src/share/vm/opto/matcher.hpp

changeset 0
f90c822e73f8
child 6876
710a3c8b516e
equal deleted inserted replaced
-1:000000000000 0:f90c822e73f8
1 /*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_VM_OPTO_MATCHER_HPP
26 #define SHARE_VM_OPTO_MATCHER_HPP
27
28 #include "libadt/vectset.hpp"
29 #include "memory/resourceArea.hpp"
30 #include "opto/node.hpp"
31 #include "opto/phaseX.hpp"
32 #include "opto/regmask.hpp"
33
34 class Compile;
35 class Node;
36 class MachNode;
37 class MachTypeNode;
38 class MachOper;
39
40 //---------------------------Matcher-------------------------------------------
41 class Matcher : public PhaseTransform {
42 friend class VMStructs;
43 // Private arena of State objects
44 ResourceArea _states_arena;
45
46 VectorSet _visited; // Visit bits
47
48 // Used to control the Label pass
49 VectorSet _shared; // Shared Ideal Node
50 VectorSet _dontcare; // Nothing the matcher cares about
51
52 // Private methods which perform the actual matching and reduction
53 // Walks the label tree, generating machine nodes
54 MachNode *ReduceInst( State *s, int rule, Node *&mem);
55 void ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach);
56 uint ReduceInst_Interior(State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds);
57 void ReduceOper( State *s, int newrule, Node *&mem, MachNode *mach );
58
59 // If this node already matched using "rule", return the MachNode for it.
60 MachNode* find_shared_node(Node* n, uint rule);
61
62 // Convert a dense opcode number to an expanded rule number
63 const int *_reduceOp;
64 const int *_leftOp;
65 const int *_rightOp;
66
67 // Map dense opcode number to info on when rule is swallowed constant.
68 const bool *_swallowed;
69
70 // Map dense rule number to determine if this is an instruction chain rule
71 const uint _begin_inst_chain_rule;
72 const uint _end_inst_chain_rule;
73
74 // We want to clone constants and possible CmpI-variants.
75 // If we do not clone CmpI, then we can have many instances of
76 // condition codes alive at once. This is OK on some chips and
77 // bad on others. Hence the machine-dependent table lookup.
78 const char *_must_clone;
79
80 // Find shared Nodes, or Nodes that otherwise are Matcher roots
81 void find_shared( Node *n );
82 #ifdef X86
83 bool is_bmi_pattern(Node *n, Node *m);
84 #endif
85
86 // Debug and profile information for nodes in old space:
87 GrowableArray<Node_Notes*>* _old_node_note_array;
88
89 // Node labeling iterator for instruction selection
90 Node *Label_Root( const Node *n, State *svec, Node *control, const Node *mem );
91
92 Node *transform( Node *dummy );
93
94 Node_List _projection_list; // For Machine nodes killing many values
95
96 Node_Array _shared_nodes;
97
98 debug_only(Node_Array _old2new_map;) // Map roots of ideal-trees to machine-roots
99 debug_only(Node_Array _new2old_map;) // Maps machine nodes back to ideal
100
101 // Accessors for the inherited field PhaseTransform::_nodes:
102 void grow_new_node_array(uint idx_limit) {
103 _nodes.map(idx_limit-1, NULL);
104 }
105 bool has_new_node(const Node* n) const {
106 return _nodes.at(n->_idx) != NULL;
107 }
108 Node* new_node(const Node* n) const {
109 assert(has_new_node(n), "set before get");
110 return _nodes.at(n->_idx);
111 }
112 void set_new_node(const Node* n, Node *nn) {
113 assert(!has_new_node(n), "set only once");
114 _nodes.map(n->_idx, nn);
115 }
116
117 #ifdef ASSERT
118 // Make sure only new nodes are reachable from this node
119 void verify_new_nodes_only(Node* root);
120
121 Node* _mem_node; // Ideal memory node consumed by mach node
122 #endif
123
124 // Mach node for ConP #NULL
125 MachNode* _mach_null;
126
127 public:
128 int LabelRootDepth;
129 // Convert ideal machine register to a register mask for spill-loads
