
70 #include "runtime/vframe.hpp"
71 #include "runtime/vframeArray.hpp"
72 #include "runtime/vframe_hp.hpp"
73 #include "runtime/vmThread.hpp"
74 #include "runtime/vm_operations.hpp"
75 #include "services/attachListener.hpp"
76 #include "services/management.hpp"
77 #include "services/memTracker.hpp"
78 #include "services/threadService.hpp"
79 #include "trace/tracing.hpp"
80 #include "trace/traceMacros.hpp"
81 #include "utilities/defaultStream.hpp"
82 #include "utilities/dtrace.hpp"
83 #include "utilities/events.hpp"
84 #include "utilities/preserveException.hpp"
85 #include "utilities/macros.hpp"
86 #ifdef TARGET_OS_FAMILY_linux
87 # include "os_linux.inline.hpp"
88 #endif
89 #ifdef TARGET_OS_FAMILY_solaris
90 # include "os_solaris.inline.hpp"
91 #endif
92 #ifdef TARGET_OS_FAMILY_windows
93 # include "os_windows.inline.hpp"
94 #endif
95 #ifdef TARGET_OS_FAMILY_bsd
96 # include "os_bsd.inline.hpp"
97 #endif
98 #if INCLUDE_ALL_GCS
99 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
100 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
101 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
102 #endif // INCLUDE_ALL_GCS
103 #ifdef COMPILER1
104 #include "c1/c1_Compiler.hpp"
105 #endif
106 #ifdef COMPILER2
107 #include "opto/c2compiler.hpp"
108 #include "opto/idealGraphPrinter.hpp"
109 #endif
110 #if INCLUDE_RTM_OPT
111 #include "runtime/rtmLocking.hpp"
112 #endif
113
114 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
115
116 #ifdef DTRACE_ENABLED
117
118 // Only bother with this argument setup if dtrace is available
119
120 #ifndef USDT2
121 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
122 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
123 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
124 intptr_t, intptr_t, bool);
125 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
126 intptr_t, intptr_t, bool);
127
128 #define DTRACE_THREAD_PROBE(probe, javathread) \
129 { \
130 ResourceMark rm(this); \
131 int len = 0; \
132 const char* name = (javathread)->get_thread_name(); \
133 len = strlen(name); \
134 HS_DTRACE_PROBE5(hotspot, thread__##probe, \
135 name, len, \
136 java_lang_Thread::thread_id((javathread)->threadObj()), \
137 (javathread)->osthread()->thread_id(), \
138 java_lang_Thread::is_daemon((javathread)->threadObj())); \
139 }
140
141 #else /* USDT2 */
142
143 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
144 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
145
146 #define DTRACE_THREAD_PROBE(probe, javathread) \
147 { \
148 ResourceMark rm(this); \
149 int len = 0; \
150 const char* name = (javathread)->get_thread_name(); \
151 len = strlen(name); \
152 HOTSPOT_THREAD_PROBE_##probe( /* probe = start, stop */ \
153 (char *) name, len, \
154 java_lang_Thread::thread_id((javathread)->threadObj()), \
155 (uintptr_t) (javathread)->osthread()->thread_id(), \
156 java_lang_Thread::is_daemon((javathread)->threadObj())); \
157 }
158
159 #endif /* USDT2 */
160
161 #else // ndef DTRACE_ENABLED
162
163 #define DTRACE_THREAD_PROBE(probe, javathread)
164
165 #endif // ndef DTRACE_ENABLED
166
167
168 // Class hierarchy
169 // - Thread
170 // - VMThread
171 // - WatcherThread
172 // - ConcurrentMarkSweepThread
173 // - JavaThread
174 // - CompilerThread
175
176 // ======= Thread ========
177 // Support for forcing alignment of thread objects for biased locking
178 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
179 if (UseBiasedLocking) {
180 const int alignment = markOopDesc::biased_lock_alignment;
181 size_t aligned_size = size + (alignment - sizeof(intptr_t));
182 void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
183 : AllocateHeap(aligned_size, flags, CURRENT_PC,
184 AllocFailStrategy::RETURN_NULL);
185 void* aligned_addr = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
186 assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
187 ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
188 "JavaThread alignment code overflowed allocated storage");
189 if (TraceBiasedLocking) {
190 if (aligned_addr != real_malloc_addr)
191 tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
192 real_malloc_addr, aligned_addr);
193 }
194 ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
195 return aligned_addr;
196 } else {
197 return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
198 : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
199 }
200 }
201
202 void Thread::operator delete(void* p) {
203 if (UseBiasedLocking) {
204 void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
205 FreeHeap(real_malloc_addr, mtThread);
206 } else {
207 FreeHeap(p, mtThread);
208 }
209 }
210
211
212 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
213 // JavaThread
214
215
216 Thread::Thread() {
217 // stack and get_thread
218 set_stack_base(NULL);
219 set_stack_size(0);
220 set_self_raw_id(0);
221 set_lgrp_id(-1);
222
223 // allocated data structures
224 set_osthread(NULL);
225 set_resource_area(new (mtThread)ResourceArea());
226 DEBUG_ONLY(_current_resource_mark = NULL;)
227 set_handle_area(new (mtThread) HandleArea(NULL));
228 set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
229 set_active_handles(NULL);
230 set_free_handle_block(NULL);
231 set_last_handle_mark(NULL);
232
233 // This initial value ==> never claimed.
234 _oops_do_parity = 0;
235
236 // the handle mark links itself to last_handle_mark
237 new HandleMark(this);
238
239 // plain initialization
240 debug_only(_owned_locks = NULL;)
241 debug_only(_allow_allocation_count = 0;)
242 NOT_PRODUCT(_allow_safepoint_count = 0;)
243 NOT_PRODUCT(_skip_gcalot = false;)
244 _jvmti_env_iteration_count = 0;
245 set_allocated_bytes(0);
246 _vm_operation_started_count = 0;
247 _vm_operation_completed_count = 0;
248 _current_pending_monitor = NULL;
249 _current_pending_monitor_is_from_java = true;
250 _current_waiting_monitor = NULL;
251 _num_nested_signal = 0;
252 omFreeList = NULL ;
253 omFreeCount = 0 ;
254 omFreeProvision = 32 ;
255 omInUseList = NULL ;
256 omInUseCount = 0 ;
257
258 #ifdef ASSERT
259 _visited_for_critical_count = false;
260 #endif
261
262 _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
263 _suspend_flags = 0;
264
265 // thread-specific hashCode stream generator state - Marsaglia shift-xor form
266 _hashStateX = os::random() ;
267 _hashStateY = 842502087 ;
268 _hashStateZ = 0x8767 ; // (int)(3579807591LL & 0xffff) ;
269 _hashStateW = 273326509 ;
270
271 _OnTrap = 0 ;
272 _schedctl = NULL ;
273 _Stalled = 0 ;
274 _TypeTag = 0x2BAD ;
275
276 // Many of the following fields are effectively final - immutable
277 // Note that nascent threads can't use the Native Monitor-Mutex
278 // construct until the _MutexEvent is initialized ...
279 // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
280 // we might instead use a stack of ParkEvents that we could provision on-demand.
281 // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
282 // and ::Release()
283 _ParkEvent = ParkEvent::Allocate (this) ;
284 _SleepEvent = ParkEvent::Allocate (this) ;
285 _MutexEvent = ParkEvent::Allocate (this) ;
286 _MuxEvent = ParkEvent::Allocate (this) ;
287
288 #ifdef CHECK_UNHANDLED_OOPS
289 if (CheckUnhandledOops) {
290 _unhandled_oops = new UnhandledOops(this);
291 }
292 #endif // CHECK_UNHANDLED_OOPS
293 #ifdef ASSERT
294 if (UseBiasedLocking) {
295 assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
296 assert(this == _real_malloc_address ||
297 this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
298 "bug in forced alignment of thread objects");
299 }
300 #endif /* ASSERT */
301 }
302
303 void Thread::initialize_thread_local_storage() {
304 // Note: Make sure this method only calls
305 // non-blocking operations. Otherwise, it might not work
306 // with the thread-startup/safepoint interaction.
307
308 // During Java thread startup, safepoint code should allow this
309 // method to complete because it may need to allocate memory to
310 // store information for the new thread.
311
312 // initialize structure dependent on thread local storage
313 ThreadLocalStorage::set_thread(this);
314 }
315
316 void Thread::record_stack_base_and_size() {
317 set_stack_base(os::current_stack_base());
318 set_stack_size(os::current_stack_size());
319 if (is_Java_thread()) {
320 ((JavaThread*) this)->set_stack_overflow_limit();
321 }
322 // CR 7190089: on Solaris, primordial thread's stack is adjusted
323 // in initialize_thread(). Without the adjustment, stack size is
324 // incorrect if stack is set to unlimited (ulimit -s unlimited).
325 // So far, only Solaris has real implementation of initialize_thread().
326 //
327 // set up any platform-specific state.
328 os::initialize_thread(this);
329
330 #if INCLUDE_NMT
331 // record thread's native stack, stack grows downward
332 address stack_low_addr = stack_base() - stack_size();
333 MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
334 CURRENT_PC);
335 #endif // INCLUDE_NMT
336 }
337
338
339 Thread::~Thread() {
340 // Reclaim the objectmonitors from the omFreeList of the moribund thread.
341 ObjectSynchronizer::omFlush (this) ;
342
343 EVENT_THREAD_DESTRUCT(this);
344
345 // stack_base can be NULL if the thread is never started or exited before
346 // record_stack_base_and_size called. Although, we would like to ensure
347 // that all started threads do call record_stack_base_and_size(), there is
348 // not proper way to enforce that.
349 #if INCLUDE_NMT
350 if (_stack_base != NULL) {
351 address low_stack_addr = stack_base() - stack_size();
352 MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
353 #ifdef ASSERT
354 set_stack_base(NULL);
355 #endif
356 }
357 #endif // INCLUDE_NMT
358
359 // deallocate data structures
360 delete resource_area();
361 // since the handle marks are using the handle area, we have to deallocated the root
362 // handle mark before deallocating the thread's handle area,
363 assert(last_handle_mark() != NULL, "check we have an element");
364 delete last_handle_mark();
365 assert(last_handle_mark() == NULL, "check we have reached the end");
366
367 // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
368 // We NULL out the fields for good hygiene.
369 ParkEvent::Release (_ParkEvent) ; _ParkEvent = NULL ;
370 ParkEvent::Release (_SleepEvent) ; _SleepEvent = NULL ;
371 ParkEvent::Release (_MutexEvent) ; _MutexEvent = NULL ;
372 ParkEvent::Release (_MuxEvent) ; _MuxEvent = NULL ;
373
374 delete handle_area();
375 delete metadata_handles();
376
377 // osthread() can be NULL, if creation of thread failed.
378 if (osthread() != NULL) os::free_thread(osthread());
379
380 delete _SR_lock;
381
382 // clear thread local storage if the Thread is deleting itself
383 if (this == Thread::current()) {
384 ThreadLocalStorage::set_thread(NULL);
385 } else {
386 // In the case where we're not the current thread, invalidate all the
387 // caches in case some code tries to get the current thread or the
388 // thread that was destroyed, and gets stale information.
389 ThreadLocalStorage::invalidate_all();
390 }
391 CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
392 }
393
394 // NOTE: dummy function for assertion purpose.
395 void Thread::run() {
396 ShouldNotReachHere();
397 }
398
399 #ifdef ASSERT
400 // Private method to check for dangling thread pointer
401 void check_for_dangling_thread_pointer(Thread *thread) {
402 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
403 "possibility of dangling Thread pointer");
404 }
405 #endif
406
407
408 #ifndef PRODUCT
409 // Tracing method for basic thread operations
410 void Thread::trace(const char* msg, const Thread* const thread) {
411 if (!TraceThreadEvents) return;
412 ResourceMark rm;
413 ThreadCritical tc;
414 const char *name = "non-Java thread";
415 int prio = -1;
416 if (thread->is_Java_thread()
417 && !thread->is_Compiler_thread()) {
418 // The Threads_lock must be held to get information about
419 // this thread but may not be in some situations when
420 // tracing thread events.
421 bool release_Threads_lock = false;
422 if (!Threads_lock->owned_by_self()) {
423 Threads_lock->lock();
424 release_Threads_lock = true;
425 }
426 JavaThread* jt = (JavaThread *)thread;
427 name = (char *)jt->get_thread_name();
428 oop thread_oop = jt->threadObj();
429 if (thread_oop != NULL) {
430 prio = java_lang_Thread::priority(thread_oop);
431 }
432 if (release_Threads_lock) {
433 Threads_lock->unlock();
434 }
435 }
436 tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
437 }
438 #endif
439
440
441 ThreadPriority Thread::get_priority(const Thread* const thread) {
442 trace("get priority", thread);
443 ThreadPriority priority;
444 // Can return an error!
445 (void)os::get_priority(thread, priority);
446 assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
447 return priority;
448 }
449
450 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
451 trace("set priority", thread);
452 debug_only(check_for_dangling_thread_pointer(thread);)
453 // Can return an error!
454 (void)os::set_priority(thread, priority);
455 }
456
457
458 void Thread::start(Thread* thread) {
459 trace("start", thread);
460 // Start is different from resume in that its safety is guaranteed by context or
461 // being called from a Java method synchronized on the Thread object.
462 if (!DisableStartThread) {
463 if (thread->is_Java_thread()) {
464 // Initialize the thread state to RUNNABLE before starting this thread.
465 // Can not set it after the thread started because we do not know the
466 // exact thread state at that time. It could be in MONITOR_WAIT or
467 // in SLEEPING or some other state.
468 java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
469 java_lang_Thread::RUNNABLE);
470 }
471 os::start_thread(thread);
472 }
473 }
474
475 // Enqueue a VM_Operation to do the job for us - sometime later
476 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
477 VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
478 VMThread::execute(vm_stop);
479 }
480
481
482 //
483 // Check if an external suspend request has completed (or has been
484 // cancelled). Returns true if the thread is externally suspended and
485 // false otherwise.
486 //
487 // The bits parameter returns information about the code path through
488 // the routine. Useful for debugging:
489 //
490 // set in is_ext_suspend_completed():
491 // 0x00000001 - routine was entered
492 // 0x00000010 - routine return false at end
493 // 0x00000100 - thread exited (return false)
494 // 0x00000200 - suspend request cancelled (return false)
495 // 0x00000400 - thread suspended (return true)
496 // 0x00001000 - thread is in a suspend equivalent state (return true)
497 // 0x00002000 - thread is native and walkable (return true)
498 // 0x00004000 - thread is native_trans and walkable (needed retry)
499 //
500 // set in wait_for_ext_suspend_completion():
501 // 0x00010000 - routine was entered
502 // 0x00020000 - suspend request cancelled before loop (return false)
503 // 0x00040000 - thread suspended before loop (return true)
504 // 0x00080000 - suspend request cancelled in loop (return false)
505 // 0x00100000 - thread suspended in loop (return true)
506 // 0x00200000 - suspend not completed during retry loop (return false)
507 //
508
509 // Helper class for tracing suspend wait debug bits.
510 //
511 // 0x00000100 indicates that the target thread exited before it could
512 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
513 // 0x00080000 each indicate a cancelled suspend request so they don't
514 // count as wait failures either.
515 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
516
517 class TraceSuspendDebugBits : public StackObj {
518 private:
519 JavaThread * jt;
520 bool is_wait;
521 bool called_by_wait; // meaningful when !is_wait
522 uint32_t * bits;
523
524 public:
525 TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
526 uint32_t *_bits) {
527 jt = _jt;
528 is_wait = _is_wait;
529 called_by_wait = _called_by_wait;
530 bits = _bits;
531 }
532
533 ~TraceSuspendDebugBits() {
534 if (!is_wait) {
535 #if 1
536 // By default, don't trace bits for is_ext_suspend_completed() calls.
537 // That trace is very chatty.
538 return;
539 #else
540 if (!called_by_wait) {
541 // If tracing for is_ext_suspend_completed() is enabled, then only
542 // trace calls to it from wait_for_ext_suspend_completion()
543 return;
544 }
545 #endif
546 }
547
548 if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
549 if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
550 MutexLocker ml(Threads_lock); // needed for get_thread_name()
551 ResourceMark rm;
552
553 tty->print_cr(
554 "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
555 jt->get_thread_name(), *bits);
556
557 guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
558 }
559 }
560 }
561 };
562 #undef DEBUG_FALSE_BITS
563
564
565 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
566 TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
567
568 bool did_trans_retry = false; // only do thread_in_native_trans retry once
569 bool do_trans_retry; // flag to force the retry
570
571 *bits |= 0x00000001;
572
573 do {
574 do_trans_retry = false;
575
576 if (is_exiting()) {
577 // Thread is in the process of exiting. This is always checked
578 // first to reduce the risk of dereferencing a freed JavaThread.
579 *bits |= 0x00000100;
580 return false;
581 }
582
583 if (!is_external_suspend()) {
584 // Suspend request is cancelled. This is always checked before
585 // is_ext_suspended() to reduce the risk of a rogue resume
586 // confusing the thread that made the suspend request.
587 *bits |= 0x00000200;
588 return false;
589 }
590
591 if (is_ext_suspended()) {
592 // thread is suspended
593 *bits |= 0x00000400;
594 return true;
595 }
596
597 // Now that we no longer do hard suspends of threads running
598 // native code, the target thread can be changing thread state
599 // while we are in this routine:
600 //
601 // _thread_in_native -> _thread_in_native_trans -> _thread_blocked
602 //
603 // We save a copy of the thread state as observed at this moment
604 // and make our decision about suspend completeness based on the
605 // copy. This closes the race where the thread state is seen as
606 // _thread_in_native_trans in the if-thread_blocked check, but is
607 // seen as _thread_blocked in if-thread_in_native_trans check.
608 JavaThreadState save_state = thread_state();
609
610 if (save_state == _thread_blocked && is_suspend_equivalent()) {
611 // If the thread's state is _thread_blocked and this blocking
612 // condition is known to be equivalent to a suspend, then we can
613 // consider the thread to be externally suspended. This means that
614 // the code that sets _thread_blocked has been modified to do
615 // self-suspension if the blocking condition releases. We also
616 // used to check for CONDVAR_WAIT here, but that is now covered by
617 // the _thread_blocked with self-suspension check.
618 //
619 // Return true since we wouldn't be here unless there was still an
620 // external suspend request.
621 *bits |= 0x00001000;
622 return true;
623 } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
624 // Threads running native code will self-suspend on native==>VM/Java
625 // transitions. If its stack is walkable (should always be the case
626 // unless this function is called before the actual java_suspend()
627 // call), then the wait is done.
628 *bits |= 0x00002000;
629 return true;
630 } else if (!called_by_wait && !did_trans_retry &&
631 save_state == _thread_in_native_trans &&
632 frame_anchor()->walkable()) {
633 // The thread is transitioning from thread_in_native to another
634 // thread state. check_safepoint_and_suspend_for_native_trans()
635 // will force the thread to self-suspend. If it hasn't gotten
636 // there yet we may have caught the thread in-between the native
637 // code check above and the self-suspend. Lucky us. If we were
638 // called by wait_for_ext_suspend_completion(), then it
639 // will be doing the retries so we don't have to.
