src/share/vm/memory/binaryTreeDictionary.cpp

changeset 0
f90c822e73f8
child 6876
710a3c8b516e
equal deleted inserted replaced
-1:000000000000 0:f90c822e73f8
1 /*
2 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "utilities/macros.hpp"
27 #include "gc_implementation/shared/allocationStats.hpp"
28 #include "memory/binaryTreeDictionary.hpp"
29 #include "memory/freeList.hpp"
30 #include "memory/freeBlockDictionary.hpp"
31 #include "memory/metachunk.hpp"
32 #include "runtime/globals.hpp"
33 #include "utilities/ostream.hpp"
34 #include "utilities/macros.hpp"
35 #include "gc_implementation/shared/spaceDecorator.hpp"
36 #if INCLUDE_ALL_GCS
37 #include "gc_implementation/concurrentMarkSweep/adaptiveFreeList.hpp"
38 #include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
39 #include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
40 #endif // INCLUDE_ALL_GCS
41
42 ////////////////////////////////////////////////////////////////////////////////
43 // A binary tree based search structure for free blocks.
44 // This is currently used in the Concurrent Mark&Sweep implementation.
45 ////////////////////////////////////////////////////////////////////////////////
46
47 template <class Chunk_t, class FreeList_t>
48 size_t TreeChunk<Chunk_t, FreeList_t>::_min_tree_chunk_size = sizeof(TreeChunk<Chunk_t, FreeList_t>)/HeapWordSize;
49
50 template <class Chunk_t, class FreeList_t>
51 TreeChunk<Chunk_t, FreeList_t>* TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(Chunk_t* fc) {
52 // Do some assertion checking here.
53 return (TreeChunk<Chunk_t, FreeList_t>*) fc;
54 }
55
56 template <class Chunk_t, class FreeList_t>
57 void TreeChunk<Chunk_t, FreeList_t>::verify_tree_chunk_list() const {
58 TreeChunk<Chunk_t, FreeList_t>* nextTC = (TreeChunk<Chunk_t, FreeList_t>*)next();
59 if (prev() != NULL) { // interior list node shouldn'r have tree fields
60 guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
61 embedded_list()->right() == NULL, "should be clear");
62 }
63 if (nextTC != NULL) {
64 guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
65 guarantee(nextTC->size() == size(), "wrong size");
66 nextTC->verify_tree_chunk_list();
67 }
68 }
69
70 template <class Chunk_t, class FreeList_t>
71 TreeList<Chunk_t, FreeList_t>::TreeList() : _parent(NULL),
72 _left(NULL), _right(NULL) {}
73
74 template <class Chunk_t, class FreeList_t>
75 TreeList<Chunk_t, FreeList_t>*
76 TreeList<Chunk_t, FreeList_t>::as_TreeList(TreeChunk<Chunk_t,FreeList_t>* tc) {
77 // This first free chunk in the list will be the tree list.
78 assert((tc->size() >= (TreeChunk<Chunk_t, FreeList_t>::min_size())),
79 "Chunk is too small for a TreeChunk");
80 TreeList<Chunk_t, FreeList_t>* tl = tc->embedded_list();
81 tl->initialize();
82 tc->set_list(tl);
83 tl->set_size(tc->size());
84 tl->link_head(tc);
85 tl->link_tail(tc);
86 tl->set_count(1);
87 assert(tl->parent() == NULL, "Should be clear");
88 return tl;
89 }
90
91 template <class Chunk_t, class FreeList_t>
92 TreeList<Chunk_t, FreeList_t>*
93 TreeList<Chunk_t, FreeList_t>::as_TreeList(HeapWord* addr, size_t size) {
94 TreeChunk<Chunk_t, FreeList_t>* tc = (TreeChunk<Chunk_t, FreeList_t>*) addr;
95 assert((size >= TreeChunk<Chunk_t, FreeList_t>::min_size()),
96 "Chunk is too small for a TreeChunk");
97 // The space will have been mangled initially but
98 // is not remangled when a Chunk_t is returned to the free list
99 // (since it is used to maintain the chunk on the free list).
100 tc->assert_is_mangled();
101 tc->set_size(size);
102 tc->link_prev(NULL);
103 tc->link_next(NULL);
104 TreeList<Chunk_t, FreeList_t>* tl = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
105 return tl;
106 }
107
108
109 #if INCLUDE_ALL_GCS
110 // Specialize for AdaptiveFreeList which tries to avoid
111 // splitting a chunk of a size that is under populated in favor of
112 // an over populated size. The general get_better_list() just returns
113 // the current list.
114 template <>
115 TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >*
116 TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >::get_better_list(
117 BinaryTreeDictionary<FreeChunk, ::AdaptiveFreeList<FreeChunk> >* dictionary) {
118 // A candidate chunk has been found. If it is already under
119 // populated, get a chunk associated with the hint for this
120 // chunk.
121
122 TreeList<FreeChunk, ::AdaptiveFreeList<FreeChunk> >* curTL = this;
123 if (surplus() <= 0) {
124 /* Use the hint to find a size with a surplus, and reset the hint. */
125 TreeList<FreeChunk, ::AdaptiveFreeList<FreeChunk> >* hintTL = this;
126 while (hintTL->hint() != 0) {
127 assert(hintTL->hint() > hintTL->size(),
128 "hint points in the wrong direction");
129 hintTL = dictionary->find_list(hintTL->hint());
130 assert(curTL != hintTL, "Infinite loop");
131 if (hintTL == NULL ||
132 hintTL == curTL /* Should not happen but protect against it */ ) {
133 // No useful hint. Set the hint to NULL and go on.
134 curTL->set_hint(0);
135 break;
136 }
137 assert(hintTL->size() > curTL->size(), "hint is inconsistent");
138 if (hintTL->surplus() > 0) {
139 // The hint led to a list that has a surplus. Use it.
