src/share/vm/opto/type.cpp

changeset 0
f90c822e73f8
child 209
994cec5b3f6f
equal deleted inserted replaced
-1:000000000000 0:f90c822e73f8
1 /*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "ci/ciMethodData.hpp"
27 #include "ci/ciTypeFlow.hpp"
28 #include "classfile/symbolTable.hpp"
29 #include "classfile/systemDictionary.hpp"
30 #include "compiler/compileLog.hpp"
31 #include "libadt/dict.hpp"
32 #include "memory/gcLocker.hpp"
33 #include "memory/oopFactory.hpp"
34 #include "memory/resourceArea.hpp"
35 #include "oops/instanceKlass.hpp"
36 #include "oops/instanceMirrorKlass.hpp"
37 #include "oops/objArrayKlass.hpp"
38 #include "oops/typeArrayKlass.hpp"
39 #include "opto/matcher.hpp"
40 #include "opto/node.hpp"
41 #include "opto/opcodes.hpp"
42 #include "opto/type.hpp"
43
44 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
45
46 // Portions of code courtesy of Clifford Click
47
48 // Optimization - Graph Style
49
50 // Dictionary of types shared among compilations.
51 Dict* Type::_shared_type_dict = NULL;
52
53 // Array which maps compiler types to Basic Types
54 Type::TypeInfo Type::_type_info[Type::lastype] = {
55 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad
56 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control
57 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top
58 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int
59 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long
60 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half
61 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop
62 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass
63 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple
64 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array
65
66 #ifdef SPARC
67 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
68 { Bad, T_ILLEGAL, "vectord:", false, Op_RegD, relocInfo::none }, // VectorD
69 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
70 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
71 #elif defined(PPC64)
72 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
73 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD
74 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
75 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
76 #else // all other
77 { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS
78 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD
79 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX
80 { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY
81 #endif
82 { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr
83 { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr
84 { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr
85 { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr
86 { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr
87 { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr
88 { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr
89 { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function
90 { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio
91 { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address
92 { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory
93 { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop
94 { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon
95 { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot
96 { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop
97 { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon
98 { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot
99 { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom
100 };
101
102 // Map ideal registers (machine types) to ideal types
103 const Type *Type::mreg2type[_last_machine_leaf];
104
105 // Map basic types to canonical Type* pointers.
106 const Type* Type:: _const_basic_type[T_CONFLICT+1];
107
108 // Map basic types to constant-zero Types.
109 const Type* Type:: _zero_type[T_CONFLICT+1];
110
111 // Map basic types to array-body alias types.
112 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
113
114 //=============================================================================
115 // Convenience common pre-built types.
116 const Type *Type::ABIO; // State-of-machine only
117 const Type *Type::BOTTOM; // All values
118 const Type *Type::CONTROL; // Control only
119 const Type *Type::DOUBLE; // All doubles
120 const Type *Type::FLOAT; // All floats
121 const Type *Type::HALF; // Placeholder half of doublewide type
122 const Type *Type::MEMORY; // Abstract store only
123 const Type *Type::RETURN_ADDRESS;
124 const Type *Type::TOP; // No values in set
125
126 //------------------------------get_const_type---------------------------
127 const Type* Type::get_const_type(ciType* type) {
128 if (type == NULL) {
129 return NULL;
130 } else if (type->is_primitive_type()) {
131 return get_const_basic_type(type->basic_type());
132 } else {
133 return TypeOopPtr::make_from_klass(type->as_klass());
134 }
135 }
136
137 //---------------------------array_element_basic_type---------------------------------
138 // Mapping to the array element's basic type.
139 BasicType Type::array_element_basic_type() const {
140 BasicType bt = basic_type();
141 if (bt == T_INT) {
142 if (this == TypeInt::INT) return T_INT;
143 if (this == TypeInt::CHAR) return T_CHAR;
144 if (this == TypeInt::BYTE) return T_BYTE;
145 if (this == TypeInt::BOOL) return T_BOOLEAN;
146 if (this == TypeInt::SHORT) return T_SHORT;
147 return T_VOID;
148 }
149 return bt;
150 }
151
152 //---------------------------get_typeflow_type---------------------------------
153 // Import a type produced by ciTypeFlow.
154 const Type* Type::get_typeflow_type(ciType* type) {
155 switch (type->basic_type()) {
156
157 case ciTypeFlow::StateVector::T_BOTTOM:
158 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
159 return Type::BOTTOM;
160
161 case ciTypeFlow::StateVector::T_TOP:
162 assert(type == ciTypeFlow::StateVector::top_type(), "");
163 return Type::TOP;
164
165 case ciTypeFlow::StateVector::T_NULL:
166 assert(type == ciTypeFlow::StateVector::null_type(), "");
167 return TypePtr::NULL_PTR;
168
169 case ciTypeFlow::StateVector::T_LONG2:
170 // The ciTypeFlow pass pushes a long, then the half.
171 // We do the same.
172 assert(type == ciTypeFlow::StateVector::long2_type(), "");
173 return TypeInt::TOP;
174
175 case ciTypeFlow::StateVector::T_DOUBLE2:
176 // The ciTypeFlow pass pushes double, then the half.
177 // Our convention is the same.
178 assert(type == ciTypeFlow::StateVector::double2_type(), "");
179 return Type::TOP;
180
181 case T_ADDRESS:
182 assert(type->is_return_address(), "");
183 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
184
185 default:
186 // make sure we did not mix up the cases:
187 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
188 assert(type != ciTypeFlow::StateVector::top_type(), "");
189 assert(type != ciTypeFlow::StateVector::null_type(), "");
190 assert(type != ciTypeFlow::StateVector::long2_type(), "");
191 assert(type != ciTypeFlow::StateVector::double2_type(), "");
192 assert(!type->is_return_address(), "");
193
194 return Type::get_const_type(type);
195 }
196 }
197
198
199 //-----------------------make_from_constant------------------------------------
200 const Type* Type::make_from_constant(ciConstant constant,
201 bool require_constant, bool is_autobox_cache) {
202 switch (constant.basic_type()) {
203 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
204 case T_CHAR: return TypeInt::make(constant.as_char());
205 case T_BYTE: return TypeInt::make(constant.as_byte());
206 case T_SHORT: return TypeInt::make(constant.as_short());
207 case T_INT: return TypeInt::make(constant.as_int());
208 case T_LONG: return TypeLong::make(constant.as_long());
209 case T_FLOAT: return TypeF::make(constant.as_float());
210 case T_DOUBLE: return TypeD::make(constant.as_double());
211 case T_ARRAY:
212 case T_OBJECT:
213 {
214 // cases:
215 // can_be_constant = (oop not scavengable || ScavengeRootsInCode != 0)
216 // should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
217 // An oop is not scavengable if it is in the perm gen.
218 ciObject* oop_constant = constant.as_object();
219 if (oop_constant->is_null_object()) {
220 return Type::get_zero_type(T_OBJECT);
221 } else if (require_constant || oop_constant->should_be_constant()) {
222 return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
223 }
224 }
225 }
226 // Fall through to failure
227 return NULL;
228 }
229
230
231 //------------------------------make-------------------------------------------
232 // Create a simple Type, with default empty symbol sets. Then hashcons it
233 // and look for an existing copy in the type dictionary.
234 const Type *Type::make( enum TYPES t ) {
235 return (new Type(t))->hashcons();
236 }
237
238 //------------------------------cmp--------------------------------------------
239 int Type::cmp( const Type *const t1, const Type *const t2 ) {
240 if( t1->_base != t2->_base )
241 return 1; // Missed badly
242 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
243 return !t1->eq(t2); // Return ZERO if equal
244 }
245
246 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
247 if (!include_speculative) {
248 return remove_speculative();
249 }
250 return this;
251 }
252
253 //------------------------------hash-------------------------------------------
254 int Type::uhash( const Type *const t ) {
255 return t->hash();
256 }
257
258 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
259
260 //--------------------------Initialize_shared----------------------------------
261 void Type::Initialize_shared(Compile* current) {
262 // This method does not need to be locked because the first system
263 // compilations (stub compilations) occur serially. If they are
264 // changed to proceed in parallel, then this section will need
265 // locking.
266
267 Arena* save = current->type_arena();
268 Arena* shared_type_arena = new (mtCompiler)Arena();
269
270 current->set_type_arena(shared_type_arena);
271 _shared_type_dict =
272 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
273 shared_type_arena, 128 );
274 current->set_type_dict(_shared_type_dict);
275
276 // Make shared pre-built types.
277 CONTROL = make(Control); // Control only
278 TOP = make(Top); // No values in set
279 MEMORY = make(Memory); // Abstract store only
280 ABIO = make(Abio); // State-of-machine only
281 RETURN_ADDRESS=make(Return_Address);
282 FLOAT = make(FloatBot); // All floats
283 DOUBLE = make(DoubleBot); // All doubles
284 BOTTOM = make(Bottom); // Everything
285 HALF = make(Half); // Placeholder half of doublewide type
286
287 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
288 TypeF::ONE = TypeF::make(1.0); // Float 1
289
290 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
291 TypeD::ONE = TypeD::make(1.0); // Double 1
292
293 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
294 TypeInt::ZERO = TypeInt::make( 0); // 0
295 TypeInt::ONE = TypeInt::make( 1); // 1
296 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
297 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
298 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
299 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
300 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
301 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
302 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
303 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
304 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
305 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
306 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
307 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
308 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
309 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
310 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
311 TypeInt::TYPE_DOMAIN = TypeInt::INT;
312 // CmpL is overloaded both as the bytecode computation returning
313 // a trinary (-1,0,+1) integer result AND as an efficient long
314 // compare returning optimizer ideal-type flags.
315 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
316 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
317 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
318 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
319 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
320
321 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
322 TypeLong::ZERO = TypeLong::make( 0); // 0
323 TypeLong::ONE = TypeLong::make( 1); // 1
324 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
325 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
326 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
327 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
328 TypeLong::TYPE_DOMAIN = TypeLong::LONG;
329
330 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
331 fboth[0] = Type::CONTROL;
332 fboth[1] = Type::CONTROL;
333 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
334
335 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
336 ffalse[0] = Type::CONTROL;
337 ffalse[1] = Type::TOP;
338 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
339
340 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
341 fneither[0] = Type::TOP;
342 fneither[1] = Type::TOP;
343 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
344
345 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
346 ftrue[0] = Type::TOP;
347 ftrue[1] = Type::CONTROL;
348 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
349
350 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
351 floop[0] = Type::CONTROL;
352 floop[1] = TypeInt::INT;
353 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
354
355 TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
356 TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
357 TypePtr::BOTTOM = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
358
359 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
360 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
361
362 const Type **fmembar = TypeTuple::fields(0);
363 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
364
365 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
366 fsc[0] = TypeInt::CC;
367 fsc[1] = Type::MEMORY;
368 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
369
370 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
371 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
372 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
373 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
374 false, 0, oopDesc::mark_offset_in_bytes());
375 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
376 false, 0, oopDesc::klass_offset_in_bytes());
377 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot, NULL);
378
379 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
380
381 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
382 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
383
384 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
385
386 mreg2type[Op_Node] = Type::BOTTOM;
387 mreg2type[Op_Set ] = 0;
388 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
389 mreg2type[Op_RegI] = TypeInt::INT;
390 mreg2type[Op_RegP] = TypePtr::BOTTOM;
391 mreg2type[Op_RegF] = Type::FLOAT;
392 mreg2type[Op_RegD] = Type::DOUBLE;
393 mreg2type[Op_RegL] = TypeLong::LONG;
394 mreg2type[Op_RegFlags] = TypeInt::CC;
395
396 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
397
398 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
399
400 #ifdef _LP64
401 if (UseCompressedOops) {
402 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
403 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
404 } else
405 #endif
406 {
407 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
408 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
409 }
410 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
411 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
412 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
413 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
414 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
415 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
416 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
417
418 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
419 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
420 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
421 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
422 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
423 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
424 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
425 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
426 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
427 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
428 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
429 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
430
431 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
432 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
433
434 const Type **fi2c = TypeTuple::fields(2);
435 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
436 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
437 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
438
439 const Type **intpair = TypeTuple::fields(2);
440 intpair[0] = TypeInt::INT;
441 intpair[1] = TypeInt::INT;
442 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
443
444 const Type **longpair = TypeTuple::fields(2);
445 longpair[0] = TypeLong::LONG;
446 longpair[1] = TypeLong::LONG;
447 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
448
449 const Type **intccpair = TypeTuple::fields(2);
450 intccpair[0] = TypeInt::INT;
451 intccpair[1] = TypeInt::CC;
452 TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
453
454 const Type **longccpair = TypeTuple::fields(2);
455 longccpair[0] = TypeLong::LONG;
456 longccpair[1] = TypeInt::CC;
457 TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
458
459 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
460 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
461 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
462 _const_basic_type[T_CHAR] = TypeInt::CHAR;
463 _const_basic_type[T_BYTE] = TypeInt::BYTE;
464 _const_basic_type[T_SHORT] = TypeInt::SHORT;
465 _const_basic_type[T_INT] = TypeInt::INT;
466 _const_basic_type[T_LONG] = TypeLong::LONG;
467 _const_basic_type[T_FLOAT] = Type::FLOAT;
468 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
469 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
470 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
471 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
472 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
473 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not?
474
475 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
476 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
477 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
478 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
479 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
480 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
481 _zero_type[T_INT] = TypeInt::ZERO;
482 _zero_type[T_LONG] = TypeLong::ZERO;
483 _zero_type[T_FLOAT] = TypeF::ZERO;
484 _zero_type[T_DOUBLE] = TypeD::ZERO;
485 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
486 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
487 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
488 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
489
490 // get_zero_type() should not happen for T_CONFLICT
491 _zero_type[T_CONFLICT]= NULL;
492
493 // Vector predefined types, it needs initialized _const_basic_type[].
494 if (Matcher::vector_size_supported(T_BYTE,4)) {
495 TypeVect::VECTS = TypeVect::make(T_BYTE,4);
496 }
497 if (Matcher::vector_size_supported(T_FLOAT,2)) {
498 TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
499 }
500 if (Matcher::vector_size_supported(T_FLOAT,4)) {
501 TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
502 }
503 if (Matcher::vector_size_supported(T_FLOAT,8)) {
504 TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
505 }
506 mreg2type[Op_VecS] = TypeVect::VECTS;
507 mreg2type[Op_VecD] = TypeVect::VECTD;
508 mreg2type[Op_VecX] = TypeVect::VECTX;
509 mreg2type[Op_VecY] = TypeVect::VECTY;
510
511 // Restore working type arena.
512 current->set_type_arena(save);
513 current->set_type_dict(NULL);
514 }
515
516 //------------------------------Initialize-------------------------------------
517 void Type::Initialize(Compile* current) {
518 assert(current->type_arena() != NULL, "must have created type arena");
519
520 if (_shared_type_dict == NULL) {
521 Initialize_shared(current);
522 }
523
524 Arena* type_arena = current->type_arena();
525
526 // Create the hash-cons'ing dictionary with top-level storage allocation
527 Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
528 current->set_type_dict(tdic);
529
530 // Transfer the shared types.
531 DictI i(_shared_type_dict);
532 for( ; i.test(); ++i ) {
533 Type* t = (Type*)i._value;
534 tdic->Insert(t,t); // New Type, insert into Type table
535 }
536 }
537
538 //------------------------------hashcons---------------------------------------
539 // Do the hash-cons trick. If the Type already exists in the type table,
540 // delete the current Type and return the existing Type. Otherwise stick the
541 // current Type in the Type table.
542 const Type *Type::hashcons(void) {
543 debug_only(base()); // Check the assertion in Type::base().
544 // Look up the Type in the Type dictionary
545 Dict *tdic = type_dict();
546 Type* old = (Type*)(tdic->Insert(this, this, false));
547 if( old ) { // Pre-existing Type?
548 if( old != this ) // Yes, this guy is not the pre-existing?
549 delete this; // Yes, Nuke this guy
550 assert( old->_dual, "" );
551 return old; // Return pre-existing
552 }
553
554 // Every type has a dual (to make my lattice symmetric).
555 // Since we just discovered a new Type, compute its dual right now.
556 assert( !_dual, "" ); // No dual yet
557 _dual = xdual(); // Compute the dual
558 if( cmp(this,_dual)==0 ) { // Handle self-symmetric
559 _dual = this;
560 return this;
561 }
562 assert( !_dual->_dual, "" ); // No reverse dual yet
563 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
564 // New Type, insert into Type table
565 tdic->Insert((void*)_dual,(void*)_dual);
566 ((Type*)_dual)->_dual = this; // Finish up being symmetric
567 #ifdef ASSERT
568 Type *dual_dual = (Type*)_dual->xdual();
569 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
570 delete dual_dual;
571 #endif
572 return this; // Return new Type
573 }
574
575 //------------------------------eq---------------------------------------------
576 // Structural equality check for Type representations
577 bool Type::eq( const Type * ) const {
578 return true; // Nothing else can go wrong
579 }
580
581 //------------------------------hash-------------------------------------------
582 // Type-specific hashing function.
583 int Type::hash(void) const {
584 return _base;
585 }
586
587 //------------------------------is_finite--------------------------------------
588 // Has a finite value
589 bool Type::is_finite() const {
590 return false;
591 }
592
593 //------------------------------is_nan-----------------------------------------
594 // Is not a number (NaN)
595 bool Type::is_nan() const {
596 return false;
597 }
598
599 //----------------------interface_vs_oop---------------------------------------
600 #ifdef ASSERT
601 bool Type::interface_vs_oop_helper(const Type *t) const {
602 bool result = false;
603
604 const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
605 const TypePtr* t_ptr = t->make_ptr();
606 if( this_ptr == NULL || t_ptr == NULL )
607 return result;
608
609 const TypeInstPtr* this_inst = this_ptr->isa_instptr();
610 const TypeInstPtr* t_inst = t_ptr->isa_instptr();
611 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
612 bool this_interface = this_inst->klass()->is_interface();
613 bool t_interface = t_inst->klass()->is_interface();
614 result = this_interface ^ t_interface;
615 }
616
617 return result;
618 }
619
620 bool Type::interface_vs_oop(const Type *t) const {
621 if (interface_vs_oop_helper(t)) {
622 return true;
623 }
624 // Now check the speculative parts as well
625 const TypeOopPtr* this_spec = isa_oopptr() != NULL ? isa_oopptr()->speculative() : NULL;
626 const TypeOopPtr* t_spec = t->isa_oopptr() != NULL ? t->isa_oopptr()->speculative() : NULL;
627 if (this_spec != NULL && t_spec != NULL) {
628 if (this_spec->interface_vs_oop_helper(t_spec)) {
629 return true;
630 }
631 return false;
632 }
633 if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
634 return true;
635 }
636 if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
637 return true;
638 }
639 return false;
640 }
641
642 #endif
643
644 //------------------------------meet-------------------------------------------
645 // Compute the MEET of two types. NOT virtual. It enforces that meet is
646 // commutative and the lattice is symmetric.
647 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
648 if (isa_narrowoop() && t->isa_narrowoop()) {
649 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
650 return result->make_narrowoop();
651 }
652 if (isa_narrowklass() && t->isa_narrowklass()) {
653 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
654 return result->make_narrowklass();
655 }
656
657 const Type *this_t = maybe_remove_speculative(include_speculative);
658 t = t->maybe_remove_speculative(include_speculative);
659
660 const Type *mt = this_t->xmeet(t);
661 if (isa_narrowoop() || t->isa_narrowoop()) return mt;
662 if (isa_narrowklass() || t->isa_narrowklass()) return mt;
663 #ifdef ASSERT
664 assert(mt == t->xmeet(this_t), "meet not commutative");
665 const Type* dual_join = mt->_dual;
666 const Type *t2t = dual_join->xmeet(t->_dual);
667 const Type *t2this = dual_join->xmeet(this_t->_dual);
668
669 // Interface meet Oop is Not Symmetric:
670 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
671 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
672
673 if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
674 tty->print_cr("=== Meet Not Symmetric ===");
675 tty->print("t = "); t->dump(); tty->cr();
676 tty->print("this= "); this_t->dump(); tty->cr();
677 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
678
679 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
680 tty->print("this_dual= "); this_t->_dual->dump(); tty->cr();
681 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
682
683 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
684 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
685
686 fatal("meet not symmetric" );
687 }
688 #endif
689 return mt;
690 }
691
692 //------------------------------xmeet------------------------------------------
693 // Compute the MEET of two types. It returns a new Type object.
694 const Type *Type::xmeet( const Type *t ) const {
695 // Perform a fast test for common case; meeting the same types together.
