src/share/vm/prims/jvmtiTagMap.cpp

changeset 0
f90c822e73f8
child 6876
710a3c8b516e
equal deleted inserted replaced
-1:000000000000 0:f90c822e73f8
1 /*
2 * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "classfile/symbolTable.hpp"
27 #include "classfile/systemDictionary.hpp"
28 #include "classfile/vmSymbols.hpp"
29 #include "jvmtifiles/jvmtiEnv.hpp"
30 #include "oops/instanceMirrorKlass.hpp"
31 #include "oops/objArrayKlass.hpp"
32 #include "oops/oop.inline2.hpp"
33 #include "prims/jvmtiEventController.hpp"
34 #include "prims/jvmtiEventController.inline.hpp"
35 #include "prims/jvmtiExport.hpp"
36 #include "prims/jvmtiImpl.hpp"
37 #include "prims/jvmtiTagMap.hpp"
38 #include "runtime/biasedLocking.hpp"
39 #include "runtime/javaCalls.hpp"
40 #include "runtime/jniHandles.hpp"
41 #include "runtime/mutex.hpp"
42 #include "runtime/mutexLocker.hpp"
43 #include "runtime/reflectionUtils.hpp"
44 #include "runtime/vframe.hpp"
45 #include "runtime/vmThread.hpp"
46 #include "runtime/vm_operations.hpp"
47 #include "services/serviceUtil.hpp"
48 #include "utilities/macros.hpp"
49 #if INCLUDE_ALL_GCS
50 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
51 #endif // INCLUDE_ALL_GCS
52
53 // JvmtiTagHashmapEntry
54 //
55 // Each entry encapsulates a reference to the tagged object
56 // and the tag value. In addition an entry includes a next pointer which
57 // is used to chain entries together.
58
59 class JvmtiTagHashmapEntry : public CHeapObj<mtInternal> {
60 private:
61 friend class JvmtiTagMap;
62
63 oop _object; // tagged object
64 jlong _tag; // the tag
65 JvmtiTagHashmapEntry* _next; // next on the list
66
67 inline void init(oop object, jlong tag) {
68 _object = object;
69 _tag = tag;
70 _next = NULL;
71 }
72
73 // constructor
74 JvmtiTagHashmapEntry(oop object, jlong tag) { init(object, tag); }
75
76 public:
77
78 // accessor methods
79 inline oop object() const { return _object; }
80 inline oop* object_addr() { return &_object; }
81 inline jlong tag() const { return _tag; }
82
83 inline void set_tag(jlong tag) {
84 assert(tag != 0, "can't be zero");
85 _tag = tag;
86 }
87
88 inline JvmtiTagHashmapEntry* next() const { return _next; }
89 inline void set_next(JvmtiTagHashmapEntry* next) { _next = next; }
90 };
91
92
93 // JvmtiTagHashmap
94 //
95 // A hashmap is essentially a table of pointers to entries. Entries
96 // are hashed to a location, or position in the table, and then
97 // chained from that location. The "key" for hashing is address of
98 // the object, or oop. The "value" is the tag value.
99 //
100 // A hashmap maintains a count of the number entries in the hashmap
101 // and resizes if the number of entries exceeds a given threshold.
102 // The threshold is specified as a percentage of the size - for
103 // example a threshold of 0.75 will trigger the hashmap to resize
104 // if the number of entries is >75% of table size.
105 //
106 // A hashmap provides functions for adding, removing, and finding
107 // entries. It also provides a function to iterate over all entries
108 // in the hashmap.
109
110 class JvmtiTagHashmap : public CHeapObj<mtInternal> {
111 private:
112 friend class JvmtiTagMap;
113
114 enum {
115 small_trace_threshold = 10000, // threshold for tracing
116 medium_trace_threshold = 100000,
117 large_trace_threshold = 1000000,
118 initial_trace_threshold = small_trace_threshold
119 };
120
121 static int _sizes[]; // array of possible hashmap sizes
122 int _size; // actual size of the table
123 int _size_index; // index into size table
124
125 int _entry_count; // number of entries in the hashmap
126
127 float _load_factor; // load factor as a % of the size
128 int _resize_threshold; // computed threshold to trigger resizing.
129 bool _resizing_enabled; // indicates if hashmap can resize
130
131 int _trace_threshold; // threshold for trace messages
132
133 JvmtiTagHashmapEntry** _table; // the table of entries.
134
135 // private accessors
136 int resize_threshold() const { return _resize_threshold; }
137 int trace_threshold() const { return _trace_threshold; }
138
139 // initialize the hashmap
140 void init(int size_index=0, float load_factor=4.0f) {
141 int initial_size = _sizes[size_index];
142 _size_index = size_index;
143 _size = initial_size;
144 _entry_count = 0;
145 if (TraceJVMTIObjectTagging) {
146 _trace_threshold = initial_trace_threshold;
147 } else {
148 _trace_threshold = -1;
149 }
150 _load_factor = load_factor;
151 _resize_threshold = (int)(_load_factor * _size);
152 _resizing_enabled = true;
153 size_t s = initial_size * sizeof(JvmtiTagHashmapEntry*);
154 _table = (JvmtiTagHashmapEntry**)os::malloc(s, mtInternal);
155 if (_table == NULL) {
156 vm_exit_out_of_memory(s, OOM_MALLOC_ERROR,
157 "unable to allocate initial hashtable for jvmti object tags");
158 }
159 for (int i=0; i<initial_size; i++) {
160 _table[i] = NULL;
161 }
162 }
163
164 // hash a given key (oop) with the specified size
165 static unsigned int hash(oop key, int size) {
166 // shift right to get better distribution (as these bits will be zero
167 // with aligned addresses)
168 unsigned int addr = (unsigned int)(cast_from_oop<intptr_t>(key));
169 #ifdef _LP64
170 return (addr >> 3) % size;
171 #else
172 return (addr >> 2) % size;
173 #endif
174 }
175
176 // hash a given key (oop)
177 unsigned int hash(oop key) {
178 return hash(key, _size);
179 }
180
181 // resize the hashmap - allocates a large table and re-hashes
182 // all entries into the new table.
183 void resize() {
184 int new_size_index = _size_index+1;
185 int new_size = _sizes[new_size_index];
186 if (new_size < 0) {
187 // hashmap already at maximum capacity
188 return;
189 }
190
191 // allocate new table
192 size_t s = new_size * sizeof(JvmtiTagHashmapEntry*);
193 JvmtiTagHashmapEntry** new_table = (JvmtiTagHashmapEntry**)os::malloc(s, mtInternal);
194 if (new_table == NULL) {
195 warning("unable to allocate larger hashtable for jvmti object tags");
196 set_resizing_enabled(false);
197 return;
198 }
199
200 // initialize new table
201 int i;
202 for (i=0; i<new_size; i++) {
203 new_table[i] = NULL;
204 }
205
206 // rehash all entries into the new table
207 for (i=0; i<_size; i++) {
208 JvmtiTagHashmapEntry* entry = _table[i];
209 while (entry != NULL) {
210 JvmtiTagHashmapEntry* next = entry->next();
211 oop key = entry->object();
212 assert(key != NULL, "jni weak reference cleared!!");
213 unsigned int h = hash(key, new_size);
214 JvmtiTagHashmapEntry* anchor = new_table[h];
215 if (anchor == NULL) {
216 new_table[h] = entry;
217 entry->set_next(NULL);
218 } else {
219 entry->set_next(anchor);
220 new_table[h] = entry;
221 }
222 entry = next;
223 }
224 }
225
226 // free old table and update settings.
227 os::free((void*)_table);
228 _table = new_table;
229 _size_index = new_size_index;
230 _size = new_size;
231
232 // compute new resize threshold
233 _resize_threshold = (int)(_load_factor * _size);
234 }
235
236
237 // internal remove function - remove an entry at a given position in the
238 // table.
239 inline void remove(JvmtiTagHashmapEntry* prev, int pos, JvmtiTagHashmapEntry* entry) {
240 assert(pos >= 0 && pos < _size, "out of range");
241 if (prev == NULL) {
242 _table[pos] = entry->next();
243 } else {
244 prev->set_next(entry->next());
245 }
246 assert(_entry_count > 0, "checking");
247 _entry_count--;
248 }
249
250 // resizing switch
251 bool is_resizing_enabled() const { return _resizing_enabled; }
252 void set_resizing_enabled(bool enable) { _resizing_enabled = enable; }
253
254 // debugging
255 void print_memory_usage();
256 void compute_next_trace_threshold();
257
258 public:
259
260 // create a JvmtiTagHashmap of a preferred size and optionally a load factor.
261 // The preferred size is rounded down to an actual size.
262 JvmtiTagHashmap(int size, float load_factor=0.0f) {
263 int i=0;
264 while (_sizes[i] < size) {
265 if (_sizes[i] < 0) {
266 assert(i > 0, "sanity check");
267 i--;
268 break;
269 }
270 i++;
271 }
272
273 // if a load factor is specified then use it, otherwise use default
274 if (load_factor > 0.01f) {
275 init(i, load_factor);
276 } else {
277 init(i);
278 }
279 }
280
281 // create a JvmtiTagHashmap with default settings
282 JvmtiTagHashmap() {
283 init();
284 }
285
286 // release table when JvmtiTagHashmap destroyed
287 ~JvmtiTagHashmap() {
288 if (_table != NULL) {
289 os::free((void*)_table);
290 _table = NULL;
291 }
292 }
293
294 // accessors
295 int size() const { return _size; }
296 JvmtiTagHashmapEntry** table() const { return _table; }
297 int entry_count() const { return _entry_count; }
298
299 // find an entry in the hashmap, returns NULL if not found.
300 inline JvmtiTagHashmapEntry* find(oop key) {
301 unsigned int h = hash(key);
302 JvmtiTagHashmapEntry* entry = _table[h];
303 while (entry != NULL) {
304 if (entry->object() == key) {
305 return entry;
306 }
307 entry = entry->next();
308 }
309 return NULL;
310 }
311
312
313 // add a new entry to hashmap
314 inline void add(oop key, JvmtiTagHashmapEntry* entry) {
315 assert(key != NULL, "checking");
316 assert(find(key) == NULL, "duplicate detected");
317 unsigned int h = hash(key);
318 JvmtiTagHashmapEntry* anchor = _table[h];
319 if (anchor == NULL) {
320 _table[h] = entry;
321 entry->set_next(NULL);
322 } else {
323 entry->set_next(anchor);
324 _table[h] = entry;
325 }
326
327 _entry_count++;
328 if (trace_threshold() > 0 && entry_count() >= trace_threshold()) {
329 assert(TraceJVMTIObjectTagging, "should only get here when tracing");
330 print_memory_usage();
331 compute_next_trace_threshold();
332 }
333
334 // if the number of entries exceed the threshold then resize
335 if (entry_count() > resize_threshold() && is_resizing_enabled()) {
336 resize();
337 }
338 }
339
340 // remove an entry with the given key.
341 inline JvmtiTagHashmapEntry* remove(oop key) {
342 unsigned int h = hash(key);
343 JvmtiTagHashmapEntry* entry = _table[h];
344 JvmtiTagHashmapEntry* prev = NULL;
345 while (entry != NULL) {
346 if (key == entry->object()) {
347 break;
348 }
349 prev = entry;
350 entry = entry->next();
351 }
352 if (entry != NULL) {
353 remove(prev, h, entry);
354 }
355 return entry;
356 }
357
358 // iterate over all entries in the hashmap
359 void entry_iterate(JvmtiTagHashmapEntryClosure* closure);
360 };
361
362 // possible hashmap sizes - odd primes that roughly double in size.
363 // To avoid excessive resizing the odd primes from 4801-76831 and
364 // 76831-307261 have been removed. The list must be terminated by -1.
365 int JvmtiTagHashmap::_sizes[] = { 4801, 76831, 307261, 614563, 1228891,
366 2457733, 4915219, 9830479, 19660831, 39321619, 78643219, -1 };
367
368
369 // A supporting class for iterating over all entries in Hashmap
370 class JvmtiTagHashmapEntryClosure {
371 public:
372 virtual void do_entry(JvmtiTagHashmapEntry* entry) = 0;
373 };
374
375
376 // iterate over all entries in the hashmap
377 void JvmtiTagHashmap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) {
378 for (int i=0; i<_size; i++) {
379 JvmtiTagHashmapEntry* entry = _table[i];
380 JvmtiTagHashmapEntry* prev = NULL;
381 while (entry != NULL) {
382 // obtain the next entry before invoking do_entry - this is
383 // necessary because do_entry may remove the entry from the
384 // hashmap.
385 JvmtiTagHashmapEntry* next = entry->next();
386 closure->do_entry(entry);
387 entry = next;
388 }
389 }
390 }
391
392 // debugging
393 void JvmtiTagHashmap::print_memory_usage() {
394 intptr_t p = (intptr_t)this;
395 tty->print("[JvmtiTagHashmap @ " INTPTR_FORMAT, p);
396
397 // table + entries in KB
398 int hashmap_usage = (size()*sizeof(JvmtiTagHashmapEntry*) +
399 entry_count()*sizeof(JvmtiTagHashmapEntry))/K;
400
401 int weak_globals_usage = (int)(JNIHandles::weak_global_handle_memory_usage()/K);
402 tty->print_cr(", %d entries (%d KB) <JNI weak globals: %d KB>]",
403 entry_count(), hashmap_usage, weak_globals_usage);
404 }
405
406 // compute threshold for the next trace message
407 void JvmtiTagHashmap::compute_next_trace_threshold() {
408 if (trace_threshold() < medium_trace_threshold) {
409 _trace_threshold += small_trace_threshold;
410 } else {
411 if (trace_threshold() < large_trace_threshold) {
412 _trace_threshold += medium_trace_threshold;
413 } else {
414 _trace_threshold += large_trace_threshold;
415 }
416 }
417 }
418
419 // create a JvmtiTagMap
420 JvmtiTagMap::JvmtiTagMap(JvmtiEnv* env) :
421 _env(env),
422 _lock(Mutex::nonleaf+2, "JvmtiTagMap._lock", false),
423 _free_entries(NULL),
424 _free_entries_count(0)
425 {
426 assert(JvmtiThreadState_lock->is_locked(), "sanity check");
427 assert(((JvmtiEnvBase *)env)->tag_map() == NULL, "tag map already exists for environment");
428
429 _hashmap = new JvmtiTagHashmap();
430
431 // finally add us to the environment
432 ((JvmtiEnvBase *)env)->set_tag_map(this);
433 }
434
435
436 // destroy a JvmtiTagMap
437 JvmtiTagMap::~JvmtiTagMap() {
438
439 // no lock acquired as we assume the enclosing environment is
440 // also being destroryed.
441 ((JvmtiEnvBase *)_env)->set_tag_map(NULL);
442
443 JvmtiTagHashmapEntry** table = _hashmap->table();
444 for (int j = 0; j < _hashmap->size(); j++) {
445 JvmtiTagHashmapEntry* entry = table[j];
446 while (entry != NULL) {
447 JvmtiTagHashmapEntry* next = entry->next();
448 delete entry;
449 entry = next;
450 }
451 }
452
453 // finally destroy the hashmap
454 delete _hashmap;
455 _hashmap = NULL;
456
457 // remove any entries on the free list
458 JvmtiTagHashmapEntry* entry = _free_entries;
459 while (entry != NULL) {
460 JvmtiTagHashmapEntry* next = entry->next();
461 delete entry;
462 entry = next;
463 }
464 _free_entries = NULL;
465 }
466
467 // create a hashmap entry
468 // - if there's an entry on the (per-environment) free list then this
469 // is returned. Otherwise an new entry is allocated.