640 //
641 // Since we use the saved thread state in the if-statement above,
642 // there is a chance that the thread has already transitioned to
643 // _thread_blocked by the time we get here. In that case, we will
644 // make a single unnecessary pass through the logic below. This
645 // doesn't hurt anything since we still do the trans retry.
646
647 *bits |= 0x00004000;
648
649 // Once the thread leaves thread_in_native_trans for another
650 // thread state, we break out of this retry loop. We shouldn't
651 // need this flag to prevent us from getting back here, but
652 // sometimes paranoia is good.
653 did_trans_retry = true;
654
655 // We wait for the thread to transition to a more usable state.
656 for (int i = 1; i <= SuspendRetryCount; i++) {
657 // We used to do an "os::yield_all(i)" call here with the intention
658 // that yielding would increase on each retry. However, the parameter
659 // is ignored on Linux which means the yield didn't scale up. Waiting
660 // on the SR_lock below provides a much more predictable scale up for
661 // the delay. It also provides a simple/direct point to check for any
662 // safepoint requests from the VMThread
663
664 // temporarily drops SR_lock while doing wait with safepoint check
665 // (if we're a JavaThread - the WatcherThread can also call this)
666 // and increase delay with each retry
667 SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
668
669 // check the actual thread state instead of what we saved above
670 if (thread_state() != _thread_in_native_trans) {
671 // the thread has transitioned to another thread state so
672 // try all the checks (except this one) one more time.
673 do_trans_retry = true;
674 break;
675 }
676 } // end retry loop
677
678
679 }
680 } while (do_trans_retry);
681
682 *bits |= 0x00000010;
683 return false;
684 }
685
686 //
687 // Wait for an external suspend request to complete (or be cancelled).
688 // Returns true if the thread is externally suspended and false otherwise.
689 //
690 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
691 uint32_t *bits) {
692 TraceSuspendDebugBits tsdb(this, true /* is_wait */,
693 false /* !called_by_wait */, bits);
694
695 // local flag copies to minimize SR_lock hold time
696 bool is_suspended;
697 bool pending;
698 uint32_t reset_bits;
699
700 // set a marker so is_ext_suspend_completed() knows we are the caller
701 *bits |= 0x00010000;
702
703 // We use reset_bits to reinitialize the bits value at the top of
704 // each retry loop. This allows the caller to make use of any
705 // unused bits for their own marking purposes.
706 reset_bits = *bits;
707
708 {
709 MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
710 is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
711 delay, bits);
712 pending = is_external_suspend();
713 }
714 // must release SR_lock to allow suspension to complete
715
716 if (!pending) {
717 // A cancelled suspend request is the only false return from
718 // is_ext_suspend_completed() that keeps us from entering the
719 // retry loop.
720 *bits |= 0x00020000;
721 return false;
722 }
723
724 if (is_suspended) {
725 *bits |= 0x00040000;
726 return true;
727 }
728
729 for (int i = 1; i <= retries; i++) {
730 *bits = reset_bits; // reinit to only track last retry
731
732 // We used to do an "os::yield_all(i)" call here with the intention
733 // that yielding would increase on each retry. However, the parameter
734 // is ignored on Linux which means the yield didn't scale up. Waiting
735 // on the SR_lock below provides a much more predictable scale up for
736 // the delay. It also provides a simple/direct point to check for any
737 // safepoint requests from the VMThread
738
739 {
740 MutexLocker ml(SR_lock());
741 // wait with safepoint check (if we're a JavaThread - the WatcherThread
742 // can also call this) and increase delay with each retry
743 SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
744
745 is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
746 delay, bits);
747
748 // It is possible for the external suspend request to be cancelled
749 // (by a resume) before the actual suspend operation is completed.
750 // Refresh our local copy to see if we still need to wait.
751 pending = is_external_suspend();
752 }
753
754 if (!pending) {
755 // A cancelled suspend request is the only false return from
756 // is_ext_suspend_completed() that keeps us from staying in the
757 // retry loop.
758 *bits |= 0x00080000;
759 return false;
760 }
761
762 if (is_suspended) {
763 *bits |= 0x00100000;
764 return true;
765 }
766 } // end retry loop
767
768 // thread did not suspend after all our retries
769 *bits |= 0x00200000;
770 return false;
771 }
772
773 #ifndef PRODUCT
774 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
775
776 // This should not need to be atomic as the only way for simultaneous
777 // updates is via interrupts. Even then this should be rare or non-existant
778 // and we don't care that much anyway.
779
780 int index = _jmp_ring_index;
781 _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
782 _jmp_ring[index]._target = (intptr_t) target;
783 _jmp_ring[index]._instruction = (intptr_t) instr;
784 _jmp_ring[index]._file = file;
785 _jmp_ring[index]._line = line;
786 }
787 #endif /* PRODUCT */
788
789 // Called by flat profiler
790 // Callers have already called wait_for_ext_suspend_completion
791 // The assertion for that is currently too complex to put here:
792 bool JavaThread::profile_last_Java_frame(frame* _fr) {
793 bool gotframe = false;
794 // self suspension saves needed state.
795 if (has_last_Java_frame() && _anchor.walkable()) {
796 *_fr = pd_last_frame();
797 gotframe = true;
798 }
799 return gotframe;
800 }
801
802 void Thread::interrupt(Thread* thread) {
803 trace("interrupt", thread);
804 debug_only(check_for_dangling_thread_pointer(thread);)
805 os::interrupt(thread);
806 }
807
808 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
809 trace("is_interrupted", thread);
810 debug_only(check_for_dangling_thread_pointer(thread);)
811 // Note: If clear_interrupted==false, this simply fetches and
812 // returns the value of the field osthread()->interrupted().
813 return os::is_interrupted(thread, clear_interrupted);
814 }
815
816
817 // GC Support
818 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
819 jint thread_parity = _oops_do_parity;
820 if (thread_parity != strong_roots_parity) {
821 jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
822 if (res == thread_parity) {
823 return true;
824 } else {
825 guarantee(res == strong_roots_parity, "Or else what?");
826 assert(SharedHeap::heap()->workers()->active_workers() > 0,
827 "Should only fail when parallel.");
828 return false;
829 }
830 }
831 assert(SharedHeap::heap()->workers()->active_workers() > 0,
832 "Should only fail when parallel.");
833 return false;
834 }
835
836 void Thread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
837 active_handles()->oops_do(f);
838 // Do oop for ThreadShadow
839 f->do_oop((oop*)&_pending_exception);
840 handle_area()->oops_do(f);
841 }
842
843 void Thread::nmethods_do(CodeBlobClosure* cf) {
844 // no nmethods in a generic thread...
845 }
846
847 void Thread::metadata_do(void f(Metadata*)) {
848 if (metadata_handles() != NULL) {
849 for (int i = 0; i< metadata_handles()->length(); i++) {
850 f(metadata_handles()->at(i));
851 }
852 }
853 }
854
855 void Thread::print_on(outputStream* st) const {
856 // get_priority assumes osthread initialized
857 if (osthread() != NULL) {
858 int os_prio;
859 if (os::get_native_priority(this, &os_prio) == OS_OK) {
860 st->print("os_prio=%d ", os_prio);
861 }
862 st->print("tid=" INTPTR_FORMAT " ", this);
863 osthread()->print_on(st);
864 }
865 debug_only(if (WizardMode) print_owned_locks_on(st);)
866 }
867
868 // Thread::print_on_error() is called by fatal error handler. Don't use
869 // any lock or allocate memory.
870 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
871 if (is_VM_thread()) st->print("VMThread");
872 else if (is_Compiler_thread()) st->print("CompilerThread");
873 else if (is_Java_thread()) st->print("JavaThread");
874 else if (is_GC_task_thread()) st->print("GCTaskThread");
875 else if (is_Watcher_thread()) st->print("WatcherThread");
876 else if (is_ConcurrentGC_thread()) st->print("ConcurrentGCThread");
877 else st->print("Thread");
878
879 st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
880 _stack_base - _stack_size, _stack_base);
881
882 if (osthread()) {
883 st->print(" [id=%d]", osthread()->thread_id());
884 }
885 }
886
887 #ifdef ASSERT
888 void Thread::print_owned_locks_on(outputStream* st) const {
889 Monitor *cur = _owned_locks;
890 if (cur == NULL) {
891 st->print(" (no locks) ");
892 } else {
893 st->print_cr(" Locks owned:");
894 while(cur) {
895 cur->print_on(st);
896 cur = cur->next();
897 }
898 }
899 }
900
901 static int ref_use_count = 0;
902
903 bool Thread::owns_locks_but_compiled_lock() const {
904 for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
905 if (cur != Compile_lock) return true;
906 }
907 return false;
908 }
909
910
911 #endif
912
913 #ifndef PRODUCT
914
915 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
916 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
917 // no threads which allow_vm_block's are held
918 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
919 // Check if current thread is allowed to block at a safepoint
920 if (!(_allow_safepoint_count == 0))
921 fatal("Possible safepoint reached by thread that does not allow it");
922 if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
923 fatal("LEAF method calling lock?");
924 }
925
926 #ifdef ASSERT
927 if (potential_vm_operation && is_Java_thread()
928 && !Universe::is_bootstrapping()) {
929 // Make sure we do not hold any locks that the VM thread also uses.
930 // This could potentially lead to deadlocks
931 for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
932 // Threads_lock is special, since the safepoint synchronization will not start before this is
933 // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
934 // since it is used to transfer control between JavaThreads and the VMThread
935 // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
936 if ( (cur->allow_vm_block() &&
937 cur != Threads_lock &&
938 cur != Compile_lock && // Temporary: should not be necessary when we get spearate compilation
939 cur != VMOperationRequest_lock &&
940 cur != VMOperationQueue_lock) ||
941 cur->rank() == Mutex::special) {
942 warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
943 }
944 }
945 }
946
947 if (GCALotAtAllSafepoints) {
948 // We could enter a safepoint here and thus have a gc
949 InterfaceSupport::check_gc_alot();
950 }
951 #endif
952 }
953 #endif
954
955 bool Thread::is_in_stack(address adr) const {
956 assert(Thread::current() == this, "is_in_stack can only be called from current thread");
957 address end = os::current_stack_pointer();
958 // Allow non Java threads to call this without stack_base
959 if (_stack_base == NULL) return true;
960 if (stack_base() >= adr && adr >= end) return true;
961
962 return false;
963 }
964
965
966 bool Thread::is_in_usable_stack(address adr) const {
967 size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
968 size_t usable_stack_size = _stack_size - stack_guard_size;
969
970 return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
971 }
972
973
974 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
975 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
976 // used for compilation in the future. If that change is made, the need for these methods
977 // should be revisited, and they should be removed if possible.
978
979 bool Thread::is_lock_owned(address adr) const {
980 return on_local_stack(adr);
981 }
982
983 bool Thread::set_as_starting_thread() {
984 // NOTE: this must be called inside the main thread.
985 return os::create_main_thread((JavaThread*)this);
986 }
987
988 static void initialize_class(Symbol* class_name, TRAPS) {
989 Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
990 InstanceKlass::cast(klass)->initialize(CHECK);
991 }
992
993
994 // Creates the initial ThreadGroup
995 static Handle create_initial_thread_group(TRAPS) {
996 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
997 instanceKlassHandle klass (THREAD, k);
998
999 Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
1000 {
1001 JavaValue result(T_VOID);
1002 JavaCalls::call_special(&result,
1003 system_instance,
1004 klass,
1005 vmSymbols::object_initializer_name(),
1006 vmSymbols::void_method_signature(),
1007 CHECK_NH);
1008 }
1009 Universe::set_system_thread_group(system_instance());
1010
1011 Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
1012 {
1013 JavaValue result(T_VOID);
1014 Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1015 JavaCalls::call_special(&result,
1016 main_instance,
1017 klass,
1018 vmSymbols::object_initializer_name(),
1019 vmSymbols::threadgroup_string_void_signature(),
1020 system_instance,
1021 string,
1022 CHECK_NH);
1023 }
1024 return main_instance;
1025 }
1026
1027 // Creates the initial Thread
1028 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1029 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1030 instanceKlassHandle klass (THREAD, k);
1031 instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1032
1033 java_lang_Thread::set_thread(thread_oop(), thread);
1034 java_lang_Thread::set_priority(thread_oop(), NormPriority);
1035 thread->set_threadObj(thread_oop());
1036
1037 Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1038
1039 JavaValue result(T_VOID);
1040 JavaCalls::call_special(&result, thread_oop,
1041 klass,
1042 vmSymbols::object_initializer_name(),
1043 vmSymbols::threadgroup_string_void_signature(),
1044 thread_group,
1045 string,
1046 CHECK_NULL);
1047 return thread_oop();
1048 }
1049
1050 static void call_initializeSystemClass(TRAPS) {
1051 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1052 instanceKlassHandle klass (THREAD, k);
1053
1054 JavaValue result(T_VOID);
1055 JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1056 vmSymbols::void_method_signature(), CHECK);
1057 }
1058
1059 char java_runtime_name[128] = "";
1060 char java_runtime_version[128] = "";
1061
1062 // extract the JRE name from sun.misc.Version.java_runtime_name
1063 static const char* get_java_runtime_name(TRAPS) {
1064 Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1065 Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1066 fieldDescriptor fd;
1067 bool found = k != NULL &&
1068 InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1069 vmSymbols::string_signature(), &fd);
1070 if (found) {
1071 oop name_oop = k->java_mirror()->obj_field(fd.offset());
1072 if (name_oop == NULL)
1073 return NULL;
1074 const char* name = java_lang_String::as_utf8_string(name_oop,
1075 java_runtime_name,
1076 sizeof(java_runtime_name));
1077 return name;
1078 } else {
1079 return NULL;
1080 }
1081 }
1082
1083 // extract the JRE version from sun.misc.Version.java_runtime_version
1084 static const char* get_java_runtime_version(TRAPS) {
1085 Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1086 Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1087 fieldDescriptor fd;
1088 bool found = k != NULL &&
1089 InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1090 vmSymbols::string_signature(), &fd);
1091 if (found) {
1092 oop name_oop = k->java_mirror()->obj_field(fd.offset());
1093 if (name_oop == NULL)
1094 return NULL;
1095 const char* name = java_lang_String::as_utf8_string(name_oop,
1096 java_runtime_version,
1097 sizeof(java_runtime_version));
1098 return name;
1099 } else {
1100 return NULL;
1101 }
1102 }
1103
1104 // General purpose hook into Java code, run once when the VM is initialized.
1105 // The Java library method itself may be changed independently from the VM.
1106 static void call_postVMInitHook(TRAPS) {
1107 Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1108 instanceKlassHandle klass (THREAD, k);
1109 if (klass.not_null()) {
1110 JavaValue result(T_VOID);
1111 JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1112 vmSymbols::void_method_signature(),
1113 CHECK);
1114 }
1115 }
1116
1117 static void reset_vm_info_property(TRAPS) {
1118 // the vm info string
1119 ResourceMark rm(THREAD);
1120 const char *vm_info = VM_Version::vm_info_string();
1121
1122 // java.lang.System class
1123 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1124 instanceKlassHandle klass (THREAD, k);
1125
1126 // setProperty arguments
1127 Handle key_str = java_lang_String::create_from_str("java.vm.info", CHECK);
1128 Handle value_str = java_lang_String::create_from_str(vm_info, CHECK);
1129
1130 // return value
1131 JavaValue r(T_OBJECT);
1132
1133 // public static String setProperty(String key, String value);
1134 JavaCalls::call_static(&r,
1135 klass,
1136 vmSymbols::setProperty_name(),
1137 vmSymbols::string_string_string_signature(),
1138 key_str,
1139 value_str,
1140 CHECK);
1141 }
1142
1143
1144 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1145 assert(thread_group.not_null(), "thread group should be specified");
1146 assert(threadObj() == NULL, "should only create Java thread object once");
1147
1148 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1149 instanceKlassHandle klass (THREAD, k);
1150 instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1151
1152 java_lang_Thread::set_thread(thread_oop(), this);
1153 java_lang_Thread::set_priority(thread_oop(), NormPriority);
1154 set_threadObj(thread_oop());
1155
1156 JavaValue result(T_VOID);
1157 if (thread_name != NULL) {
1158 Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1159 // Thread gets assigned specified name and null target
1160 JavaCalls::call_special(&result,
1161 thread_oop,
1162 klass,
1163 vmSymbols::object_initializer_name(),
1164 vmSymbols::threadgroup_string_void_signature(),
1165 thread_group, // Argument 1
1166 name, // Argument 2
1167 THREAD);
1168 } else {
1169 // Thread gets assigned name "Thread-nnn" and null target
1170 // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1171 JavaCalls::call_special(&result,
1172 thread_oop,
1173 klass,
1174 vmSymbols::object_initializer_name(),
1175 vmSymbols::threadgroup_runnable_void_signature(),
1176 thread_group, // Argument 1
1177 Handle(), // Argument 2
1178 THREAD);
1179 }
1180
1181
1182 if (daemon) {
1183 java_lang_Thread::set_daemon(thread_oop());
1184 }
1185
1186 if (HAS_PENDING_EXCEPTION) {
1187 return;
1188 }
1189
1190 KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1191 Handle threadObj(this, this->threadObj());
1192
1193 JavaCalls::call_special(&result,
1194 thread_group,
1195 group,
1196 vmSymbols::add_method_name(),
1197 vmSymbols::thread_void_signature(),
1198 threadObj, // Arg 1
1199 THREAD);
1200
1201
1202 }
1203
1204 // NamedThread -- non-JavaThread subclasses with multiple
1205 // uniquely named instances should derive from this.
1206 NamedThread::NamedThread() : Thread() {
1207 _name = NULL;
1208 _processed_thread = NULL;
1209 }
1210
1211 NamedThread::~NamedThread() {
1212 if (_name != NULL) {
1213 FREE_C_HEAP_ARRAY(char, _name, mtThread);
1214 _name = NULL;
1215 }
1216 }
1217
1218 void NamedThread::set_name(const char* format, ...) {
1219 guarantee(_name == NULL, "Only get to set name once.");
1220 _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1221 guarantee(_name != NULL, "alloc failure");
1222 va_list ap;
1223 va_start(ap, format);
1224 jio_vsnprintf(_name, max_name_len, format, ap);
1225 va_end(ap);
1226 }
1227
1228 // ======= WatcherThread ========
1229
1230 // The watcher thread exists to simulate timer interrupts. It should
1231 // be replaced by an abstraction over whatever native support for
1232 // timer interrupts exists on the platform.
1233
1234 WatcherThread* WatcherThread::_watcher_thread = NULL;
1235 bool WatcherThread::_startable = false;
1236 volatile bool WatcherThread::_should_terminate = false;
1237
1238 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1239 assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1240 if (os::create_thread(this, os::watcher_thread)) {
1241 _watcher_thread = this;
1242
1243 // Set the watcher thread to the highest OS priority which should not be
1244 // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1245 // is created. The only normal thread using this priority is the reference
1246 // handler thread, which runs for very short intervals only.
1247 // If the VMThread's priority is not lower than the WatcherThread profiling
1248 // will be inaccurate.