696 if( this == t ) return this; // Meeting same type-rep?
697
698 // Meeting TOP with anything?
699 if( _base == Top ) return t;
700
701 // Meeting BOTTOM with anything?
702 if( _base == Bottom ) return BOTTOM;
703
704 // Current "this->_base" is one of: Bad, Multi, Control, Top,
705 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
706 switch (t->base()) { // Switch on original type
707
708 // Cut in half the number of cases I must handle. Only need cases for when
709 // the given enum "t->type" is less than or equal to the local enum "type".
710 case FloatCon:
711 case DoubleCon:
712 case Int:
713 case Long:
714 return t->xmeet(this);
715
716 case OopPtr:
717 return t->xmeet(this);
718
719 case InstPtr:
720 return t->xmeet(this);
721
722 case MetadataPtr:
723 case KlassPtr:
724 return t->xmeet(this);
725
726 case AryPtr:
727 return t->xmeet(this);
728
729 case NarrowOop:
730 return t->xmeet(this);
731
732 case NarrowKlass:
733 return t->xmeet(this);
734
735 case Bad: // Type check
736 default: // Bogus type not in lattice
737 typerr(t);
738 return Type::BOTTOM;
739
740 case Bottom: // Ye Olde Default
741 return t;
742
743 case FloatTop:
744 if( _base == FloatTop ) return this;
745 case FloatBot: // Float
746 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
747 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
748 typerr(t);
749 return Type::BOTTOM;
750
751 case DoubleTop:
752 if( _base == DoubleTop ) return this;
753 case DoubleBot: // Double
754 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
755 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
756 typerr(t);
757 return Type::BOTTOM;
758
759 // These next few cases must match exactly or it is a compile-time error.
760 case Control: // Control of code
761 case Abio: // State of world outside of program
762 case Memory:
763 if( _base == t->_base ) return this;
764 typerr(t);
765 return Type::BOTTOM;
766
767 case Top: // Top of the lattice
768 return this;
769 }
770
771 // The type is unchanged
772 return this;
773 }
774
775 //-----------------------------filter------------------------------------------
776 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
777 const Type* ft = join_helper(kills, include_speculative);
778 if (ft->empty())
779 return Type::TOP; // Canonical empty value
780 return ft;
781 }
782
783 //------------------------------xdual------------------------------------------
784 // Compute dual right now.
785 const Type::TYPES Type::dual_type[Type::lastype] = {
786 Bad, // Bad
787 Control, // Control
788 Bottom, // Top
789 Bad, // Int - handled in v-call
790 Bad, // Long - handled in v-call
791 Half, // Half
792 Bad, // NarrowOop - handled in v-call
793 Bad, // NarrowKlass - handled in v-call
794
795 Bad, // Tuple - handled in v-call
796 Bad, // Array - handled in v-call
797 Bad, // VectorS - handled in v-call
798 Bad, // VectorD - handled in v-call
799 Bad, // VectorX - handled in v-call
800 Bad, // VectorY - handled in v-call
801
802 Bad, // AnyPtr - handled in v-call
803 Bad, // RawPtr - handled in v-call
804 Bad, // OopPtr - handled in v-call
805 Bad, // InstPtr - handled in v-call
806 Bad, // AryPtr - handled in v-call
807
808 Bad, // MetadataPtr - handled in v-call
809 Bad, // KlassPtr - handled in v-call
810
811 Bad, // Function - handled in v-call
812 Abio, // Abio
813 Return_Address,// Return_Address
814 Memory, // Memory
815 FloatBot, // FloatTop
816 FloatCon, // FloatCon
817 FloatTop, // FloatBot
818 DoubleBot, // DoubleTop
819 DoubleCon, // DoubleCon
820 DoubleTop, // DoubleBot
821 Top // Bottom
822 };
823
824 const Type *Type::xdual() const {
825 // Note: the base() accessor asserts the sanity of _base.
826 assert(_type_info[base()].dual_type != Bad, "implement with v-call");
827 return new Type(_type_info[_base].dual_type);
828 }
829
830 //------------------------------has_memory-------------------------------------
831 bool Type::has_memory() const {
832 Type::TYPES tx = base();
833 if (tx == Memory) return true;
834 if (tx == Tuple) {
835 const TypeTuple *t = is_tuple();
836 for (uint i=0; i < t->cnt(); i++) {
837 tx = t->field_at(i)->base();
838 if (tx == Memory) return true;
839 }
840 }
841 return false;
842 }
843
844 #ifndef PRODUCT
845 //------------------------------dump2------------------------------------------
846 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
847 st->print("%s", _type_info[_base].msg);
848 }
849
850 //------------------------------dump-------------------------------------------
851 void Type::dump_on(outputStream *st) const {
852 ResourceMark rm;
853 Dict d(cmpkey,hashkey); // Stop recursive type dumping
854 dump2(d,1, st);
855 if (is_ptr_to_narrowoop()) {
856 st->print(" [narrow]");
857 } else if (is_ptr_to_narrowklass()) {
858 st->print(" [narrowklass]");
859 }
860 }
861 #endif
862
863 //------------------------------singleton--------------------------------------
864 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
865 // constants (Ldi nodes). Singletons are integer, float or double constants.
866 bool Type::singleton(void) const {
867 return _base == Top || _base == Half;
868 }
869
870 //------------------------------empty------------------------------------------
871 // TRUE if Type is a type with no values, FALSE otherwise.
872 bool Type::empty(void) const {
873 switch (_base) {
874 case DoubleTop:
875 case FloatTop:
876 case Top:
877 return true;
878
879 case Half:
880 case Abio:
881 case Return_Address:
882 case Memory:
883 case Bottom:
884 case FloatBot:
885 case DoubleBot:
886 return false; // never a singleton, therefore never empty
887 }
888
889 ShouldNotReachHere();
890 return false;
891 }
892
893 //------------------------------dump_stats-------------------------------------
894 // Dump collected statistics to stderr
895 #ifndef PRODUCT
896 void Type::dump_stats() {
897 tty->print("Types made: %d\n", type_dict()->Size());
898 }
899 #endif
900
901 //------------------------------typerr-----------------------------------------
902 void Type::typerr( const Type *t ) const {
903 #ifndef PRODUCT
904 tty->print("\nError mixing types: ");
905 dump();
906 tty->print(" and ");
907 t->dump();
908 tty->print("\n");
909 #endif
910 ShouldNotReachHere();
911 }
912
913
914 //=============================================================================
915 // Convenience common pre-built types.
916 const TypeF *TypeF::ZERO; // Floating point zero
917 const TypeF *TypeF::ONE; // Floating point one
918
919 //------------------------------make-------------------------------------------
920 // Create a float constant
921 const TypeF *TypeF::make(float f) {
922 return (TypeF*)(new TypeF(f))->hashcons();
923 }
924
925 //------------------------------meet-------------------------------------------
926 // Compute the MEET of two types. It returns a new Type object.
927 const Type *TypeF::xmeet( const Type *t ) const {
928 // Perform a fast test for common case; meeting the same types together.
929 if( this == t ) return this; // Meeting same type-rep?
930
931 // Current "this->_base" is FloatCon
932 switch (t->base()) { // Switch on original type
933 case AnyPtr: // Mixing with oops happens when javac
934 case RawPtr: // reuses local variables
935 case OopPtr:
936 case InstPtr:
937 case AryPtr:
938 case MetadataPtr:
939 case KlassPtr:
940 case NarrowOop:
941 case NarrowKlass:
942 case Int:
943 case Long:
944 case DoubleTop:
945 case DoubleCon:
946 case DoubleBot:
947 case Bottom: // Ye Olde Default
948 return Type::BOTTOM;
949
950 case FloatBot:
951 return t;
952
953 default: // All else is a mistake
954 typerr(t);
955
956 case FloatCon: // Float-constant vs Float-constant?
957 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
958 // must compare bitwise as positive zero, negative zero and NaN have
959 // all the same representation in C++
960 return FLOAT; // Return generic float
961 // Equal constants
962 case Top:
963 case FloatTop:
964 break; // Return the float constant
965 }
966 return this; // Return the float constant
967 }
968
969 //------------------------------xdual------------------------------------------
970 // Dual: symmetric
971 const Type *TypeF::xdual() const {
972 return this;
973 }
974
975 //------------------------------eq---------------------------------------------
976 // Structural equality check for Type representations
977 bool TypeF::eq( const Type *t ) const {
978 if( g_isnan(_f) ||
979 g_isnan(t->getf()) ) {
980 // One or both are NANs. If both are NANs return true, else false.
981 return (g_isnan(_f) && g_isnan(t->getf()));
982 }
983 if (_f == t->getf()) {
984 // (NaN is impossible at this point, since it is not equal even to itself)
985 if (_f == 0.0) {
986 // difference between positive and negative zero
987 if (jint_cast(_f) != jint_cast(t->getf())) return false;
988 }
989 return true;
990 }
991 return false;
992 }
993
994 //------------------------------hash-------------------------------------------
995 // Type-specific hashing function.
996 int TypeF::hash(void) const {
997 return *(int*)(&_f);
998 }
999
1000 //------------------------------is_finite--------------------------------------
1001 // Has a finite value
1002 bool TypeF::is_finite() const {
1003 return g_isfinite(getf()) != 0;
1004 }
1005
1006 //------------------------------is_nan-----------------------------------------
1007 // Is not a number (NaN)
1008 bool TypeF::is_nan() const {
1009 return g_isnan(getf()) != 0;
1010 }
1011
1012 //------------------------------dump2------------------------------------------
1013 // Dump float constant Type
1014 #ifndef PRODUCT
1015 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1016 Type::dump2(d,depth, st);
1017 st->print("%f", _f);
1018 }
1019 #endif
1020
1021 //------------------------------singleton--------------------------------------
1022 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
1023 // constants (Ldi nodes). Singletons are integer, float or double constants
1024 // or a single symbol.
1025 bool TypeF::singleton(void) const {
1026 return true; // Always a singleton
1027 }
1028
1029 bool TypeF::empty(void) const {
1030 return false; // always exactly a singleton
1031 }
1032
1033 //=============================================================================
1034 // Convenience common pre-built types.
1035 const TypeD *TypeD::ZERO; // Floating point zero
1036 const TypeD *TypeD::ONE; // Floating point one
1037
1038 //------------------------------make-------------------------------------------
1039 const TypeD *TypeD::make(double d) {
1040 return (TypeD*)(new TypeD(d))->hashcons();
1041 }
1042
1043 //------------------------------meet-------------------------------------------
1044 // Compute the MEET of two types. It returns a new Type object.
1045 const Type *TypeD::xmeet( const Type *t ) const {
1046 // Perform a fast test for common case; meeting the same types together.
1047 if( this == t ) return this; // Meeting same type-rep?
1048
1049 // Current "this->_base" is DoubleCon
1050 switch (t->base()) { // Switch on original type
1051 case AnyPtr: // Mixing with oops happens when javac
1052 case RawPtr: // reuses local variables
1053 case OopPtr:
1054 case InstPtr:
1055 case AryPtr:
1056 case MetadataPtr:
1057 case KlassPtr:
1058 case NarrowOop:
1059 case NarrowKlass:
1060 case Int:
1061 case Long:
1062 case FloatTop:
1063 case FloatCon:
1064 case FloatBot:
1065 case Bottom: // Ye Olde Default
1066 return Type::BOTTOM;
1067
1068 case DoubleBot:
1069 return t;
1070
1071 default: // All else is a mistake
1072 typerr(t);
1073
1074 case DoubleCon: // Double-constant vs Double-constant?
1075 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
1076 return DOUBLE; // Return generic double
1077 case Top:
1078 case DoubleTop:
1079 break;
1080 }
1081 return this; // Return the double constant
1082 }
1083
1084 //------------------------------xdual------------------------------------------
1085 // Dual: symmetric
1086 const Type *TypeD::xdual() const {
1087 return this;
1088 }
1089
1090 //------------------------------eq---------------------------------------------
1091 // Structural equality check for Type representations
1092 bool TypeD::eq( const Type *t ) const {
1093 if( g_isnan(_d) ||
1094 g_isnan(t->getd()) ) {
1095 // One or both are NANs. If both are NANs return true, else false.
1096 return (g_isnan(_d) && g_isnan(t->getd()));
1097 }
1098 if (_d == t->getd()) {
1099 // (NaN is impossible at this point, since it is not equal even to itself)
1100 if (_d == 0.0) {
1101 // difference between positive and negative zero
1102 if (jlong_cast(_d) != jlong_cast(t->getd())) return false;
1103 }
1104 return true;
1105 }
1106 return false;
1107 }
1108
1109 //------------------------------hash-------------------------------------------
1110 // Type-specific hashing function.
1111 int TypeD::hash(void) const {
1112 return *(int*)(&_d);
1113 }
1114
1115 //------------------------------is_finite--------------------------------------
1116 // Has a finite value
1117 bool TypeD::is_finite() const {
1118 return g_isfinite(getd()) != 0;
1119 }
1120
1121 //------------------------------is_nan-----------------------------------------
1122 // Is not a number (NaN)
1123 bool TypeD::is_nan() const {
1124 return g_isnan(getd()) != 0;
1125 }
1126
1127 //------------------------------dump2------------------------------------------
1128 // Dump double constant Type
1129 #ifndef PRODUCT
1130 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1131 Type::dump2(d,depth,st);
1132 st->print("%f", _d);
1133 }
1134 #endif
1135
1136 //------------------------------singleton--------------------------------------
1137 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
1138 // constants (Ldi nodes). Singletons are integer, float or double constants
1139 // or a single symbol.
1140 bool TypeD::singleton(void) const {
1141 return true; // Always a singleton
1142 }
1143
1144 bool TypeD::empty(void) const {
1145 return false; // always exactly a singleton
1146 }
1147
1148 //=============================================================================
1149 // Convience common pre-built types.
1150 const TypeInt *TypeInt::MINUS_1;// -1
1151 const TypeInt *TypeInt::ZERO; // 0
1152 const TypeInt *TypeInt::ONE; // 1
1153 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
1154 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
1155 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
1156 const TypeInt *TypeInt::CC_GT; // [1] == ONE
1157 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
1158 const TypeInt *TypeInt::CC_LE; // [-1,0]
1159 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
1160 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
1161 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
1162 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
1163 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
1164 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
1165 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
1166 const TypeInt *TypeInt::INT; // 32-bit integers
1167 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1168 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1169
1170 //------------------------------TypeInt----------------------------------------
1171 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1172 }
1173
1174 //------------------------------make-------------------------------------------
1175 const TypeInt *TypeInt::make( jint lo ) {
1176 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1177 }
1178
1179 static int normalize_int_widen( jint lo, jint hi, int w ) {
1180 // Certain normalizations keep us sane when comparing types.
1181 // The 'SMALLINT' covers constants and also CC and its relatives.
1182 if (lo <= hi) {
1183 if ((juint)(hi - lo) <= SMALLINT) w = Type::WidenMin;
1184 if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1185 } else {
1186 if ((juint)(lo - hi) <= SMALLINT) w = Type::WidenMin;
1187 if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1188 }
1189 return w;
1190 }
1191
1192 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1193 w = normalize_int_widen(lo, hi, w);
1194 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1195 }
1196
1197 //------------------------------meet-------------------------------------------
1198 // Compute the MEET of two types. It returns a new Type representation object
1199 // with reference count equal to the number of Types pointing at it.
1200 // Caller should wrap a Types around it.
1201 const Type *TypeInt::xmeet( const Type *t ) const {
1202 // Perform a fast test for common case; meeting the same types together.
1203 if( this == t ) return this; // Meeting same type?
1204
1205 // Currently "this->_base" is a TypeInt
1206 switch (t->base()) { // Switch on original type
1207 case AnyPtr: // Mixing with oops happens when javac
1208 case RawPtr: // reuses local variables
1209 case OopPtr:
1210 case InstPtr:
1211 case AryPtr:
1212 case MetadataPtr:
1213 case KlassPtr:
1214 case NarrowOop:
1215 case NarrowKlass:
1216 case Long:
1217 case FloatTop:
1218 case FloatCon:
1219 case FloatBot:
1220 case DoubleTop:
1221 case DoubleCon:
1222 case DoubleBot:
1223 case Bottom: // Ye Olde Default
1224 return Type::BOTTOM;
1225 default: // All else is a mistake
1226 typerr(t);
1227 case Top: // No change
1228 return this;
1229 case Int: // Int vs Int?
1230 break;
1231 }
1232
1233 // Expand covered set
1234 const TypeInt *r = t->is_int();
1235 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1236 }
1237
1238 //------------------------------xdual------------------------------------------
1239 // Dual: reverse hi & lo; flip widen
1240 const Type *TypeInt::xdual() const {
1241 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1242 return new TypeInt(_hi,_lo,w);
1243 }
1244
1245 //------------------------------widen------------------------------------------
1246 // Only happens for optimistic top-down optimizations.
1247 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1248 // Coming from TOP or such; no widening
1249 if( old->base() != Int ) return this;
1250 const TypeInt *ot = old->is_int();
1251
1252 // If new guy is equal to old guy, no widening
1253 if( _lo == ot->_lo && _hi == ot->_hi )
1254 return old;
1255
1256 // If new guy contains old, then we widened
1257 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1258 // New contains old
1259 // If new guy is already wider than old, no widening
1260 if( _widen > ot->_widen ) return this;
1261 // If old guy was a constant, do not bother
1262 if (ot->_lo == ot->_hi) return this;
1263 // Now widen new guy.
1264 // Check for widening too far
1265 if (_widen == WidenMax) {
1266 int max = max_jint;
1267 int min = min_jint;
1268 if (limit->isa_int()) {
1269 max = limit->is_int()->_hi;
1270 min = limit->is_int()->_lo;
1271 }
1272 if (min < _lo && _hi < max) {
1273 // If neither endpoint is extremal yet, push out the endpoint
1274 // which is closer to its respective limit.
1275 if (_lo >= 0 || // easy common case
1276 (juint)(_lo - min) >= (juint)(max - _hi)) {
1277 // Try to widen to an unsigned range type of 31 bits:
1278 return make(_lo, max, WidenMax);
1279 } else {
1280 return make(min, _hi, WidenMax);
1281 }
1282 }
1283 return TypeInt::INT;
1284 }
1285 // Returned widened new guy
1286 return make(_lo,_hi,_widen+1);
1287 }
1288
1289 // If old guy contains new, then we probably widened too far & dropped to
1290 // bottom. Return the wider fellow.
1291 if ( ot->_lo <= _lo && ot->_hi >= _hi )
1292 return old;
1293
1294 //fatal("Integer value range is not subset");
1295 //return this;
1296 return TypeInt::INT;
1297 }
1298
1299 //------------------------------narrow---------------------------------------
1300 // Only happens for pessimistic optimizations.
1301 const Type *TypeInt::narrow( const Type *old ) const {
1302 if (_lo >= _hi) return this; // already narrow enough
1303 if (old == NULL) return this;
1304 const TypeInt* ot = old->isa_int();
1305 if (ot == NULL) return this;
1306 jint olo = ot->_lo;
1307 jint ohi = ot->_hi;
1308
1309 // If new guy is equal to old guy, no narrowing
1310 if (_lo == olo && _hi == ohi) return old;
1311
1312 // If old guy was maximum range, allow the narrowing
1313 if (olo == min_jint && ohi == max_jint) return this;
1314
1315 if (_lo < olo || _hi > ohi)
1316 return this; // doesn't narrow; pretty wierd
1317
1318 // The new type narrows the old type, so look for a "death march".
1319 // See comments on PhaseTransform::saturate.
1320 juint nrange = _hi - _lo;
1321 juint orange = ohi - olo;
1322 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1323 // Use the new type only if the range shrinks a lot.
1324 // We do not want the optimizer computing 2^31 point by point.
1325 return old;
1326 }
1327
1328 return this;
1329 }
1330
1331 //-----------------------------filter------------------------------------------
1332 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1333 const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1334 if (ft == NULL || ft->empty())
1335 return Type::TOP; // Canonical empty value
1336 if (ft->_widen < this->_widen) {
1337 // Do not allow the value of kill->_widen to affect the outcome.
1338 // The widen bits must be allowed to run freely through the graph.
1339 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1340 }
1341 return ft;
1342 }
1343
1344 //------------------------------eq---------------------------------------------
1345 // Structural equality check for Type representations
1346 bool TypeInt::eq( const Type *t ) const {
1347 const TypeInt *r = t->is_int(); // Handy access
1348 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1349 }
1350
1351 //------------------------------hash-------------------------------------------
1352 // Type-specific hashing function.