130 static const RegMask *idealreg2regmask[];
131 RegMask *idealreg2spillmask [_last_machine_leaf];
132 RegMask *idealreg2debugmask [_last_machine_leaf];
133 RegMask *idealreg2mhdebugmask[_last_machine_leaf];
134 void init_spill_mask( Node *ret );
135 // Convert machine register number to register mask
136 static uint mreg2regmask_max;
137 static RegMask mreg2regmask[];
138 static RegMask STACK_ONLY_mask;
139
140 MachNode* mach_null() const { return _mach_null; }
141
142 bool is_shared( Node *n ) { return _shared.test(n->_idx) != 0; }
143 void set_shared( Node *n ) { _shared.set(n->_idx); }
144 bool is_visited( Node *n ) { return _visited.test(n->_idx) != 0; }
145 void set_visited( Node *n ) { _visited.set(n->_idx); }
146 bool is_dontcare( Node *n ) { return _dontcare.test(n->_idx) != 0; }
147 void set_dontcare( Node *n ) { _dontcare.set(n->_idx); }
148
149 // Mode bit to tell DFA and expand rules whether we are running after
150 // (or during) register selection. Usually, the matcher runs before,
151 // but it will also get called to generate post-allocation spill code.
152 // In this situation, it is a deadly error to attempt to allocate more
153 // temporary registers.
154 bool _allocation_started;
155
156 // Machine register names
157 static const char *regName[];
158 // Machine register encodings
159 static const unsigned char _regEncode[];
160 // Machine Node names
161 const char **_ruleName;
162 // Rules that are cheaper to rematerialize than to spill
163 static const uint _begin_rematerialize;
164 static const uint _end_rematerialize;
165
166 // An array of chars, from 0 to _last_Mach_Reg.
167 // No Save = 'N' (for register windows)
168 // Save on Entry = 'E'
169 // Save on Call = 'C'
170 // Always Save = 'A' (same as SOE + SOC)
171 const char *_register_save_policy;
172 const char *_c_reg_save_policy;
173 // Convert a machine register to a machine register type, so-as to
174 // properly match spill code.
175 const int *_register_save_type;
176 // Maps from machine register to boolean; true if machine register can
177 // be holding a call argument in some signature.
178 static bool can_be_java_arg( int reg );
179 // Maps from machine register to boolean; true if machine register holds
180 // a spillable argument.
181 static bool is_spillable_arg( int reg );
182
183 // List of IfFalse or IfTrue Nodes that indicate a taken null test.
184 // List is valid in the post-matching space.
185 Node_List _null_check_tests;
186 void collect_null_checks( Node *proj, Node *orig_proj );
187 void validate_null_checks( );
188
189 Matcher();
190
191 // Get a projection node at position pos
192 Node* get_projection(uint pos) {
193 return _projection_list[pos];
194 }
195
196 // Push a projection node onto the projection list
197 void push_projection(Node* node) {
198 _projection_list.push(node);
199 }
200
201 Node* pop_projection() {
202 return _projection_list.pop();
203 }
204
205 // Number of nodes in the projection list
206 uint number_of_projections() const {
207 return _projection_list.size();
208 }
209
210 // Select instructions for entire method
211 void match();
212
213 // Helper for match
214 OptoReg::Name warp_incoming_stk_arg( VMReg reg );
215
216 // Transform, then walk. Does implicit DCE while walking.
217 // Name changed from "transform" to avoid it being virtual.
218 Node *xform( Node *old_space_node, int Nodes );
219
220 // Match a single Ideal Node - turn it into a 1-Node tree; Label & Reduce.
221 MachNode *match_tree( const Node *n );
222 MachNode *match_sfpt( SafePointNode *sfpt );
223 // Helper for match_sfpt
224 OptoReg::Name warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call );
225
226 // Initialize first stack mask and related masks.
