src/share/vm/memory/space.cpp

changeset 0
f90c822e73f8
child 6876
710a3c8b516e
equal deleted inserted replaced
-1:000000000000 0:f90c822e73f8
1 /*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "classfile/systemDictionary.hpp"
27 #include "classfile/vmSymbols.hpp"
28 #include "gc_implementation/shared/liveRange.hpp"
29 #include "gc_implementation/shared/markSweep.hpp"
30 #include "gc_implementation/shared/spaceDecorator.hpp"
31 #include "memory/blockOffsetTable.inline.hpp"
32 #include "memory/defNewGeneration.hpp"
33 #include "memory/genCollectedHeap.hpp"
34 #include "memory/space.hpp"
35 #include "memory/space.inline.hpp"
36 #include "memory/universe.inline.hpp"
37 #include "oops/oop.inline.hpp"
38 #include "oops/oop.inline2.hpp"
39 #include "runtime/java.hpp"
40 #include "runtime/safepoint.hpp"
41 #include "utilities/copy.hpp"
42 #include "utilities/globalDefinitions.hpp"
43 #include "utilities/macros.hpp"
44
45 void SpaceMemRegionOopsIterClosure::do_oop(oop* p) { SpaceMemRegionOopsIterClosure::do_oop_work(p); }
46 void SpaceMemRegionOopsIterClosure::do_oop(narrowOop* p) { SpaceMemRegionOopsIterClosure::do_oop_work(p); }
47
48 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
49
50 HeapWord* DirtyCardToOopClosure::get_actual_top(HeapWord* top,
51 HeapWord* top_obj) {
52 if (top_obj != NULL) {
53 if (_sp->block_is_obj(top_obj)) {
54 if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
55 if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
56 // An arrayOop is starting on the dirty card - since we do exact
57 // store checks for objArrays we are done.
58 } else {
59 // Otherwise, it is possible that the object starting on the dirty
60 // card spans the entire card, and that the store happened on a
61 // later card. Figure out where the object ends.
62 // Use the block_size() method of the space over which
63 // the iteration is being done. That space (e.g. CMS) may have
64 // specific requirements on object sizes which will
65 // be reflected in the block_size() method.
66 top = top_obj + oop(top_obj)->size();
67 }
68 }
69 } else {
70 top = top_obj;
71 }
72 } else {
73 assert(top == _sp->end(), "only case where top_obj == NULL");
74 }
75 return top;
76 }
77
78 void DirtyCardToOopClosure::walk_mem_region(MemRegion mr,
79 HeapWord* bottom,
80 HeapWord* top) {
81 // 1. Blocks may or may not be objects.
82 // 2. Even when a block_is_obj(), it may not entirely
83 // occupy the block if the block quantum is larger than
84 // the object size.
85 // We can and should try to optimize by calling the non-MemRegion
86 // version of oop_iterate() for all but the extremal objects
87 // (for which we need to call the MemRegion version of
88 // oop_iterate()) To be done post-beta XXX
89 for (; bottom < top; bottom += _sp->block_size(bottom)) {
90 // As in the case of contiguous space above, we'd like to
91 // just use the value returned by oop_iterate to increment the
92 // current pointer; unfortunately, that won't work in CMS because
93 // we'd need an interface change (it seems) to have the space
94 // "adjust the object size" (for instance pad it up to its
95 // block alignment or minimum block size restrictions. XXX
96 if (_sp->block_is_obj(bottom) &&
97 !_sp->obj_allocated_since_save_marks(oop(bottom))) {
98 oop(bottom)->oop_iterate(_cl, mr);
99 }
100 }
101 }
102
103 // We get called with "mr" representing the dirty region
104 // that we want to process. Because of imprecise marking,
105 // we may need to extend the incoming "mr" to the right,
106 // and scan more. However, because we may already have
107 // scanned some of that extended region, we may need to
108 // trim its right-end back some so we do not scan what
109 // we (or another worker thread) may already have scanned
110 // or planning to scan.
111 void DirtyCardToOopClosure::do_MemRegion(MemRegion mr) {
112
113 // Some collectors need to do special things whenever their dirty
114 // cards are processed. For instance, CMS must remember mutator updates
115 // (i.e. dirty cards) so as to re-scan mutated objects.
116 // Such work can be piggy-backed here on dirty card scanning, so as to make
117 // it slightly more efficient than doing a complete non-detructive pre-scan
118 // of the card table.