470 JvmtiTagHashmapEntry* JvmtiTagMap::create_entry(oop ref, jlong tag) {
471 assert(Thread::current()->is_VM_thread() || is_locked(), "checking");
472 JvmtiTagHashmapEntry* entry;
473 if (_free_entries == NULL) {
474 entry = new JvmtiTagHashmapEntry(ref, tag);
475 } else {
476 assert(_free_entries_count > 0, "mismatched _free_entries_count");
477 _free_entries_count--;
478 entry = _free_entries;
479 _free_entries = entry->next();
480 entry->init(ref, tag);
481 }
482 return entry;
483 }
484
485 // destroy an entry by returning it to the free list
486 void JvmtiTagMap::destroy_entry(JvmtiTagHashmapEntry* entry) {
487 assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
488 // limit the size of the free list
489 if (_free_entries_count >= max_free_entries) {
490 delete entry;
491 } else {
492 entry->set_next(_free_entries);
493 _free_entries = entry;
494 _free_entries_count++;
495 }
496 }
497
498 // returns the tag map for the given environments. If the tag map
499 // doesn't exist then it is created.
500 JvmtiTagMap* JvmtiTagMap::tag_map_for(JvmtiEnv* env) {
501 JvmtiTagMap* tag_map = ((JvmtiEnvBase*)env)->tag_map();
502 if (tag_map == NULL) {
503 MutexLocker mu(JvmtiThreadState_lock);
504 tag_map = ((JvmtiEnvBase*)env)->tag_map();
505 if (tag_map == NULL) {
506 tag_map = new JvmtiTagMap(env);
507 }
508 } else {
509 CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
510 }
511 return tag_map;
512 }
513
514 // iterate over all entries in the tag map.
515 void JvmtiTagMap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) {
516 hashmap()->entry_iterate(closure);
517 }
518
519 // returns true if the hashmaps are empty
520 bool JvmtiTagMap::is_empty() {
521 assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
522 return hashmap()->entry_count() == 0;
523 }
524
525
526 // Return the tag value for an object, or 0 if the object is
527 // not tagged
528 //
529 static inline jlong tag_for(JvmtiTagMap* tag_map, oop o) {
530 JvmtiTagHashmapEntry* entry = tag_map->hashmap()->find(o);
531 if (entry == NULL) {
532 return 0;
533 } else {
534 return entry->tag();
535 }
536 }
537
538
539 // A CallbackWrapper is a support class for querying and tagging an object
540 // around a callback to a profiler. The constructor does pre-callback
541 // work to get the tag value, klass tag value, ... and the destructor
542 // does the post-callback work of tagging or untagging the object.
543 //
544 // {
545 // CallbackWrapper wrapper(tag_map, o);
546 //
547 // (*callback)(wrapper.klass_tag(), wrapper.obj_size(), wrapper.obj_tag_p(), ...)
548 //
549 // } // wrapper goes out of scope here which results in the destructor
550 // checking to see if the object has been tagged, untagged, or the
551 // tag value has changed.
552 //
553 class CallbackWrapper : public StackObj {
554 private:
555 JvmtiTagMap* _tag_map;
556 JvmtiTagHashmap* _hashmap;
557 JvmtiTagHashmapEntry* _entry;
558 oop _o;
559 jlong _obj_size;
560 jlong _obj_tag;
561 jlong _klass_tag;
562
563 protected:
564 JvmtiTagMap* tag_map() const { return _tag_map; }
565
566 // invoked post-callback to tag, untag, or update the tag of an object
567 void inline post_callback_tag_update(oop o, JvmtiTagHashmap* hashmap,
568 JvmtiTagHashmapEntry* entry, jlong obj_tag);
569 public:
570 CallbackWrapper(JvmtiTagMap* tag_map, oop o) {
571 assert(Thread::current()->is_VM_thread() || tag_map->is_locked(),
572 "MT unsafe or must be VM thread");
573
574 // object to tag
575 _o = o;
576
577 // object size
578 _obj_size = (jlong)_o->size() * wordSize;
579
580 // record the context
581 _tag_map = tag_map;
582 _hashmap = tag_map->hashmap();
583 _entry = _hashmap->find(_o);
584
585 // get object tag
586 _obj_tag = (_entry == NULL) ? 0 : _entry->tag();
587
588 // get the class and the class's tag value
589 assert(SystemDictionary::Class_klass()->oop_is_instanceMirror(), "Is not?");
590
591 _klass_tag = tag_for(tag_map, _o->klass()->java_mirror());
592 }
593
594 ~CallbackWrapper() {
595 post_callback_tag_update(_o, _hashmap, _entry, _obj_tag);
596 }
597
598 inline jlong* obj_tag_p() { return &_obj_tag; }
599 inline jlong obj_size() const { return _obj_size; }
600 inline jlong obj_tag() const { return _obj_tag; }
601 inline jlong klass_tag() const { return _klass_tag; }
602 };
603
604
605
606 // callback post-callback to tag, untag, or update the tag of an object
607 void inline CallbackWrapper::post_callback_tag_update(oop o,
608 JvmtiTagHashmap* hashmap,
609 JvmtiTagHashmapEntry* entry,
610 jlong obj_tag) {
611 if (entry == NULL) {
612 if (obj_tag != 0) {
613 // callback has tagged the object
614 assert(Thread::current()->is_VM_thread(), "must be VMThread");
615 entry = tag_map()->create_entry(o, obj_tag);
616 hashmap->add(o, entry);
617 }
618 } else {
619 // object was previously tagged - the callback may have untagged
620 // the object or changed the tag value
621 if (obj_tag == 0) {
622
623 JvmtiTagHashmapEntry* entry_removed = hashmap->remove(o);
624 assert(entry_removed == entry, "checking");
625 tag_map()->destroy_entry(entry);
626
627 } else {
628 if (obj_tag != entry->tag()) {
629 entry->set_tag(obj_tag);
630 }
631 }
632 }
633 }
634
635 // An extended CallbackWrapper used when reporting an object reference
636 // to the agent.
637 //
638 // {
639 // TwoOopCallbackWrapper wrapper(tag_map, referrer, o);
640 //
641 // (*callback)(wrapper.klass_tag(),
642 // wrapper.obj_size(),
643 // wrapper.obj_tag_p()
644 // wrapper.referrer_tag_p(), ...)
645 //
646 // } // wrapper goes out of scope here which results in the destructor
647 // checking to see if the referrer object has been tagged, untagged,
648 // or the tag value has changed.
649 //
650 class TwoOopCallbackWrapper : public CallbackWrapper {
651 private:
652 bool _is_reference_to_self;
653 JvmtiTagHashmap* _referrer_hashmap;
654 JvmtiTagHashmapEntry* _referrer_entry;
655 oop _referrer;
656 jlong _referrer_obj_tag;
657 jlong _referrer_klass_tag;
658 jlong* _referrer_tag_p;
659
660 bool is_reference_to_self() const { return _is_reference_to_self; }
661
662 public:
663 TwoOopCallbackWrapper(JvmtiTagMap* tag_map, oop referrer, oop o) :
664 CallbackWrapper(tag_map, o)
665 {
666 // self reference needs to be handled in a special way
667 _is_reference_to_self = (referrer == o);
668
669 if (_is_reference_to_self) {
670 _referrer_klass_tag = klass_tag();
671 _referrer_tag_p = obj_tag_p();
672 } else {
673 _referrer = referrer;
674 // record the context
675 _referrer_hashmap = tag_map->hashmap();
676 _referrer_entry = _referrer_hashmap->find(_referrer);
677
678 // get object tag
679 _referrer_obj_tag = (_referrer_entry == NULL) ? 0 : _referrer_entry->tag();
680 _referrer_tag_p = &_referrer_obj_tag;
681
682 // get referrer class tag.
683 _referrer_klass_tag = tag_for(tag_map, _referrer->klass()->java_mirror());
684 }
685 }
686
687 ~TwoOopCallbackWrapper() {
688 if (!is_reference_to_self()){
689 post_callback_tag_update(_referrer,
690 _referrer_hashmap,
691 _referrer_entry,
692 _referrer_obj_tag);
693 }
694 }
695
696 // address of referrer tag
697 // (for a self reference this will return the same thing as obj_tag_p())
698 inline jlong* referrer_tag_p() { return _referrer_tag_p; }
699
700 // referrer's class tag
701 inline jlong referrer_klass_tag() { return _referrer_klass_tag; }
702 };
703
704 // tag an object
705 //
706 // This function is performance critical. If many threads attempt to tag objects
707 // around the same time then it's possible that the Mutex associated with the
708 // tag map will be a hot lock.
709 void JvmtiTagMap::set_tag(jobject object, jlong tag) {
710 MutexLocker ml(lock());
711
712 // resolve the object
713 oop o = JNIHandles::resolve_non_null(object);
714
715 // see if the object is already tagged
716 JvmtiTagHashmap* hashmap = _hashmap;
717 JvmtiTagHashmapEntry* entry = hashmap->find(o);
718
719 // if the object is not already tagged then we tag it
720 if (entry == NULL) {
721 if (tag != 0) {
722 entry = create_entry(o, tag);
723 hashmap->add(o, entry);
724 } else {
725 // no-op
726 }
727 } else {
728 // if the object is already tagged then we either update
729 // the tag (if a new tag value has been provided)
730 // or remove the object if the new tag value is 0.
731 if (tag == 0) {
732 hashmap->remove(o);
733 destroy_entry(entry);
734 } else {
735 entry->set_tag(tag);
736 }
737 }
738 }
739
740 // get the tag for an object
741 jlong JvmtiTagMap::get_tag(jobject object) {
742 MutexLocker ml(lock());
743
744 // resolve the object
745 oop o = JNIHandles::resolve_non_null(object);
746
747 return tag_for(this, o);
748 }
749
750
751 // Helper class used to describe the static or instance fields of a class.
752 // For each field it holds the field index (as defined by the JVMTI specification),
753 // the field type, and the offset.
754
755 class ClassFieldDescriptor: public CHeapObj<mtInternal> {
756 private:
757 int _field_index;
758 int _field_offset;
759 char _field_type;
760 public:
761 ClassFieldDescriptor(int index, char type, int offset) :
762 _field_index(index), _field_type(type), _field_offset(offset) {
763 }
764 int field_index() const { return _field_index; }
765 char field_type() const { return _field_type; }
766 int field_offset() const { return _field_offset; }
767 };
768
769 class ClassFieldMap: public CHeapObj<mtInternal> {
770 private:
771 enum {
772 initial_field_count = 5
773 };
774
775 // list of field descriptors
776 GrowableArray<ClassFieldDescriptor*>* _fields;
777
778 // constructor
779 ClassFieldMap();
780
781 // add a field
782 void add(int index, char type, int offset);
783
784 // returns the field count for the given class
785 static int compute_field_count(instanceKlassHandle ikh);
786
787 public:
788 ~ClassFieldMap();
789
790 // access
791 int field_count() { return _fields->length(); }
792 ClassFieldDescriptor* field_at(int i) { return _fields->at(i); }
793
794 // functions to create maps of static or instance fields
795 static ClassFieldMap* create_map_of_static_fields(Klass* k);
796 static ClassFieldMap* create_map_of_instance_fields(oop obj);
797 };
798
799 ClassFieldMap::ClassFieldMap() {
800 _fields = new (ResourceObj::C_HEAP, mtInternal)
801 GrowableArray<ClassFieldDescriptor*>(initial_field_count, true);
802 }
803
804 ClassFieldMap::~ClassFieldMap() {
805 for (int i=0; i<_fields->length(); i++) {
806 delete _fields->at(i);
807 }
808 delete _fields;
809 }
810
811 void ClassFieldMap::add(int index, char type, int offset) {
812 ClassFieldDescriptor* field = new ClassFieldDescriptor(index, type, offset);
813 _fields->append(field);
814 }
815
816 // Returns a heap allocated ClassFieldMap to describe the static fields
817 // of the given class.
818 //
819 ClassFieldMap* ClassFieldMap::create_map_of_static_fields(Klass* k) {
820 HandleMark hm;
821 instanceKlassHandle ikh = instanceKlassHandle(Thread::current(), k);
822
823 // create the field map
824 ClassFieldMap* field_map = new ClassFieldMap();
825
826 FilteredFieldStream f(ikh, false, false);
827 int max_field_index = f.field_count()-1;
828
829 int index = 0;
830 for (FilteredFieldStream fld(ikh, true, true); !fld.eos(); fld.next(), index++) {
831 // ignore instance fields
832 if (!fld.access_flags().is_static()) {
833 continue;
834 }
835 field_map->add(max_field_index - index, fld.signature()->byte_at(0), fld.offset());
836 }
837 return field_map;
838 }
839
840 // Returns a heap allocated ClassFieldMap to describe the instance fields
841 // of the given class. All instance fields are included (this means public
842 // and private fields declared in superclasses and superinterfaces too).
843 //
844 ClassFieldMap* ClassFieldMap::create_map_of_instance_fields(oop obj) {
845 HandleMark hm;
846 instanceKlassHandle ikh = instanceKlassHandle(Thread::current(), obj->klass());
847
848 // create the field map
849 ClassFieldMap* field_map = new ClassFieldMap();
850
851 FilteredFieldStream f(ikh, false, false);
852
853 int max_field_index = f.field_count()-1;
854
855 int index = 0;
856 for (FilteredFieldStream fld(ikh, false, false); !fld.eos(); fld.next(), index++) {
857 // ignore static fields
858 if (fld.access_flags().is_static()) {
859 continue;
860 }
861 field_map->add(max_field_index - index, fld.signature()->byte_at(0), fld.offset());
862 }
863
864 return field_map;
865 }
866
867 // Helper class used to cache a ClassFileMap for the instance fields of
868 // a cache. A JvmtiCachedClassFieldMap can be cached by an InstanceKlass during
869 // heap iteration and avoid creating a field map for each object in the heap
870 // (only need to create the map when the first instance of a class is encountered).
871 //
872 class JvmtiCachedClassFieldMap : public CHeapObj<mtInternal> {
873 private:
874 enum {
875 initial_class_count = 200
876 };
877 ClassFieldMap* _field_map;
878
879 ClassFieldMap* field_map() const { return _field_map; }
880
881 JvmtiCachedClassFieldMap(ClassFieldMap* field_map);
882 ~JvmtiCachedClassFieldMap();
883
884 static GrowableArray<InstanceKlass*>* _class_list;
885 static void add_to_class_list(InstanceKlass* ik);
886
887 public:
888 // returns the field map for a given object (returning map cached
889 // by InstanceKlass if possible
890 static ClassFieldMap* get_map_of_instance_fields(oop obj);
891
892 // removes the field map from all instanceKlasses - should be
893 // called before VM operation completes
894 static void clear_cache();
895
896 // returns the number of ClassFieldMap cached by instanceKlasses
897 static int cached_field_map_count();
898 };
899
900 GrowableArray<InstanceKlass*>* JvmtiCachedClassFieldMap::_class_list;
901
902 JvmtiCachedClassFieldMap::JvmtiCachedClassFieldMap(ClassFieldMap* field_map) {
903 _field_map = field_map;
904 }
905
906 JvmtiCachedClassFieldMap::~JvmtiCachedClassFieldMap() {
907 if (_field_map != NULL) {
908 delete _field_map;
909 }
910 }
911
912 // Marker class to ensure that the class file map cache is only used in a defined
913 // scope.