227 void init_first_stack_mask();
228
229 // If we should save-on-entry this register
230 bool is_save_on_entry( int reg );
231
232 // Fixup the save-on-entry registers
233 void Fixup_Save_On_Entry( );
234
235 // --- Frame handling ---
236
237 // Register number of the stack slot corresponding to the incoming SP.
238 // Per the Big Picture in the AD file, it is:
239 // SharedInfo::stack0 + locks + in_preserve_stack_slots + pad2.
240 OptoReg::Name _old_SP;
241
242 // Register number of the stack slot corresponding to the highest incoming
243 // argument on the stack. Per the Big Picture in the AD file, it is:
244 // _old_SP + out_preserve_stack_slots + incoming argument size.
245 OptoReg::Name _in_arg_limit;
246
247 // Register number of the stack slot corresponding to the new SP.
248 // Per the Big Picture in the AD file, it is:
249 // _in_arg_limit + pad0
250 OptoReg::Name _new_SP;
251
252 // Register number of the stack slot corresponding to the highest outgoing
253 // argument on the stack. Per the Big Picture in the AD file, it is:
254 // _new_SP + max outgoing arguments of all calls
255 OptoReg::Name _out_arg_limit;
256
257 OptoRegPair *_parm_regs; // Array of machine registers per argument
258 RegMask *_calling_convention_mask; // Array of RegMasks per argument
259
260 // Does matcher have a match rule for this ideal node?
261 static const bool has_match_rule(int opcode);
262 static const bool _hasMatchRule[_last_opcode];
263
264 // Does matcher have a match rule for this ideal node and is the
265 // predicate (if there is one) true?
266 // NOTE: If this function is used more commonly in the future, ADLC
267 // should generate this one.
268 static const bool match_rule_supported(int opcode);
269
270 // Used to determine if we have fast l2f conversion
271 // USII has it, USIII doesn't
272 static const bool convL2FSupported(void);
273
274 // Vector width in bytes
275 static const int vector_width_in_bytes(BasicType bt);
276
277 // Limits on vector size (number of elements).
278 static const int max_vector_size(const BasicType bt);
279 static const int min_vector_size(const BasicType bt);
280 static const bool vector_size_supported(const BasicType bt, int size) {
281 return (Matcher::max_vector_size(bt) >= size &&
282 Matcher::min_vector_size(bt) <= size);
283 }
284
285 // Vector ideal reg
286 static const int vector_ideal_reg(int len);
287 static const int vector_shift_count_ideal_reg(int len);
288
289 // CPU supports misaligned vectors store/load.
290 static const bool misaligned_vectors_ok();
291
292 // Should original key array reference be passed to AES stubs
293 static const bool pass_original_key_for_aes();
294
295 // Used to determine a "low complexity" 64-bit constant. (Zero is simple.)
296 // The standard of comparison is one (StoreL ConL) vs. two (StoreI ConI).
297 // Depends on the details of 64-bit constant generation on the CPU.
298 static const bool isSimpleConstant64(jlong con);
299
300 // These calls are all generated by the ADLC
301
302 // TRUE - grows up, FALSE - grows down (Intel)
303 virtual bool stack_direction() const;
304
305 // Java-Java calling convention
306 // (what you use when Java calls Java)
307
308 // Alignment of stack in bytes, standard Intel word alignment is 4.
309 // Sparc probably wants at least double-word (8).
310 static uint stack_alignment_in_bytes();
311 // Alignment of stack, measured in stack slots.
312 // The size of stack slots is defined by VMRegImpl::stack_slot_size.
313 static uint stack_alignment_in_slots() {
314 return stack_alignment_in_bytes() / (VMRegImpl::stack_slot_size);
315 }
316
317 // Array mapping arguments to registers. Argument 0 is usually the 'this'
318 // pointer. Registers can include stack-slots and regular registers.