1249 os::set_priority(this, MaxPriority);
1250 if (!DisableStartThread) {
1251 os::start_thread(this);
1252 }
1253 }
1254 }
1255
1256 int WatcherThread::sleep() const {
1257 MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1258
1259 // remaining will be zero if there are no tasks,
1260 // causing the WatcherThread to sleep until a task is
1261 // enrolled
1262 int remaining = PeriodicTask::time_to_wait();
1263 int time_slept = 0;
1264
1265 // we expect this to timeout - we only ever get unparked when
1266 // we should terminate or when a new task has been enrolled
1267 OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1268
1269 jlong time_before_loop = os::javaTimeNanos();
1270
1271 for (;;) {
1272 bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1273 jlong now = os::javaTimeNanos();
1274
1275 if (remaining == 0) {
1276 // if we didn't have any tasks we could have waited for a long time
1277 // consider the time_slept zero and reset time_before_loop
1278 time_slept = 0;
1279 time_before_loop = now;
1280 } else {
1281 // need to recalulate since we might have new tasks in _tasks
1282 time_slept = (int) ((now - time_before_loop) / 1000000);
1283 }
1284
1285 // Change to task list or spurious wakeup of some kind
1286 if (timedout || _should_terminate) {
1287 break;
1288 }
1289
1290 remaining = PeriodicTask::time_to_wait();
1291 if (remaining == 0) {
1292 // Last task was just disenrolled so loop around and wait until
1293 // another task gets enrolled
1294 continue;
1295 }
1296
1297 remaining -= time_slept;
1298 if (remaining <= 0)
1299 break;
1300 }
1301
1302 return time_slept;
1303 }
1304
1305 void WatcherThread::run() {
1306 assert(this == watcher_thread(), "just checking");
1307
1308 this->record_stack_base_and_size();
1309 this->initialize_thread_local_storage();
1310 this->set_active_handles(JNIHandleBlock::allocate_block());
1311 while(!_should_terminate) {
1312 assert(watcher_thread() == Thread::current(), "thread consistency check");
1313 assert(watcher_thread() == this, "thread consistency check");
1314
1315 // Calculate how long it'll be until the next PeriodicTask work
1316 // should be done, and sleep that amount of time.
1317 int time_waited = sleep();
1318
1319 if (is_error_reported()) {
1320 // A fatal error has happened, the error handler(VMError::report_and_die)
1321 // should abort JVM after creating an error log file. However in some
1322 // rare cases, the error handler itself might deadlock. Here we try to
1323 // kill JVM if the fatal error handler fails to abort in 2 minutes.
1324 //
1325 // This code is in WatcherThread because WatcherThread wakes up
1326 // periodically so the fatal error handler doesn't need to do anything;
1327 // also because the WatcherThread is less likely to crash than other
1328 // threads.
1329
1330 for (;;) {
1331 if (!ShowMessageBoxOnError
1332 && (OnError == NULL || OnError[0] == '\0')
1333 && Arguments::abort_hook() == NULL) {
1334 os::sleep(this, 2 * 60 * 1000, false);
1335 fdStream err(defaultStream::output_fd());
1336 err.print_raw_cr("# [ timer expired, abort... ]");
1337 // skip atexit/vm_exit/vm_abort hooks
1338 os::die();
1339 }
1340
1341 // Wake up 5 seconds later, the fatal handler may reset OnError or
1342 // ShowMessageBoxOnError when it is ready to abort.
1343 os::sleep(this, 5 * 1000, false);
1344 }
1345 }
1346
1347 PeriodicTask::real_time_tick(time_waited);
1348 }
1349
1350 // Signal that it is terminated
1351 {
1352 MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1353 _watcher_thread = NULL;
1354 Terminator_lock->notify();
1355 }
1356
1357 // Thread destructor usually does this..
1358 ThreadLocalStorage::set_thread(NULL);
1359 }
1360
1361 void WatcherThread::start() {
1362 assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1363
1364 if (watcher_thread() == NULL && _startable) {
1365 _should_terminate = false;
1366 // Create the single instance of WatcherThread
1367 new WatcherThread();
1368 }
1369 }
1370
1371 void WatcherThread::make_startable() {
1372 assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1373 _startable = true;
1374 }
1375
1376 void WatcherThread::stop() {
1377 {
1378 MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1379 _should_terminate = true;
1380 OrderAccess::fence(); // ensure WatcherThread sees update in main loop
1381
1382 WatcherThread* watcher = watcher_thread();
1383 if (watcher != NULL)
1384 watcher->unpark();
1385 }
1386
1387 // it is ok to take late safepoints here, if needed
1388 MutexLocker mu(Terminator_lock);
1389
1390 while(watcher_thread() != NULL) {
1391 // This wait should make safepoint checks, wait without a timeout,
1392 // and wait as a suspend-equivalent condition.
1393 //
1394 // Note: If the FlatProfiler is running, then this thread is waiting
1395 // for the WatcherThread to terminate and the WatcherThread, via the
1396 // FlatProfiler task, is waiting for the external suspend request on
1397 // this thread to complete. wait_for_ext_suspend_completion() will
1398 // eventually timeout, but that takes time. Making this wait a
1399 // suspend-equivalent condition solves that timeout problem.
1400 //
1401 Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1402 Mutex::_as_suspend_equivalent_flag);
1403 }
1404 }
1405
1406 void WatcherThread::unpark() {
1407 MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1408 PeriodicTask_lock->notify();
1409 }
1410
1411 void WatcherThread::print_on(outputStream* st) const {
1412 st->print("\"%s\" ", name());
1413 Thread::print_on(st);
1414 st->cr();
1415 }
1416
1417 // ======= JavaThread ========
1418
1419 // A JavaThread is a normal Java thread
1420
1421 void JavaThread::initialize() {
1422 // Initialize fields
1423
1424 // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1425 set_claimed_par_id(UINT_MAX);
1426
1427 set_saved_exception_pc(NULL);
1428 set_threadObj(NULL);
1429 _anchor.clear();
1430 set_entry_point(NULL);
1431 set_jni_functions(jni_functions());
1432 set_callee_target(NULL);
1433 set_vm_result(NULL);
1434 set_vm_result_2(NULL);
1435 set_vframe_array_head(NULL);
1436 set_vframe_array_last(NULL);
1437 set_deferred_locals(NULL);
1438 set_deopt_mark(NULL);
1439 set_deopt_nmethod(NULL);
1440 clear_must_deopt_id();
1441 set_monitor_chunks(NULL);
1442 set_next(NULL);
1443 set_thread_state(_thread_new);
1444 #if INCLUDE_NMT
1445 set_recorder(NULL);
1446 #endif
1447 _terminated = _not_terminated;
1448 _privileged_stack_top = NULL;
1449 _array_for_gc = NULL;
1450 _suspend_equivalent = false;
1451 _in_deopt_handler = 0;
1452 _doing_unsafe_access = false;
1453 _stack_guard_state = stack_guard_unused;
1454 (void)const_cast<oop&>(_exception_oop = NULL);
1455 _exception_pc = 0;
1456 _exception_handler_pc = 0;
1457 _is_method_handle_return = 0;
1458 _jvmti_thread_state= NULL;
1459 _should_post_on_exceptions_flag = JNI_FALSE;
1460 _jvmti_get_loaded_classes_closure = NULL;
1461 _interp_only_mode = 0;
1462 _special_runtime_exit_condition = _no_async_condition;
1463 _pending_async_exception = NULL;
1464 _thread_stat = NULL;
1465 _thread_stat = new ThreadStatistics();
1466 _blocked_on_compilation = false;
1467 _jni_active_critical = 0;
1468 _do_not_unlock_if_synchronized = false;
1469 _cached_monitor_info = NULL;
1470 _parker = Parker::Allocate(this) ;
1471
1472 #ifndef PRODUCT
1473 _jmp_ring_index = 0;
1474 for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1475 record_jump(NULL, NULL, NULL, 0);
1476 }
1477 #endif /* PRODUCT */
1478
1479 set_thread_profiler(NULL);
1480 if (FlatProfiler::is_active()) {
1481 // This is where we would decide to either give each thread it's own profiler
1482 // or use one global one from FlatProfiler,
1483 // or up to some count of the number of profiled threads, etc.
1484 ThreadProfiler* pp = new ThreadProfiler();
1485 pp->engage();
1486 set_thread_profiler(pp);
1487 }
1488
1489 // Setup safepoint state info for this thread
1490 ThreadSafepointState::create(this);
1491
1492 debug_only(_java_call_counter = 0);
1493
1494 // JVMTI PopFrame support
1495 _popframe_condition = popframe_inactive;
1496 _popframe_preserved_args = NULL;
1497 _popframe_preserved_args_size = 0;
1498
1499 pd_initialize();
1500 }
1501
1502 #if INCLUDE_ALL_GCS
1503 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1504 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1505 #endif // INCLUDE_ALL_GCS
1506
1507 JavaThread::JavaThread(bool is_attaching_via_jni) :
1508 Thread()
1509 #if INCLUDE_ALL_GCS
1510 , _satb_mark_queue(&_satb_mark_queue_set),
1511 _dirty_card_queue(&_dirty_card_queue_set)
1512 #endif // INCLUDE_ALL_GCS
1513 {
1514 initialize();
1515 if (is_attaching_via_jni) {
1516 _jni_attach_state = _attaching_via_jni;
1517 } else {
1518 _jni_attach_state = _not_attaching_via_jni;
1519 }
1520 assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1521 _safepoint_visible = false;
1522 }
1523
1524 bool JavaThread::reguard_stack(address cur_sp) {
1525 if (_stack_guard_state != stack_guard_yellow_disabled) {
1526 return true; // Stack already guarded or guard pages not needed.
1527 }
1528
1529 if (register_stack_overflow()) {
1530 // For those architectures which have separate register and
1531 // memory stacks, we must check the register stack to see if
1532 // it has overflowed.
1533 return false;
1534 }
1535
1536 // Java code never executes within the yellow zone: the latter is only
1537 // there to provoke an exception during stack banging. If java code
1538 // is executing there, either StackShadowPages should be larger, or
1539 // some exception code in c1, c2 or the interpreter isn't unwinding
1540 // when it should.
1541 guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1542
1543 enable_stack_yellow_zone();
1544 return true;
1545 }
1546
1547 bool JavaThread::reguard_stack(void) {
1548 return reguard_stack(os::current_stack_pointer());
1549 }
1550
1551
1552 void JavaThread::block_if_vm_exited() {
1553 if (_terminated == _vm_exited) {
1554 // _vm_exited is set at safepoint, and Threads_lock is never released
1555 // we will block here forever
1556 Threads_lock->lock_without_safepoint_check();
1557 ShouldNotReachHere();
1558 }
1559 }
1560
1561
1562 // Remove this ifdef when C1 is ported to the compiler interface.
1563 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1564
1565 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1566 Thread()
1567 #if INCLUDE_ALL_GCS
1568 , _satb_mark_queue(&_satb_mark_queue_set),
1569 _dirty_card_queue(&_dirty_card_queue_set)
1570 #endif // INCLUDE_ALL_GCS
1571 {
1572 if (TraceThreadEvents) {
1573 tty->print_cr("creating thread %p", this);
1574 }
1575 initialize();
1576 _jni_attach_state = _not_attaching_via_jni;
1577 set_entry_point(entry_point);
1578 // Create the native thread itself.
1579 // %note runtime_23
1580 os::ThreadType thr_type = os::java_thread;
1581 thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1582 os::java_thread;
1583 os::create_thread(this, thr_type, stack_sz);
1584 _safepoint_visible = false;
1585 // The _osthread may be NULL here because we ran out of memory (too many threads active).
1586 // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1587 // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1588 // the exception consists of creating the exception object & initializing it, initialization
1589 // will leave the VM via a JavaCall and then all locks must be unlocked).
1590 //
1591 // The thread is still suspended when we reach here. Thread must be explicit started
1592 // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1593 // by calling Threads:add. The reason why this is not done here, is because the thread
1594 // object must be fully initialized (take a look at JVM_Start)
1595 }
1596
1597 JavaThread::~JavaThread() {
1598 if (TraceThreadEvents) {
1599 tty->print_cr("terminate thread %p", this);
1600 }
1601
1602 // By now, this thread should already be invisible to safepoint,
1603 // and its per-thread recorder also collected.
1604 assert(!is_safepoint_visible(), "wrong state");
1605 #if INCLUDE_NMT
1606 assert(get_recorder() == NULL, "Already collected");
1607 #endif // INCLUDE_NMT
1608
1609 // JSR166 -- return the parker to the free list
1610 Parker::Release(_parker);
1611 _parker = NULL ;
1612
1613 // Free any remaining previous UnrollBlock
1614 vframeArray* old_array = vframe_array_last();
1615
1616 if (old_array != NULL) {
1617 Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1618 old_array->set_unroll_block(NULL);
1619 delete old_info;
1620 delete old_array;
1621 }
1622
1623 GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1624 if (deferred != NULL) {
1625 // This can only happen if thread is destroyed before deoptimization occurs.
1626 assert(deferred->length() != 0, "empty array!");
1627 do {
1628 jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1629 deferred->remove_at(0);
1630 // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1631 delete dlv;
1632 } while (deferred->length() != 0);
1633 delete deferred;
1634 }
1635
1636 // All Java related clean up happens in exit
1637 ThreadSafepointState::destroy(this);
1638 if (_thread_profiler != NULL) delete _thread_profiler;
1639 if (_thread_stat != NULL) delete _thread_stat;
1640 }
1641
1642
1643 // The first routine called by a new Java thread
1644 void JavaThread::run() {
1645 // initialize thread-local alloc buffer related fields
1646 this->initialize_tlab();
1647
1648 // used to test validitity of stack trace backs
1649 this->record_base_of_stack_pointer();
1650
1651 // Record real stack base and size.
1652 this->record_stack_base_and_size();
1653
1654 // Initialize thread local storage; set before calling MutexLocker
1655 this->initialize_thread_local_storage();
1656
1657 this->create_stack_guard_pages();
1658
1659 this->cache_global_variables();
1660
1661 // Thread is now sufficient initialized to be handled by the safepoint code as being
1662 // in the VM. Change thread state from _thread_new to _thread_in_vm
1663 ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1664
1665 assert(JavaThread::current() == this, "sanity check");
1666 assert(!Thread::current()->owns_locks(), "sanity check");
1667
1668 DTRACE_THREAD_PROBE(start, this);
1669
1670 // This operation might block. We call that after all safepoint checks for a new thread has
1671 // been completed.
1672 this->set_active_handles(JNIHandleBlock::allocate_block());
1673
1674 if (JvmtiExport::should_post_thread_life()) {
1675 JvmtiExport::post_thread_start(this);
1676 }
1677
1678 EventThreadStart event;
1679 if (event.should_commit()) {
1680 event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1681 event.commit();
1682 }
1683
1684 // We call another function to do the rest so we are sure that the stack addresses used
1685 // from there will be lower than the stack base just computed
1686 thread_main_inner();
1687
1688 // Note, thread is no longer valid at this point!
1689 }
1690
1691
1692 void JavaThread::thread_main_inner() {
1693 assert(JavaThread::current() == this, "sanity check");
1694 assert(this->threadObj() != NULL, "just checking");
1695
1696 // Execute thread entry point unless this thread has a pending exception
1697 // or has been stopped before starting.
1698 // Note: Due to JVM_StopThread we can have pending exceptions already!
1699 if (!this->has_pending_exception() &&
1700 !java_lang_Thread::is_stillborn(this->threadObj())) {
1701 {
1702 ResourceMark rm(this);
1703 this->set_native_thread_name(this->get_thread_name());
1704 }
1705 HandleMark hm(this);
1706 this->entry_point()(this, this);
1707 }
1708
1709 DTRACE_THREAD_PROBE(stop, this);
1710
1711 this->exit(false);
1712 delete this;
1713 }
1714
1715
1716 static void ensure_join(JavaThread* thread) {
1717 // We do not need to grap the Threads_lock, since we are operating on ourself.
1718 Handle threadObj(thread, thread->threadObj());
1719 assert(threadObj.not_null(), "java thread object must exist");
1720 ObjectLocker lock(threadObj, thread);
1721 // Ignore pending exception (ThreadDeath), since we are exiting anyway
1722 thread->clear_pending_exception();
1723 // Thread is exiting. So set thread_status field in java.lang.Thread class to TERMINATED.
1724 java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1725 // Clear the native thread instance - this makes isAlive return false and allows the join()
1726 // to complete once we've done the notify_all below
1727 java_lang_Thread::set_thread(threadObj(), NULL);
1728 lock.notify_all(thread);
1729 // Ignore pending exception (ThreadDeath), since we are exiting anyway
1730 thread->clear_pending_exception();
1731 }
1732
1733
1734 // For any new cleanup additions, please check to see if they need to be applied to
1735 // cleanup_failed_attach_current_thread as well.
1736 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1737 assert(this == JavaThread::current(), "thread consistency check");
1738
1739 HandleMark hm(this);
1740 Handle uncaught_exception(this, this->pending_exception());
1741 this->clear_pending_exception();
1742 Handle threadObj(this, this->threadObj());
1743 assert(threadObj.not_null(), "Java thread object should be created");
1744
1745 if (get_thread_profiler() != NULL) {
1746 get_thread_profiler()->disengage();
1747 ResourceMark rm;
1748 get_thread_profiler()->print(get_thread_name());
1749 }
1750
1751
1752 // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1753 {
1754 EXCEPTION_MARK;
1755
1756 CLEAR_PENDING_EXCEPTION;
1757 }
1758 // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1759 // has to be fixed by a runtime query method
1760 if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1761 // JSR-166: change call from from ThreadGroup.uncaughtException to
1762 // java.lang.Thread.dispatchUncaughtException
1763 if (uncaught_exception.not_null()) {
1764 Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1765 {
1766 EXCEPTION_MARK;
1767 // Check if the method Thread.dispatchUncaughtException() exists. If so
1768 // call it. Otherwise we have an older library without the JSR-166 changes,
1769 // so call ThreadGroup.uncaughtException()
1770 KlassHandle recvrKlass(THREAD, threadObj->klass());
1771 CallInfo callinfo;
1772 KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1773 LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1774 vmSymbols::dispatchUncaughtException_name(),
1775 vmSymbols::throwable_void_signature(),
1776 KlassHandle(), false, false, THREAD);
1777 CLEAR_PENDING_EXCEPTION;
1778 methodHandle method = callinfo.selected_method();
1779 if (method.not_null()) {
1780 JavaValue result(T_VOID);
1781 JavaCalls::call_virtual(&result,
1782 threadObj, thread_klass,
1783 vmSymbols::dispatchUncaughtException_name(),
1784 vmSymbols::throwable_void_signature(),
1785 uncaught_exception,
1786 THREAD);
1787 } else {
1788 KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1789 JavaValue result(T_VOID);
1790 JavaCalls::call_virtual(&result,
1791 group, thread_group,
1792 vmSymbols::uncaughtException_name(),
1793 vmSymbols::thread_throwable_void_signature(),
1794 threadObj, // Arg 1
1795 uncaught_exception, // Arg 2
1796 THREAD);
1797 }
1798 if (HAS_PENDING_EXCEPTION) {
1799 ResourceMark rm(this);
1800 jio_fprintf(defaultStream::error_stream(),
1801 "\nException: %s thrown from the UncaughtExceptionHandler"
1802 " in thread \"%s\"\n",
1803 pending_exception()->klass()->external_name(),
1804 get_thread_name());
1805 CLEAR_PENDING_EXCEPTION;
1806 }
1807 }
1808 }
1809
1810 // Called before the java thread exit since we want to read info
1811 // from java_lang_Thread object
1812 EventThreadEnd event;
1813 if (event.should_commit()) {
1814 event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1815 event.commit();
1816 }
1817
1818 // Call after last event on thread
1819 EVENT_THREAD_EXIT(this);
1820
1821 // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1822 // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1823 // is deprecated anyhow.