914 class ClassFieldMapCacheMark : public StackObj {
915 private:
916 static bool _is_active;
917 public:
918 ClassFieldMapCacheMark() {
919 assert(Thread::current()->is_VM_thread(), "must be VMThread");
920 assert(JvmtiCachedClassFieldMap::cached_field_map_count() == 0, "cache not empty");
921 assert(!_is_active, "ClassFieldMapCacheMark cannot be nested");
922 _is_active = true;
923 }
924 ~ClassFieldMapCacheMark() {
925 JvmtiCachedClassFieldMap::clear_cache();
926 _is_active = false;
927 }
928 static bool is_active() { return _is_active; }
929 };
930
931 bool ClassFieldMapCacheMark::_is_active;
932
933
934 // record that the given InstanceKlass is caching a field map
935 void JvmtiCachedClassFieldMap::add_to_class_list(InstanceKlass* ik) {
936 if (_class_list == NULL) {
937 _class_list = new (ResourceObj::C_HEAP, mtInternal)
938 GrowableArray<InstanceKlass*>(initial_class_count, true);
939 }
940 _class_list->push(ik);
941 }
942
943 // returns the instance field map for the given object
944 // (returns field map cached by the InstanceKlass if possible)
945 ClassFieldMap* JvmtiCachedClassFieldMap::get_map_of_instance_fields(oop obj) {
946 assert(Thread::current()->is_VM_thread(), "must be VMThread");
947 assert(ClassFieldMapCacheMark::is_active(), "ClassFieldMapCacheMark not active");
948
949 Klass* k = obj->klass();
950 InstanceKlass* ik = InstanceKlass::cast(k);
951
952 // return cached map if possible
953 JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
954 if (cached_map != NULL) {
955 assert(cached_map->field_map() != NULL, "missing field list");
956 return cached_map->field_map();
957 } else {
958 ClassFieldMap* field_map = ClassFieldMap::create_map_of_instance_fields(obj);
959 cached_map = new JvmtiCachedClassFieldMap(field_map);
960 ik->set_jvmti_cached_class_field_map(cached_map);
961 add_to_class_list(ik);
962 return field_map;
963 }
964 }
965
966 // remove the fields maps cached from all instanceKlasses
967 void JvmtiCachedClassFieldMap::clear_cache() {
968 assert(Thread::current()->is_VM_thread(), "must be VMThread");
969 if (_class_list != NULL) {
970 for (int i = 0; i < _class_list->length(); i++) {
971 InstanceKlass* ik = _class_list->at(i);
972 JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
973 assert(cached_map != NULL, "should not be NULL");
974 ik->set_jvmti_cached_class_field_map(NULL);
975 delete cached_map; // deletes the encapsulated field map
976 }
977 delete _class_list;
978 _class_list = NULL;
979 }
980 }
981
982 // returns the number of ClassFieldMap cached by instanceKlasses
983 int JvmtiCachedClassFieldMap::cached_field_map_count() {
984 return (_class_list == NULL) ? 0 : _class_list->length();
985 }
986
987 // helper function to indicate if an object is filtered by its tag or class tag
988 static inline bool is_filtered_by_heap_filter(jlong obj_tag,
989 jlong klass_tag,
990 int heap_filter) {
991 // apply the heap filter
992 if (obj_tag != 0) {
993 // filter out tagged objects
994 if (heap_filter & JVMTI_HEAP_FILTER_TAGGED) return true;
995 } else {
996 // filter out untagged objects
997 if (heap_filter & JVMTI_HEAP_FILTER_UNTAGGED) return true;
998 }
999 if (klass_tag != 0) {
1000 // filter out objects with tagged classes
1001 if (heap_filter & JVMTI_HEAP_FILTER_CLASS_TAGGED) return true;
1002 } else {
1003 // filter out objects with untagged classes.
1004 if (heap_filter & JVMTI_HEAP_FILTER_CLASS_UNTAGGED) return true;
1005 }
1006 return false;
1007 }
1008
1009 // helper function to indicate if an object is filtered by a klass filter
1010 static inline bool is_filtered_by_klass_filter(oop obj, KlassHandle klass_filter) {
1011 if (!klass_filter.is_null()) {
1012 if (obj->klass() != klass_filter()) {
1013 return true;
1014 }
1015 }
1016 return false;
1017 }
1018
1019 // helper function to tell if a field is a primitive field or not
1020 static inline bool is_primitive_field_type(char type) {
1021 return (type != 'L' && type != '[');
1022 }
1023
1024 // helper function to copy the value from location addr to jvalue.
1025 static inline void copy_to_jvalue(jvalue *v, address addr, jvmtiPrimitiveType value_type) {
1026 switch (value_type) {
1027 case JVMTI_PRIMITIVE_TYPE_BOOLEAN : { v->z = *(jboolean*)addr; break; }
1028 case JVMTI_PRIMITIVE_TYPE_BYTE : { v->b = *(jbyte*)addr; break; }
1029 case JVMTI_PRIMITIVE_TYPE_CHAR : { v->c = *(jchar*)addr; break; }
1030 case JVMTI_PRIMITIVE_TYPE_SHORT : { v->s = *(jshort*)addr; break; }
1031 case JVMTI_PRIMITIVE_TYPE_INT : { v->i = *(jint*)addr; break; }
1032 case JVMTI_PRIMITIVE_TYPE_LONG : { v->j = *(jlong*)addr; break; }
1033 case JVMTI_PRIMITIVE_TYPE_FLOAT : { v->f = *(jfloat*)addr; break; }
1034 case JVMTI_PRIMITIVE_TYPE_DOUBLE : { v->d = *(jdouble*)addr; break; }
1035 default: ShouldNotReachHere();
1036 }
1037 }
1038
1039 // helper function to invoke string primitive value callback
1040 // returns visit control flags
1041 static jint invoke_string_value_callback(jvmtiStringPrimitiveValueCallback cb,
1042 CallbackWrapper* wrapper,
1043 oop str,
1044 void* user_data)
1045 {
1046 assert(str->klass() == SystemDictionary::String_klass(), "not a string");
1047
1048 // get the string value and length
1049 // (string value may be offset from the base)
1050 int s_len = java_lang_String::length(str);
1051 typeArrayOop s_value = java_lang_String::value(str);
1052 int s_offset = java_lang_String::offset(str);
1053 jchar* value;
1054 if (s_len > 0) {
1055 value = s_value->char_at_addr(s_offset);
1056 } else {
1057 value = (jchar*) s_value->base(T_CHAR);
1058 }
1059
1060 // invoke the callback
1061 return (*cb)(wrapper->klass_tag(),
1062 wrapper->obj_size(),
1063 wrapper->obj_tag_p(),
1064 value,
1065 (jint)s_len,
1066 user_data);
1067 }
1068
1069 // helper function to invoke string primitive value callback
1070 // returns visit control flags
1071 static jint invoke_array_primitive_value_callback(jvmtiArrayPrimitiveValueCallback cb,
1072 CallbackWrapper* wrapper,
1073 oop obj,
1074 void* user_data)
1075 {
1076 assert(obj->is_typeArray(), "not a primitive array");
1077
1078 // get base address of first element
1079 typeArrayOop array = typeArrayOop(obj);
1080 BasicType type = TypeArrayKlass::cast(array->klass())->element_type();
1081 void* elements = array->base(type);
1082
1083 // jvmtiPrimitiveType is defined so this mapping is always correct
1084 jvmtiPrimitiveType elem_type = (jvmtiPrimitiveType)type2char(type);
1085
1086 return (*cb)(wrapper->klass_tag(),
1087 wrapper->obj_size(),
1088 wrapper->obj_tag_p(),
1089 (jint)array->length(),
1090 elem_type,
1091 elements,
1092 user_data);
1093 }
1094
1095 // helper function to invoke the primitive field callback for all static fields
1096 // of a given class
1097 static jint invoke_primitive_field_callback_for_static_fields
1098 (CallbackWrapper* wrapper,
1099 oop obj,
1100 jvmtiPrimitiveFieldCallback cb,
1101 void* user_data)
1102 {
1103 // for static fields only the index will be set
1104 static jvmtiHeapReferenceInfo reference_info = { 0 };
1105
1106 assert(obj->klass() == SystemDictionary::Class_klass(), "not a class");
1107 if (java_lang_Class::is_primitive(obj)) {
1108 return 0;
1109 }
1110 Klass* klass = java_lang_Class::as_Klass(obj);
1111
1112 // ignore classes for object and type arrays
1113 if (!klass->oop_is_instance()) {
1114 return 0;
1115 }
1116
1117 // ignore classes which aren't linked yet
1118 InstanceKlass* ik = InstanceKlass::cast(klass);
1119 if (!ik->is_linked()) {
1120 return 0;
1121 }
1122
1123 // get the field map
1124 ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(klass);
1125
1126 // invoke the callback for each static primitive field
1127 for (int i=0; i<field_map->field_count(); i++) {
1128 ClassFieldDescriptor* field = field_map->field_at(i);
1129
1130 // ignore non-primitive fields
1131 char type = field->field_type();
1132 if (!is_primitive_field_type(type)) {
1133 continue;
1134 }
1135 // one-to-one mapping
1136 jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
1137
1138 // get offset and field value
1139 int offset = field->field_offset();
1140 address addr = (address)klass->java_mirror() + offset;
1141 jvalue value;
1142 copy_to_jvalue(&value, addr, value_type);
1143
1144 // field index
1145 reference_info.field.index = field->field_index();
1146
1147 // invoke the callback
1148 jint res = (*cb)(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
1149 &reference_info,
1150 wrapper->klass_tag(),
1151 wrapper->obj_tag_p(),
1152 value,
1153 value_type,
1154 user_data);
1155 if (res & JVMTI_VISIT_ABORT) {
1156 delete field_map;
1157 return res;
1158 }
1159 }
1160
1161 delete field_map;
1162 return 0;
1163 }
1164
1165 // helper function to invoke the primitive field callback for all instance fields
1166 // of a given object
1167 static jint invoke_primitive_field_callback_for_instance_fields(
1168 CallbackWrapper* wrapper,
1169 oop obj,
1170 jvmtiPrimitiveFieldCallback cb,
1171 void* user_data)
1172 {
1173 // for instance fields only the index will be set
1174 static jvmtiHeapReferenceInfo reference_info = { 0 };
1175
1176 // get the map of the instance fields
1177 ClassFieldMap* fields = JvmtiCachedClassFieldMap::get_map_of_instance_fields(obj);
1178
1179 // invoke the callback for each instance primitive field
1180 for (int i=0; i<fields->field_count(); i++) {
1181 ClassFieldDescriptor* field = fields->field_at(i);
1182
1183 // ignore non-primitive fields
1184 char type = field->field_type();
1185 if (!is_primitive_field_type(type)) {
1186 continue;
1187 }
1188 // one-to-one mapping
1189 jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
1190
1191 // get offset and field value
1192 int offset = field->field_offset();
1193 address addr = (address)obj + offset;
1194 jvalue value;
1195 copy_to_jvalue(&value, addr, value_type);
1196
1197 // field index
1198 reference_info.field.index = field->field_index();
1199
1200 // invoke the callback
1201 jint res = (*cb)(JVMTI_HEAP_REFERENCE_FIELD,
1202 &reference_info,
1203 wrapper->klass_tag(),
1204 wrapper->obj_tag_p(),
1205 value,
1206 value_type,
1207 user_data);
1208 if (res & JVMTI_VISIT_ABORT) {
1209 return res;
1210 }
1211 }
1212 return 0;
1213 }
1214
1215
1216 // VM operation to iterate over all objects in the heap (both reachable
1217 // and unreachable)
1218 class VM_HeapIterateOperation: public VM_Operation {
1219 private:
1220 ObjectClosure* _blk;
1221 public:
1222 VM_HeapIterateOperation(ObjectClosure* blk) { _blk = blk; }
1223
1224 VMOp_Type type() const { return VMOp_HeapIterateOperation; }
1225 void doit() {
1226 // allows class files maps to be cached during iteration
1227 ClassFieldMapCacheMark cm;
1228
1229 // make sure that heap is parsable (fills TLABs with filler objects)
1230 Universe::heap()->ensure_parsability(false); // no need to retire TLABs
1231
1232 // Verify heap before iteration - if the heap gets corrupted then
1233 // JVMTI's IterateOverHeap will crash.
1234 if (VerifyBeforeIteration) {
1235 Universe::verify();
1236 }
1237
1238 // do the iteration
1239 // If this operation encounters a bad object when using CMS,
1240 // consider using safe_object_iterate() which avoids perm gen
1241 // objects that may contain bad references.
1242 Universe::heap()->object_iterate(_blk);
1243 }
1244
1245 };
1246
1247
1248 // An ObjectClosure used to support the deprecated IterateOverHeap and
1249 // IterateOverInstancesOfClass functions
1250 class IterateOverHeapObjectClosure: public ObjectClosure {
1251 private:
1252 JvmtiTagMap* _tag_map;
1253 KlassHandle _klass;
1254 jvmtiHeapObjectFilter _object_filter;
1255 jvmtiHeapObjectCallback _heap_object_callback;
1256 const void* _user_data;
1257
1258 // accessors
1259 JvmtiTagMap* tag_map() const { return _tag_map; }
1260 jvmtiHeapObjectFilter object_filter() const { return _object_filter; }
1261 jvmtiHeapObjectCallback object_callback() const { return _heap_object_callback; }
1262 KlassHandle klass() const { return _klass; }
1263 const void* user_data() const { return _user_data; }
1264
1265 // indicates if iteration has been aborted
1266 bool _iteration_aborted;
1267 bool is_iteration_aborted() const { return _iteration_aborted; }
1268 void set_iteration_aborted(bool aborted) { _iteration_aborted = aborted; }
1269
1270 public:
1271 IterateOverHeapObjectClosure(JvmtiTagMap* tag_map,
1272 KlassHandle klass,
1273 jvmtiHeapObjectFilter object_filter,
1274 jvmtiHeapObjectCallback heap_object_callback,
1275 const void* user_data) :
1276 _tag_map(tag_map),
1277 _klass(klass),
1278 _object_filter(object_filter),
1279 _heap_object_callback(heap_object_callback),
1280 _user_data(user_data),
1281 _iteration_aborted(false)
1282 {
1283 }
1284
1285 void do_object(oop o);
1286 };
1287
1288 // invoked for each object in the heap
1289 void IterateOverHeapObjectClosure::do_object(oop o) {
1290 // check if iteration has been halted
1291 if (is_iteration_aborted()) return;
1292
1293 // ignore any objects that aren't visible to profiler
1294 if (!ServiceUtil::visible_oop(o)) return;
1295
1296 // instanceof check when filtering by klass
1297 if (!klass().is_null() && !o->is_a(klass()())) {
1298 return;
1299 }
1300 // prepare for the calllback
1301 CallbackWrapper wrapper(tag_map(), o);
1302
1303 // if the object is tagged and we're only interested in untagged objects
1304 // then don't invoke the callback. Similiarly, if the object is untagged
1305 // and we're only interested in tagged objects we skip the callback.