1353 int TypeInt::hash(void) const {
1354 return _lo+_hi+_widen+(int)Type::Int;
1355 }
1356
1357 //------------------------------is_finite--------------------------------------
1358 // Has a finite value
1359 bool TypeInt::is_finite() const {
1360 return true;
1361 }
1362
1363 //------------------------------dump2------------------------------------------
1364 // Dump TypeInt
1365 #ifndef PRODUCT
1366 static const char* intname(char* buf, jint n) {
1367 if (n == min_jint)
1368 return "min";
1369 else if (n < min_jint + 10000)
1370 sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1371 else if (n == max_jint)
1372 return "max";
1373 else if (n > max_jint - 10000)
1374 sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1375 else
1376 sprintf(buf, INT32_FORMAT, n);
1377 return buf;
1378 }
1379
1380 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1381 char buf[40], buf2[40];
1382 if (_lo == min_jint && _hi == max_jint)
1383 st->print("int");
1384 else if (is_con())
1385 st->print("int:%s", intname(buf, get_con()));
1386 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1387 st->print("bool");
1388 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1389 st->print("byte");
1390 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1391 st->print("char");
1392 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1393 st->print("short");
1394 else if (_hi == max_jint)
1395 st->print("int:>=%s", intname(buf, _lo));
1396 else if (_lo == min_jint)
1397 st->print("int:<=%s", intname(buf, _hi));
1398 else
1399 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1400
1401 if (_widen != 0 && this != TypeInt::INT)
1402 st->print(":%.*s", _widen, "wwww");
1403 }
1404 #endif
1405
1406 //------------------------------singleton--------------------------------------
1407 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
1408 // constants.
1409 bool TypeInt::singleton(void) const {
1410 return _lo >= _hi;
1411 }
1412
1413 bool TypeInt::empty(void) const {
1414 return _lo > _hi;
1415 }
1416
1417 //=============================================================================
1418 // Convenience common pre-built types.
1419 const TypeLong *TypeLong::MINUS_1;// -1
1420 const TypeLong *TypeLong::ZERO; // 0
1421 const TypeLong *TypeLong::ONE; // 1
1422 const TypeLong *TypeLong::POS; // >=0
1423 const TypeLong *TypeLong::LONG; // 64-bit integers
1424 const TypeLong *TypeLong::INT; // 32-bit subrange
1425 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1426 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1427
1428 //------------------------------TypeLong---------------------------------------
1429 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1430 }
1431
1432 //------------------------------make-------------------------------------------
1433 const TypeLong *TypeLong::make( jlong lo ) {
1434 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1435 }
1436
1437 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1438 // Certain normalizations keep us sane when comparing types.
1439 // The 'SMALLINT' covers constants.
1440 if (lo <= hi) {
1441 if ((julong)(hi - lo) <= SMALLINT) w = Type::WidenMin;
1442 if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1443 } else {
1444 if ((julong)(lo - hi) <= SMALLINT) w = Type::WidenMin;
1445 if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1446 }
1447 return w;
1448 }
1449
1450 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1451 w = normalize_long_widen(lo, hi, w);
1452 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1453 }
1454
1455
1456 //------------------------------meet-------------------------------------------
1457 // Compute the MEET of two types. It returns a new Type representation object
1458 // with reference count equal to the number of Types pointing at it.
1459 // Caller should wrap a Types around it.
1460 const Type *TypeLong::xmeet( const Type *t ) const {
1461 // Perform a fast test for common case; meeting the same types together.
1462 if( this == t ) return this; // Meeting same type?
1463
1464 // Currently "this->_base" is a TypeLong
1465 switch (t->base()) { // Switch on original type
1466 case AnyPtr: // Mixing with oops happens when javac
1467 case RawPtr: // reuses local variables
1468 case OopPtr:
1469 case InstPtr:
1470 case AryPtr:
1471 case MetadataPtr:
1472 case KlassPtr:
1473 case NarrowOop:
1474 case NarrowKlass:
1475 case Int:
1476 case FloatTop:
1477 case FloatCon:
1478 case FloatBot:
1479 case DoubleTop:
1480 case DoubleCon:
1481 case DoubleBot:
1482 case Bottom: // Ye Olde Default
1483 return Type::BOTTOM;
1484 default: // All else is a mistake
1485 typerr(t);
1486 case Top: // No change
1487 return this;
1488 case Long: // Long vs Long?
1489 break;
1490 }
1491
1492 // Expand covered set
1493 const TypeLong *r = t->is_long(); // Turn into a TypeLong
1494 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1495 }
1496
1497 //------------------------------xdual------------------------------------------
1498 // Dual: reverse hi & lo; flip widen
1499 const Type *TypeLong::xdual() const {
1500 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1501 return new TypeLong(_hi,_lo,w);
1502 }
1503
1504 //------------------------------widen------------------------------------------
1505 // Only happens for optimistic top-down optimizations.
1506 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1507 // Coming from TOP or such; no widening
1508 if( old->base() != Long ) return this;
1509 const TypeLong *ot = old->is_long();
1510
1511 // If new guy is equal to old guy, no widening
1512 if( _lo == ot->_lo && _hi == ot->_hi )
1513 return old;
1514
1515 // If new guy contains old, then we widened
1516 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1517 // New contains old
1518 // If new guy is already wider than old, no widening
1519 if( _widen > ot->_widen ) return this;
1520 // If old guy was a constant, do not bother
1521 if (ot->_lo == ot->_hi) return this;
1522 // Now widen new guy.
1523 // Check for widening too far
1524 if (_widen == WidenMax) {
1525 jlong max = max_jlong;
1526 jlong min = min_jlong;
1527 if (limit->isa_long()) {
1528 max = limit->is_long()->_hi;
1529 min = limit->is_long()->_lo;
1530 }
1531 if (min < _lo && _hi < max) {
1532 // If neither endpoint is extremal yet, push out the endpoint
1533 // which is closer to its respective limit.
1534 if (_lo >= 0 || // easy common case
1535 (julong)(_lo - min) >= (julong)(max - _hi)) {
1536 // Try to widen to an unsigned range type of 32/63 bits:
1537 if (max >= max_juint && _hi < max_juint)
1538 return make(_lo, max_juint, WidenMax);
1539 else
1540 return make(_lo, max, WidenMax);
1541 } else {
1542 return make(min, _hi, WidenMax);
1543 }
1544 }
1545 return TypeLong::LONG;
1546 }
1547 // Returned widened new guy
1548 return make(_lo,_hi,_widen+1);
1549 }
1550
1551 // If old guy contains new, then we probably widened too far & dropped to
1552 // bottom. Return the wider fellow.
1553 if ( ot->_lo <= _lo && ot->_hi >= _hi )
1554 return old;
1555
1556 // fatal("Long value range is not subset");
1557 // return this;
1558 return TypeLong::LONG;
1559 }
1560
1561 //------------------------------narrow----------------------------------------
1562 // Only happens for pessimistic optimizations.
1563 const Type *TypeLong::narrow( const Type *old ) const {
1564 if (_lo >= _hi) return this; // already narrow enough
1565 if (old == NULL) return this;
1566 const TypeLong* ot = old->isa_long();
1567 if (ot == NULL) return this;
1568 jlong olo = ot->_lo;
1569 jlong ohi = ot->_hi;
1570
1571 // If new guy is equal to old guy, no narrowing
1572 if (_lo == olo && _hi == ohi) return old;
1573
1574 // If old guy was maximum range, allow the narrowing
1575 if (olo == min_jlong && ohi == max_jlong) return this;
1576
1577 if (_lo < olo || _hi > ohi)
1578 return this; // doesn't narrow; pretty wierd
1579
1580 // The new type narrows the old type, so look for a "death march".
1581 // See comments on PhaseTransform::saturate.
1582 julong nrange = _hi - _lo;
1583 julong orange = ohi - olo;
1584 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1585 // Use the new type only if the range shrinks a lot.
1586 // We do not want the optimizer computing 2^31 point by point.
1587 return old;
1588 }
1589
1590 return this;
1591 }
1592
1593 //-----------------------------filter------------------------------------------
1594 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1595 const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1596 if (ft == NULL || ft->empty())
1597 return Type::TOP; // Canonical empty value
1598 if (ft->_widen < this->_widen) {
1599 // Do not allow the value of kill->_widen to affect the outcome.
1600 // The widen bits must be allowed to run freely through the graph.
1601 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1602 }
1603 return ft;
1604 }
1605
1606 //------------------------------eq---------------------------------------------
1607 // Structural equality check for Type representations
1608 bool TypeLong::eq( const Type *t ) const {
1609 const TypeLong *r = t->is_long(); // Handy access
1610 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1611 }
1612
1613 //------------------------------hash-------------------------------------------
1614 // Type-specific hashing function.
1615 int TypeLong::hash(void) const {
1616 return (int)(_lo+_hi+_widen+(int)Type::Long);
1617 }
1618
1619 //------------------------------is_finite--------------------------------------
1620 // Has a finite value
1621 bool TypeLong::is_finite() const {
1622 return true;
1623 }
1624
1625 //------------------------------dump2------------------------------------------
1626 // Dump TypeLong
1627 #ifndef PRODUCT
1628 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1629 if (n > x) {
1630 if (n >= x + 10000) return NULL;
1631 sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1632 } else if (n < x) {
1633 if (n <= x - 10000) return NULL;
1634 sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1635 } else {
1636 return xname;
1637 }
1638 return buf;
1639 }
1640
1641 static const char* longname(char* buf, jlong n) {
1642 const char* str;
1643 if (n == min_jlong)
1644 return "min";
1645 else if (n < min_jlong + 10000)
1646 sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1647 else if (n == max_jlong)
1648 return "max";
1649 else if (n > max_jlong - 10000)
1650 sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1651 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1652 return str;
1653 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1654 return str;
1655 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1656 return str;
1657 else
1658 sprintf(buf, JLONG_FORMAT, n);
1659 return buf;
1660 }
1661
1662 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1663 char buf[80], buf2[80];
1664 if (_lo == min_jlong && _hi == max_jlong)
1665 st->print("long");
1666 else if (is_con())
1667 st->print("long:%s", longname(buf, get_con()));
1668 else if (_hi == max_jlong)
1669 st->print("long:>=%s", longname(buf, _lo));
1670 else if (_lo == min_jlong)
1671 st->print("long:<=%s", longname(buf, _hi));
1672 else
1673 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1674
1675 if (_widen != 0 && this != TypeLong::LONG)
1676 st->print(":%.*s", _widen, "wwww");
1677 }
1678 #endif
1679
1680 //------------------------------singleton--------------------------------------
1681 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
1682 // constants
1683 bool TypeLong::singleton(void) const {
1684 return _lo >= _hi;
1685 }
1686
1687 bool TypeLong::empty(void) const {
1688 return _lo > _hi;
1689 }
1690
1691 //=============================================================================
1692 // Convenience common pre-built types.
1693 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
1694 const TypeTuple *TypeTuple::IFFALSE;
1695 const TypeTuple *TypeTuple::IFTRUE;
1696 const TypeTuple *TypeTuple::IFNEITHER;
1697 const TypeTuple *TypeTuple::LOOPBODY;
1698 const TypeTuple *TypeTuple::MEMBAR;
1699 const TypeTuple *TypeTuple::STORECONDITIONAL;
1700 const TypeTuple *TypeTuple::START_I2C;
1701 const TypeTuple *TypeTuple::INT_PAIR;
1702 const TypeTuple *TypeTuple::LONG_PAIR;
1703 const TypeTuple *TypeTuple::INT_CC_PAIR;
1704 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1705
1706
1707 //------------------------------make-------------------------------------------
1708 // Make a TypeTuple from the range of a method signature
1709 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1710 ciType* return_type = sig->return_type();
1711 uint total_fields = TypeFunc::Parms + return_type->size();
1712 const Type **field_array = fields(total_fields);
1713 switch (return_type->basic_type()) {
1714 case T_LONG:
1715 field_array[TypeFunc::Parms] = TypeLong::LONG;
1716 field_array[TypeFunc::Parms+1] = Type::HALF;
1717 break;
1718 case T_DOUBLE:
1719 field_array[TypeFunc::Parms] = Type::DOUBLE;
1720 field_array[TypeFunc::Parms+1] = Type::HALF;
1721 break;
1722 case T_OBJECT:
1723 case T_ARRAY:
1724 case T_BOOLEAN:
1725 case T_CHAR:
1726 case T_FLOAT:
1727 case T_BYTE:
1728 case T_SHORT:
1729 case T_INT:
1730 field_array[TypeFunc::Parms] = get_const_type(return_type);
1731 break;
1732 case T_VOID:
1733 break;
1734 default:
1735 ShouldNotReachHere();
1736 }
1737 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1738 }
1739
1740 // Make a TypeTuple from the domain of a method signature
1741 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1742 uint total_fields = TypeFunc::Parms + sig->size();
1743
1744 uint pos = TypeFunc::Parms;
1745 const Type **field_array;
1746 if (recv != NULL) {
1747 total_fields++;
1748 field_array = fields(total_fields);
1749 // Use get_const_type here because it respects UseUniqueSubclasses:
1750 field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1751 } else {
1752 field_array = fields(total_fields);
1753 }
1754
1755 int i = 0;
1756 while (pos < total_fields) {
1757 ciType* type = sig->type_at(i);
1758
1759 switch (type->basic_type()) {
1760 case T_LONG:
1761 field_array[pos++] = TypeLong::LONG;
1762 field_array[pos++] = Type::HALF;
1763 break;
1764 case T_DOUBLE:
1765 field_array[pos++] = Type::DOUBLE;
1766 field_array[pos++] = Type::HALF;
1767 break;
1768 case T_OBJECT:
1769 case T_ARRAY:
1770 case T_BOOLEAN:
1771 case T_CHAR:
1772 case T_FLOAT:
1773 case T_BYTE:
1774 case T_SHORT:
1775 case T_INT:
1776 field_array[pos++] = get_const_type(type);
1777 break;
1778 default:
1779 ShouldNotReachHere();
1780 }
1781 i++;
1782 }
1783 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1784 }
1785
1786 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1787 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1788 }
1789
1790 //------------------------------fields-----------------------------------------
1791 // Subroutine call type with space allocated for argument types
1792 const Type **TypeTuple::fields( uint arg_cnt ) {
1793 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1794 flds[TypeFunc::Control ] = Type::CONTROL;
1795 flds[TypeFunc::I_O ] = Type::ABIO;
1796 flds[TypeFunc::Memory ] = Type::MEMORY;
1797 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1798 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1799
1800 return flds;
1801 }
1802
1803 //------------------------------meet-------------------------------------------
1804 // Compute the MEET of two types. It returns a new Type object.
1805 const Type *TypeTuple::xmeet( const Type *t ) const {
1806 // Perform a fast test for common case; meeting the same types together.
1807 if( this == t ) return this; // Meeting same type-rep?
1808
1809 // Current "this->_base" is Tuple
1810 switch (t->base()) { // switch on original type
1811
1812 case Bottom: // Ye Olde Default
1813 return t;
1814
1815 default: // All else is a mistake
1816 typerr(t);
1817
1818 case Tuple: { // Meeting 2 signatures?
1819 const TypeTuple *x = t->is_tuple();
1820 assert( _cnt == x->_cnt, "" );
1821 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1822 for( uint i=0; i<_cnt; i++ )
1823 fields[i] = field_at(i)->xmeet( x->field_at(i) );
1824 return TypeTuple::make(_cnt,fields);
1825 }
1826 case Top:
1827 break;
1828 }
1829 return this; // Return the double constant
1830 }
1831
1832 //------------------------------xdual------------------------------------------
1833 // Dual: compute field-by-field dual
1834 const Type *TypeTuple::xdual() const {
1835 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1836 for( uint i=0; i<_cnt; i++ )
1837 fields[i] = _fields[i]->dual();
1838 return new TypeTuple(_cnt,fields);
1839 }
1840
1841 //------------------------------eq---------------------------------------------
1842 // Structural equality check for Type representations
1843 bool TypeTuple::eq( const Type *t ) const {
1844 const TypeTuple *s = (const TypeTuple *)t;
1845 if (_cnt != s->_cnt) return false; // Unequal field counts
1846 for (uint i = 0; i < _cnt; i++)
1847 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
1848 return false; // Missed
1849 return true;
1850 }
1851
1852 //------------------------------hash-------------------------------------------
1853 // Type-specific hashing function.
1854 int TypeTuple::hash(void) const {
1855 intptr_t sum = _cnt;
1856 for( uint i=0; i<_cnt; i++ )
1857 sum += (intptr_t)_fields[i]; // Hash on pointers directly
1858 return sum;
1859 }
1860
1861 //------------------------------dump2------------------------------------------
1862 // Dump signature Type
1863 #ifndef PRODUCT
1864 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1865 st->print("{");
1866 if( !depth || d[this] ) { // Check for recursive print
1867 st->print("...}");
1868 return;
1869 }
1870 d.Insert((void*)this, (void*)this); // Stop recursion
1871 if( _cnt ) {
1872 uint i;
1873 for( i=0; i<_cnt-1; i++ ) {
1874 st->print("%d:", i);
1875 _fields[i]->dump2(d, depth-1, st);
1876 st->print(", ");
1877 }
1878 st->print("%d:", i);
1879 _fields[i]->dump2(d, depth-1, st);
1880 }
1881 st->print("}");
1882 }
1883 #endif
1884
1885 //------------------------------singleton--------------------------------------
1886 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
1887 // constants (Ldi nodes). Singletons are integer, float or double constants
1888 // or a single symbol.
1889 bool TypeTuple::singleton(void) const {
1890 return false; // Never a singleton
1891 }
1892
1893 bool TypeTuple::empty(void) const {
1894 for( uint i=0; i<_cnt; i++ ) {
1895 if (_fields[i]->empty()) return true;
1896 }
1897 return false;
1898 }
1899
1900 //=============================================================================
1901 // Convenience common pre-built types.
1902
1903 inline const TypeInt* normalize_array_size(const TypeInt* size) {
1904 // Certain normalizations keep us sane when comparing types.
1905 // We do not want arrayOop variables to differ only by the wideness
1906 // of their index types. Pick minimum wideness, since that is the
1907 // forced wideness of small ranges anyway.
1908 if (size->_widen != Type::WidenMin)
1909 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1910 else
1911 return size;
1912 }
1913
1914 //------------------------------make-------------------------------------------
1915 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
1916 if (UseCompressedOops && elem->isa_oopptr()) {
1917 elem = elem->make_narrowoop();
1918 }
1919 size = normalize_array_size(size);
1920 return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
1921 }
1922
1923 //------------------------------meet-------------------------------------------
1924 // Compute the MEET of two types. It returns a new Type object.
1925 const Type *TypeAry::xmeet( const Type *t ) const {
1926 // Perform a fast test for common case; meeting the same types together.
1927 if( this == t ) return this; // Meeting same type-rep?
1928
1929 // Current "this->_base" is Ary
1930 switch (t->base()) { // switch on original type
1931
1932 case Bottom: // Ye Olde Default
1933 return t;
1934
1935 default: // All else is a mistake
1936 typerr(t);
1937
1938 case Array: { // Meeting 2 arrays?
1939 const TypeAry *a = t->is_ary();
1940 return TypeAry::make(_elem->meet_speculative(a->_elem),
1941 _size->xmeet(a->_size)->is_int(),
1942 _stable & a->_stable);
1943 }
1944 case Top:
1945 break;
1946 }
1947 return this; // Return the double constant
1948 }
1949
1950 //------------------------------xdual------------------------------------------
1951 // Dual: compute field-by-field dual
1952 const Type *TypeAry::xdual() const {
1953 const TypeInt* size_dual = _size->dual()->is_int();
1954 size_dual = normalize_array_size(size_dual);
1955 return new TypeAry(_elem->dual(), size_dual, !_stable);
1956 }
1957
1958 //------------------------------eq---------------------------------------------
1959 // Structural equality check for Type representations
1960 bool TypeAry::eq( const Type *t ) const {
1961 const TypeAry *a = (const TypeAry*)t;
1962 return _elem == a->_elem &&
1963 _stable == a->_stable &&
1964 _size == a->_size;
1965 }
1966
1967 //------------------------------hash-------------------------------------------
1968 // Type-specific hashing function.