119 MemRegionClosure* pCl = _sp->preconsumptionDirtyCardClosure();
120 if (pCl != NULL) {
121 pCl->do_MemRegion(mr);
122 }
123
124 HeapWord* bottom = mr.start();
125 HeapWord* last = mr.last();
126 HeapWord* top = mr.end();
127 HeapWord* bottom_obj;
128 HeapWord* top_obj;
129
130 assert(_precision == CardTableModRefBS::ObjHeadPreciseArray ||
131 _precision == CardTableModRefBS::Precise,
132 "Only ones we deal with for now.");
133
134 assert(_precision != CardTableModRefBS::ObjHeadPreciseArray ||
135 _cl->idempotent() || _last_bottom == NULL ||
136 top <= _last_bottom,
137 "Not decreasing");
138 NOT_PRODUCT(_last_bottom = mr.start());
139
140 bottom_obj = _sp->block_start(bottom);
141 top_obj = _sp->block_start(last);
142
143 assert(bottom_obj <= bottom, "just checking");
144 assert(top_obj <= top, "just checking");
145
146 // Given what we think is the top of the memory region and
147 // the start of the object at the top, get the actual
148 // value of the top.
149 top = get_actual_top(top, top_obj);
150
151 // If the previous call did some part of this region, don't redo.
152 if (_precision == CardTableModRefBS::ObjHeadPreciseArray &&
153 _min_done != NULL &&
154 _min_done < top) {
155 top = _min_done;
156 }
157
158 // Top may have been reset, and in fact may be below bottom,
159 // e.g. the dirty card region is entirely in a now free object
160 // -- something that could happen with a concurrent sweeper.
161 bottom = MIN2(bottom, top);
162 MemRegion extended_mr = MemRegion(bottom, top);
163 assert(bottom <= top &&
164 (_precision != CardTableModRefBS::ObjHeadPreciseArray ||
165 _min_done == NULL ||
166 top <= _min_done),
167 "overlap!");
168
169 // Walk the region if it is not empty; otherwise there is nothing to do.
170 if (!extended_mr.is_empty()) {
171 walk_mem_region(extended_mr, bottom_obj, top);
172 }
173
174 // An idempotent closure might be applied in any order, so we don't
175 // record a _min_done for it.
176 if (!_cl->idempotent()) {
177 _min_done = bottom;
178 } else {
179 assert(_min_done == _last_explicit_min_done,
180 "Don't update _min_done for idempotent cl");
181 }
182 }
183
184 DirtyCardToOopClosure* Space::new_dcto_cl(ExtendedOopClosure* cl,
185 CardTableModRefBS::PrecisionStyle precision,
186 HeapWord* boundary) {
187 return new DirtyCardToOopClosure(this, cl, precision, boundary);
188 }
189
190 HeapWord* ContiguousSpaceDCTOC::get_actual_top(HeapWord* top,
191 HeapWord* top_obj) {
192 if (top_obj != NULL && top_obj < (_sp->toContiguousSpace())->top()) {
193 if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
194 if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
195 // An arrayOop is starting on the dirty card - since we do exact
196 // store checks for objArrays we are done.
197 } else {
198 // Otherwise, it is possible that the object starting on the dirty
199 // card spans the entire card, and that the store happened on a
200 // later card. Figure out where the object ends.
201 assert(_sp->block_size(top_obj) == (size_t) oop(top_obj)->size(),
202 "Block size and object size mismatch");
203 top = top_obj + oop(top_obj)->size();
204 }
205 }
206 } else {
207 top = (_sp->toContiguousSpace())->top();
208 }
209 return top;
210 }
211
212 void Filtering_DCTOC::walk_mem_region(MemRegion mr,
213 HeapWord* bottom,
214 HeapWord* top) {
215 // Note that this assumption won't hold if we have a concurrent
216 // collector in this space, which may have freed up objects after
217 // they were dirtied and before the stop-the-world GC that is
218 // examining cards here.
219 assert(bottom < top, "ought to be at least one obj on a dirty card.");
220
221 if (_boundary != NULL) {
222 // We have a boundary outside of which we don't want to look
223 // at objects, so create a filtering closure around the
224 // oop closure before walking the region.
225 FilteringClosure filter(_boundary, _cl);
226 walk_mem_region_with_cl(mr, bottom, top, &filter);
227 } else {
228 // No boundary, simply walk the heap with the oop closure.
229 walk_mem_region_with_cl(mr, bottom, top, _cl);
230 }
231
232 }
233
234 // We must replicate this so that the static type of "FilteringClosure"
235 // (see above) is apparent at the oop_iterate calls.