140 // Set the hint for the candidate to an overpopulated
141 // size.
142 curTL->set_hint(hintTL->size());
143 // Change the candidate.
144 curTL = hintTL;
145 break;
146 }
147 }
148 }
149 return curTL;
150 }
151 #endif // INCLUDE_ALL_GCS
152
153 template <class Chunk_t, class FreeList_t>
154 TreeList<Chunk_t, FreeList_t>*
155 TreeList<Chunk_t, FreeList_t>::get_better_list(
156 BinaryTreeDictionary<Chunk_t, FreeList_t>* dictionary) {
157 return this;
158 }
159
160 template <class Chunk_t, class FreeList_t>
161 TreeList<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::remove_chunk_replace_if_needed(TreeChunk<Chunk_t, FreeList_t>* tc) {
162
163 TreeList<Chunk_t, FreeList_t>* retTL = this;
164 Chunk_t* list = head();
165 assert(!list || list != list->next(), "Chunk on list twice");
166 assert(tc != NULL, "Chunk being removed is NULL");
167 assert(parent() == NULL || this == parent()->left() ||
168 this == parent()->right(), "list is inconsistent");
169 assert(tc->is_free(), "Header is not marked correctly");
170 assert(head() == NULL || head()->prev() == NULL, "list invariant");
171 assert(tail() == NULL || tail()->next() == NULL, "list invariant");
172
173 Chunk_t* prevFC = tc->prev();
174 TreeChunk<Chunk_t, FreeList_t>* nextTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(tc->next());
175 assert(list != NULL, "should have at least the target chunk");
176
177 // Is this the first item on the list?
178 if (tc == list) {
179 // The "getChunk..." functions for a TreeList<Chunk_t, FreeList_t> will not return the
180 // first chunk in the list unless it is the last chunk in the list
181 // because the first chunk is also acting as the tree node.
182 // When coalescing happens, however, the first chunk in the a tree
183 // list can be the start of a free range. Free ranges are removed
184 // from the free lists so that they are not available to be
185 // allocated when the sweeper yields (giving up the free list lock)
186 // to allow mutator activity. If this chunk is the first in the
187 // list and is not the last in the list, do the work to copy the
188 // TreeList<Chunk_t, FreeList_t> from the first chunk to the next chunk and update all
189 // the TreeList<Chunk_t, FreeList_t> pointers in the chunks in the list.
190 if (nextTC == NULL) {
191 assert(prevFC == NULL, "Not last chunk in the list");
192 set_tail(NULL);
193 set_head(NULL);
194 } else {
195 // copy embedded list.
196 nextTC->set_embedded_list(tc->embedded_list());
197 retTL = nextTC->embedded_list();
198 // Fix the pointer to the list in each chunk in the list.
199 // This can be slow for a long list. Consider having
200 // an option that does not allow the first chunk on the
201 // list to be coalesced.
202 for (TreeChunk<Chunk_t, FreeList_t>* curTC = nextTC; curTC != NULL;
203 curTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(curTC->next())) {
204 curTC->set_list(retTL);
205 }
206 // Fix the parent to point to the new TreeList<Chunk_t, FreeList_t>.
207 if (retTL->parent() != NULL) {
208 if (this == retTL->parent()->left()) {
209 retTL->parent()->set_left(retTL);
210 } else {
211 assert(this == retTL->parent()->right(), "Parent is incorrect");
212 retTL->parent()->set_right(retTL);
213 }
214 }
215 // Fix the children's parent pointers to point to the
216 // new list.
217 assert(right() == retTL->right(), "Should have been copied");
218 if (retTL->right() != NULL) {
219 retTL->right()->set_parent(retTL);
220 }
221 assert(left() == retTL->left(), "Should have been copied");
222 if (retTL->left() != NULL) {
223 retTL->left()->set_parent(retTL);
224 }
225 retTL->link_head(nextTC);
226 assert(nextTC->is_free(), "Should be a free chunk");
227 }
228 } else {
229 if (nextTC == NULL) {
230 // Removing chunk at tail of list
231 this->link_tail(prevFC);
232 }
233 // Chunk is interior to the list
234 prevFC->link_after(nextTC);
235 }
236
237 // Below this point the embeded TreeList<Chunk_t, FreeList_t> being used for the
238 // tree node may have changed. Don't use "this"
239 // TreeList<Chunk_t, FreeList_t>*.
240 // chunk should still be a free chunk (bit set in _prev)
241 assert(!retTL->head() || retTL->size() == retTL->head()->size(),
242 "Wrong sized chunk in list");
243 debug_only(
244 tc->link_prev(NULL);
245 tc->link_next(NULL);
246 tc->set_list(NULL);
247 bool prev_found = false;
248 bool next_found = false;
249 for (Chunk_t* curFC = retTL->head();
250 curFC != NULL; curFC = curFC->next()) {
251 assert(curFC != tc, "Chunk is still in list");
252 if (curFC == prevFC) {
253 prev_found = true;
254 }
255 if (curFC == nextTC) {
256 next_found = true;
257 }
258 }
259 assert(prevFC == NULL || prev_found, "Chunk was lost from list");
260 assert(nextTC == NULL || next_found, "Chunk was lost from list");
261 assert(retTL->parent() == NULL ||
262 retTL == retTL->parent()->left() ||
263 retTL == retTL->parent()->right(),
264 "list is inconsistent");
265 )
266 retTL->decrement_count();
267
268 assert(tc->is_free(), "Should still be a free chunk");
269 assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
270 "list invariant");
271 assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
272 "list invariant");
273 return retTL;
274 }
275
276 template <class Chunk_t, class FreeList_t>
277 void TreeList<Chunk_t, FreeList_t>::return_chunk_at_tail(TreeChunk<Chunk_t, FreeList_t>* chunk) {
278 assert(chunk != NULL, "returning NULL chunk");
279 assert(chunk->list() == this, "list should be set for chunk");
280 assert(tail() != NULL, "The tree list is embedded in the first chunk");
281 // which means that the list can never be empty.