319 static void calling_convention( BasicType *, VMRegPair *, uint len, bool is_outgoing );
320
321 // Convert a sig into a calling convention register layout
322 // and find interesting things about it.
323 static OptoReg::Name find_receiver( bool is_outgoing );
324 // Return address register. On Intel it is a stack-slot. On PowerPC
325 // it is the Link register. On Sparc it is r31?
326 virtual OptoReg::Name return_addr() const;
327 RegMask _return_addr_mask;
328 // Return value register. On Intel it is EAX. On Sparc i0/o0.
329 static OptoRegPair return_value(int ideal_reg, bool is_outgoing);
330 static OptoRegPair c_return_value(int ideal_reg, bool is_outgoing);
331 RegMask _return_value_mask;
332 // Inline Cache Register
333 static OptoReg::Name inline_cache_reg();
334 static int inline_cache_reg_encode();
335
336 // Register for DIVI projection of divmodI
337 static RegMask divI_proj_mask();
338 // Register for MODI projection of divmodI
339 static RegMask modI_proj_mask();
340
341 // Register for DIVL projection of divmodL
342 static RegMask divL_proj_mask();
343 // Register for MODL projection of divmodL
344 static RegMask modL_proj_mask();
345
346 // Use hardware DIV instruction when it is faster than
347 // a code which use multiply for division by constant.
348 static bool use_asm_for_ldiv_by_con( jlong divisor );
349
350 static const RegMask method_handle_invoke_SP_save_mask();
351
352 // Java-Interpreter calling convention
353 // (what you use when calling between compiled-Java and Interpreted-Java
354
355 // Number of callee-save + always-save registers
356 // Ignores frame pointer and "special" registers
357 static int number_of_saved_registers();
358
359 // The Method-klass-holder may be passed in the inline_cache_reg
360 // and then expanded into the inline_cache_reg and a method_oop register
361
362 static OptoReg::Name interpreter_method_oop_reg();
363 static int interpreter_method_oop_reg_encode();
364
365 static OptoReg::Name compiler_method_oop_reg();
366 static const RegMask &compiler_method_oop_reg_mask();
367 static int compiler_method_oop_reg_encode();
368
369 // Interpreter's Frame Pointer Register
370 static OptoReg::Name interpreter_frame_pointer_reg();
371
372 // Java-Native calling convention
373 // (what you use when intercalling between Java and C++ code)
374
375 // Array mapping arguments to registers. Argument 0 is usually the 'this'
376 // pointer. Registers can include stack-slots and regular registers.
377 static void c_calling_convention( BasicType*, VMRegPair *, uint );
378 // Frame pointer. The frame pointer is kept at the base of the stack
379 // and so is probably the stack pointer for most machines. On Intel
380 // it is ESP. On the PowerPC it is R1. On Sparc it is SP.
381 OptoReg::Name c_frame_pointer() const;
382 static RegMask c_frame_ptr_mask;
383
384 // !!!!! Special stuff for building ScopeDescs
385 virtual int regnum_to_fpu_offset(int regnum);
386
387 // Is this branch offset small enough to be addressed by a short branch?
388 bool is_short_branch_offset(int rule, int br_size, int offset);
389
390 // Optional scaling for the parameter to the ClearArray/CopyArray node.
391 static const bool init_array_count_is_in_bytes;
392
393 // Threshold small size (in bytes) for a ClearArray/CopyArray node.
394 // Anything this size or smaller may get converted to discrete scalar stores.
395 static const int init_array_short_size;
396
397 // Some hardware needs 2 CMOV's for longs.
398 static const int long_cmove_cost();
399
400 // Some hardware have expensive CMOV for float and double.
401 static const int float_cmove_cost();
402
403 // Should the Matcher clone shifts on addressing modes, expecting them to
404 // be subsumed into complex addressing expressions or compute them into
405 // registers? True for Intel but false for most RISCs
406 static const bool clone_shift_expressions;
407
408 static bool narrow_oop_use_complex_address();
409 static bool narrow_klass_use_complex_address();
410
411 // Generate implicit null check for narrow oops if it can fold
412 // into address expression (x64).