236 #define ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
237 void ContiguousSpaceDCTOC::walk_mem_region_with_cl(MemRegion mr, \
238 HeapWord* bottom, \
239 HeapWord* top, \
240 ClosureType* cl) { \
241 bottom += oop(bottom)->oop_iterate(cl, mr); \
242 if (bottom < top) { \
243 HeapWord* next_obj = bottom + oop(bottom)->size(); \
244 while (next_obj < top) { \
245 /* Bottom lies entirely below top, so we can call the */ \
246 /* non-memRegion version of oop_iterate below. */ \
247 oop(bottom)->oop_iterate(cl); \
248 bottom = next_obj; \
249 next_obj = bottom + oop(bottom)->size(); \
250 } \
251 /* Last object. */ \
252 oop(bottom)->oop_iterate(cl, mr); \
253 } \
254 }
255
256 // (There are only two of these, rather than N, because the split is due
257 // only to the introduction of the FilteringClosure, a local part of the
258 // impl of this abstraction.)
259 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ExtendedOopClosure)
260 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)
261
262 DirtyCardToOopClosure*
263 ContiguousSpace::new_dcto_cl(ExtendedOopClosure* cl,
264 CardTableModRefBS::PrecisionStyle precision,
265 HeapWord* boundary) {
266 return new ContiguousSpaceDCTOC(this, cl, precision, boundary);
267 }
268
269 void Space::initialize(MemRegion mr,
270 bool clear_space,
271 bool mangle_space) {
272 HeapWord* bottom = mr.start();
273 HeapWord* end = mr.end();
274 assert(Universe::on_page_boundary(bottom) && Universe::on_page_boundary(end),
275 "invalid space boundaries");
276 set_bottom(bottom);
277 set_end(end);
278 if (clear_space) clear(mangle_space);
279 }
280
281 void Space::clear(bool mangle_space) {
282 if (ZapUnusedHeapArea && mangle_space) {
283 mangle_unused_area();
284 }
285 }
286
287 ContiguousSpace::ContiguousSpace(): CompactibleSpace(), _top(NULL),
288 _concurrent_iteration_safe_limit(NULL) {
289 _mangler = new GenSpaceMangler(this);
290 }
291
292 ContiguousSpace::~ContiguousSpace() {
293 delete _mangler;
294 }
295
296 void ContiguousSpace::initialize(MemRegion mr,
297 bool clear_space,
298 bool mangle_space)
299 {
300 CompactibleSpace::initialize(mr, clear_space, mangle_space);
301 set_concurrent_iteration_safe_limit(top());
302 }
303
304 void ContiguousSpace::clear(bool mangle_space) {
305 set_top(bottom());
306 set_saved_mark();
307 CompactibleSpace::clear(mangle_space);
308 }
309
310 bool ContiguousSpace::is_in(const void* p) const {
311 return _bottom <= p && p < _top;
312 }
313
314 bool ContiguousSpace::is_free_block(const HeapWord* p) const {
315 return p >= _top;
316 }
317
318 void OffsetTableContigSpace::clear(bool mangle_space) {
319 ContiguousSpace::clear(mangle_space);
320 _offsets.initialize_threshold();
321 }
322
323 void OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
324 Space::set_bottom(new_bottom);
325 _offsets.set_bottom(new_bottom);
326 }
327
328 void OffsetTableContigSpace::set_end(HeapWord* new_end) {
329 // Space should not advertize an increase in size
330 // until after the underlying offest table has been enlarged.
331 _offsets.resize(pointer_delta(new_end, bottom()));
332 Space::set_end(new_end);
333 }
334
335 #ifndef PRODUCT
336
337 void ContiguousSpace::set_top_for_allocations(HeapWord* v) {
338 mangler()->set_top_for_allocations(v);
339 }
340 void ContiguousSpace::set_top_for_allocations() {
341 mangler()->set_top_for_allocations(top());
342 }
343 void ContiguousSpace::check_mangled_unused_area(HeapWord* limit) {
344 mangler()->check_mangled_unused_area(limit);
345 }
346
347 void ContiguousSpace::check_mangled_unused_area_complete() {
348 mangler()->check_mangled_unused_area_complete();
349 }
350
351 // Mangled only the unused space that has not previously
352 // been mangled and that has not been allocated since being
353 // mangled.
354 void ContiguousSpace::mangle_unused_area() {
355 mangler()->mangle_unused_area();
356 }
357 void ContiguousSpace::mangle_unused_area_complete() {
358 mangler()->mangle_unused_area_complete();
359 }
360 void ContiguousSpace::mangle_region(MemRegion mr) {
361 // Although this method uses SpaceMangler::mangle_region() which
362 // is not specific to a space, the when the ContiguousSpace version
363 // is called, it is always with regard to a space and this
364 // bounds checking is appropriate.