282 assert(!this->verify_chunk_in_free_list(chunk), "Double entry");
283 assert(head() == NULL || head()->prev() == NULL, "list invariant");
284 assert(tail() == NULL || tail()->next() == NULL, "list invariant");
285
286 Chunk_t* fc = tail();
287 fc->link_after(chunk);
288 this->link_tail(chunk);
289
290 assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
291 FreeList_t::increment_count();
292 debug_only(this->increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
293 assert(head() == NULL || head()->prev() == NULL, "list invariant");
294 assert(tail() == NULL || tail()->next() == NULL, "list invariant");
295 }
296
297 // Add this chunk at the head of the list. "At the head of the list"
298 // is defined to be after the chunk pointer to by head(). This is
299 // because the TreeList<Chunk_t, FreeList_t> is embedded in the first TreeChunk<Chunk_t, FreeList_t> in the
300 // list. See the definition of TreeChunk<Chunk_t, FreeList_t>.
301 template <class Chunk_t, class FreeList_t>
302 void TreeList<Chunk_t, FreeList_t>::return_chunk_at_head(TreeChunk<Chunk_t, FreeList_t>* chunk) {
303 assert(chunk->list() == this, "list should be set for chunk");
304 assert(head() != NULL, "The tree list is embedded in the first chunk");
305 assert(chunk != NULL, "returning NULL chunk");
306 assert(!this->verify_chunk_in_free_list(chunk), "Double entry");
307 assert(head() == NULL || head()->prev() == NULL, "list invariant");
308 assert(tail() == NULL || tail()->next() == NULL, "list invariant");
309
310 Chunk_t* fc = head()->next();
311 if (fc != NULL) {
312 chunk->link_after(fc);
313 } else {
314 assert(tail() == NULL, "List is inconsistent");
315 this->link_tail(chunk);
316 }
317 head()->link_after(chunk);
318 assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
319 FreeList_t::increment_count();
320 debug_only(this->increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
321 assert(head() == NULL || head()->prev() == NULL, "list invariant");
322 assert(tail() == NULL || tail()->next() == NULL, "list invariant");
323 }
324
325 template <class Chunk_t, class FreeList_t>
326 void TreeChunk<Chunk_t, FreeList_t>::assert_is_mangled() const {
327 assert((ZapUnusedHeapArea &&
328 SpaceMangler::is_mangled((HeapWord*) Chunk_t::size_addr()) &&
329 SpaceMangler::is_mangled((HeapWord*) Chunk_t::prev_addr()) &&
330 SpaceMangler::is_mangled((HeapWord*) Chunk_t::next_addr())) ||
331 (size() == 0 && prev() == NULL && next() == NULL),
332 "Space should be clear or mangled");
333 }
334
335 template <class Chunk_t, class FreeList_t>
336 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::head_as_TreeChunk() {
337 assert(head() == NULL || (TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head())->list() == this),
338 "Wrong type of chunk?");
339 return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head());
340 }
341
342 template <class Chunk_t, class FreeList_t>
343 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::first_available() {
344 assert(head() != NULL, "The head of the list cannot be NULL");
345 Chunk_t* fc = head()->next();
346 TreeChunk<Chunk_t, FreeList_t>* retTC;
347 if (fc == NULL) {
348 retTC = head_as_TreeChunk();
349 } else {
350 retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
351 }
352 assert(retTC->list() == this, "Wrong type of chunk.");
353 return retTC;
354 }
355
356 // Returns the block with the largest heap address amongst
357 // those in the list for this size; potentially slow and expensive,
358 // use with caution!
359 template <class Chunk_t, class FreeList_t>
360 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::largest_address() {
361 assert(head() != NULL, "The head of the list cannot be NULL");
362 Chunk_t* fc = head()->next();
363 TreeChunk<Chunk_t, FreeList_t>* retTC;
364 if (fc == NULL) {
365 retTC = head_as_TreeChunk();
366 } else {
367 // walk down the list and return the one with the highest
368 // heap address among chunks of this size.
369 Chunk_t* last = fc;
370 while (fc->next() != NULL) {
371 if ((HeapWord*)last < (HeapWord*)fc) {
372 last = fc;
373 }
374 fc = fc->next();
375 }
376 retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(last);
377 }
378 assert(retTC->list() == this, "Wrong type of chunk.");
379 return retTC;
380 }
381
382 template <class Chunk_t, class FreeList_t>
383 BinaryTreeDictionary<Chunk_t, FreeList_t>::BinaryTreeDictionary(MemRegion mr) {
384 assert((mr.byte_size() > min_size()), "minimum chunk size");
385
386 reset(mr);
387 assert(root()->left() == NULL, "reset check failed");
388 assert(root()->right() == NULL, "reset check failed");
389 assert(root()->head()->next() == NULL, "reset check failed");
390 assert(root()->head()->prev() == NULL, "reset check failed");
391 assert(total_size() == root()->size(), "reset check failed");
392 assert(total_free_blocks() == 1, "reset check failed");
393 }
394
395 template <class Chunk_t, class FreeList_t>
396 void BinaryTreeDictionary<Chunk_t, FreeList_t>::inc_total_size(size_t inc) {
397 _total_size = _total_size + inc;
398 }
399
400 template <class Chunk_t, class FreeList_t>
401 void BinaryTreeDictionary<Chunk_t, FreeList_t>::dec_total_size(size_t dec) {
402 _total_size = _total_size - dec;
403 }
404
405 template <class Chunk_t, class FreeList_t>
406 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(MemRegion mr) {
407 assert((mr.byte_size() > min_size()), "minimum chunk size");
408 set_root(TreeList<Chunk_t, FreeList_t>::as_TreeList(mr.start(), mr.word_size()));
409 set_total_size(mr.word_size());
410 set_total_free_blocks(1);
411 }
412
413 template <class Chunk_t, class FreeList_t>
414 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(HeapWord* addr, size_t byte_size) {
415 MemRegion mr(addr, heap_word_size(byte_size));
416 reset(mr);
417 }
418
419 template <class Chunk_t, class FreeList_t>
420 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset() {
421 set_root(NULL);
422 set_total_size(0);
423 set_total_free_blocks(0);
424 }
425
426 // Get a free block of size at least size from tree, or NULL.
