src/share/vm/memory/metaspace.cpp

changeset 0
f90c822e73f8
child 6876
710a3c8b516e
equal deleted inserted replaced
-1:000000000000 0:f90c822e73f8
1 /*
2 * Copyright (c) 2011, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24 #include "precompiled.hpp"
25 #include "gc_interface/collectedHeap.hpp"
26 #include "memory/allocation.hpp"
27 #include "memory/binaryTreeDictionary.hpp"
28 #include "memory/freeList.hpp"
29 #include "memory/collectorPolicy.hpp"
30 #include "memory/filemap.hpp"
31 #include "memory/freeList.hpp"
32 #include "memory/gcLocker.hpp"
33 #include "memory/metachunk.hpp"
34 #include "memory/metaspace.hpp"
35 #include "memory/metaspaceGCThresholdUpdater.hpp"
36 #include "memory/metaspaceShared.hpp"
37 #include "memory/metaspaceTracer.hpp"
38 #include "memory/resourceArea.hpp"
39 #include "memory/universe.hpp"
40 #include "runtime/atomic.inline.hpp"
41 #include "runtime/globals.hpp"
42 #include "runtime/init.hpp"
43 #include "runtime/java.hpp"
44 #include "runtime/mutex.hpp"
45 #include "runtime/orderAccess.hpp"
46 #include "services/memTracker.hpp"
47 #include "services/memoryService.hpp"
48 #include "utilities/copy.hpp"
49 #include "utilities/debug.hpp"
50
51 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
52
53 typedef BinaryTreeDictionary<Metablock, FreeList<Metablock> > BlockTreeDictionary;
54 typedef BinaryTreeDictionary<Metachunk, FreeList<Metachunk> > ChunkTreeDictionary;
55
56 // Set this constant to enable slow integrity checking of the free chunk lists
57 const bool metaspace_slow_verify = false;
58
59 size_t const allocation_from_dictionary_limit = 4 * K;
60
61 MetaWord* last_allocated = 0;
62
63 size_t Metaspace::_compressed_class_space_size;
64 const MetaspaceTracer* Metaspace::_tracer = NULL;
65
66 // Used in declarations in SpaceManager and ChunkManager
67 enum ChunkIndex {
68 ZeroIndex = 0,
69 SpecializedIndex = ZeroIndex,
70 SmallIndex = SpecializedIndex + 1,
71 MediumIndex = SmallIndex + 1,
72 HumongousIndex = MediumIndex + 1,
73 NumberOfFreeLists = 3,
74 NumberOfInUseLists = 4
75 };
76
77 enum ChunkSizes { // in words.
78 ClassSpecializedChunk = 128,
79 SpecializedChunk = 128,
80 ClassSmallChunk = 256,
81 SmallChunk = 512,
82 ClassMediumChunk = 4 * K,
83 MediumChunk = 8 * K
84 };
85
86 static ChunkIndex next_chunk_index(ChunkIndex i) {
87 assert(i < NumberOfInUseLists, "Out of bound");
88 return (ChunkIndex) (i+1);
89 }
90
91 volatile intptr_t MetaspaceGC::_capacity_until_GC = 0;
92 uint MetaspaceGC::_shrink_factor = 0;
93 bool MetaspaceGC::_should_concurrent_collect = false;
94
95 typedef class FreeList<Metachunk> ChunkList;
96
97 // Manages the global free lists of chunks.
98 class ChunkManager : public CHeapObj<mtInternal> {
99 friend class TestVirtualSpaceNodeTest;
100
101 // Free list of chunks of different sizes.
102 // SpecializedChunk
103 // SmallChunk
104 // MediumChunk
105 // HumongousChunk
106 ChunkList _free_chunks[NumberOfFreeLists];
107
108 // HumongousChunk
109 ChunkTreeDictionary _humongous_dictionary;
110
111 // ChunkManager in all lists of this type
112 size_t _free_chunks_total;
113 size_t _free_chunks_count;
114
115 void dec_free_chunks_total(size_t v) {
116 assert(_free_chunks_count > 0 &&
117 _free_chunks_total > 0,
118 "About to go negative");
119 Atomic::add_ptr(-1, &_free_chunks_count);
120 jlong minus_v = (jlong) - (jlong) v;
121 Atomic::add_ptr(minus_v, &_free_chunks_total);
122 }
123
124 // Debug support
125
126 size_t sum_free_chunks();
127 size_t sum_free_chunks_count();
128
129 void locked_verify_free_chunks_total();
130 void slow_locked_verify_free_chunks_total() {
131 if (metaspace_slow_verify) {
132 locked_verify_free_chunks_total();
133 }
134 }
135 void locked_verify_free_chunks_count();
136 void slow_locked_verify_free_chunks_count() {
137 if (metaspace_slow_verify) {
138 locked_verify_free_chunks_count();
139 }
140 }
141 void verify_free_chunks_count();
142
143 public:
144
145 ChunkManager(size_t specialized_size, size_t small_size, size_t medium_size)
146 : _free_chunks_total(0), _free_chunks_count(0) {
147 _free_chunks[SpecializedIndex].set_size(specialized_size);
148 _free_chunks[SmallIndex].set_size(small_size);
149 _free_chunks[MediumIndex].set_size(medium_size);
150 }
151
152 // add or delete (return) a chunk to the global freelist.
153 Metachunk* chunk_freelist_allocate(size_t word_size);
154
155 // Map a size to a list index assuming that there are lists
156 // for special, small, medium, and humongous chunks.
157 static ChunkIndex list_index(size_t size);
158
159 // Remove the chunk from its freelist. It is
160 // expected to be on one of the _free_chunks[] lists.
161 void remove_chunk(Metachunk* chunk);
162
163 // Add the simple linked list of chunks to the freelist of chunks
164 // of type index.
165 void return_chunks(ChunkIndex index, Metachunk* chunks);
166
167 // Total of the space in the free chunks list
168 size_t free_chunks_total_words();
169 size_t free_chunks_total_bytes();
170
171 // Number of chunks in the free chunks list
172 size_t free_chunks_count();
173
174 void inc_free_chunks_total(size_t v, size_t count = 1) {
175 Atomic::add_ptr(count, &_free_chunks_count);
176 Atomic::add_ptr(v, &_free_chunks_total);
177 }
178 ChunkTreeDictionary* humongous_dictionary() {
179 return &_humongous_dictionary;
180 }
181
182 ChunkList* free_chunks(ChunkIndex index);
183
184 // Returns the list for the given chunk word size.
185 ChunkList* find_free_chunks_list(size_t word_size);
186
187 // Remove from a list by size. Selects list based on size of chunk.
188 Metachunk* free_chunks_get(size_t chunk_word_size);
189
190 #define index_bounds_check(index) \
191 assert(index == SpecializedIndex || \
192 index == SmallIndex || \
193 index == MediumIndex || \
194 index == HumongousIndex, err_msg("Bad index: %d", (int) index))
195
196 size_t num_free_chunks(ChunkIndex index) const {
197 index_bounds_check(index);
198
199 if (index == HumongousIndex) {
200 return _humongous_dictionary.total_free_blocks();
201 }
202
203 ssize_t count = _free_chunks[index].count();
204 return count == -1 ? 0 : (size_t) count;
205 }
206
207 size_t size_free_chunks_in_bytes(ChunkIndex index) const {
208 index_bounds_check(index);
209
210 size_t word_size = 0;
211 if (index == HumongousIndex) {
212 word_size = _humongous_dictionary.total_size();
213 } else {
214 const size_t size_per_chunk_in_words = _free_chunks[index].size();
215 word_size = size_per_chunk_in_words * num_free_chunks(index);
216 }
217
218 return word_size * BytesPerWord;
219 }
220
221 MetaspaceChunkFreeListSummary chunk_free_list_summary() const {
222 return MetaspaceChunkFreeListSummary(num_free_chunks(SpecializedIndex),
223 num_free_chunks(SmallIndex),
224 num_free_chunks(MediumIndex),
225 num_free_chunks(HumongousIndex),
226 size_free_chunks_in_bytes(SpecializedIndex),
227 size_free_chunks_in_bytes(SmallIndex),
228 size_free_chunks_in_bytes(MediumIndex),
229 size_free_chunks_in_bytes(HumongousIndex));
230 }
231
232 // Debug support
233 void verify();
234 void slow_verify() {
235 if (metaspace_slow_verify) {
236 verify();
237 }
238 }
239 void locked_verify();
240 void slow_locked_verify() {
241 if (metaspace_slow_verify) {
242 locked_verify();
243 }
244 }
245 void verify_free_chunks_total();
246
247 void locked_print_free_chunks(outputStream* st);
248 void locked_print_sum_free_chunks(outputStream* st);
249
250 void print_on(outputStream* st) const;
251 };
252
253 // Used to manage the free list of Metablocks (a block corresponds
254 // to the allocation of a quantum of metadata).
255 class BlockFreelist VALUE_OBJ_CLASS_SPEC {
256 BlockTreeDictionary* _dictionary;
257
258 // Only allocate and split from freelist if the size of the allocation
259 // is at least 1/4th the size of the available block.
260 const static int WasteMultiplier = 4;
261
262 // Accessors
263 BlockTreeDictionary* dictionary() const { return _dictionary; }
264
265 public:
266 BlockFreelist();
267 ~BlockFreelist();
268
269 // Get and return a block to the free list
270 MetaWord* get_block(size_t word_size);
271 void return_block(MetaWord* p, size_t word_size);
272
273 size_t total_size() {
274 if (dictionary() == NULL) {
275 return 0;
276 } else {
277 return dictionary()->total_size();
278 }
279 }
280
281 void print_on(outputStream* st) const;
282 };
283
284 // A VirtualSpaceList node.
285 class VirtualSpaceNode : public CHeapObj<mtClass> {
286 friend class VirtualSpaceList;
287
288 // Link to next VirtualSpaceNode
289 VirtualSpaceNode* _next;
290
291 // total in the VirtualSpace
292 MemRegion _reserved;
293 ReservedSpace _rs;
294 VirtualSpace _virtual_space;
295 MetaWord* _top;
296 // count of chunks contained in this VirtualSpace
297 uintx _container_count;
298
299 // Convenience functions to access the _virtual_space
300 char* low() const { return virtual_space()->low(); }
301 char* high() const { return virtual_space()->high(); }
302
303 // The first Metachunk will be allocated at the bottom of the
304 // VirtualSpace
305 Metachunk* first_chunk() { return (Metachunk*) bottom(); }
306
307 // Committed but unused space in the virtual space
308 size_t free_words_in_vs() const;
309 public:
310
311 VirtualSpaceNode(size_t byte_size);
312 VirtualSpaceNode(ReservedSpace rs) : _top(NULL), _next(NULL), _rs(rs), _container_count(0) {}
313 ~VirtualSpaceNode();
314
315 // Convenience functions for logical bottom and end
316 MetaWord* bottom() const { return (MetaWord*) _virtual_space.low(); }
317 MetaWord* end() const { return (MetaWord*) _virtual_space.high(); }
318
319 bool contains(const void* ptr) { return ptr >= low() && ptr < high(); }
320
321 size_t reserved_words() const { return _virtual_space.reserved_size() / BytesPerWord; }
322 size_t committed_words() const { return _virtual_space.actual_committed_size() / BytesPerWord; }
323
324 bool is_pre_committed() const { return _virtual_space.special(); }
325
326 // address of next available space in _virtual_space;
327 // Accessors
328 VirtualSpaceNode* next() { return _next; }
329 void set_next(VirtualSpaceNode* v) { _next = v; }
330
331 void set_reserved(MemRegion const v) { _reserved = v; }
332 void set_top(MetaWord* v) { _top = v; }
333
334 // Accessors
335 MemRegion* reserved() { return &_reserved; }
336 VirtualSpace* virtual_space() const { return (VirtualSpace*) &_virtual_space; }
337
338 // Returns true if "word_size" is available in the VirtualSpace
339 bool is_available(size_t word_size) { return word_size <= pointer_delta(end(), _top, sizeof(MetaWord)); }
340
341 MetaWord* top() const { return _top; }
342 void inc_top(size_t word_size) { _top += word_size; }
343
344 uintx container_count() { return _container_count; }
345 void inc_container_count();
346 void dec_container_count();
347 #ifdef ASSERT
348 uint container_count_slow();
349 void verify_container_count();
350 #endif
351
352 // used and capacity in this single entry in the list
353 size_t used_words_in_vs() const;
354 size_t capacity_words_in_vs() const;
355
356 bool initialize();
357
358 // get space from the virtual space
359 Metachunk* take_from_committed(size_t chunk_word_size);
360
361 // Allocate a chunk from the virtual space and return it.
362 Metachunk* get_chunk_vs(size_t chunk_word_size);
363
364 // Expands/shrinks the committed space in a virtual space. Delegates
365 // to Virtualspace
366 bool expand_by(size_t min_words, size_t preferred_words);
367
368 // In preparation for deleting this node, remove all the chunks
369 // in the node from any freelist.
370 void purge(ChunkManager* chunk_manager);
371
372 // If an allocation doesn't fit in the current node a new node is created.
373 // Allocate chunks out of the remaining committed space in this node
374 // to avoid wasting that memory.
375 // This always adds up because all the chunk sizes are multiples of
376 // the smallest chunk size.
377 void retire(ChunkManager* chunk_manager);
378
379 #ifdef ASSERT
380 // Debug support
381 void mangle();
382 #endif
383
384 void print_on(outputStream* st) const;
385 };
386
387 #define assert_is_ptr_aligned(ptr, alignment) \
388 assert(is_ptr_aligned(ptr, alignment), \
389 err_msg(PTR_FORMAT " is not aligned to " \
390 SIZE_FORMAT, ptr, alignment))
391
392 #define assert_is_size_aligned(size, alignment) \
393 assert(is_size_aligned(size, alignment), \
394 err_msg(SIZE_FORMAT " is not aligned to " \
395 SIZE_FORMAT, size, alignment))
396
397
398 // Decide if large pages should be committed when the memory is reserved.
399 static bool should_commit_large_pages_when_reserving(size_t bytes) {
400 if (UseLargePages && UseLargePagesInMetaspace && !os::can_commit_large_page_memory()) {
401 size_t words = bytes / BytesPerWord;
402 bool is_class = false; // We never reserve large pages for the class space.
403 if (MetaspaceGC::can_expand(words, is_class) &&
404 MetaspaceGC::allowed_expansion() >= words) {
405 return true;
406 }
407 }
408
409 return false;
410 }
411
412 // byte_size is the size of the associated virtualspace.
413 VirtualSpaceNode::VirtualSpaceNode(size_t bytes) : _top(NULL), _next(NULL), _rs(), _container_count(0) {
414 assert_is_size_aligned(bytes, Metaspace::reserve_alignment());
415
416 // This allocates memory with mmap. For DumpSharedspaces, try to reserve
417 // configurable address, generally at the top of the Java heap so other
418 // memory addresses don't conflict.
419 if (DumpSharedSpaces) {
420 bool large_pages = false; // No large pages when dumping the CDS archive.
421 char* shared_base = (char*)align_ptr_up((char*)SharedBaseAddress, Metaspace::reserve_alignment());
422
423 _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages, shared_base, 0);
424 if (_rs.is_reserved()) {
425 assert(shared_base == 0 || _rs.base() == shared_base, "should match");
426 } else {
427 // Get a mmap region anywhere if the SharedBaseAddress fails.
428 _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages);
429 }
430 MetaspaceShared::set_shared_rs(&_rs);
431 } else {
432 bool large_pages = should_commit_large_pages_when_reserving(bytes);
433
434 _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages);
435 }
436
437 if (_rs.is_reserved()) {
438 assert(_rs.base() != NULL, "Catch if we get a NULL address");
439 assert(_rs.size() != 0, "Catch if we get a 0 size");
440 assert_is_ptr_aligned(_rs.base(), Metaspace::reserve_alignment());
441 assert_is_size_aligned(_rs.size(), Metaspace::reserve_alignment());
442
443 MemTracker::record_virtual_memory_type((address)_rs.base(), mtClass);
444 }
445 }
446
447 void VirtualSpaceNode::purge(ChunkManager* chunk_manager) {
448 Metachunk* chunk = first_chunk();
449 Metachunk* invalid_chunk = (Metachunk*) top();
450 while (chunk < invalid_chunk ) {
451 assert(chunk->is_tagged_free(), "Should be tagged free");
452 MetaWord* next = ((MetaWord*)chunk) + chunk->word_size();
453 chunk_manager->remove_chunk(chunk);
454 assert(chunk->next() == NULL &&
455 chunk->prev() == NULL,
456 "Was not removed from its list");
457 chunk = (Metachunk*) next;
458 }
459 }
460
461 #ifdef ASSERT
462 uint VirtualSpaceNode::container_count_slow() {
463 uint count = 0;
464 Metachunk* chunk = first_chunk();
465 Metachunk* invalid_chunk = (Metachunk*) top();
466 while (chunk < invalid_chunk ) {
467 MetaWord* next = ((MetaWord*)chunk) + chunk->word_size();
468 // Don't count the chunks on the free lists. Those are
469 // still part of the VirtualSpaceNode but not currently
470 // counted.
471 if (!chunk->is_tagged_free()) {
472 count++;
473 }
474 chunk = (Metachunk*) next;
475 }
476 return count;
477 }
478 #endif
479
480 // List of VirtualSpaces for metadata allocation.
481 class VirtualSpaceList : public CHeapObj<mtClass> {
482 friend class VirtualSpaceNode;
483
484 enum VirtualSpaceSizes {
485 VirtualSpaceSize = 256 * K
486 };
487
488 // Head of the list
489 VirtualSpaceNode* _virtual_space_list;
490 // virtual space currently being used for allocations
491 VirtualSpaceNode* _current_virtual_space;
492
493 // Is this VirtualSpaceList used for the compressed class space
494 bool _is_class;
495
496 // Sum of reserved and committed memory in the virtual spaces
497 size_t _reserved_words;
498 size_t _committed_words;
499
500 // Number of virtual spaces
501 size_t _virtual_space_count;
502
503 ~VirtualSpaceList();
504
505 VirtualSpaceNode* virtual_space_list() const { return _virtual_space_list; }
506
507 void set_virtual_space_list(VirtualSpaceNode* v) {
508 _virtual_space_list = v;
509 }
510 void set_current_virtual_space(VirtualSpaceNode* v) {
511 _current_virtual_space = v;
512 }
513
514 void link_vs(VirtualSpaceNode* new_entry);
515
516 // Get another virtual space and add it to the list. This
517 // is typically prompted by a failed attempt to allocate a chunk
518 // and is typically followed by the allocation of a chunk.
519 bool create_new_virtual_space(size_t vs_word_size);
520
521 // Chunk up the unused committed space in the current
522 // virtual space and add the chunks to the free list.
523 void retire_current_virtual_space();
524
525 public:
526 VirtualSpaceList(size_t word_size);
527 VirtualSpaceList(ReservedSpace rs);
528
529 size_t free_bytes();
530
531 Metachunk* get_new_chunk(size_t word_size,
532 size_t grow_chunks_by_words,
533 size_t medium_chunk_bunch);
534
535 bool expand_node_by(VirtualSpaceNode* node,
536 size_t min_words,
537 size_t preferred_words);
538
539 bool expand_by(size_t min_words,
540 size_t preferred_words);
541
542 VirtualSpaceNode* current_virtual_space() {
543 return _current_virtual_space;
544 }
545
546 bool is_class() const { return _is_class; }
547
548 bool initialization_succeeded() { return _virtual_space_list != NULL; }
549
550 size_t reserved_words() { return _reserved_words; }
551 size_t reserved_bytes() { return reserved_words() * BytesPerWord; }
552 size_t committed_words() { return _committed_words; }
553 size_t committed_bytes() { return committed_words() * BytesPerWord; }
554
555 void inc_reserved_words(size_t v);
556 void dec_reserved_words(size_t v);
557 void inc_committed_words(size_t v);
558 void dec_committed_words(size_t v);
559 void inc_virtual_space_count();
560 void dec_virtual_space_count();
561
562 bool contains(const void* ptr);
563
564 // Unlink empty VirtualSpaceNodes and free it.