365 MemRegion space_mr(bottom(), end());
366 assert(space_mr.contains(mr), "Mangling outside space");
367 SpaceMangler::mangle_region(mr);
368 }
369 #endif // NOT_PRODUCT
370
371 void CompactibleSpace::initialize(MemRegion mr,
372 bool clear_space,
373 bool mangle_space) {
374 Space::initialize(mr, clear_space, mangle_space);
375 set_compaction_top(bottom());
376 _next_compaction_space = NULL;
377 }
378
379 void CompactibleSpace::clear(bool mangle_space) {
380 Space::clear(mangle_space);
381 _compaction_top = bottom();
382 }
383
384 HeapWord* CompactibleSpace::forward(oop q, size_t size,
385 CompactPoint* cp, HeapWord* compact_top) {
386 // q is alive
387 // First check if we should switch compaction space
388 assert(this == cp->space, "'this' should be current compaction space.");
389 size_t compaction_max_size = pointer_delta(end(), compact_top);
390 while (size > compaction_max_size) {
391 // switch to next compaction space
392 cp->space->set_compaction_top(compact_top);
393 cp->space = cp->space->next_compaction_space();
394 if (cp->space == NULL) {
395 cp->gen = GenCollectedHeap::heap()->prev_gen(cp->gen);
396 assert(cp->gen != NULL, "compaction must succeed");
397 cp->space = cp->gen->first_compaction_space();
398 assert(cp->space != NULL, "generation must have a first compaction space");
399 }
400 compact_top = cp->space->bottom();
401 cp->space->set_compaction_top(compact_top);
402 cp->threshold = cp->space->initialize_threshold();
403 compaction_max_size = pointer_delta(cp->space->end(), compact_top);
404 }
405
406 // store the forwarding pointer into the mark word
407 if ((HeapWord*)q != compact_top) {
408 q->forward_to(oop(compact_top));
409 assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
410 } else {
411 // if the object isn't moving we can just set the mark to the default
412 // mark and handle it specially later on.
413 q->init_mark();
414 assert(q->forwardee() == NULL, "should be forwarded to NULL");
415 }
416
417 compact_top += size;
418
419 // we need to update the offset table so that the beginnings of objects can be
420 // found during scavenge. Note that we are updating the offset table based on
421 // where the object will be once the compaction phase finishes.
422 if (compact_top > cp->threshold)
423 cp->threshold =
424 cp->space->cross_threshold(compact_top - size, compact_top);
425 return compact_top;
426 }
427
428
429 bool CompactibleSpace::insert_deadspace(size_t& allowed_deadspace_words,
430 HeapWord* q, size_t deadlength) {
431 if (allowed_deadspace_words >= deadlength) {
432 allowed_deadspace_words -= deadlength;
433 CollectedHeap::fill_with_object(q, deadlength);
434 oop(q)->set_mark(oop(q)->mark()->set_marked());
435 assert((int) deadlength == oop(q)->size(), "bad filler object size");
436 // Recall that we required "q == compaction_top".
437 return true;
438 } else {
439 allowed_deadspace_words = 0;
440 return false;
441 }
442 }
443
444 #define block_is_always_obj(q) true
445 #define obj_size(q) oop(q)->size()
446 #define adjust_obj_size(s) s
447
448 void CompactibleSpace::prepare_for_compaction(CompactPoint* cp) {
449 SCAN_AND_FORWARD(cp, end, block_is_obj, block_size);
450 }
451
452 // Faster object search.
453 void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) {
454 SCAN_AND_FORWARD(cp, top, block_is_always_obj, obj_size);
455 }
456
457 void Space::adjust_pointers() {
458 // adjust all the interior pointers to point at the new locations of objects
459 // Used by MarkSweep::mark_sweep_phase3()
460
461 // First check to see if there is any work to be done.
462 if (used() == 0) {
463 return; // Nothing to do.
464 }
465
466 // Otherwise...
467 HeapWord* q = bottom();
468 HeapWord* t = end();
469
470 debug_only(HeapWord* prev_q = NULL);
471 while (q < t) {
472 if (oop(q)->is_gc_marked()) {
473 // q is alive
474
475 // point all the oops to the new location
476 size_t size = oop(q)->adjust_pointers();
477
478 debug_only(prev_q = q);
479
480 q += size;
481 } else {
482 // q is not a live object. But we're not in a compactible space,
483 // So we don't have live ranges.
484 debug_only(prev_q = q);
485 q += block_size(q);
486 assert(q > prev_q, "we should be moving forward through memory");
487 }
488 }
489 assert(q == t, "just checking");
490 }
491
492 void CompactibleSpace::adjust_pointers() {
493 // Check first is there is any work to do.