1969 int TypeAry::hash(void) const {
1970 return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
1971 }
1972
1973 /**
1974 * Return same type without a speculative part in the element
1975 */
1976 const Type* TypeAry::remove_speculative() const {
1977 return make(_elem->remove_speculative(), _size, _stable);
1978 }
1979
1980 //----------------------interface_vs_oop---------------------------------------
1981 #ifdef ASSERT
1982 bool TypeAry::interface_vs_oop(const Type *t) const {
1983 const TypeAry* t_ary = t->is_ary();
1984 if (t_ary) {
1985 return _elem->interface_vs_oop(t_ary->_elem);
1986 }
1987 return false;
1988 }
1989 #endif
1990
1991 //------------------------------dump2------------------------------------------
1992 #ifndef PRODUCT
1993 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
1994 if (_stable) st->print("stable:");
1995 _elem->dump2(d, depth, st);
1996 st->print("[");
1997 _size->dump2(d, depth, st);
1998 st->print("]");
1999 }
2000 #endif
2001
2002 //------------------------------singleton--------------------------------------
2003 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
2004 // constants (Ldi nodes). Singletons are integer, float or double constants
2005 // or a single symbol.
2006 bool TypeAry::singleton(void) const {
2007 return false; // Never a singleton
2008 }
2009
2010 bool TypeAry::empty(void) const {
2011 return _elem->empty() || _size->empty();
2012 }
2013
2014 //--------------------------ary_must_be_exact----------------------------------
2015 bool TypeAry::ary_must_be_exact() const {
2016 if (!UseExactTypes) return false;
2017 // This logic looks at the element type of an array, and returns true
2018 // if the element type is either a primitive or a final instance class.
2019 // In such cases, an array built on this ary must have no subclasses.
2020 if (_elem == BOTTOM) return false; // general array not exact
2021 if (_elem == TOP ) return false; // inverted general array not exact
2022 const TypeOopPtr* toop = NULL;
2023 if (UseCompressedOops && _elem->isa_narrowoop()) {
2024 toop = _elem->make_ptr()->isa_oopptr();
2025 } else {
2026 toop = _elem->isa_oopptr();
2027 }
2028 if (!toop) return true; // a primitive type, like int
2029 ciKlass* tklass = toop->klass();
2030 if (tklass == NULL) return false; // unloaded class
2031 if (!tklass->is_loaded()) return false; // unloaded class
2032 const TypeInstPtr* tinst;
2033 if (_elem->isa_narrowoop())
2034 tinst = _elem->make_ptr()->isa_instptr();
2035 else
2036 tinst = _elem->isa_instptr();
2037 if (tinst)
2038 return tklass->as_instance_klass()->is_final();
2039 const TypeAryPtr* tap;
2040 if (_elem->isa_narrowoop())
2041 tap = _elem->make_ptr()->isa_aryptr();
2042 else
2043 tap = _elem->isa_aryptr();
2044 if (tap)
2045 return tap->ary()->ary_must_be_exact();
2046 return false;
2047 }
2048
2049 //==============================TypeVect=======================================
2050 // Convenience common pre-built types.
2051 const TypeVect *TypeVect::VECTS = NULL; // 32-bit vectors
2052 const TypeVect *TypeVect::VECTD = NULL; // 64-bit vectors
2053 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2054 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2055
2056 //------------------------------make-------------------------------------------
2057 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2058 BasicType elem_bt = elem->array_element_basic_type();
2059 assert(is_java_primitive(elem_bt), "only primitive types in vector");
2060 assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2061 assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2062 int size = length * type2aelembytes(elem_bt);
2063 switch (Matcher::vector_ideal_reg(size)) {
2064 case Op_VecS:
2065 return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2066 case Op_RegL:
2067 case Op_VecD:
2068 case Op_RegD:
2069 return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2070 case Op_VecX:
2071 return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2072 case Op_VecY:
2073 return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2074 }
2075 ShouldNotReachHere();
2076 return NULL;
2077 }
2078
2079 //------------------------------meet-------------------------------------------
2080 // Compute the MEET of two types. It returns a new Type object.
2081 const Type *TypeVect::xmeet( const Type *t ) const {
2082 // Perform a fast test for common case; meeting the same types together.
2083 if( this == t ) return this; // Meeting same type-rep?
2084
2085 // Current "this->_base" is Vector
2086 switch (t->base()) { // switch on original type
2087
2088 case Bottom: // Ye Olde Default
2089 return t;
2090
2091 default: // All else is a mistake
2092 typerr(t);
2093
2094 case VectorS:
2095 case VectorD:
2096 case VectorX:
2097 case VectorY: { // Meeting 2 vectors?
2098 const TypeVect* v = t->is_vect();
2099 assert( base() == v->base(), "");
2100 assert(length() == v->length(), "");
2101 assert(element_basic_type() == v->element_basic_type(), "");
2102 return TypeVect::make(_elem->xmeet(v->_elem), _length);
2103 }
2104 case Top:
2105 break;
2106 }
2107 return this;
2108 }
2109
2110 //------------------------------xdual------------------------------------------
2111 // Dual: compute field-by-field dual
2112 const Type *TypeVect::xdual() const {
2113 return new TypeVect(base(), _elem->dual(), _length);
2114 }
2115
2116 //------------------------------eq---------------------------------------------
2117 // Structural equality check for Type representations
2118 bool TypeVect::eq(const Type *t) const {
2119 const TypeVect *v = t->is_vect();
2120 return (_elem == v->_elem) && (_length == v->_length);
2121 }
2122
2123 //------------------------------hash-------------------------------------------
2124 // Type-specific hashing function.
2125 int TypeVect::hash(void) const {
2126 return (intptr_t)_elem + (intptr_t)_length;
2127 }
2128
2129 //------------------------------singleton--------------------------------------
2130 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
2131 // constants (Ldi nodes). Vector is singleton if all elements are the same
2132 // constant value (when vector is created with Replicate code).
2133 bool TypeVect::singleton(void) const {
2134 // There is no Con node for vectors yet.
2135 // return _elem->singleton();
2136 return false;
2137 }
2138
2139 bool TypeVect::empty(void) const {
2140 return _elem->empty();
2141 }
2142
2143 //------------------------------dump2------------------------------------------
2144 #ifndef PRODUCT
2145 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2146 switch (base()) {
2147 case VectorS:
2148 st->print("vectors["); break;
2149 case VectorD:
2150 st->print("vectord["); break;
2151 case VectorX:
2152 st->print("vectorx["); break;
2153 case VectorY:
2154 st->print("vectory["); break;
2155 default:
2156 ShouldNotReachHere();
2157 }
2158 st->print("%d]:{", _length);
2159 _elem->dump2(d, depth, st);
2160 st->print("}");
2161 }
2162 #endif
2163
2164
2165 //=============================================================================
2166 // Convenience common pre-built types.
2167 const TypePtr *TypePtr::NULL_PTR;
2168 const TypePtr *TypePtr::NOTNULL;
2169 const TypePtr *TypePtr::BOTTOM;
2170
2171 //------------------------------meet-------------------------------------------
2172 // Meet over the PTR enum
2173 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2174 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
2175 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
2176 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
2177 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
2178 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
2179 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
2180 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
2181 };
2182
2183 //------------------------------make-------------------------------------------
2184 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
2185 return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
2186 }
2187
2188 //------------------------------cast_to_ptr_type-------------------------------
2189 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2190 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2191 if( ptr == _ptr ) return this;
2192 return make(_base, ptr, _offset);
2193 }
2194
2195 //------------------------------get_con----------------------------------------
2196 intptr_t TypePtr::get_con() const {
2197 assert( _ptr == Null, "" );
2198 return _offset;
2199 }
2200
2201 //------------------------------meet-------------------------------------------
2202 // Compute the MEET of two types. It returns a new Type object.
2203 const Type *TypePtr::xmeet( const Type *t ) const {
2204 // Perform a fast test for common case; meeting the same types together.
2205 if( this == t ) return this; // Meeting same type-rep?
2206
2207 // Current "this->_base" is AnyPtr
2208 switch (t->base()) { // switch on original type
2209 case Int: // Mixing ints & oops happens when javac
2210 case Long: // reuses local variables
2211 case FloatTop:
2212 case FloatCon:
2213 case FloatBot:
2214 case DoubleTop:
2215 case DoubleCon:
2216 case DoubleBot:
2217 case NarrowOop:
2218 case NarrowKlass:
2219 case Bottom: // Ye Olde Default
2220 return Type::BOTTOM;
2221 case Top:
2222 return this;
2223
2224 case AnyPtr: { // Meeting to AnyPtrs
2225 const TypePtr *tp = t->is_ptr();
2226 return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
2227 }
2228 case RawPtr: // For these, flip the call around to cut down
2229 case OopPtr:
2230 case InstPtr: // on the cases I have to handle.
2231 case AryPtr:
2232 case MetadataPtr:
2233 case KlassPtr:
2234 return t->xmeet(this); // Call in reverse direction
2235 default: // All else is a mistake
2236 typerr(t);
2237
2238 }
2239 return this;
2240 }
2241
2242 //------------------------------meet_offset------------------------------------
2243 int TypePtr::meet_offset( int offset ) const {
2244 // Either is 'TOP' offset? Return the other offset!
2245 if( _offset == OffsetTop ) return offset;
2246 if( offset == OffsetTop ) return _offset;
2247 // If either is different, return 'BOTTOM' offset
2248 if( _offset != offset ) return OffsetBot;
2249 return _offset;
2250 }
2251
2252 //------------------------------dual_offset------------------------------------
2253 int TypePtr::dual_offset( ) const {
2254 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2255 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2256 return _offset; // Map everything else into self
2257 }
2258
2259 //------------------------------xdual------------------------------------------
2260 // Dual: compute field-by-field dual
2261 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2262 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2263 };
2264 const Type *TypePtr::xdual() const {
2265 return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
2266 }
2267
2268 //------------------------------xadd_offset------------------------------------
2269 int TypePtr::xadd_offset( intptr_t offset ) const {
2270 // Adding to 'TOP' offset? Return 'TOP'!
2271 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2272 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
2273 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2274 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2275 offset += (intptr_t)_offset;
2276 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2277
2278 // assert( _offset >= 0 && _offset+offset >= 0, "" );
2279 // It is possible to construct a negative offset during PhaseCCP
2280
2281 return (int)offset; // Sum valid offsets
2282 }
2283
2284 //------------------------------add_offset-------------------------------------
2285 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2286 return make( AnyPtr, _ptr, xadd_offset(offset) );
2287 }
2288
2289 //------------------------------eq---------------------------------------------
2290 // Structural equality check for Type representations
2291 bool TypePtr::eq( const Type *t ) const {
2292 const TypePtr *a = (const TypePtr*)t;
2293 return _ptr == a->ptr() && _offset == a->offset();
2294 }
2295
2296 //------------------------------hash-------------------------------------------
2297 // Type-specific hashing function.
2298 int TypePtr::hash(void) const {
2299 return _ptr + _offset;
2300 }
2301
2302 //------------------------------dump2------------------------------------------
2303 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2304 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2305 };
2306
2307 #ifndef PRODUCT
2308 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2309 if( _ptr == Null ) st->print("NULL");
2310 else st->print("%s *", ptr_msg[_ptr]);
2311 if( _offset == OffsetTop ) st->print("+top");
2312 else if( _offset == OffsetBot ) st->print("+bot");
2313 else if( _offset ) st->print("+%d", _offset);
2314 }
2315 #endif
2316
2317 //------------------------------singleton--------------------------------------
2318 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
2319 // constants
2320 bool TypePtr::singleton(void) const {
2321 // TopPTR, Null, AnyNull, Constant are all singletons
2322 return (_offset != OffsetBot) && !below_centerline(_ptr);
2323 }
2324
2325 bool TypePtr::empty(void) const {
2326 return (_offset == OffsetTop) || above_centerline(_ptr);
2327 }
2328
2329 //=============================================================================
2330 // Convenience common pre-built types.
2331 const TypeRawPtr *TypeRawPtr::BOTTOM;
2332 const TypeRawPtr *TypeRawPtr::NOTNULL;
2333
2334 //------------------------------make-------------------------------------------
2335 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2336 assert( ptr != Constant, "what is the constant?" );
2337 assert( ptr != Null, "Use TypePtr for NULL" );
2338 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2339 }
2340
2341 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2342 assert( bits, "Use TypePtr for NULL" );
2343 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2344 }
2345
2346 //------------------------------cast_to_ptr_type-------------------------------
2347 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2348 assert( ptr != Constant, "what is the constant?" );
2349 assert( ptr != Null, "Use TypePtr for NULL" );
2350 assert( _bits==0, "Why cast a constant address?");
2351 if( ptr == _ptr ) return this;
2352 return make(ptr);
2353 }
2354
2355 //------------------------------get_con----------------------------------------
2356 intptr_t TypeRawPtr::get_con() const {
2357 assert( _ptr == Null || _ptr == Constant, "" );
2358 return (intptr_t)_bits;
2359 }
2360
2361 //------------------------------meet-------------------------------------------
2362 // Compute the MEET of two types. It returns a new Type object.
2363 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2364 // Perform a fast test for common case; meeting the same types together.
2365 if( this == t ) return this; // Meeting same type-rep?
2366
2367 // Current "this->_base" is RawPtr
2368 switch( t->base() ) { // switch on original type
2369 case Bottom: // Ye Olde Default
2370 return t;
2371 case Top:
2372 return this;
2373 case AnyPtr: // Meeting to AnyPtrs
2374 break;
2375 case RawPtr: { // might be top, bot, any/not or constant
2376 enum PTR tptr = t->is_ptr()->ptr();
2377 enum PTR ptr = meet_ptr( tptr );
2378 if( ptr == Constant ) { // Cannot be equal constants, so...
2379 if( tptr == Constant && _ptr != Constant) return t;
2380 if( _ptr == Constant && tptr != Constant) return this;
2381 ptr = NotNull; // Fall down in lattice
2382 }
2383 return make( ptr );
2384 }
2385
2386 case OopPtr:
2387 case InstPtr:
2388 case AryPtr:
2389 case MetadataPtr:
2390 case KlassPtr:
2391 return TypePtr::BOTTOM; // Oop meet raw is not well defined
2392 default: // All else is a mistake
2393 typerr(t);
2394 }
2395
2396 // Found an AnyPtr type vs self-RawPtr type
2397 const TypePtr *tp = t->is_ptr();
2398 switch (tp->ptr()) {
2399 case TypePtr::TopPTR: return this;
2400 case TypePtr::BotPTR: return t;
2401 case TypePtr::Null:
2402 if( _ptr == TypePtr::TopPTR ) return t;
2403 return TypeRawPtr::BOTTOM;
2404 case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
2405 case TypePtr::AnyNull:
2406 if( _ptr == TypePtr::Constant) return this;
2407 return make( meet_ptr(TypePtr::AnyNull) );
2408 default: ShouldNotReachHere();
2409 }
2410 return this;
2411 }
2412
2413 //------------------------------xdual------------------------------------------
2414 // Dual: compute field-by-field dual
2415 const Type *TypeRawPtr::xdual() const {
2416 return new TypeRawPtr( dual_ptr(), _bits );
2417 }
2418
2419 //------------------------------add_offset-------------------------------------
2420 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2421 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2422 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2423 if( offset == 0 ) return this; // No change
2424 switch (_ptr) {
2425 case TypePtr::TopPTR:
2426 case TypePtr::BotPTR:
2427 case TypePtr::NotNull:
2428 return this;
2429 case TypePtr::Null:
2430 case TypePtr::Constant: {
2431 address bits = _bits+offset;
2432 if ( bits == 0 ) return TypePtr::NULL_PTR;
2433 return make( bits );
2434 }
2435 default: ShouldNotReachHere();
2436 }
2437 return NULL; // Lint noise
2438 }
2439
2440 //------------------------------eq---------------------------------------------
2441 // Structural equality check for Type representations
2442 bool TypeRawPtr::eq( const Type *t ) const {
2443 const TypeRawPtr *a = (const TypeRawPtr*)t;
2444 return _bits == a->_bits && TypePtr::eq(t);
2445 }
2446
2447 //------------------------------hash-------------------------------------------
2448 // Type-specific hashing function.
2449 int TypeRawPtr::hash(void) const {
2450 return (intptr_t)_bits + TypePtr::hash();
2451 }
2452
2453 //------------------------------dump2------------------------------------------
2454 #ifndef PRODUCT
2455 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2456 if( _ptr == Constant )
2457 st->print(INTPTR_FORMAT, _bits);
2458 else
2459 st->print("rawptr:%s", ptr_msg[_ptr]);
2460 }
2461 #endif
2462
2463 //=============================================================================
2464 // Convenience common pre-built type.
2465 const TypeOopPtr *TypeOopPtr::BOTTOM;
2466
2467 //------------------------------TypeOopPtr-------------------------------------
2468 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth)
2469 : TypePtr(t, ptr, offset),
2470 _const_oop(o), _klass(k),
2471 _klass_is_exact(xk),
2472 _is_ptr_to_narrowoop(false),
2473 _is_ptr_to_narrowklass(false),
2474 _is_ptr_to_boxed_value(false),
2475 _instance_id(instance_id),
2476 _speculative(speculative),
2477 _inline_depth(inline_depth){
2478 if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2479 (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2480 _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2481 }
2482 #ifdef _LP64
2483 if (_offset != 0) {
2484 if (_offset == oopDesc::klass_offset_in_bytes()) {
2485 _is_ptr_to_narrowklass = UseCompressedClassPointers;
2486 } else if (klass() == NULL) {
2487 // Array with unknown body type
2488 assert(this->isa_aryptr(), "only arrays without klass");
2489 _is_ptr_to_narrowoop = UseCompressedOops;
2490 } else if (this->isa_aryptr()) {
2491 _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2492 _offset != arrayOopDesc::length_offset_in_bytes());
2493 } else if (klass()->is_instance_klass()) {
2494 ciInstanceKlass* ik = klass()->as_instance_klass();
2495 ciField* field = NULL;
2496 if (this->isa_klassptr()) {
2497 // Perm objects don't use compressed references
2498 } else if (_offset == OffsetBot || _offset == OffsetTop) {
2499 // unsafe access
2500 _is_ptr_to_narrowoop = UseCompressedOops;
2501 } else { // exclude unsafe ops
2502 assert(this->isa_instptr(), "must be an instance ptr.");
2503
2504 if (klass() == ciEnv::current()->Class_klass() &&
2505 (_offset == java_lang_Class::klass_offset_in_bytes() ||
2506 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2507 // Special hidden fields from the Class.
2508 assert(this->isa_instptr(), "must be an instance ptr.");
2509 _is_ptr_to_narrowoop = false;
2510 } else if (klass() == ciEnv::current()->Class_klass() &&
2511 _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
2512 // Static fields
2513 assert(o != NULL, "must be constant");
2514 ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
2515 ciField* field = k->get_field_by_offset(_offset, true);
2516 assert(field != NULL, "missing field");
2517 BasicType basic_elem_type = field->layout_type();
2518 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2519 basic_elem_type == T_ARRAY);
2520 } else {
2521 // Instance fields which contains a compressed oop references.
2522 field = ik->get_field_by_offset(_offset, false);
2523 if (field != NULL) {
2524 BasicType basic_elem_type = field->layout_type();
2525 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2526 basic_elem_type == T_ARRAY);
2527 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2528 // Compile::find_alias_type() cast exactness on all types to verify
2529 // that it does not affect alias type.
2530 _is_ptr_to_narrowoop = UseCompressedOops;
2531 } else {
2532 // Type for the copy start in LibraryCallKit::inline_native_clone().
2533 _is_ptr_to_narrowoop = UseCompressedOops;
2534 }
2535 }
2536 }
2537 }
2538 }
2539 #endif
2540 }
2541
2542 //------------------------------make-------------------------------------------
2543 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
2544 int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
2545 assert(ptr != Constant, "no constant generic pointers");
2546 ciKlass* k = Compile::current()->env()->Object_klass();
2547 bool xk = false;
2548 ciObject* o = NULL;
2549 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
2550 }
2551
2552
2553 //------------------------------cast_to_ptr_type-------------------------------
2554 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2555 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2556 if( ptr == _ptr ) return this;
2557 return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
2558 }
2559
2560 //-----------------------------cast_to_instance_id----------------------------
2561 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2562 // There are no instances of a general oop.
2563 // Return self unchanged.
2564 return this;
2565 }
2566
2567 //-----------------------------cast_to_exactness-------------------------------
2568 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2569 // There is no such thing as an exact general oop.
2570 // Return self unchanged.
2571 return this;
2572 }
2573
2574
2575 //------------------------------as_klass_type----------------------------------
2576 // Return the klass type corresponding to this instance or array type.
2577 // It is the type that is loaded from an object of this type.