1824 if (!is_Compiler_thread()) {
1825 int count = 3;
1826 while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1827 EXCEPTION_MARK;
1828 JavaValue result(T_VOID);
1829 KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1830 JavaCalls::call_virtual(&result,
1831 threadObj, thread_klass,
1832 vmSymbols::exit_method_name(),
1833 vmSymbols::void_method_signature(),
1834 THREAD);
1835 CLEAR_PENDING_EXCEPTION;
1836 }
1837 }
1838 // notify JVMTI
1839 if (JvmtiExport::should_post_thread_life()) {
1840 JvmtiExport::post_thread_end(this);
1841 }
1842
1843 // We have notified the agents that we are exiting, before we go on,
1844 // we must check for a pending external suspend request and honor it
1845 // in order to not surprise the thread that made the suspend request.
1846 while (true) {
1847 {
1848 MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1849 if (!is_external_suspend()) {
1850 set_terminated(_thread_exiting);
1851 ThreadService::current_thread_exiting(this);
1852 break;
1853 }
1854 // Implied else:
1855 // Things get a little tricky here. We have a pending external
1856 // suspend request, but we are holding the SR_lock so we
1857 // can't just self-suspend. So we temporarily drop the lock
1858 // and then self-suspend.
1859 }
1860
1861 ThreadBlockInVM tbivm(this);
1862 java_suspend_self();
1863
1864 // We're done with this suspend request, but we have to loop around
1865 // and check again. Eventually we will get SR_lock without a pending
1866 // external suspend request and will be able to mark ourselves as
1867 // exiting.
1868 }
1869 // no more external suspends are allowed at this point
1870 } else {
1871 // before_exit() has already posted JVMTI THREAD_END events
1872 }
1873
1874 // Notify waiters on thread object. This has to be done after exit() is called
1875 // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1876 // group should have the destroyed bit set before waiters are notified).
1877 ensure_join(this);
1878 assert(!this->has_pending_exception(), "ensure_join should have cleared");
1879
1880 // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1881 // held by this thread must be released. A detach operation must only
1882 // get here if there are no Java frames on the stack. Therefore, any
1883 // owned monitors at this point MUST be JNI-acquired monitors which are
1884 // pre-inflated and in the monitor cache.
1885 //
1886 // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1887 if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1888 assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1889 ObjectSynchronizer::release_monitors_owned_by_thread(this);
1890 assert(!this->has_pending_exception(), "release_monitors should have cleared");
1891 }
1892
1893 // These things needs to be done while we are still a Java Thread. Make sure that thread
1894 // is in a consistent state, in case GC happens
1895 assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1896
1897 if (active_handles() != NULL) {
1898 JNIHandleBlock* block = active_handles();
1899 set_active_handles(NULL);
1900 JNIHandleBlock::release_block(block);
1901 }
1902
1903 if (free_handle_block() != NULL) {
1904 JNIHandleBlock* block = free_handle_block();
1905 set_free_handle_block(NULL);
1906 JNIHandleBlock::release_block(block);
1907 }
1908
1909 // These have to be removed while this is still a valid thread.
1910 remove_stack_guard_pages();
1911
1912 if (UseTLAB) {
1913 tlab().make_parsable(true); // retire TLAB
1914 }
1915
1916 if (JvmtiEnv::environments_might_exist()) {
1917 JvmtiExport::cleanup_thread(this);
1918 }
1919
1920 // We must flush any deferred card marks before removing a thread from
1921 // the list of active threads.
1922 Universe::heap()->flush_deferred_store_barrier(this);
1923 assert(deferred_card_mark().is_empty(), "Should have been flushed");
1924
1925 #if INCLUDE_ALL_GCS
1926 // We must flush the G1-related buffers before removing a thread
1927 // from the list of active threads. We must do this after any deferred
1928 // card marks have been flushed (above) so that any entries that are
1929 // added to the thread's dirty card queue as a result are not lost.
1930 if (UseG1GC) {
1931 flush_barrier_queues();
1932 }
1933 #endif // INCLUDE_ALL_GCS
1934
1935 // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1936 Threads::remove(this);
1937 }
1938
1939 #if INCLUDE_ALL_GCS
1940 // Flush G1-related queues.
1941 void JavaThread::flush_barrier_queues() {
1942 satb_mark_queue().flush();
1943 dirty_card_queue().flush();
1944 }
1945
1946 void JavaThread::initialize_queues() {
1947 assert(!SafepointSynchronize::is_at_safepoint(),
1948 "we should not be at a safepoint");
1949
1950 ObjPtrQueue& satb_queue = satb_mark_queue();
1951 SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1952 // The SATB queue should have been constructed with its active
1953 // field set to false.
1954 assert(!satb_queue.is_active(), "SATB queue should not be active");
1955 assert(satb_queue.is_empty(), "SATB queue should be empty");
1956 // If we are creating the thread during a marking cycle, we should
1957 // set the active field of the SATB queue to true.
1958 if (satb_queue_set.is_active()) {
1959 satb_queue.set_active(true);
1960 }
1961
1962 DirtyCardQueue& dirty_queue = dirty_card_queue();
1963 // The dirty card queue should have been constructed with its
1964 // active field set to true.
1965 assert(dirty_queue.is_active(), "dirty card queue should be active");
1966 }
1967 #endif // INCLUDE_ALL_GCS
1968
1969 void JavaThread::cleanup_failed_attach_current_thread() {
1970 if (get_thread_profiler() != NULL) {
1971 get_thread_profiler()->disengage();
1972 ResourceMark rm;
1973 get_thread_profiler()->print(get_thread_name());
1974 }
1975
1976 if (active_handles() != NULL) {
1977 JNIHandleBlock* block = active_handles();
1978 set_active_handles(NULL);
1979 JNIHandleBlock::release_block(block);
1980 }
1981
1982 if (free_handle_block() != NULL) {
1983 JNIHandleBlock* block = free_handle_block();
1984 set_free_handle_block(NULL);
1985 JNIHandleBlock::release_block(block);
1986 }
1987
1988 // These have to be removed while this is still a valid thread.
1989 remove_stack_guard_pages();
1990
1991 if (UseTLAB) {
1992 tlab().make_parsable(true); // retire TLAB, if any
1993 }
1994
1995 #if INCLUDE_ALL_GCS
1996 if (UseG1GC) {
1997 flush_barrier_queues();
1998 }
1999 #endif // INCLUDE_ALL_GCS
2000
2001 Threads::remove(this);
2002 delete this;
2003 }
2004
2005
2006
2007
2008 JavaThread* JavaThread::active() {
2009 Thread* thread = ThreadLocalStorage::thread();
2010 assert(thread != NULL, "just checking");
2011 if (thread->is_Java_thread()) {
2012 return (JavaThread*) thread;
2013 } else {
2014 assert(thread->is_VM_thread(), "this must be a vm thread");
2015 VM_Operation* op = ((VMThread*) thread)->vm_operation();
2016 JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2017 assert(ret->is_Java_thread(), "must be a Java thread");
2018 return ret;
2019 }
2020 }
2021
2022 bool JavaThread::is_lock_owned(address adr) const {
2023 if (Thread::is_lock_owned(adr)) return true;
2024
2025 for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2026 if (chunk->contains(adr)) return true;
2027 }
2028
2029 return false;
2030 }
2031
2032
2033 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2034 chunk->set_next(monitor_chunks());
2035 set_monitor_chunks(chunk);
2036 }
2037
2038 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2039 guarantee(monitor_chunks() != NULL, "must be non empty");
2040 if (monitor_chunks() == chunk) {
2041 set_monitor_chunks(chunk->next());
2042 } else {
2043 MonitorChunk* prev = monitor_chunks();
2044 while (prev->next() != chunk) prev = prev->next();
2045 prev->set_next(chunk->next());
2046 }
2047 }
2048
2049 // JVM support.
2050
2051 // Note: this function shouldn't block if it's called in
2052 // _thread_in_native_trans state (such as from
2053 // check_special_condition_for_native_trans()).
2054 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2055
2056 if (has_last_Java_frame() && has_async_condition()) {
2057 // If we are at a polling page safepoint (not a poll return)
2058 // then we must defer async exception because live registers
2059 // will be clobbered by the exception path. Poll return is
2060 // ok because the call we a returning from already collides
2061 // with exception handling registers and so there is no issue.
2062 // (The exception handling path kills call result registers but
2063 // this is ok since the exception kills the result anyway).
2064
2065 if (is_at_poll_safepoint()) {
2066 // if the code we are returning to has deoptimized we must defer
2067 // the exception otherwise live registers get clobbered on the
2068 // exception path before deoptimization is able to retrieve them.
2069 //
2070 RegisterMap map(this, false);
2071 frame caller_fr = last_frame().sender(&map);
2072 assert(caller_fr.is_compiled_frame(), "what?");
2073 if (caller_fr.is_deoptimized_frame()) {
2074 if (TraceExceptions) {
2075 ResourceMark rm;
2076 tty->print_cr("deferred async exception at compiled safepoint");
2077 }
2078 return;
2079 }
2080 }
2081 }
2082
2083 JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2084 if (condition == _no_async_condition) {
2085 // Conditions have changed since has_special_runtime_exit_condition()
2086 // was called:
2087 // - if we were here only because of an external suspend request,
2088 // then that was taken care of above (or cancelled) so we are done
2089 // - if we were here because of another async request, then it has
2090 // been cleared between the has_special_runtime_exit_condition()
2091 // and now so again we are done
2092 return;
2093 }
2094
2095 // Check for pending async. exception
2096 if (_pending_async_exception != NULL) {
2097 // Only overwrite an already pending exception, if it is not a threadDeath.
2098 if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2099
2100 // We cannot call Exceptions::_throw(...) here because we cannot block
2101 set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2102
2103 if (TraceExceptions) {
2104 ResourceMark rm;
2105 tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2106 if (has_last_Java_frame() ) {
2107 frame f = last_frame();
2108 tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2109 }
2110 tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2111 }
2112 _pending_async_exception = NULL;
2113 clear_has_async_exception();
2114 }
2115 }
2116
2117 if (check_unsafe_error &&
2118 condition == _async_unsafe_access_error && !has_pending_exception()) {
2119 condition = _no_async_condition; // done
2120 switch (thread_state()) {
2121 case _thread_in_vm:
2122 {
2123 JavaThread* THREAD = this;
2124 THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2125 }
2126 case _thread_in_native:
2127 {
2128 ThreadInVMfromNative tiv(this);
2129 JavaThread* THREAD = this;
2130 THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2131 }
2132 case _thread_in_Java:
2133 {
2134 ThreadInVMfromJava tiv(this);
2135 JavaThread* THREAD = this;
2136 THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2137 }
2138 default:
2139 ShouldNotReachHere();
2140 }
2141 }
2142
2143 assert(condition == _no_async_condition || has_pending_exception() ||
2144 (!check_unsafe_error && condition == _async_unsafe_access_error),
2145 "must have handled the async condition, if no exception");
2146 }
2147
2148 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2149 //
2150 // Check for pending external suspend. Internal suspend requests do
2151 // not use handle_special_runtime_exit_condition().
2152 // If JNIEnv proxies are allowed, don't self-suspend if the target
2153 // thread is not the current thread. In older versions of jdbx, jdbx
2154 // threads could call into the VM with another thread's JNIEnv so we
2155 // can be here operating on behalf of a suspended thread (4432884).
2156 bool do_self_suspend = is_external_suspend_with_lock();
2157 if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2158 //
2159 // Because thread is external suspended the safepoint code will count
2160 // thread as at a safepoint. This can be odd because we can be here
2161 // as _thread_in_Java which would normally transition to _thread_blocked
2162 // at a safepoint. We would like to mark the thread as _thread_blocked
2163 // before calling java_suspend_self like all other callers of it but
2164 // we must then observe proper safepoint protocol. (We can't leave
2165 // _thread_blocked with a safepoint in progress). However we can be
2166 // here as _thread_in_native_trans so we can't use a normal transition
2167 // constructor/destructor pair because they assert on that type of
2168 // transition. We could do something like:
2169 //
2170 // JavaThreadState state = thread_state();
2171 // set_thread_state(_thread_in_vm);
2172 // {
2173 // ThreadBlockInVM tbivm(this);
2174 // java_suspend_self()
2175 // }
2176 // set_thread_state(_thread_in_vm_trans);
2177 // if (safepoint) block;
2178 // set_thread_state(state);
2179 //
2180 // but that is pretty messy. Instead we just go with the way the
2181 // code has worked before and note that this is the only path to
2182 // java_suspend_self that doesn't put the thread in _thread_blocked
2183 // mode.
2184
2185 frame_anchor()->make_walkable(this);
2186 java_suspend_self();
2187
2188 // We might be here for reasons in addition to the self-suspend request
2189 // so check for other async requests.
2190 }
2191
2192 if (check_asyncs) {
2193 check_and_handle_async_exceptions();
2194 }
2195 }
2196
2197 void JavaThread::send_thread_stop(oop java_throwable) {
2198 assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2199 assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2200 assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2201
2202 // Do not throw asynchronous exceptions against the compiler thread
2203 // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2204 if (is_Compiler_thread()) return;
2205
2206 {
2207 // Actually throw the Throwable against the target Thread - however
2208 // only if there is no thread death exception installed already.
2209 if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2210 // If the topmost frame is a runtime stub, then we are calling into
2211 // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2212 // must deoptimize the caller before continuing, as the compiled exception handler table
2213 // may not be valid
2214 if (has_last_Java_frame()) {
2215 frame f = last_frame();
2216 if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2217 // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2218 RegisterMap reg_map(this, UseBiasedLocking);
2219 frame compiled_frame = f.sender(&reg_map);
2220 if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2221 Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2222 }
2223 }
2224 }
2225
2226 // Set async. pending exception in thread.
2227 set_pending_async_exception(java_throwable);
2228
2229 if (TraceExceptions) {
2230 ResourceMark rm;
2231 tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2232 }
2233 // for AbortVMOnException flag
2234 NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2235 }
2236 }
2237
2238
2239 // Interrupt thread so it will wake up from a potential wait()
2240 Thread::interrupt(this);
2241 }
2242
2243 // External suspension mechanism.
2244 //
2245 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2246 // to any VM_locks and it is at a transition
2247 // Self-suspension will happen on the transition out of the vm.
2248 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2249 //
2250 // Guarantees on return:
2251 // + Target thread will not execute any new bytecode (that's why we need to
2252 // force a safepoint)
2253 // + Target thread will not enter any new monitors
2254 //
2255 void JavaThread::java_suspend() {
2256 { MutexLocker mu(Threads_lock);
2257 if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2258 return;
2259 }
2260 }
2261
2262 { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2263 if (!is_external_suspend()) {
2264 // a racing resume has cancelled us; bail out now
2265 return;
2266 }
2267
2268 // suspend is done
2269 uint32_t debug_bits = 0;
2270 // Warning: is_ext_suspend_completed() may temporarily drop the
2271 // SR_lock to allow the thread to reach a stable thread state if
2272 // it is currently in a transient thread state.
2273 if (is_ext_suspend_completed(false /* !called_by_wait */,
2274 SuspendRetryDelay, &debug_bits) ) {
2275 return;
2276 }
2277 }
2278
2279 VM_ForceSafepoint vm_suspend;
2280 VMThread::execute(&vm_suspend);
2281 }
2282
2283 // Part II of external suspension.
2284 // A JavaThread self suspends when it detects a pending external suspend
2285 // request. This is usually on transitions. It is also done in places
2286 // where continuing to the next transition would surprise the caller,
2287 // e.g., monitor entry.
2288 //
2289 // Returns the number of times that the thread self-suspended.
2290 //
2291 // Note: DO NOT call java_suspend_self() when you just want to block current
2292 // thread. java_suspend_self() is the second stage of cooperative
2293 // suspension for external suspend requests and should only be used
2294 // to complete an external suspend request.
2295 //
2296 int JavaThread::java_suspend_self() {
2297 int ret = 0;
2298
2299 // we are in the process of exiting so don't suspend
2300 if (is_exiting()) {
2301 clear_external_suspend();
2302 return ret;
2303 }
2304
2305 assert(_anchor.walkable() ||
2306 (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2307 "must have walkable stack");
2308
2309 MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2310
2311 assert(!this->is_ext_suspended(),
2312 "a thread trying to self-suspend should not already be suspended");
2313
2314 if (this->is_suspend_equivalent()) {
2315 // If we are self-suspending as a result of the lifting of a
2316 // suspend equivalent condition, then the suspend_equivalent
2317 // flag is not cleared until we set the ext_suspended flag so
2318 // that wait_for_ext_suspend_completion() returns consistent
2319 // results.
2320 this->clear_suspend_equivalent();
2321 }
2322
2323 // A racing resume may have cancelled us before we grabbed SR_lock
2324 // above. Or another external suspend request could be waiting for us
2325 // by the time we return from SR_lock()->wait(). The thread
2326 // that requested the suspension may already be trying to walk our
2327 // stack and if we return now, we can change the stack out from under
2328 // it. This would be a "bad thing (TM)" and cause the stack walker
2329 // to crash. We stay self-suspended until there are no more pending
2330 // external suspend requests.
2331 while (is_external_suspend()) {
2332 ret++;
2333 this->set_ext_suspended();
2334
2335 // _ext_suspended flag is cleared by java_resume()
2336 while (is_ext_suspended()) {
2337 this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2338 }
2339 }
2340
2341 return ret;
2342 }
2343
2344 #ifdef ASSERT
2345 // verify the JavaThread has not yet been published in the Threads::list, and
2346 // hence doesn't need protection from concurrent access at this stage
2347 void JavaThread::verify_not_published() {
2348 if (!Threads_lock->owned_by_self()) {
2349 MutexLockerEx ml(Threads_lock, Mutex::_no_safepoint_check_flag);
2350 assert( !Threads::includes(this),
2351 "java thread shouldn't have been published yet!");
2352 }
2353 else {
2354 assert( !Threads::includes(this),
2355 "java thread shouldn't have been published yet!");
2356 }
2357 }
2358 #endif
2359
2360 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2361 // progress or when _suspend_flags is non-zero.
2362 // Current thread needs to self-suspend if there is a suspend request and/or
2363 // block if a safepoint is in progress.
2364 // Async exception ISN'T checked.
2365 // Note only the ThreadInVMfromNative transition can call this function
2366 // directly and when thread state is _thread_in_native_trans
2367 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2368 assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2369
2370 JavaThread *curJT = JavaThread::current();
2371 bool do_self_suspend = thread->is_external_suspend();
2372
2373 assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2374
2375 // If JNIEnv proxies are allowed, don't self-suspend if the target
2376 // thread is not the current thread. In older versions of jdbx, jdbx
2377 // threads could call into the VM with another thread's JNIEnv so we
2378 // can be here operating on behalf of a suspended thread (4432884).
2379 if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2380 JavaThreadState state = thread->thread_state();
2381
2382 // We mark this thread_blocked state as a suspend-equivalent so
2383 // that a caller to is_ext_suspend_completed() won't be confused.