427 template <class Chunk_t, class FreeList_t>
428 TreeChunk<Chunk_t, FreeList_t>*
429 BinaryTreeDictionary<Chunk_t, FreeList_t>::get_chunk_from_tree(
430 size_t size,
431 enum FreeBlockDictionary<Chunk_t>::Dither dither)
432 {
433 TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
434 TreeChunk<Chunk_t, FreeList_t>* retTC = NULL;
435
436 assert((size >= min_size()), "minimum chunk size");
437 if (FLSVerifyDictionary) {
438 verify_tree();
439 }
440 // starting at the root, work downwards trying to find match.
441 // Remember the last node of size too great or too small.
442 for (prevTL = curTL = root(); curTL != NULL;) {
443 if (curTL->size() == size) { // exact match
444 break;
445 }
446 prevTL = curTL;
447 if (curTL->size() < size) { // proceed to right sub-tree
448 curTL = curTL->right();
449 } else { // proceed to left sub-tree
450 assert(curTL->size() > size, "size inconsistency");
451 curTL = curTL->left();
452 }
453 }
454 if (curTL == NULL) { // couldn't find exact match
455
456 if (dither == FreeBlockDictionary<Chunk_t>::exactly) return NULL;
457
458 // try and find the next larger size by walking back up the search path
459 for (curTL = prevTL; curTL != NULL;) {
460 if (curTL->size() >= size) break;
461 else curTL = curTL->parent();
462 }
463 assert(curTL == NULL || curTL->count() > 0,
464 "An empty list should not be in the tree");
465 }
466 if (curTL != NULL) {
467 assert(curTL->size() >= size, "size inconsistency");
468
469 curTL = curTL->get_better_list(this);
470
471 retTC = curTL->first_available();
472 assert((retTC != NULL) && (curTL->count() > 0),
473 "A list in the binary tree should not be NULL");
474 assert(retTC->size() >= size,
475 "A chunk of the wrong size was found");
476 remove_chunk_from_tree(retTC);
477 assert(retTC->is_free(), "Header is not marked correctly");
478 }
479
480 if (FLSVerifyDictionary) {
481 verify();
482 }
483 return retTC;
484 }
485
486 template <class Chunk_t, class FreeList_t>
487 TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_list(size_t size) const {
488 TreeList<Chunk_t, FreeList_t>* curTL;
489 for (curTL = root(); curTL != NULL;) {
490 if (curTL->size() == size) { // exact match
491 break;
492 }
493
494 if (curTL->size() < size) { // proceed to right sub-tree
495 curTL = curTL->right();
496 } else { // proceed to left sub-tree
497 assert(curTL->size() > size, "size inconsistency");
498 curTL = curTL->left();
499 }
500 }
501 return curTL;
502 }
503
504
505 template <class Chunk_t, class FreeList_t>
506 bool BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_chunk_in_free_list(Chunk_t* tc) const {
507 size_t size = tc->size();
508 TreeList<Chunk_t, FreeList_t>* tl = find_list(size);
509 if (tl == NULL) {
510 return false;
511 } else {
512 return tl->verify_chunk_in_free_list(tc);
513 }
514 }
515
516 template <class Chunk_t, class FreeList_t>
517 Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_largest_dict() const {
518 TreeList<Chunk_t, FreeList_t> *curTL = root();
519 if (curTL != NULL) {
520 while(curTL->right() != NULL) curTL = curTL->right();
521 return curTL->largest_address();
522 } else {
523 return NULL;
524 }
525 }
526
527 // Remove the current chunk from the tree. If it is not the last
528 // chunk in a list on a tree node, just unlink it.
529 // If it is the last chunk in the list (the next link is NULL),
530 // remove the node and repair the tree.
531 template <class Chunk_t, class FreeList_t>
532 TreeChunk<Chunk_t, FreeList_t>*
533 BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_chunk_from_tree(TreeChunk<Chunk_t, FreeList_t>* tc) {
534 assert(tc != NULL, "Should not call with a NULL chunk");
535 assert(tc->is_free(), "Header is not marked correctly");
536
537 TreeList<Chunk_t, FreeList_t> *newTL, *parentTL;
538 TreeChunk<Chunk_t, FreeList_t>* retTC;
539 TreeList<Chunk_t, FreeList_t>* tl = tc->list();
540 debug_only(
541 bool removing_only_chunk = false;
542 if (tl == _root) {
543 if ((_root->left() == NULL) && (_root->right() == NULL)) {
544 if (_root->count() == 1) {
545 assert(_root->head() == tc, "Should only be this one chunk");
546 removing_only_chunk = true;
547 }
548 }
549 }
550 )
551 assert(tl != NULL, "List should be set");
552 assert(tl->parent() == NULL || tl == tl->parent()->left() ||
553 tl == tl->parent()->right(), "list is inconsistent");
554
555 bool complicated_splice = false;
556
557 retTC = tc;
558 // Removing this chunk can have the side effect of changing the node
559 // (TreeList<Chunk_t, FreeList_t>*) in the tree. If the node is the root, update it.