565 void purge(ChunkManager* chunk_manager);
566
567 void print_on(outputStream* st) const;
568
569 class VirtualSpaceListIterator : public StackObj {
570 VirtualSpaceNode* _virtual_spaces;
571 public:
572 VirtualSpaceListIterator(VirtualSpaceNode* virtual_spaces) :
573 _virtual_spaces(virtual_spaces) {}
574
575 bool repeat() {
576 return _virtual_spaces != NULL;
577 }
578
579 VirtualSpaceNode* get_next() {
580 VirtualSpaceNode* result = _virtual_spaces;
581 if (_virtual_spaces != NULL) {
582 _virtual_spaces = _virtual_spaces->next();
583 }
584 return result;
585 }
586 };
587 };
588
589 class Metadebug : AllStatic {
590 // Debugging support for Metaspaces
591 static int _allocation_fail_alot_count;
592
593 public:
594
595 static void init_allocation_fail_alot_count();
596 #ifdef ASSERT
597 static bool test_metadata_failure();
598 #endif
599 };
600
601 int Metadebug::_allocation_fail_alot_count = 0;
602
603 // SpaceManager - used by Metaspace to handle allocations
604 class SpaceManager : public CHeapObj<mtClass> {
605 friend class Metaspace;
606 friend class Metadebug;
607
608 private:
609
610 // protects allocations
611 Mutex* const _lock;
612
613 // Type of metadata allocated.
614 Metaspace::MetadataType _mdtype;
615
616 // List of chunks in use by this SpaceManager. Allocations
617 // are done from the current chunk. The list is used for deallocating
618 // chunks when the SpaceManager is freed.
619 Metachunk* _chunks_in_use[NumberOfInUseLists];
620 Metachunk* _current_chunk;
621
622 // Number of small chunks to allocate to a manager
623 // If class space manager, small chunks are unlimited
624 static uint const _small_chunk_limit;
625
626 // Sum of all space in allocated chunks
627 size_t _allocated_blocks_words;
628
629 // Sum of all allocated chunks
630 size_t _allocated_chunks_words;
631 size_t _allocated_chunks_count;
632
633 // Free lists of blocks are per SpaceManager since they
634 // are assumed to be in chunks in use by the SpaceManager
635 // and all chunks in use by a SpaceManager are freed when
636 // the class loader using the SpaceManager is collected.
637 BlockFreelist _block_freelists;
638
639 // protects virtualspace and chunk expansions
640 static const char* _expand_lock_name;
641 static const int _expand_lock_rank;
642 static Mutex* const _expand_lock;
643
644 private:
645 // Accessors
646 Metachunk* chunks_in_use(ChunkIndex index) const { return _chunks_in_use[index]; }
647 void set_chunks_in_use(ChunkIndex index, Metachunk* v) {
648 _chunks_in_use[index] = v;
649 }
650
651 BlockFreelist* block_freelists() const {
652 return (BlockFreelist*) &_block_freelists;
653 }
654
655 Metaspace::MetadataType mdtype() { return _mdtype; }
656
657 VirtualSpaceList* vs_list() const { return Metaspace::get_space_list(_mdtype); }
658 ChunkManager* chunk_manager() const { return Metaspace::get_chunk_manager(_mdtype); }
659
660 Metachunk* current_chunk() const { return _current_chunk; }
661 void set_current_chunk(Metachunk* v) {
662 _current_chunk = v;
663 }
664
665 Metachunk* find_current_chunk(size_t word_size);
666
667 // Add chunk to the list of chunks in use
668 void add_chunk(Metachunk* v, bool make_current);
669 void retire_current_chunk();
670
671 Mutex* lock() const { return _lock; }
672
673 const char* chunk_size_name(ChunkIndex index) const;
674
675 protected:
676 void initialize();
677
678 public:
679 SpaceManager(Metaspace::MetadataType mdtype,
680 Mutex* lock);
681 ~SpaceManager();
682
683 enum ChunkMultiples {
684 MediumChunkMultiple = 4
685 };
686
687 bool is_class() { return _mdtype == Metaspace::ClassType; }
688
689 // Accessors
690 size_t specialized_chunk_size() { return (size_t) is_class() ? ClassSpecializedChunk : SpecializedChunk; }
691 size_t small_chunk_size() { return (size_t) is_class() ? ClassSmallChunk : SmallChunk; }
692 size_t medium_chunk_size() { return (size_t) is_class() ? ClassMediumChunk : MediumChunk; }
693 size_t medium_chunk_bunch() { return medium_chunk_size() * MediumChunkMultiple; }
694
695 size_t smallest_chunk_size() { return specialized_chunk_size(); }
696
697 size_t allocated_blocks_words() const { return _allocated_blocks_words; }
698 size_t allocated_blocks_bytes() const { return _allocated_blocks_words * BytesPerWord; }
699 size_t allocated_chunks_words() const { return _allocated_chunks_words; }
700 size_t allocated_chunks_count() const { return _allocated_chunks_count; }
701
702 bool is_humongous(size_t word_size) { return word_size > medium_chunk_size(); }
703
704 static Mutex* expand_lock() { return _expand_lock; }
705
706 // Increment the per Metaspace and global running sums for Metachunks
707 // by the given size. This is used when a Metachunk to added to
708 // the in-use list.
709 void inc_size_metrics(size_t words);
710 // Increment the per Metaspace and global running sums Metablocks by the given
711 // size. This is used when a Metablock is allocated.
712 void inc_used_metrics(size_t words);
713 // Delete the portion of the running sums for this SpaceManager. That is,
714 // the globals running sums for the Metachunks and Metablocks are
715 // decremented for all the Metachunks in-use by this SpaceManager.
716 void dec_total_from_size_metrics();
717
718 // Set the sizes for the initial chunks.
719 void get_initial_chunk_sizes(Metaspace::MetaspaceType type,
720 size_t* chunk_word_size,
721 size_t* class_chunk_word_size);
722
723 size_t sum_capacity_in_chunks_in_use() const;
724 size_t sum_used_in_chunks_in_use() const;
725 size_t sum_free_in_chunks_in_use() const;
726 size_t sum_waste_in_chunks_in_use() const;
727 size_t sum_waste_in_chunks_in_use(ChunkIndex index ) const;
728
729 size_t sum_count_in_chunks_in_use();
730 size_t sum_count_in_chunks_in_use(ChunkIndex i);
731
732 Metachunk* get_new_chunk(size_t word_size, size_t grow_chunks_by_words);
733
734 // Block allocation and deallocation.
735 // Allocates a block from the current chunk
736 MetaWord* allocate(size_t word_size);
737
738 // Helper for allocations
739 MetaWord* allocate_work(size_t word_size);
740
741 // Returns a block to the per manager freelist
742 void deallocate(MetaWord* p, size_t word_size);
743
744 // Based on the allocation size and a minimum chunk size,
745 // returned chunk size (for expanding space for chunk allocation).
746 size_t calc_chunk_size(size_t allocation_word_size);
747
748 // Called when an allocation from the current chunk fails.
749 // Gets a new chunk (may require getting a new virtual space),
750 // and allocates from that chunk.
751 MetaWord* grow_and_allocate(size_t word_size);
752
753 // Notify memory usage to MemoryService.
754 void track_metaspace_memory_usage();
755
756 // debugging support.
757
758 void dump(outputStream* const out) const;
759 void print_on(outputStream* st) const;
760 void locked_print_chunks_in_use_on(outputStream* st) const;
761
762 void verify();
763 void verify_chunk_size(Metachunk* chunk);
764 NOT_PRODUCT(void mangle_freed_chunks();)
765 #ifdef ASSERT
766 void verify_allocated_blocks_words();
767 #endif
768
769 size_t get_raw_word_size(size_t word_size) {
770 size_t byte_size = word_size * BytesPerWord;
771
772 size_t raw_bytes_size = MAX2(byte_size, sizeof(Metablock));
773 raw_bytes_size = align_size_up(raw_bytes_size, Metachunk::object_alignment());
774
775 size_t raw_word_size = raw_bytes_size / BytesPerWord;
776 assert(raw_word_size * BytesPerWord == raw_bytes_size, "Size problem");
777
778 return raw_word_size;
779 }
780 };
781
782 uint const SpaceManager::_small_chunk_limit = 4;
783
784 const char* SpaceManager::_expand_lock_name =
785 "SpaceManager chunk allocation lock";
786 const int SpaceManager::_expand_lock_rank = Monitor::leaf - 1;
787 Mutex* const SpaceManager::_expand_lock =
788 new Mutex(SpaceManager::_expand_lock_rank,
789 SpaceManager::_expand_lock_name,
790 Mutex::_allow_vm_block_flag);
791
792 void VirtualSpaceNode::inc_container_count() {
793 assert_lock_strong(SpaceManager::expand_lock());
794 _container_count++;
795 assert(_container_count == container_count_slow(),
796 err_msg("Inconsistency in countainer_count _container_count " SIZE_FORMAT
797 " container_count_slow() " SIZE_FORMAT,
798 _container_count, container_count_slow()));
799 }
800
801 void VirtualSpaceNode::dec_container_count() {
802 assert_lock_strong(SpaceManager::expand_lock());
803 _container_count--;
804 }
805
806 #ifdef ASSERT
807 void VirtualSpaceNode::verify_container_count() {
808 assert(_container_count == container_count_slow(),
809 err_msg("Inconsistency in countainer_count _container_count " SIZE_FORMAT
810 " container_count_slow() " SIZE_FORMAT, _container_count, container_count_slow()));
811 }
812 #endif
813
814 // BlockFreelist methods
815
816 BlockFreelist::BlockFreelist() : _dictionary(NULL) {}
817
818 BlockFreelist::~BlockFreelist() {
819 if (_dictionary != NULL) {
820 if (Verbose && TraceMetadataChunkAllocation) {
821 _dictionary->print_free_lists(gclog_or_tty);
822 }
823 delete _dictionary;
824 }
825 }
826
827 void BlockFreelist::return_block(MetaWord* p, size_t word_size) {
828 Metablock* free_chunk = ::new (p) Metablock(word_size);
829 if (dictionary() == NULL) {
830 _dictionary = new BlockTreeDictionary();
831 }
832 dictionary()->return_chunk(free_chunk);
833 }
834
835 MetaWord* BlockFreelist::get_block(size_t word_size) {
836 if (dictionary() == NULL) {
837 return NULL;
838 }
839
840 if (word_size < TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
841 // Dark matter. Too small for dictionary.
842 return NULL;
843 }
844
845 Metablock* free_block =
846 dictionary()->get_chunk(word_size, FreeBlockDictionary<Metablock>::atLeast);
847 if (free_block == NULL) {
848 return NULL;
849 }
850
851 const size_t block_size = free_block->size();
852 if (block_size > WasteMultiplier * word_size) {
853 return_block((MetaWord*)free_block, block_size);
854 return NULL;
855 }
856
857 MetaWord* new_block = (MetaWord*)free_block;
858 assert(block_size >= word_size, "Incorrect size of block from freelist");
859 const size_t unused = block_size - word_size;
860 if (unused >= TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
861 return_block(new_block + word_size, unused);
862 }
863
864 return new_block;
865 }
866
867 void BlockFreelist::print_on(outputStream* st) const {
868 if (dictionary() == NULL) {
869 return;
870 }
871 dictionary()->print_free_lists(st);
872 }
873
874 // VirtualSpaceNode methods
875
876 VirtualSpaceNode::~VirtualSpaceNode() {
877 _rs.release();
878 #ifdef ASSERT
879 size_t word_size = sizeof(*this) / BytesPerWord;
880 Copy::fill_to_words((HeapWord*) this, word_size, 0xf1f1f1f1);
881 #endif
882 }
883
884 size_t VirtualSpaceNode::used_words_in_vs() const {
885 return pointer_delta(top(), bottom(), sizeof(MetaWord));
886 }
887
888 // Space committed in the VirtualSpace
889 size_t VirtualSpaceNode::capacity_words_in_vs() const {
890 return pointer_delta(end(), bottom(), sizeof(MetaWord));
891 }
892
893 size_t VirtualSpaceNode::free_words_in_vs() const {
894 return pointer_delta(end(), top(), sizeof(MetaWord));
895 }
896
897 // Allocates the chunk from the virtual space only.
898 // This interface is also used internally for debugging. Not all
899 // chunks removed here are necessarily used for allocation.
900 Metachunk* VirtualSpaceNode::take_from_committed(size_t chunk_word_size) {
901 // Bottom of the new chunk
902 MetaWord* chunk_limit = top();
903 assert(chunk_limit != NULL, "Not safe to call this method");
904
905 // The virtual spaces are always expanded by the
906 // commit granularity to enforce the following condition.
907 // Without this the is_available check will not work correctly.
908 assert(_virtual_space.committed_size() == _virtual_space.actual_committed_size(),
909 "The committed memory doesn't match the expanded memory.");
910
911 if (!is_available(chunk_word_size)) {
912 if (TraceMetadataChunkAllocation) {
913 gclog_or_tty->print("VirtualSpaceNode::take_from_committed() not available %d words ", chunk_word_size);
914 // Dump some information about the virtual space that is nearly full
915 print_on(gclog_or_tty);
916 }
917 return NULL;
918 }
919
920 // Take the space (bump top on the current virtual space).
921 inc_top(chunk_word_size);
922
923 // Initialize the chunk
924 Metachunk* result = ::new (chunk_limit) Metachunk(chunk_word_size, this);
925 return result;
926 }
927
928
929 // Expand the virtual space (commit more of the reserved space)
930 bool VirtualSpaceNode::expand_by(size_t min_words, size_t preferred_words) {
931 size_t min_bytes = min_words * BytesPerWord;
932 size_t preferred_bytes = preferred_words * BytesPerWord;
933
934 size_t uncommitted = virtual_space()->reserved_size() - virtual_space()->actual_committed_size();
935
936 if (uncommitted < min_bytes) {
937 return false;
938 }
939
940 size_t commit = MIN2(preferred_bytes, uncommitted);
941 bool result = virtual_space()->expand_by(commit, false);
942
943 assert(result, "Failed to commit memory");
944
945 return result;
946 }
947
948 Metachunk* VirtualSpaceNode::get_chunk_vs(size_t chunk_word_size) {
949 assert_lock_strong(SpaceManager::expand_lock());
950 Metachunk* result = take_from_committed(chunk_word_size);
951 if (result != NULL) {
952 inc_container_count();
953 }
954 return result;
955 }
956
957 bool VirtualSpaceNode::initialize() {
958
959 if (!_rs.is_reserved()) {
960 return false;
961 }
962
963 // These are necessary restriction to make sure that the virtual space always
964 // grows in steps of Metaspace::commit_alignment(). If both base and size are
965 // aligned only the middle alignment of the VirtualSpace is used.
966 assert_is_ptr_aligned(_rs.base(), Metaspace::commit_alignment());
967 assert_is_size_aligned(_rs.size(), Metaspace::commit_alignment());
968
969 // ReservedSpaces marked as special will have the entire memory
970 // pre-committed. Setting a committed size will make sure that
971 // committed_size and actual_committed_size agrees.
972 size_t pre_committed_size = _rs.special() ? _rs.size() : 0;
973
974 bool result = virtual_space()->initialize_with_granularity(_rs, pre_committed_size,
975 Metaspace::commit_alignment());
976 if (result) {
977 assert(virtual_space()->committed_size() == virtual_space()->actual_committed_size(),
978 "Checking that the pre-committed memory was registered by the VirtualSpace");
979
980 set_top((MetaWord*)virtual_space()->low());
981 set_reserved(MemRegion((HeapWord*)_rs.base(),
982 (HeapWord*)(_rs.base() + _rs.size())));
983
984 assert(reserved()->start() == (HeapWord*) _rs.base(),
985 err_msg("Reserved start was not set properly " PTR_FORMAT
986 " != " PTR_FORMAT, reserved()->start(), _rs.base()));
987 assert(reserved()->word_size() == _rs.size() / BytesPerWord,
988 err_msg("Reserved size was not set properly " SIZE_FORMAT
989 " != " SIZE_FORMAT, reserved()->word_size(),
990 _rs.size() / BytesPerWord));
991 }
992
993 return result;
994 }
995
996 void VirtualSpaceNode::print_on(outputStream* st) const {
997 size_t used = used_words_in_vs();
998 size_t capacity = capacity_words_in_vs();
999 VirtualSpace* vs = virtual_space();
1000 st->print_cr(" space @ " PTR_FORMAT " " SIZE_FORMAT "K, %3d%% used "
1001 "[" PTR_FORMAT ", " PTR_FORMAT ", "
1002 PTR_FORMAT ", " PTR_FORMAT ")",
1003 vs, capacity / K,
1004 capacity == 0 ? 0 : used * 100 / capacity,
1005 bottom(), top(), end(),
1006 vs->high_boundary());
1007 }
1008
1009 #ifdef ASSERT
1010 void VirtualSpaceNode::mangle() {
1011 size_t word_size = capacity_words_in_vs();
1012 Copy::fill_to_words((HeapWord*) low(), word_size, 0xf1f1f1f1);
1013 }
1014 #endif // ASSERT
1015
1016 // VirtualSpaceList methods
1017 // Space allocated from the VirtualSpace
1018
1019 VirtualSpaceList::~VirtualSpaceList() {
1020 VirtualSpaceListIterator iter(virtual_space_list());
1021 while (iter.repeat()) {
1022 VirtualSpaceNode* vsl = iter.get_next();
1023 delete vsl;
1024 }
1025 }
1026
1027 void VirtualSpaceList::inc_reserved_words(size_t v) {
1028 assert_lock_strong(SpaceManager::expand_lock());
1029 _reserved_words = _reserved_words + v;
1030 }
1031 void VirtualSpaceList::dec_reserved_words(size_t v) {
1032 assert_lock_strong(SpaceManager::expand_lock());
1033 _reserved_words = _reserved_words - v;
1034 }
1035
1036 #define assert_committed_below_limit() \
1037 assert(MetaspaceAux::committed_bytes() <= MaxMetaspaceSize, \
1038 err_msg("Too much committed memory. Committed: " SIZE_FORMAT \
1039 " limit (MaxMetaspaceSize): " SIZE_FORMAT, \
1040 MetaspaceAux::committed_bytes(), MaxMetaspaceSize));
1041
1042 void VirtualSpaceList::inc_committed_words(size_t v) {
1043 assert_lock_strong(SpaceManager::expand_lock());
1044 _committed_words = _committed_words + v;
1045
1046 assert_committed_below_limit();
1047 }
1048 void VirtualSpaceList::dec_committed_words(size_t v) {
1049 assert_lock_strong(SpaceManager::expand_lock());
1050 _committed_words = _committed_words - v;
1051
1052 assert_committed_below_limit();
1053 }
1054
1055 void VirtualSpaceList::inc_virtual_space_count() {
1056 assert_lock_strong(SpaceManager::expand_lock());
1057 _virtual_space_count++;
1058 }
1059 void VirtualSpaceList::dec_virtual_space_count() {
1060 assert_lock_strong(SpaceManager::expand_lock());
1061 _virtual_space_count--;
1062 }
1063
1064 void ChunkManager::remove_chunk(Metachunk* chunk) {
1065 size_t word_size = chunk->word_size();
1066 ChunkIndex index = list_index(word_size);
1067 if (index != HumongousIndex) {
1068 free_chunks(index)->remove_chunk(chunk);
1069 } else {
1070 humongous_dictionary()->remove_chunk(chunk);
1071 }
1072
1073 // Chunk is being removed from the chunks free list.
1074 dec_free_chunks_total(chunk->word_size());
1075 }
1076
1077 // Walk the list of VirtualSpaceNodes and delete
1078 // nodes with a 0 container_count. Remove Metachunks in
1079 // the node from their respective freelists.