2384 // The suspend-equivalent state is cleared by java_suspend_self().
2385 thread->set_suspend_equivalent();
2386
2387 // If the safepoint code sees the _thread_in_native_trans state, it will
2388 // wait until the thread changes to other thread state. There is no
2389 // guarantee on how soon we can obtain the SR_lock and complete the
2390 // self-suspend request. It would be a bad idea to let safepoint wait for
2391 // too long. Temporarily change the state to _thread_blocked to
2392 // let the VM thread know that this thread is ready for GC. The problem
2393 // of changing thread state is that safepoint could happen just after
2394 // java_suspend_self() returns after being resumed, and VM thread will
2395 // see the _thread_blocked state. We must check for safepoint
2396 // after restoring the state and make sure we won't leave while a safepoint
2397 // is in progress.
2398 thread->set_thread_state(_thread_blocked);
2399 thread->java_suspend_self();
2400 thread->set_thread_state(state);
2401 // Make sure new state is seen by VM thread
2402 if (os::is_MP()) {
2403 if (UseMembar) {
2404 // Force a fence between the write above and read below
2405 OrderAccess::fence();
2406 } else {
2407 // Must use this rather than serialization page in particular on Windows
2408 InterfaceSupport::serialize_memory(thread);
2409 }
2410 }
2411 }
2412
2413 if (SafepointSynchronize::do_call_back()) {
2414 // If we are safepointing, then block the caller which may not be
2415 // the same as the target thread (see above).
2416 SafepointSynchronize::block(curJT);
2417 }
2418
2419 if (thread->is_deopt_suspend()) {
2420 thread->clear_deopt_suspend();
2421 RegisterMap map(thread, false);
2422 frame f = thread->last_frame();
2423 while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2424 f = f.sender(&map);
2425 }
2426 if (f.id() == thread->must_deopt_id()) {
2427 thread->clear_must_deopt_id();
2428 f.deoptimize(thread);
2429 } else {
2430 fatal("missed deoptimization!");
2431 }
2432 }
2433 }
2434
2435 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2436 // progress or when _suspend_flags is non-zero.
2437 // Current thread needs to self-suspend if there is a suspend request and/or
2438 // block if a safepoint is in progress.
2439 // Also check for pending async exception (not including unsafe access error).
2440 // Note only the native==>VM/Java barriers can call this function and when
2441 // thread state is _thread_in_native_trans.
2442 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2443 check_safepoint_and_suspend_for_native_trans(thread);
2444
2445 if (thread->has_async_exception()) {
2446 // We are in _thread_in_native_trans state, don't handle unsafe
2447 // access error since that may block.
2448 thread->check_and_handle_async_exceptions(false);
2449 }
2450 }
2451
2452 // This is a variant of the normal
2453 // check_special_condition_for_native_trans with slightly different
2454 // semantics for use by critical native wrappers. It does all the
2455 // normal checks but also performs the transition back into
2456 // thread_in_Java state. This is required so that critical natives
2457 // can potentially block and perform a GC if they are the last thread
2458 // exiting the GC_locker.
2459 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2460 check_special_condition_for_native_trans(thread);
2461
2462 // Finish the transition
2463 thread->set_thread_state(_thread_in_Java);
2464
2465 if (thread->do_critical_native_unlock()) {
2466 ThreadInVMfromJavaNoAsyncException tiv(thread);
2467 GC_locker::unlock_critical(thread);
2468 thread->clear_critical_native_unlock();
2469 }
2470 }
2471
2472 // We need to guarantee the Threads_lock here, since resumes are not
2473 // allowed during safepoint synchronization
2474 // Can only resume from an external suspension
2475 void JavaThread::java_resume() {
2476 assert_locked_or_safepoint(Threads_lock);
2477
2478 // Sanity check: thread is gone, has started exiting or the thread
2479 // was not externally suspended.
2480 if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2481 return;
2482 }
2483
2484 MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2485
2486 clear_external_suspend();
2487
2488 if (is_ext_suspended()) {
2489 clear_ext_suspended();
2490 SR_lock()->notify_all();
2491 }
2492 }
2493
2494 void JavaThread::create_stack_guard_pages() {
2495 if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2496 address low_addr = stack_base() - stack_size();
2497 size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2498
2499 int allocate = os::allocate_stack_guard_pages();
2500 // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2501
2502 if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2503 warning("Attempt to allocate stack guard pages failed.");
2504 return;
2505 }
2506
2507 if (os::guard_memory((char *) low_addr, len)) {
2508 _stack_guard_state = stack_guard_enabled;
2509 } else {
2510 warning("Attempt to protect stack guard pages failed.");
2511 if (os::uncommit_memory((char *) low_addr, len)) {
2512 warning("Attempt to deallocate stack guard pages failed.");
2513 }
2514 }
2515 }
2516
2517 void JavaThread::remove_stack_guard_pages() {
2518 assert(Thread::current() == this, "from different thread");
2519 if (_stack_guard_state == stack_guard_unused) return;
2520 address low_addr = stack_base() - stack_size();
2521 size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2522
2523 if (os::allocate_stack_guard_pages()) {
2524 if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2525 _stack_guard_state = stack_guard_unused;
2526 } else {
2527 warning("Attempt to deallocate stack guard pages failed.");
2528 }
2529 } else {
2530 if (_stack_guard_state == stack_guard_unused) return;
2531 if (os::unguard_memory((char *) low_addr, len)) {
2532 _stack_guard_state = stack_guard_unused;
2533 } else {
2534 warning("Attempt to unprotect stack guard pages failed.");
2535 }
2536 }
2537 }
2538
2539 void JavaThread::enable_stack_yellow_zone() {
2540 assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2541 assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2542
2543 // The base notation is from the stacks point of view, growing downward.
2544 // We need to adjust it to work correctly with guard_memory()
2545 address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2546
2547 guarantee(base < stack_base(),"Error calculating stack yellow zone");
2548 guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2549
2550 if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2551 _stack_guard_state = stack_guard_enabled;
2552 } else {
2553 warning("Attempt to guard stack yellow zone failed.");
2554 }
2555 enable_register_stack_guard();
2556 }
2557
2558 void JavaThread::disable_stack_yellow_zone() {
2559 assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2560 assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2561
2562 // Simply return if called for a thread that does not use guard pages.
2563 if (_stack_guard_state == stack_guard_unused) return;
2564
2565 // The base notation is from the stacks point of view, growing downward.
2566 // We need to adjust it to work correctly with guard_memory()
2567 address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2568
2569 if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2570 _stack_guard_state = stack_guard_yellow_disabled;
2571 } else {
2572 warning("Attempt to unguard stack yellow zone failed.");
2573 }
2574 disable_register_stack_guard();
2575 }
2576
2577 void JavaThread::enable_stack_red_zone() {
2578 // The base notation is from the stacks point of view, growing downward.
2579 // We need to adjust it to work correctly with guard_memory()
2580 assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2581 address base = stack_red_zone_base() - stack_red_zone_size();
2582
2583 guarantee(base < stack_base(),"Error calculating stack red zone");
2584 guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2585
2586 if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2587 warning("Attempt to guard stack red zone failed.");
2588 }
2589 }
2590
2591 void JavaThread::disable_stack_red_zone() {
2592 // The base notation is from the stacks point of view, growing downward.
2593 // We need to adjust it to work correctly with guard_memory()
2594 assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2595 address base = stack_red_zone_base() - stack_red_zone_size();
2596 if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2597 warning("Attempt to unguard stack red zone failed.");
2598 }
2599 }
2600
2601 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2602 // ignore is there is no stack
2603 if (!has_last_Java_frame()) return;
2604 // traverse the stack frames. Starts from top frame.
2605 for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2606 frame* fr = fst.current();
2607 f(fr, fst.register_map());
2608 }
2609 }
2610
2611
2612 #ifndef PRODUCT
2613 // Deoptimization
2614 // Function for testing deoptimization
2615 void JavaThread::deoptimize() {
2616 // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2617 StackFrameStream fst(this, UseBiasedLocking);
2618 bool deopt = false; // Dump stack only if a deopt actually happens.
2619 bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2620 // Iterate over all frames in the thread and deoptimize
2621 for(; !fst.is_done(); fst.next()) {
2622 if(fst.current()->can_be_deoptimized()) {
2623
2624 if (only_at) {
2625 // Deoptimize only at particular bcis. DeoptimizeOnlyAt
2626 // consists of comma or carriage return separated numbers so
2627 // search for the current bci in that string.
2628 address pc = fst.current()->pc();
2629 nmethod* nm = (nmethod*) fst.current()->cb();
2630 ScopeDesc* sd = nm->scope_desc_at( pc);
2631 char buffer[8];
2632 jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2633 size_t len = strlen(buffer);
2634 const char * found = strstr(DeoptimizeOnlyAt, buffer);
2635 while (found != NULL) {
2636 if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2637 (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2638 // Check that the bci found is bracketed by terminators.
2639 break;
2640 }
2641 found = strstr(found + 1, buffer);
2642 }
2643 if (!found) {
2644 continue;
2645 }
2646 }
2647
2648 if (DebugDeoptimization && !deopt) {
2649 deopt = true; // One-time only print before deopt
2650 tty->print_cr("[BEFORE Deoptimization]");
2651 trace_frames();
2652 trace_stack();
2653 }
2654 Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2655 }
2656 }
2657
2658 if (DebugDeoptimization && deopt) {
2659 tty->print_cr("[AFTER Deoptimization]");
2660 trace_frames();
2661 }
2662 }
2663
2664
2665 // Make zombies
2666 void JavaThread::make_zombies() {
2667 for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2668 if (fst.current()->can_be_deoptimized()) {
2669 // it is a Java nmethod
2670 nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2671 nm->make_not_entrant();
2672 }
2673 }
2674 }
2675 #endif // PRODUCT
2676
2677
2678 void JavaThread::deoptimized_wrt_marked_nmethods() {
2679 if (!has_last_Java_frame()) return;
2680 // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2681 StackFrameStream fst(this, UseBiasedLocking);
2682 for(; !fst.is_done(); fst.next()) {
2683 if (fst.current()->should_be_deoptimized()) {
2684 if (LogCompilation && xtty != NULL) {
2685 nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2686 xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2687 this->name(), nm != NULL ? nm->compile_id() : -1);
2688 }
2689
2690 Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2691 }
2692 }
2693 }
2694
2695
2696 // GC support
2697 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2698
2699 void JavaThread::gc_epilogue() {
2700 frames_do(frame_gc_epilogue);
2701 }
2702
2703
2704 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2705
2706 void JavaThread::gc_prologue() {
2707 frames_do(frame_gc_prologue);
2708 }
2709
2710 // If the caller is a NamedThread, then remember, in the current scope,
2711 // the given JavaThread in its _processed_thread field.
2712 class RememberProcessedThread: public StackObj {
2713 NamedThread* _cur_thr;
2714 public:
2715 RememberProcessedThread(JavaThread* jthr) {
2716 Thread* thread = Thread::current();
2717 if (thread->is_Named_thread()) {
2718 _cur_thr = (NamedThread *)thread;
2719 _cur_thr->set_processed_thread(jthr);
2720 } else {
2721 _cur_thr = NULL;
2722 }
2723 }
2724
2725 ~RememberProcessedThread() {
2726 if (_cur_thr) {
2727 _cur_thr->set_processed_thread(NULL);
2728 }
2729 }
2730 };
2731
2732 void JavaThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
2733 // Verify that the deferred card marks have been flushed.
2734 assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2735
2736 // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2737 // since there may be more than one thread using each ThreadProfiler.
2738
2739 // Traverse the GCHandles
2740 Thread::oops_do(f, cld_f, cf);
2741
2742 assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2743 (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2744
2745 if (has_last_Java_frame()) {
2746 // Record JavaThread to GC thread
2747 RememberProcessedThread rpt(this);
2748
2749 // Traverse the privileged stack
2750 if (_privileged_stack_top != NULL) {
2751 _privileged_stack_top->oops_do(f);
2752 }
2753
2754 // traverse the registered growable array
2755 if (_array_for_gc != NULL) {
2756 for (int index = 0; index < _array_for_gc->length(); index++) {
2757 f->do_oop(_array_for_gc->adr_at(index));
2758 }
2759 }
2760
2761 // Traverse the monitor chunks
2762 for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2763 chunk->oops_do(f);
2764 }
2765
2766 // Traverse the execution stack
2767 for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2768 fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2769 }
2770 }
2771
2772 // callee_target is never live across a gc point so NULL it here should
2773 // it still contain a methdOop.
2774
2775 set_callee_target(NULL);
2776
2777 assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2778 // If we have deferred set_locals there might be oops waiting to be
2779 // written
2780 GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2781 if (list != NULL) {
2782 for (int i = 0; i < list->length(); i++) {
2783 list->at(i)->oops_do(f);
2784 }
2785 }
2786
2787 // Traverse instance variables at the end since the GC may be moving things
2788 // around using this function
2789 f->do_oop((oop*) &_threadObj);
2790 f->do_oop((oop*) &_vm_result);
2791 f->do_oop((oop*) &_exception_oop);
2792 f->do_oop((oop*) &_pending_async_exception);
2793
2794 if (jvmti_thread_state() != NULL) {
2795 jvmti_thread_state()->oops_do(f);
2796 }
2797 }
2798
2799 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2800 Thread::nmethods_do(cf); // (super method is a no-op)
2801
2802 assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2803 (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2804
2805 if (has_last_Java_frame()) {
2806 // Traverse the execution stack
2807 for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2808 fst.current()->nmethods_do(cf);
2809 }
2810 }
2811 }
2812
2813 void JavaThread::metadata_do(void f(Metadata*)) {
2814 Thread::metadata_do(f);
2815 if (has_last_Java_frame()) {
2816 // Traverse the execution stack to call f() on the methods in the stack
2817 for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2818 fst.current()->metadata_do(f);
2819 }
2820 } else if (is_Compiler_thread()) {
2821 // need to walk ciMetadata in current compile tasks to keep alive.
2822 CompilerThread* ct = (CompilerThread*)this;
2823 if (ct->env() != NULL) {
2824 ct->env()->metadata_do(f);
2825 }
2826 }
2827 }
2828
2829 // Printing
2830 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2831 switch (_thread_state) {
2832 case _thread_uninitialized: return "_thread_uninitialized";
2833 case _thread_new: return "_thread_new";
2834 case _thread_new_trans: return "_thread_new_trans";
2835 case _thread_in_native: return "_thread_in_native";
2836 case _thread_in_native_trans: return "_thread_in_native_trans";
2837 case _thread_in_vm: return "_thread_in_vm";
2838 case _thread_in_vm_trans: return "_thread_in_vm_trans";
2839 case _thread_in_Java: return "_thread_in_Java";
2840 case _thread_in_Java_trans: return "_thread_in_Java_trans";
2841 case _thread_blocked: return "_thread_blocked";
2842 case _thread_blocked_trans: return "_thread_blocked_trans";
2843 default: return "unknown thread state";
2844 }
2845 }
2846
2847 #ifndef PRODUCT
2848 void JavaThread::print_thread_state_on(outputStream *st) const {
2849 st->print_cr(" JavaThread state: %s", _get_thread_state_name(_thread_state));
2850 };
2851 void JavaThread::print_thread_state() const {
2852 print_thread_state_on(tty);
2853 };
2854 #endif // PRODUCT
2855
2856 // Called by Threads::print() for VM_PrintThreads operation
2857 void JavaThread::print_on(outputStream *st) const {
2858 st->print("\"%s\" ", get_thread_name());
2859 oop thread_oop = threadObj();
2860 if (thread_oop != NULL) {
2861 st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2862 if (java_lang_Thread::is_daemon(thread_oop)) st->print("daemon ");
2863 st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2864 }
2865 Thread::print_on(st);
2866 // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2867 st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2868 if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2869 st->print_cr(" java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2870 }
2871 #ifndef PRODUCT
2872 print_thread_state_on(st);
2873 _safepoint_state->print_on(st);
2874 #endif // PRODUCT
2875 }
2876
2877 // Called by fatal error handler. The difference between this and
2878 // JavaThread::print() is that we can't grab lock or allocate memory.
2879 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2880 st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2881 oop thread_obj = threadObj();
2882 if (thread_obj != NULL) {
2883 if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2884 }
2885 st->print(" [");
2886 st->print("%s", _get_thread_state_name(_thread_state));
2887 if (osthread()) {
2888 st->print(", id=%d", osthread()->thread_id());
2889 }
2890 st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2891 _stack_base - _stack_size, _stack_base);
2892 st->print("]");
2893 return;
2894 }
2895
2896 // Verification
2897
2898 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2899
2900 void JavaThread::verify() {
2901 // Verify oops in the thread.
2902 oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2903
2904 // Verify the stack frames.
2905 frames_do(frame_verify);
2906 }
2907
2908 // CR 6300358 (sub-CR 2137150)
2909 // Most callers of this method assume that it can't return NULL but a
2910 // thread may not have a name whilst it is in the process of attaching to
2911 // the VM - see CR 6412693, and there are places where a JavaThread can be
2912 // seen prior to having it's threadObj set (eg JNI attaching threads and
2913 // if vm exit occurs during initialization). These cases can all be accounted
2914 // for such that this method never returns NULL.
2915 const char* JavaThread::get_thread_name() const {
2916 #ifdef ASSERT
2917 // early safepoints can hit while current thread does not yet have TLS
2918 if (!SafepointSynchronize::is_at_safepoint()) {
2919 Thread *cur = Thread::current();
2920 if (!(cur->is_Java_thread() && cur == this)) {
2921 // Current JavaThreads are allowed to get their own name without
2922 // the Threads_lock.
2923 assert_locked_or_safepoint(Threads_lock);
2924 }
2925 }
2926 #endif // ASSERT
2927 return get_thread_name_string();
2928 }
2929
2930 // Returns a non-NULL representation of this thread's name, or a suitable
2931 // descriptive string if there is no set name
2932 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2933 const char* name_str;
2934 oop thread_obj = threadObj();
2935 if (thread_obj != NULL) {
2936 typeArrayOop name = java_lang_Thread::name(thread_obj);
2937 if (name != NULL) {
2938 if (buf == NULL) {
2939 name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2940 }
2941 else {
2942 name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2943 }
2944 }
2945 else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2946 name_str = "<no-name - thread is attaching>";
2947 }
2948 else {
2949 name_str = Thread::name();
2950 }
2951 }
2952 else {
2953 name_str = Thread::name();
2954 }
2955 assert(name_str != NULL, "unexpected NULL thread name");
2956 return name_str;
2957 }
2958
2959
2960 const char* JavaThread::get_threadgroup_name() const {
2961 debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2962 oop thread_obj = threadObj();
2963 if (thread_obj != NULL) {
2964 oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2965 if (thread_group != NULL) {
2966 typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2967 // ThreadGroup.name can be null
2968 if (name != NULL) {
2969 const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2970 return str;
2971 }
2972 }
2973 }
2974 return NULL;
2975 }
2976
2977 const char* JavaThread::get_parent_name() const {
2978 debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2979 oop thread_obj = threadObj();
2980 if (thread_obj != NULL) {
2981 oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2982 if (thread_group != NULL) {
2983 oop parent = java_lang_ThreadGroup::parent(thread_group);
2984 if (parent != NULL) {
2985 typeArrayOop name = java_lang_ThreadGroup::name(parent);
2986 // ThreadGroup.name can be null
2987 if (name != NULL) {
2988 const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2989 return str;
2990 }
2991 }
2992 }
2993 }
2994 return NULL;
2995 }
2996
2997 ThreadPriority JavaThread::java_priority() const {
2998 oop thr_oop = threadObj();
2999 if (thr_oop == NULL) return NormPriority; // Bootstrapping
3000 ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3001 assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3002 return priority;
3003 }
3004
3005 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3006
3007 assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3008 // Link Java Thread object <-> C++ Thread
3009
3010 // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3011 // and put it into a new Handle. The Handle "thread_oop" can then
3012 // be used to pass the C++ thread object to other methods.