1306 if (wrapper.obj_tag() != 0) {
1307 if (object_filter() == JVMTI_HEAP_OBJECT_UNTAGGED) return;
1308 } else {
1309 if (object_filter() == JVMTI_HEAP_OBJECT_TAGGED) return;
1310 }
1311
1312 // invoke the agent's callback
1313 jvmtiIterationControl control = (*object_callback())(wrapper.klass_tag(),
1314 wrapper.obj_size(),
1315 wrapper.obj_tag_p(),
1316 (void*)user_data());
1317 if (control == JVMTI_ITERATION_ABORT) {
1318 set_iteration_aborted(true);
1319 }
1320 }
1321
1322 // An ObjectClosure used to support the IterateThroughHeap function
1323 class IterateThroughHeapObjectClosure: public ObjectClosure {
1324 private:
1325 JvmtiTagMap* _tag_map;
1326 KlassHandle _klass;
1327 int _heap_filter;
1328 const jvmtiHeapCallbacks* _callbacks;
1329 const void* _user_data;
1330
1331 // accessor functions
1332 JvmtiTagMap* tag_map() const { return _tag_map; }
1333 int heap_filter() const { return _heap_filter; }
1334 const jvmtiHeapCallbacks* callbacks() const { return _callbacks; }
1335 KlassHandle klass() const { return _klass; }
1336 const void* user_data() const { return _user_data; }
1337
1338 // indicates if the iteration has been aborted
1339 bool _iteration_aborted;
1340 bool is_iteration_aborted() const { return _iteration_aborted; }
1341
1342 // used to check the visit control flags. If the abort flag is set
1343 // then we set the iteration aborted flag so that the iteration completes
1344 // without processing any further objects
1345 bool check_flags_for_abort(jint flags) {
1346 bool is_abort = (flags & JVMTI_VISIT_ABORT) != 0;
1347 if (is_abort) {
1348 _iteration_aborted = true;
1349 }
1350 return is_abort;
1351 }
1352
1353 public:
1354 IterateThroughHeapObjectClosure(JvmtiTagMap* tag_map,
1355 KlassHandle klass,
1356 int heap_filter,
1357 const jvmtiHeapCallbacks* heap_callbacks,
1358 const void* user_data) :
1359 _tag_map(tag_map),
1360 _klass(klass),
1361 _heap_filter(heap_filter),
1362 _callbacks(heap_callbacks),
1363 _user_data(user_data),
1364 _iteration_aborted(false)
1365 {
1366 }
1367
1368 void do_object(oop o);
1369 };
1370
1371 // invoked for each object in the heap
1372 void IterateThroughHeapObjectClosure::do_object(oop obj) {
1373 // check if iteration has been halted
1374 if (is_iteration_aborted()) return;
1375
1376 // ignore any objects that aren't visible to profiler
1377 if (!ServiceUtil::visible_oop(obj)) return;
1378
1379 // apply class filter
1380 if (is_filtered_by_klass_filter(obj, klass())) return;
1381
1382 // prepare for callback
1383 CallbackWrapper wrapper(tag_map(), obj);
1384
1385 // check if filtered by the heap filter
1386 if (is_filtered_by_heap_filter(wrapper.obj_tag(), wrapper.klass_tag(), heap_filter())) {
1387 return;
1388 }
1389
1390 // for arrays we need the length, otherwise -1
1391 bool is_array = obj->is_array();
1392 int len = is_array ? arrayOop(obj)->length() : -1;
1393
1394 // invoke the object callback (if callback is provided)
1395 if (callbacks()->heap_iteration_callback != NULL) {
1396 jvmtiHeapIterationCallback cb = callbacks()->heap_iteration_callback;
1397 jint res = (*cb)(wrapper.klass_tag(),
1398 wrapper.obj_size(),
1399 wrapper.obj_tag_p(),
1400 (jint)len,
1401 (void*)user_data());
1402 if (check_flags_for_abort(res)) return;
1403 }
1404
1405 // for objects and classes we report primitive fields if callback provided
1406 if (callbacks()->primitive_field_callback != NULL && obj->is_instance()) {
1407 jint res;
1408 jvmtiPrimitiveFieldCallback cb = callbacks()->primitive_field_callback;
1409 if (obj->klass() == SystemDictionary::Class_klass()) {
1410 res = invoke_primitive_field_callback_for_static_fields(&wrapper,
1411 obj,
1412 cb,
1413 (void*)user_data());
1414 } else {
1415 res = invoke_primitive_field_callback_for_instance_fields(&wrapper,
1416 obj,
1417 cb,
1418 (void*)user_data());
1419 }
1420 if (check_flags_for_abort(res)) return;
1421 }
1422
1423 // string callback
1424 if (!is_array &&
1425 callbacks()->string_primitive_value_callback != NULL &&
1426 obj->klass() == SystemDictionary::String_klass()) {
1427 jint res = invoke_string_value_callback(
1428 callbacks()->string_primitive_value_callback,
1429 &wrapper,
1430 obj,
1431 (void*)user_data() );
1432 if (check_flags_for_abort(res)) return;
1433 }
1434
1435 // array callback
1436 if (is_array &&
1437 callbacks()->array_primitive_value_callback != NULL &&
1438 obj->is_typeArray()) {
1439 jint res = invoke_array_primitive_value_callback(
1440 callbacks()->array_primitive_value_callback,
1441 &wrapper,
1442 obj,
1443 (void*)user_data() );
1444 if (check_flags_for_abort(res)) return;
1445 }
1446 };
1447
1448
1449 // Deprecated function to iterate over all objects in the heap
1450 void JvmtiTagMap::iterate_over_heap(jvmtiHeapObjectFilter object_filter,
1451 KlassHandle klass,
1452 jvmtiHeapObjectCallback heap_object_callback,
1453 const void* user_data)
1454 {
1455 MutexLocker ml(Heap_lock);
1456 IterateOverHeapObjectClosure blk(this,
1457 klass,
1458 object_filter,
1459 heap_object_callback,
1460 user_data);
1461 VM_HeapIterateOperation op(&blk);
1462 VMThread::execute(&op);
1463 }
1464
1465
1466 // Iterates over all objects in the heap
1467 void JvmtiTagMap::iterate_through_heap(jint heap_filter,
1468 KlassHandle klass,
1469 const jvmtiHeapCallbacks* callbacks,
1470 const void* user_data)
1471 {
1472 MutexLocker ml(Heap_lock);
1473 IterateThroughHeapObjectClosure blk(this,
1474 klass,
1475 heap_filter,
1476 callbacks,
1477 user_data);
1478 VM_HeapIterateOperation op(&blk);
1479 VMThread::execute(&op);
1480 }
1481
1482 // support class for get_objects_with_tags
1483
1484 class TagObjectCollector : public JvmtiTagHashmapEntryClosure {
1485 private:
1486 JvmtiEnv* _env;
1487 jlong* _tags;
1488 jint _tag_count;
1489
1490 GrowableArray<jobject>* _object_results; // collected objects (JNI weak refs)
1491 GrowableArray<uint64_t>* _tag_results; // collected tags
1492
1493 public:
1494 TagObjectCollector(JvmtiEnv* env, const jlong* tags, jint tag_count) {
1495 _env = env;
1496 _tags = (jlong*)tags;
1497 _tag_count = tag_count;
1498 _object_results = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<jobject>(1,true);
1499 _tag_results = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<uint64_t>(1,true);
1500 }
1501
1502 ~TagObjectCollector() {
1503 delete _object_results;
1504 delete _tag_results;
1505 }
1506
1507 // for each tagged object check if the tag value matches
1508 // - if it matches then we create a JNI local reference to the object
1509 // and record the reference and tag value.
1510 //
1511 void do_entry(JvmtiTagHashmapEntry* entry) {
1512 for (int i=0; i<_tag_count; i++) {
1513 if (_tags[i] == entry->tag()) {
1514 oop o = entry->object();
1515 assert(o != NULL && Universe::heap()->is_in_reserved(o), "sanity check");
1516 jobject ref = JNIHandles::make_local(JavaThread::current(), o);
1517 _object_results->append(ref);
1518 _tag_results->append((uint64_t)entry->tag());
1519 }
1520 }
1521 }
1522
1523 // return the results from the collection
1524 //
1525 jvmtiError result(jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
1526 jvmtiError error;
1527 int count = _object_results->length();
1528 assert(count >= 0, "sanity check");
1529
1530 // if object_result_ptr is not NULL then allocate the result and copy
1531 // in the object references.
1532 if (object_result_ptr != NULL) {
1533 error = _env->Allocate(count * sizeof(jobject), (unsigned char**)object_result_ptr);
1534 if (error != JVMTI_ERROR_NONE) {
1535 return error;
1536 }
1537 for (int i=0; i<count; i++) {
1538 (*object_result_ptr)[i] = _object_results->at(i);
1539 }
1540 }
1541
1542 // if tag_result_ptr is not NULL then allocate the result and copy
1543 // in the tag values.
1544 if (tag_result_ptr != NULL) {
1545 error = _env->Allocate(count * sizeof(jlong), (unsigned char**)tag_result_ptr);
1546 if (error != JVMTI_ERROR_NONE) {
1547 if (object_result_ptr != NULL) {
1548 _env->Deallocate((unsigned char*)object_result_ptr);
1549 }
1550 return error;
1551 }
1552 for (int i=0; i<count; i++) {
1553 (*tag_result_ptr)[i] = (jlong)_tag_results->at(i);
1554 }
1555 }
1556
1557 *count_ptr = count;
1558 return JVMTI_ERROR_NONE;
1559 }
1560 };
1561
1562 // return the list of objects with the specified tags
1563 jvmtiError JvmtiTagMap::get_objects_with_tags(const jlong* tags,
1564 jint count, jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
1565
1566 TagObjectCollector collector(env(), tags, count);
1567 {
1568 // iterate over all tagged objects
1569 MutexLocker ml(lock());
1570 entry_iterate(&collector);
1571 }
1572 return collector.result(count_ptr, object_result_ptr, tag_result_ptr);
1573 }
1574
1575
1576 // ObjectMarker is used to support the marking objects when walking the
1577 // heap.
1578 //
1579 // This implementation uses the existing mark bits in an object for
1580 // marking. Objects that are marked must later have their headers restored.
1581 // As most objects are unlocked and don't have their identity hash computed
1582 // we don't have to save their headers. Instead we save the headers that
1583 // are "interesting". Later when the headers are restored this implementation
1584 // restores all headers to their initial value and then restores the few
1585 // objects that had interesting headers.
1586 //
1587 // Future work: This implementation currently uses growable arrays to save
1588 // the oop and header of interesting objects. As an optimization we could
1589 // use the same technique as the GC and make use of the unused area
1590 // between top() and end().
1591 //
1592
1593 // An ObjectClosure used to restore the mark bits of an object
1594 class RestoreMarksClosure : public ObjectClosure {
1595 public:
1596 void do_object(oop o) {
1597 if (o != NULL) {
1598 markOop mark = o->mark();
1599 if (mark->is_marked()) {
1600 o->init_mark();
1601 }
1602 }
1603 }
1604 };
1605
1606 // ObjectMarker provides the mark and visited functions
1607 class ObjectMarker : AllStatic {
1608 private:
1609 // saved headers
1610 static GrowableArray<oop>* _saved_oop_stack;
1611 static GrowableArray<markOop>* _saved_mark_stack;
1612 static bool _needs_reset; // do we need to reset mark bits?
1613
1614 public:
1615 static void init(); // initialize
1616 static void done(); // clean-up
1617
1618 static inline void mark(oop o); // mark an object
1619 static inline bool visited(oop o); // check if object has been visited
1620
1621 static inline bool needs_reset() { return _needs_reset; }
1622 static inline void set_needs_reset(bool v) { _needs_reset = v; }
1623 };
1624
1625 GrowableArray<oop>* ObjectMarker::_saved_oop_stack = NULL;
1626 GrowableArray<markOop>* ObjectMarker::_saved_mark_stack = NULL;
1627 bool ObjectMarker::_needs_reset = true; // need to reset mark bits by default
1628
1629 // initialize ObjectMarker - prepares for object marking
1630 void ObjectMarker::init() {
1631 assert(Thread::current()->is_VM_thread(), "must be VMThread");
1632
1633 // prepare heap for iteration
1634 Universe::heap()->ensure_parsability(false); // no need to retire TLABs
1635
1636 // create stacks for interesting headers
1637 _saved_mark_stack = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<markOop>(4000, true);
1638 _saved_oop_stack = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<oop>(4000, true);
1639
1640 if (UseBiasedLocking) {
1641 BiasedLocking::preserve_marks();
1642 }
1643 }
1644
1645 // Object marking is done so restore object headers
1646 void ObjectMarker::done() {
1647 // iterate over all objects and restore the mark bits to
1648 // their initial value
1649 RestoreMarksClosure blk;
1650 if (needs_reset()) {
1651 Universe::heap()->object_iterate(&blk);
1652 } else {
1653 // We don't need to reset mark bits on this call, but reset the
1654 // flag to the default for the next call.
1655 set_needs_reset(true);
1656 }
1657
1658 // now restore the interesting headers
1659 for (int i = 0; i < _saved_oop_stack->length(); i++) {
1660 oop o = _saved_oop_stack->at(i);
1661 markOop mark = _saved_mark_stack->at(i);
1662 o->set_mark(mark);
1663 }
1664
1665 if (UseBiasedLocking) {
1666 BiasedLocking::restore_marks();
1667 }
1668
1669 // free the stacks
1670 delete _saved_oop_stack;
1671 delete _saved_mark_stack;
1672 }
1673
1674 // mark an object
1675 inline void ObjectMarker::mark(oop o) {
1676 assert(Universe::heap()->is_in(o), "sanity check");
1677 assert(!o->mark()->is_marked(), "should only mark an object once");
1678
1679 // object's mark word
1680 markOop mark = o->mark();
1681
1682 if (mark->must_be_preserved(o)) {
1683 _saved_mark_stack->push(mark);
1684 _saved_oop_stack->push(o);
1685 }
1686
1687 // mark the object
1688 o->set_mark(markOopDesc::prototype()->set_marked());
1689 }
1690
1691 // return true if object is marked
1692 inline bool ObjectMarker::visited(oop o) {
1693 return o->mark()->is_marked();
1694 }
1695
1696 // Stack allocated class to help ensure that ObjectMarker is used
1697 // correctly. Constructor initializes ObjectMarker, destructor calls
1698 // ObjectMarker's done() function to restore object headers.