1080 void VirtualSpaceList::purge(ChunkManager* chunk_manager) {
1081 assert(SafepointSynchronize::is_at_safepoint(), "must be called at safepoint for contains to work");
1082 assert_lock_strong(SpaceManager::expand_lock());
1083 // Don't use a VirtualSpaceListIterator because this
1084 // list is being changed and a straightforward use of an iterator is not safe.
1085 VirtualSpaceNode* purged_vsl = NULL;
1086 VirtualSpaceNode* prev_vsl = virtual_space_list();
1087 VirtualSpaceNode* next_vsl = prev_vsl;
1088 while (next_vsl != NULL) {
1089 VirtualSpaceNode* vsl = next_vsl;
1090 next_vsl = vsl->next();
1091 // Don't free the current virtual space since it will likely
1092 // be needed soon.
1093 if (vsl->container_count() == 0 && vsl != current_virtual_space()) {
1094 // Unlink it from the list
1095 if (prev_vsl == vsl) {
1096 // This is the case of the current node being the first node.
1097 assert(vsl == virtual_space_list(), "Expected to be the first node");
1098 set_virtual_space_list(vsl->next());
1099 } else {
1100 prev_vsl->set_next(vsl->next());
1101 }
1102
1103 vsl->purge(chunk_manager);
1104 dec_reserved_words(vsl->reserved_words());
1105 dec_committed_words(vsl->committed_words());
1106 dec_virtual_space_count();
1107 purged_vsl = vsl;
1108 delete vsl;
1109 } else {
1110 prev_vsl = vsl;
1111 }
1112 }
1113 #ifdef ASSERT
1114 if (purged_vsl != NULL) {
1115 // List should be stable enough to use an iterator here.
1116 VirtualSpaceListIterator iter(virtual_space_list());
1117 while (iter.repeat()) {
1118 VirtualSpaceNode* vsl = iter.get_next();
1119 assert(vsl != purged_vsl, "Purge of vsl failed");
1120 }
1121 }
1122 #endif
1123 }
1124
1125
1126 // This function looks at the mmap regions in the metaspace without locking.
1127 // The chunks are added with store ordering and not deleted except for at
1128 // unloading time during a safepoint.
1129 bool VirtualSpaceList::contains(const void* ptr) {
1130 // List should be stable enough to use an iterator here because removing virtual
1131 // space nodes is only allowed at a safepoint.
1132 VirtualSpaceListIterator iter(virtual_space_list());
1133 while (iter.repeat()) {
1134 VirtualSpaceNode* vsn = iter.get_next();
1135 if (vsn->contains(ptr)) {
1136 return true;
1137 }
1138 }
1139 return false;
1140 }
1141
1142 void VirtualSpaceList::retire_current_virtual_space() {
1143 assert_lock_strong(SpaceManager::expand_lock());
1144
1145 VirtualSpaceNode* vsn = current_virtual_space();
1146
1147 ChunkManager* cm = is_class() ? Metaspace::chunk_manager_class() :
1148 Metaspace::chunk_manager_metadata();
1149
1150 vsn->retire(cm);
1151 }
1152
1153 void VirtualSpaceNode::retire(ChunkManager* chunk_manager) {
1154 for (int i = (int)MediumIndex; i >= (int)ZeroIndex; --i) {
1155 ChunkIndex index = (ChunkIndex)i;
1156 size_t chunk_size = chunk_manager->free_chunks(index)->size();
1157
1158 while (free_words_in_vs() >= chunk_size) {
1159 DEBUG_ONLY(verify_container_count();)
1160 Metachunk* chunk = get_chunk_vs(chunk_size);
1161 assert(chunk != NULL, "allocation should have been successful");
1162
1163 chunk_manager->return_chunks(index, chunk);
1164 chunk_manager->inc_free_chunks_total(chunk_size);
1165 DEBUG_ONLY(verify_container_count();)
1166 }
1167 }
1168 assert(free_words_in_vs() == 0, "should be empty now");
1169 }
1170
1171 VirtualSpaceList::VirtualSpaceList(size_t word_size) :
1172 _is_class(false),
1173 _virtual_space_list(NULL),
1174 _current_virtual_space(NULL),
1175 _reserved_words(0),
1176 _committed_words(0),
1177 _virtual_space_count(0) {
1178 MutexLockerEx cl(SpaceManager::expand_lock(),
1179 Mutex::_no_safepoint_check_flag);
1180 create_new_virtual_space(word_size);
1181 }
1182
1183 VirtualSpaceList::VirtualSpaceList(ReservedSpace rs) :
1184 _is_class(true),
1185 _virtual_space_list(NULL),
1186 _current_virtual_space(NULL),
1187 _reserved_words(0),
1188 _committed_words(0),
1189 _virtual_space_count(0) {
1190 MutexLockerEx cl(SpaceManager::expand_lock(),
1191 Mutex::_no_safepoint_check_flag);
1192 VirtualSpaceNode* class_entry = new VirtualSpaceNode(rs);
1193 bool succeeded = class_entry->initialize();
1194 if (succeeded) {
1195 link_vs(class_entry);
1196 }
1197 }
1198
1199 size_t VirtualSpaceList::free_bytes() {
1200 return virtual_space_list()->free_words_in_vs() * BytesPerWord;
1201 }
1202
1203 // Allocate another meta virtual space and add it to the list.
1204 bool VirtualSpaceList::create_new_virtual_space(size_t vs_word_size) {
1205 assert_lock_strong(SpaceManager::expand_lock());
1206
1207 if (is_class()) {
1208 assert(false, "We currently don't support more than one VirtualSpace for"
1209 " the compressed class space. The initialization of the"
1210 " CCS uses another code path and should not hit this path.");
1211 return false;
1212 }
1213
1214 if (vs_word_size == 0) {
1215 assert(false, "vs_word_size should always be at least _reserve_alignment large.");
1216 return false;
1217 }
1218
1219 // Reserve the space
1220 size_t vs_byte_size = vs_word_size * BytesPerWord;
1221 assert_is_size_aligned(vs_byte_size, Metaspace::reserve_alignment());
1222
1223 // Allocate the meta virtual space and initialize it.
1224 VirtualSpaceNode* new_entry = new VirtualSpaceNode(vs_byte_size);
1225 if (!new_entry->initialize()) {
1226 delete new_entry;
1227 return false;
1228 } else {
1229 assert(new_entry->reserved_words() == vs_word_size,
1230 "Reserved memory size differs from requested memory size");
1231 // ensure lock-free iteration sees fully initialized node
1232 OrderAccess::storestore();
1233 link_vs(new_entry);
1234 return true;
1235 }
1236 }
1237
1238 void VirtualSpaceList::link_vs(VirtualSpaceNode* new_entry) {
1239 if (virtual_space_list() == NULL) {
1240 set_virtual_space_list(new_entry);
1241 } else {
1242 current_virtual_space()->set_next(new_entry);
1243 }
1244 set_current_virtual_space(new_entry);
1245 inc_reserved_words(new_entry->reserved_words());
1246 inc_committed_words(new_entry->committed_words());
1247 inc_virtual_space_count();
1248 #ifdef ASSERT
1249 new_entry->mangle();
1250 #endif
1251 if (TraceMetavirtualspaceAllocation && Verbose) {
1252 VirtualSpaceNode* vsl = current_virtual_space();
1253 vsl->print_on(gclog_or_tty);
1254 }
1255 }
1256
1257 bool VirtualSpaceList::expand_node_by(VirtualSpaceNode* node,
1258 size_t min_words,
1259 size_t preferred_words) {
1260 size_t before = node->committed_words();
1261
1262 bool result = node->expand_by(min_words, preferred_words);
1263
1264 size_t after = node->committed_words();
1265
1266 // after and before can be the same if the memory was pre-committed.
1267 assert(after >= before, "Inconsistency");
1268 inc_committed_words(after - before);
1269
1270 return result;
1271 }
1272
1273 bool VirtualSpaceList::expand_by(size_t min_words, size_t preferred_words) {
1274 assert_is_size_aligned(min_words, Metaspace::commit_alignment_words());
1275 assert_is_size_aligned(preferred_words, Metaspace::commit_alignment_words());
1276 assert(min_words <= preferred_words, "Invalid arguments");
1277
1278 if (!MetaspaceGC::can_expand(min_words, this->is_class())) {
1279 return false;
1280 }
1281
1282 size_t allowed_expansion_words = MetaspaceGC::allowed_expansion();
1283 if (allowed_expansion_words < min_words) {
1284 return false;
1285 }
1286
1287 size_t max_expansion_words = MIN2(preferred_words, allowed_expansion_words);
1288
1289 // Commit more memory from the the current virtual space.
1290 bool vs_expanded = expand_node_by(current_virtual_space(),
1291 min_words,
1292 max_expansion_words);
1293 if (vs_expanded) {
1294 return true;
1295 }
1296 retire_current_virtual_space();
1297
1298 // Get another virtual space.
1299 size_t grow_vs_words = MAX2((size_t)VirtualSpaceSize, preferred_words);
1300 grow_vs_words = align_size_up(grow_vs_words, Metaspace::reserve_alignment_words());
1301
1302 if (create_new_virtual_space(grow_vs_words)) {
1303 if (current_virtual_space()->is_pre_committed()) {
1304 // The memory was pre-committed, so we are done here.
1305 assert(min_words <= current_virtual_space()->committed_words(),
1306 "The new VirtualSpace was pre-committed, so it"
1307 "should be large enough to fit the alloc request.");
1308 return true;
1309 }
1310
1311 return expand_node_by(current_virtual_space(),
1312 min_words,
1313 max_expansion_words);
1314 }
1315
1316 return false;
1317 }
1318
1319 Metachunk* VirtualSpaceList::get_new_chunk(size_t word_size,
1320 size_t grow_chunks_by_words,
1321 size_t medium_chunk_bunch) {
1322
1323 // Allocate a chunk out of the current virtual space.
1324 Metachunk* next = current_virtual_space()->get_chunk_vs(grow_chunks_by_words);
1325
1326 if (next != NULL) {
1327 return next;
1328 }
1329
1330 // The expand amount is currently only determined by the requested sizes
1331 // and not how much committed memory is left in the current virtual space.
1332
1333 size_t min_word_size = align_size_up(grow_chunks_by_words, Metaspace::commit_alignment_words());
1334 size_t preferred_word_size = align_size_up(medium_chunk_bunch, Metaspace::commit_alignment_words());
1335 if (min_word_size >= preferred_word_size) {
1336 // Can happen when humongous chunks are allocated.
1337 preferred_word_size = min_word_size;
1338 }
1339
1340 bool expanded = expand_by(min_word_size, preferred_word_size);
1341 if (expanded) {
1342 next = current_virtual_space()->get_chunk_vs(grow_chunks_by_words);
1343 assert(next != NULL, "The allocation was expected to succeed after the expansion");
1344 }
1345
1346 return next;
1347 }
1348
1349 void VirtualSpaceList::print_on(outputStream* st) const {
1350 if (TraceMetadataChunkAllocation && Verbose) {
1351 VirtualSpaceListIterator iter(virtual_space_list());
1352 while (iter.repeat()) {
1353 VirtualSpaceNode* node = iter.get_next();
1354 node->print_on(st);
1355 }
1356 }
1357 }
1358
1359 // MetaspaceGC methods
1360
1361 // VM_CollectForMetadataAllocation is the vm operation used to GC.
1362 // Within the VM operation after the GC the attempt to allocate the metadata
1363 // should succeed. If the GC did not free enough space for the metaspace
1364 // allocation, the HWM is increased so that another virtualspace will be
1365 // allocated for the metadata. With perm gen the increase in the perm
1366 // gen had bounds, MinMetaspaceExpansion and MaxMetaspaceExpansion. The
1367 // metaspace policy uses those as the small and large steps for the HWM.
1368 //
1369 // After the GC the compute_new_size() for MetaspaceGC is called to
1370 // resize the capacity of the metaspaces. The current implementation
1371 // is based on the flags MinMetaspaceFreeRatio and MaxMetaspaceFreeRatio used
1372 // to resize the Java heap by some GC's. New flags can be implemented
1373 // if really needed. MinMetaspaceFreeRatio is used to calculate how much
1374 // free space is desirable in the metaspace capacity to decide how much
1375 // to increase the HWM. MaxMetaspaceFreeRatio is used to decide how much
1376 // free space is desirable in the metaspace capacity before decreasing
1377 // the HWM.
1378
1379 // Calculate the amount to increase the high water mark (HWM).
1380 // Increase by a minimum amount (MinMetaspaceExpansion) so that
1381 // another expansion is not requested too soon. If that is not
1382 // enough to satisfy the allocation, increase by MaxMetaspaceExpansion.
1383 // If that is still not enough, expand by the size of the allocation
1384 // plus some.
1385 size_t MetaspaceGC::delta_capacity_until_GC(size_t bytes) {
1386 size_t min_delta = MinMetaspaceExpansion;
1387 size_t max_delta = MaxMetaspaceExpansion;
1388 size_t delta = align_size_up(bytes, Metaspace::commit_alignment());
1389
1390 if (delta <= min_delta) {
1391 delta = min_delta;
1392 } else if (delta <= max_delta) {
1393 // Don't want to hit the high water mark on the next
1394 // allocation so make the delta greater than just enough
1395 // for this allocation.
1396 delta = max_delta;
1397 } else {
1398 // This allocation is large but the next ones are probably not
1399 // so increase by the minimum.
1400 delta = delta + min_delta;
1401 }
1402
1403 assert_is_size_aligned(delta, Metaspace::commit_alignment());
1404
1405 return delta;
1406 }
1407
1408 size_t MetaspaceGC::capacity_until_GC() {
1409 size_t value = (size_t)OrderAccess::load_ptr_acquire(&_capacity_until_GC);
1410 assert(value >= MetaspaceSize, "Not initialied properly?");
1411 return value;
1412 }
1413
1414 size_t MetaspaceGC::inc_capacity_until_GC(size_t v) {
1415 assert_is_size_aligned(v, Metaspace::commit_alignment());
1416
1417 return (size_t)Atomic::add_ptr(v, &_capacity_until_GC);
1418 }
1419
1420 size_t MetaspaceGC::dec_capacity_until_GC(size_t v) {
1421 assert_is_size_aligned(v, Metaspace::commit_alignment());
1422
1423 return (size_t)Atomic::add_ptr(-(intptr_t)v, &_capacity_until_GC);
1424 }
1425
1426 void MetaspaceGC::initialize() {
1427 // Set the high-water mark to MaxMetapaceSize during VM initializaton since
1428 // we can't do a GC during initialization.
1429 _capacity_until_GC = MaxMetaspaceSize;
1430 }
1431
1432 void MetaspaceGC::post_initialize() {
1433 // Reset the high-water mark once the VM initialization is done.
1434 _capacity_until_GC = MAX2(MetaspaceAux::committed_bytes(), MetaspaceSize);
1435 }
1436
1437 bool MetaspaceGC::can_expand(size_t word_size, bool is_class) {
1438 // Check if the compressed class space is full.
1439 if (is_class && Metaspace::using_class_space()) {
1440 size_t class_committed = MetaspaceAux::committed_bytes(Metaspace::ClassType);
1441 if (class_committed + word_size * BytesPerWord > CompressedClassSpaceSize) {
1442 return false;
1443 }
1444 }
1445
1446 // Check if the user has imposed a limit on the metaspace memory.
1447 size_t committed_bytes = MetaspaceAux::committed_bytes();
1448 if (committed_bytes + word_size * BytesPerWord > MaxMetaspaceSize) {
1449 return false;
1450 }
1451
1452 return true;
1453 }
1454
1455 size_t MetaspaceGC::allowed_expansion() {
1456 size_t committed_bytes = MetaspaceAux::committed_bytes();
1457 size_t capacity_until_gc = capacity_until_GC();
1458
1459 assert(capacity_until_gc >= committed_bytes,
1460 err_msg("capacity_until_gc: " SIZE_FORMAT " < committed_bytes: " SIZE_FORMAT,
1461 capacity_until_gc, committed_bytes));
1462
1463 size_t left_until_max = MaxMetaspaceSize - committed_bytes;
1464 size_t left_until_GC = capacity_until_gc - committed_bytes;
1465 size_t left_to_commit = MIN2(left_until_GC, left_until_max);
1466
1467 return left_to_commit / BytesPerWord;
1468 }
1469
1470 void MetaspaceGC::compute_new_size() {
1471 assert(_shrink_factor <= 100, "invalid shrink factor");
1472 uint current_shrink_factor = _shrink_factor;
1473 _shrink_factor = 0;
1474
1475 // Using committed_bytes() for used_after_gc is an overestimation, since the
1476 // chunk free lists are included in committed_bytes() and the memory in an
1477 // un-fragmented chunk free list is available for future allocations.
1478 // However, if the chunk free lists becomes fragmented, then the memory may
1479 // not be available for future allocations and the memory is therefore "in use".
1480 // Including the chunk free lists in the definition of "in use" is therefore
1481 // necessary. Not including the chunk free lists can cause capacity_until_GC to
1482 // shrink below committed_bytes() and this has caused serious bugs in the past.
1483 const size_t used_after_gc = MetaspaceAux::committed_bytes();
1484 const size_t capacity_until_GC = MetaspaceGC::capacity_until_GC();
1485
1486 const double minimum_free_percentage = MinMetaspaceFreeRatio / 100.0;
1487 const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1488
1489 const double min_tmp = used_after_gc / maximum_used_percentage;
1490 size_t minimum_desired_capacity =
1491 (size_t)MIN2(min_tmp, double(max_uintx));
1492 // Don't shrink less than the initial generation size
1493 minimum_desired_capacity = MAX2(minimum_desired_capacity,
1494 MetaspaceSize);
1495
1496 if (PrintGCDetails && Verbose) {
1497 gclog_or_tty->print_cr("\nMetaspaceGC::compute_new_size: ");
1498 gclog_or_tty->print_cr(" "
1499 " minimum_free_percentage: %6.2f"
1500 " maximum_used_percentage: %6.2f",
1501 minimum_free_percentage,
1502 maximum_used_percentage);
1503 gclog_or_tty->print_cr(" "
1504 " used_after_gc : %6.1fKB",
1505 used_after_gc / (double) K);
1506 }
1507
1508
1509 size_t shrink_bytes = 0;
1510 if (capacity_until_GC < minimum_desired_capacity) {
1511 // If we have less capacity below the metaspace HWM, then
1512 // increment the HWM.
1513 size_t expand_bytes = minimum_desired_capacity - capacity_until_GC;
1514 expand_bytes = align_size_up(expand_bytes, Metaspace::commit_alignment());
1515 // Don't expand unless it's significant
1516 if (expand_bytes >= MinMetaspaceExpansion) {
1517 size_t new_capacity_until_GC = MetaspaceGC::inc_capacity_until_GC(expand_bytes);
1518 Metaspace::tracer()->report_gc_threshold(capacity_until_GC,
1519 new_capacity_until_GC,
1520 MetaspaceGCThresholdUpdater::ComputeNewSize);
1521 if (PrintGCDetails && Verbose) {
1522 gclog_or_tty->print_cr(" expanding:"
1523 " minimum_desired_capacity: %6.1fKB"
1524 " expand_bytes: %6.1fKB"
1525 " MinMetaspaceExpansion: %6.1fKB"
1526 " new metaspace HWM: %6.1fKB",
1527 minimum_desired_capacity / (double) K,
1528 expand_bytes / (double) K,
1529 MinMetaspaceExpansion / (double) K,
1530 new_capacity_until_GC / (double) K);
1531 }
1532 }
1533 return;
1534 }
1535
1536 // No expansion, now see if we want to shrink
1537 // We would never want to shrink more than this
1538 size_t max_shrink_bytes = capacity_until_GC - minimum_desired_capacity;
1539 assert(max_shrink_bytes >= 0, err_msg("max_shrink_bytes " SIZE_FORMAT,
1540 max_shrink_bytes));
1541
1542 // Should shrinking be considered?