494 if (used() == 0) {
495 return; // Nothing to do.
496 }
497
498 SCAN_AND_ADJUST_POINTERS(adjust_obj_size);
499 }
500
501 void CompactibleSpace::compact() {
502 SCAN_AND_COMPACT(obj_size);
503 }
504
505 void Space::print_short() const { print_short_on(tty); }
506
507 void Space::print_short_on(outputStream* st) const {
508 st->print(" space " SIZE_FORMAT "K, %3d%% used", capacity() / K,
509 (int) ((double) used() * 100 / capacity()));
510 }
511
512 void Space::print() const { print_on(tty); }
513
514 void Space::print_on(outputStream* st) const {
515 print_short_on(st);
516 st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ")",
517 bottom(), end());
518 }
519
520 void ContiguousSpace::print_on(outputStream* st) const {
521 print_short_on(st);
522 st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
523 bottom(), top(), end());
524 }
525
526 void OffsetTableContigSpace::print_on(outputStream* st) const {
527 print_short_on(st);
528 st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
529 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
530 bottom(), top(), _offsets.threshold(), end());
531 }
532
533 void ContiguousSpace::verify() const {
534 HeapWord* p = bottom();
535 HeapWord* t = top();
536 HeapWord* prev_p = NULL;
537 while (p < t) {
538 oop(p)->verify();
539 prev_p = p;
540 p += oop(p)->size();
541 }
542 guarantee(p == top(), "end of last object must match end of space");
543 if (top() != end()) {
544 guarantee(top() == block_start_const(end()-1) &&
545 top() == block_start_const(top()),
546 "top should be start of unallocated block, if it exists");
547 }
548 }
549
550 void Space::oop_iterate(ExtendedOopClosure* blk) {
551 ObjectToOopClosure blk2(blk);
552 object_iterate(&blk2);
553 }
554
555 HeapWord* Space::object_iterate_careful(ObjectClosureCareful* cl) {
556 guarantee(false, "NYI");
557 return bottom();
558 }
559
560 HeapWord* Space::object_iterate_careful_m(MemRegion mr,
561 ObjectClosureCareful* cl) {
562 guarantee(false, "NYI");
563 return bottom();
564 }
565
566
567 void Space::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
568 assert(!mr.is_empty(), "Should be non-empty");
569 // We use MemRegion(bottom(), end()) rather than used_region() below
570 // because the two are not necessarily equal for some kinds of
571 // spaces, in particular, certain kinds of free list spaces.
572 // We could use the more complicated but more precise:
573 // MemRegion(used_region().start(), round_to(used_region().end(), CardSize))
574 // but the slight imprecision seems acceptable in the assertion check.
575 assert(MemRegion(bottom(), end()).contains(mr),
576 "Should be within used space");
577 HeapWord* prev = cl->previous(); // max address from last time
578 if (prev >= mr.end()) { // nothing to do
579 return;
580 }
581 // This assert will not work when we go from cms space to perm
582 // space, and use same closure. Easy fix deferred for later. XXX YSR
583 // assert(prev == NULL || contains(prev), "Should be within space");
584
585 bool last_was_obj_array = false;
586 HeapWord *blk_start_addr, *region_start_addr;
587 if (prev > mr.start()) {
588 region_start_addr = prev;
589 blk_start_addr = prev;
590 // The previous invocation may have pushed "prev" beyond the
591 // last allocated block yet there may be still be blocks
592 // in this region due to a particular coalescing policy.
593 // Relax the assertion so that the case where the unallocated
594 // block is maintained and "prev" is beyond the unallocated
595 // block does not cause the assertion to fire.
596 assert((BlockOffsetArrayUseUnallocatedBlock &&
597 (!is_in(prev))) ||
598 (blk_start_addr == block_start(region_start_addr)), "invariant");
599 } else {
600 region_start_addr = mr.start();
601 blk_start_addr = block_start(region_start_addr);
602 }
603 HeapWord* region_end_addr = mr.end();
604 MemRegion derived_mr(region_start_addr, region_end_addr);
605 while (blk_start_addr < region_end_addr) {
606 const size_t size = block_size(blk_start_addr);
607 if (block_is_obj(blk_start_addr)) {
608 last_was_obj_array = cl->do_object_bm(oop(blk_start_addr), derived_mr);
609 } else {
610 last_was_obj_array = false;
611 }
612 blk_start_addr += size;
613 }
614 if (!last_was_obj_array) {
615 assert((bottom() <= blk_start_addr) && (blk_start_addr <= end()),
616 "Should be within (closed) used space");
617 assert(blk_start_addr > prev, "Invariant");
618 cl->set_previous(blk_start_addr); // min address for next time
619 }
620 }
621
622 bool Space::obj_is_alive(const HeapWord* p) const {
623 assert (block_is_obj(p), "The address should point to an object");
624 return true;
625 }
626
627 void ContiguousSpace::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
628 assert(!mr.is_empty(), "Should be non-empty");
629 assert(used_region().contains(mr), "Should be within used space");
630 HeapWord* prev = cl->previous(); // max address from last time
631 if (prev >= mr.end()) { // nothing to do
632 return;
633 }
634 // See comment above (in more general method above) in case you
635 // happen to use this method.