1699 class ObjectMarkerController : public StackObj {
1700 public:
1701 ObjectMarkerController() {
1702 ObjectMarker::init();
1703 }
1704 ~ObjectMarkerController() {
1705 ObjectMarker::done();
1706 }
1707 };
1708
1709
1710 // helper to map a jvmtiHeapReferenceKind to an old style jvmtiHeapRootKind
1711 // (not performance critical as only used for roots)
1712 static jvmtiHeapRootKind toJvmtiHeapRootKind(jvmtiHeapReferenceKind kind) {
1713 switch (kind) {
1714 case JVMTI_HEAP_REFERENCE_JNI_GLOBAL: return JVMTI_HEAP_ROOT_JNI_GLOBAL;
1715 case JVMTI_HEAP_REFERENCE_SYSTEM_CLASS: return JVMTI_HEAP_ROOT_SYSTEM_CLASS;
1716 case JVMTI_HEAP_REFERENCE_MONITOR: return JVMTI_HEAP_ROOT_MONITOR;
1717 case JVMTI_HEAP_REFERENCE_STACK_LOCAL: return JVMTI_HEAP_ROOT_STACK_LOCAL;
1718 case JVMTI_HEAP_REFERENCE_JNI_LOCAL: return JVMTI_HEAP_ROOT_JNI_LOCAL;
1719 case JVMTI_HEAP_REFERENCE_THREAD: return JVMTI_HEAP_ROOT_THREAD;
1720 case JVMTI_HEAP_REFERENCE_OTHER: return JVMTI_HEAP_ROOT_OTHER;
1721 default: ShouldNotReachHere(); return JVMTI_HEAP_ROOT_OTHER;
1722 }
1723 }
1724
1725 // Base class for all heap walk contexts. The base class maintains a flag
1726 // to indicate if the context is valid or not.
1727 class HeapWalkContext VALUE_OBJ_CLASS_SPEC {
1728 private:
1729 bool _valid;
1730 public:
1731 HeapWalkContext(bool valid) { _valid = valid; }
1732 void invalidate() { _valid = false; }
1733 bool is_valid() const { return _valid; }
1734 };
1735
1736 // A basic heap walk context for the deprecated heap walking functions.
1737 // The context for a basic heap walk are the callbacks and fields used by
1738 // the referrer caching scheme.
1739 class BasicHeapWalkContext: public HeapWalkContext {
1740 private:
1741 jvmtiHeapRootCallback _heap_root_callback;
1742 jvmtiStackReferenceCallback _stack_ref_callback;
1743 jvmtiObjectReferenceCallback _object_ref_callback;
1744
1745 // used for caching
1746 oop _last_referrer;
1747 jlong _last_referrer_tag;
1748
1749 public:
1750 BasicHeapWalkContext() : HeapWalkContext(false) { }
1751
1752 BasicHeapWalkContext(jvmtiHeapRootCallback heap_root_callback,
1753 jvmtiStackReferenceCallback stack_ref_callback,
1754 jvmtiObjectReferenceCallback object_ref_callback) :
1755 HeapWalkContext(true),
1756 _heap_root_callback(heap_root_callback),
1757 _stack_ref_callback(stack_ref_callback),
1758 _object_ref_callback(object_ref_callback),
1759 _last_referrer(NULL),
1760 _last_referrer_tag(0) {
1761 }
1762
1763 // accessors
1764 jvmtiHeapRootCallback heap_root_callback() const { return _heap_root_callback; }
1765 jvmtiStackReferenceCallback stack_ref_callback() const { return _stack_ref_callback; }
1766 jvmtiObjectReferenceCallback object_ref_callback() const { return _object_ref_callback; }
1767
1768 oop last_referrer() const { return _last_referrer; }
1769 void set_last_referrer(oop referrer) { _last_referrer = referrer; }
1770 jlong last_referrer_tag() const { return _last_referrer_tag; }
1771 void set_last_referrer_tag(jlong value) { _last_referrer_tag = value; }
1772 };
1773
1774 // The advanced heap walk context for the FollowReferences functions.
1775 // The context is the callbacks, and the fields used for filtering.
1776 class AdvancedHeapWalkContext: public HeapWalkContext {
1777 private:
1778 jint _heap_filter;
1779 KlassHandle _klass_filter;
1780 const jvmtiHeapCallbacks* _heap_callbacks;
1781
1782 public:
1783 AdvancedHeapWalkContext() : HeapWalkContext(false) { }
1784
1785 AdvancedHeapWalkContext(jint heap_filter,
1786 KlassHandle klass_filter,
1787 const jvmtiHeapCallbacks* heap_callbacks) :
1788 HeapWalkContext(true),
1789 _heap_filter(heap_filter),
1790 _klass_filter(klass_filter),
1791 _heap_callbacks(heap_callbacks) {
1792 }
1793
1794 // accessors
1795 jint heap_filter() const { return _heap_filter; }
1796 KlassHandle klass_filter() const { return _klass_filter; }
1797
1798 const jvmtiHeapReferenceCallback heap_reference_callback() const {
1799 return _heap_callbacks->heap_reference_callback;
1800 };
1801 const jvmtiPrimitiveFieldCallback primitive_field_callback() const {
1802 return _heap_callbacks->primitive_field_callback;
1803 }
1804 const jvmtiArrayPrimitiveValueCallback array_primitive_value_callback() const {
1805 return _heap_callbacks->array_primitive_value_callback;
1806 }
1807 const jvmtiStringPrimitiveValueCallback string_primitive_value_callback() const {
1808 return _heap_callbacks->string_primitive_value_callback;
1809 }
1810 };
1811
1812 // The CallbackInvoker is a class with static functions that the heap walk can call
1813 // into to invoke callbacks. It works in one of two modes. The "basic" mode is
1814 // used for the deprecated IterateOverReachableObjects functions. The "advanced"
1815 // mode is for the newer FollowReferences function which supports a lot of
1816 // additional callbacks.
1817 class CallbackInvoker : AllStatic {
1818 private:
1819 // heap walk styles
1820 enum { basic, advanced };
1821 static int _heap_walk_type;
1822 static bool is_basic_heap_walk() { return _heap_walk_type == basic; }
1823 static bool is_advanced_heap_walk() { return _heap_walk_type == advanced; }
1824
1825 // context for basic style heap walk
1826 static BasicHeapWalkContext _basic_context;
1827 static BasicHeapWalkContext* basic_context() {
1828 assert(_basic_context.is_valid(), "invalid");
1829 return &_basic_context;
1830 }
1831
1832 // context for advanced style heap walk
1833 static AdvancedHeapWalkContext _advanced_context;
1834 static AdvancedHeapWalkContext* advanced_context() {
1835 assert(_advanced_context.is_valid(), "invalid");
1836 return &_advanced_context;
1837 }
1838
1839 // context needed for all heap walks
1840 static JvmtiTagMap* _tag_map;
1841 static const void* _user_data;
1842 static GrowableArray<oop>* _visit_stack;
1843
1844 // accessors
1845 static JvmtiTagMap* tag_map() { return _tag_map; }
1846 static const void* user_data() { return _user_data; }
1847 static GrowableArray<oop>* visit_stack() { return _visit_stack; }
1848
1849 // if the object hasn't been visited then push it onto the visit stack
1850 // so that it will be visited later
1851 static inline bool check_for_visit(oop obj) {
1852 if (!ObjectMarker::visited(obj)) visit_stack()->push(obj);
1853 return true;
1854 }
1855
1856 // invoke basic style callbacks
1857 static inline bool invoke_basic_heap_root_callback
1858 (jvmtiHeapRootKind root_kind, oop obj);
1859 static inline bool invoke_basic_stack_ref_callback
1860 (jvmtiHeapRootKind root_kind, jlong thread_tag, jint depth, jmethodID method,
1861 int slot, oop obj);
1862 static inline bool invoke_basic_object_reference_callback
1863 (jvmtiObjectReferenceKind ref_kind, oop referrer, oop referree, jint index);
1864
1865 // invoke advanced style callbacks
1866 static inline bool invoke_advanced_heap_root_callback
1867 (jvmtiHeapReferenceKind ref_kind, oop obj);
1868 static inline bool invoke_advanced_stack_ref_callback
1869 (jvmtiHeapReferenceKind ref_kind, jlong thread_tag, jlong tid, int depth,
1870 jmethodID method, jlocation bci, jint slot, oop obj);
1871 static inline bool invoke_advanced_object_reference_callback
1872 (jvmtiHeapReferenceKind ref_kind, oop referrer, oop referree, jint index);
1873
1874 // used to report the value of primitive fields
1875 static inline bool report_primitive_field
1876 (jvmtiHeapReferenceKind ref_kind, oop obj, jint index, address addr, char type);
1877
1878 public:
1879 // initialize for basic mode
1880 static void initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
1881 GrowableArray<oop>* visit_stack,
1882 const void* user_data,
1883 BasicHeapWalkContext context);
1884
1885 // initialize for advanced mode
1886 static void initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
1887 GrowableArray<oop>* visit_stack,
1888 const void* user_data,
1889 AdvancedHeapWalkContext context);
1890
1891 // functions to report roots
1892 static inline bool report_simple_root(jvmtiHeapReferenceKind kind, oop o);
1893 static inline bool report_jni_local_root(jlong thread_tag, jlong tid, jint depth,
1894 jmethodID m, oop o);
1895 static inline bool report_stack_ref_root(jlong thread_tag, jlong tid, jint depth,
1896 jmethodID method, jlocation bci, jint slot, oop o);
1897
1898 // functions to report references
1899 static inline bool report_array_element_reference(oop referrer, oop referree, jint index);
1900 static inline bool report_class_reference(oop referrer, oop referree);
1901 static inline bool report_class_loader_reference(oop referrer, oop referree);
1902 static inline bool report_signers_reference(oop referrer, oop referree);
1903 static inline bool report_protection_domain_reference(oop referrer, oop referree);
1904 static inline bool report_superclass_reference(oop referrer, oop referree);
1905 static inline bool report_interface_reference(oop referrer, oop referree);
1906 static inline bool report_static_field_reference(oop referrer, oop referree, jint slot);
1907 static inline bool report_field_reference(oop referrer, oop referree, jint slot);
1908 static inline bool report_constant_pool_reference(oop referrer, oop referree, jint index);
1909 static inline bool report_primitive_array_values(oop array);
1910 static inline bool report_string_value(oop str);
1911 static inline bool report_primitive_instance_field(oop o, jint index, address value, char type);
1912 static inline bool report_primitive_static_field(oop o, jint index, address value, char type);
1913 };
1914
1915 // statics
1916 int CallbackInvoker::_heap_walk_type;
1917 BasicHeapWalkContext CallbackInvoker::_basic_context;
1918 AdvancedHeapWalkContext CallbackInvoker::_advanced_context;
1919 JvmtiTagMap* CallbackInvoker::_tag_map;
1920 const void* CallbackInvoker::_user_data;
1921 GrowableArray<oop>* CallbackInvoker::_visit_stack;
1922
1923 // initialize for basic heap walk (IterateOverReachableObjects et al)
1924 void CallbackInvoker::initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
1925 GrowableArray<oop>* visit_stack,
1926 const void* user_data,
1927 BasicHeapWalkContext context) {
1928 _tag_map = tag_map;
1929 _visit_stack = visit_stack;
1930 _user_data = user_data;
1931 _basic_context = context;
1932 _advanced_context.invalidate(); // will trigger assertion if used
1933 _heap_walk_type = basic;
1934 }
1935
1936 // initialize for advanced heap walk (FollowReferences)
1937 void CallbackInvoker::initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
1938 GrowableArray<oop>* visit_stack,
1939 const void* user_data,
1940 AdvancedHeapWalkContext context) {
1941 _tag_map = tag_map;
1942 _visit_stack = visit_stack;
1943 _user_data = user_data;
1944 _advanced_context = context;
1945 _basic_context.invalidate(); // will trigger assertion if used
1946 _heap_walk_type = advanced;
1947 }
1948
1949
1950 // invoke basic style heap root callback
1951 inline bool CallbackInvoker::invoke_basic_heap_root_callback(jvmtiHeapRootKind root_kind, oop obj) {
1952 assert(ServiceUtil::visible_oop(obj), "checking");
1953
1954 // if we heap roots should be reported
1955 jvmtiHeapRootCallback cb = basic_context()->heap_root_callback();
1956 if (cb == NULL) {
1957 return check_for_visit(obj);
1958 }
1959
1960 CallbackWrapper wrapper(tag_map(), obj);
1961 jvmtiIterationControl control = (*cb)(root_kind,
1962 wrapper.klass_tag(),
1963 wrapper.obj_size(),
1964 wrapper.obj_tag_p(),
1965 (void*)user_data());
1966 // push root to visit stack when following references
1967 if (control == JVMTI_ITERATION_CONTINUE &&
1968 basic_context()->object_ref_callback() != NULL) {
1969 visit_stack()->push(obj);
1970 }
1971 return control != JVMTI_ITERATION_ABORT;
1972 }
1973
1974 // invoke basic style stack ref callback
1975 inline bool CallbackInvoker::invoke_basic_stack_ref_callback(jvmtiHeapRootKind root_kind,
1976 jlong thread_tag,
1977 jint depth,
1978 jmethodID method,
1979 jint slot,
1980 oop obj) {
1981 assert(ServiceUtil::visible_oop(obj), "checking");
1982
1983 // if we stack refs should be reported
1984 jvmtiStackReferenceCallback cb = basic_context()->stack_ref_callback();
1985 if (cb == NULL) {
1986 return check_for_visit(obj);
1987 }
1988
1989 CallbackWrapper wrapper(tag_map(), obj);
1990 jvmtiIterationControl control = (*cb)(root_kind,
1991 wrapper.klass_tag(),
1992 wrapper.obj_size(),
1993 wrapper.obj_tag_p(),
1994 thread_tag,
1995 depth,
1996 method,
1997 slot,
1998 (void*)user_data());
1999 // push root to visit stack when following references
2000 if (control == JVMTI_ITERATION_CONTINUE &&
2001 basic_context()->object_ref_callback() != NULL) {
2002 visit_stack()->push(obj);
2003 }
2004 return control != JVMTI_ITERATION_ABORT;
2005 }
2006
2007 // invoke basic style object reference callback
2008 inline bool CallbackInvoker::invoke_basic_object_reference_callback(jvmtiObjectReferenceKind ref_kind,
2009 oop referrer,
2010 oop referree,
2011 jint index) {
2012
2013 assert(ServiceUtil::visible_oop(referrer), "checking");
2014 assert(ServiceUtil::visible_oop(referree), "checking");
2015
2016 BasicHeapWalkContext* context = basic_context();
2017
2018 // callback requires the referrer's tag. If it's the same referrer
2019 // as the last call then we use the cached value.
2020 jlong referrer_tag;
2021 if (referrer == context->last_referrer()) {
2022 referrer_tag = context->last_referrer_tag();
2023 } else {
2024 referrer_tag = tag_for(tag_map(), referrer);
2025 }
2026
2027 // do the callback
2028 CallbackWrapper wrapper(tag_map(), referree);
2029 jvmtiObjectReferenceCallback cb = context->object_ref_callback();
2030 jvmtiIterationControl control = (*cb)(ref_kind,
2031 wrapper.klass_tag(),
2032 wrapper.obj_size(),
2033 wrapper.obj_tag_p(),
2034 referrer_tag,
2035 index,
2036 (void*)user_data());
2037
2038 // record referrer and referrer tag. For self-references record the
2039 // tag value from the callback as this might differ from referrer_tag.