2578 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2579 ciKlass* k = klass();
2580 bool xk = klass_is_exact();
2581 if (k == NULL)
2582 return TypeKlassPtr::OBJECT;
2583 else
2584 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2585 }
2586
2587 const Type *TypeOopPtr::xmeet(const Type *t) const {
2588 const Type* res = xmeet_helper(t);
2589 if (res->isa_oopptr() == NULL) {
2590 return res;
2591 }
2592
2593 const TypeOopPtr* res_oopptr = res->is_oopptr();
2594 if (res_oopptr->speculative() != NULL) {
2595 // type->speculative() == NULL means that speculation is no better
2596 // than type, i.e. type->speculative() == type. So there are 2
2597 // ways to represent the fact that we have no useful speculative
2598 // data and we should use a single one to be able to test for
2599 // equality between types. Check whether type->speculative() ==
2600 // type and set speculative to NULL if it is the case.
2601 if (res_oopptr->remove_speculative() == res_oopptr->speculative()) {
2602 return res_oopptr->remove_speculative();
2603 }
2604 }
2605
2606 return res;
2607 }
2608
2609 //------------------------------meet-------------------------------------------
2610 // Compute the MEET of two types. It returns a new Type object.
2611 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
2612 // Perform a fast test for common case; meeting the same types together.
2613 if( this == t ) return this; // Meeting same type-rep?
2614
2615 // Current "this->_base" is OopPtr
2616 switch (t->base()) { // switch on original type
2617
2618 case Int: // Mixing ints & oops happens when javac
2619 case Long: // reuses local variables
2620 case FloatTop:
2621 case FloatCon:
2622 case FloatBot:
2623 case DoubleTop:
2624 case DoubleCon:
2625 case DoubleBot:
2626 case NarrowOop:
2627 case NarrowKlass:
2628 case Bottom: // Ye Olde Default
2629 return Type::BOTTOM;
2630 case Top:
2631 return this;
2632
2633 default: // All else is a mistake
2634 typerr(t);
2635
2636 case RawPtr:
2637 case MetadataPtr:
2638 case KlassPtr:
2639 return TypePtr::BOTTOM; // Oop meet raw is not well defined
2640
2641 case AnyPtr: {
2642 // Found an AnyPtr type vs self-OopPtr type
2643 const TypePtr *tp = t->is_ptr();
2644 int offset = meet_offset(tp->offset());
2645 PTR ptr = meet_ptr(tp->ptr());
2646 switch (tp->ptr()) {
2647 case Null:
2648 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
2649 // else fall through:
2650 case TopPTR:
2651 case AnyNull: {
2652 int instance_id = meet_instance_id(InstanceTop);
2653 const TypeOopPtr* speculative = _speculative;
2654 return make(ptr, offset, instance_id, speculative, _inline_depth);
2655 }
2656 case BotPTR:
2657 case NotNull:
2658 return TypePtr::make(AnyPtr, ptr, offset);
2659 default: typerr(t);
2660 }
2661 }
2662
2663 case OopPtr: { // Meeting to other OopPtrs
2664 const TypeOopPtr *tp = t->is_oopptr();
2665 int instance_id = meet_instance_id(tp->instance_id());
2666 const TypeOopPtr* speculative = xmeet_speculative(tp);
2667 int depth = meet_inline_depth(tp->inline_depth());
2668 return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
2669 }
2670
2671 case InstPtr: // For these, flip the call around to cut down
2672 case AryPtr:
2673 return t->xmeet(this); // Call in reverse direction
2674
2675 } // End of switch
2676 return this; // Return the double constant
2677 }
2678
2679
2680 //------------------------------xdual------------------------------------------
2681 // Dual of a pure heap pointer. No relevant klass or oop information.
2682 const Type *TypeOopPtr::xdual() const {
2683 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
2684 assert(const_oop() == NULL, "no constants here");
2685 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
2686 }
2687
2688 //--------------------------make_from_klass_common-----------------------------
2689 // Computes the element-type given a klass.
2690 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
2691 if (klass->is_instance_klass()) {
2692 Compile* C = Compile::current();
2693 Dependencies* deps = C->dependencies();
2694 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
2695 // Element is an instance
2696 bool klass_is_exact = false;
2697 if (klass->is_loaded()) {
2698 // Try to set klass_is_exact.
2699 ciInstanceKlass* ik = klass->as_instance_klass();
2700 klass_is_exact = ik->is_final();
2701 if (!klass_is_exact && klass_change
2702 && deps != NULL && UseUniqueSubclasses) {
2703 ciInstanceKlass* sub = ik->unique_concrete_subklass();
2704 if (sub != NULL) {
2705 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
2706 klass = ik = sub;
2707 klass_is_exact = sub->is_final();
2708 }
2709 }
2710 if (!klass_is_exact && try_for_exact
2711 && deps != NULL && UseExactTypes) {
2712 if (!ik->is_interface() && !ik->has_subklass()) {
2713 // Add a dependence; if concrete subclass added we need to recompile
2714 deps->assert_leaf_type(ik);
2715 klass_is_exact = true;
2716 }
2717 }
2718 }
2719 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
2720 } else if (klass->is_obj_array_klass()) {
2721 // Element is an object array. Recursively call ourself.
2722 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
2723 bool xk = etype->klass_is_exact();
2724 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2725 // We used to pass NotNull in here, asserting that the sub-arrays
2726 // are all not-null. This is not true in generally, as code can
2727 // slam NULLs down in the subarrays.
2728 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
2729 return arr;
2730 } else if (klass->is_type_array_klass()) {
2731 // Element is an typeArray
2732 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
2733 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2734 // We used to pass NotNull in here, asserting that the array pointer
2735 // is not-null. That was not true in general.
2736 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
2737 return arr;
2738 } else {
2739 ShouldNotReachHere();
2740 return NULL;
2741 }
2742 }
2743
2744 //------------------------------make_from_constant-----------------------------
2745 // Make a java pointer from an oop constant
2746 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
2747 bool require_constant,
2748 bool is_autobox_cache) {
2749 assert(!o->is_null_object(), "null object not yet handled here.");
2750 ciKlass* klass = o->klass();
2751 if (klass->is_instance_klass()) {
2752 // Element is an instance
2753 if (require_constant) {
2754 if (!o->can_be_constant()) return NULL;
2755 } else if (!o->should_be_constant()) {
2756 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
2757 }
2758 return TypeInstPtr::make(o);
2759 } else if (klass->is_obj_array_klass()) {
2760 // Element is an object array. Recursively call ourself.
2761 const TypeOopPtr *etype =
2762 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
2763 if (is_autobox_cache) {
2764 // The pointers in the autobox arrays are always non-null.
2765 etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
2766 }
2767 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2768 // We used to pass NotNull in here, asserting that the sub-arrays
2769 // are all not-null. This is not true in generally, as code can
2770 // slam NULLs down in the subarrays.
2771 if (require_constant) {
2772 if (!o->can_be_constant()) return NULL;
2773 } else if (!o->should_be_constant()) {
2774 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2775 }
2776 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, InlineDepthBottom, is_autobox_cache);
2777 return arr;
2778 } else if (klass->is_type_array_klass()) {
2779 // Element is an typeArray
2780 const Type* etype =
2781 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
2782 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2783 // We used to pass NotNull in here, asserting that the array pointer
2784 // is not-null. That was not true in general.
2785 if (require_constant) {
2786 if (!o->can_be_constant()) return NULL;
2787 } else if (!o->should_be_constant()) {
2788 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2789 }
2790 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
2791 return arr;
2792 }
2793
2794 fatal("unhandled object type");
2795 return NULL;
2796 }
2797
2798 //------------------------------get_con----------------------------------------
2799 intptr_t TypeOopPtr::get_con() const {
2800 assert( _ptr == Null || _ptr == Constant, "" );
2801 assert( _offset >= 0, "" );
2802
2803 if (_offset != 0) {
2804 // After being ported to the compiler interface, the compiler no longer
2805 // directly manipulates the addresses of oops. Rather, it only has a pointer
2806 // to a handle at compile time. This handle is embedded in the generated
2807 // code and dereferenced at the time the nmethod is made. Until that time,
2808 // it is not reasonable to do arithmetic with the addresses of oops (we don't
2809 // have access to the addresses!). This does not seem to currently happen,
2810 // but this assertion here is to help prevent its occurence.
2811 tty->print_cr("Found oop constant with non-zero offset");
2812 ShouldNotReachHere();
2813 }
2814
2815 return (intptr_t)const_oop()->constant_encoding();
2816 }
2817
2818
2819 //-----------------------------filter------------------------------------------
2820 // Do not allow interface-vs.-noninterface joins to collapse to top.
2821 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
2822
2823 const Type* ft = join_helper(kills, include_speculative);
2824 const TypeInstPtr* ftip = ft->isa_instptr();
2825 const TypeInstPtr* ktip = kills->isa_instptr();
2826
2827 if (ft->empty()) {
2828 // Check for evil case of 'this' being a class and 'kills' expecting an
2829 // interface. This can happen because the bytecodes do not contain
2830 // enough type info to distinguish a Java-level interface variable
2831 // from a Java-level object variable. If we meet 2 classes which
2832 // both implement interface I, but their meet is at 'j/l/O' which
2833 // doesn't implement I, we have no way to tell if the result should
2834 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
2835 // into a Phi which "knows" it's an Interface type we'll have to
2836 // uplift the type.
2837 if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
2838 return kills; // Uplift to interface
2839
2840 return Type::TOP; // Canonical empty value
2841 }
2842
2843 // If we have an interface-typed Phi or cast and we narrow to a class type,
2844 // the join should report back the class. However, if we have a J/L/Object
2845 // class-typed Phi and an interface flows in, it's possible that the meet &
2846 // join report an interface back out. This isn't possible but happens
2847 // because the type system doesn't interact well with interfaces.
2848 if (ftip != NULL && ktip != NULL &&
2849 ftip->is_loaded() && ftip->klass()->is_interface() &&
2850 ktip->is_loaded() && !ktip->klass()->is_interface()) {
2851 // Happens in a CTW of rt.jar, 320-341, no extra flags
2852 assert(!ftip->klass_is_exact(), "interface could not be exact");
2853 return ktip->cast_to_ptr_type(ftip->ptr());
2854 }
2855
2856 return ft;
2857 }
2858
2859 //------------------------------eq---------------------------------------------
2860 // Structural equality check for Type representations
2861 bool TypeOopPtr::eq( const Type *t ) const {
2862 const TypeOopPtr *a = (const TypeOopPtr*)t;
2863 if (_klass_is_exact != a->_klass_is_exact ||
2864 _instance_id != a->_instance_id ||
2865 !eq_speculative(a) ||
2866 _inline_depth != a->_inline_depth) return false;
2867 ciObject* one = const_oop();
2868 ciObject* two = a->const_oop();
2869 if (one == NULL || two == NULL) {
2870 return (one == two) && TypePtr::eq(t);
2871 } else {
2872 return one->equals(two) && TypePtr::eq(t);
2873 }
2874 }
2875
2876 //------------------------------hash-------------------------------------------
2877 // Type-specific hashing function.
2878 int TypeOopPtr::hash(void) const {
2879 return
2880 (const_oop() ? const_oop()->hash() : 0) +
2881 _klass_is_exact +
2882 _instance_id +
2883 hash_speculative() +
2884 _inline_depth +
2885 TypePtr::hash();
2886 }
2887
2888 //------------------------------dump2------------------------------------------
2889 #ifndef PRODUCT
2890 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2891 st->print("oopptr:%s", ptr_msg[_ptr]);
2892 if( _klass_is_exact ) st->print(":exact");
2893 if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
2894 switch( _offset ) {
2895 case OffsetTop: st->print("+top"); break;
2896 case OffsetBot: st->print("+any"); break;
2897 case 0: break;
2898 default: st->print("+%d",_offset); break;
2899 }
2900 if (_instance_id == InstanceTop)
2901 st->print(",iid=top");
2902 else if (_instance_id != InstanceBot)
2903 st->print(",iid=%d",_instance_id);
2904
2905 dump_inline_depth(st);
2906 dump_speculative(st);
2907 }
2908
2909 /**
2910 *dump the speculative part of the type
2911 */
2912 void TypeOopPtr::dump_speculative(outputStream *st) const {
2913 if (_speculative != NULL) {
2914 st->print(" (speculative=");
2915 _speculative->dump_on(st);
2916 st->print(")");
2917 }
2918 }
2919
2920 void TypeOopPtr::dump_inline_depth(outputStream *st) const {
2921 if (_inline_depth != InlineDepthBottom) {
2922 if (_inline_depth == InlineDepthTop) {
2923 st->print(" (inline_depth=InlineDepthTop)");
2924 } else {
2925 st->print(" (inline_depth=%d)", _inline_depth);
2926 }
2927 }
2928 }
2929 #endif
2930
2931 //------------------------------singleton--------------------------------------
2932 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
2933 // constants
2934 bool TypeOopPtr::singleton(void) const {
2935 // detune optimizer to not generate constant oop + constant offset as a constant!
2936 // TopPTR, Null, AnyNull, Constant are all singletons
2937 return (_offset == 0) && !below_centerline(_ptr);
2938 }
2939
2940 //------------------------------add_offset-------------------------------------
2941 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
2942 return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
2943 }
2944
2945 /**
2946 * Return same type without a speculative part
2947 */
2948 const Type* TypeOopPtr::remove_speculative() const {
2949 if (_speculative == NULL) {
2950 return this;
2951 }
2952 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2953 return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
2954 }
2955
2956 /**
2957 * Return same type but with a different inline depth (used for speculation)
2958 *
2959 * @param depth depth to meet with
2960 */
2961 const TypeOopPtr* TypeOopPtr::with_inline_depth(int depth) const {
2962 if (!UseInlineDepthForSpeculativeTypes) {
2963 return this;
2964 }
2965 return make(_ptr, _offset, _instance_id, _speculative, depth);
2966 }
2967
2968 /**
2969 * Check whether new profiling would improve speculative type
2970 *
2971 * @param exact_kls class from profiling
2972 * @param inline_depth inlining depth of profile point
2973 *
2974 * @return true if type profile is valuable
2975 */
2976 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2977 // no way to improve an already exact type
2978 if (klass_is_exact()) {
2979 return false;
2980 }
2981 // no profiling?
2982 if (exact_kls == NULL) {
2983 return false;
2984 }
2985 // no speculative type or non exact speculative type?
2986 if (speculative_type() == NULL) {
2987 return true;
2988 }
2989 // If the node already has an exact speculative type keep it,
2990 // unless it was provided by profiling that is at a deeper
2991 // inlining level. Profiling at a higher inlining depth is
2992 // expected to be less accurate.
2993 if (_speculative->inline_depth() == InlineDepthBottom) {
2994 return false;
2995 }
2996 assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2997 return inline_depth < _speculative->inline_depth();
2998 }
2999
3000 //------------------------------meet_instance_id--------------------------------
3001 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3002 // Either is 'TOP' instance? Return the other instance!
3003 if( _instance_id == InstanceTop ) return instance_id;
3004 if( instance_id == InstanceTop ) return _instance_id;
3005 // If either is different, return 'BOTTOM' instance
3006 if( _instance_id != instance_id ) return InstanceBot;
3007 return _instance_id;
3008 }
3009
3010 //------------------------------dual_instance_id--------------------------------
3011 int TypeOopPtr::dual_instance_id( ) const {
3012 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3013 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3014 return _instance_id; // Map everything else into self
3015 }
3016
3017 /**
3018 * meet of the speculative parts of 2 types
3019 *
3020 * @param other type to meet with
3021 */
3022 const TypeOopPtr* TypeOopPtr::xmeet_speculative(const TypeOopPtr* other) const {
3023 bool this_has_spec = (_speculative != NULL);
3024 bool other_has_spec = (other->speculative() != NULL);
3025
3026 if (!this_has_spec && !other_has_spec) {
3027 return NULL;
3028 }
3029
3030 // If we are at a point where control flow meets and one branch has
3031 // a speculative type and the other has not, we meet the speculative
3032 // type of one branch with the actual type of the other. If the
3033 // actual type is exact and the speculative is as well, then the
3034 // result is a speculative type which is exact and we can continue
3035 // speculation further.
3036 const TypeOopPtr* this_spec = _speculative;
3037 const TypeOopPtr* other_spec = other->speculative();
3038
3039 if (!this_has_spec) {
3040 this_spec = this;
3041 }
3042
3043 if (!other_has_spec) {
3044 other_spec = other;
3045 }
3046
3047 return this_spec->meet_speculative(other_spec)->is_oopptr();
3048 }
3049
3050 /**
3051 * dual of the speculative part of the type
3052 */
3053 const TypeOopPtr* TypeOopPtr::dual_speculative() const {
3054 if (_speculative == NULL) {
3055 return NULL;
3056 }
3057 return _speculative->dual()->is_oopptr();
3058 }
3059
3060 /**
3061 * add offset to the speculative part of the type
3062 *
3063 * @param offset offset to add
3064 */
3065 const TypeOopPtr* TypeOopPtr::add_offset_speculative(intptr_t offset) const {
3066 if (_speculative == NULL) {
3067 return NULL;
3068 }
3069 return _speculative->add_offset(offset)->is_oopptr();
3070 }
3071
3072 /**
3073 * Are the speculative parts of 2 types equal?
3074 *
3075 * @param other type to compare this one to
3076 */
3077 bool TypeOopPtr::eq_speculative(const TypeOopPtr* other) const {
3078 if (_speculative == NULL || other->speculative() == NULL) {
3079 return _speculative == other->speculative();
3080 }
3081
3082 if (_speculative->base() != other->speculative()->base()) {
3083 return false;
3084 }
3085
3086 return _speculative->eq(other->speculative());
3087 }
3088
3089 /**
3090 * Hash of the speculative part of the type
3091 */
3092 int TypeOopPtr::hash_speculative() const {
3093 if (_speculative == NULL) {
3094 return 0;
3095 }
3096
3097 return _speculative->hash();
3098 }
3099
3100 /**
3101 * dual of the inline depth for this type (used for speculation)
3102 */
3103 int TypeOopPtr::dual_inline_depth() const {
3104 return -inline_depth();
3105 }
3106
3107 /**
3108 * meet of 2 inline depth (used for speculation)
3109 *
3110 * @param depth depth to meet with
3111 */
3112 int TypeOopPtr::meet_inline_depth(int depth) const {
3113 return MAX2(inline_depth(), depth);
3114 }
3115
3116 //=============================================================================
3117 // Convenience common pre-built types.
3118 const TypeInstPtr *TypeInstPtr::NOTNULL;
3119 const TypeInstPtr *TypeInstPtr::BOTTOM;
3120 const TypeInstPtr *TypeInstPtr::MIRROR;
3121 const TypeInstPtr *TypeInstPtr::MARK;
3122 const TypeInstPtr *TypeInstPtr::KLASS;
3123
3124 //------------------------------TypeInstPtr-------------------------------------
3125 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypeOopPtr* speculative, int inline_depth)
3126 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth), _name(k->name()) {
3127 assert(k != NULL &&
3128 (k->is_loaded() || o == NULL),
3129 "cannot have constants with non-loaded klass");
3130 };
3131
3132 //------------------------------make-------------------------------------------
3133 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3134 ciKlass* k,
3135 bool xk,
3136 ciObject* o,
3137 int offset,
3138 int instance_id,
3139 const TypeOopPtr* speculative,
3140 int inline_depth) {
3141 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3142 // Either const_oop() is NULL or else ptr is Constant
3143 assert( (!o && ptr != Constant) || (o && ptr == Constant),
3144 "constant pointers must have a value supplied" );
3145 // Ptr is never Null
3146 assert( ptr != Null, "NULL pointers are not typed" );
3147
3148 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3149 if (!UseExactTypes) xk = false;
3150 if (ptr == Constant) {
3151 // Note: This case includes meta-object constants, such as methods.
3152 xk = true;
3153 } else if (k->is_loaded()) {
3154 ciInstanceKlass* ik = k->as_instance_klass();
3155 if (!xk && ik->is_final()) xk = true; // no inexact final klass
3156 if (xk && ik->is_interface()) xk = false; // no exact interface
3157 }
3158
3159 // Now hash this baby
3160 TypeInstPtr *result =
3161 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3162
3163 return result;
3164 }
3165
3166 /**
3167 * Create constant type for a constant boxed value
3168 */
3169 const Type* TypeInstPtr::get_const_boxed_value() const {
3170 assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3171 assert((const_oop() != NULL), "should be called only for constant object");
3172 ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3173 BasicType bt = constant.basic_type();
3174 switch (bt) {
3175 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
3176 case T_INT: return TypeInt::make(constant.as_int());
3177 case T_CHAR: return TypeInt::make(constant.as_char());
3178 case T_BYTE: return TypeInt::make(constant.as_byte());
3179 case T_SHORT: return TypeInt::make(constant.as_short());
3180 case T_FLOAT: return TypeF::make(constant.as_float());
3181 case T_DOUBLE: return TypeD::make(constant.as_double());
3182 case T_LONG: return TypeLong::make(constant.as_long());
3183 default: break;
3184 }
3185 fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
3186 return NULL;
3187 }
3188
3189 //------------------------------cast_to_ptr_type-------------------------------
3190 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3191 if( ptr == _ptr ) return this;
3192 // Reconstruct _sig info here since not a problem with later lazy
3193 // construction, _sig will show up on demand.