636 assert(prev == NULL || is_in_reserved(prev), "Should be within space");
637
638 bool last_was_obj_array = false;
639 HeapWord *obj_start_addr, *region_start_addr;
640 if (prev > mr.start()) {
641 region_start_addr = prev;
642 obj_start_addr = prev;
643 assert(obj_start_addr == block_start(region_start_addr), "invariant");
644 } else {
645 region_start_addr = mr.start();
646 obj_start_addr = block_start(region_start_addr);
647 }
648 HeapWord* region_end_addr = mr.end();
649 MemRegion derived_mr(region_start_addr, region_end_addr);
650 while (obj_start_addr < region_end_addr) {
651 oop obj = oop(obj_start_addr);
652 const size_t size = obj->size();
653 last_was_obj_array = cl->do_object_bm(obj, derived_mr);
654 obj_start_addr += size;
655 }
656 if (!last_was_obj_array) {
657 assert((bottom() <= obj_start_addr) && (obj_start_addr <= end()),
658 "Should be within (closed) used space");
659 assert(obj_start_addr > prev, "Invariant");
660 cl->set_previous(obj_start_addr); // min address for next time
661 }
662 }
663
664 #if INCLUDE_ALL_GCS
665 #define ContigSpace_PAR_OOP_ITERATE_DEFN(OopClosureType, nv_suffix) \
666 \
667 void ContiguousSpace::par_oop_iterate(MemRegion mr, OopClosureType* blk) {\
668 HeapWord* obj_addr = mr.start(); \
669 HeapWord* t = mr.end(); \
670 while (obj_addr < t) { \
671 assert(oop(obj_addr)->is_oop(), "Should be an oop"); \
672 obj_addr += oop(obj_addr)->oop_iterate(blk); \
673 } \
674 }
675
676 ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DEFN)
677
678 #undef ContigSpace_PAR_OOP_ITERATE_DEFN
679 #endif // INCLUDE_ALL_GCS
680
681 void ContiguousSpace::oop_iterate(ExtendedOopClosure* blk) {
682 if (is_empty()) return;
683 HeapWord* obj_addr = bottom();
684 HeapWord* t = top();
685 // Could call objects iterate, but this is easier.
686 while (obj_addr < t) {
687 obj_addr += oop(obj_addr)->oop_iterate(blk);
688 }
689 }
690
691 void ContiguousSpace::oop_iterate(MemRegion mr, ExtendedOopClosure* blk) {
692 if (is_empty()) {
693 return;
694 }
695 MemRegion cur = MemRegion(bottom(), top());
696 mr = mr.intersection(cur);
697 if (mr.is_empty()) {
698 return;
699 }
700 if (mr.equals(cur)) {
701 oop_iterate(blk);
702 return;
703 }
704 assert(mr.end() <= top(), "just took an intersection above");
705 HeapWord* obj_addr = block_start(mr.start());
706 HeapWord* t = mr.end();
707
708 // Handle first object specially.
709 oop obj = oop(obj_addr);
710 SpaceMemRegionOopsIterClosure smr_blk(blk, mr);
711 obj_addr += obj->oop_iterate(&smr_blk);
712 while (obj_addr < t) {
713 oop obj = oop(obj_addr);
714 assert(obj->is_oop(), "expected an oop");
715 obj_addr += obj->size();
716 // If "obj_addr" is not greater than top, then the
717 // entire object "obj" is within the region.
718 if (obj_addr <= t) {
719 obj->oop_iterate(blk);
720 } else {
721 // "obj" extends beyond end of region
722 obj->oop_iterate(&smr_blk);
723 break;
724 }
725 };
726 }
727
728 void ContiguousSpace::object_iterate(ObjectClosure* blk) {
729 if (is_empty()) return;
730 WaterMark bm = bottom_mark();
731 object_iterate_from(bm, blk);
732 }
733
734 // For a continguous space object_iterate() and safe_object_iterate()
735 // are the same.