560 TreeList<Chunk_t, FreeList_t>* replacementTL = tl->remove_chunk_replace_if_needed(tc);
561 assert(tc->is_free(), "Chunk should still be free");
562 assert(replacementTL->parent() == NULL ||
563 replacementTL == replacementTL->parent()->left() ||
564 replacementTL == replacementTL->parent()->right(),
565 "list is inconsistent");
566 if (tl == root()) {
567 assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
568 set_root(replacementTL);
569 }
570 #ifdef ASSERT
571 if (tl != replacementTL) {
572 assert(replacementTL->head() != NULL,
573 "If the tree list was replaced, it should not be a NULL list");
574 TreeList<Chunk_t, FreeList_t>* rhl = replacementTL->head_as_TreeChunk()->list();
575 TreeList<Chunk_t, FreeList_t>* rtl =
576 TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(replacementTL->tail())->list();
577 assert(rhl == replacementTL, "Broken head");
578 assert(rtl == replacementTL, "Broken tail");
579 assert(replacementTL->size() == tc->size(), "Broken size");
580 }
581 #endif
582
583 // Does the tree need to be repaired?
584 if (replacementTL->count() == 0) {
585 assert(replacementTL->head() == NULL &&
586 replacementTL->tail() == NULL, "list count is incorrect");
587 // Find the replacement node for the (soon to be empty) node being removed.
588 // if we have a single (or no) child, splice child in our stead
589 if (replacementTL->left() == NULL) {
590 // left is NULL so pick right. right may also be NULL.
591 newTL = replacementTL->right();
592 debug_only(replacementTL->clear_right();)
593 } else if (replacementTL->right() == NULL) {
594 // right is NULL
595 newTL = replacementTL->left();
596 debug_only(replacementTL->clear_left();)
597 } else { // we have both children, so, by patriarchal convention,
598 // my replacement is least node in right sub-tree
599 complicated_splice = true;
600 newTL = remove_tree_minimum(replacementTL->right());
601 assert(newTL != NULL && newTL->left() == NULL &&
602 newTL->right() == NULL, "sub-tree minimum exists");
603 }
604 // newTL is the replacement for the (soon to be empty) node.
605 // newTL may be NULL.
606 // should verify; we just cleanly excised our replacement
607 if (FLSVerifyDictionary) {
608 verify_tree();
609 }
610 // first make newTL my parent's child
611 if ((parentTL = replacementTL->parent()) == NULL) {
612 // newTL should be root
613 assert(tl == root(), "Incorrectly replacing root");
614 set_root(newTL);
615 if (newTL != NULL) {
616 newTL->clear_parent();
617 }
618 } else if (parentTL->right() == replacementTL) {
619 // replacementTL is a right child
620 parentTL->set_right(newTL);
621 } else { // replacementTL is a left child
622 assert(parentTL->left() == replacementTL, "should be left child");
623 parentTL->set_left(newTL);
624 }
625 debug_only(replacementTL->clear_parent();)
626 if (complicated_splice) { // we need newTL to get replacementTL's
627 // two children
628 assert(newTL != NULL &&
629 newTL->left() == NULL && newTL->right() == NULL,
630 "newTL should not have encumbrances from the past");
631 // we'd like to assert as below:
632 // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
633 // "else !complicated_splice");
634 // ... however, the above assertion is too strong because we aren't
635 // guaranteed that replacementTL->right() is still NULL.
636 // Recall that we removed
637 // the right sub-tree minimum from replacementTL.
638 // That may well have been its right
639 // child! So we'll just assert half of the above:
640 assert(replacementTL->left() != NULL, "else !complicated_splice");
641 newTL->set_left(replacementTL->left());
642 newTL->set_right(replacementTL->right());
643 debug_only(
644 replacementTL->clear_right();
645 replacementTL->clear_left();
646 )
647 }
648 assert(replacementTL->right() == NULL &&
649 replacementTL->left() == NULL &&
650 replacementTL->parent() == NULL,
651 "delete without encumbrances");
652 }
653
654 assert(total_size() >= retTC->size(), "Incorrect total size");
655 dec_total_size(retTC->size()); // size book-keeping
656 assert(total_free_blocks() > 0, "Incorrect total count");
657 set_total_free_blocks(total_free_blocks() - 1);
658
659 assert(retTC != NULL, "null chunk?");
660 assert(retTC->prev() == NULL && retTC->next() == NULL,
661 "should return without encumbrances");
662 if (FLSVerifyDictionary) {
663 verify_tree();
664 }
665 assert(!removing_only_chunk || _root == NULL, "root should be NULL");
666 return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(retTC);
667 }
668
669 // Remove the leftmost node (lm) in the tree and return it.
670 // If lm has a right child, link it to the left node of
671 // the parent of lm.
672 template <class Chunk_t, class FreeList_t>
673 TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_tree_minimum(TreeList<Chunk_t, FreeList_t>* tl) {
674 assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
675 // locate the subtree minimum by walking down left branches
676 TreeList<Chunk_t, FreeList_t>* curTL = tl;
677 for (; curTL->left() != NULL; curTL = curTL->left());
678 // obviously curTL now has at most one child, a right child
679 if (curTL != root()) { // Should this test just be removed?
680 TreeList<Chunk_t, FreeList_t>* parentTL = curTL->parent();
681 if (parentTL->left() == curTL) { // curTL is a left child
682 parentTL->set_left(curTL->right());
683 } else {
684 // If the list tl has no left child, then curTL may be
685 // the right child of parentTL.
686 assert(parentTL->right() == curTL, "should be a right child");
687 parentTL->set_right(curTL->right());
688 }
689 } else {
690 // The only use of this method would not pass the root of the
691 // tree (as indicated by the assertion above that the tree list
692 // has a parent) but the specification does not explicitly exclude the
693 // passing of the root so accomodate it.