2040 context->set_last_referrer(referrer);
2041 if (referrer == referree) {
2042 context->set_last_referrer_tag(*wrapper.obj_tag_p());
2043 } else {
2044 context->set_last_referrer_tag(referrer_tag);
2045 }
2046
2047 if (control == JVMTI_ITERATION_CONTINUE) {
2048 return check_for_visit(referree);
2049 } else {
2050 return control != JVMTI_ITERATION_ABORT;
2051 }
2052 }
2053
2054 // invoke advanced style heap root callback
2055 inline bool CallbackInvoker::invoke_advanced_heap_root_callback(jvmtiHeapReferenceKind ref_kind,
2056 oop obj) {
2057 assert(ServiceUtil::visible_oop(obj), "checking");
2058
2059 AdvancedHeapWalkContext* context = advanced_context();
2060
2061 // check that callback is provided
2062 jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2063 if (cb == NULL) {
2064 return check_for_visit(obj);
2065 }
2066
2067 // apply class filter
2068 if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2069 return check_for_visit(obj);
2070 }
2071
2072 // setup the callback wrapper
2073 CallbackWrapper wrapper(tag_map(), obj);
2074
2075 // apply tag filter
2076 if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2077 wrapper.klass_tag(),
2078 context->heap_filter())) {
2079 return check_for_visit(obj);
2080 }
2081
2082 // for arrays we need the length, otherwise -1
2083 jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
2084
2085 // invoke the callback
2086 jint res = (*cb)(ref_kind,
2087 NULL, // referrer info
2088 wrapper.klass_tag(),
2089 0, // referrer_class_tag is 0 for heap root
2090 wrapper.obj_size(),
2091 wrapper.obj_tag_p(),
2092 NULL, // referrer_tag_p
2093 len,
2094 (void*)user_data());
2095 if (res & JVMTI_VISIT_ABORT) {
2096 return false;// referrer class tag
2097 }
2098 if (res & JVMTI_VISIT_OBJECTS) {
2099 check_for_visit(obj);
2100 }
2101 return true;
2102 }
2103
2104 // report a reference from a thread stack to an object
2105 inline bool CallbackInvoker::invoke_advanced_stack_ref_callback(jvmtiHeapReferenceKind ref_kind,
2106 jlong thread_tag,
2107 jlong tid,
2108 int depth,
2109 jmethodID method,
2110 jlocation bci,
2111 jint slot,
2112 oop obj) {
2113 assert(ServiceUtil::visible_oop(obj), "checking");
2114
2115 AdvancedHeapWalkContext* context = advanced_context();
2116
2117 // check that callback is provider
2118 jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2119 if (cb == NULL) {
2120 return check_for_visit(obj);
2121 }
2122
2123 // apply class filter
2124 if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2125 return check_for_visit(obj);
2126 }
2127
2128 // setup the callback wrapper
2129 CallbackWrapper wrapper(tag_map(), obj);
2130
2131 // apply tag filter
2132 if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2133 wrapper.klass_tag(),
2134 context->heap_filter())) {
2135 return check_for_visit(obj);
2136 }
2137
2138 // setup the referrer info
2139 jvmtiHeapReferenceInfo reference_info;
2140 reference_info.stack_local.thread_tag = thread_tag;
2141 reference_info.stack_local.thread_id = tid;
2142 reference_info.stack_local.depth = depth;
2143 reference_info.stack_local.method = method;
2144 reference_info.stack_local.location = bci;
2145 reference_info.stack_local.slot = slot;
2146
2147 // for arrays we need the length, otherwise -1
2148 jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
2149
2150 // call into the agent
2151 int res = (*cb)(ref_kind,
2152 &reference_info,
2153 wrapper.klass_tag(),
2154 0, // referrer_class_tag is 0 for heap root (stack)
2155 wrapper.obj_size(),
2156 wrapper.obj_tag_p(),
2157 NULL, // referrer_tag is 0 for root
2158 len,
2159 (void*)user_data());
2160
2161 if (res & JVMTI_VISIT_ABORT) {
2162 return false;
2163 }
2164 if (res & JVMTI_VISIT_OBJECTS) {
2165 check_for_visit(obj);
2166 }
2167 return true;
2168 }
2169
2170 // This mask is used to pass reference_info to a jvmtiHeapReferenceCallback
2171 // only for ref_kinds defined by the JVM TI spec. Otherwise, NULL is passed.
2172 #define REF_INFO_MASK ((1 << JVMTI_HEAP_REFERENCE_FIELD) \
2173 | (1 << JVMTI_HEAP_REFERENCE_STATIC_FIELD) \
2174 | (1 << JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT) \
2175 | (1 << JVMTI_HEAP_REFERENCE_CONSTANT_POOL) \
2176 | (1 << JVMTI_HEAP_REFERENCE_STACK_LOCAL) \
2177 | (1 << JVMTI_HEAP_REFERENCE_JNI_LOCAL))
2178
2179 // invoke the object reference callback to report a reference
2180 inline bool CallbackInvoker::invoke_advanced_object_reference_callback(jvmtiHeapReferenceKind ref_kind,
2181 oop referrer,
2182 oop obj,
2183 jint index)
2184 {
2185 // field index is only valid field in reference_info
2186 static jvmtiHeapReferenceInfo reference_info = { 0 };
2187
2188 assert(ServiceUtil::visible_oop(referrer), "checking");
2189 assert(ServiceUtil::visible_oop(obj), "checking");
2190
2191 AdvancedHeapWalkContext* context = advanced_context();
2192
2193 // check that callback is provider
2194 jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2195 if (cb == NULL) {
2196 return check_for_visit(obj);
2197 }
2198
2199 // apply class filter
2200 if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2201 return check_for_visit(obj);
2202 }
2203
2204 // setup the callback wrapper
2205 TwoOopCallbackWrapper wrapper(tag_map(), referrer, obj);
2206
2207 // apply tag filter
2208 if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2209 wrapper.klass_tag(),
2210 context->heap_filter())) {
2211 return check_for_visit(obj);
2212 }
2213
2214 // field index is only valid field in reference_info
2215 reference_info.field.index = index;
2216
2217 // for arrays we need the length, otherwise -1
2218 jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
2219
2220 // invoke the callback
2221 int res = (*cb)(ref_kind,
2222 (REF_INFO_MASK & (1 << ref_kind)) ? &reference_info : NULL,
2223 wrapper.klass_tag(),
2224 wrapper.referrer_klass_tag(),
2225 wrapper.obj_size(),
2226 wrapper.obj_tag_p(),
2227 wrapper.referrer_tag_p(),
2228 len,
2229 (void*)user_data());
2230
2231 if (res & JVMTI_VISIT_ABORT) {
2232 return false;
2233 }
2234 if (res & JVMTI_VISIT_OBJECTS) {
2235 check_for_visit(obj);
2236 }
2237 return true;
2238 }
2239
2240 // report a "simple root"
2241 inline bool CallbackInvoker::report_simple_root(jvmtiHeapReferenceKind kind, oop obj) {
2242 assert(kind != JVMTI_HEAP_REFERENCE_STACK_LOCAL &&
2243 kind != JVMTI_HEAP_REFERENCE_JNI_LOCAL, "not a simple root");
2244 assert(ServiceUtil::visible_oop(obj), "checking");
2245
2246 if (is_basic_heap_walk()) {
2247 // map to old style root kind
2248 jvmtiHeapRootKind root_kind = toJvmtiHeapRootKind(kind);
2249 return invoke_basic_heap_root_callback(root_kind, obj);
2250 } else {
2251 assert(is_advanced_heap_walk(), "wrong heap walk type");
2252 return invoke_advanced_heap_root_callback(kind, obj);
2253 }
2254 }
2255
2256
2257 // invoke the primitive array values
2258 inline bool CallbackInvoker::report_primitive_array_values(oop obj) {
2259 assert(obj->is_typeArray(), "not a primitive array");
2260
2261 AdvancedHeapWalkContext* context = advanced_context();
2262 assert(context->array_primitive_value_callback() != NULL, "no callback");
2263
2264 // apply class filter
2265 if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2266 return true;
2267 }
2268
2269 CallbackWrapper wrapper(tag_map(), obj);
2270
2271 // apply tag filter
2272 if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2273 wrapper.klass_tag(),
2274 context->heap_filter())) {
2275 return true;
2276 }
2277
2278 // invoke the callback
2279 int res = invoke_array_primitive_value_callback(context->array_primitive_value_callback(),
2280 &wrapper,
2281 obj,
2282 (void*)user_data());
2283 return (!(res & JVMTI_VISIT_ABORT));
2284 }
2285
2286 // invoke the string value callback
2287 inline bool CallbackInvoker::report_string_value(oop str) {
2288 assert(str->klass() == SystemDictionary::String_klass(), "not a string");
2289
2290 AdvancedHeapWalkContext* context = advanced_context();
2291 assert(context->string_primitive_value_callback() != NULL, "no callback");
2292
2293 // apply class filter
2294 if (is_filtered_by_klass_filter(str, context->klass_filter())) {
2295 return true;
2296 }
2297
2298 CallbackWrapper wrapper(tag_map(), str);
2299
2300 // apply tag filter
2301 if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2302 wrapper.klass_tag(),
2303 context->heap_filter())) {
2304 return true;
2305 }
2306
2307 // invoke the callback
2308 int res = invoke_string_value_callback(context->string_primitive_value_callback(),
2309 &wrapper,
2310 str,
2311 (void*)user_data());
2312 return (!(res & JVMTI_VISIT_ABORT));
2313 }
2314
2315 // invoke the primitive field callback
2316 inline bool CallbackInvoker::report_primitive_field(jvmtiHeapReferenceKind ref_kind,
2317 oop obj,
2318 jint index,
2319 address addr,
2320 char type)
2321 {
2322 // for primitive fields only the index will be set
2323 static jvmtiHeapReferenceInfo reference_info = { 0 };
2324
2325 AdvancedHeapWalkContext* context = advanced_context();
2326 assert(context->primitive_field_callback() != NULL, "no callback");
2327
2328 // apply class filter
2329 if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2330 return true;
2331 }
2332
2333 CallbackWrapper wrapper(tag_map(), obj);
2334
2335 // apply tag filter
2336 if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2337 wrapper.klass_tag(),
2338 context->heap_filter())) {
2339 return true;
2340 }
2341
2342 // the field index in the referrer
2343 reference_info.field.index = index;
2344
2345 // map the type
2346 jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
2347
2348 // setup the jvalue
2349 jvalue value;
2350 copy_to_jvalue(&value, addr, value_type);
2351
2352 jvmtiPrimitiveFieldCallback cb = context->primitive_field_callback();
2353 int res = (*cb)(ref_kind,
2354 &reference_info,
2355 wrapper.klass_tag(),
2356 wrapper.obj_tag_p(),
2357 value,
2358 value_type,
2359 (void*)user_data());
2360 return (!(res & JVMTI_VISIT_ABORT));
2361 }
2362
2363
2364 // instance field
2365 inline bool CallbackInvoker::report_primitive_instance_field(oop obj,
2366 jint index,
2367 address value,
2368 char type) {
2369 return report_primitive_field(JVMTI_HEAP_REFERENCE_FIELD,
2370 obj,
2371 index,
2372 value,
2373 type);
2374 }
2375
2376 // static field
2377 inline bool CallbackInvoker::report_primitive_static_field(oop obj,
2378 jint index,
2379 address value,
2380 char type) {
2381 return report_primitive_field(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
2382 obj,
2383 index,
2384 value,
2385 type);
2386 }
2387
2388 // report a JNI local (root object) to the profiler
2389 inline bool CallbackInvoker::report_jni_local_root(jlong thread_tag, jlong tid, jint depth, jmethodID m, oop obj) {
2390 if (is_basic_heap_walk()) {
2391 return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_JNI_LOCAL,
2392 thread_tag,
2393 depth,
2394 m,
2395 -1,
2396 obj);
2397 } else {
2398 return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_JNI_LOCAL,
2399 thread_tag, tid,
2400 depth,
2401 m,
2402 (jlocation)-1,
2403 -1,
2404 obj);
2405 }
2406 }
2407
2408
2409 // report a local (stack reference, root object)
2410 inline bool CallbackInvoker::report_stack_ref_root(jlong thread_tag,
2411 jlong tid,
2412 jint depth,
2413 jmethodID method,
2414 jlocation bci,
2415 jint slot,
2416 oop obj) {
2417 if (is_basic_heap_walk()) {
2418 return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_STACK_LOCAL,
2419 thread_tag,
2420 depth,
2421 method,
2422 slot,
2423 obj);
2424 } else {
2425 return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_STACK_LOCAL,
2426 thread_tag,
2427 tid,
2428 depth,
2429 method,
2430 bci,
2431 slot,
2432 obj);
2433 }
2434 }
2435
2436 // report an object referencing a class.
2437 inline bool CallbackInvoker::report_class_reference(oop referrer, oop referree) {
2438 if (is_basic_heap_walk()) {
2439 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
2440 } else {
2441 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS, referrer, referree, -1);
2442 }
2443 }
2444
2445 // report a class referencing its class loader.
2446 inline bool CallbackInvoker::report_class_loader_reference(oop referrer, oop referree) {
2447 if (is_basic_heap_walk()) {
2448 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS_LOADER, referrer, referree, -1);
2449 } else {
2450 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS_LOADER, referrer, referree, -1);
2451 }
2452 }
2453
2454 // report a class referencing its signers.
2455 inline bool CallbackInvoker::report_signers_reference(oop referrer, oop referree) {
2456 if (is_basic_heap_walk()) {
2457 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_SIGNERS, referrer, referree, -1);
2458 } else {
2459 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SIGNERS, referrer, referree, -1);
2460 }
2461 }
2462
2463 // report a class referencing its protection domain..
2464 inline bool CallbackInvoker::report_protection_domain_reference(oop referrer, oop referree) {
2465 if (is_basic_heap_walk()) {
2466 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
2467 } else {
2468 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
2469 }
2470 }
2471
2472 // report a class referencing its superclass.
2473 inline bool CallbackInvoker::report_superclass_reference(oop referrer, oop referree) {
2474 if (is_basic_heap_walk()) {
2475 // Send this to be consistent with past implementation
2476 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
2477 } else {
2478 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SUPERCLASS, referrer, referree, -1);
2479 }
2480 }
2481
2482 // report a class referencing one of its interfaces.
2483 inline bool CallbackInvoker::report_interface_reference(oop referrer, oop referree) {
2484 if (is_basic_heap_walk()) {
2485 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_INTERFACE, referrer, referree, -1);
2486 } else {
2487 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_INTERFACE, referrer, referree, -1);
2488 }
2489 }
2490
2491 // report a class referencing one of its static fields.