3013
3014 // Set the Java level thread object (jthread) field of the
3015 // new thread (a JavaThread *) to C++ thread object using the
3016 // "thread_oop" handle.
3017
3018 // Set the thread field (a JavaThread *) of the
3019 // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3020
3021 Handle thread_oop(Thread::current(),
3022 JNIHandles::resolve_non_null(jni_thread));
3023 assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3024 "must be initialized");
3025 set_threadObj(thread_oop());
3026 java_lang_Thread::set_thread(thread_oop(), this);
3027
3028 if (prio == NoPriority) {
3029 prio = java_lang_Thread::priority(thread_oop());
3030 assert(prio != NoPriority, "A valid priority should be present");
3031 }
3032
3033 // Push the Java priority down to the native thread; needs Threads_lock
3034 Thread::set_priority(this, prio);
3035
3036 // Add the new thread to the Threads list and set it in motion.
3037 // We must have threads lock in order to call Threads::add.
3038 // It is crucial that we do not block before the thread is
3039 // added to the Threads list for if a GC happens, then the java_thread oop
3040 // will not be visited by GC.
3041 Threads::add(this);
3042 }
3043
3044 oop JavaThread::current_park_blocker() {
3045 // Support for JSR-166 locks
3046 oop thread_oop = threadObj();
3047 if (thread_oop != NULL &&
3048 JDK_Version::current().supports_thread_park_blocker()) {
3049 return java_lang_Thread::park_blocker(thread_oop);
3050 }
3051 return NULL;
3052 }
3053
3054
3055 void JavaThread::print_stack_on(outputStream* st) {
3056 if (!has_last_Java_frame()) return;
3057 ResourceMark rm;
3058 HandleMark hm;
3059
3060 RegisterMap reg_map(this);
3061 vframe* start_vf = last_java_vframe(&reg_map);
3062 int count = 0;
3063 for (vframe* f = start_vf; f; f = f->sender() ) {
3064 if (f->is_java_frame()) {
3065 javaVFrame* jvf = javaVFrame::cast(f);
3066 java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3067
3068 // Print out lock information
3069 if (JavaMonitorsInStackTrace) {
3070 jvf->print_lock_info_on(st, count);
3071 }
3072 } else {
3073 // Ignore non-Java frames
3074 }
3075
3076 // Bail-out case for too deep stacks
3077 count++;
3078 if (MaxJavaStackTraceDepth == count) return;
3079 }
3080 }
3081
3082
3083 // JVMTI PopFrame support
3084 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3085 assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3086 if (in_bytes(size_in_bytes) != 0) {
3087 _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3088 _popframe_preserved_args_size = in_bytes(size_in_bytes);
3089 Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3090 }
3091 }
3092
3093 void* JavaThread::popframe_preserved_args() {
3094 return _popframe_preserved_args;
3095 }
3096
3097 ByteSize JavaThread::popframe_preserved_args_size() {
3098 return in_ByteSize(_popframe_preserved_args_size);
3099 }
3100
3101 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3102 int sz = in_bytes(popframe_preserved_args_size());
3103 assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3104 return in_WordSize(sz / wordSize);
3105 }
3106
3107 void JavaThread::popframe_free_preserved_args() {
3108 assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3109 FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3110 _popframe_preserved_args = NULL;
3111 _popframe_preserved_args_size = 0;
3112 }
3113
3114 #ifndef PRODUCT
3115
3116 void JavaThread::trace_frames() {
3117 tty->print_cr("[Describe stack]");
3118 int frame_no = 1;
3119 for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3120 tty->print(" %d. ", frame_no++);
3121 fst.current()->print_value_on(tty,this);
3122 tty->cr();
3123 }
3124 }
3125
3126 class PrintAndVerifyOopClosure: public OopClosure {
3127 protected:
3128 template <class T> inline void do_oop_work(T* p) {
3129 oop obj = oopDesc::load_decode_heap_oop(p);
3130 if (obj == NULL) return;
3131 tty->print(INTPTR_FORMAT ": ", p);
3132 if (obj->is_oop_or_null()) {
3133 if (obj->is_objArray()) {
3134 tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3135 } else {
3136 obj->print();
3137 }
3138 } else {
3139 tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3140 }
3141 tty->cr();
3142 }
3143 public:
3144 virtual void do_oop(oop* p) { do_oop_work(p); }
3145 virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3146 };
3147
3148
3149 static void oops_print(frame* f, const RegisterMap *map) {
3150 PrintAndVerifyOopClosure print;
3151 f->print_value();
3152 f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3153 }
3154
3155 // Print our all the locations that contain oops and whether they are
3156 // valid or not. This useful when trying to find the oldest frame
3157 // where an oop has gone bad since the frame walk is from youngest to
3158 // oldest.
3159 void JavaThread::trace_oops() {
3160 tty->print_cr("[Trace oops]");
3161 frames_do(oops_print);
3162 }
3163
3164
3165 #ifdef ASSERT
3166 // Print or validate the layout of stack frames
3167 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3168 ResourceMark rm;
3169 PRESERVE_EXCEPTION_MARK;
3170 FrameValues values;
3171 int frame_no = 0;
3172 for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3173 fst.current()->describe(values, ++frame_no);
3174 if (depth == frame_no) break;
3175 }
3176 if (validate_only) {
3177 values.validate();
3178 } else {
3179 tty->print_cr("[Describe stack layout]");
3180 values.print(this);
3181 }
3182 }
3183 #endif
3184
3185 void JavaThread::trace_stack_from(vframe* start_vf) {
3186 ResourceMark rm;
3187 int vframe_no = 1;
3188 for (vframe* f = start_vf; f; f = f->sender() ) {
3189 if (f->is_java_frame()) {
3190 javaVFrame::cast(f)->print_activation(vframe_no++);
3191 } else {
3192 f->print();
3193 }
3194 if (vframe_no > StackPrintLimit) {
3195 tty->print_cr("...<more frames>...");
3196 return;
3197 }
3198 }
3199 }
3200
3201
3202 void JavaThread::trace_stack() {
3203 if (!has_last_Java_frame()) return;
3204 ResourceMark rm;
3205 HandleMark hm;
3206 RegisterMap reg_map(this);
3207 trace_stack_from(last_java_vframe(&reg_map));
3208 }
3209
3210
3211 #endif // PRODUCT
3212
3213
3214 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3215 assert(reg_map != NULL, "a map must be given");
3216 frame f = last_frame();
3217 for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3218 if (vf->is_java_frame()) return javaVFrame::cast(vf);
3219 }
3220 return NULL;
3221 }
3222
3223
3224 Klass* JavaThread::security_get_caller_class(int depth) {
3225 vframeStream vfst(this);
3226 vfst.security_get_caller_frame(depth);
3227 if (!vfst.at_end()) {
3228 return vfst.method()->method_holder();
3229 }
3230 return NULL;
3231 }
3232
3233 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3234 assert(thread->is_Compiler_thread(), "must be compiler thread");
3235 CompileBroker::compiler_thread_loop();
3236 }
3237
3238 // Create a CompilerThread
3239 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3240 : JavaThread(&compiler_thread_entry) {
3241 _env = NULL;
3242 _log = NULL;
3243 _task = NULL;
3244 _queue = queue;
3245 _counters = counters;
3246 _buffer_blob = NULL;
3247 _scanned_nmethod = NULL;
3248 _compiler = NULL;
3249
3250 #ifndef PRODUCT
3251 _ideal_graph_printer = NULL;
3252 #endif
3253 }
3254
3255 void CompilerThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
3256 JavaThread::oops_do(f, cld_f, cf);
3257 if (_scanned_nmethod != NULL && cf != NULL) {
3258 // Safepoints can occur when the sweeper is scanning an nmethod so
3259 // process it here to make sure it isn't unloaded in the middle of
3260 // a scan.
3261 cf->do_code_blob(_scanned_nmethod);
3262 }
3263 }
3264
3265
3266 // ======= Threads ========
3267
3268 // The Threads class links together all active threads, and provides
3269 // operations over all threads. It is protected by its own Mutex
3270 // lock, which is also used in other contexts to protect thread
3271 // operations from having the thread being operated on from exiting
3272 // and going away unexpectedly (e.g., safepoint synchronization)
3273
3274 JavaThread* Threads::_thread_list = NULL;
3275 int Threads::_number_of_threads = 0;
3276 int Threads::_number_of_non_daemon_threads = 0;
3277 int Threads::_return_code = 0;
3278 size_t JavaThread::_stack_size_at_create = 0;
3279 #ifdef ASSERT
3280 bool Threads::_vm_complete = false;
3281 #endif
3282
3283 // All JavaThreads
3284 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3285
3286 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3287 void Threads::threads_do(ThreadClosure* tc) {
3288 assert_locked_or_safepoint(Threads_lock);
3289 // ALL_JAVA_THREADS iterates through all JavaThreads
3290 ALL_JAVA_THREADS(p) {
3291 tc->do_thread(p);
3292 }
3293 // Someday we could have a table or list of all non-JavaThreads.
3294 // For now, just manually iterate through them.
3295 tc->do_thread(VMThread::vm_thread());
3296 Universe::heap()->gc_threads_do(tc);
3297 WatcherThread *wt = WatcherThread::watcher_thread();
3298 // Strictly speaking, the following NULL check isn't sufficient to make sure
3299 // the data for WatcherThread is still valid upon being examined. However,
3300 // considering that WatchThread terminates when the VM is on the way to
3301 // exit at safepoint, the chance of the above is extremely small. The right
3302 // way to prevent termination of WatcherThread would be to acquire
3303 // Terminator_lock, but we can't do that without violating the lock rank
3304 // checking in some cases.
3305 if (wt != NULL)
3306 tc->do_thread(wt);
3307
3308 // If CompilerThreads ever become non-JavaThreads, add them here
3309 }
3310
3311 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3312
3313 extern void JDK_Version_init();
3314
3315 // Check version
3316 if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3317
3318 // Initialize the output stream module
3319 ostream_init();
3320
3321 // Process java launcher properties.
3322 Arguments::process_sun_java_launcher_properties(args);
3323
3324 // Initialize the os module before using TLS
3325 os::init();
3326
3327 // Initialize system properties.
3328 Arguments::init_system_properties();
3329
3330 // So that JDK version can be used as a discrimintor when parsing arguments
3331 JDK_Version_init();
3332
3333 // Update/Initialize System properties after JDK version number is known
3334 Arguments::init_version_specific_system_properties();
3335
3336 // Parse arguments
3337 jint parse_result = Arguments::parse(args);
3338 if (parse_result != JNI_OK) return parse_result;
3339
3340 os::init_before_ergo();
3341
3342 jint ergo_result = Arguments::apply_ergo();
3343 if (ergo_result != JNI_OK) return ergo_result;
3344
3345 if (PauseAtStartup) {
3346 os::pause();
3347 }
3348
3349 #ifndef USDT2
3350 HS_DTRACE_PROBE(hotspot, vm__init__begin);
3351 #else /* USDT2 */
3352 HOTSPOT_VM_INIT_BEGIN();
3353 #endif /* USDT2 */
3354
3355 // Record VM creation timing statistics
3356 TraceVmCreationTime create_vm_timer;
3357 create_vm_timer.start();
3358
3359 // Timing (must come after argument parsing)
3360 TraceTime timer("Create VM", TraceStartupTime);
3361
3362 // Initialize the os module after parsing the args
3363 jint os_init_2_result = os::init_2();
3364 if (os_init_2_result != JNI_OK) return os_init_2_result;
3365
3366 jint adjust_after_os_result = Arguments::adjust_after_os();
3367 if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3368
3369 // intialize TLS
3370 ThreadLocalStorage::init();
3371
3372 // Bootstrap native memory tracking, so it can start recording memory
3373 // activities before worker thread is started. This is the first phase
3374 // of bootstrapping, VM is currently running in single-thread mode.
3375 MemTracker::bootstrap_single_thread();
3376
3377 // Initialize output stream logging
3378 ostream_init_log();
3379
3380 // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3381 // Must be before create_vm_init_agents()
3382 if (Arguments::init_libraries_at_startup()) {
3383 convert_vm_init_libraries_to_agents();
3384 }
3385
3386 // Launch -agentlib/-agentpath and converted -Xrun agents
3387 if (Arguments::init_agents_at_startup()) {
3388 create_vm_init_agents();
3389 }
3390
3391 // Initialize Threads state
3392 _thread_list = NULL;
3393 _number_of_threads = 0;
3394 _number_of_non_daemon_threads = 0;
3395
3396 // Initialize global data structures and create system classes in heap
3397 vm_init_globals();
3398
3399 // Attach the main thread to this os thread
3400 JavaThread* main_thread = new JavaThread();
3401 main_thread->set_thread_state(_thread_in_vm);
3402 // must do this before set_active_handles and initialize_thread_local_storage
3403 // Note: on solaris initialize_thread_local_storage() will (indirectly)
3404 // change the stack size recorded here to one based on the java thread
3405 // stacksize. This adjusted size is what is used to figure the placement
3406 // of the guard pages.
3407 main_thread->record_stack_base_and_size();
3408 main_thread->initialize_thread_local_storage();
3409
3410 main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3411
3412 if (!main_thread->set_as_starting_thread()) {
3413 vm_shutdown_during_initialization(
3414 "Failed necessary internal allocation. Out of swap space");
3415 delete main_thread;
3416 *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3417 return JNI_ENOMEM;
3418 }
3419
3420 // Enable guard page *after* os::create_main_thread(), otherwise it would
3421 // crash Linux VM, see notes in os_linux.cpp.
3422 main_thread->create_stack_guard_pages();
3423
3424 // Initialize Java-Level synchronization subsystem
3425 ObjectMonitor::Initialize() ;
3426
3427 // Second phase of bootstrapping, VM is about entering multi-thread mode
3428 MemTracker::bootstrap_multi_thread();
3429
3430 // Initialize global modules
3431 jint status = init_globals();
3432 if (status != JNI_OK) {
3433 delete main_thread;
3434 *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3435 return status;
3436 }
3437
3438 // Should be done after the heap is fully created
3439 main_thread->cache_global_variables();
3440
3441 HandleMark hm;
3442
3443 { MutexLocker mu(Threads_lock);
3444 Threads::add(main_thread);
3445 }
3446
3447 // Any JVMTI raw monitors entered in onload will transition into
3448 // real raw monitor. VM is setup enough here for raw monitor enter.
3449 JvmtiExport::transition_pending_onload_raw_monitors();
3450
3451 // Fully start NMT
3452 MemTracker::start();
3453
3454 // Create the VMThread
3455 { TraceTime timer("Start VMThread", TraceStartupTime);
3456 VMThread::create();
3457 Thread* vmthread = VMThread::vm_thread();
3458
3459 if (!os::create_thread(vmthread, os::vm_thread))
3460 vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3461
3462 // Wait for the VM thread to become ready, and VMThread::run to initialize
3463 // Monitors can have spurious returns, must always check another state flag
3464 {
3465 MutexLocker ml(Notify_lock);
3466 os::start_thread(vmthread);
3467 while (vmthread->active_handles() == NULL) {
3468 Notify_lock->wait();
3469 }
3470 }
3471 }
3472
3473 assert (Universe::is_fully_initialized(), "not initialized");
3474 if (VerifyDuringStartup) {
3475 // Make sure we're starting with a clean slate.
3476 VM_Verify verify_op;
3477 VMThread::execute(&verify_op);
3478 }
3479
3480 EXCEPTION_MARK;
3481
3482 // At this point, the Universe is initialized, but we have not executed
3483 // any byte code. Now is a good time (the only time) to dump out the
3484 // internal state of the JVM for sharing.
3485 if (DumpSharedSpaces) {
3486 MetaspaceShared::preload_and_dump(CHECK_0);
3487 ShouldNotReachHere();
3488 }
3489
3490 // Always call even when there are not JVMTI environments yet, since environments
3491 // may be attached late and JVMTI must track phases of VM execution
3492 JvmtiExport::enter_start_phase();
3493
3494 // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3495 JvmtiExport::post_vm_start();
3496
3497 {
3498 TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3499
3500 if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3501 create_vm_init_libraries();
3502 }
3503
3504 initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3505
3506 // Initialize java_lang.System (needed before creating the thread)
3507 initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3508 initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3509 Handle thread_group = create_initial_thread_group(CHECK_0);
3510 Universe::set_main_thread_group(thread_group());
3511 initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3512 oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3513 main_thread->set_threadObj(thread_object);
3514 // Set thread status to running since main thread has
3515 // been started and running.
3516 java_lang_Thread::set_thread_status(thread_object,
3517 java_lang_Thread::RUNNABLE);
3518
3519 // The VM creates & returns objects of this class. Make sure it's initialized.
3520 initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3521
3522 // The VM preresolves methods to these classes. Make sure that they get initialized
3523 initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3524 initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK_0);
3525 call_initializeSystemClass(CHECK_0);
3526
3527 // get the Java runtime name after java.lang.System is initialized
3528 JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3529 JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3530
3531 // an instance of OutOfMemory exception has been allocated earlier
3532 initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3533 initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3534 initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3535 initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3536 initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3537 initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3538 initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3539 initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
3540 }
3541
3542 // See : bugid 4211085.
3543 // Background : the static initializer of java.lang.Compiler tries to read
3544 // property"java.compiler" and read & write property "java.vm.info".
3545 // When a security manager is installed through the command line
3546 // option "-Djava.security.manager", the above properties are not
3547 // readable and the static initializer for java.lang.Compiler fails
3548 // resulting in a NoClassDefFoundError. This can happen in any
3549 // user code which calls methods in java.lang.Compiler.
3550 // Hack : the hack is to pre-load and initialize this class, so that only
3551 // system domains are on the stack when the properties are read.
3552 // Currently even the AWT code has calls to methods in java.lang.Compiler.
3553 // On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3554 // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3555 // read and write"java.vm.info" in the default policy file. See bugid 4211383
3556 // Once that is done, we should remove this hack.
3557 initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3558
3559 // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3560 // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3561 // compiler does not get loaded through java.lang.Compiler). "java -version" with the
3562 // hotspot vm says "nojit" all the time which is confusing. So, we reset it here.
3563 // This should also be taken out as soon as 4211383 gets fixed.
3564 reset_vm_info_property(CHECK_0);
3565
3566 quicken_jni_functions();
3567
3568 // Must be run after init_ft which initializes ft_enabled
3569 if (TRACE_INITIALIZE() != JNI_OK) {
3570 vm_exit_during_initialization("Failed to initialize tracing backend");
3571 }
3572
3573 // Set flag that basic initialization has completed. Used by exceptions and various
3574 // debug stuff, that does not work until all basic classes have been initialized.