694 set_root(NULL);
695 }
696 debug_only(
697 curTL->clear_parent(); // Test if this needs to be cleared
698 curTL->clear_right(); // recall, above, left child is already null
699 )
700 // we just excised a (non-root) node, we should still verify all tree invariants
701 if (FLSVerifyDictionary) {
702 verify_tree();
703 }
704 return curTL;
705 }
706
707 template <class Chunk_t, class FreeList_t>
708 void BinaryTreeDictionary<Chunk_t, FreeList_t>::insert_chunk_in_tree(Chunk_t* fc) {
709 TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
710 size_t size = fc->size();
711
712 assert((size >= min_size()),
713 err_msg(SIZE_FORMAT " is too small to be a TreeChunk<Chunk_t, FreeList_t> " SIZE_FORMAT,
714 size, min_size()));
715 if (FLSVerifyDictionary) {
716 verify_tree();
717 }
718
719 fc->clear_next();
720 fc->link_prev(NULL);
721
722 // work down from the _root, looking for insertion point
723 for (prevTL = curTL = root(); curTL != NULL;) {
724 if (curTL->size() == size) // exact match
725 break;
726 prevTL = curTL;
727 if (curTL->size() > size) { // follow left branch
728 curTL = curTL->left();
729 } else { // follow right branch
730 assert(curTL->size() < size, "size inconsistency");
731 curTL = curTL->right();
732 }
733 }
734 TreeChunk<Chunk_t, FreeList_t>* tc = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
735 // This chunk is being returned to the binary tree. Its embedded
736 // TreeList<Chunk_t, FreeList_t> should be unused at this point.
737 tc->initialize();
738 if (curTL != NULL) { // exact match
739 tc->set_list(curTL);
740 curTL->return_chunk_at_tail(tc);
741 } else { // need a new node in tree
742 tc->clear_next();
743 tc->link_prev(NULL);
744 TreeList<Chunk_t, FreeList_t>* newTL = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
745 assert(((TreeChunk<Chunk_t, FreeList_t>*)tc)->list() == newTL,
746 "List was not initialized correctly");
747 if (prevTL == NULL) { // we are the only tree node
748 assert(root() == NULL, "control point invariant");
749 set_root(newTL);
750 } else { // insert under prevTL ...
751 if (prevTL->size() < size) { // am right child
752 assert(prevTL->right() == NULL, "control point invariant");
753 prevTL->set_right(newTL);
754 } else { // am left child
755 assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
756 prevTL->set_left(newTL);
757 }
758 }
759 }
760 assert(tc->list() != NULL, "Tree list should be set");
761
762 inc_total_size(size);
763 // Method 'total_size_in_tree' walks through the every block in the
764 // tree, so it can cause significant performance loss if there are
765 // many blocks in the tree
766 assert(!FLSVerifyDictionary || total_size_in_tree(root()) == total_size(), "_total_size inconsistency");
767 set_total_free_blocks(total_free_blocks() + 1);
768 if (FLSVerifyDictionary) {
769 verify_tree();
770 }
771 }
772
773 template <class Chunk_t, class FreeList_t>
774 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::max_chunk_size() const {
775 FreeBlockDictionary<Chunk_t>::verify_par_locked();
776 TreeList<Chunk_t, FreeList_t>* tc = root();
777 if (tc == NULL) return 0;
778 for (; tc->right() != NULL; tc = tc->right());
779 return tc->size();
780 }
781
782 template <class Chunk_t, class FreeList_t>
783 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_list_length(TreeList<Chunk_t, FreeList_t>* tl) const {
784 size_t res;
785 res = tl->count();
786 #ifdef ASSERT
787 size_t cnt;
788 Chunk_t* tc = tl->head();
789 for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
790 assert(res == cnt, "The count is not being maintained correctly");
791 #endif
792 return res;
793 }
794
795 template <class Chunk_t, class FreeList_t>
796 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_size_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
797 if (tl == NULL)
798 return 0;
799 return (tl->size() * total_list_length(tl)) +
800 total_size_in_tree(tl->left()) +
801 total_size_in_tree(tl->right());
802 }
803
804 template <class Chunk_t, class FreeList_t>
805 double BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_of_squared_block_sizes(TreeList<Chunk_t, FreeList_t>* const tl) const {
806 if (tl == NULL) {
807 return 0.0;
808 }
809 double size = (double)(tl->size());
810 double curr = size * size * total_list_length(tl);
811 curr += sum_of_squared_block_sizes(tl->left());
812 curr += sum_of_squared_block_sizes(tl->right());
813 return curr;
814 }
815
816 template <class Chunk_t, class FreeList_t>
817 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_free_blocks_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
818 if (tl == NULL)
819 return 0;
820 return total_list_length(tl) +
821 total_free_blocks_in_tree(tl->left()) +
822 total_free_blocks_in_tree(tl->right());
823 }
824
825 template <class Chunk_t, class FreeList_t>
826 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::num_free_blocks() const {
827 assert(total_free_blocks_in_tree(root()) == total_free_blocks(),
828 "_total_free_blocks inconsistency");
829 return total_free_blocks();
830 }
831
832 template <class Chunk_t, class FreeList_t>
833 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
834 if (tl == NULL)
835 return 0;
836 return 1 + MAX2(tree_height_helper(tl->left()),
837 tree_height_helper(tl->right()));
838 }
839
840 template <class Chunk_t, class FreeList_t>
841 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height() const {
842 return tree_height_helper(root());
843 }
844
845 template <class Chunk_t, class FreeList_t>
846 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
847 if (tl == NULL) {
848 return 0;
849 }
850 return 1 + total_nodes_helper(tl->left()) +
851 total_nodes_helper(tl->right());
852 }
853
854 template <class Chunk_t, class FreeList_t>
855 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
856 return total_nodes_helper(root());
857 }
858
859 template <class Chunk_t, class FreeList_t>
860 void BinaryTreeDictionary<Chunk_t, FreeList_t>::dict_census_update(size_t size, bool split, bool birth){}
861
862 #if INCLUDE_ALL_GCS
863 template <>
864 void AFLBinaryTreeDictionary::dict_census_update(size_t size, bool split, bool birth) {
865 TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >* nd = find_list(size);
866 if (nd) {
867 if (split) {
868 if (birth) {
869 nd->increment_split_births();
870 nd->increment_surplus();
871 } else {
872 nd->increment_split_deaths();
873 nd->decrement_surplus();
874 }
875 } else {
876 if (birth) {
877 nd->increment_coal_births();
878 nd->increment_surplus();
879 } else {
880 nd->increment_coal_deaths();
881 nd->decrement_surplus();
882 }
883 }
884 }
885 // A list for this size may not be found (nd == 0) if
886 // This is a death where the appropriate list is now
887 // empty and has been removed from the list.