1543 if (MaxMetaspaceFreeRatio < 100) {
1544 const double maximum_free_percentage = MaxMetaspaceFreeRatio / 100.0;
1545 const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1546 const double max_tmp = used_after_gc / minimum_used_percentage;
1547 size_t maximum_desired_capacity = (size_t)MIN2(max_tmp, double(max_uintx));
1548 maximum_desired_capacity = MAX2(maximum_desired_capacity,
1549 MetaspaceSize);
1550 if (PrintGCDetails && Verbose) {
1551 gclog_or_tty->print_cr(" "
1552 " maximum_free_percentage: %6.2f"
1553 " minimum_used_percentage: %6.2f",
1554 maximum_free_percentage,
1555 minimum_used_percentage);
1556 gclog_or_tty->print_cr(" "
1557 " minimum_desired_capacity: %6.1fKB"
1558 " maximum_desired_capacity: %6.1fKB",
1559 minimum_desired_capacity / (double) K,
1560 maximum_desired_capacity / (double) K);
1561 }
1562
1563 assert(minimum_desired_capacity <= maximum_desired_capacity,
1564 "sanity check");
1565
1566 if (capacity_until_GC > maximum_desired_capacity) {
1567 // Capacity too large, compute shrinking size
1568 shrink_bytes = capacity_until_GC - maximum_desired_capacity;
1569 // We don't want shrink all the way back to initSize if people call
1570 // System.gc(), because some programs do that between "phases" and then
1571 // we'd just have to grow the heap up again for the next phase. So we
1572 // damp the shrinking: 0% on the first call, 10% on the second call, 40%
1573 // on the third call, and 100% by the fourth call. But if we recompute
1574 // size without shrinking, it goes back to 0%.
1575 shrink_bytes = shrink_bytes / 100 * current_shrink_factor;
1576
1577 shrink_bytes = align_size_down(shrink_bytes, Metaspace::commit_alignment());
1578
1579 assert(shrink_bytes <= max_shrink_bytes,
1580 err_msg("invalid shrink size " SIZE_FORMAT " not <= " SIZE_FORMAT,
1581 shrink_bytes, max_shrink_bytes));
1582 if (current_shrink_factor == 0) {
1583 _shrink_factor = 10;
1584 } else {
1585 _shrink_factor = MIN2(current_shrink_factor * 4, (uint) 100);
1586 }
1587 if (PrintGCDetails && Verbose) {
1588 gclog_or_tty->print_cr(" "
1589 " shrinking:"
1590 " initSize: %.1fK"
1591 " maximum_desired_capacity: %.1fK",
1592 MetaspaceSize / (double) K,
1593 maximum_desired_capacity / (double) K);
1594 gclog_or_tty->print_cr(" "
1595 " shrink_bytes: %.1fK"
1596 " current_shrink_factor: %d"
1597 " new shrink factor: %d"
1598 " MinMetaspaceExpansion: %.1fK",
1599 shrink_bytes / (double) K,
1600 current_shrink_factor,
1601 _shrink_factor,
1602 MinMetaspaceExpansion / (double) K);
1603 }
1604 }
1605 }
1606
1607 // Don't shrink unless it's significant
1608 if (shrink_bytes >= MinMetaspaceExpansion &&
1609 ((capacity_until_GC - shrink_bytes) >= MetaspaceSize)) {
1610 size_t new_capacity_until_GC = MetaspaceGC::dec_capacity_until_GC(shrink_bytes);
1611 Metaspace::tracer()->report_gc_threshold(capacity_until_GC,
1612 new_capacity_until_GC,
1613 MetaspaceGCThresholdUpdater::ComputeNewSize);
1614 }
1615 }
1616
1617 // Metadebug methods
1618
1619 void Metadebug::init_allocation_fail_alot_count() {
1620 if (MetadataAllocationFailALot) {
1621 _allocation_fail_alot_count =
1622 1+(long)((double)MetadataAllocationFailALotInterval*os::random()/(max_jint+1.0));
1623 }
1624 }
1625
1626 #ifdef ASSERT
1627 bool Metadebug::test_metadata_failure() {
1628 if (MetadataAllocationFailALot &&
1629 Threads::is_vm_complete()) {
1630 if (_allocation_fail_alot_count > 0) {
1631 _allocation_fail_alot_count--;
1632 } else {
1633 if (TraceMetadataChunkAllocation && Verbose) {
1634 gclog_or_tty->print_cr("Metadata allocation failing for "
1635 "MetadataAllocationFailALot");
1636 }
1637 init_allocation_fail_alot_count();
1638 return true;
1639 }
1640 }
1641 return false;
1642 }
1643 #endif
1644
1645 // ChunkManager methods
1646
1647 size_t ChunkManager::free_chunks_total_words() {
1648 return _free_chunks_total;
1649 }
1650
1651 size_t ChunkManager::free_chunks_total_bytes() {
1652 return free_chunks_total_words() * BytesPerWord;
1653 }
1654
1655 size_t ChunkManager::free_chunks_count() {
1656 #ifdef ASSERT
1657 if (!UseConcMarkSweepGC && !SpaceManager::expand_lock()->is_locked()) {
1658 MutexLockerEx cl(SpaceManager::expand_lock(),
1659 Mutex::_no_safepoint_check_flag);
1660 // This lock is only needed in debug because the verification
1661 // of the _free_chunks_totals walks the list of free chunks
1662 slow_locked_verify_free_chunks_count();
1663 }
1664 #endif
1665 return _free_chunks_count;
1666 }
1667
1668 void ChunkManager::locked_verify_free_chunks_total() {
1669 assert_lock_strong(SpaceManager::expand_lock());
1670 assert(sum_free_chunks() == _free_chunks_total,
1671 err_msg("_free_chunks_total " SIZE_FORMAT " is not the"
1672 " same as sum " SIZE_FORMAT, _free_chunks_total,
1673 sum_free_chunks()));
1674 }
1675
1676 void ChunkManager::verify_free_chunks_total() {
1677 MutexLockerEx cl(SpaceManager::expand_lock(),
1678 Mutex::_no_safepoint_check_flag);
1679 locked_verify_free_chunks_total();
1680 }
1681
1682 void ChunkManager::locked_verify_free_chunks_count() {
1683 assert_lock_strong(SpaceManager::expand_lock());
1684 assert(sum_free_chunks_count() == _free_chunks_count,
1685 err_msg("_free_chunks_count " SIZE_FORMAT " is not the"
1686 " same as sum " SIZE_FORMAT, _free_chunks_count,
1687 sum_free_chunks_count()));
1688 }
1689
1690 void ChunkManager::verify_free_chunks_count() {
1691 #ifdef ASSERT
1692 MutexLockerEx cl(SpaceManager::expand_lock(),
1693 Mutex::_no_safepoint_check_flag);
1694 locked_verify_free_chunks_count();
1695 #endif
1696 }
1697
1698 void ChunkManager::verify() {
1699 MutexLockerEx cl(SpaceManager::expand_lock(),
1700 Mutex::_no_safepoint_check_flag);
1701 locked_verify();
1702 }
1703
1704 void ChunkManager::locked_verify() {
1705 locked_verify_free_chunks_count();
1706 locked_verify_free_chunks_total();
1707 }
1708
1709 void ChunkManager::locked_print_free_chunks(outputStream* st) {
1710 assert_lock_strong(SpaceManager::expand_lock());
1711 st->print_cr("Free chunk total " SIZE_FORMAT " count " SIZE_FORMAT,
1712 _free_chunks_total, _free_chunks_count);
1713 }
1714
1715 void ChunkManager::locked_print_sum_free_chunks(outputStream* st) {
1716 assert_lock_strong(SpaceManager::expand_lock());
1717 st->print_cr("Sum free chunk total " SIZE_FORMAT " count " SIZE_FORMAT,
1718 sum_free_chunks(), sum_free_chunks_count());
1719 }
1720 ChunkList* ChunkManager::free_chunks(ChunkIndex index) {
1721 return &_free_chunks[index];
1722 }
1723
1724 // These methods that sum the free chunk lists are used in printing
1725 // methods that are used in product builds.
1726 size_t ChunkManager::sum_free_chunks() {
1727 assert_lock_strong(SpaceManager::expand_lock());
1728 size_t result = 0;
1729 for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
1730 ChunkList* list = free_chunks(i);
1731
1732 if (list == NULL) {
1733 continue;
1734 }
1735
1736 result = result + list->count() * list->size();
1737 }
1738 result = result + humongous_dictionary()->total_size();
1739 return result;
1740 }
1741
1742 size_t ChunkManager::sum_free_chunks_count() {
1743 assert_lock_strong(SpaceManager::expand_lock());
1744 size_t count = 0;
1745 for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
1746 ChunkList* list = free_chunks(i);
1747 if (list == NULL) {
1748 continue;
1749 }
1750 count = count + list->count();
1751 }
1752 count = count + humongous_dictionary()->total_free_blocks();
1753 return count;
1754 }
1755
1756 ChunkList* ChunkManager::find_free_chunks_list(size_t word_size) {
1757 ChunkIndex index = list_index(word_size);
1758 assert(index < HumongousIndex, "No humongous list");
1759 return free_chunks(index);
1760 }
1761
1762 Metachunk* ChunkManager::free_chunks_get(size_t word_size) {
1763 assert_lock_strong(SpaceManager::expand_lock());
1764
1765 slow_locked_verify();
1766
1767 Metachunk* chunk = NULL;
1768 if (list_index(word_size) != HumongousIndex) {
1769 ChunkList* free_list = find_free_chunks_list(word_size);
1770 assert(free_list != NULL, "Sanity check");
1771
1772 chunk = free_list->head();
1773
1774 if (chunk == NULL) {
1775 return NULL;
1776 }
1777
1778 // Remove the chunk as the head of the list.
1779 free_list->remove_chunk(chunk);
1780
1781 if (TraceMetadataChunkAllocation && Verbose) {
1782 gclog_or_tty->print_cr("ChunkManager::free_chunks_get: free_list "
1783 PTR_FORMAT " head " PTR_FORMAT " size " SIZE_FORMAT,
1784 free_list, chunk, chunk->word_size());
1785 }
1786 } else {
1787 chunk = humongous_dictionary()->get_chunk(
1788 word_size,
1789 FreeBlockDictionary<Metachunk>::atLeast);
1790
1791 if (chunk == NULL) {
1792 return NULL;
1793 }
1794
1795 if (TraceMetadataHumongousAllocation) {
1796 size_t waste = chunk->word_size() - word_size;
1797 gclog_or_tty->print_cr("Free list allocate humongous chunk size "
1798 SIZE_FORMAT " for requested size " SIZE_FORMAT
1799 " waste " SIZE_FORMAT,
1800 chunk->word_size(), word_size, waste);
1801 }
1802 }
1803
1804 // Chunk is being removed from the chunks free list.
1805 dec_free_chunks_total(chunk->word_size());
1806
1807 // Remove it from the links to this freelist
1808 chunk->set_next(NULL);
1809 chunk->set_prev(NULL);
1810 #ifdef ASSERT
1811 // Chunk is no longer on any freelist. Setting to false make container_count_slow()
1812 // work.
1813 chunk->set_is_tagged_free(false);
1814 #endif
1815 chunk->container()->inc_container_count();
1816
1817 slow_locked_verify();
1818 return chunk;
1819 }
1820
1821 Metachunk* ChunkManager::chunk_freelist_allocate(size_t word_size) {
1822 assert_lock_strong(SpaceManager::expand_lock());
1823 slow_locked_verify();
1824
1825 // Take from the beginning of the list
1826 Metachunk* chunk = free_chunks_get(word_size);
1827 if (chunk == NULL) {
1828 return NULL;
1829 }
1830
1831 assert((word_size <= chunk->word_size()) ||
1832 list_index(chunk->word_size() == HumongousIndex),
1833 "Non-humongous variable sized chunk");
1834 if (TraceMetadataChunkAllocation) {
1835 size_t list_count;
1836 if (list_index(word_size) < HumongousIndex) {
1837 ChunkList* list = find_free_chunks_list(word_size);
1838 list_count = list->count();
1839 } else {
1840 list_count = humongous_dictionary()->total_count();
1841 }
1842 gclog_or_tty->print("ChunkManager::chunk_freelist_allocate: " PTR_FORMAT " chunk "
1843 PTR_FORMAT " size " SIZE_FORMAT " count " SIZE_FORMAT " ",
1844 this, chunk, chunk->word_size(), list_count);
1845 locked_print_free_chunks(gclog_or_tty);
1846 }
1847
1848 return chunk;
1849 }
1850
1851 void ChunkManager::print_on(outputStream* out) const {
1852 if (PrintFLSStatistics != 0) {
1853 const_cast<ChunkManager *>(this)->humongous_dictionary()->report_statistics();
1854 }
1855 }
1856
1857 // SpaceManager methods
1858
1859 void SpaceManager::get_initial_chunk_sizes(Metaspace::MetaspaceType type,
1860 size_t* chunk_word_size,
1861 size_t* class_chunk_word_size) {
1862 switch (type) {
1863 case Metaspace::BootMetaspaceType:
1864 *chunk_word_size = Metaspace::first_chunk_word_size();
1865 *class_chunk_word_size = Metaspace::first_class_chunk_word_size();
1866 break;
1867 case Metaspace::ROMetaspaceType:
1868 *chunk_word_size = SharedReadOnlySize / wordSize;
1869 *class_chunk_word_size = ClassSpecializedChunk;
1870 break;
1871 case Metaspace::ReadWriteMetaspaceType:
1872 *chunk_word_size = SharedReadWriteSize / wordSize;
1873 *class_chunk_word_size = ClassSpecializedChunk;
1874 break;
1875 case Metaspace::AnonymousMetaspaceType:
1876 case Metaspace::ReflectionMetaspaceType:
1877 *chunk_word_size = SpecializedChunk;
1878 *class_chunk_word_size = ClassSpecializedChunk;
1879 break;
1880 default:
1881 *chunk_word_size = SmallChunk;
1882 *class_chunk_word_size = ClassSmallChunk;
1883 break;
1884 }
1885 assert(*chunk_word_size != 0 && *class_chunk_word_size != 0,
1886 err_msg("Initial chunks sizes bad: data " SIZE_FORMAT
1887 " class " SIZE_FORMAT,
1888 *chunk_word_size, *class_chunk_word_size));
1889 }
1890
1891 size_t SpaceManager::sum_free_in_chunks_in_use() const {
1892 MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
1893 size_t free = 0;
1894 for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1895 Metachunk* chunk = chunks_in_use(i);
1896 while (chunk != NULL) {
1897 free += chunk->free_word_size();
1898 chunk = chunk->next();
1899 }
1900 }
1901 return free;
1902 }
1903
1904 size_t SpaceManager::sum_waste_in_chunks_in_use() const {
1905 MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
1906 size_t result = 0;
1907 for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1908 result += sum_waste_in_chunks_in_use(i);
1909 }
1910
1911 return result;
1912 }
1913
1914 size_t SpaceManager::sum_waste_in_chunks_in_use(ChunkIndex index) const {
1915 size_t result = 0;
1916 Metachunk* chunk = chunks_in_use(index);
1917 // Count the free space in all the chunk but not the
1918 // current chunk from which allocations are still being done.
1919 while (chunk != NULL) {
1920 if (chunk != current_chunk()) {
1921 result += chunk->free_word_size();
1922 }
1923 chunk = chunk->next();
1924 }
1925 return result;
1926 }
1927
1928 size_t SpaceManager::sum_capacity_in_chunks_in_use() const {
1929 // For CMS use "allocated_chunks_words()" which does not need the
1930 // Metaspace lock. For the other collectors sum over the
1931 // lists. Use both methods as a check that "allocated_chunks_words()"
1932 // is correct. That is, sum_capacity_in_chunks() is too expensive
1933 // to use in the product and allocated_chunks_words() should be used
1934 // but allow for checking that allocated_chunks_words() returns the same
1935 // value as sum_capacity_in_chunks_in_use() which is the definitive
1936 // answer.
1937 if (UseConcMarkSweepGC) {
1938 return allocated_chunks_words();
1939 } else {
1940 MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
1941 size_t sum = 0;
1942 for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1943 Metachunk* chunk = chunks_in_use(i);
1944 while (chunk != NULL) {
1945 sum += chunk->word_size();
1946 chunk = chunk->next();
1947 }
1948 }
1949 return sum;
1950 }
1951 }
1952
1953 size_t SpaceManager::sum_count_in_chunks_in_use() {
1954 size_t count = 0;
1955 for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1956 count = count + sum_count_in_chunks_in_use(i);
1957 }
1958
1959 return count;
1960 }
1961
1962 size_t SpaceManager::sum_count_in_chunks_in_use(ChunkIndex i) {
1963 size_t count = 0;
1964 Metachunk* chunk = chunks_in_use(i);
1965 while (chunk != NULL) {
1966 count++;
1967 chunk = chunk->next();
1968 }
1969 return count;
1970 }
1971
1972
1973 size_t SpaceManager::sum_used_in_chunks_in_use() const {
1974 MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
1975 size_t used = 0;
1976 for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1977 Metachunk* chunk = chunks_in_use(i);
1978 while (chunk != NULL) {
1979 used += chunk->used_word_size();
1980 chunk = chunk->next();
1981 }
1982 }
1983 return used;
1984 }
1985
1986 void SpaceManager::locked_print_chunks_in_use_on(outputStream* st) const {
1987
1988 for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1989 Metachunk* chunk = chunks_in_use(i);
1990 st->print("SpaceManager: %s " PTR_FORMAT,
1991 chunk_size_name(i), chunk);
1992 if (chunk != NULL) {
1993 st->print_cr(" free " SIZE_FORMAT,
1994 chunk->free_word_size());
1995 } else {
1996 st->cr();
1997 }
1998 }
1999
2000 chunk_manager()->locked_print_free_chunks(st);
2001 chunk_manager()->locked_print_sum_free_chunks(st);
2002 }
2003
2004 size_t SpaceManager::calc_chunk_size(size_t word_size) {
2005
2006 // Decide between a small chunk and a medium chunk. Up to
2007 // _small_chunk_limit small chunks can be allocated but
2008 // once a medium chunk has been allocated, no more small
2009 // chunks will be allocated.
2010 size_t chunk_word_size;
2011 if (chunks_in_use(MediumIndex) == NULL &&
2012 sum_count_in_chunks_in_use(SmallIndex) < _small_chunk_limit) {
2013 chunk_word_size = (size_t) small_chunk_size();
2014 if (word_size + Metachunk::overhead() > small_chunk_size()) {
2015 chunk_word_size = medium_chunk_size();
2016 }
2017 } else {
2018 chunk_word_size = medium_chunk_size();
2019 }
2020
2021 // Might still need a humongous chunk. Enforce
2022 // humongous allocations sizes to be aligned up to
2023 // the smallest chunk size.