2492 inline bool CallbackInvoker::report_static_field_reference(oop referrer, oop referree, jint slot) {
2493 if (is_basic_heap_walk()) {
2494 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_STATIC_FIELD, referrer, referree, slot);
2495 } else {
2496 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_STATIC_FIELD, referrer, referree, slot);
2497 }
2498 }
2499
2500 // report an array referencing an element object
2501 inline bool CallbackInvoker::report_array_element_reference(oop referrer, oop referree, jint index) {
2502 if (is_basic_heap_walk()) {
2503 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
2504 } else {
2505 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
2506 }
2507 }
2508
2509 // report an object referencing an instance field object
2510 inline bool CallbackInvoker::report_field_reference(oop referrer, oop referree, jint slot) {
2511 if (is_basic_heap_walk()) {
2512 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_FIELD, referrer, referree, slot);
2513 } else {
2514 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_FIELD, referrer, referree, slot);
2515 }
2516 }
2517
2518 // report an array referencing an element object
2519 inline bool CallbackInvoker::report_constant_pool_reference(oop referrer, oop referree, jint index) {
2520 if (is_basic_heap_walk()) {
2521 return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CONSTANT_POOL, referrer, referree, index);
2522 } else {
2523 return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CONSTANT_POOL, referrer, referree, index);
2524 }
2525 }
2526
2527 // A supporting closure used to process simple roots
2528 class SimpleRootsClosure : public OopClosure {
2529 private:
2530 jvmtiHeapReferenceKind _kind;
2531 bool _continue;
2532
2533 jvmtiHeapReferenceKind root_kind() { return _kind; }
2534
2535 public:
2536 void set_kind(jvmtiHeapReferenceKind kind) {
2537 _kind = kind;
2538 _continue = true;
2539 }
2540
2541 inline bool stopped() {
2542 return !_continue;
2543 }
2544
2545 void do_oop(oop* obj_p) {
2546 // iteration has terminated
2547 if (stopped()) {
2548 return;
2549 }
2550
2551 // ignore null or deleted handles
2552 oop o = *obj_p;
2553 if (o == NULL || o == JNIHandles::deleted_handle()) {
2554 return;
2555 }
2556
2557 assert(Universe::heap()->is_in_reserved(o), "should be impossible");
2558
2559 jvmtiHeapReferenceKind kind = root_kind();
2560 if (kind == JVMTI_HEAP_REFERENCE_SYSTEM_CLASS) {
2561 // SystemDictionary::always_strong_oops_do reports the application
2562 // class loader as a root. We want this root to be reported as
2563 // a root kind of "OTHER" rather than "SYSTEM_CLASS".
2564 if (!o->is_instanceMirror()) {
2565 kind = JVMTI_HEAP_REFERENCE_OTHER;
2566 }
2567 }
2568
2569 // some objects are ignored - in the case of simple
2570 // roots it's mostly Symbol*s that we are skipping
2571 // here.
2572 if (!ServiceUtil::visible_oop(o)) {
2573 return;
2574 }
2575
2576 // invoke the callback
2577 _continue = CallbackInvoker::report_simple_root(kind, o);
2578
2579 }
2580 virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
2581 };
2582
2583 // A supporting closure used to process JNI locals
2584 class JNILocalRootsClosure : public OopClosure {
2585 private:
2586 jlong _thread_tag;
2587 jlong _tid;
2588 jint _depth;
2589 jmethodID _method;
2590 bool _continue;
2591 public:
2592 void set_context(jlong thread_tag, jlong tid, jint depth, jmethodID method) {
2593 _thread_tag = thread_tag;
2594 _tid = tid;
2595 _depth = depth;
2596 _method = method;
2597 _continue = true;
2598 }
2599
2600 inline bool stopped() {
2601 return !_continue;
2602 }
2603
2604 void do_oop(oop* obj_p) {
2605 // iteration has terminated
2606 if (stopped()) {
2607 return;
2608 }
2609
2610 // ignore null or deleted handles
2611 oop o = *obj_p;
2612 if (o == NULL || o == JNIHandles::deleted_handle()) {
2613 return;
2614 }
2615
2616 if (!ServiceUtil::visible_oop(o)) {
2617 return;
2618 }
2619
2620 // invoke the callback
2621 _continue = CallbackInvoker::report_jni_local_root(_thread_tag, _tid, _depth, _method, o);
2622 }
2623 virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
2624 };
2625
2626
2627 // A VM operation to iterate over objects that are reachable from
2628 // a set of roots or an initial object.
2629 //
2630 // For VM_HeapWalkOperation the set of roots used is :-
2631 //
2632 // - All JNI global references
2633 // - All inflated monitors
2634 // - All classes loaded by the boot class loader (or all classes
2635 // in the event that class unloading is disabled)
2636 // - All java threads
2637 // - For each java thread then all locals and JNI local references
2638 // on the thread's execution stack
2639 // - All visible/explainable objects from Universes::oops_do
2640 //
2641 class VM_HeapWalkOperation: public VM_Operation {
2642 private:
2643 enum {
2644 initial_visit_stack_size = 4000
2645 };
2646
2647 bool _is_advanced_heap_walk; // indicates FollowReferences
2648 JvmtiTagMap* _tag_map;
2649 Handle _initial_object;
2650 GrowableArray<oop>* _visit_stack; // the visit stack
2651
2652 bool _collecting_heap_roots; // are we collecting roots
2653 bool _following_object_refs; // are we following object references
2654
2655 bool _reporting_primitive_fields; // optional reporting
2656 bool _reporting_primitive_array_values;
2657 bool _reporting_string_values;
2658
2659 GrowableArray<oop>* create_visit_stack() {
2660 return new (ResourceObj::C_HEAP, mtInternal) GrowableArray<oop>(initial_visit_stack_size, true);
2661 }
2662
2663 // accessors
2664 bool is_advanced_heap_walk() const { return _is_advanced_heap_walk; }
2665 JvmtiTagMap* tag_map() const { return _tag_map; }
2666 Handle initial_object() const { return _initial_object; }
2667
2668 bool is_following_references() const { return _following_object_refs; }
2669
2670 bool is_reporting_primitive_fields() const { return _reporting_primitive_fields; }
2671 bool is_reporting_primitive_array_values() const { return _reporting_primitive_array_values; }
2672 bool is_reporting_string_values() const { return _reporting_string_values; }
2673
2674 GrowableArray<oop>* visit_stack() const { return _visit_stack; }
2675
2676 // iterate over the various object types
2677 inline bool iterate_over_array(oop o);
2678 inline bool iterate_over_type_array(oop o);
2679 inline bool iterate_over_class(oop o);
2680 inline bool iterate_over_object(oop o);
2681
2682 // root collection
2683 inline bool collect_simple_roots();
2684 inline bool collect_stack_roots();
2685 inline bool collect_stack_roots(JavaThread* java_thread, JNILocalRootsClosure* blk);
2686
2687 // visit an object
2688 inline bool visit(oop o);
2689
2690 public:
2691 VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2692 Handle initial_object,
2693 BasicHeapWalkContext callbacks,
2694 const void* user_data);
2695
2696 VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2697 Handle initial_object,
2698 AdvancedHeapWalkContext callbacks,
2699 const void* user_data);
2700
2701 ~VM_HeapWalkOperation();
2702
2703 VMOp_Type type() const { return VMOp_HeapWalkOperation; }
2704 void doit();
2705 };
2706
2707
2708 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2709 Handle initial_object,
2710 BasicHeapWalkContext callbacks,
2711 const void* user_data) {
2712 _is_advanced_heap_walk = false;
2713 _tag_map = tag_map;
2714 _initial_object = initial_object;
2715 _following_object_refs = (callbacks.object_ref_callback() != NULL);
2716 _reporting_primitive_fields = false;
2717 _reporting_primitive_array_values = false;
2718 _reporting_string_values = false;
2719 _visit_stack = create_visit_stack();
2720
2721
2722 CallbackInvoker::initialize_for_basic_heap_walk(tag_map, _visit_stack, user_data, callbacks);
2723 }
2724
2725 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2726 Handle initial_object,
2727 AdvancedHeapWalkContext callbacks,
2728 const void* user_data) {
2729 _is_advanced_heap_walk = true;
2730 _tag_map = tag_map;
2731 _initial_object = initial_object;
2732 _following_object_refs = true;
2733 _reporting_primitive_fields = (callbacks.primitive_field_callback() != NULL);;
2734 _reporting_primitive_array_values = (callbacks.array_primitive_value_callback() != NULL);;
2735 _reporting_string_values = (callbacks.string_primitive_value_callback() != NULL);;
2736 _visit_stack = create_visit_stack();
2737
2738 CallbackInvoker::initialize_for_advanced_heap_walk(tag_map, _visit_stack, user_data, callbacks);
2739 }
2740
2741 VM_HeapWalkOperation::~VM_HeapWalkOperation() {
2742 if (_following_object_refs) {
2743 assert(_visit_stack != NULL, "checking");
2744 delete _visit_stack;
2745 _visit_stack = NULL;
2746 }
2747 }
2748
2749 // an array references its class and has a reference to
2750 // each element in the array
2751 inline bool VM_HeapWalkOperation::iterate_over_array(oop o) {
2752 objArrayOop array = objArrayOop(o);
2753
2754 // array reference to its class
2755 oop mirror = ObjArrayKlass::cast(array->klass())->java_mirror();
2756 if (!CallbackInvoker::report_class_reference(o, mirror)) {
2757 return false;
2758 }
2759
2760 // iterate over the array and report each reference to a
2761 // non-null element
2762 for (int index=0; index<array->length(); index++) {
2763 oop elem = array->obj_at(index);
2764 if (elem == NULL) {
2765 continue;
2766 }
2767
2768 // report the array reference o[index] = elem
2769 if (!CallbackInvoker::report_array_element_reference(o, elem, index)) {
2770 return false;
2771 }
2772 }
2773 return true;
2774 }
2775
2776 // a type array references its class
2777 inline bool VM_HeapWalkOperation::iterate_over_type_array(oop o) {
2778 Klass* k = o->klass();
2779 oop mirror = k->java_mirror();
2780 if (!CallbackInvoker::report_class_reference(o, mirror)) {
2781 return false;
2782 }
2783
2784 // report the array contents if required
2785 if (is_reporting_primitive_array_values()) {
2786 if (!CallbackInvoker::report_primitive_array_values(o)) {
2787 return false;
2788 }
2789 }
2790 return true;
2791 }
2792
2793 // verify that a static oop field is in range
2794 static inline bool verify_static_oop(InstanceKlass* ik,
2795 oop mirror, int offset) {
2796 address obj_p = (address)mirror + offset;
2797 address start = (address)InstanceMirrorKlass::start_of_static_fields(mirror);
2798 address end = start + (java_lang_Class::static_oop_field_count(mirror) * heapOopSize);
2799 assert(end >= start, "sanity check");
2800
2801 if (obj_p >= start && obj_p < end) {
2802 return true;
2803 } else {
2804 return false;
2805 }
2806 }
2807
2808 // a class references its super class, interfaces, class loader, ...
2809 // and finally its static fields
2810 inline bool VM_HeapWalkOperation::iterate_over_class(oop java_class) {
2811 int i;
2812 Klass* klass = java_lang_Class::as_Klass(java_class);
2813
2814 if (klass->oop_is_instance()) {
2815 InstanceKlass* ik = InstanceKlass::cast(klass);
2816
2817 // ignore the class if it's has been initialized yet
2818 if (!ik->is_linked()) {
2819 return true;
2820 }
2821
2822 // get the java mirror
2823 oop mirror = klass->java_mirror();
2824
2825 // super (only if something more interesting than java.lang.Object)
2826 Klass* java_super = ik->java_super();
2827 if (java_super != NULL && java_super != SystemDictionary::Object_klass()) {
2828 oop super = java_super->java_mirror();
2829 if (!CallbackInvoker::report_superclass_reference(mirror, super)) {
2830 return false;
2831 }
2832 }
2833
2834 // class loader
2835 oop cl = ik->class_loader();
2836 if (cl != NULL) {
2837 if (!CallbackInvoker::report_class_loader_reference(mirror, cl)) {
2838 return false;
2839 }
2840 }
2841
2842 // protection domain
2843 oop pd = ik->protection_domain();
2844 if (pd != NULL) {
2845 if (!CallbackInvoker::report_protection_domain_reference(mirror, pd)) {
2846 return false;
2847 }
2848 }
2849
2850 // signers
2851 oop signers = ik->signers();
2852 if (signers != NULL) {
2853 if (!CallbackInvoker::report_signers_reference(mirror, signers)) {
2854 return false;
2855 }
2856 }
2857
2858 // references from the constant pool
2859 {
2860 ConstantPool* pool = ik->constants();
2861 for (int i = 1; i < pool->length(); i++) {
2862 constantTag tag = pool->tag_at(i).value();
2863 if (tag.is_string() || tag.is_klass()) {
2864 oop entry;
2865 if (tag.is_string()) {
2866 entry = pool->resolved_string_at(i);
2867 // If the entry is non-null it is resolved.
2868 if (entry == NULL) continue;
2869 } else {
2870 entry = pool->resolved_klass_at(i)->java_mirror();
2871 }
2872 if (!CallbackInvoker::report_constant_pool_reference(mirror, entry, (jint)i)) {
2873 return false;
2874 }
2875 }
2876 }
2877 }
2878
2879 // interfaces
2880 // (These will already have been reported as references from the constant pool
2881 // but are specified by IterateOverReachableObjects and must be reported).
2882 Array<Klass*>* interfaces = ik->local_interfaces();
2883 for (i = 0; i < interfaces->length(); i++) {
2884 oop interf = ((Klass*)interfaces->at(i))->java_mirror();
2885 if (interf == NULL) {
2886 continue;
2887 }
2888 if (!CallbackInvoker::report_interface_reference(mirror, interf)) {
2889 return false;
2890 }
2891 }
2892
2893 // iterate over the static fields
2894
2895 ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(klass);
2896 for (i=0; i<field_map->field_count(); i++) {
2897 ClassFieldDescriptor* field = field_map->field_at(i);
2898 char type = field->field_type();
2899 if (!is_primitive_field_type(type)) {
2900 oop fld_o = mirror->obj_field(field->field_offset());
2901 assert(verify_static_oop(ik, mirror, field->field_offset()), "sanity check");
2902 if (fld_o != NULL) {
2903 int slot = field->field_index();
2904 if (!CallbackInvoker::report_static_field_reference(mirror, fld_o, slot)) {
2905 delete field_map;
2906 return false;
2907 }
2908 }
2909 } else {
2910 if (is_reporting_primitive_fields()) {
2911 address addr = (address)mirror + field->field_offset();
2912 int slot = field->field_index();
2913 if (!CallbackInvoker::report_primitive_static_field(mirror, slot, addr, type)) {
2914 delete field_map;
2915 return false;
2916 }
2917 }
2918 }
2919 }
2920 delete field_map;
2921
2922 return true;
2923 }
2924
2925 return true;
2926 }
2927
2928 // an object references a class and its instance fields
2929 // (static fields are ignored here as we report these as
2930 // references from the class).
2931 inline bool VM_HeapWalkOperation::iterate_over_object(oop o) {
2932 // reference to the class
2933 if (!CallbackInvoker::report_class_reference(o, o->klass()->java_mirror())) {
2934 return false;
2935 }
2936
2937 // iterate over instance fields
2938 ClassFieldMap* field_map = JvmtiCachedClassFieldMap::get_map_of_instance_fields(o);
2939 for (int i=0; i<field_map->field_count(); i++) {
2940 ClassFieldDescriptor* field = field_map->field_at(i);
2941 char type = field->field_type();
2942 if (!is_primitive_field_type(type)) {
2943 oop fld_o = o->obj_field(field->field_offset());
2944 // ignore any objects that aren't visible to profiler
2945 if (fld_o != NULL && ServiceUtil::visible_oop(fld_o)) {
2946 assert(Universe::heap()->is_in_reserved(fld_o), "unsafe code should not "
2947 "have references to Klass* anymore");
2948 int slot = field->field_index();
2949 if (!CallbackInvoker::report_field_reference(o, fld_o, slot)) {
2950 return false;
2951 }
2952 }
2953 } else {
2954 if (is_reporting_primitive_fields()) {
2955 // primitive instance field
2956 address addr = (address)o + field->field_offset();
2957 int slot = field->field_index();
2958 if (!CallbackInvoker::report_primitive_instance_field(o, slot, addr, type)) {
2959 return false;
2960 }
2961 }
2962 }
2963 }
2964
2965 // if the object is a java.lang.String
2966 if (is_reporting_string_values() &&
2967 o->klass() == SystemDictionary::String_klass()) {
2968 if (!CallbackInvoker::report_string_value(o)) {
2969 return false;
2970 }
2971 }
2972 return true;
2973 }
2974
2975
2976 // Collects all simple (non-stack) roots except for threads;
2977 // threads are handled in collect_stack_roots() as an optimization.