888 // This is a birth associated with a LinAB. The chunk
889 // for the LinAB is not in the dictionary.
890 }
891 #endif // INCLUDE_ALL_GCS
892
893 template <class Chunk_t, class FreeList_t>
894 bool BinaryTreeDictionary<Chunk_t, FreeList_t>::coal_dict_over_populated(size_t size) {
895 // For the general type of freelists, encourage coalescing by
896 // returning true.
897 return true;
898 }
899
900 #if INCLUDE_ALL_GCS
901 template <>
902 bool AFLBinaryTreeDictionary::coal_dict_over_populated(size_t size) {
903 if (FLSAlwaysCoalesceLarge) return true;
904
905 TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >* list_of_size = find_list(size);
906 // None of requested size implies overpopulated.
907 return list_of_size == NULL || list_of_size->coal_desired() <= 0 ||
908 list_of_size->count() > list_of_size->coal_desired();
909 }
910 #endif // INCLUDE_ALL_GCS
911
912 // Closures for walking the binary tree.
913 // do_list() walks the free list in a node applying the closure
914 // to each free chunk in the list
915 // do_tree() walks the nodes in the binary tree applying do_list()
916 // to each list at each node.
917
918 template <class Chunk_t, class FreeList_t>
919 class TreeCensusClosure : public StackObj {
920 protected:
921 virtual void do_list(FreeList_t* fl) = 0;
922 public:
923 virtual void do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
924 };
925
926 template <class Chunk_t, class FreeList_t>
927 class AscendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
928 public:
929 void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
930 if (tl != NULL) {
931 do_tree(tl->left());
932 this->do_list(tl);
933 do_tree(tl->right());
934 }
935 }
936 };
937
938 template <class Chunk_t, class FreeList_t>
939 class DescendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
940 public:
941 void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
942 if (tl != NULL) {
943 do_tree(tl->right());
944 this->do_list(tl);
945 do_tree(tl->left());
946 }
947 }
948 };
949
950 // For each list in the tree, calculate the desired, desired
951 // coalesce, count before sweep, and surplus before sweep.
952 template <class Chunk_t, class FreeList_t>
953 class BeginSweepClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
954 double _percentage;
955 float _inter_sweep_current;
956 float _inter_sweep_estimate;
957 float _intra_sweep_estimate;
958
959 public:
960 BeginSweepClosure(double p, float inter_sweep_current,
961 float inter_sweep_estimate,
962 float intra_sweep_estimate) :
963 _percentage(p),
964 _inter_sweep_current(inter_sweep_current),
965 _inter_sweep_estimate(inter_sweep_estimate),
966 _intra_sweep_estimate(intra_sweep_estimate) { }
967
968 void do_list(FreeList<Chunk_t>* fl) {}
969
970 #if INCLUDE_ALL_GCS
971 void do_list(AdaptiveFreeList<Chunk_t>* fl) {
972 double coalSurplusPercent = _percentage;
973 fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate);
974 fl->set_coal_desired((ssize_t)((double)fl->desired() * coalSurplusPercent));
975 fl->set_before_sweep(fl->count());
976 fl->set_bfr_surp(fl->surplus());
977 }
978 #endif // INCLUDE_ALL_GCS
979 };
980
981 // Used to search the tree until a condition is met.
982 // Similar to TreeCensusClosure but searches the
983 // tree and returns promptly when found.
984
985 template <class Chunk_t, class FreeList_t>
986 class TreeSearchClosure : public StackObj {
987 protected:
988 virtual bool do_list(FreeList_t* fl) = 0;
989 public:
990 virtual bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
991 };
992
993 #if 0 // Don't need this yet but here for symmetry.
994 template <class Chunk_t, class FreeList_t>
995 class AscendTreeSearchClosure : public TreeSearchClosure<Chunk_t> {
996 public:
997 bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
998 if (tl != NULL) {
999 if (do_tree(tl->left())) return true;
1000 if (do_list(tl)) return true;
1001 if (do_tree(tl->right())) return true;
1002 }
1003 return false;
1004 }
1005 };
1006 #endif
1007
1008 template <class Chunk_t, class FreeList_t>
1009 class DescendTreeSearchClosure : public TreeSearchClosure<Chunk_t, FreeList_t> {
1010 public:
1011 bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
1012 if (tl != NULL) {
1013 if (do_tree(tl->right())) return true;
1014 if (this->do_list(tl)) return true;
1015 if (do_tree(tl->left())) return true;
1016 }
1017 return false;
1018 }
1019 };
1020
1021 // Searches the tree for a chunk that ends at the
1022 // specified address.