2024 size_t if_humongous_sized_chunk =
2025 align_size_up(word_size + Metachunk::overhead(),
2026 smallest_chunk_size());
2027 chunk_word_size =
2028 MAX2((size_t) chunk_word_size, if_humongous_sized_chunk);
2029
2030 assert(!SpaceManager::is_humongous(word_size) ||
2031 chunk_word_size == if_humongous_sized_chunk,
2032 err_msg("Size calculation is wrong, word_size " SIZE_FORMAT
2033 " chunk_word_size " SIZE_FORMAT,
2034 word_size, chunk_word_size));
2035 if (TraceMetadataHumongousAllocation &&
2036 SpaceManager::is_humongous(word_size)) {
2037 gclog_or_tty->print_cr("Metadata humongous allocation:");
2038 gclog_or_tty->print_cr(" word_size " PTR_FORMAT, word_size);
2039 gclog_or_tty->print_cr(" chunk_word_size " PTR_FORMAT,
2040 chunk_word_size);
2041 gclog_or_tty->print_cr(" chunk overhead " PTR_FORMAT,
2042 Metachunk::overhead());
2043 }
2044 return chunk_word_size;
2045 }
2046
2047 void SpaceManager::track_metaspace_memory_usage() {
2048 if (is_init_completed()) {
2049 if (is_class()) {
2050 MemoryService::track_compressed_class_memory_usage();
2051 }
2052 MemoryService::track_metaspace_memory_usage();
2053 }
2054 }
2055
2056 MetaWord* SpaceManager::grow_and_allocate(size_t word_size) {
2057 assert(vs_list()->current_virtual_space() != NULL,
2058 "Should have been set");
2059 assert(current_chunk() == NULL ||
2060 current_chunk()->allocate(word_size) == NULL,
2061 "Don't need to expand");
2062 MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
2063
2064 if (TraceMetadataChunkAllocation && Verbose) {
2065 size_t words_left = 0;
2066 size_t words_used = 0;
2067 if (current_chunk() != NULL) {
2068 words_left = current_chunk()->free_word_size();
2069 words_used = current_chunk()->used_word_size();
2070 }
2071 gclog_or_tty->print_cr("SpaceManager::grow_and_allocate for " SIZE_FORMAT
2072 " words " SIZE_FORMAT " words used " SIZE_FORMAT
2073 " words left",
2074 word_size, words_used, words_left);
2075 }
2076
2077 // Get another chunk out of the virtual space
2078 size_t grow_chunks_by_words = calc_chunk_size(word_size);
2079 Metachunk* next = get_new_chunk(word_size, grow_chunks_by_words);
2080
2081 MetaWord* mem = NULL;
2082
2083 // If a chunk was available, add it to the in-use chunk list
2084 // and do an allocation from it.
2085 if (next != NULL) {
2086 // Add to this manager's list of chunks in use.
2087 add_chunk(next, false);
2088 mem = next->allocate(word_size);
2089 }
2090
2091 // Track metaspace memory usage statistic.
2092 track_metaspace_memory_usage();
2093
2094 return mem;
2095 }
2096
2097 void SpaceManager::print_on(outputStream* st) const {
2098
2099 for (ChunkIndex i = ZeroIndex;
2100 i < NumberOfInUseLists ;
2101 i = next_chunk_index(i) ) {
2102 st->print_cr(" chunks_in_use " PTR_FORMAT " chunk size " PTR_FORMAT,
2103 chunks_in_use(i),
2104 chunks_in_use(i) == NULL ? 0 : chunks_in_use(i)->word_size());
2105 }
2106 st->print_cr(" waste: Small " SIZE_FORMAT " Medium " SIZE_FORMAT
2107 " Humongous " SIZE_FORMAT,
2108 sum_waste_in_chunks_in_use(SmallIndex),
2109 sum_waste_in_chunks_in_use(MediumIndex),
2110 sum_waste_in_chunks_in_use(HumongousIndex));
2111 // block free lists
2112 if (block_freelists() != NULL) {
2113 st->print_cr("total in block free lists " SIZE_FORMAT,
2114 block_freelists()->total_size());
2115 }
2116 }
2117
2118 SpaceManager::SpaceManager(Metaspace::MetadataType mdtype,
2119 Mutex* lock) :
2120 _mdtype(mdtype),
2121 _allocated_blocks_words(0),
2122 _allocated_chunks_words(0),
2123 _allocated_chunks_count(0),
2124 _lock(lock)
2125 {
2126 initialize();
2127 }
2128
2129 void SpaceManager::inc_size_metrics(size_t words) {
2130 assert_lock_strong(SpaceManager::expand_lock());
2131 // Total of allocated Metachunks and allocated Metachunks count
2132 // for each SpaceManager
2133 _allocated_chunks_words = _allocated_chunks_words + words;
2134 _allocated_chunks_count++;
2135 // Global total of capacity in allocated Metachunks
2136 MetaspaceAux::inc_capacity(mdtype(), words);
2137 // Global total of allocated Metablocks.
2138 // used_words_slow() includes the overhead in each
2139 // Metachunk so include it in the used when the
2140 // Metachunk is first added (so only added once per
2141 // Metachunk).
2142 MetaspaceAux::inc_used(mdtype(), Metachunk::overhead());
2143 }
2144
2145 void SpaceManager::inc_used_metrics(size_t words) {
2146 // Add to the per SpaceManager total
2147 Atomic::add_ptr(words, &_allocated_blocks_words);
2148 // Add to the global total
2149 MetaspaceAux::inc_used(mdtype(), words);
2150 }
2151
2152 void SpaceManager::dec_total_from_size_metrics() {
2153 MetaspaceAux::dec_capacity(mdtype(), allocated_chunks_words());
2154 MetaspaceAux::dec_used(mdtype(), allocated_blocks_words());
2155 // Also deduct the overhead per Metachunk
2156 MetaspaceAux::dec_used(mdtype(), allocated_chunks_count() * Metachunk::overhead());
2157 }
2158
2159 void SpaceManager::initialize() {
2160 Metadebug::init_allocation_fail_alot_count();
2161 for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2162 _chunks_in_use[i] = NULL;
2163 }
2164 _current_chunk = NULL;
2165 if (TraceMetadataChunkAllocation && Verbose) {
2166 gclog_or_tty->print_cr("SpaceManager(): " PTR_FORMAT, this);
2167 }
2168 }
2169
2170 void ChunkManager::return_chunks(ChunkIndex index, Metachunk* chunks) {
2171 if (chunks == NULL) {
2172 return;
2173 }
2174 ChunkList* list = free_chunks(index);
2175 assert(list->size() == chunks->word_size(), "Mismatch in chunk sizes");
2176 assert_lock_strong(SpaceManager::expand_lock());
2177 Metachunk* cur = chunks;
2178
2179 // This returns chunks one at a time. If a new
2180 // class List can be created that is a base class
2181 // of FreeList then something like FreeList::prepend()
2182 // can be used in place of this loop
2183 while (cur != NULL) {
2184 assert(cur->container() != NULL, "Container should have been set");
2185 cur->container()->dec_container_count();
2186 // Capture the next link before it is changed
2187 // by the call to return_chunk_at_head();
2188 Metachunk* next = cur->next();
2189 DEBUG_ONLY(cur->set_is_tagged_free(true);)
2190 list->return_chunk_at_head(cur);
2191 cur = next;
2192 }
2193 }
2194
2195 SpaceManager::~SpaceManager() {
2196 // This call this->_lock which can't be done while holding expand_lock()
2197 assert(sum_capacity_in_chunks_in_use() == allocated_chunks_words(),
2198 err_msg("sum_capacity_in_chunks_in_use() " SIZE_FORMAT
2199 " allocated_chunks_words() " SIZE_FORMAT,
2200 sum_capacity_in_chunks_in_use(), allocated_chunks_words()));
2201
2202 MutexLockerEx fcl(SpaceManager::expand_lock(),
2203 Mutex::_no_safepoint_check_flag);
2204
2205 chunk_manager()->slow_locked_verify();
2206
2207 dec_total_from_size_metrics();
2208
2209 if (TraceMetadataChunkAllocation && Verbose) {
2210 gclog_or_tty->print_cr("~SpaceManager(): " PTR_FORMAT, this);
2211 locked_print_chunks_in_use_on(gclog_or_tty);
2212 }
2213
2214 // Do not mangle freed Metachunks. The chunk size inside Metachunks
2215 // is during the freeing of a VirtualSpaceNodes.
2216
2217 // Have to update before the chunks_in_use lists are emptied
2218 // below.
2219 chunk_manager()->inc_free_chunks_total(allocated_chunks_words(),
2220 sum_count_in_chunks_in_use());
2221
2222 // Add all the chunks in use by this space manager
2223 // to the global list of free chunks.
2224
2225 // Follow each list of chunks-in-use and add them to the
2226 // free lists. Each list is NULL terminated.
2227
2228 for (ChunkIndex i = ZeroIndex; i < HumongousIndex; i = next_chunk_index(i)) {
2229 if (TraceMetadataChunkAllocation && Verbose) {
2230 gclog_or_tty->print_cr("returned %d %s chunks to freelist",
2231 sum_count_in_chunks_in_use(i),
2232 chunk_size_name(i));
2233 }
2234 Metachunk* chunks = chunks_in_use(i);
2235 chunk_manager()->return_chunks(i, chunks);
2236 set_chunks_in_use(i, NULL);
2237 if (TraceMetadataChunkAllocation && Verbose) {
2238 gclog_or_tty->print_cr("updated freelist count %d %s",
2239 chunk_manager()->free_chunks(i)->count(),
2240 chunk_size_name(i));
2241 }
2242 assert(i != HumongousIndex, "Humongous chunks are handled explicitly later");
2243 }
2244
2245 // The medium chunk case may be optimized by passing the head and
2246 // tail of the medium chunk list to add_at_head(). The tail is often
2247 // the current chunk but there are probably exceptions.
2248
2249 // Humongous chunks
2250 if (TraceMetadataChunkAllocation && Verbose) {
2251 gclog_or_tty->print_cr("returned %d %s humongous chunks to dictionary",
2252 sum_count_in_chunks_in_use(HumongousIndex),
2253 chunk_size_name(HumongousIndex));
2254 gclog_or_tty->print("Humongous chunk dictionary: ");
2255 }
2256 // Humongous chunks are never the current chunk.
2257 Metachunk* humongous_chunks = chunks_in_use(HumongousIndex);
2258
2259 while (humongous_chunks != NULL) {
2260 #ifdef ASSERT
2261 humongous_chunks->set_is_tagged_free(true);
2262 #endif
2263 if (TraceMetadataChunkAllocation && Verbose) {
2264 gclog_or_tty->print(PTR_FORMAT " (" SIZE_FORMAT ") ",
2265 humongous_chunks,
2266 humongous_chunks->word_size());
2267 }
2268 assert(humongous_chunks->word_size() == (size_t)
2269 align_size_up(humongous_chunks->word_size(),
2270 smallest_chunk_size()),
2271 err_msg("Humongous chunk size is wrong: word size " SIZE_FORMAT
2272 " granularity %d",
2273 humongous_chunks->word_size(), smallest_chunk_size()));
2274 Metachunk* next_humongous_chunks = humongous_chunks->next();
2275 humongous_chunks->container()->dec_container_count();
2276 chunk_manager()->humongous_dictionary()->return_chunk(humongous_chunks);
2277 humongous_chunks = next_humongous_chunks;
2278 }
2279 if (TraceMetadataChunkAllocation && Verbose) {
2280 gclog_or_tty->cr();
2281 gclog_or_tty->print_cr("updated dictionary count %d %s",
2282 chunk_manager()->humongous_dictionary()->total_count(),
2283 chunk_size_name(HumongousIndex));
2284 }
2285 chunk_manager()->slow_locked_verify();
2286 }
2287
2288 const char* SpaceManager::chunk_size_name(ChunkIndex index) const {
2289 switch (index) {
2290 case SpecializedIndex:
2291 return "Specialized";
2292 case SmallIndex:
2293 return "Small";
2294 case MediumIndex:
2295 return "Medium";
2296 case HumongousIndex:
2297 return "Humongous";
2298 default:
2299 return NULL;
2300 }
2301 }
2302
2303 ChunkIndex ChunkManager::list_index(size_t size) {
2304 switch (size) {
2305 case SpecializedChunk:
2306 assert(SpecializedChunk == ClassSpecializedChunk,
2307 "Need branch for ClassSpecializedChunk");
2308 return SpecializedIndex;
2309 case SmallChunk:
2310 case ClassSmallChunk:
2311 return SmallIndex;
2312 case MediumChunk:
2313 case ClassMediumChunk:
2314 return MediumIndex;
2315 default:
2316 assert(size > MediumChunk || size > ClassMediumChunk,
2317 "Not a humongous chunk");
2318 return HumongousIndex;
2319 }
2320 }
2321
2322 void SpaceManager::deallocate(MetaWord* p, size_t word_size) {
2323 assert_lock_strong(_lock);
2324 size_t raw_word_size = get_raw_word_size(word_size);
2325 size_t min_size = TreeChunk<Metablock, FreeList<Metablock> >::min_size();
2326 assert(raw_word_size >= min_size,
2327 err_msg("Should not deallocate dark matter " SIZE_FORMAT "<" SIZE_FORMAT, word_size, min_size));
2328 block_freelists()->return_block(p, raw_word_size);
2329 }
2330
2331 // Adds a chunk to the list of chunks in use.
2332 void SpaceManager::add_chunk(Metachunk* new_chunk, bool make_current) {
2333
2334 assert(new_chunk != NULL, "Should not be NULL");
2335 assert(new_chunk->next() == NULL, "Should not be on a list");
2336
2337 new_chunk->reset_empty();
2338
2339 // Find the correct list and and set the current
2340 // chunk for that list.
2341 ChunkIndex index = ChunkManager::list_index(new_chunk->word_size());
2342
2343 if (index != HumongousIndex) {
2344 retire_current_chunk();
2345 set_current_chunk(new_chunk);
2346 new_chunk->set_next(chunks_in_use(index));
2347 set_chunks_in_use(index, new_chunk);
2348 } else {
2349 // For null class loader data and DumpSharedSpaces, the first chunk isn't
2350 // small, so small will be null. Link this first chunk as the current
2351 // chunk.
2352 if (make_current) {
2353 // Set as the current chunk but otherwise treat as a humongous chunk.
2354 set_current_chunk(new_chunk);
2355 }
2356 // Link at head. The _current_chunk only points to a humongous chunk for
2357 // the null class loader metaspace (class and data virtual space managers)
2358 // any humongous chunks so will not point to the tail
2359 // of the humongous chunks list.
2360 new_chunk->set_next(chunks_in_use(HumongousIndex));
2361 set_chunks_in_use(HumongousIndex, new_chunk);
2362
2363 assert(new_chunk->word_size() > medium_chunk_size(), "List inconsistency");
2364 }
2365
2366 // Add to the running sum of capacity
2367 inc_size_metrics(new_chunk->word_size());
2368
2369 assert(new_chunk->is_empty(), "Not ready for reuse");
2370 if (TraceMetadataChunkAllocation && Verbose) {
2371 gclog_or_tty->print("SpaceManager::add_chunk: %d) ",
2372 sum_count_in_chunks_in_use());
2373 new_chunk->print_on(gclog_or_tty);
2374 chunk_manager()->locked_print_free_chunks(gclog_or_tty);
2375 }
2376 }
2377
2378 void SpaceManager::retire_current_chunk() {
2379 if (current_chunk() != NULL) {
2380 size_t remaining_words = current_chunk()->free_word_size();
2381 if (remaining_words >= TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
2382 block_freelists()->return_block(current_chunk()->allocate(remaining_words), remaining_words);
2383 inc_used_metrics(remaining_words);
2384 }
2385 }
2386 }
2387
2388 Metachunk* SpaceManager::get_new_chunk(size_t word_size,
2389 size_t grow_chunks_by_words) {
2390 // Get a chunk from the chunk freelist
2391 Metachunk* next = chunk_manager()->chunk_freelist_allocate(grow_chunks_by_words);
2392
2393 if (next == NULL) {
2394 next = vs_list()->get_new_chunk(word_size,
2395 grow_chunks_by_words,
2396 medium_chunk_bunch());
2397 }
2398
2399 if (TraceMetadataHumongousAllocation && next != NULL &&
2400 SpaceManager::is_humongous(next->word_size())) {
2401 gclog_or_tty->print_cr(" new humongous chunk word size "
2402 PTR_FORMAT, next->word_size());
2403 }
2404
2405 return next;
2406 }
2407
2408 MetaWord* SpaceManager::allocate(size_t word_size) {
2409 MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
2410
2411 size_t raw_word_size = get_raw_word_size(word_size);
2412 BlockFreelist* fl = block_freelists();
2413 MetaWord* p = NULL;
2414 // Allocation from the dictionary is expensive in the sense that
2415 // the dictionary has to be searched for a size. Don't allocate
2416 // from the dictionary until it starts to get fat. Is this
2417 // a reasonable policy? Maybe an skinny dictionary is fast enough
2418 // for allocations. Do some profiling. JJJ
2419 if (fl->total_size() > allocation_from_dictionary_limit) {
2420 p = fl->get_block(raw_word_size);
2421 }
2422 if (p == NULL) {
2423 p = allocate_work(raw_word_size);
2424 }
2425
2426 return p;
2427 }
2428
2429 // Returns the address of spaced allocated for "word_size".
2430 // This methods does not know about blocks (Metablocks)
2431 MetaWord* SpaceManager::allocate_work(size_t word_size) {
2432 assert_lock_strong(_lock);
2433 #ifdef ASSERT
2434 if (Metadebug::test_metadata_failure()) {
2435 return NULL;
2436 }
2437 #endif
2438 // Is there space in the current chunk?
2439 MetaWord* result = NULL;
2440
2441 // For DumpSharedSpaces, only allocate out of the current chunk which is
2442 // never null because we gave it the size we wanted. Caller reports out
2443 // of memory if this returns null.
2444 if (DumpSharedSpaces) {
2445 assert(current_chunk() != NULL, "should never happen");
2446 inc_used_metrics(word_size);
2447 return current_chunk()->allocate(word_size); // caller handles null result
2448 }
2449
2450 if (current_chunk() != NULL) {
2451 result = current_chunk()->allocate(word_size);
2452 }
2453
2454 if (result == NULL) {
2455 result = grow_and_allocate(word_size);
2456 }
2457
2458 if (result != NULL) {
2459 inc_used_metrics(word_size);
2460 assert(result != (MetaWord*) chunks_in_use(MediumIndex),
2461 "Head of the list is being allocated");
2462 }
2463
2464 return result;
2465 }
2466
2467 void SpaceManager::verify() {
2468 // If there are blocks in the dictionary, then
2469 // verfication of chunks does not work since
2470 // being in the dictionary alters a chunk.
2471 if (block_freelists()->total_size() == 0) {
2472 for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2473 Metachunk* curr = chunks_in_use(i);
2474 while (curr != NULL) {
2475 curr->verify();
2476 verify_chunk_size(curr);
2477 curr = curr->next();
2478 }
2479 }
2480 }
2481 }
2482
2483 void SpaceManager::verify_chunk_size(Metachunk* chunk) {
2484 assert(is_humongous(chunk->word_size()) ||
2485 chunk->word_size() == medium_chunk_size() ||
2486 chunk->word_size() == small_chunk_size() ||
2487 chunk->word_size() == specialized_chunk_size(),
2488 "Chunk size is wrong");
2489 return;
2490 }
2491
2492 #ifdef ASSERT
2493 void SpaceManager::verify_allocated_blocks_words() {
2494 // Verification is only guaranteed at a safepoint.
2495 assert(SafepointSynchronize::is_at_safepoint() || !Universe::is_fully_initialized(),
2496 "Verification can fail if the applications is running");
2497 assert(allocated_blocks_words() == sum_used_in_chunks_in_use(),
2498 err_msg("allocation total is not consistent " SIZE_FORMAT
2499 " vs " SIZE_FORMAT,
2500 allocated_blocks_words(), sum_used_in_chunks_in_use()));
2501 }
2502
2503 #endif
2504
2505 void SpaceManager::dump(outputStream* const out) const {
2506 size_t curr_total = 0;
2507 size_t waste = 0;
2508 uint i = 0;
2509 size_t used = 0;
2510 size_t capacity = 0;
2511
2512 // Add up statistics for all chunks in this SpaceManager.
2513 for (ChunkIndex index = ZeroIndex;
2514 index < NumberOfInUseLists;
2515 index = next_chunk_index(index)) {
2516 for (Metachunk* curr = chunks_in_use(index);
2517 curr != NULL;
2518 curr = curr->next()) {
2519 out->print("%d) ", i++);
2520 curr->print_on(out);
2521 curr_total += curr->word_size();
2522 used += curr->used_word_size();
2523 capacity += curr->word_size();
2524 waste += curr->free_word_size() + curr->overhead();;
2525 }
2526 }
2527
2528 if (TraceMetadataChunkAllocation && Verbose) {
2529 block_freelists()->print_on(out);
2530 }
2531
2532 size_t free = current_chunk() == NULL ? 0 : current_chunk()->free_word_size();
2533 // Free space isn't wasted.