3194 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3195 }
3196
3197
3198 //-----------------------------cast_to_exactness-------------------------------
3199 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3200 if( klass_is_exact == _klass_is_exact ) return this;
3201 if (!UseExactTypes) return this;
3202 if (!_klass->is_loaded()) return this;
3203 ciInstanceKlass* ik = _klass->as_instance_klass();
3204 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
3205 if( ik->is_interface() ) return this; // cannot set xk
3206 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3207 }
3208
3209 //-----------------------------cast_to_instance_id----------------------------
3210 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3211 if( instance_id == _instance_id ) return this;
3212 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3213 }
3214
3215 //------------------------------xmeet_unloaded---------------------------------
3216 // Compute the MEET of two InstPtrs when at least one is unloaded.
3217 // Assume classes are different since called after check for same name/class-loader
3218 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3219 int off = meet_offset(tinst->offset());
3220 PTR ptr = meet_ptr(tinst->ptr());
3221 int instance_id = meet_instance_id(tinst->instance_id());
3222 const TypeOopPtr* speculative = xmeet_speculative(tinst);
3223 int depth = meet_inline_depth(tinst->inline_depth());
3224
3225 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
3226 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
3227 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3228 //
3229 // Meet unloaded class with java/lang/Object
3230 //
3231 // Meet
3232 // | Unloaded Class
3233 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
3234 // ===================================================================
3235 // TOP | ..........................Unloaded......................|
3236 // AnyNull | U-AN |................Unloaded......................|
3237 // Constant | ... O-NN .................................. | O-BOT |
3238 // NotNull | ... O-NN .................................. | O-BOT |
3239 // BOTTOM | ........................Object-BOTTOM ..................|
3240 //
3241 assert(loaded->ptr() != TypePtr::Null, "insanity check");
3242 //
3243 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3244 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3245 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3246 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3247 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3248 else { return TypeInstPtr::NOTNULL; }
3249 }
3250 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3251
3252 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3253 }
3254
3255 // Both are unloaded, not the same class, not Object
3256 // Or meet unloaded with a different loaded class, not java/lang/Object
3257 if( ptr != TypePtr::BotPTR ) {
3258 return TypeInstPtr::NOTNULL;
3259 }
3260 return TypeInstPtr::BOTTOM;
3261 }
3262
3263
3264 //------------------------------meet-------------------------------------------
3265 // Compute the MEET of two types. It returns a new Type object.
3266 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3267 // Perform a fast test for common case; meeting the same types together.
3268 if( this == t ) return this; // Meeting same type-rep?
3269
3270 // Current "this->_base" is Pointer
3271 switch (t->base()) { // switch on original type
3272
3273 case Int: // Mixing ints & oops happens when javac
3274 case Long: // reuses local variables
3275 case FloatTop:
3276 case FloatCon:
3277 case FloatBot:
3278 case DoubleTop:
3279 case DoubleCon:
3280 case DoubleBot:
3281 case NarrowOop:
3282 case NarrowKlass:
3283 case Bottom: // Ye Olde Default
3284 return Type::BOTTOM;
3285 case Top:
3286 return this;
3287
3288 default: // All else is a mistake
3289 typerr(t);
3290
3291 case MetadataPtr:
3292 case KlassPtr:
3293 case RawPtr: return TypePtr::BOTTOM;
3294
3295 case AryPtr: { // All arrays inherit from Object class
3296 const TypeAryPtr *tp = t->is_aryptr();
3297 int offset = meet_offset(tp->offset());
3298 PTR ptr = meet_ptr(tp->ptr());
3299 int instance_id = meet_instance_id(tp->instance_id());
3300 const TypeOopPtr* speculative = xmeet_speculative(tp);
3301 int depth = meet_inline_depth(tp->inline_depth());
3302 switch (ptr) {
3303 case TopPTR:
3304 case AnyNull: // Fall 'down' to dual of object klass
3305 // For instances when a subclass meets a superclass we fall
3306 // below the centerline when the superclass is exact. We need to
3307 // do the same here.
3308 if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3309 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3310 } else {
3311 // cannot subclass, so the meet has to fall badly below the centerline
3312 ptr = NotNull;
3313 instance_id = InstanceBot;
3314 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3315 }
3316 case Constant:
3317 case NotNull:
3318 case BotPTR: // Fall down to object klass
3319 // LCA is object_klass, but if we subclass from the top we can do better
3320 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3321 // If 'this' (InstPtr) is above the centerline and it is Object class
3322 // then we can subclass in the Java class hierarchy.
3323 // For instances when a subclass meets a superclass we fall
3324 // below the centerline when the superclass is exact. We need
3325 // to do the same here.
3326 if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3327 // that is, tp's array type is a subtype of my klass
3328 return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3329 tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3330 }
3331 }
3332 // The other case cannot happen, since I cannot be a subtype of an array.
3333 // The meet falls down to Object class below centerline.
3334 if( ptr == Constant )
3335 ptr = NotNull;
3336 instance_id = InstanceBot;
3337 return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3338 default: typerr(t);
3339 }
3340 }
3341
3342 case OopPtr: { // Meeting to OopPtrs
3343 // Found a OopPtr type vs self-InstPtr type
3344 const TypeOopPtr *tp = t->is_oopptr();
3345 int offset = meet_offset(tp->offset());
3346 PTR ptr = meet_ptr(tp->ptr());
3347 switch (tp->ptr()) {
3348 case TopPTR:
3349 case AnyNull: {
3350 int instance_id = meet_instance_id(InstanceTop);
3351 const TypeOopPtr* speculative = xmeet_speculative(tp);
3352 int depth = meet_inline_depth(tp->inline_depth());
3353 return make(ptr, klass(), klass_is_exact(),
3354 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3355 }
3356 case NotNull:
3357 case BotPTR: {
3358 int instance_id = meet_instance_id(tp->instance_id());
3359 const TypeOopPtr* speculative = xmeet_speculative(tp);
3360 int depth = meet_inline_depth(tp->inline_depth());
3361 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3362 }
3363 default: typerr(t);
3364 }
3365 }
3366
3367 case AnyPtr: { // Meeting to AnyPtrs
3368 // Found an AnyPtr type vs self-InstPtr type
3369 const TypePtr *tp = t->is_ptr();
3370 int offset = meet_offset(tp->offset());
3371 PTR ptr = meet_ptr(tp->ptr());
3372 switch (tp->ptr()) {
3373 case Null:
3374 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
3375 // else fall through to AnyNull
3376 case TopPTR:
3377 case AnyNull: {
3378 int instance_id = meet_instance_id(InstanceTop);
3379 const TypeOopPtr* speculative = _speculative;
3380 return make(ptr, klass(), klass_is_exact(),
3381 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, _inline_depth);
3382 }
3383 case NotNull:
3384 case BotPTR:
3385 return TypePtr::make(AnyPtr, ptr, offset);
3386 default: typerr(t);
3387 }
3388 }
3389
3390 /*
3391 A-top }
3392 / | \ } Tops
3393 B-top A-any C-top }
3394 | / | \ | } Any-nulls
3395 B-any | C-any }
3396 | | |
3397 B-con A-con C-con } constants; not comparable across classes
3398 | | |
3399 B-not | C-not }
3400 | \ | / | } not-nulls
3401 B-bot A-not C-bot }
3402 \ | / } Bottoms
3403 A-bot }
3404 */
3405
3406 case InstPtr: { // Meeting 2 Oops?
3407 // Found an InstPtr sub-type vs self-InstPtr type
3408 const TypeInstPtr *tinst = t->is_instptr();
3409 int off = meet_offset( tinst->offset() );
3410 PTR ptr = meet_ptr( tinst->ptr() );
3411 int instance_id = meet_instance_id(tinst->instance_id());
3412 const TypeOopPtr* speculative = xmeet_speculative(tinst);
3413 int depth = meet_inline_depth(tinst->inline_depth());
3414
3415 // Check for easy case; klasses are equal (and perhaps not loaded!)
3416 // If we have constants, then we created oops so classes are loaded
3417 // and we can handle the constants further down. This case handles
3418 // both-not-loaded or both-loaded classes
3419 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3420 return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3421 }
3422
3423 // Classes require inspection in the Java klass hierarchy. Must be loaded.
3424 ciKlass* tinst_klass = tinst->klass();
3425 ciKlass* this_klass = this->klass();
3426 bool tinst_xk = tinst->klass_is_exact();
3427 bool this_xk = this->klass_is_exact();
3428 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3429 // One of these classes has not been loaded
3430 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3431 #ifndef PRODUCT
3432 if( PrintOpto && Verbose ) {
3433 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3434 tty->print(" this == "); this->dump(); tty->cr();
3435 tty->print(" tinst == "); tinst->dump(); tty->cr();
3436 }
3437 #endif
3438 return unloaded_meet;
3439 }
3440
3441 // Handle mixing oops and interfaces first.
3442 if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3443 tinst_klass == ciEnv::current()->Object_klass())) {
3444 ciKlass *tmp = tinst_klass; // Swap interface around
3445 tinst_klass = this_klass;
3446 this_klass = tmp;
3447 bool tmp2 = tinst_xk;
3448 tinst_xk = this_xk;
3449 this_xk = tmp2;
3450 }
3451 if (tinst_klass->is_interface() &&
3452 !(this_klass->is_interface() ||
3453 // Treat java/lang/Object as an honorary interface,
3454 // because we need a bottom for the interface hierarchy.
3455 this_klass == ciEnv::current()->Object_klass())) {
3456 // Oop meets interface!
3457
3458 // See if the oop subtypes (implements) interface.
3459 ciKlass *k;
3460 bool xk;
3461 if( this_klass->is_subtype_of( tinst_klass ) ) {
3462 // Oop indeed subtypes. Now keep oop or interface depending
3463 // on whether we are both above the centerline or either is
3464 // below the centerline. If we are on the centerline
3465 // (e.g., Constant vs. AnyNull interface), use the constant.
3466 k = below_centerline(ptr) ? tinst_klass : this_klass;
3467 // If we are keeping this_klass, keep its exactness too.
3468 xk = below_centerline(ptr) ? tinst_xk : this_xk;
3469 } else { // Does not implement, fall to Object
3470 // Oop does not implement interface, so mixing falls to Object
3471 // just like the verifier does (if both are above the
3472 // centerline fall to interface)
3473 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3474 xk = above_centerline(ptr) ? tinst_xk : false;
3475 // Watch out for Constant vs. AnyNull interface.
3476 if (ptr == Constant) ptr = NotNull; // forget it was a constant
3477 instance_id = InstanceBot;
3478 }
3479 ciObject* o = NULL; // the Constant value, if any
3480 if (ptr == Constant) {
3481 // Find out which constant.
3482 o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3483 }
3484 return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3485 }
3486
3487 // Either oop vs oop or interface vs interface or interface vs Object
3488
3489 // !!! Here's how the symmetry requirement breaks down into invariants:
3490 // If we split one up & one down AND they subtype, take the down man.
3491 // If we split one up & one down AND they do NOT subtype, "fall hard".
3492 // If both are up and they subtype, take the subtype class.
3493 // If both are up and they do NOT subtype, "fall hard".
3494 // If both are down and they subtype, take the supertype class.
3495 // If both are down and they do NOT subtype, "fall hard".
3496 // Constants treated as down.
3497
3498 // Now, reorder the above list; observe that both-down+subtype is also
3499 // "fall hard"; "fall hard" becomes the default case:
3500 // If we split one up & one down AND they subtype, take the down man.
3501 // If both are up and they subtype, take the subtype class.
3502
3503 // If both are down and they subtype, "fall hard".
3504 // If both are down and they do NOT subtype, "fall hard".
3505 // If both are up and they do NOT subtype, "fall hard".
3506 // If we split one up & one down AND they do NOT subtype, "fall hard".
3507
3508 // If a proper subtype is exact, and we return it, we return it exactly.
3509 // If a proper supertype is exact, there can be no subtyping relationship!
3510 // If both types are equal to the subtype, exactness is and-ed below the
3511 // centerline and or-ed above it. (N.B. Constants are always exact.)
3512
3513 // Check for subtyping:
3514 ciKlass *subtype = NULL;
3515 bool subtype_exact = false;
3516 if( tinst_klass->equals(this_klass) ) {
3517 subtype = this_klass;
3518 subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3519 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3520 subtype = this_klass; // Pick subtyping class
3521 subtype_exact = this_xk;
3522 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3523 subtype = tinst_klass; // Pick subtyping class
3524 subtype_exact = tinst_xk;
3525 }
3526
3527 if( subtype ) {
3528 if( above_centerline(ptr) ) { // both are up?
3529 this_klass = tinst_klass = subtype;
3530 this_xk = tinst_xk = subtype_exact;
3531 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3532 this_klass = tinst_klass; // tinst is down; keep down man
3533 this_xk = tinst_xk;
3534 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3535 tinst_klass = this_klass; // this is down; keep down man
3536 tinst_xk = this_xk;
3537 } else {
3538 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
3539 }
3540 }
3541
3542 // Check for classes now being equal
3543 if (tinst_klass->equals(this_klass)) {
3544 // If the klasses are equal, the constants may still differ. Fall to
3545 // NotNull if they do (neither constant is NULL; that is a special case
3546 // handled elsewhere).
3547 ciObject* o = NULL; // Assume not constant when done
3548 ciObject* this_oop = const_oop();
3549 ciObject* tinst_oop = tinst->const_oop();
3550 if( ptr == Constant ) {
3551 if (this_oop != NULL && tinst_oop != NULL &&
3552 this_oop->equals(tinst_oop) )
3553 o = this_oop;
3554 else if (above_centerline(this ->_ptr))
3555 o = tinst_oop;
3556 else if (above_centerline(tinst ->_ptr))
3557 o = this_oop;
3558 else
3559 ptr = NotNull;
3560 }
3561 return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
3562 } // Else classes are not equal
3563
3564 // Since klasses are different, we require a LCA in the Java
3565 // class hierarchy - which means we have to fall to at least NotNull.
3566 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3567 ptr = NotNull;
3568 instance_id = InstanceBot;
3569
3570 // Now we find the LCA of Java classes
3571 ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3572 return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
3573 } // End of case InstPtr
3574
3575 } // End of switch
3576 return this; // Return the double constant
3577 }
3578
3579
3580 //------------------------java_mirror_type--------------------------------------
3581 ciType* TypeInstPtr::java_mirror_type() const {
3582 // must be a singleton type
3583 if( const_oop() == NULL ) return NULL;
3584
3585 // must be of type java.lang.Class
3586 if( klass() != ciEnv::current()->Class_klass() ) return NULL;
3587
3588 return const_oop()->as_instance()->java_mirror_type();
3589 }
3590
3591
3592 //------------------------------xdual------------------------------------------
3593 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
3594 // inheritance mechanism.
3595 const Type *TypeInstPtr::xdual() const {
3596 return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3597 }
3598
3599 //------------------------------eq---------------------------------------------
3600 // Structural equality check for Type representations
3601 bool TypeInstPtr::eq( const Type *t ) const {
3602 const TypeInstPtr *p = t->is_instptr();
3603 return
3604 klass()->equals(p->klass()) &&
3605 TypeOopPtr::eq(p); // Check sub-type stuff
3606 }
3607
3608 //------------------------------hash-------------------------------------------
3609 // Type-specific hashing function.
3610 int TypeInstPtr::hash(void) const {
3611 int hash = klass()->hash() + TypeOopPtr::hash();
3612 return hash;
3613 }
3614
3615 //------------------------------dump2------------------------------------------
3616 // Dump oop Type
3617 #ifndef PRODUCT
3618 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3619 // Print the name of the klass.
3620 klass()->print_name_on(st);
3621
3622 switch( _ptr ) {
3623 case Constant:
3624 // TO DO: Make CI print the hex address of the underlying oop.
3625 if (WizardMode || Verbose) {
3626 const_oop()->print_oop(st);
3627 }
3628 case BotPTR:
3629 if (!WizardMode && !Verbose) {
3630 if( _klass_is_exact ) st->print(":exact");
3631 break;
3632 }
3633 case TopPTR:
3634 case AnyNull:
3635 case NotNull:
3636 st->print(":%s", ptr_msg[_ptr]);
3637 if( _klass_is_exact ) st->print(":exact");
3638 break;
3639 }
3640
3641 if( _offset ) { // Dump offset, if any
3642 if( _offset == OffsetBot ) st->print("+any");
3643 else if( _offset == OffsetTop ) st->print("+unknown");
3644 else st->print("+%d", _offset);
3645 }
3646
3647 st->print(" *");
3648 if (_instance_id == InstanceTop)
3649 st->print(",iid=top");
3650 else if (_instance_id != InstanceBot)
3651 st->print(",iid=%d",_instance_id);
3652
3653 dump_inline_depth(st);
3654 dump_speculative(st);
3655 }
3656 #endif
3657
3658 //------------------------------add_offset-------------------------------------
3659 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
3660 return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset));
3661 }
3662
3663 const Type *TypeInstPtr::remove_speculative() const {
3664 if (_speculative == NULL) {
3665 return this;
3666 }
3667 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3668 return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL, _inline_depth);
3669 }
3670
3671 const TypeOopPtr *TypeInstPtr::with_inline_depth(int depth) const {
3672 if (!UseInlineDepthForSpeculativeTypes) {
3673 return this;
3674 }
3675 return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
3676 }
3677
3678 //=============================================================================
3679 // Convenience common pre-built types.
3680 const TypeAryPtr *TypeAryPtr::RANGE;
3681 const TypeAryPtr *TypeAryPtr::OOPS;
3682 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3683 const TypeAryPtr *TypeAryPtr::BYTES;
3684 const TypeAryPtr *TypeAryPtr::SHORTS;
3685 const TypeAryPtr *TypeAryPtr::CHARS;
3686 const TypeAryPtr *TypeAryPtr::INTS;
3687 const TypeAryPtr *TypeAryPtr::LONGS;
3688 const TypeAryPtr *TypeAryPtr::FLOATS;
3689 const TypeAryPtr *TypeAryPtr::DOUBLES;
3690
3691 //------------------------------make-------------------------------------------
3692 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
3693 assert(!(k == NULL && ary->_elem->isa_int()),
3694 "integral arrays must be pre-equipped with a class");
3695 if (!xk) xk = ary->ary_must_be_exact();
3696 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3697 if (!UseExactTypes) xk = (ptr == Constant);
3698 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
3699 }
3700
3701 //------------------------------make-------------------------------------------
3702 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth, bool is_autobox_cache) {
3703 assert(!(k == NULL && ary->_elem->isa_int()),
3704 "integral arrays must be pre-equipped with a class");
3705 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3706 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
3707 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3708 if (!UseExactTypes) xk = (ptr == Constant);
3709 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
3710 }
3711
3712 //------------------------------cast_to_ptr_type-------------------------------
3713 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3714 if( ptr == _ptr ) return this;
3715 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3716 }
3717
3718
3719 //-----------------------------cast_to_exactness-------------------------------
3720 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3721 if( klass_is_exact == _klass_is_exact ) return this;
3722 if (!UseExactTypes) return this;
3723 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
3724 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
3725 }
3726
3727 //-----------------------------cast_to_instance_id----------------------------
3728 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3729 if( instance_id == _instance_id ) return this;
3730 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
3731 }
3732
3733 //-----------------------------narrow_size_type-------------------------------
3734 // Local cache for arrayOopDesc::max_array_length(etype),
3735 // which is kind of slow (and cached elsewhere by other users).
3736 static jint max_array_length_cache[T_CONFLICT+1];
3737 static jint max_array_length(BasicType etype) {
3738 jint& cache = max_array_length_cache[etype];
3739 jint res = cache;
3740 if (res == 0) {
3741 switch (etype) {
3742 case T_NARROWOOP:
3743 etype = T_OBJECT;
3744 break;
3745 case T_NARROWKLASS:
3746 case T_CONFLICT:
3747 case T_ILLEGAL:
3748 case T_VOID:
3749 etype = T_BYTE; // will produce conservatively high value
3750 }
3751 cache = res = arrayOopDesc::max_array_length(etype);
3752 }
3753 return res;
3754 }
3755
3756 // Narrow the given size type to the index range for the given array base type.