3575 set_init_completed();
3576
3577 Metaspace::post_initialize();
3578
3579 #ifndef USDT2
3580 HS_DTRACE_PROBE(hotspot, vm__init__end);
3581 #else /* USDT2 */
3582 HOTSPOT_VM_INIT_END();
3583 #endif /* USDT2 */
3584
3585 // record VM initialization completion time
3586 #if INCLUDE_MANAGEMENT
3587 Management::record_vm_init_completed();
3588 #endif // INCLUDE_MANAGEMENT
3589
3590 // Compute system loader. Note that this has to occur after set_init_completed, since
3591 // valid exceptions may be thrown in the process.
3592 // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3593 // set_init_completed has just been called, causing exceptions not to be shortcut
3594 // anymore. We call vm_exit_during_initialization directly instead.
3595 SystemDictionary::compute_java_system_loader(THREAD);
3596 if (HAS_PENDING_EXCEPTION) {
3597 vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3598 }
3599
3600 #if INCLUDE_ALL_GCS
3601 // Support for ConcurrentMarkSweep. This should be cleaned up
3602 // and better encapsulated. The ugly nested if test would go away
3603 // once things are properly refactored. XXX YSR
3604 if (UseConcMarkSweepGC || UseG1GC) {
3605 if (UseConcMarkSweepGC) {
3606 ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3607 } else {
3608 ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3609 }
3610 if (HAS_PENDING_EXCEPTION) {
3611 vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3612 }
3613 }
3614 #endif // INCLUDE_ALL_GCS
3615
3616 // Always call even when there are not JVMTI environments yet, since environments
3617 // may be attached late and JVMTI must track phases of VM execution
3618 JvmtiExport::enter_live_phase();
3619
3620 // Signal Dispatcher needs to be started before VMInit event is posted
3621 os::signal_init();
3622
3623 // Start Attach Listener if +StartAttachListener or it can't be started lazily
3624 if (!DisableAttachMechanism) {
3625 AttachListener::vm_start();
3626 if (StartAttachListener || AttachListener::init_at_startup()) {
3627 AttachListener::init();
3628 }
3629 }
3630
3631 // Launch -Xrun agents
3632 // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3633 // back-end can launch with -Xdebug -Xrunjdwp.
3634 if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3635 create_vm_init_libraries();
3636 }
3637
3638 // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3639 JvmtiExport::post_vm_initialized();
3640
3641 if (TRACE_START() != JNI_OK) {
3642 vm_exit_during_initialization("Failed to start tracing backend.");
3643 }
3644
3645 if (CleanChunkPoolAsync) {
3646 Chunk::start_chunk_pool_cleaner_task();
3647 }
3648
3649 // initialize compiler(s)
3650 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3651 CompileBroker::compilation_init();
3652 #endif
3653
3654 if (EnableInvokeDynamic) {
3655 // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3656 // It is done after compilers are initialized, because otherwise compilations of
3657 // signature polymorphic MH intrinsics can be missed
3658 // (see SystemDictionary::find_method_handle_intrinsic).
3659 initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK_0);
3660 initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK_0);
3661 initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK_0);
3662 }
3663
3664 #if INCLUDE_MANAGEMENT
3665 Management::initialize(THREAD);
3666 #endif // INCLUDE_MANAGEMENT
3667
3668 if (HAS_PENDING_EXCEPTION) {
3669 // management agent fails to start possibly due to
3670 // configuration problem and is responsible for printing
3671 // stack trace if appropriate. Simply exit VM.
3672 vm_exit(1);
3673 }
3674
3675 if (Arguments::has_profile()) FlatProfiler::engage(main_thread, true);
3676 if (MemProfiling) MemProfiler::engage();
3677 StatSampler::engage();
3678 if (CheckJNICalls) JniPeriodicChecker::engage();
3679
3680 BiasedLocking::init();
3681
3682 #if INCLUDE_RTM_OPT
3683 RTMLockingCounters::init();
3684 #endif
3685
3686 if (JDK_Version::current().post_vm_init_hook_enabled()) {
3687 call_postVMInitHook(THREAD);
3688 // The Java side of PostVMInitHook.run must deal with all
3689 // exceptions and provide means of diagnosis.
3690 if (HAS_PENDING_EXCEPTION) {
3691 CLEAR_PENDING_EXCEPTION;
3692 }
3693 }
3694
3695 {
3696 MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3697 // Make sure the watcher thread can be started by WatcherThread::start()
3698 // or by dynamic enrollment.
3699 WatcherThread::make_startable();
3700 // Start up the WatcherThread if there are any periodic tasks
3701 // NOTE: All PeriodicTasks should be registered by now. If they
3702 // aren't, late joiners might appear to start slowly (we might
3703 // take a while to process their first tick).
3704 if (PeriodicTask::num_tasks() > 0) {
3705 WatcherThread::start();
3706 }
3707 }
3708
3709 // Give os specific code one last chance to start
3710 os::init_3();
3711
3712 create_vm_timer.end();
3713 #ifdef ASSERT
3714 _vm_complete = true;
3715 #endif
3716 return JNI_OK;
3717 }
3718
3719 // type for the Agent_OnLoad and JVM_OnLoad entry points
3720 extern "C" {
3721 typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3722 }
3723 // Find a command line agent library and return its entry point for
3724 // -agentlib: -agentpath: -Xrun
3725 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3726 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3727 OnLoadEntry_t on_load_entry = NULL;
3728 void *library = NULL;
3729
3730 if (!agent->valid()) {
3731 char buffer[JVM_MAXPATHLEN];
3732 char ebuf[1024];
3733 const char *name = agent->name();
3734 const char *msg = "Could not find agent library ";
3735
3736 // First check to see if agent is statically linked into executable
3737 if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3738 library = agent->os_lib();
3739 } else if (agent->is_absolute_path()) {
3740 library = os::dll_load(name, ebuf, sizeof ebuf);
3741 if (library == NULL) {
3742 const char *sub_msg = " in absolute path, with error: ";
3743 size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3744 char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3745 jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3746 // If we can't find the agent, exit.
3747 vm_exit_during_initialization(buf, NULL);
3748 FREE_C_HEAP_ARRAY(char, buf, mtThread);
3749 }
3750 } else {
3751 // Try to load the agent from the standard dll directory
3752 if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3753 name)) {
3754 library = os::dll_load(buffer, ebuf, sizeof ebuf);
3755 }
3756 if (library == NULL) { // Try the local directory
3757 char ns[1] = {0};
3758 if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3759 library = os::dll_load(buffer, ebuf, sizeof ebuf);
3760 }
3761 if (library == NULL) {
3762 const char *sub_msg = " on the library path, with error: ";
3763 size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3764 char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3765 jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3766 // If we can't find the agent, exit.
3767 vm_exit_during_initialization(buf, NULL);
3768 FREE_C_HEAP_ARRAY(char, buf, mtThread);
3769 }
3770 }
3771 }
3772 agent->set_os_lib(library);
3773 agent->set_valid();
3774 }
3775
3776 // Find the OnLoad function.
3777 on_load_entry =
3778 CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3779 false,
3780 on_load_symbols,
3781 num_symbol_entries));
3782 return on_load_entry;
3783 }
3784
3785 // Find the JVM_OnLoad entry point
3786 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3787 const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3788 return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3789 }
3790
3791 // Find the Agent_OnLoad entry point
3792 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3793 const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3794 return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3795 }
3796
3797 // For backwards compatibility with -Xrun
3798 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3799 // treated like -agentpath:
3800 // Must be called before agent libraries are created
3801 void Threads::convert_vm_init_libraries_to_agents() {
3802 AgentLibrary* agent;
3803 AgentLibrary* next;
3804
3805 for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3806 next = agent->next(); // cache the next agent now as this agent may get moved off this list
3807 OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3808
3809 // If there is an JVM_OnLoad function it will get called later,
3810 // otherwise see if there is an Agent_OnLoad
3811 if (on_load_entry == NULL) {
3812 on_load_entry = lookup_agent_on_load(agent);
3813 if (on_load_entry != NULL) {
3814 // switch it to the agent list -- so that Agent_OnLoad will be called,
3815 // JVM_OnLoad won't be attempted and Agent_OnUnload will
3816 Arguments::convert_library_to_agent(agent);
3817 } else {
3818 vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3819 }
3820 }
3821 }
3822 }
3823
3824 // Create agents for -agentlib: -agentpath: and converted -Xrun
3825 // Invokes Agent_OnLoad
3826 // Called very early -- before JavaThreads exist
3827 void Threads::create_vm_init_agents() {
3828 extern struct JavaVM_ main_vm;
3829 AgentLibrary* agent;
3830
3831 JvmtiExport::enter_onload_phase();
3832
3833 for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3834 OnLoadEntry_t on_load_entry = lookup_agent_on_load(agent);
3835
3836 if (on_load_entry != NULL) {
3837 // Invoke the Agent_OnLoad function
3838 jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3839 if (err != JNI_OK) {
3840 vm_exit_during_initialization("agent library failed to init", agent->name());
3841 }
3842 } else {
3843 vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3844 }
3845 }
3846 JvmtiExport::enter_primordial_phase();
3847 }
3848
3849 extern "C" {
3850 typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3851 }
3852
3853 void Threads::shutdown_vm_agents() {
3854 // Send any Agent_OnUnload notifications
3855 const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3856 size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3857 extern struct JavaVM_ main_vm;
3858 for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3859
3860 // Find the Agent_OnUnload function.
3861 Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3862 os::find_agent_function(agent,
3863 false,
3864 on_unload_symbols,
3865 num_symbol_entries));
3866
3867 // Invoke the Agent_OnUnload function
3868 if (unload_entry != NULL) {
3869 JavaThread* thread = JavaThread::current();
3870 ThreadToNativeFromVM ttn(thread);
3871 HandleMark hm(thread);
3872 (*unload_entry)(&main_vm);
3873 }
3874 }
3875 }
3876
3877 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3878 // Invokes JVM_OnLoad
3879 void Threads::create_vm_init_libraries() {
3880 extern struct JavaVM_ main_vm;
3881 AgentLibrary* agent;
3882
3883 for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3884 OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3885
3886 if (on_load_entry != NULL) {
3887 // Invoke the JVM_OnLoad function
3888 JavaThread* thread = JavaThread::current();
3889 ThreadToNativeFromVM ttn(thread);
3890 HandleMark hm(thread);
3891 jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3892 if (err != JNI_OK) {
3893 vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3894 }
3895 } else {
3896 vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3897 }
3898 }
3899 }
3900
3901 // Last thread running calls java.lang.Shutdown.shutdown()
3902 void JavaThread::invoke_shutdown_hooks() {
3903 HandleMark hm(this);
3904
3905 // We could get here with a pending exception, if so clear it now.
3906 if (this->has_pending_exception()) {
3907 this->clear_pending_exception();
3908 }
3909
3910 EXCEPTION_MARK;
3911 Klass* k =
3912 SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3913 THREAD);
3914 if (k != NULL) {
3915 // SystemDictionary::resolve_or_null will return null if there was
3916 // an exception. If we cannot load the Shutdown class, just don't
3917 // call Shutdown.shutdown() at all. This will mean the shutdown hooks
3918 // and finalizers (if runFinalizersOnExit is set) won't be run.
3919 // Note that if a shutdown hook was registered or runFinalizersOnExit
3920 // was called, the Shutdown class would have already been loaded
3921 // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3922 instanceKlassHandle shutdown_klass (THREAD, k);
3923 JavaValue result(T_VOID);
3924 JavaCalls::call_static(&result,
3925 shutdown_klass,
3926 vmSymbols::shutdown_method_name(),
3927 vmSymbols::void_method_signature(),
3928 THREAD);
3929 }
3930 CLEAR_PENDING_EXCEPTION;
3931 }
3932
3933 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3934 // the program falls off the end of main(). Another VM exit path is through
3935 // vm_exit() when the program calls System.exit() to return a value or when
3936 // there is a serious error in VM. The two shutdown paths are not exactly
3937 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3938 // and VM_Exit op at VM level.
3939 //
3940 // Shutdown sequence:
3941 // + Shutdown native memory tracking if it is on
3942 // + Wait until we are the last non-daemon thread to execute
3943 // <-- every thing is still working at this moment -->
3944 // + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3945 // shutdown hooks, run finalizers if finalization-on-exit
3946 // + Call before_exit(), prepare for VM exit
3947 // > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3948 // currently the only user of this mechanism is File.deleteOnExit())
3949 // > stop flat profiler, StatSampler, watcher thread, CMS threads,
3950 // post thread end and vm death events to JVMTI,
3951 // stop signal thread
3952 // + Call JavaThread::exit(), it will:
3953 // > release JNI handle blocks, remove stack guard pages
3954 // > remove this thread from Threads list
3955 // <-- no more Java code from this thread after this point -->
3956 // + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3957 // the compiler threads at safepoint
3958 // <-- do not use anything that could get blocked by Safepoint -->
3959 // + Disable tracing at JNI/JVM barriers
3960 // + Set _vm_exited flag for threads that are still running native code
3961 // + Delete this thread
3962 // + Call exit_globals()
3963 // > deletes tty
3964 // > deletes PerfMemory resources
3965 // + Return to caller
3966
3967 bool Threads::destroy_vm() {
3968 JavaThread* thread = JavaThread::current();
3969
3970 #ifdef ASSERT
3971 _vm_complete = false;
3972 #endif
3973 // Wait until we are the last non-daemon thread to execute
3974 { MutexLocker nu(Threads_lock);
3975 while (Threads::number_of_non_daemon_threads() > 1 )
3976 // This wait should make safepoint checks, wait without a timeout,
3977 // and wait as a suspend-equivalent condition.
3978 //
3979 // Note: If the FlatProfiler is running and this thread is waiting
3980 // for another non-daemon thread to finish, then the FlatProfiler
3981 // is waiting for the external suspend request on this thread to
3982 // complete. wait_for_ext_suspend_completion() will eventually
3983 // timeout, but that takes time. Making this wait a suspend-
3984 // equivalent condition solves that timeout problem.
3985 //
3986 Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3987 Mutex::_as_suspend_equivalent_flag);
3988 }
3989
3990 // Hang forever on exit if we are reporting an error.
3991 if (ShowMessageBoxOnError && is_error_reported()) {
3992 os::infinite_sleep();
3993 }
3994 os::wait_for_keypress_at_exit();
3995
3996 if (JDK_Version::is_jdk12x_version()) {
3997 // We are the last thread running, so check if finalizers should be run.
3998 // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3999 HandleMark rm(thread);
4000 Universe::run_finalizers_on_exit();
4001 } else {
4002 // run Java level shutdown hooks
4003 thread->invoke_shutdown_hooks();
4004 }
4005
4006 before_exit(thread);
4007
4008 thread->exit(true);
4009
4010 // Stop VM thread.
4011 {
4012 // 4945125 The vm thread comes to a safepoint during exit.
4013 // GC vm_operations can get caught at the safepoint, and the
4014 // heap is unparseable if they are caught. Grab the Heap_lock
4015 // to prevent this. The GC vm_operations will not be able to
4016 // queue until after the vm thread is dead. After this point,
4017 // we'll never emerge out of the safepoint before the VM exits.
4018
4019 MutexLocker ml(Heap_lock);
4020
4021 VMThread::wait_for_vm_thread_exit();
4022 assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4023 VMThread::destroy();
4024 }
4025
4026 // clean up ideal graph printers
4027 #if defined(COMPILER2) && !defined(PRODUCT)
4028 IdealGraphPrinter::clean_up();
4029 #endif
4030
4031 // Now, all Java threads are gone except daemon threads. Daemon threads
4032 // running Java code or in VM are stopped by the Safepoint. However,
4033 // daemon threads executing native code are still running. But they
4034 // will be stopped at native=>Java/VM barriers. Note that we can't
4035 // simply kill or suspend them, as it is inherently deadlock-prone.
4036
4037 #ifndef PRODUCT
4038 // disable function tracing at JNI/JVM barriers
4039 TraceJNICalls = false;
4040 TraceJVMCalls = false;
4041 TraceRuntimeCalls = false;
4042 #endif
4043
4044 VM_Exit::set_vm_exited();
4045
4046 notify_vm_shutdown();
4047
4048 delete thread;
4049
4050 // exit_globals() will delete tty
4051 exit_globals();
4052
4053 return true;
4054 }
4055
4056
4057 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4058 if (version == JNI_VERSION_1_1) return JNI_TRUE;
4059 return is_supported_jni_version(version);
4060 }
4061
4062
4063 jboolean Threads::is_supported_jni_version(jint version) {
4064 if (version == JNI_VERSION_1_2) return JNI_TRUE;
4065 if (version == JNI_VERSION_1_4) return JNI_TRUE;
4066 if (version == JNI_VERSION_1_6) return JNI_TRUE;
4067 if (version == JNI_VERSION_1_8) return JNI_TRUE;
4068 return JNI_FALSE;
4069 }
4070
4071
4072 void Threads::add(JavaThread* p, bool force_daemon) {
4073 // The threads lock must be owned at this point
4074 assert_locked_or_safepoint(Threads_lock);
4075
4076 // See the comment for this method in thread.hpp for its purpose and
4077 // why it is called here.
4078 p->initialize_queues();
4079 p->set_next(_thread_list);
4080 _thread_list = p;
4081 _number_of_threads++;
4082 oop threadObj = p->threadObj();
4083 bool daemon = true;
4084 // Bootstrapping problem: threadObj can be null for initial
4085 // JavaThread (or for threads attached via JNI)
4086 if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4087 _number_of_non_daemon_threads++;
4088 daemon = false;
4089 }
4090
4091 p->set_safepoint_visible(true);
4092
4093 ThreadService::add_thread(p, daemon);
4094
4095 // Possible GC point.
4096 Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4097 }
4098
4099 void Threads::remove(JavaThread* p) {
4100 // Extra scope needed for Thread_lock, so we can check
4101 // that we do not remove thread without safepoint code notice
4102 { MutexLocker ml(Threads_lock);
4103
4104 assert(includes(p), "p must be present");
4105
4106 JavaThread* current = _thread_list;
4107 JavaThread* prev = NULL;
4108
4109 while (current != p) {
4110 prev = current;
4111 current = current->next();
4112 }
4113
4114 if (prev) {
4115 prev->set_next(current->next());
4116 } else {
4117 _thread_list = p->next();
4118 }
4119 _number_of_threads--;
4120 oop threadObj = p->threadObj();
4121 bool daemon = true;
4122 if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4123 _number_of_non_daemon_threads--;
4124 daemon = false;
4125
4126 // Only one thread left, do a notify on the Threads_lock so a thread waiting
4127 // on destroy_vm will wake up.
4128 if (number_of_non_daemon_threads() == 1)
4129 Threads_lock->notify_all();
4130 }
4131 ThreadService::remove_thread(p, daemon);
4132
4133 // Make sure that safepoint code disregard this thread. This is needed since
4134 // the thread might mess around with locks after this point. This can cause it
4135 // to do callbacks into the safepoint code. However, the safepoint code is not aware
4136 // of this thread since it is removed from the queue.
4137 p->set_terminated_value();
4138
4139 // Now, this thread is not visible to safepoint
4140 p->set_safepoint_visible(false);
4141 // once the thread becomes safepoint invisible, we can not use its per-thread
4142 // recorder. And Threads::do_threads() no longer walks this thread, so we have
4143 // to release its per-thread recorder here.