2534 waste -= free;
2535
2536 out->print_cr("total of all chunks " SIZE_FORMAT " used " SIZE_FORMAT
2537 " free " SIZE_FORMAT " capacity " SIZE_FORMAT
2538 " waste " SIZE_FORMAT, curr_total, used, free, capacity, waste);
2539 }
2540
2541 #ifndef PRODUCT
2542 void SpaceManager::mangle_freed_chunks() {
2543 for (ChunkIndex index = ZeroIndex;
2544 index < NumberOfInUseLists;
2545 index = next_chunk_index(index)) {
2546 for (Metachunk* curr = chunks_in_use(index);
2547 curr != NULL;
2548 curr = curr->next()) {
2549 curr->mangle();
2550 }
2551 }
2552 }
2553 #endif // PRODUCT
2554
2555 // MetaspaceAux
2556
2557
2558 size_t MetaspaceAux::_capacity_words[] = {0, 0};
2559 size_t MetaspaceAux::_used_words[] = {0, 0};
2560
2561 size_t MetaspaceAux::free_bytes(Metaspace::MetadataType mdtype) {
2562 VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
2563 return list == NULL ? 0 : list->free_bytes();
2564 }
2565
2566 size_t MetaspaceAux::free_bytes() {
2567 return free_bytes(Metaspace::ClassType) + free_bytes(Metaspace::NonClassType);
2568 }
2569
2570 void MetaspaceAux::dec_capacity(Metaspace::MetadataType mdtype, size_t words) {
2571 assert_lock_strong(SpaceManager::expand_lock());
2572 assert(words <= capacity_words(mdtype),
2573 err_msg("About to decrement below 0: words " SIZE_FORMAT
2574 " is greater than _capacity_words[%u] " SIZE_FORMAT,
2575 words, mdtype, capacity_words(mdtype)));
2576 _capacity_words[mdtype] -= words;
2577 }
2578
2579 void MetaspaceAux::inc_capacity(Metaspace::MetadataType mdtype, size_t words) {
2580 assert_lock_strong(SpaceManager::expand_lock());
2581 // Needs to be atomic
2582 _capacity_words[mdtype] += words;
2583 }
2584
2585 void MetaspaceAux::dec_used(Metaspace::MetadataType mdtype, size_t words) {
2586 assert(words <= used_words(mdtype),
2587 err_msg("About to decrement below 0: words " SIZE_FORMAT
2588 " is greater than _used_words[%u] " SIZE_FORMAT,
2589 words, mdtype, used_words(mdtype)));
2590 // For CMS deallocation of the Metaspaces occurs during the
2591 // sweep which is a concurrent phase. Protection by the expand_lock()
2592 // is not enough since allocation is on a per Metaspace basis
2593 // and protected by the Metaspace lock.
2594 jlong minus_words = (jlong) - (jlong) words;
2595 Atomic::add_ptr(minus_words, &_used_words[mdtype]);
2596 }
2597
2598 void MetaspaceAux::inc_used(Metaspace::MetadataType mdtype, size_t words) {
2599 // _used_words tracks allocations for
2600 // each piece of metadata. Those allocations are
2601 // generally done concurrently by different application
2602 // threads so must be done atomically.
2603 Atomic::add_ptr(words, &_used_words[mdtype]);
2604 }
2605
2606 size_t MetaspaceAux::used_bytes_slow(Metaspace::MetadataType mdtype) {
2607 size_t used = 0;
2608 ClassLoaderDataGraphMetaspaceIterator iter;
2609 while (iter.repeat()) {
2610 Metaspace* msp = iter.get_next();
2611 // Sum allocated_blocks_words for each metaspace
2612 if (msp != NULL) {
2613 used += msp->used_words_slow(mdtype);
2614 }
2615 }
2616 return used * BytesPerWord;
2617 }
2618
2619 size_t MetaspaceAux::free_bytes_slow(Metaspace::MetadataType mdtype) {
2620 size_t free = 0;
2621 ClassLoaderDataGraphMetaspaceIterator iter;
2622 while (iter.repeat()) {
2623 Metaspace* msp = iter.get_next();
2624 if (msp != NULL) {
2625 free += msp->free_words_slow(mdtype);
2626 }
2627 }
2628 return free * BytesPerWord;
2629 }
2630
2631 size_t MetaspaceAux::capacity_bytes_slow(Metaspace::MetadataType mdtype) {
2632 if ((mdtype == Metaspace::ClassType) && !Metaspace::using_class_space()) {
2633 return 0;
2634 }
2635 // Don't count the space in the freelists. That space will be
2636 // added to the capacity calculation as needed.
2637 size_t capacity = 0;
2638 ClassLoaderDataGraphMetaspaceIterator iter;
2639 while (iter.repeat()) {
2640 Metaspace* msp = iter.get_next();
2641 if (msp != NULL) {
2642 capacity += msp->capacity_words_slow(mdtype);
2643 }
2644 }
2645 return capacity * BytesPerWord;
2646 }
2647
2648 size_t MetaspaceAux::capacity_bytes_slow() {
2649 #ifdef PRODUCT
2650 // Use capacity_bytes() in PRODUCT instead of this function.
2651 guarantee(false, "Should not call capacity_bytes_slow() in the PRODUCT");
2652 #endif
2653 size_t class_capacity = capacity_bytes_slow(Metaspace::ClassType);
2654 size_t non_class_capacity = capacity_bytes_slow(Metaspace::NonClassType);
2655 assert(capacity_bytes() == class_capacity + non_class_capacity,
2656 err_msg("bad accounting: capacity_bytes() " SIZE_FORMAT
2657 " class_capacity + non_class_capacity " SIZE_FORMAT
2658 " class_capacity " SIZE_FORMAT " non_class_capacity " SIZE_FORMAT,
2659 capacity_bytes(), class_capacity + non_class_capacity,
2660 class_capacity, non_class_capacity));
2661
2662 return class_capacity + non_class_capacity;
2663 }
2664
2665 size_t MetaspaceAux::reserved_bytes(Metaspace::MetadataType mdtype) {
2666 VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
2667 return list == NULL ? 0 : list->reserved_bytes();
2668 }
2669
2670 size_t MetaspaceAux::committed_bytes(Metaspace::MetadataType mdtype) {
2671 VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
2672 return list == NULL ? 0 : list->committed_bytes();
2673 }
2674
2675 size_t MetaspaceAux::min_chunk_size_words() { return Metaspace::first_chunk_word_size(); }
2676
2677 size_t MetaspaceAux::free_chunks_total_words(Metaspace::MetadataType mdtype) {
2678 ChunkManager* chunk_manager = Metaspace::get_chunk_manager(mdtype);
2679 if (chunk_manager == NULL) {
2680 return 0;
2681 }
2682 chunk_manager->slow_verify();
2683 return chunk_manager->free_chunks_total_words();
2684 }
2685
2686 size_t MetaspaceAux::free_chunks_total_bytes(Metaspace::MetadataType mdtype) {
2687 return free_chunks_total_words(mdtype) * BytesPerWord;
2688 }
2689
2690 size_t MetaspaceAux::free_chunks_total_words() {
2691 return free_chunks_total_words(Metaspace::ClassType) +
2692 free_chunks_total_words(Metaspace::NonClassType);
2693 }
2694
2695 size_t MetaspaceAux::free_chunks_total_bytes() {
2696 return free_chunks_total_words() * BytesPerWord;
2697 }
2698
2699 bool MetaspaceAux::has_chunk_free_list(Metaspace::MetadataType mdtype) {
2700 return Metaspace::get_chunk_manager(mdtype) != NULL;
2701 }
2702
2703 MetaspaceChunkFreeListSummary MetaspaceAux::chunk_free_list_summary(Metaspace::MetadataType mdtype) {
2704 if (!has_chunk_free_list(mdtype)) {
2705 return MetaspaceChunkFreeListSummary();
2706 }
2707
2708 const ChunkManager* cm = Metaspace::get_chunk_manager(mdtype);
2709 return cm->chunk_free_list_summary();
2710 }
2711
2712 void MetaspaceAux::print_metaspace_change(size_t prev_metadata_used) {
2713 gclog_or_tty->print(", [Metaspace:");
2714 if (PrintGCDetails && Verbose) {
2715 gclog_or_tty->print(" " SIZE_FORMAT
2716 "->" SIZE_FORMAT
2717 "(" SIZE_FORMAT ")",
2718 prev_metadata_used,
2719 used_bytes(),
2720 reserved_bytes());
2721 } else {
2722 gclog_or_tty->print(" " SIZE_FORMAT "K"
2723 "->" SIZE_FORMAT "K"
2724 "(" SIZE_FORMAT "K)",
2725 prev_metadata_used/K,
2726 used_bytes()/K,
2727 reserved_bytes()/K);
2728 }
2729
2730 gclog_or_tty->print("]");
2731 }
2732
2733 // This is printed when PrintGCDetails
2734 void MetaspaceAux::print_on(outputStream* out) {
2735 Metaspace::MetadataType nct = Metaspace::NonClassType;
2736
2737 out->print_cr(" Metaspace "
2738 "used " SIZE_FORMAT "K, "
2739 "capacity " SIZE_FORMAT "K, "
2740 "committed " SIZE_FORMAT "K, "
2741 "reserved " SIZE_FORMAT "K",
2742 used_bytes()/K,
2743 capacity_bytes()/K,
2744 committed_bytes()/K,
2745 reserved_bytes()/K);
2746
2747 if (Metaspace::using_class_space()) {
2748 Metaspace::MetadataType ct = Metaspace::ClassType;
2749 out->print_cr(" class space "
2750 "used " SIZE_FORMAT "K, "
2751 "capacity " SIZE_FORMAT "K, "
2752 "committed " SIZE_FORMAT "K, "
2753 "reserved " SIZE_FORMAT "K",
2754 used_bytes(ct)/K,
2755 capacity_bytes(ct)/K,
2756 committed_bytes(ct)/K,
2757 reserved_bytes(ct)/K);
2758 }
2759 }
2760
2761 // Print information for class space and data space separately.
2762 // This is almost the same as above.
2763 void MetaspaceAux::print_on(outputStream* out, Metaspace::MetadataType mdtype) {
2764 size_t free_chunks_capacity_bytes = free_chunks_total_bytes(mdtype);
2765 size_t capacity_bytes = capacity_bytes_slow(mdtype);
2766 size_t used_bytes = used_bytes_slow(mdtype);
2767 size_t free_bytes = free_bytes_slow(mdtype);
2768 size_t used_and_free = used_bytes + free_bytes +
2769 free_chunks_capacity_bytes;
2770 out->print_cr(" Chunk accounting: used in chunks " SIZE_FORMAT
2771 "K + unused in chunks " SIZE_FORMAT "K + "
2772 " capacity in free chunks " SIZE_FORMAT "K = " SIZE_FORMAT
2773 "K capacity in allocated chunks " SIZE_FORMAT "K",
2774 used_bytes / K,
2775 free_bytes / K,
2776 free_chunks_capacity_bytes / K,
2777 used_and_free / K,
2778 capacity_bytes / K);
2779 // Accounting can only be correct if we got the values during a safepoint
2780 assert(!SafepointSynchronize::is_at_safepoint() || used_and_free == capacity_bytes, "Accounting is wrong");
2781 }
2782
2783 // Print total fragmentation for class metaspaces
2784 void MetaspaceAux::print_class_waste(outputStream* out) {
2785 assert(Metaspace::using_class_space(), "class metaspace not used");
2786 size_t cls_specialized_waste = 0, cls_small_waste = 0, cls_medium_waste = 0;
2787 size_t cls_specialized_count = 0, cls_small_count = 0, cls_medium_count = 0, cls_humongous_count = 0;
2788 ClassLoaderDataGraphMetaspaceIterator iter;
2789 while (iter.repeat()) {
2790 Metaspace* msp = iter.get_next();
2791 if (msp != NULL) {
2792 cls_specialized_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SpecializedIndex);
2793 cls_specialized_count += msp->class_vsm()->sum_count_in_chunks_in_use(SpecializedIndex);
2794 cls_small_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SmallIndex);
2795 cls_small_count += msp->class_vsm()->sum_count_in_chunks_in_use(SmallIndex);
2796 cls_medium_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(MediumIndex);
2797 cls_medium_count += msp->class_vsm()->sum_count_in_chunks_in_use(MediumIndex);
2798 cls_humongous_count += msp->class_vsm()->sum_count_in_chunks_in_use(HumongousIndex);
2799 }
2800 }
2801 out->print_cr(" class: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", "
2802 SIZE_FORMAT " small(s) " SIZE_FORMAT ", "
2803 SIZE_FORMAT " medium(s) " SIZE_FORMAT ", "
2804 "large count " SIZE_FORMAT,
2805 cls_specialized_count, cls_specialized_waste,
2806 cls_small_count, cls_small_waste,
2807 cls_medium_count, cls_medium_waste, cls_humongous_count);
2808 }
2809
2810 // Print total fragmentation for data and class metaspaces separately
2811 void MetaspaceAux::print_waste(outputStream* out) {
2812 size_t specialized_waste = 0, small_waste = 0, medium_waste = 0;
2813 size_t specialized_count = 0, small_count = 0, medium_count = 0, humongous_count = 0;
2814
2815 ClassLoaderDataGraphMetaspaceIterator iter;
2816 while (iter.repeat()) {
2817 Metaspace* msp = iter.get_next();
2818 if (msp != NULL) {
2819 specialized_waste += msp->vsm()->sum_waste_in_chunks_in_use(SpecializedIndex);
2820 specialized_count += msp->vsm()->sum_count_in_chunks_in_use(SpecializedIndex);
2821 small_waste += msp->vsm()->sum_waste_in_chunks_in_use(SmallIndex);
2822 small_count += msp->vsm()->sum_count_in_chunks_in_use(SmallIndex);
2823 medium_waste += msp->vsm()->sum_waste_in_chunks_in_use(MediumIndex);
2824 medium_count += msp->vsm()->sum_count_in_chunks_in_use(MediumIndex);
2825 humongous_count += msp->vsm()->sum_count_in_chunks_in_use(HumongousIndex);
2826 }
2827 }
2828 out->print_cr("Total fragmentation waste (words) doesn't count free space");
2829 out->print_cr(" data: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", "
2830 SIZE_FORMAT " small(s) " SIZE_FORMAT ", "
2831 SIZE_FORMAT " medium(s) " SIZE_FORMAT ", "
2832 "large count " SIZE_FORMAT,
2833 specialized_count, specialized_waste, small_count,
2834 small_waste, medium_count, medium_waste, humongous_count);
2835 if (Metaspace::using_class_space()) {
2836 print_class_waste(out);
2837 }
2838 }
2839
2840 // Dump global metaspace things from the end of ClassLoaderDataGraph
2841 void MetaspaceAux::dump(outputStream* out) {
2842 out->print_cr("All Metaspace:");
2843 out->print("data space: "); print_on(out, Metaspace::NonClassType);
2844 out->print("class space: "); print_on(out, Metaspace::ClassType);
2845 print_waste(out);
2846 }
2847
2848 void MetaspaceAux::verify_free_chunks() {
2849 Metaspace::chunk_manager_metadata()->verify();
2850 if (Metaspace::using_class_space()) {
2851 Metaspace::chunk_manager_class()->verify();
2852 }
2853 }
2854
2855 void MetaspaceAux::verify_capacity() {
2856 #ifdef ASSERT
2857 size_t running_sum_capacity_bytes = capacity_bytes();
2858 // For purposes of the running sum of capacity, verify against capacity
2859 size_t capacity_in_use_bytes = capacity_bytes_slow();
2860 assert(running_sum_capacity_bytes == capacity_in_use_bytes,
2861 err_msg("capacity_words() * BytesPerWord " SIZE_FORMAT
2862 " capacity_bytes_slow()" SIZE_FORMAT,
2863 running_sum_capacity_bytes, capacity_in_use_bytes));
2864 for (Metaspace::MetadataType i = Metaspace::ClassType;
2865 i < Metaspace:: MetadataTypeCount;
2866 i = (Metaspace::MetadataType)(i + 1)) {
2867 size_t capacity_in_use_bytes = capacity_bytes_slow(i);
2868 assert(capacity_bytes(i) == capacity_in_use_bytes,
2869 err_msg("capacity_bytes(%u) " SIZE_FORMAT
2870 " capacity_bytes_slow(%u)" SIZE_FORMAT,
2871 i, capacity_bytes(i), i, capacity_in_use_bytes));
2872 }
2873 #endif
2874 }
2875
2876 void MetaspaceAux::verify_used() {
2877 #ifdef ASSERT
2878 size_t running_sum_used_bytes = used_bytes();
2879 // For purposes of the running sum of used, verify against used
2880 size_t used_in_use_bytes = used_bytes_slow();
2881 assert(used_bytes() == used_in_use_bytes,
2882 err_msg("used_bytes() " SIZE_FORMAT
2883 " used_bytes_slow()" SIZE_FORMAT,
2884 used_bytes(), used_in_use_bytes));
2885 for (Metaspace::MetadataType i = Metaspace::ClassType;
2886 i < Metaspace:: MetadataTypeCount;
2887 i = (Metaspace::MetadataType)(i + 1)) {
2888 size_t used_in_use_bytes = used_bytes_slow(i);
2889 assert(used_bytes(i) == used_in_use_bytes,
2890 err_msg("used_bytes(%u) " SIZE_FORMAT
2891 " used_bytes_slow(%u)" SIZE_FORMAT,
2892 i, used_bytes(i), i, used_in_use_bytes));
2893 }
2894 #endif
2895 }
2896
2897 void MetaspaceAux::verify_metrics() {
2898 verify_capacity();
2899 verify_used();
2900 }
2901
2902
2903 // Metaspace methods
2904
2905 size_t Metaspace::_first_chunk_word_size = 0;
2906 size_t Metaspace::_first_class_chunk_word_size = 0;
2907
2908 size_t Metaspace::_commit_alignment = 0;
2909 size_t Metaspace::_reserve_alignment = 0;
2910
2911 Metaspace::Metaspace(Mutex* lock, MetaspaceType type) {
2912 initialize(lock, type);
2913 }
2914
2915 Metaspace::~Metaspace() {
2916 delete _vsm;
2917 if (using_class_space()) {
2918 delete _class_vsm;
2919 }
2920 }
2921
2922 VirtualSpaceList* Metaspace::_space_list = NULL;
2923 VirtualSpaceList* Metaspace::_class_space_list = NULL;
2924
2925 ChunkManager* Metaspace::_chunk_manager_metadata = NULL;
2926 ChunkManager* Metaspace::_chunk_manager_class = NULL;
2927
2928 #define VIRTUALSPACEMULTIPLIER 2
2929
2930 #ifdef _LP64
2931 static const uint64_t UnscaledClassSpaceMax = (uint64_t(max_juint) + 1);
2932
2933 void Metaspace::set_narrow_klass_base_and_shift(address metaspace_base, address cds_base) {
2934 // Figure out the narrow_klass_base and the narrow_klass_shift. The
2935 // narrow_klass_base is the lower of the metaspace base and the cds base
2936 // (if cds is enabled). The narrow_klass_shift depends on the distance
2937 // between the lower base and higher address.
2938 address lower_base;
2939 address higher_address;
2940 if (UseSharedSpaces) {
2941 higher_address = MAX2((address)(cds_base + FileMapInfo::shared_spaces_size()),
2942 (address)(metaspace_base + compressed_class_space_size()));
2943 lower_base = MIN2(metaspace_base, cds_base);
2944 } else {
2945 higher_address = metaspace_base + compressed_class_space_size();
2946 lower_base = metaspace_base;
2947
2948 uint64_t klass_encoding_max = UnscaledClassSpaceMax << LogKlassAlignmentInBytes;
2949 // If compressed class space fits in lower 32G, we don't need a base.