736 void ContiguousSpace::safe_object_iterate(ObjectClosure* blk) {
737 object_iterate(blk);
738 }
739
740 void ContiguousSpace::object_iterate_from(WaterMark mark, ObjectClosure* blk) {
741 assert(mark.space() == this, "Mark does not match space");
742 HeapWord* p = mark.point();
743 while (p < top()) {
744 blk->do_object(oop(p));
745 p += oop(p)->size();
746 }
747 }
748
749 HeapWord*
750 ContiguousSpace::object_iterate_careful(ObjectClosureCareful* blk) {
751 HeapWord * limit = concurrent_iteration_safe_limit();
752 assert(limit <= top(), "sanity check");
753 for (HeapWord* p = bottom(); p < limit;) {
754 size_t size = blk->do_object_careful(oop(p));
755 if (size == 0) {
756 return p; // failed at p
757 } else {
758 p += size;
759 }
760 }
761 return NULL; // all done
762 }
763
764 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
765 \
766 void ContiguousSpace:: \
767 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) { \
768 HeapWord* t; \
769 HeapWord* p = saved_mark_word(); \
770 assert(p != NULL, "expected saved mark"); \
771 \
772 const intx interval = PrefetchScanIntervalInBytes; \
773 do { \
774 t = top(); \
775 while (p < t) { \
776 Prefetch::write(p, interval); \
777 debug_only(HeapWord* prev = p); \
778 oop m = oop(p); \
779 p += m->oop_iterate(blk); \
780 } \
781 } while (t < top()); \
782 \
783 set_saved_mark_word(p); \
784 }
785
786 ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN)
787
788 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN
789
790 // Very general, slow implementation.
791 HeapWord* ContiguousSpace::block_start_const(const void* p) const {
792 assert(MemRegion(bottom(), end()).contains(p),
793 err_msg("p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
794 p, bottom(), end()));
795 if (p >= top()) {
796 return top();
797 } else {
798 HeapWord* last = bottom();
799 HeapWord* cur = last;
800 while (cur <= p) {
801 last = cur;
802 cur += oop(cur)->size();
803 }
804 assert(oop(last)->is_oop(),
805 err_msg(PTR_FORMAT " should be an object start", last));
806 return last;
807 }
808 }
809
810 size_t ContiguousSpace::block_size(const HeapWord* p) const {
811 assert(MemRegion(bottom(), end()).contains(p),
812 err_msg("p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
813 p, bottom(), end()));
814 HeapWord* current_top = top();
815 assert(p <= current_top,
816 err_msg("p > current top - p: " PTR_FORMAT ", current top: " PTR_FORMAT,
817 p, current_top));
818 assert(p == current_top || oop(p)->is_oop(),
819 err_msg("p (" PTR_FORMAT ") is not a block start - "
820 "current_top: " PTR_FORMAT ", is_oop: %s",
821 p, current_top, BOOL_TO_STR(oop(p)->is_oop())));
822 if (p < current_top) {
823 return oop(p)->size();
824 } else {
825 assert(p == current_top, "just checking");
826 return pointer_delta(end(), (HeapWord*) p);
827 }
828 }
829
830 // This version requires locking.
831 inline HeapWord* ContiguousSpace::allocate_impl(size_t size,
832 HeapWord* const end_value) {
833 // In G1 there are places where a GC worker can allocates into a
834 // region using this serial allocation code without being prone to a
835 // race with other GC workers (we ensure that no other GC worker can
836 // access the same region at the same time). So the assert below is
837 // too strong in the case of G1.
838 assert(Heap_lock->owned_by_self() ||
839 (SafepointSynchronize::is_at_safepoint() &&
840 (Thread::current()->is_VM_thread() || UseG1GC)),
841 "not locked");
842 HeapWord* obj = top();
843 if (pointer_delta(end_value, obj) >= size) {
844 HeapWord* new_top = obj + size;
845 set_top(new_top);
846 assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
847 return obj;
848 } else {
849 return NULL;
850 }
851 }
852
853 // This version is lock-free.
854 inline HeapWord* ContiguousSpace::par_allocate_impl(size_t size,
855 HeapWord* const end_value) {
856 do {
857 HeapWord* obj = top();
858 if (pointer_delta(end_value, obj) >= size) {
859 HeapWord* new_top = obj + size;
860 HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
861 // result can be one of two:
862 // the old top value: the exchange succeeded
863 // otherwise: the new value of the top is returned.
864 if (result == obj) {
865 assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
866 return obj;
867 }
868 } else {
869 return NULL;
870 }
871 } while (true);
872 }
873
874 // Requires locking.
875 HeapWord* ContiguousSpace::allocate(size_t size) {
876 return allocate_impl(size, end());
877 }
878
879 // Lock-free.