413 //
414 // [R12 + narrow_oop_reg<<3 + offset] // fold into address expression
415 // NullCheck narrow_oop_reg
416 //
417 // When narrow oops can't fold into address expression (Sparc) and
418 // base is not null use decode_not_null and normal implicit null check.
419 // Note, decode_not_null node can be used here since it is referenced
420 // only on non null path but it requires special handling, see
421 // collect_null_checks():
422 //
423 // decode_not_null narrow_oop_reg, oop_reg // 'shift' and 'add base'
424 // [oop_reg + offset]
425 // NullCheck oop_reg
426 //
427 // With Zero base and when narrow oops can not fold into address
428 // expression use normal implicit null check since only shift
429 // is needed to decode narrow oop.
430 //
431 // decode narrow_oop_reg, oop_reg // only 'shift'
432 // [oop_reg + offset]
433 // NullCheck oop_reg
434 //
435 inline static bool gen_narrow_oop_implicit_null_checks() {
436 return Universe::narrow_oop_use_implicit_null_checks() &&
437 (narrow_oop_use_complex_address() ||
438 Universe::narrow_oop_base() != NULL);
439 }
440
441 // Is it better to copy float constants, or load them directly from memory?
442 // Intel can load a float constant from a direct address, requiring no
443 // extra registers. Most RISCs will have to materialize an address into a
444 // register first, so they may as well materialize the constant immediately.
445 static const bool rematerialize_float_constants;
446
447 // If CPU can load and store mis-aligned doubles directly then no fixup is
448 // needed. Else we split the double into 2 integer pieces and move it
449 // piece-by-piece. Only happens when passing doubles into C code or when
450 // calling i2c adapters as the Java calling convention forces doubles to be
451 // aligned.
452 static const bool misaligned_doubles_ok;
453
454 // Does the CPU require postalloc expand (see block.cpp for description of
455 // postalloc expand)?
456 static const bool require_postalloc_expand;
457
458 // Perform a platform dependent implicit null fixup. This is needed
459 // on windows95 to take care of some unusual register constraints.
460 void pd_implicit_null_fixup(MachNode *load, uint idx);
461
462 // Advertise here if the CPU requires explicit rounding operations
463 // to implement the UseStrictFP mode.
464 static const bool strict_fp_requires_explicit_rounding;
465
466 // Are floats conerted to double when stored to stack during deoptimization?
467 static bool float_in_double();
468 // Do ints take an entire long register or just half?
469 static const bool int_in_long;
470
471 // Do the processor's shift instructions only use the low 5/6 bits
472 // of the count for 32/64 bit ints? If not we need to do the masking
473 // ourselves.
474 static const bool need_masked_shift_count;
475
476 // This routine is run whenever a graph fails to match.
477 // If it returns, the compiler should bailout to interpreter without error.
478 // In non-product mode, SoftMatchFailure is false to detect non-canonical
479 // graphs. Print a message and exit.
480 static void soft_match_failure() {
481 if( SoftMatchFailure ) return;
482 else { fatal("SoftMatchFailure is not allowed except in product"); }
483 }
484
485 // Check for a following volatile memory barrier without an
486 // intervening load and thus we don't need a barrier here. We
487 // retain the Node to act as a compiler ordering barrier.
488 static bool post_store_load_barrier(const Node* mb);
489
490 // Does n lead to an uncommon trap that can cause deoptimization?
491 static bool branches_to_uncommon_trap(const Node *n);
492
493 #ifdef ASSERT
494 void dump_old2new_map(); // machine-independent to machine-dependent
495
496 Node* find_old_node(Node* new_node) {
497 return _new2old_map[new_node->_idx];
498 }
499 #endif
500 };
501
502 #endif // SHARE_VM_OPTO_MATCHER_HPP

mercurial