2950 if (higher_address <= (address)klass_encoding_max) {
2951 lower_base = 0; // effectively lower base is zero.
2952 }
2953 }
2954
2955 Universe::set_narrow_klass_base(lower_base);
2956
2957 if ((uint64_t)(higher_address - lower_base) <= UnscaledClassSpaceMax) {
2958 Universe::set_narrow_klass_shift(0);
2959 } else {
2960 assert(!UseSharedSpaces, "Cannot shift with UseSharedSpaces");
2961 Universe::set_narrow_klass_shift(LogKlassAlignmentInBytes);
2962 }
2963 }
2964
2965 // Return TRUE if the specified metaspace_base and cds_base are close enough
2966 // to work with compressed klass pointers.
2967 bool Metaspace::can_use_cds_with_metaspace_addr(char* metaspace_base, address cds_base) {
2968 assert(cds_base != 0 && UseSharedSpaces, "Only use with CDS");
2969 assert(UseCompressedClassPointers, "Only use with CompressedKlassPtrs");
2970 address lower_base = MIN2((address)metaspace_base, cds_base);
2971 address higher_address = MAX2((address)(cds_base + FileMapInfo::shared_spaces_size()),
2972 (address)(metaspace_base + compressed_class_space_size()));
2973 return ((uint64_t)(higher_address - lower_base) <= UnscaledClassSpaceMax);
2974 }
2975
2976 // Try to allocate the metaspace at the requested addr.
2977 void Metaspace::allocate_metaspace_compressed_klass_ptrs(char* requested_addr, address cds_base) {
2978 assert(using_class_space(), "called improperly");
2979 assert(UseCompressedClassPointers, "Only use with CompressedKlassPtrs");
2980 assert(compressed_class_space_size() < KlassEncodingMetaspaceMax,
2981 "Metaspace size is too big");
2982 assert_is_ptr_aligned(requested_addr, _reserve_alignment);
2983 assert_is_ptr_aligned(cds_base, _reserve_alignment);
2984 assert_is_size_aligned(compressed_class_space_size(), _reserve_alignment);
2985
2986 // Don't use large pages for the class space.
2987 bool large_pages = false;
2988
2989 ReservedSpace metaspace_rs = ReservedSpace(compressed_class_space_size(),
2990 _reserve_alignment,
2991 large_pages,
2992 requested_addr, 0);
2993 if (!metaspace_rs.is_reserved()) {
2994 if (UseSharedSpaces) {
2995 size_t increment = align_size_up(1*G, _reserve_alignment);
2996
2997 // Keep trying to allocate the metaspace, increasing the requested_addr
2998 // by 1GB each time, until we reach an address that will no longer allow
2999 // use of CDS with compressed klass pointers.
3000 char *addr = requested_addr;
3001 while (!metaspace_rs.is_reserved() && (addr + increment > addr) &&
3002 can_use_cds_with_metaspace_addr(addr + increment, cds_base)) {
3003 addr = addr + increment;
3004 metaspace_rs = ReservedSpace(compressed_class_space_size(),
3005 _reserve_alignment, large_pages, addr, 0);
3006 }
3007 }
3008
3009 // If no successful allocation then try to allocate the space anywhere. If
3010 // that fails then OOM doom. At this point we cannot try allocating the
3011 // metaspace as if UseCompressedClassPointers is off because too much
3012 // initialization has happened that depends on UseCompressedClassPointers.
3013 // So, UseCompressedClassPointers cannot be turned off at this point.
3014 if (!metaspace_rs.is_reserved()) {
3015 metaspace_rs = ReservedSpace(compressed_class_space_size(),
3016 _reserve_alignment, large_pages);
3017 if (!metaspace_rs.is_reserved()) {
3018 vm_exit_during_initialization(err_msg("Could not allocate metaspace: %d bytes",
3019 compressed_class_space_size()));
3020 }
3021 }
3022 }
3023
3024 // If we got here then the metaspace got allocated.
3025 MemTracker::record_virtual_memory_type((address)metaspace_rs.base(), mtClass);
3026
3027 // Verify that we can use shared spaces. Otherwise, turn off CDS.
3028 if (UseSharedSpaces && !can_use_cds_with_metaspace_addr(metaspace_rs.base(), cds_base)) {
3029 FileMapInfo::stop_sharing_and_unmap(
3030 "Could not allocate metaspace at a compatible address");
3031 }
3032
3033 set_narrow_klass_base_and_shift((address)metaspace_rs.base(),
3034 UseSharedSpaces ? (address)cds_base : 0);
3035
3036 initialize_class_space(metaspace_rs);
3037
3038 if (PrintCompressedOopsMode || (PrintMiscellaneous && Verbose)) {
3039 gclog_or_tty->print_cr("Narrow klass base: " PTR_FORMAT ", Narrow klass shift: " SIZE_FORMAT,
3040 Universe::narrow_klass_base(), Universe::narrow_klass_shift());
3041 gclog_or_tty->print_cr("Compressed class space size: " SIZE_FORMAT " Address: " PTR_FORMAT " Req Addr: " PTR_FORMAT,
3042 compressed_class_space_size(), metaspace_rs.base(), requested_addr);
3043 }
3044 }
3045
3046 // For UseCompressedClassPointers the class space is reserved above the top of
3047 // the Java heap. The argument passed in is at the base of the compressed space.
3048 void Metaspace::initialize_class_space(ReservedSpace rs) {
3049 // The reserved space size may be bigger because of alignment, esp with UseLargePages
3050 assert(rs.size() >= CompressedClassSpaceSize,
3051 err_msg(SIZE_FORMAT " != " UINTX_FORMAT, rs.size(), CompressedClassSpaceSize));
3052 assert(using_class_space(), "Must be using class space");
3053 _class_space_list = new VirtualSpaceList(rs);
3054 _chunk_manager_class = new ChunkManager(SpecializedChunk, ClassSmallChunk, ClassMediumChunk);
3055
3056 if (!_class_space_list->initialization_succeeded()) {
3057 vm_exit_during_initialization("Failed to setup compressed class space virtual space list.");
3058 }
3059 }
3060
3061 #endif
3062
3063 void Metaspace::ergo_initialize() {
3064 if (DumpSharedSpaces) {
3065 // Using large pages when dumping the shared archive is currently not implemented.
3066 FLAG_SET_ERGO(bool, UseLargePagesInMetaspace, false);
3067 }
3068
3069 size_t page_size = os::vm_page_size();
3070 if (UseLargePages && UseLargePagesInMetaspace) {
3071 page_size = os::large_page_size();
3072 }
3073
3074 _commit_alignment = page_size;
3075 _reserve_alignment = MAX2(page_size, (size_t)os::vm_allocation_granularity());
3076
3077 // Do not use FLAG_SET_ERGO to update MaxMetaspaceSize, since this will
3078 // override if MaxMetaspaceSize was set on the command line or not.
3079 // This information is needed later to conform to the specification of the
3080 // java.lang.management.MemoryUsage API.
3081 //
3082 // Ideally, we would be able to set the default value of MaxMetaspaceSize in
3083 // globals.hpp to the aligned value, but this is not possible, since the
3084 // alignment depends on other flags being parsed.
3085 MaxMetaspaceSize = align_size_down_bounded(MaxMetaspaceSize, _reserve_alignment);
3086
3087 if (MetaspaceSize > MaxMetaspaceSize) {
3088 MetaspaceSize = MaxMetaspaceSize;
3089 }
3090
3091 MetaspaceSize = align_size_down_bounded(MetaspaceSize, _commit_alignment);
3092
3093 assert(MetaspaceSize <= MaxMetaspaceSize, "MetaspaceSize should be limited by MaxMetaspaceSize");
3094
3095 if (MetaspaceSize < 256*K) {
3096 vm_exit_during_initialization("Too small initial Metaspace size");
3097 }
3098
3099 MinMetaspaceExpansion = align_size_down_bounded(MinMetaspaceExpansion, _commit_alignment);
3100 MaxMetaspaceExpansion = align_size_down_bounded(MaxMetaspaceExpansion, _commit_alignment);
3101
3102 CompressedClassSpaceSize = align_size_down_bounded(CompressedClassSpaceSize, _reserve_alignment);
3103 set_compressed_class_space_size(CompressedClassSpaceSize);
3104 }
3105
3106 void Metaspace::global_initialize() {
3107 MetaspaceGC::initialize();
3108
3109 // Initialize the alignment for shared spaces.
3110 int max_alignment = os::vm_page_size();
3111 size_t cds_total = 0;
3112
3113 MetaspaceShared::set_max_alignment(max_alignment);
3114
3115 if (DumpSharedSpaces) {
3116 SharedReadOnlySize = align_size_up(SharedReadOnlySize, max_alignment);
3117 SharedReadWriteSize = align_size_up(SharedReadWriteSize, max_alignment);
3118 SharedMiscDataSize = align_size_up(SharedMiscDataSize, max_alignment);
3119 SharedMiscCodeSize = align_size_up(SharedMiscCodeSize, max_alignment);
3120
3121 // Initialize with the sum of the shared space sizes. The read-only
3122 // and read write metaspace chunks will be allocated out of this and the
3123 // remainder is the misc code and data chunks.
3124 cds_total = FileMapInfo::shared_spaces_size();
3125 cds_total = align_size_up(cds_total, _reserve_alignment);
3126 _space_list = new VirtualSpaceList(cds_total/wordSize);
3127 _chunk_manager_metadata = new ChunkManager(SpecializedChunk, SmallChunk, MediumChunk);
3128
3129 if (!_space_list->initialization_succeeded()) {
3130 vm_exit_during_initialization("Unable to dump shared archive.", NULL);
3131 }
3132
3133 #ifdef _LP64
3134 if (cds_total + compressed_class_space_size() > UnscaledClassSpaceMax) {
3135 vm_exit_during_initialization("Unable to dump shared archive.",
3136 err_msg("Size of archive (" SIZE_FORMAT ") + compressed class space ("
3137 SIZE_FORMAT ") == total (" SIZE_FORMAT ") is larger than compressed "
3138 "klass limit: " SIZE_FORMAT, cds_total, compressed_class_space_size(),
3139 cds_total + compressed_class_space_size(), UnscaledClassSpaceMax));
3140 }
3141
3142 // Set the compressed klass pointer base so that decoding of these pointers works
3143 // properly when creating the shared archive.
3144 assert(UseCompressedOops && UseCompressedClassPointers,
3145 "UseCompressedOops and UseCompressedClassPointers must be set");
3146 Universe::set_narrow_klass_base((address)_space_list->current_virtual_space()->bottom());
3147 if (TraceMetavirtualspaceAllocation && Verbose) {
3148 gclog_or_tty->print_cr("Setting_narrow_klass_base to Address: " PTR_FORMAT,
3149 _space_list->current_virtual_space()->bottom());
3150 }
3151
3152 Universe::set_narrow_klass_shift(0);
3153 #endif
3154
3155 } else {
3156 // If using shared space, open the file that contains the shared space
3157 // and map in the memory before initializing the rest of metaspace (so
3158 // the addresses don't conflict)
3159 address cds_address = NULL;
3160 if (UseSharedSpaces) {
3161 FileMapInfo* mapinfo = new FileMapInfo();
3162 memset(mapinfo, 0, sizeof(FileMapInfo));
3163
3164 // Open the shared archive file, read and validate the header. If
3165 // initialization fails, shared spaces [UseSharedSpaces] are
3166 // disabled and the file is closed.
3167 // Map in spaces now also
3168 if (mapinfo->initialize() && MetaspaceShared::map_shared_spaces(mapinfo)) {
3169 FileMapInfo::set_current_info(mapinfo);
3170 cds_total = FileMapInfo::shared_spaces_size();
3171 cds_address = (address)mapinfo->region_base(0);
3172 } else {
3173 assert(!mapinfo->is_open() && !UseSharedSpaces,
3174 "archive file not closed or shared spaces not disabled.");
3175 }
3176 }
3177
3178 #ifdef _LP64
3179 // If UseCompressedClassPointers is set then allocate the metaspace area
3180 // above the heap and above the CDS area (if it exists).
3181 if (using_class_space()) {
3182 if (UseSharedSpaces) {
3183 char* cds_end = (char*)(cds_address + cds_total);
3184 cds_end = (char *)align_ptr_up(cds_end, _reserve_alignment);
3185 allocate_metaspace_compressed_klass_ptrs(cds_end, cds_address);
3186 } else {
3187 char* base = (char*)align_ptr_up(Universe::heap()->reserved_region().end(), _reserve_alignment);
3188 allocate_metaspace_compressed_klass_ptrs(base, 0);
3189 }
3190 }
3191 #endif
3192
3193 // Initialize these before initializing the VirtualSpaceList
3194 _first_chunk_word_size = InitialBootClassLoaderMetaspaceSize / BytesPerWord;
3195 _first_chunk_word_size = align_word_size_up(_first_chunk_word_size);
3196 // Make the first class chunk bigger than a medium chunk so it's not put
3197 // on the medium chunk list. The next chunk will be small and progress
3198 // from there. This size calculated by -version.
3199 _first_class_chunk_word_size = MIN2((size_t)MediumChunk*6,
3200 (CompressedClassSpaceSize/BytesPerWord)*2);
3201 _first_class_chunk_word_size = align_word_size_up(_first_class_chunk_word_size);
3202 // Arbitrarily set the initial virtual space to a multiple
3203 // of the boot class loader size.
3204 size_t word_size = VIRTUALSPACEMULTIPLIER * _first_chunk_word_size;
3205 word_size = align_size_up(word_size, Metaspace::reserve_alignment_words());
3206
3207 // Initialize the list of virtual spaces.
3208 _space_list = new VirtualSpaceList(word_size);
3209 _chunk_manager_metadata = new ChunkManager(SpecializedChunk, SmallChunk, MediumChunk);
3210
3211 if (!_space_list->initialization_succeeded()) {
3212 vm_exit_during_initialization("Unable to setup metadata virtual space list.", NULL);
3213 }
3214 }
3215
3216 _tracer = new MetaspaceTracer();
3217 }
3218
3219 void Metaspace::post_initialize() {
3220 MetaspaceGC::post_initialize();
3221 }
3222
3223 Metachunk* Metaspace::get_initialization_chunk(MetadataType mdtype,
3224 size_t chunk_word_size,
3225 size_t chunk_bunch) {
3226 // Get a chunk from the chunk freelist
3227 Metachunk* chunk = get_chunk_manager(mdtype)->chunk_freelist_allocate(chunk_word_size);
3228 if (chunk != NULL) {
3229 return chunk;
3230 }
3231
3232 return get_space_list(mdtype)->get_new_chunk(chunk_word_size, chunk_word_size, chunk_bunch);
3233 }
3234
3235 void Metaspace::initialize(Mutex* lock, MetaspaceType type) {
3236
3237 assert(space_list() != NULL,
3238 "Metadata VirtualSpaceList has not been initialized");
3239 assert(chunk_manager_metadata() != NULL,
3240 "Metadata ChunkManager has not been initialized");
3241
3242 _vsm = new SpaceManager(NonClassType, lock);
3243 if (_vsm == NULL) {
3244 return;
3245 }
3246 size_t word_size;
3247 size_t class_word_size;
3248 vsm()->get_initial_chunk_sizes(type, &word_size, &class_word_size);
3249
3250 if (using_class_space()) {
3251 assert(class_space_list() != NULL,
3252 "Class VirtualSpaceList has not been initialized");
3253 assert(chunk_manager_class() != NULL,
3254 "Class ChunkManager has not been initialized");
3255
3256 // Allocate SpaceManager for classes.
3257 _class_vsm = new SpaceManager(ClassType, lock);
3258 if (_class_vsm == NULL) {
3259 return;
3260 }
3261 }
3262
3263 MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
3264
3265 // Allocate chunk for metadata objects
3266 Metachunk* new_chunk = get_initialization_chunk(NonClassType,
3267 word_size,
3268 vsm()->medium_chunk_bunch());
3269 assert(!DumpSharedSpaces || new_chunk != NULL, "should have enough space for both chunks");
3270 if (new_chunk != NULL) {
3271 // Add to this manager's list of chunks in use and current_chunk().
3272 vsm()->add_chunk(new_chunk, true);
3273 }
3274
3275 // Allocate chunk for class metadata objects
3276 if (using_class_space()) {
3277 Metachunk* class_chunk = get_initialization_chunk(ClassType,
3278 class_word_size,
3279 class_vsm()->medium_chunk_bunch());
3280 if (class_chunk != NULL) {
3281 class_vsm()->add_chunk(class_chunk, true);
3282 }
3283 }
3284
3285 _alloc_record_head = NULL;
3286 _alloc_record_tail = NULL;
3287 }
3288
3289 size_t Metaspace::align_word_size_up(size_t word_size) {
3290 size_t byte_size = word_size * wordSize;
3291 return ReservedSpace::allocation_align_size_up(byte_size) / wordSize;
3292 }
3293
3294 MetaWord* Metaspace::allocate(size_t word_size, MetadataType mdtype) {
3295 // DumpSharedSpaces doesn't use class metadata area (yet)
3296 // Also, don't use class_vsm() unless UseCompressedClassPointers is true.
3297 if (is_class_space_allocation(mdtype)) {
3298 return class_vsm()->allocate(word_size);
3299 } else {
3300 return vsm()->allocate(word_size);
3301 }
3302 }
3303
3304 MetaWord* Metaspace::expand_and_allocate(size_t word_size, MetadataType mdtype) {
3305 size_t delta_bytes = MetaspaceGC::delta_capacity_until_GC(word_size * BytesPerWord);
3306 assert(delta_bytes > 0, "Must be");
3307
3308 size_t after_inc = MetaspaceGC::inc_capacity_until_GC(delta_bytes);
3309
3310 // capacity_until_GC might be updated concurrently, must calculate previous value.
3311 size_t before_inc = after_inc - delta_bytes;
3312
3313 tracer()->report_gc_threshold(before_inc, after_inc,
3314 MetaspaceGCThresholdUpdater::ExpandAndAllocate);
3315 if (PrintGCDetails && Verbose) {
3316 gclog_or_tty->print_cr("Increase capacity to GC from " SIZE_FORMAT
3317 " to " SIZE_FORMAT, before_inc, after_inc);
3318 }
3319
3320 return allocate(word_size, mdtype);
3321 }
3322
3323 // Space allocated in the Metaspace. This may
3324 // be across several metadata virtual spaces.
3325 char* Metaspace::bottom() const {
3326 assert(DumpSharedSpaces, "only useful and valid for dumping shared spaces");
3327 return (char*)vsm()->current_chunk()->bottom();
3328 }
3329
3330 size_t Metaspace::used_words_slow(MetadataType mdtype) const {
3331 if (mdtype == ClassType) {
3332 return using_class_space() ? class_vsm()->sum_used_in_chunks_in_use() : 0;
3333 } else {
3334 return vsm()->sum_used_in_chunks_in_use(); // includes overhead!
3335 }
3336 }
3337
3338 size_t Metaspace::free_words_slow(MetadataType mdtype) const {
3339 if (mdtype == ClassType) {
3340 return using_class_space() ? class_vsm()->sum_free_in_chunks_in_use() : 0;
3341 } else {
3342 return vsm()->sum_free_in_chunks_in_use();
3343 }
3344 }
3345
3346 // Space capacity in the Metaspace. It includes
3347 // space in the list of chunks from which allocations
3348 // have been made. Don't include space in the global freelist and
3349 // in the space available in the dictionary which
3350 // is already counted in some chunk.