880 HeapWord* ContiguousSpace::par_allocate(size_t size) {
881 return par_allocate_impl(size, end());
882 }
883
884 void ContiguousSpace::allocate_temporary_filler(int factor) {
885 // allocate temporary type array decreasing free size with factor 'factor'
886 assert(factor >= 0, "just checking");
887 size_t size = pointer_delta(end(), top());
888
889 // if space is full, return
890 if (size == 0) return;
891
892 if (factor > 0) {
893 size -= size/factor;
894 }
895 size = align_object_size(size);
896
897 const size_t array_header_size = typeArrayOopDesc::header_size(T_INT);
898 if (size >= (size_t)align_object_size(array_header_size)) {
899 size_t length = (size - array_header_size) * (HeapWordSize / sizeof(jint));
900 // allocate uninitialized int array
901 typeArrayOop t = (typeArrayOop) allocate(size);
902 assert(t != NULL, "allocation should succeed");
903 t->set_mark(markOopDesc::prototype());
904 t->set_klass(Universe::intArrayKlassObj());
905 t->set_length((int)length);
906 } else {
907 assert(size == CollectedHeap::min_fill_size(),
908 "size for smallest fake object doesn't match");
909 instanceOop obj = (instanceOop) allocate(size);
910 obj->set_mark(markOopDesc::prototype());
911 obj->set_klass_gap(0);
912 obj->set_klass(SystemDictionary::Object_klass());
913 }
914 }
915
916 void EdenSpace::clear(bool mangle_space) {
917 ContiguousSpace::clear(mangle_space);
918 set_soft_end(end());
919 }
920
921 // Requires locking.
922 HeapWord* EdenSpace::allocate(size_t size) {
923 return allocate_impl(size, soft_end());
924 }
925
926 // Lock-free.
927 HeapWord* EdenSpace::par_allocate(size_t size) {
928 return par_allocate_impl(size, soft_end());
929 }
930
931 HeapWord* ConcEdenSpace::par_allocate(size_t size)
932 {
933 do {
934 // The invariant is top() should be read before end() because
935 // top() can't be greater than end(), so if an update of _soft_end
936 // occurs between 'end_val = end();' and 'top_val = top();' top()
937 // also can grow up to the new end() and the condition
938 // 'top_val > end_val' is true. To ensure the loading order
939 // OrderAccess::loadload() is required after top() read.
940 HeapWord* obj = top();
941 OrderAccess::loadload();
942 if (pointer_delta(*soft_end_addr(), obj) >= size) {
943 HeapWord* new_top = obj + size;
944 HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
945 // result can be one of two:
946 // the old top value: the exchange succeeded
947 // otherwise: the new value of the top is returned.
948 if (result == obj) {
949 assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
950 return obj;
951 }
952 } else {
953 return NULL;
954 }
955 } while (true);
956 }
957
958
959 HeapWord* OffsetTableContigSpace::initialize_threshold() {
960 return _offsets.initialize_threshold();
961 }
962
963 HeapWord* OffsetTableContigSpace::cross_threshold(HeapWord* start, HeapWord* end) {
964 _offsets.alloc_block(start, end);
965 return _offsets.threshold();
966 }
967
968 OffsetTableContigSpace::OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
969 MemRegion mr) :
970 _offsets(sharedOffsetArray, mr),
971 _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true)
972 {
973 _offsets.set_contig_space(this);
974 initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
975 }
976
977 #define OBJ_SAMPLE_INTERVAL 0
978 #define BLOCK_SAMPLE_INTERVAL 100
979
980 void OffsetTableContigSpace::verify() const {
981 HeapWord* p = bottom();
982 HeapWord* prev_p = NULL;
983 int objs = 0;
984 int blocks = 0;
985
986 if (VerifyObjectStartArray) {
987 _offsets.verify();
988 }
989
990 while (p < top()) {
991 size_t size = oop(p)->size();
992 // For a sampling of objects in the space, find it using the
993 // block offset table.
994 if (blocks == BLOCK_SAMPLE_INTERVAL) {
995 guarantee(p == block_start_const(p + (size/2)),
996 "check offset computation");
997 blocks = 0;
998 } else {
999 blocks++;
1000 }
1001
1002 if (objs == OBJ_SAMPLE_INTERVAL) {
1003 oop(p)->verify();
1004 objs = 0;
1005 } else {
1006 objs++;
1007 }
1008 prev_p = p;
1009 p += size;
1010 }
1011 guarantee(p == top(), "end of last object must match end of space");
1012 }
1013
1014
1015 size_t TenuredSpace::allowed_dead_ratio() const {
1016 return MarkSweepDeadRatio;
1017 }

mercurial