3757 // Return NULL if the resulting int type becomes empty.
3758 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3759 jint hi = size->_hi;
3760 jint lo = size->_lo;
3761 jint min_lo = 0;
3762 jint max_hi = max_array_length(elem()->basic_type());
3763 //if (index_not_size) --max_hi; // type of a valid array index, FTR
3764 bool chg = false;
3765 if (lo < min_lo) {
3766 lo = min_lo;
3767 if (size->is_con()) {
3768 hi = lo;
3769 }
3770 chg = true;
3771 }
3772 if (hi > max_hi) {
3773 hi = max_hi;
3774 if (size->is_con()) {
3775 lo = hi;
3776 }
3777 chg = true;
3778 }
3779 // Negative length arrays will produce weird intermediate dead fast-path code
3780 if (lo > hi)
3781 return TypeInt::ZERO;
3782 if (!chg)
3783 return size;
3784 return TypeInt::make(lo, hi, Type::WidenMin);
3785 }
3786
3787 //-------------------------------cast_to_size----------------------------------
3788 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
3789 assert(new_size != NULL, "");
3790 new_size = narrow_size_type(new_size);
3791 if (new_size == size()) return this;
3792 const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
3793 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3794 }
3795
3796
3797 //------------------------------cast_to_stable---------------------------------
3798 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
3799 if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
3800 return this;
3801
3802 const Type* elem = this->elem();
3803 const TypePtr* elem_ptr = elem->make_ptr();
3804
3805 if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
3806 // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
3807 elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
3808 }
3809
3810 const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
3811
3812 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
3813 }
3814
3815 //-----------------------------stable_dimension--------------------------------
3816 int TypeAryPtr::stable_dimension() const {
3817 if (!is_stable()) return 0;
3818 int dim = 1;
3819 const TypePtr* elem_ptr = elem()->make_ptr();
3820 if (elem_ptr != NULL && elem_ptr->isa_aryptr())
3821 dim += elem_ptr->is_aryptr()->stable_dimension();
3822 return dim;
3823 }
3824
3825 //------------------------------eq---------------------------------------------
3826 // Structural equality check for Type representations
3827 bool TypeAryPtr::eq( const Type *t ) const {
3828 const TypeAryPtr *p = t->is_aryptr();
3829 return
3830 _ary == p->_ary && // Check array
3831 TypeOopPtr::eq(p); // Check sub-parts
3832 }
3833
3834 //------------------------------hash-------------------------------------------
3835 // Type-specific hashing function.
3836 int TypeAryPtr::hash(void) const {
3837 return (intptr_t)_ary + TypeOopPtr::hash();
3838 }
3839
3840 //------------------------------meet-------------------------------------------
3841 // Compute the MEET of two types. It returns a new Type object.
3842 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
3843 // Perform a fast test for common case; meeting the same types together.
3844 if( this == t ) return this; // Meeting same type-rep?
3845 // Current "this->_base" is Pointer
3846 switch (t->base()) { // switch on original type
3847
3848 // Mixing ints & oops happens when javac reuses local variables
3849 case Int:
3850 case Long:
3851 case FloatTop:
3852 case FloatCon:
3853 case FloatBot:
3854 case DoubleTop:
3855 case DoubleCon:
3856 case DoubleBot:
3857 case NarrowOop:
3858 case NarrowKlass:
3859 case Bottom: // Ye Olde Default
3860 return Type::BOTTOM;
3861 case Top:
3862 return this;
3863
3864 default: // All else is a mistake
3865 typerr(t);
3866
3867 case OopPtr: { // Meeting to OopPtrs
3868 // Found a OopPtr type vs self-AryPtr type
3869 const TypeOopPtr *tp = t->is_oopptr();
3870 int offset = meet_offset(tp->offset());
3871 PTR ptr = meet_ptr(tp->ptr());
3872 int depth = meet_inline_depth(tp->inline_depth());
3873 switch (tp->ptr()) {
3874 case TopPTR:
3875 case AnyNull: {
3876 int instance_id = meet_instance_id(InstanceTop);
3877 const TypeOopPtr* speculative = xmeet_speculative(tp);
3878 return make(ptr, (ptr == Constant ? const_oop() : NULL),
3879 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
3880 }
3881 case BotPTR:
3882 case NotNull: {
3883 int instance_id = meet_instance_id(tp->instance_id());
3884 const TypeOopPtr* speculative = xmeet_speculative(tp);
3885 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3886 }
3887 default: ShouldNotReachHere();
3888 }
3889 }
3890
3891 case AnyPtr: { // Meeting two AnyPtrs
3892 // Found an AnyPtr type vs self-AryPtr type
3893 const TypePtr *tp = t->is_ptr();
3894 int offset = meet_offset(tp->offset());
3895 PTR ptr = meet_ptr(tp->ptr());
3896 switch (tp->ptr()) {
3897 case TopPTR:
3898 return this;
3899 case BotPTR:
3900 case NotNull:
3901 return TypePtr::make(AnyPtr, ptr, offset);
3902 case Null:
3903 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
3904 // else fall through to AnyNull
3905 case AnyNull: {
3906 int instance_id = meet_instance_id(InstanceTop);
3907 const TypeOopPtr* speculative = _speculative;
3908 return make(ptr, (ptr == Constant ? const_oop() : NULL),
3909 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, _inline_depth);
3910 }
3911 default: ShouldNotReachHere();
3912 }
3913 }
3914
3915 case MetadataPtr:
3916 case KlassPtr:
3917 case RawPtr: return TypePtr::BOTTOM;
3918
3919 case AryPtr: { // Meeting 2 references?
3920 const TypeAryPtr *tap = t->is_aryptr();
3921 int off = meet_offset(tap->offset());
3922 const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
3923 PTR ptr = meet_ptr(tap->ptr());
3924 int instance_id = meet_instance_id(tap->instance_id());
3925 const TypeOopPtr* speculative = xmeet_speculative(tap);
3926 int depth = meet_inline_depth(tap->inline_depth());
3927 ciKlass* lazy_klass = NULL;
3928 if (tary->_elem->isa_int()) {
3929 // Integral array element types have irrelevant lattice relations.
3930 // It is the klass that determines array layout, not the element type.
3931 if (_klass == NULL)
3932 lazy_klass = tap->_klass;
3933 else if (tap->_klass == NULL || tap->_klass == _klass) {
3934 lazy_klass = _klass;
3935 } else {
3936 // Something like byte[int+] meets char[int+].
3937 // This must fall to bottom, not (int[-128..65535])[int+].
3938 instance_id = InstanceBot;
3939 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
3940 }
3941 } else // Non integral arrays.
3942 // Must fall to bottom if exact klasses in upper lattice
3943 // are not equal or super klass is exact.
3944 if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
3945 // meet with top[] and bottom[] are processed further down:
3946 tap->_klass != NULL && this->_klass != NULL &&
3947 // both are exact and not equal:
3948 ((tap->_klass_is_exact && this->_klass_is_exact) ||
3949 // 'tap' is exact and super or unrelated:
3950 (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
3951 // 'this' is exact and super or unrelated:
3952 (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
3953 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
3954 return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot);
3955 }
3956
3957 bool xk = false;
3958 switch (tap->ptr()) {
3959 case AnyNull:
3960 case TopPTR:
3961 // Compute new klass on demand, do not use tap->_klass
3962 if (below_centerline(this->_ptr)) {
3963 xk = this->_klass_is_exact;
3964 } else {
3965 xk = (tap->_klass_is_exact | this->_klass_is_exact);
3966 }
3967 return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
3968 case Constant: {
3969 ciObject* o = const_oop();
3970 if( _ptr == Constant ) {
3971 if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
3972 xk = (klass() == tap->klass());
3973 ptr = NotNull;
3974 o = NULL;
3975 instance_id = InstanceBot;
3976 } else {
3977 xk = true;
3978 }
3979 } else if(above_centerline(_ptr)) {
3980 o = tap->const_oop();
3981 xk = true;
3982 } else {
3983 // Only precise for identical arrays
3984 xk = this->_klass_is_exact && (klass() == tap->klass());
3985 }
3986 return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
3987 }
3988 case NotNull:
3989 case BotPTR:
3990 // Compute new klass on demand, do not use tap->_klass
3991 if (above_centerline(this->_ptr))
3992 xk = tap->_klass_is_exact;
3993 else xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
3994 (klass() == tap->klass()); // Only precise for identical arrays
3995 return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
3996 default: ShouldNotReachHere();
3997 }
3998 }
3999
4000 // All arrays inherit from Object class
4001 case InstPtr: {
4002 const TypeInstPtr *tp = t->is_instptr();
4003 int offset = meet_offset(tp->offset());
4004 PTR ptr = meet_ptr(tp->ptr());
4005 int instance_id = meet_instance_id(tp->instance_id());
4006 const TypeOopPtr* speculative = xmeet_speculative(tp);
4007 int depth = meet_inline_depth(tp->inline_depth());
4008 switch (ptr) {
4009 case TopPTR:
4010 case AnyNull: // Fall 'down' to dual of object klass
4011 // For instances when a subclass meets a superclass we fall
4012 // below the centerline when the superclass is exact. We need to
4013 // do the same here.
4014 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4015 return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4016 } else {
4017 // cannot subclass, so the meet has to fall badly below the centerline
4018 ptr = NotNull;
4019 instance_id = InstanceBot;
4020 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4021 }
4022 case Constant:
4023 case NotNull:
4024 case BotPTR: // Fall down to object klass
4025 // LCA is object_klass, but if we subclass from the top we can do better
4026 if (above_centerline(tp->ptr())) {
4027 // If 'tp' is above the centerline and it is Object class
4028 // then we can subclass in the Java class hierarchy.
4029 // For instances when a subclass meets a superclass we fall
4030 // below the centerline when the superclass is exact. We need
4031 // to do the same here.
4032 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4033 // that is, my array type is a subtype of 'tp' klass
4034 return make(ptr, (ptr == Constant ? const_oop() : NULL),
4035 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4036 }
4037 }
4038 // The other case cannot happen, since t cannot be a subtype of an array.
4039 // The meet falls down to Object class below centerline.
4040 if( ptr == Constant )
4041 ptr = NotNull;
4042 instance_id = InstanceBot;
4043 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4044 default: typerr(t);
4045 }
4046 }
4047 }
4048 return this; // Lint noise
4049 }
4050
4051 //------------------------------xdual------------------------------------------
4052 // Dual: compute field-by-field dual
4053 const Type *TypeAryPtr::xdual() const {
4054 return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4055 }
4056
4057 //----------------------interface_vs_oop---------------------------------------
4058 #ifdef ASSERT
4059 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4060 const TypeAryPtr* t_aryptr = t->isa_aryptr();
4061 if (t_aryptr) {
4062 return _ary->interface_vs_oop(t_aryptr->_ary);
4063 }
4064 return false;
4065 }
4066 #endif
4067
4068 //------------------------------dump2------------------------------------------
4069 #ifndef PRODUCT
4070 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4071 _ary->dump2(d,depth,st);
4072 switch( _ptr ) {
4073 case Constant:
4074 const_oop()->print(st);
4075 break;
4076 case BotPTR:
4077 if (!WizardMode && !Verbose) {
4078 if( _klass_is_exact ) st->print(":exact");
4079 break;
4080 }
4081 case TopPTR:
4082 case AnyNull:
4083 case NotNull:
4084 st->print(":%s", ptr_msg[_ptr]);
4085 if( _klass_is_exact ) st->print(":exact");
4086 break;
4087 }
4088
4089 if( _offset != 0 ) {
4090 int header_size = objArrayOopDesc::header_size() * wordSize;
4091 if( _offset == OffsetTop ) st->print("+undefined");
4092 else if( _offset == OffsetBot ) st->print("+any");
4093 else if( _offset < header_size ) st->print("+%d", _offset);
4094 else {
4095 BasicType basic_elem_type = elem()->basic_type();
4096 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4097 int elem_size = type2aelembytes(basic_elem_type);
4098 st->print("[%d]", (_offset - array_base)/elem_size);
4099 }
4100 }
4101 st->print(" *");
4102 if (_instance_id == InstanceTop)
4103 st->print(",iid=top");
4104 else if (_instance_id != InstanceBot)
4105 st->print(",iid=%d",_instance_id);
4106
4107 dump_inline_depth(st);
4108 dump_speculative(st);
4109 }
4110 #endif
4111
4112 bool TypeAryPtr::empty(void) const {
4113 if (_ary->empty()) return true;
4114 return TypeOopPtr::empty();
4115 }
4116
4117 //------------------------------add_offset-------------------------------------
4118 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4119 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4120 }
4121
4122 const Type *TypeAryPtr::remove_speculative() const {
4123 if (_speculative == NULL) {
4124 return this;
4125 }
4126 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4127 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
4128 }
4129
4130 const TypeOopPtr *TypeAryPtr::with_inline_depth(int depth) const {
4131 if (!UseInlineDepthForSpeculativeTypes) {
4132 return this;
4133 }
4134 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4135 }
4136
4137 //=============================================================================
4138
4139 //------------------------------hash-------------------------------------------
4140 // Type-specific hashing function.
4141 int TypeNarrowPtr::hash(void) const {
4142 return _ptrtype->hash() + 7;
4143 }
4144
4145 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton
4146 return _ptrtype->singleton();
4147 }
4148
4149 bool TypeNarrowPtr::empty(void) const {
4150 return _ptrtype->empty();
4151 }
4152
4153 intptr_t TypeNarrowPtr::get_con() const {
4154 return _ptrtype->get_con();
4155 }
4156
4157 bool TypeNarrowPtr::eq( const Type *t ) const {
4158 const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4159 if (tc != NULL) {
4160 if (_ptrtype->base() != tc->_ptrtype->base()) {
4161 return false;
4162 }
4163 return tc->_ptrtype->eq(_ptrtype);
4164 }
4165 return false;
4166 }
4167
4168 const Type *TypeNarrowPtr::xdual() const { // Compute dual right now.
4169 const TypePtr* odual = _ptrtype->dual()->is_ptr();
4170 return make_same_narrowptr(odual);
4171 }
4172
4173
4174 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4175 if (isa_same_narrowptr(kills)) {
4176 const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4177 if (ft->empty())
4178 return Type::TOP; // Canonical empty value
4179 if (ft->isa_ptr()) {
4180 return make_hash_same_narrowptr(ft->isa_ptr());
4181 }
4182 return ft;
4183 } else if (kills->isa_ptr()) {
4184 const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4185 if (ft->empty())
4186 return Type::TOP; // Canonical empty value
4187 return ft;
4188 } else {
4189 return Type::TOP;
4190 }
4191 }
4192
4193 //------------------------------xmeet------------------------------------------
4194 // Compute the MEET of two types. It returns a new Type object.
4195 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4196 // Perform a fast test for common case; meeting the same types together.
4197 if( this == t ) return this; // Meeting same type-rep?
4198
4199 if (t->base() == base()) {
4200 const Type* result = _ptrtype->xmeet(t->make_ptr());
4201 if (result->isa_ptr()) {
4202 return make_hash_same_narrowptr(result->is_ptr());
4203 }
4204 return result;
4205 }
4206
4207 // Current "this->_base" is NarrowKlass or NarrowOop
4208 switch (t->base()) { // switch on original type
4209
4210 case Int: // Mixing ints & oops happens when javac
4211 case Long: // reuses local variables
4212 case FloatTop:
4213 case FloatCon:
4214 case FloatBot:
4215 case DoubleTop:
4216 case DoubleCon:
4217 case DoubleBot:
4218 case AnyPtr:
4219 case RawPtr:
4220 case OopPtr:
4221 case InstPtr:
4222 case AryPtr:
4223 case MetadataPtr:
4224 case KlassPtr:
4225 case NarrowOop:
4226 case NarrowKlass:
4227
4228 case Bottom: // Ye Olde Default
4229 return Type::BOTTOM;
4230 case Top:
4231 return this;
4232
4233 default: // All else is a mistake
4234 typerr(t);
4235
4236 } // End of switch
4237
4238 return this;
4239 }
4240
4241 #ifndef PRODUCT
4242 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4243 _ptrtype->dump2(d, depth, st);
4244 }
4245 #endif
4246
4247 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4248 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4249
4250
4251 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4252 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4253 }
4254
4255
4256 #ifndef PRODUCT
4257 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4258 st->print("narrowoop: ");
4259 TypeNarrowPtr::dump2(d, depth, st);
4260 }
4261 #endif
4262
4263 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4264
4265 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4266 return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4267 }
4268
4269 #ifndef PRODUCT
4270 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4271 st->print("narrowklass: ");
4272 TypeNarrowPtr::dump2(d, depth, st);
4273 }
4274 #endif
4275
4276
4277 //------------------------------eq---------------------------------------------
4278 // Structural equality check for Type representations
4279 bool TypeMetadataPtr::eq( const Type *t ) const {
4280 const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4281 ciMetadata* one = metadata();
4282 ciMetadata* two = a->metadata();
4283 if (one == NULL || two == NULL) {
4284 return (one == two) && TypePtr::eq(t);
4285 } else {
4286 return one->equals(two) && TypePtr::eq(t);
4287 }
4288 }
4289
4290 //------------------------------hash-------------------------------------------
4291 // Type-specific hashing function.
4292 int TypeMetadataPtr::hash(void) const {
4293 return
4294 (metadata() ? metadata()->hash() : 0) +
4295 TypePtr::hash();
4296 }
4297
4298 //------------------------------singleton--------------------------------------
4299 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
4300 // constants
4301 bool TypeMetadataPtr::singleton(void) const {
4302 // detune optimizer to not generate constant metadta + constant offset as a constant!
4303 // TopPTR, Null, AnyNull, Constant are all singletons
4304 return (_offset == 0) && !below_centerline(_ptr);
4305 }
4306
4307 //------------------------------add_offset-------------------------------------
4308 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4309 return make( _ptr, _metadata, xadd_offset(offset));
4310 }
4311
4312 //-----------------------------filter------------------------------------------
4313 // Do not allow interface-vs.-noninterface joins to collapse to top.
4314 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4315 const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4316 if (ft == NULL || ft->empty())
4317 return Type::TOP; // Canonical empty value
4318 return ft;
4319 }
4320
4321 //------------------------------get_con----------------------------------------
4322 intptr_t TypeMetadataPtr::get_con() const {
4323 assert( _ptr == Null || _ptr == Constant, "" );
4324 assert( _offset >= 0, "" );
4325
4326 if (_offset != 0) {
4327 // After being ported to the compiler interface, the compiler no longer
4328 // directly manipulates the addresses of oops. Rather, it only has a pointer
4329 // to a handle at compile time. This handle is embedded in the generated
4330 // code and dereferenced at the time the nmethod is made. Until that time,
4331 // it is not reasonable to do arithmetic with the addresses of oops (we don't
4332 // have access to the addresses!). This does not seem to currently happen,
4333 // but this assertion here is to help prevent its occurence.
4334 tty->print_cr("Found oop constant with non-zero offset");
4335 ShouldNotReachHere();
4336 }
4337
4338 return (intptr_t)metadata()->constant_encoding();
4339 }
4340
4341 //------------------------------cast_to_ptr_type-------------------------------
4342 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4343 if( ptr == _ptr ) return this;
4344 return make(ptr, metadata(), _offset);
4345 }
4346
4347 //------------------------------meet-------------------------------------------
4348 // Compute the MEET of two types. It returns a new Type object.
4349 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4350 // Perform a fast test for common case; meeting the same types together.
4351 if( this == t ) return this; // Meeting same type-rep?