4144 MemTracker::thread_exiting(p);
4145 } // unlock Threads_lock
4146
4147 // Since Events::log uses a lock, we grab it outside the Threads_lock
4148 Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4149 }
4150
4151 // Threads_lock must be held when this is called (or must be called during a safepoint)
4152 bool Threads::includes(JavaThread* p) {
4153 assert(Threads_lock->is_locked(), "sanity check");
4154 ALL_JAVA_THREADS(q) {
4155 if (q == p ) {
4156 return true;
4157 }
4158 }
4159 return false;
4160 }
4161
4162 // Operations on the Threads list for GC. These are not explicitly locked,
4163 // but the garbage collector must provide a safe context for them to run.
4164 // In particular, these things should never be called when the Threads_lock
4165 // is held by some other thread. (Note: the Safepoint abstraction also
4166 // uses the Threads_lock to gurantee this property. It also makes sure that
4167 // all threads gets blocked when exiting or starting).
4168
4169 void Threads::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
4170 ALL_JAVA_THREADS(p) {
4171 p->oops_do(f, cld_f, cf);
4172 }
4173 VMThread::vm_thread()->oops_do(f, cld_f, cf);
4174 }
4175
4176 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
4177 // Introduce a mechanism allowing parallel threads to claim threads as
4178 // root groups. Overhead should be small enough to use all the time,
4179 // even in sequential code.
4180 SharedHeap* sh = SharedHeap::heap();
4181 // Cannot yet substitute active_workers for n_par_threads
4182 // because of G1CollectedHeap::verify() use of
4183 // SharedHeap::process_strong_roots(). n_par_threads == 0 will
4184 // turn off parallelism in process_strong_roots while active_workers
4185 // is being used for parallelism elsewhere.
4186 bool is_par = sh->n_par_threads() > 0;
4187 assert(!is_par ||
4188 (SharedHeap::heap()->n_par_threads() ==
4189 SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4190 int cp = SharedHeap::heap()->strong_roots_parity();
4191 ALL_JAVA_THREADS(p) {
4192 if (p->claim_oops_do(is_par, cp)) {
4193 p->oops_do(f, cld_f, cf);
4194 }
4195 }
4196 VMThread* vmt = VMThread::vm_thread();
4197 if (vmt->claim_oops_do(is_par, cp)) {
4198 vmt->oops_do(f, cld_f, cf);
4199 }
4200 }
4201
4202 #if INCLUDE_ALL_GCS
4203 // Used by ParallelScavenge
4204 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4205 ALL_JAVA_THREADS(p) {
4206 q->enqueue(new ThreadRootsTask(p));
4207 }
4208 q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4209 }
4210
4211 // Used by Parallel Old
4212 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4213 ALL_JAVA_THREADS(p) {
4214 q->enqueue(new ThreadRootsMarkingTask(p));
4215 }
4216 q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4217 }
4218 #endif // INCLUDE_ALL_GCS
4219
4220 void Threads::nmethods_do(CodeBlobClosure* cf) {
4221 ALL_JAVA_THREADS(p) {
4222 p->nmethods_do(cf);
4223 }
4224 VMThread::vm_thread()->nmethods_do(cf);
4225 }
4226
4227 void Threads::metadata_do(void f(Metadata*)) {
4228 ALL_JAVA_THREADS(p) {
4229 p->metadata_do(f);
4230 }
4231 }
4232
4233 void Threads::gc_epilogue() {
4234 ALL_JAVA_THREADS(p) {
4235 p->gc_epilogue();
4236 }
4237 }
4238
4239 void Threads::gc_prologue() {
4240 ALL_JAVA_THREADS(p) {
4241 p->gc_prologue();
4242 }
4243 }
4244
4245 void Threads::deoptimized_wrt_marked_nmethods() {
4246 ALL_JAVA_THREADS(p) {
4247 p->deoptimized_wrt_marked_nmethods();
4248 }
4249 }
4250
4251
4252 // Get count Java threads that are waiting to enter the specified monitor.
4253 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4254 address monitor, bool doLock) {
4255 assert(doLock || SafepointSynchronize::is_at_safepoint(),
4256 "must grab Threads_lock or be at safepoint");
4257 GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4258
4259 int i = 0;
4260 {
4261 MutexLockerEx ml(doLock ? Threads_lock : NULL);
4262 ALL_JAVA_THREADS(p) {
4263 if (p->is_Compiler_thread()) continue;
4264
4265 address pending = (address)p->current_pending_monitor();
4266 if (pending == monitor) { // found a match
4267 if (i < count) result->append(p); // save the first count matches
4268 i++;
4269 }
4270 }
4271 }
4272 return result;
4273 }
4274
4275
4276 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4277 assert(doLock ||
4278 Threads_lock->owned_by_self() ||
4279 SafepointSynchronize::is_at_safepoint(),
4280 "must grab Threads_lock or be at safepoint");
4281
4282 // NULL owner means not locked so we can skip the search
4283 if (owner == NULL) return NULL;
4284
4285 {
4286 MutexLockerEx ml(doLock ? Threads_lock : NULL);
4287 ALL_JAVA_THREADS(p) {
4288 // first, see if owner is the address of a Java thread
4289 if (owner == (address)p) return p;
4290 }
4291 }
4292 // Cannot assert on lack of success here since this function may be
4293 // used by code that is trying to report useful problem information
4294 // like deadlock detection.
4295 if (UseHeavyMonitors) return NULL;
4296
4297 //
4298 // If we didn't find a matching Java thread and we didn't force use of
4299 // heavyweight monitors, then the owner is the stack address of the
4300 // Lock Word in the owning Java thread's stack.
4301 //
4302 JavaThread* the_owner = NULL;
4303 {
4304 MutexLockerEx ml(doLock ? Threads_lock : NULL);
4305 ALL_JAVA_THREADS(q) {
4306 if (q->is_lock_owned(owner)) {
4307 the_owner = q;
4308 break;
4309 }
4310 }
4311 }
4312 // cannot assert on lack of success here; see above comment
4313 return the_owner;
4314 }
4315
4316 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4317 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4318 char buf[32];
4319 st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4320
4321 st->print_cr("Full thread dump %s (%s %s):",
4322 Abstract_VM_Version::vm_name(),
4323 Abstract_VM_Version::vm_release(),
4324 Abstract_VM_Version::vm_info_string()
4325 );
4326 st->cr();
4327
4328 #if INCLUDE_ALL_GCS
4329 // Dump concurrent locks
4330 ConcurrentLocksDump concurrent_locks;
4331 if (print_concurrent_locks) {
4332 concurrent_locks.dump_at_safepoint();
4333 }
4334 #endif // INCLUDE_ALL_GCS
4335
4336 ALL_JAVA_THREADS(p) {
4337 ResourceMark rm;
4338 p->print_on(st);
4339 if (print_stacks) {
4340 if (internal_format) {
4341 p->trace_stack();
4342 } else {
4343 p->print_stack_on(st);
4344 }
4345 }
4346 st->cr();
4347 #if INCLUDE_ALL_GCS
4348 if (print_concurrent_locks) {
4349 concurrent_locks.print_locks_on(p, st);
4350 }
4351 #endif // INCLUDE_ALL_GCS
4352 }
4353
4354 VMThread::vm_thread()->print_on(st);
4355 st->cr();
4356 Universe::heap()->print_gc_threads_on(st);
4357 WatcherThread* wt = WatcherThread::watcher_thread();
4358 if (wt != NULL) {
4359 wt->print_on(st);
4360 st->cr();
4361 }
4362 CompileBroker::print_compiler_threads_on(st);
4363 st->flush();
4364 }
4365
4366 // Threads::print_on_error() is called by fatal error handler. It's possible
4367 // that VM is not at safepoint and/or current thread is inside signal handler.
4368 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4369 // memory (even in resource area), it might deadlock the error handler.
4370 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4371 bool found_current = false;
4372 st->print_cr("Java Threads: ( => current thread )");
4373 ALL_JAVA_THREADS(thread) {
4374 bool is_current = (current == thread);
4375 found_current = found_current || is_current;
4376
4377 st->print("%s", is_current ? "=>" : " ");
4378
4379 st->print(PTR_FORMAT, thread);
4380 st->print(" ");
4381 thread->print_on_error(st, buf, buflen);
4382 st->cr();
4383 }
4384 st->cr();
4385
4386 st->print_cr("Other Threads:");
4387 if (VMThread::vm_thread()) {
4388 bool is_current = (current == VMThread::vm_thread());
4389 found_current = found_current || is_current;
4390 st->print("%s", current == VMThread::vm_thread() ? "=>" : " ");
4391
4392 st->print(PTR_FORMAT, VMThread::vm_thread());
4393 st->print(" ");
4394 VMThread::vm_thread()->print_on_error(st, buf, buflen);
4395 st->cr();
4396 }
4397 WatcherThread* wt = WatcherThread::watcher_thread();
4398 if (wt != NULL) {
4399 bool is_current = (current == wt);
4400 found_current = found_current || is_current;
4401 st->print("%s", is_current ? "=>" : " ");
4402
4403 st->print(PTR_FORMAT, wt);
4404 st->print(" ");
4405 wt->print_on_error(st, buf, buflen);
4406 st->cr();
4407 }
4408 if (!found_current) {
4409 st->cr();
4410 st->print("=>" PTR_FORMAT " (exited) ", current);
4411 current->print_on_error(st, buf, buflen);
4412 st->cr();
4413 }
4414 }
4415
4416 // Internal SpinLock and Mutex
4417 // Based on ParkEvent
4418
4419 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4420 //
4421 // We employ SpinLocks _only for low-contention, fixed-length
4422 // short-duration critical sections where we're concerned
4423 // about native mutex_t or HotSpot Mutex:: latency.
4424 // The mux construct provides a spin-then-block mutual exclusion
4425 // mechanism.
4426 //
4427 // Testing has shown that contention on the ListLock guarding gFreeList
4428 // is common. If we implement ListLock as a simple SpinLock it's common
4429 // for the JVM to devolve to yielding with little progress. This is true
4430 // despite the fact that the critical sections protected by ListLock are
4431 // extremely short.
4432 //
4433 // TODO-FIXME: ListLock should be of type SpinLock.
4434 // We should make this a 1st-class type, integrated into the lock
4435 // hierarchy as leaf-locks. Critically, the SpinLock structure
4436 // should have sufficient padding to avoid false-sharing and excessive
4437 // cache-coherency traffic.
4438
4439
4440 typedef volatile int SpinLockT ;
4441
4442 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4443 if (Atomic::cmpxchg (1, adr, 0) == 0) {
4444 return ; // normal fast-path return
4445 }
4446
4447 // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4448 TEVENT (SpinAcquire - ctx) ;
4449 int ctr = 0 ;
4450 int Yields = 0 ;
4451 for (;;) {
4452 while (*adr != 0) {
4453 ++ctr ;
4454 if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4455 if (Yields > 5) {
4456 os::naked_short_sleep(1);
4457 } else {
4458 os::NakedYield() ;
4459 ++Yields ;
4460 }
4461 } else {
4462 SpinPause() ;
4463 }
4464 }
4465 if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4466 }
4467 }
4468
4469 void Thread::SpinRelease (volatile int * adr) {
4470 assert (*adr != 0, "invariant") ;
4471 OrderAccess::fence() ; // guarantee at least release consistency.
4472 // Roach-motel semantics.
4473 // It's safe if subsequent LDs and STs float "up" into the critical section,
4474 // but prior LDs and STs within the critical section can't be allowed
4475 // to reorder or float past the ST that releases the lock.
4476 *adr = 0 ;
4477 }
4478
4479 // muxAcquire and muxRelease:
4480 //
4481 // * muxAcquire and muxRelease support a single-word lock-word construct.
4482 // The LSB of the word is set IFF the lock is held.
4483 // The remainder of the word points to the head of a singly-linked list
4484 // of threads blocked on the lock.
4485 //
4486 // * The current implementation of muxAcquire-muxRelease uses its own
4487 // dedicated Thread._MuxEvent instance. If we're interested in
4488 // minimizing the peak number of extant ParkEvent instances then
4489 // we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4490 // as certain invariants were satisfied. Specifically, care would need
4491 // to be taken with regards to consuming unpark() "permits".
4492 // A safe rule of thumb is that a thread would never call muxAcquire()
4493 // if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4494 // park(). Otherwise the _ParkEvent park() operation in muxAcquire() could
4495 // consume an unpark() permit intended for monitorenter, for instance.
4496 // One way around this would be to widen the restricted-range semaphore
4497 // implemented in park(). Another alternative would be to provide
4498 // multiple instances of the PlatformEvent() for each thread. One
4499 // instance would be dedicated to muxAcquire-muxRelease, for instance.
4500 //
4501 // * Usage:
4502 // -- Only as leaf locks
4503 // -- for short-term locking only as muxAcquire does not perform
4504 // thread state transitions.
4505 //
4506 // Alternatives:
4507 // * We could implement muxAcquire and muxRelease with MCS or CLH locks
4508 // but with parking or spin-then-park instead of pure spinning.
4509 // * Use Taura-Oyama-Yonenzawa locks.
4510 // * It's possible to construct a 1-0 lock if we encode the lockword as
4511 // (List,LockByte). Acquire will CAS the full lockword while Release
4512 // will STB 0 into the LockByte. The 1-0 scheme admits stranding, so
4513 // acquiring threads use timers (ParkTimed) to detect and recover from
4514 // the stranding window. Thread/Node structures must be aligned on 256-byte
4515 // boundaries by using placement-new.
4516 // * Augment MCS with advisory back-link fields maintained with CAS().
4517 // Pictorially: LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4518 // The validity of the backlinks must be ratified before we trust the value.
4519 // If the backlinks are invalid the exiting thread must back-track through the
4520 // the forward links, which are always trustworthy.
4521 // * Add a successor indication. The LockWord is currently encoded as
4522 // (List, LOCKBIT:1). We could also add a SUCCBIT or an explicit _succ variable
4523 // to provide the usual futile-wakeup optimization.
4524 // See RTStt for details.
4525 // * Consider schedctl.sc_nopreempt to cover the critical section.
4526 //
4527
4528
4529 typedef volatile intptr_t MutexT ; // Mux Lock-word
4530 enum MuxBits { LOCKBIT = 1 } ;
4531
4532 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4533 intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4534 if (w == 0) return ;
4535 if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4536 return ;
4537 }
4538
4539 TEVENT (muxAcquire - Contention) ;
4540 ParkEvent * const Self = Thread::current()->_MuxEvent ;
4541 assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4542 for (;;) {
4543 int its = (os::is_MP() ? 100 : 0) + 1 ;
4544
4545 // Optional spin phase: spin-then-park strategy
4546 while (--its >= 0) {
4547 w = *Lock ;
4548 if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4549 return ;
4550 }
4551 }
4552
4553 Self->reset() ;
4554 Self->OnList = intptr_t(Lock) ;
4555 // The following fence() isn't _strictly necessary as the subsequent
4556 // CAS() both serializes execution and ratifies the fetched *Lock value.
4557 OrderAccess::fence();
4558 for (;;) {
4559 w = *Lock ;
4560 if ((w & LOCKBIT) == 0) {
4561 if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4562 Self->OnList = 0 ; // hygiene - allows stronger asserts
4563 return ;
4564 }
4565 continue ; // Interference -- *Lock changed -- Just retry
4566 }
4567 assert (w & LOCKBIT, "invariant") ;
4568 Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4569 if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4570 }
4571
4572 while (Self->OnList != 0) {
4573 Self->park() ;
4574 }
4575 }
4576 }
4577
4578 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4579 intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4580 if (w == 0) return ;
4581 if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4582 return ;
4583 }
4584
4585 TEVENT (muxAcquire - Contention) ;
4586 ParkEvent * ReleaseAfter = NULL ;
4587 if (ev == NULL) {
4588 ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4589 }
4590 assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4591 for (;;) {
4592 guarantee (ev->OnList == 0, "invariant") ;
4593 int its = (os::is_MP() ? 100 : 0) + 1 ;
4594
4595 // Optional spin phase: spin-then-park strategy
4596 while (--its >= 0) {
4597 w = *Lock ;
4598 if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4599 if (ReleaseAfter != NULL) {
4600 ParkEvent::Release (ReleaseAfter) ;
4601 }
4602 return ;
4603 }
4604 }
4605
4606 ev->reset() ;
4607 ev->OnList = intptr_t(Lock) ;
4608 // The following fence() isn't _strictly necessary as the subsequent
4609 // CAS() both serializes execution and ratifies the fetched *Lock value.
4610 OrderAccess::fence();
4611 for (;;) {
4612 w = *Lock ;
4613 if ((w & LOCKBIT) == 0) {
4614 if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4615 ev->OnList = 0 ;
4616 // We call ::Release while holding the outer lock, thus
4617 // artificially lengthening the critical section.
4618 // Consider deferring the ::Release() until the subsequent unlock(),
4619 // after we've dropped the outer lock.
4620 if (ReleaseAfter != NULL) {
4621 ParkEvent::Release (ReleaseAfter) ;
4622 }
4623 return ;
4624 }
4625 continue ; // Interference -- *Lock changed -- Just retry
4626 }
4627 assert (w & LOCKBIT, "invariant") ;
4628 ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4629 if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4630 }
4631
4632 while (ev->OnList != 0) {
4633 ev->park() ;
4634 }
4635 }
4636 }
4637
4638 // Release() must extract a successor from the list and then wake that thread.
4639 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4640 // similar to that used by ParkEvent::Allocate() and ::Release(). DMR-based
4641 // Release() would :
4642 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4643 // (B) Extract a successor from the private list "in-hand"
4644 // (C) attempt to CAS() the residual back into *Lock over null.
4645 // If there were any newly arrived threads and the CAS() would fail.
4646 // In that case Release() would detach the RATs, re-merge the list in-hand
4647 // with the RATs and repeat as needed. Alternately, Release() might
4648 // detach and extract a successor, but then pass the residual list to the wakee.
4649 // The wakee would be responsible for reattaching and remerging before it
4650 // competed for the lock.
4651 //
4652 // Both "pop" and DMR are immune from ABA corruption -- there can be
4653 // multiple concurrent pushers, but only one popper or detacher.
4654 // This implementation pops from the head of the list. This is unfair,
4655 // but tends to provide excellent throughput as hot threads remain hot.
4656 // (We wake recently run threads first).
4657
4658 void Thread::muxRelease (volatile intptr_t * Lock) {
4659 for (;;) {
4660 const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4661 assert (w & LOCKBIT, "invariant") ;
4662 if (w == LOCKBIT) return ;
4663 ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4664 assert (List != NULL, "invariant") ;
4665 assert (List->OnList == intptr_t(Lock), "invariant") ;
4666 ParkEvent * nxt = List->ListNext ;
4667
4668 // The following CAS() releases the lock and pops the head element.
4669 if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4670 continue ;
4671 }
4672 List->OnList = 0 ;
4673 OrderAccess::fence() ;
4674 List->unpark () ;
4675 return ;
4676 }
4677 }
4678
4679
4680 void Threads::verify() {
4681 ALL_JAVA_THREADS(p) {
4682 p->verify();
4683 }
4684 VMThread* thread = VMThread::vm_thread();
4685 if (thread != NULL) thread->verify();
4686 }

mercurial