2978 // if there's a heap root callback provided then the callback is
2979 // invoked for each simple root.
2980 // if an object reference callback is provided then all simple
2981 // roots are pushed onto the marking stack so that they can be
2982 // processed later
2983 //
2984 inline bool VM_HeapWalkOperation::collect_simple_roots() {
2985 SimpleRootsClosure blk;
2986
2987 // JNI globals
2988 blk.set_kind(JVMTI_HEAP_REFERENCE_JNI_GLOBAL);
2989 JNIHandles::oops_do(&blk);
2990 if (blk.stopped()) {
2991 return false;
2992 }
2993
2994 // Preloaded classes and loader from the system dictionary
2995 blk.set_kind(JVMTI_HEAP_REFERENCE_SYSTEM_CLASS);
2996 SystemDictionary::always_strong_oops_do(&blk);
2997 KlassToOopClosure klass_blk(&blk);
2998 ClassLoaderDataGraph::always_strong_oops_do(&blk, &klass_blk, false);
2999 if (blk.stopped()) {
3000 return false;
3001 }
3002
3003 // Inflated monitors
3004 blk.set_kind(JVMTI_HEAP_REFERENCE_MONITOR);
3005 ObjectSynchronizer::oops_do(&blk);
3006 if (blk.stopped()) {
3007 return false;
3008 }
3009
3010 // threads are now handled in collect_stack_roots()
3011
3012 // Other kinds of roots maintained by HotSpot
3013 // Many of these won't be visible but others (such as instances of important
3014 // exceptions) will be visible.
3015 blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER);
3016 Universe::oops_do(&blk);
3017
3018 // If there are any non-perm roots in the code cache, visit them.
3019 blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER);
3020 CodeBlobToOopClosure look_in_blobs(&blk, false);
3021 CodeCache::scavenge_root_nmethods_do(&look_in_blobs);
3022
3023 return true;
3024 }
3025
3026 // Walk the stack of a given thread and find all references (locals
3027 // and JNI calls) and report these as stack references
3028 inline bool VM_HeapWalkOperation::collect_stack_roots(JavaThread* java_thread,
3029 JNILocalRootsClosure* blk)
3030 {
3031 oop threadObj = java_thread->threadObj();
3032 assert(threadObj != NULL, "sanity check");
3033
3034 // only need to get the thread's tag once per thread
3035 jlong thread_tag = tag_for(_tag_map, threadObj);
3036
3037 // also need the thread id
3038 jlong tid = java_lang_Thread::thread_id(threadObj);
3039
3040
3041 if (java_thread->has_last_Java_frame()) {
3042
3043 // vframes are resource allocated
3044 Thread* current_thread = Thread::current();
3045 ResourceMark rm(current_thread);
3046 HandleMark hm(current_thread);
3047
3048 RegisterMap reg_map(java_thread);
3049 frame f = java_thread->last_frame();
3050 vframe* vf = vframe::new_vframe(&f, &reg_map, java_thread);
3051
3052 bool is_top_frame = true;
3053 int depth = 0;
3054 frame* last_entry_frame = NULL;
3055
3056 while (vf != NULL) {
3057 if (vf->is_java_frame()) {
3058
3059 // java frame (interpreted, compiled, ...)
3060 javaVFrame *jvf = javaVFrame::cast(vf);
3061
3062 // the jmethodID
3063 jmethodID method = jvf->method()->jmethod_id();
3064
3065 if (!(jvf->method()->is_native())) {
3066 jlocation bci = (jlocation)jvf->bci();
3067 StackValueCollection* locals = jvf->locals();
3068 for (int slot=0; slot<locals->size(); slot++) {
3069 if (locals->at(slot)->type() == T_OBJECT) {
3070 oop o = locals->obj_at(slot)();
3071 if (o == NULL) {
3072 continue;
3073 }
3074
3075 // stack reference
3076 if (!CallbackInvoker::report_stack_ref_root(thread_tag, tid, depth, method,
3077 bci, slot, o)) {
3078 return false;
3079 }
3080 }
3081 }
3082 } else {
3083 blk->set_context(thread_tag, tid, depth, method);
3084 if (is_top_frame) {
3085 // JNI locals for the top frame.
3086 java_thread->active_handles()->oops_do(blk);
3087 } else {
3088 if (last_entry_frame != NULL) {
3089 // JNI locals for the entry frame
3090 assert(last_entry_frame->is_entry_frame(), "checking");
3091 last_entry_frame->entry_frame_call_wrapper()->handles()->oops_do(blk);
3092 }
3093 }
3094 }
3095 last_entry_frame = NULL;
3096 depth++;
3097 } else {
3098 // externalVFrame - for an entry frame then we report the JNI locals
3099 // when we find the corresponding javaVFrame
3100 frame* fr = vf->frame_pointer();
3101 assert(fr != NULL, "sanity check");
3102 if (fr->is_entry_frame()) {
3103 last_entry_frame = fr;
3104 }
3105 }
3106
3107 vf = vf->sender();
3108 is_top_frame = false;
3109 }
3110 } else {
3111 // no last java frame but there may be JNI locals
3112 blk->set_context(thread_tag, tid, 0, (jmethodID)NULL);
3113 java_thread->active_handles()->oops_do(blk);
3114 }
3115 return true;
3116 }
3117
3118
3119 // Collects the simple roots for all threads and collects all
3120 // stack roots - for each thread it walks the execution
3121 // stack to find all references and local JNI refs.
3122 inline bool VM_HeapWalkOperation::collect_stack_roots() {
3123 JNILocalRootsClosure blk;
3124 for (JavaThread* thread = Threads::first(); thread != NULL ; thread = thread->next()) {
3125 oop threadObj = thread->threadObj();
3126 if (threadObj != NULL && !thread->is_exiting() && !thread->is_hidden_from_external_view()) {
3127 // Collect the simple root for this thread before we
3128 // collect its stack roots
3129 if (!CallbackInvoker::report_simple_root(JVMTI_HEAP_REFERENCE_THREAD,
3130 threadObj)) {
3131 return false;
3132 }
3133 if (!collect_stack_roots(thread, &blk)) {
3134 return false;
3135 }
3136 }
3137 }
3138 return true;
3139 }
3140
3141 // visit an object
3142 // first mark the object as visited
3143 // second get all the outbound references from this object (in other words, all
3144 // the objects referenced by this object).
3145 //
3146 bool VM_HeapWalkOperation::visit(oop o) {
3147 // mark object as visited
3148 assert(!ObjectMarker::visited(o), "can't visit same object more than once");
3149 ObjectMarker::mark(o);
3150
3151 // instance
3152 if (o->is_instance()) {
3153 if (o->klass() == SystemDictionary::Class_klass()) {
3154 if (!java_lang_Class::is_primitive(o)) {
3155 // a java.lang.Class
3156 return iterate_over_class(o);
3157 }
3158 } else {
3159 return iterate_over_object(o);
3160 }
3161 }
3162
3163 // object array
3164 if (o->is_objArray()) {
3165 return iterate_over_array(o);
3166 }
3167
3168 // type array
3169 if (o->is_typeArray()) {
3170 return iterate_over_type_array(o);
3171 }
3172
3173 return true;
3174 }
3175
3176 void VM_HeapWalkOperation::doit() {
3177 ResourceMark rm;
3178 ObjectMarkerController marker;
3179 ClassFieldMapCacheMark cm;
3180
3181 assert(visit_stack()->is_empty(), "visit stack must be empty");
3182
3183 // the heap walk starts with an initial object or the heap roots
3184 if (initial_object().is_null()) {
3185 // If either collect_stack_roots() or collect_simple_roots()
3186 // returns false at this point, then there are no mark bits
3187 // to reset.
3188 ObjectMarker::set_needs_reset(false);
3189
3190 // Calling collect_stack_roots() before collect_simple_roots()
3191 // can result in a big performance boost for an agent that is
3192 // focused on analyzing references in the thread stacks.
3193 if (!collect_stack_roots()) return;
3194
3195 if (!collect_simple_roots()) return;
3196
3197 // no early return so enable heap traversal to reset the mark bits
3198 ObjectMarker::set_needs_reset(true);
3199 } else {
3200 visit_stack()->push(initial_object()());
3201 }
3202
3203 // object references required
3204 if (is_following_references()) {
3205
3206 // visit each object until all reachable objects have been
3207 // visited or the callback asked to terminate the iteration.
3208 while (!visit_stack()->is_empty()) {
3209 oop o = visit_stack()->pop();
3210 if (!ObjectMarker::visited(o)) {
3211 if (!visit(o)) {
3212 break;
3213 }
3214 }
3215 }
3216 }
3217 }
3218
3219 // iterate over all objects that are reachable from a set of roots
3220 void JvmtiTagMap::iterate_over_reachable_objects(jvmtiHeapRootCallback heap_root_callback,
3221 jvmtiStackReferenceCallback stack_ref_callback,
3222 jvmtiObjectReferenceCallback object_ref_callback,
3223 const void* user_data) {
3224 MutexLocker ml(Heap_lock);
3225 BasicHeapWalkContext context(heap_root_callback, stack_ref_callback, object_ref_callback);
3226 VM_HeapWalkOperation op(this, Handle(), context, user_data);
3227 VMThread::execute(&op);
3228 }
3229
3230 // iterate over all objects that are reachable from a given object
3231 void JvmtiTagMap::iterate_over_objects_reachable_from_object(jobject object,
3232 jvmtiObjectReferenceCallback object_ref_callback,
3233 const void* user_data) {
3234 oop obj = JNIHandles::resolve(object);
3235 Handle initial_object(Thread::current(), obj);
3236
3237 MutexLocker ml(Heap_lock);
3238 BasicHeapWalkContext context(NULL, NULL, object_ref_callback);
3239 VM_HeapWalkOperation op(this, initial_object, context, user_data);
3240 VMThread::execute(&op);
3241 }
3242
3243 // follow references from an initial object or the GC roots
3244 void JvmtiTagMap::follow_references(jint heap_filter,
3245 KlassHandle klass,
3246 jobject object,
3247 const jvmtiHeapCallbacks* callbacks,
3248 const void* user_data)
3249 {
3250 oop obj = JNIHandles::resolve(object);
3251 Handle initial_object(Thread::current(), obj);
3252
3253 MutexLocker ml(Heap_lock);
3254 AdvancedHeapWalkContext context(heap_filter, klass, callbacks);
3255 VM_HeapWalkOperation op(this, initial_object, context, user_data);
3256 VMThread::execute(&op);
3257 }
3258
3259
3260 void JvmtiTagMap::weak_oops_do(BoolObjectClosure* is_alive, OopClosure* f) {
3261 // No locks during VM bring-up (0 threads) and no safepoints after main
3262 // thread creation and before VMThread creation (1 thread); initial GC
3263 // verification can happen in that window which gets to here.
3264 assert(Threads::number_of_threads() <= 1 ||
3265 SafepointSynchronize::is_at_safepoint(),
3266 "must be executed at a safepoint");
3267 if (JvmtiEnv::environments_might_exist()) {
3268 JvmtiEnvIterator it;
3269 for (JvmtiEnvBase* env = it.first(); env != NULL; env = it.next(env)) {
3270 JvmtiTagMap* tag_map = env->tag_map();
3271 if (tag_map != NULL && !tag_map->is_empty()) {
3272 tag_map->do_weak_oops(is_alive, f);
3273 }
3274 }
3275 }
3276 }
3277
3278 void JvmtiTagMap::do_weak_oops(BoolObjectClosure* is_alive, OopClosure* f) {
3279
3280 // does this environment have the OBJECT_FREE event enabled
3281 bool post_object_free = env()->is_enabled(JVMTI_EVENT_OBJECT_FREE);
3282
3283 // counters used for trace message
3284 int freed = 0;
3285 int moved = 0;
3286
3287 JvmtiTagHashmap* hashmap = this->hashmap();
3288
3289 // reenable sizing (if disabled)
3290 hashmap->set_resizing_enabled(true);
3291
3292 // if the hashmap is empty then we can skip it
3293 if (hashmap->_entry_count == 0) {
3294 return;
3295 }
3296
3297 // now iterate through each entry in the table
3298
3299 JvmtiTagHashmapEntry** table = hashmap->table();
3300 int size = hashmap->size();
3301
3302 JvmtiTagHashmapEntry* delayed_add = NULL;
3303
3304 for (int pos = 0; pos < size; ++pos) {
3305 JvmtiTagHashmapEntry* entry = table[pos];
3306 JvmtiTagHashmapEntry* prev = NULL;
3307
3308 while (entry != NULL) {
3309 JvmtiTagHashmapEntry* next = entry->next();
3310
3311 oop* obj = entry->object_addr();
3312
3313 // has object been GC'ed
3314 if (!is_alive->do_object_b(entry->object())) {
3315 // grab the tag
3316 jlong tag = entry->tag();
3317 guarantee(tag != 0, "checking");
3318
3319 // remove GC'ed entry from hashmap and return the
3320 // entry to the free list
3321 hashmap->remove(prev, pos, entry);
3322 destroy_entry(entry);
3323
3324 // post the event to the profiler
3325 if (post_object_free) {
3326 JvmtiExport::post_object_free(env(), tag);
3327 }
3328
3329 ++freed;
3330 } else {
3331 f->do_oop(entry->object_addr());
3332 oop new_oop = entry->object();
3333
3334 // if the object has moved then re-hash it and move its
3335 // entry to its new location.
3336 unsigned int new_pos = JvmtiTagHashmap::hash(new_oop, size);
3337 if (new_pos != (unsigned int)pos) {
3338 if (prev == NULL) {
3339 table[pos] = next;
3340 } else {
3341 prev->set_next(next);
3342 }
3343 if (new_pos < (unsigned int)pos) {
3344 entry->set_next(table[new_pos]);
3345 table[new_pos] = entry;
3346 } else {
3347 // Delay adding this entry to it's new position as we'd end up
3348 // hitting it again during this iteration.
3349 entry->set_next(delayed_add);
3350 delayed_add = entry;
3351 }
3352 moved++;
3353 } else {
3354 // object didn't move
3355 prev = entry;
3356 }
3357 }
3358
3359 entry = next;
3360 }
3361 }
3362
3363 // Re-add all the entries which were kept aside
3364 while (delayed_add != NULL) {
3365 JvmtiTagHashmapEntry* next = delayed_add->next();
3366 unsigned int pos = JvmtiTagHashmap::hash(delayed_add->object(), size);
3367 delayed_add->set_next(table[pos]);
3368 table[pos] = delayed_add;
3369 delayed_add = next;
3370 }
3371
3372 // stats
3373 if (TraceJVMTIObjectTagging) {
3374 int post_total = hashmap->_entry_count;
3375 int pre_total = post_total + freed;
3376
3377 tty->print_cr("(%d->%d, %d freed, %d total moves)",
3378 pre_total, post_total, freed, moved);
3379 }
3380 }

mercurial