4352
4353 // Current "this->_base" is OopPtr
4354 switch (t->base()) { // switch on original type
4355
4356 case Int: // Mixing ints & oops happens when javac
4357 case Long: // reuses local variables
4358 case FloatTop:
4359 case FloatCon:
4360 case FloatBot:
4361 case DoubleTop:
4362 case DoubleCon:
4363 case DoubleBot:
4364 case NarrowOop:
4365 case NarrowKlass:
4366 case Bottom: // Ye Olde Default
4367 return Type::BOTTOM;
4368 case Top:
4369 return this;
4370
4371 default: // All else is a mistake
4372 typerr(t);
4373
4374 case AnyPtr: {
4375 // Found an AnyPtr type vs self-OopPtr type
4376 const TypePtr *tp = t->is_ptr();
4377 int offset = meet_offset(tp->offset());
4378 PTR ptr = meet_ptr(tp->ptr());
4379 switch (tp->ptr()) {
4380 case Null:
4381 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
4382 // else fall through:
4383 case TopPTR:
4384 case AnyNull: {
4385 return make(ptr, _metadata, offset);
4386 }
4387 case BotPTR:
4388 case NotNull:
4389 return TypePtr::make(AnyPtr, ptr, offset);
4390 default: typerr(t);
4391 }
4392 }
4393
4394 case RawPtr:
4395 case KlassPtr:
4396 case OopPtr:
4397 case InstPtr:
4398 case AryPtr:
4399 return TypePtr::BOTTOM; // Oop meet raw is not well defined
4400
4401 case MetadataPtr: {
4402 const TypeMetadataPtr *tp = t->is_metadataptr();
4403 int offset = meet_offset(tp->offset());
4404 PTR tptr = tp->ptr();
4405 PTR ptr = meet_ptr(tptr);
4406 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4407 if (tptr == TopPTR || _ptr == TopPTR ||
4408 metadata()->equals(tp->metadata())) {
4409 return make(ptr, md, offset);
4410 }
4411 // metadata is different
4412 if( ptr == Constant ) { // Cannot be equal constants, so...
4413 if( tptr == Constant && _ptr != Constant) return t;
4414 if( _ptr == Constant && tptr != Constant) return this;
4415 ptr = NotNull; // Fall down in lattice
4416 }
4417 return make(ptr, NULL, offset);
4418 break;
4419 }
4420 } // End of switch
4421 return this; // Return the double constant
4422 }
4423
4424
4425 //------------------------------xdual------------------------------------------
4426 // Dual of a pure metadata pointer.
4427 const Type *TypeMetadataPtr::xdual() const {
4428 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4429 }
4430
4431 //------------------------------dump2------------------------------------------
4432 #ifndef PRODUCT
4433 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4434 st->print("metadataptr:%s", ptr_msg[_ptr]);
4435 if( metadata() ) st->print(INTPTR_FORMAT, metadata());
4436 switch( _offset ) {
4437 case OffsetTop: st->print("+top"); break;
4438 case OffsetBot: st->print("+any"); break;
4439 case 0: break;
4440 default: st->print("+%d",_offset); break;
4441 }
4442 }
4443 #endif
4444
4445
4446 //=============================================================================
4447 // Convenience common pre-built type.
4448 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4449
4450 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4451 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4452 }
4453
4454 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4455 return make(Constant, m, 0);
4456 }
4457 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4458 return make(Constant, m, 0);
4459 }
4460
4461 //------------------------------make-------------------------------------------
4462 // Create a meta data constant
4463 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4464 assert(m == NULL || !m->is_klass(), "wrong type");
4465 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4466 }
4467
4468
4469 //=============================================================================
4470 // Convenience common pre-built types.
4471
4472 // Not-null object klass or below
4473 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4474 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4475
4476 //------------------------------TypeKlassPtr-----------------------------------
4477 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4478 : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4479 }
4480
4481 //------------------------------make-------------------------------------------
4482 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4483 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4484 assert( k != NULL, "Expect a non-NULL klass");
4485 assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4486 TypeKlassPtr *r =
4487 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4488
4489 return r;
4490 }
4491
4492 //------------------------------eq---------------------------------------------
4493 // Structural equality check for Type representations
4494 bool TypeKlassPtr::eq( const Type *t ) const {
4495 const TypeKlassPtr *p = t->is_klassptr();
4496 return
4497 klass()->equals(p->klass()) &&
4498 TypePtr::eq(p);
4499 }
4500
4501 //------------------------------hash-------------------------------------------
4502 // Type-specific hashing function.
4503 int TypeKlassPtr::hash(void) const {
4504 return klass()->hash() + TypePtr::hash();
4505 }
4506
4507 //------------------------------singleton--------------------------------------
4508 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
4509 // constants
4510 bool TypeKlassPtr::singleton(void) const {
4511 // detune optimizer to not generate constant klass + constant offset as a constant!
4512 // TopPTR, Null, AnyNull, Constant are all singletons
4513 return (_offset == 0) && !below_centerline(_ptr);
4514 }
4515
4516 // Do not allow interface-vs.-noninterface joins to collapse to top.
4517 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
4518 // logic here mirrors the one from TypeOopPtr::filter. See comments
4519 // there.
4520 const Type* ft = join_helper(kills, include_speculative);
4521 const TypeKlassPtr* ftkp = ft->isa_klassptr();
4522 const TypeKlassPtr* ktkp = kills->isa_klassptr();
4523
4524 if (ft->empty()) {
4525 if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
4526 return kills; // Uplift to interface
4527
4528 return Type::TOP; // Canonical empty value
4529 }
4530
4531 // Interface klass type could be exact in opposite to interface type,
4532 // return it here instead of incorrect Constant ptr J/L/Object (6894807).
4533 if (ftkp != NULL && ktkp != NULL &&
4534 ftkp->is_loaded() && ftkp->klass()->is_interface() &&
4535 !ftkp->klass_is_exact() && // Keep exact interface klass
4536 ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
4537 return ktkp->cast_to_ptr_type(ftkp->ptr());
4538 }
4539
4540 return ft;
4541 }
4542
4543 //----------------------compute_klass------------------------------------------
4544 // Compute the defining klass for this class
4545 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4546 // Compute _klass based on element type.
4547 ciKlass* k_ary = NULL;
4548 const TypeInstPtr *tinst;
4549 const TypeAryPtr *tary;
4550 const Type* el = elem();
4551 if (el->isa_narrowoop()) {
4552 el = el->make_ptr();
4553 }
4554
4555 // Get element klass
4556 if ((tinst = el->isa_instptr()) != NULL) {
4557 // Compute array klass from element klass
4558 k_ary = ciObjArrayKlass::make(tinst->klass());
4559 } else if ((tary = el->isa_aryptr()) != NULL) {
4560 // Compute array klass from element klass
4561 ciKlass* k_elem = tary->klass();
4562 // If element type is something like bottom[], k_elem will be null.
4563 if (k_elem != NULL)
4564 k_ary = ciObjArrayKlass::make(k_elem);
4565 } else if ((el->base() == Type::Top) ||
4566 (el->base() == Type::Bottom)) {
4567 // element type of Bottom occurs from meet of basic type
4568 // and object; Top occurs when doing join on Bottom.
4569 // Leave k_ary at NULL.
4570 } else {
4571 // Cannot compute array klass directly from basic type,
4572 // since subtypes of TypeInt all have basic type T_INT.
4573 #ifdef ASSERT
4574 if (verify && el->isa_int()) {
4575 // Check simple cases when verifying klass.
4576 BasicType bt = T_ILLEGAL;
4577 if (el == TypeInt::BYTE) {
4578 bt = T_BYTE;
4579 } else if (el == TypeInt::SHORT) {
4580 bt = T_SHORT;
4581 } else if (el == TypeInt::CHAR) {
4582 bt = T_CHAR;
4583 } else if (el == TypeInt::INT) {
4584 bt = T_INT;
4585 } else {
4586 return _klass; // just return specified klass
4587 }
4588 return ciTypeArrayKlass::make(bt);
4589 }
4590 #endif
4591 assert(!el->isa_int(),
4592 "integral arrays must be pre-equipped with a class");
4593 // Compute array klass directly from basic type
4594 k_ary = ciTypeArrayKlass::make(el->basic_type());
4595 }
4596 return k_ary;
4597 }
4598
4599 //------------------------------klass------------------------------------------
4600 // Return the defining klass for this class
4601 ciKlass* TypeAryPtr::klass() const {
4602 if( _klass ) return _klass; // Return cached value, if possible
4603
4604 // Oops, need to compute _klass and cache it
4605 ciKlass* k_ary = compute_klass();
4606
4607 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
4608 // The _klass field acts as a cache of the underlying
4609 // ciKlass for this array type. In order to set the field,
4610 // we need to cast away const-ness.
4611 //
4612 // IMPORTANT NOTE: we *never* set the _klass field for the
4613 // type TypeAryPtr::OOPS. This Type is shared between all
4614 // active compilations. However, the ciKlass which represents
4615 // this Type is *not* shared between compilations, so caching
4616 // this value would result in fetching a dangling pointer.
4617 //
4618 // Recomputing the underlying ciKlass for each request is
4619 // a bit less efficient than caching, but calls to
4620 // TypeAryPtr::OOPS->klass() are not common enough to matter.
4621 ((TypeAryPtr*)this)->_klass = k_ary;
4622 if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
4623 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
4624 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
4625 }
4626 }
4627 return k_ary;
4628 }
4629
4630
4631 //------------------------------add_offset-------------------------------------
4632 // Access internals of klass object
4633 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
4634 return make( _ptr, klass(), xadd_offset(offset) );
4635 }
4636
4637 //------------------------------cast_to_ptr_type-------------------------------
4638 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
4639 assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
4640 if( ptr == _ptr ) return this;
4641 return make(ptr, _klass, _offset);
4642 }
4643
4644
4645 //-----------------------------cast_to_exactness-------------------------------
4646 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
4647 if( klass_is_exact == _klass_is_exact ) return this;
4648 if (!UseExactTypes) return this;
4649 return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
4650 }
4651
4652
4653 //-----------------------------as_instance_type--------------------------------
4654 // Corresponding type for an instance of the given class.
4655 // It will be NotNull, and exact if and only if the klass type is exact.
4656 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
4657 ciKlass* k = klass();
4658 bool xk = klass_is_exact();
4659 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
4660 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
4661 guarantee(toop != NULL, "need type for given klass");
4662 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4663 return toop->cast_to_exactness(xk)->is_oopptr();
4664 }
4665
4666
4667 //------------------------------xmeet------------------------------------------
4668 // Compute the MEET of two types, return a new Type object.
4669 const Type *TypeKlassPtr::xmeet( const Type *t ) const {
4670 // Perform a fast test for common case; meeting the same types together.
4671 if( this == t ) return this; // Meeting same type-rep?
4672
4673 // Current "this->_base" is Pointer
4674 switch (t->base()) { // switch on original type
4675
4676 case Int: // Mixing ints & oops happens when javac
4677 case Long: // reuses local variables
4678 case FloatTop:
4679 case FloatCon:
4680 case FloatBot:
4681 case DoubleTop:
4682 case DoubleCon:
4683 case DoubleBot:
4684 case NarrowOop:
4685 case NarrowKlass:
4686 case Bottom: // Ye Olde Default
4687 return Type::BOTTOM;
4688 case Top:
4689 return this;
4690
4691 default: // All else is a mistake
4692 typerr(t);
4693
4694 case AnyPtr: { // Meeting to AnyPtrs
4695 // Found an AnyPtr type vs self-KlassPtr type
4696 const TypePtr *tp = t->is_ptr();
4697 int offset = meet_offset(tp->offset());
4698 PTR ptr = meet_ptr(tp->ptr());
4699 switch (tp->ptr()) {
4700 case TopPTR:
4701 return this;
4702 case Null:
4703 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
4704 case AnyNull:
4705 return make( ptr, klass(), offset );
4706 case BotPTR:
4707 case NotNull:
4708 return TypePtr::make(AnyPtr, ptr, offset);
4709 default: typerr(t);
4710 }
4711 }
4712
4713 case RawPtr:
4714 case MetadataPtr:
4715 case OopPtr:
4716 case AryPtr: // Meet with AryPtr
4717 case InstPtr: // Meet with InstPtr
4718 return TypePtr::BOTTOM;
4719
4720 //
4721 // A-top }
4722 // / | \ } Tops
4723 // B-top A-any C-top }
4724 // | / | \ | } Any-nulls
4725 // B-any | C-any }
4726 // | | |
4727 // B-con A-con C-con } constants; not comparable across classes
4728 // | | |
4729 // B-not | C-not }
4730 // | \ | / | } not-nulls
4731 // B-bot A-not C-bot }
4732 // \ | / } Bottoms
4733 // A-bot }
4734 //
4735
4736 case KlassPtr: { // Meet two KlassPtr types
4737 const TypeKlassPtr *tkls = t->is_klassptr();
4738 int off = meet_offset(tkls->offset());
4739 PTR ptr = meet_ptr(tkls->ptr());
4740
4741 // Check for easy case; klasses are equal (and perhaps not loaded!)
4742 // If we have constants, then we created oops so classes are loaded
4743 // and we can handle the constants further down. This case handles
4744 // not-loaded classes
4745 if( ptr != Constant && tkls->klass()->equals(klass()) ) {
4746 return make( ptr, klass(), off );
4747 }
4748
4749 // Classes require inspection in the Java klass hierarchy. Must be loaded.
4750 ciKlass* tkls_klass = tkls->klass();
4751 ciKlass* this_klass = this->klass();
4752 assert( tkls_klass->is_loaded(), "This class should have been loaded.");
4753 assert( this_klass->is_loaded(), "This class should have been loaded.");
4754
4755 // If 'this' type is above the centerline and is a superclass of the
4756 // other, we can treat 'this' as having the same type as the other.
4757 if ((above_centerline(this->ptr())) &&
4758 tkls_klass->is_subtype_of(this_klass)) {
4759 this_klass = tkls_klass;
4760 }
4761 // If 'tinst' type is above the centerline and is a superclass of the
4762 // other, we can treat 'tinst' as having the same type as the other.
4763 if ((above_centerline(tkls->ptr())) &&
4764 this_klass->is_subtype_of(tkls_klass)) {
4765 tkls_klass = this_klass;
4766 }
4767
4768 // Check for classes now being equal
4769 if (tkls_klass->equals(this_klass)) {
4770 // If the klasses are equal, the constants may still differ. Fall to
4771 // NotNull if they do (neither constant is NULL; that is a special case
4772 // handled elsewhere).
4773 if( ptr == Constant ) {
4774 if (this->_ptr == Constant && tkls->_ptr == Constant &&
4775 this->klass()->equals(tkls->klass()));
4776 else if (above_centerline(this->ptr()));
4777 else if (above_centerline(tkls->ptr()));
4778 else
4779 ptr = NotNull;
4780 }
4781 return make( ptr, this_klass, off );
4782 } // Else classes are not equal
4783
4784 // Since klasses are different, we require the LCA in the Java
4785 // class hierarchy - which means we have to fall to at least NotNull.
4786 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4787 ptr = NotNull;
4788 // Now we find the LCA of Java classes
4789 ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
4790 return make( ptr, k, off );
4791 } // End of case KlassPtr
4792
4793 } // End of switch
4794 return this; // Return the double constant
4795 }
4796
4797 //------------------------------xdual------------------------------------------
4798 // Dual: compute field-by-field dual
4799 const Type *TypeKlassPtr::xdual() const {
4800 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
4801 }
4802
4803 //------------------------------get_con----------------------------------------
4804 intptr_t TypeKlassPtr::get_con() const {
4805 assert( _ptr == Null || _ptr == Constant, "" );
4806 assert( _offset >= 0, "" );
4807
4808 if (_offset != 0) {
4809 // After being ported to the compiler interface, the compiler no longer
4810 // directly manipulates the addresses of oops. Rather, it only has a pointer
4811 // to a handle at compile time. This handle is embedded in the generated
4812 // code and dereferenced at the time the nmethod is made. Until that time,
4813 // it is not reasonable to do arithmetic with the addresses of oops (we don't
4814 // have access to the addresses!). This does not seem to currently happen,
4815 // but this assertion here is to help prevent its occurence.
4816 tty->print_cr("Found oop constant with non-zero offset");
4817 ShouldNotReachHere();
4818 }
4819
4820 return (intptr_t)klass()->constant_encoding();
4821 }
4822 //------------------------------dump2------------------------------------------
4823 // Dump Klass Type
4824 #ifndef PRODUCT
4825 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4826 switch( _ptr ) {
4827 case Constant:
4828 st->print("precise ");
4829 case NotNull:
4830 {
4831 const char *name = klass()->name()->as_utf8();
4832 if( name ) {
4833 st->print("klass %s: " INTPTR_FORMAT, name, klass());
4834 } else {
4835 ShouldNotReachHere();
4836 }
4837 }
4838 case BotPTR:
4839 if( !WizardMode && !Verbose && !_klass_is_exact ) break;
4840 case TopPTR:
4841 case AnyNull:
4842 st->print(":%s", ptr_msg[_ptr]);
4843 if( _klass_is_exact ) st->print(":exact");
4844 break;
4845 }
4846
4847 if( _offset ) { // Dump offset, if any
4848 if( _offset == OffsetBot ) { st->print("+any"); }
4849 else if( _offset == OffsetTop ) { st->print("+unknown"); }
4850 else { st->print("+%d", _offset); }
4851 }
4852
4853 st->print(" *");
4854 }
4855 #endif
4856
4857
4858
4859 //=============================================================================
4860 // Convenience common pre-built types.
4861
4862 //------------------------------make-------------------------------------------
4863 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
4864 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
4865 }
4866
4867 //------------------------------make-------------------------------------------
4868 const TypeFunc *TypeFunc::make(ciMethod* method) {
4869 Compile* C = Compile::current();
4870 const TypeFunc* tf = C->last_tf(method); // check cache
4871 if (tf != NULL) return tf; // The hit rate here is almost 50%.
4872 const TypeTuple *domain;
4873 if (method->is_static()) {
4874 domain = TypeTuple::make_domain(NULL, method->signature());
4875 } else {
4876 domain = TypeTuple::make_domain(method->holder(), method->signature());
4877 }
4878 const TypeTuple *range = TypeTuple::make_range(method->signature());
4879 tf = TypeFunc::make(domain, range);
4880 C->set_last_tf(method, tf); // fill cache
4881 return tf;
4882 }
4883
4884 //------------------------------meet-------------------------------------------
4885 // Compute the MEET of two types. It returns a new Type object.
4886 const Type *TypeFunc::xmeet( const Type *t ) const {
4887 // Perform a fast test for common case; meeting the same types together.
4888 if( this == t ) return this; // Meeting same type-rep?
4889
4890 // Current "this->_base" is Func
4891 switch (t->base()) { // switch on original type
4892
4893 case Bottom: // Ye Olde Default
4894 return t;
4895
4896 default: // All else is a mistake
4897 typerr(t);
4898
4899 case Top:
4900 break;
4901 }
4902 return this; // Return the double constant
4903 }
4904
4905 //------------------------------xdual------------------------------------------
4906 // Dual: compute field-by-field dual
4907 const Type *TypeFunc::xdual() const {
4908 return this;
4909 }
4910
4911 //------------------------------eq---------------------------------------------
4912 // Structural equality check for Type representations
4913 bool TypeFunc::eq( const Type *t ) const {
4914 const TypeFunc *a = (const TypeFunc*)t;
4915 return _domain == a->_domain &&
4916 _range == a->_range;
4917 }
4918
4919 //------------------------------hash-------------------------------------------
4920 // Type-specific hashing function.
4921 int TypeFunc::hash(void) const {
4922 return (intptr_t)_domain + (intptr_t)_range;
4923 }
4924
4925 //------------------------------dump2------------------------------------------
4926 // Dump Function Type
4927 #ifndef PRODUCT
4928 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
4929 if( _range->_cnt <= Parms )
4930 st->print("void");
4931 else {
4932 uint i;
4933 for (i = Parms; i < _range->_cnt-1; i++) {
4934 _range->field_at(i)->dump2(d,depth,st);
4935 st->print("/");
4936 }
4937 _range->field_at(i)->dump2(d,depth,st);
4938 }
4939 st->print(" ");
4940 st->print("( ");
4941 if( !depth || d[this] ) { // Check for recursive dump
4942 st->print("...)");
4943 return;
4944 }
4945 d.Insert((void*)this,(void*)this); // Stop recursion
4946 if (Parms < _domain->_cnt)
4947 _domain->field_at(Parms)->dump2(d,depth-1,st);
4948 for (uint i = Parms+1; i < _domain->_cnt; i++) {
4949 st->print(", ");
4950 _domain->field_at(i)->dump2(d,depth-1,st);
4951 }
4952 st->print(" )");
4953 }
4954 #endif
4955
4956 //------------------------------singleton--------------------------------------
4957 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
4958 // constants (Ldi nodes). Singletons are integer, float or double constants
4959 // or a single symbol.
4960 bool TypeFunc::singleton(void) const {
4961 return false; // Never a singleton
4962 }
4963
4964 bool TypeFunc::empty(void) const {
4965 return false; // Never empty
4966 }
4967
4968
4969 BasicType TypeFunc::return_type() const{
4970 if (range()->cnt() == TypeFunc::Parms) {
4971 return T_VOID;
4972 }
4973 return range()->field_at(TypeFunc::Parms)->basic_type();
4974 }

mercurial