3351 size_t Metaspace::capacity_words_slow(MetadataType mdtype) const {
3352 if (mdtype == ClassType) {
3353 return using_class_space() ? class_vsm()->sum_capacity_in_chunks_in_use() : 0;
3354 } else {
3355 return vsm()->sum_capacity_in_chunks_in_use();
3356 }
3357 }
3358
3359 size_t Metaspace::used_bytes_slow(MetadataType mdtype) const {
3360 return used_words_slow(mdtype) * BytesPerWord;
3361 }
3362
3363 size_t Metaspace::capacity_bytes_slow(MetadataType mdtype) const {
3364 return capacity_words_slow(mdtype) * BytesPerWord;
3365 }
3366
3367 void Metaspace::deallocate(MetaWord* ptr, size_t word_size, bool is_class) {
3368 if (SafepointSynchronize::is_at_safepoint()) {
3369 assert(Thread::current()->is_VM_thread(), "should be the VM thread");
3370 // Don't take Heap_lock
3371 MutexLockerEx ml(vsm()->lock(), Mutex::_no_safepoint_check_flag);
3372 if (word_size < TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
3373 // Dark matter. Too small for dictionary.
3374 #ifdef ASSERT
3375 Copy::fill_to_words((HeapWord*)ptr, word_size, 0xf5f5f5f5);
3376 #endif
3377 return;
3378 }
3379 if (is_class && using_class_space()) {
3380 class_vsm()->deallocate(ptr, word_size);
3381 } else {
3382 vsm()->deallocate(ptr, word_size);
3383 }
3384 } else {
3385 MutexLockerEx ml(vsm()->lock(), Mutex::_no_safepoint_check_flag);
3386
3387 if (word_size < TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
3388 // Dark matter. Too small for dictionary.
3389 #ifdef ASSERT
3390 Copy::fill_to_words((HeapWord*)ptr, word_size, 0xf5f5f5f5);
3391 #endif
3392 return;
3393 }
3394 if (is_class && using_class_space()) {
3395 class_vsm()->deallocate(ptr, word_size);
3396 } else {
3397 vsm()->deallocate(ptr, word_size);
3398 }
3399 }
3400 }
3401
3402
3403 MetaWord* Metaspace::allocate(ClassLoaderData* loader_data, size_t word_size,
3404 bool read_only, MetaspaceObj::Type type, TRAPS) {
3405 if (HAS_PENDING_EXCEPTION) {
3406 assert(false, "Should not allocate with exception pending");
3407 return NULL; // caller does a CHECK_NULL too
3408 }
3409
3410 assert(loader_data != NULL, "Should never pass around a NULL loader_data. "
3411 "ClassLoaderData::the_null_class_loader_data() should have been used.");
3412
3413 // Allocate in metaspaces without taking out a lock, because it deadlocks
3414 // with the SymbolTable_lock. Dumping is single threaded for now. We'll have
3415 // to revisit this for application class data sharing.
3416 if (DumpSharedSpaces) {
3417 assert(type > MetaspaceObj::UnknownType && type < MetaspaceObj::_number_of_types, "sanity");
3418 Metaspace* space = read_only ? loader_data->ro_metaspace() : loader_data->rw_metaspace();
3419 MetaWord* result = space->allocate(word_size, NonClassType);
3420 if (result == NULL) {
3421 report_out_of_shared_space(read_only ? SharedReadOnly : SharedReadWrite);
3422 }
3423
3424 space->record_allocation(result, type, space->vsm()->get_raw_word_size(word_size));
3425
3426 // Zero initialize.
3427 Copy::fill_to_aligned_words((HeapWord*)result, word_size, 0);
3428
3429 return result;
3430 }
3431
3432 MetadataType mdtype = (type == MetaspaceObj::ClassType) ? ClassType : NonClassType;
3433
3434 // Try to allocate metadata.
3435 MetaWord* result = loader_data->metaspace_non_null()->allocate(word_size, mdtype);
3436
3437 if (result == NULL) {
3438 tracer()->report_metaspace_allocation_failure(loader_data, word_size, type, mdtype);
3439
3440 // Allocation failed.
3441 if (is_init_completed()) {
3442 // Only start a GC if the bootstrapping has completed.
3443
3444 // Try to clean out some memory and retry.
3445 result = Universe::heap()->collector_policy()->satisfy_failed_metadata_allocation(
3446 loader_data, word_size, mdtype);
3447 }
3448 }
3449
3450 if (result == NULL) {
3451 report_metadata_oome(loader_data, word_size, type, mdtype, CHECK_NULL);
3452 }
3453
3454 // Zero initialize.
3455 Copy::fill_to_aligned_words((HeapWord*)result, word_size, 0);
3456
3457 return result;
3458 }
3459
3460 size_t Metaspace::class_chunk_size(size_t word_size) {
3461 assert(using_class_space(), "Has to use class space");
3462 return class_vsm()->calc_chunk_size(word_size);
3463 }
3464
3465 void Metaspace::report_metadata_oome(ClassLoaderData* loader_data, size_t word_size, MetaspaceObj::Type type, MetadataType mdtype, TRAPS) {
3466 tracer()->report_metadata_oom(loader_data, word_size, type, mdtype);
3467
3468 // If result is still null, we are out of memory.
3469 if (Verbose && TraceMetadataChunkAllocation) {
3470 gclog_or_tty->print_cr("Metaspace allocation failed for size "
3471 SIZE_FORMAT, word_size);
3472 if (loader_data->metaspace_or_null() != NULL) {
3473 loader_data->dump(gclog_or_tty);
3474 }
3475 MetaspaceAux::dump(gclog_or_tty);
3476 }
3477
3478 bool out_of_compressed_class_space = false;
3479 if (is_class_space_allocation(mdtype)) {
3480 Metaspace* metaspace = loader_data->metaspace_non_null();
3481 out_of_compressed_class_space =
3482 MetaspaceAux::committed_bytes(Metaspace::ClassType) +
3483 (metaspace->class_chunk_size(word_size) * BytesPerWord) >
3484 CompressedClassSpaceSize;
3485 }
3486
3487 // -XX:+HeapDumpOnOutOfMemoryError and -XX:OnOutOfMemoryError support
3488 const char* space_string = out_of_compressed_class_space ?
3489 "Compressed class space" : "Metaspace";
3490
3491 report_java_out_of_memory(space_string);
3492
3493 if (JvmtiExport::should_post_resource_exhausted()) {
3494 JvmtiExport::post_resource_exhausted(
3495 JVMTI_RESOURCE_EXHAUSTED_OOM_ERROR,
3496 space_string);
3497 }
3498
3499 if (!is_init_completed()) {
3500 vm_exit_during_initialization("OutOfMemoryError", space_string);
3501 }
3502
3503 if (out_of_compressed_class_space) {
3504 THROW_OOP(Universe::out_of_memory_error_class_metaspace());
3505 } else {
3506 THROW_OOP(Universe::out_of_memory_error_metaspace());
3507 }
3508 }
3509
3510 const char* Metaspace::metadata_type_name(Metaspace::MetadataType mdtype) {
3511 switch (mdtype) {
3512 case Metaspace::ClassType: return "Class";
3513 case Metaspace::NonClassType: return "Metadata";
3514 default:
3515 assert(false, err_msg("Got bad mdtype: %d", (int) mdtype));
3516 return NULL;
3517 }
3518 }
3519
3520 void Metaspace::record_allocation(void* ptr, MetaspaceObj::Type type, size_t word_size) {
3521 assert(DumpSharedSpaces, "sanity");
3522
3523 AllocRecord *rec = new AllocRecord((address)ptr, type, (int)word_size * HeapWordSize);
3524 if (_alloc_record_head == NULL) {
3525 _alloc_record_head = _alloc_record_tail = rec;
3526 } else {
3527 _alloc_record_tail->_next = rec;
3528 _alloc_record_tail = rec;
3529 }
3530 }
3531
3532 void Metaspace::iterate(Metaspace::AllocRecordClosure *closure) {
3533 assert(DumpSharedSpaces, "unimplemented for !DumpSharedSpaces");
3534
3535 address last_addr = (address)bottom();
3536
3537 for (AllocRecord *rec = _alloc_record_head; rec; rec = rec->_next) {
3538 address ptr = rec->_ptr;
3539 if (last_addr < ptr) {
3540 closure->doit(last_addr, MetaspaceObj::UnknownType, ptr - last_addr);
3541 }
3542 closure->doit(ptr, rec->_type, rec->_byte_size);
3543 last_addr = ptr + rec->_byte_size;
3544 }
3545
3546 address top = ((address)bottom()) + used_bytes_slow(Metaspace::NonClassType);
3547 if (last_addr < top) {
3548 closure->doit(last_addr, MetaspaceObj::UnknownType, top - last_addr);
3549 }
3550 }
3551
3552 void Metaspace::purge(MetadataType mdtype) {
3553 get_space_list(mdtype)->purge(get_chunk_manager(mdtype));
3554 }
3555
3556 void Metaspace::purge() {
3557 MutexLockerEx cl(SpaceManager::expand_lock(),
3558 Mutex::_no_safepoint_check_flag);
3559 purge(NonClassType);
3560 if (using_class_space()) {
3561 purge(ClassType);
3562 }
3563 }
3564
3565 void Metaspace::print_on(outputStream* out) const {
3566 // Print both class virtual space counts and metaspace.
3567 if (Verbose) {
3568 vsm()->print_on(out);
3569 if (using_class_space()) {
3570 class_vsm()->print_on(out);
3571 }
3572 }
3573 }
3574
3575 bool Metaspace::contains(const void* ptr) {
3576 if (UseSharedSpaces && MetaspaceShared::is_in_shared_space(ptr)) {
3577 return true;
3578 }
3579
3580 if (using_class_space() && get_space_list(ClassType)->contains(ptr)) {
3581 return true;
3582 }
3583
3584 return get_space_list(NonClassType)->contains(ptr);
3585 }
3586
3587 void Metaspace::verify() {
3588 vsm()->verify();
3589 if (using_class_space()) {
3590 class_vsm()->verify();
3591 }
3592 }
3593
3594 void Metaspace::dump(outputStream* const out) const {
3595 out->print_cr("\nVirtual space manager: " INTPTR_FORMAT, vsm());
3596 vsm()->dump(out);
3597 if (using_class_space()) {
3598 out->print_cr("\nClass space manager: " INTPTR_FORMAT, class_vsm());
3599 class_vsm()->dump(out);
3600 }
3601 }
3602
3603 /////////////// Unit tests ///////////////
3604
3605 #ifndef PRODUCT
3606
3607 class TestMetaspaceAuxTest : AllStatic {
3608 public:
3609 static void test_reserved() {
3610 size_t reserved = MetaspaceAux::reserved_bytes();
3611
3612 assert(reserved > 0, "assert");
3613
3614 size_t committed = MetaspaceAux::committed_bytes();
3615 assert(committed <= reserved, "assert");
3616
3617 size_t reserved_metadata = MetaspaceAux::reserved_bytes(Metaspace::NonClassType);
3618 assert(reserved_metadata > 0, "assert");
3619 assert(reserved_metadata <= reserved, "assert");
3620
3621 if (UseCompressedClassPointers) {
3622 size_t reserved_class = MetaspaceAux::reserved_bytes(Metaspace::ClassType);
3623 assert(reserved_class > 0, "assert");
3624 assert(reserved_class < reserved, "assert");
3625 }
3626 }
3627
3628 static void test_committed() {
3629 size_t committed = MetaspaceAux::committed_bytes();
3630
3631 assert(committed > 0, "assert");
3632
3633 size_t reserved = MetaspaceAux::reserved_bytes();
3634 assert(committed <= reserved, "assert");
3635
3636 size_t committed_metadata = MetaspaceAux::committed_bytes(Metaspace::NonClassType);
3637 assert(committed_metadata > 0, "assert");
3638 assert(committed_metadata <= committed, "assert");
3639
3640 if (UseCompressedClassPointers) {
3641 size_t committed_class = MetaspaceAux::committed_bytes(Metaspace::ClassType);
3642 assert(committed_class > 0, "assert");
3643 assert(committed_class < committed, "assert");
3644 }
3645 }
3646
3647 static void test_virtual_space_list_large_chunk() {
3648 VirtualSpaceList* vs_list = new VirtualSpaceList(os::vm_allocation_granularity());
3649 MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
3650 // A size larger than VirtualSpaceSize (256k) and add one page to make it _not_ be
3651 // vm_allocation_granularity aligned on Windows.
3652 size_t large_size = (size_t)(2*256*K + (os::vm_page_size()/BytesPerWord));
3653 large_size += (os::vm_page_size()/BytesPerWord);
3654 vs_list->get_new_chunk(large_size, large_size, 0);
3655 }
3656
3657 static void test() {
3658 test_reserved();
3659 test_committed();
3660 test_virtual_space_list_large_chunk();
3661 }
3662 };
3663
3664 void TestMetaspaceAux_test() {
3665 TestMetaspaceAuxTest::test();
3666 }
3667
3668 class TestVirtualSpaceNodeTest {
3669 static void chunk_up(size_t words_left, size_t& num_medium_chunks,
3670 size_t& num_small_chunks,
3671 size_t& num_specialized_chunks) {
3672 num_medium_chunks = words_left / MediumChunk;
3673 words_left = words_left % MediumChunk;
3674
3675 num_small_chunks = words_left / SmallChunk;
3676 words_left = words_left % SmallChunk;
3677 // how many specialized chunks can we get?
3678 num_specialized_chunks = words_left / SpecializedChunk;
3679 assert(words_left % SpecializedChunk == 0, "should be nothing left");
3680 }
3681
3682 public:
3683 static void test() {
3684 MutexLockerEx ml(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
3685 const size_t vsn_test_size_words = MediumChunk * 4;
3686 const size_t vsn_test_size_bytes = vsn_test_size_words * BytesPerWord;
3687
3688 // The chunk sizes must be multiples of eachother, or this will fail
3689 STATIC_ASSERT(MediumChunk % SmallChunk == 0);
3690 STATIC_ASSERT(SmallChunk % SpecializedChunk == 0);
3691
3692 { // No committed memory in VSN
3693 ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3694 VirtualSpaceNode vsn(vsn_test_size_bytes);
3695 vsn.initialize();
3696 vsn.retire(&cm);
3697 assert(cm.sum_free_chunks_count() == 0, "did not commit any memory in the VSN");
3698 }
3699
3700 { // All of VSN is committed, half is used by chunks
3701 ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3702 VirtualSpaceNode vsn(vsn_test_size_bytes);
3703 vsn.initialize();
3704 vsn.expand_by(vsn_test_size_words, vsn_test_size_words);
3705 vsn.get_chunk_vs(MediumChunk);
3706 vsn.get_chunk_vs(MediumChunk);
3707 vsn.retire(&cm);
3708 assert(cm.sum_free_chunks_count() == 2, "should have been memory left for 2 medium chunks");
3709 assert(cm.sum_free_chunks() == 2*MediumChunk, "sizes should add up");
3710 }
3711
3712 { // 4 pages of VSN is committed, some is used by chunks
3713 ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3714 VirtualSpaceNode vsn(vsn_test_size_bytes);
3715 const size_t page_chunks = 4 * (size_t)os::vm_page_size() / BytesPerWord;
3716 assert(page_chunks < MediumChunk, "Test expects medium chunks to be at least 4*page_size");
3717 vsn.initialize();
3718 vsn.expand_by(page_chunks, page_chunks);
3719 vsn.get_chunk_vs(SmallChunk);
3720 vsn.get_chunk_vs(SpecializedChunk);
3721 vsn.retire(&cm);
3722
3723 // committed - used = words left to retire
3724 const size_t words_left = page_chunks - SmallChunk - SpecializedChunk;
3725
3726 size_t num_medium_chunks, num_small_chunks, num_spec_chunks;
3727 chunk_up(words_left, num_medium_chunks, num_small_chunks, num_spec_chunks);
3728
3729 assert(num_medium_chunks == 0, "should not get any medium chunks");
3730 assert(cm.sum_free_chunks_count() == (num_small_chunks + num_spec_chunks), "should be space for 3 chunks");
3731 assert(cm.sum_free_chunks() == words_left, "sizes should add up");
3732 }
3733
3734 { // Half of VSN is committed, a humongous chunk is used
3735 ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3736 VirtualSpaceNode vsn(vsn_test_size_bytes);
3737 vsn.initialize();
3738 vsn.expand_by(MediumChunk * 2, MediumChunk * 2);
3739 vsn.get_chunk_vs(MediumChunk + SpecializedChunk); // Humongous chunks will be aligned up to MediumChunk + SpecializedChunk
3740 vsn.retire(&cm);
3741
3742 const size_t words_left = MediumChunk * 2 - (MediumChunk + SpecializedChunk);
3743 size_t num_medium_chunks, num_small_chunks, num_spec_chunks;
3744 chunk_up(words_left, num_medium_chunks, num_small_chunks, num_spec_chunks);
3745
3746 assert(num_medium_chunks == 0, "should not get any medium chunks");
3747 assert(cm.sum_free_chunks_count() == (num_small_chunks + num_spec_chunks), "should be space for 3 chunks");
3748 assert(cm.sum_free_chunks() == words_left, "sizes should add up");
3749 }
3750
3751 }
3752
3753 #define assert_is_available_positive(word_size) \
3754 assert(vsn.is_available(word_size), \
3755 err_msg(#word_size ": " PTR_FORMAT " bytes were not available in " \
3756 "VirtualSpaceNode [" PTR_FORMAT ", " PTR_FORMAT ")", \
3757 (uintptr_t)(word_size * BytesPerWord), vsn.bottom(), vsn.end()));
3758
3759 #define assert_is_available_negative(word_size) \
3760 assert(!vsn.is_available(word_size), \
3761 err_msg(#word_size ": " PTR_FORMAT " bytes should not be available in " \
3762 "VirtualSpaceNode [" PTR_FORMAT ", " PTR_FORMAT ")", \
3763 (uintptr_t)(word_size * BytesPerWord), vsn.bottom(), vsn.end()));
3764
3765 static void test_is_available_positive() {
3766 // Reserve some memory.
3767 VirtualSpaceNode vsn(os::vm_allocation_granularity());
3768 assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");
3769
3770 // Commit some memory.
3771 size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
3772 bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
3773 assert(expanded, "Failed to commit");
3774
3775 // Check that is_available accepts the committed size.
3776 assert_is_available_positive(commit_word_size);
3777
3778 // Check that is_available accepts half the committed size.
3779 size_t expand_word_size = commit_word_size / 2;
3780 assert_is_available_positive(expand_word_size);
3781 }
3782
3783 static void test_is_available_negative() {
3784 // Reserve some memory.
3785 VirtualSpaceNode vsn(os::vm_allocation_granularity());
3786 assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");
3787
3788 // Commit some memory.
3789 size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
3790 bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
3791 assert(expanded, "Failed to commit");
3792
3793 // Check that is_available doesn't accept a too large size.
3794 size_t two_times_commit_word_size = commit_word_size * 2;
3795 assert_is_available_negative(two_times_commit_word_size);
3796 }
3797
3798 static void test_is_available_overflow() {
3799 // Reserve some memory.
3800 VirtualSpaceNode vsn(os::vm_allocation_granularity());
3801 assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");
3802
3803 // Commit some memory.
3804 size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
3805 bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
3806 assert(expanded, "Failed to commit");
3807
3808 // Calculate a size that will overflow the virtual space size.
3809 void* virtual_space_max = (void*)(uintptr_t)-1;
3810 size_t bottom_to_max = pointer_delta(virtual_space_max, vsn.bottom(), 1);
3811 size_t overflow_size = bottom_to_max + BytesPerWord;
3812 size_t overflow_word_size = overflow_size / BytesPerWord;
3813
3814 // Check that is_available can handle the overflow.
3815 assert_is_available_negative(overflow_word_size);
3816 }
3817
3818 static void test_is_available() {
3819 TestVirtualSpaceNodeTest::test_is_available_positive();
3820 TestVirtualSpaceNodeTest::test_is_available_negative();
3821 TestVirtualSpaceNodeTest::test_is_available_overflow();
3822 }
3823 };
3824
3825 void TestVirtualSpaceNode_test() {
3826 TestVirtualSpaceNodeTest::test();
3827 TestVirtualSpaceNodeTest::test_is_available();
3828 }
3829 #endif

mercurial