1023 template <class Chunk_t, class FreeList_t>
1024 class EndTreeSearchClosure : public DescendTreeSearchClosure<Chunk_t, FreeList_t> {
1025 HeapWord* _target;
1026 Chunk_t* _found;
1027
1028 public:
1029 EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
1030 bool do_list(FreeList_t* fl) {
1031 Chunk_t* item = fl->head();
1032 while (item != NULL) {
1033 if (item->end() == (uintptr_t*) _target) {
1034 _found = item;
1035 return true;
1036 }
1037 item = item->next();
1038 }
1039 return false;
1040 }
1041 Chunk_t* found() { return _found; }
1042 };
1043
1044 template <class Chunk_t, class FreeList_t>
1045 Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_chunk_ends_at(HeapWord* target) const {
1046 EndTreeSearchClosure<Chunk_t, FreeList_t> etsc(target);
1047 bool found_target = etsc.do_tree(root());
1048 assert(found_target || etsc.found() == NULL, "Consistency check");
1049 assert(!found_target || etsc.found() != NULL, "Consistency check");
1050 return etsc.found();
1051 }
1052
1053 template <class Chunk_t, class FreeList_t>
1054 void BinaryTreeDictionary<Chunk_t, FreeList_t>::begin_sweep_dict_census(double coalSurplusPercent,
1055 float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) {
1056 BeginSweepClosure<Chunk_t, FreeList_t> bsc(coalSurplusPercent, inter_sweep_current,
1057 inter_sweep_estimate,
1058 intra_sweep_estimate);
1059 bsc.do_tree(root());
1060 }
1061
1062 // Closures and methods for calculating total bytes returned to the
1063 // free lists in the tree.
1064 #ifndef PRODUCT
1065 template <class Chunk_t, class FreeList_t>
1066 class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1067 public:
1068 void do_list(FreeList_t* fl) {
1069 fl->set_returned_bytes(0);
1070 }
1071 };
1072
1073 template <class Chunk_t, class FreeList_t>
1074 void BinaryTreeDictionary<Chunk_t, FreeList_t>::initialize_dict_returned_bytes() {
1075 InitializeDictReturnedBytesClosure<Chunk_t, FreeList_t> idrb;
1076 idrb.do_tree(root());
1077 }
1078
1079 template <class Chunk_t, class FreeList_t>
1080 class ReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1081 size_t _dict_returned_bytes;
1082 public:
1083 ReturnedBytesClosure() { _dict_returned_bytes = 0; }
1084 void do_list(FreeList_t* fl) {
1085 _dict_returned_bytes += fl->returned_bytes();
1086 }
1087 size_t dict_returned_bytes() { return _dict_returned_bytes; }
1088 };
1089
1090 template <class Chunk_t, class FreeList_t>
1091 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_dict_returned_bytes() {
1092 ReturnedBytesClosure<Chunk_t, FreeList_t> rbc;
1093 rbc.do_tree(root());
1094
1095 return rbc.dict_returned_bytes();
1096 }
1097
1098 // Count the number of entries in the tree.
1099 template <class Chunk_t, class FreeList_t>
1100 class treeCountClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
1101 public:
1102 uint count;
1103 treeCountClosure(uint c) { count = c; }
1104 void do_list(FreeList_t* fl) {
1105 count++;
1106 }
1107 };
1108
1109 template <class Chunk_t, class FreeList_t>
1110 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_count() {
1111 treeCountClosure<Chunk_t, FreeList_t> ctc(0);
1112 ctc.do_tree(root());
1113 return ctc.count;
1114 }
1115 #endif // PRODUCT
1116
1117 // Calculate surpluses for the lists in the tree.
1118 template <class Chunk_t, class FreeList_t>
1119 class setTreeSurplusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1120 double percentage;
1121 public:
1122 setTreeSurplusClosure(double v) { percentage = v; }
1123 void do_list(FreeList<Chunk_t>* fl) {}
1124
1125 #if INCLUDE_ALL_GCS
1126 void do_list(AdaptiveFreeList<Chunk_t>* fl) {
1127 double splitSurplusPercent = percentage;
1128 fl->set_surplus(fl->count() -
1129 (ssize_t)((double)fl->desired() * splitSurplusPercent));
1130 }
1131 #endif // INCLUDE_ALL_GCS
1132 };
1133
1134 template <class Chunk_t, class FreeList_t>
1135 void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_surplus(double splitSurplusPercent) {
1136 setTreeSurplusClosure<Chunk_t, FreeList_t> sts(splitSurplusPercent);
1137 sts.do_tree(root());
1138 }
1139
1140 // Set hints for the lists in the tree.
1141 template <class Chunk_t, class FreeList_t>
1142 class setTreeHintsClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
1143 size_t hint;
1144 public:
1145 setTreeHintsClosure(size_t v) { hint = v; }
1146 void do_list(FreeList<Chunk_t>* fl) {}
1147
1148 #if INCLUDE_ALL_GCS
1149 void do_list(AdaptiveFreeList<Chunk_t>* fl) {
1150 fl->set_hint(hint);
1151 assert(fl->hint() == 0 || fl->hint() > fl->size(),
1152 "Current hint is inconsistent");
1153 if (fl->surplus() > 0) {
1154 hint = fl->size();
1155 }
1156 }
1157 #endif // INCLUDE_ALL_GCS
1158 };
1159
1160 template <class Chunk_t, class FreeList_t>
1161 void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_hints(void) {
1162 setTreeHintsClosure<Chunk_t, FreeList_t> sth(0);
1163 sth.do_tree(root());
1164 }
1165
1166 // Save count before previous sweep and splits and coalesces.
1167 template <class Chunk_t, class FreeList_t>
1168 class clearTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1169 void do_list(FreeList<Chunk_t>* fl) {}
1170
1171 #if INCLUDE_ALL_GCS
1172 void do_list(AdaptiveFreeList<Chunk_t>* fl) {
1173 fl->set_prev_sweep(fl->count());
1174 fl->set_coal_births(0);
1175 fl->set_coal_deaths(0);
1176 fl->set_split_births(0);
1177 fl->set_split_deaths(0);
1178 }
1179 #endif // INCLUDE_ALL_GCS
1180 };
1181
1182 template <class Chunk_t, class FreeList_t>
1183 void BinaryTreeDictionary<Chunk_t, FreeList_t>::clear_tree_census(void) {
1184 clearTreeCensusClosure<Chunk_t, FreeList_t> ctc;
1185 ctc.do_tree(root());
1186 }
1187
1188 // Do reporting and post sweep clean up.
1189 template <class Chunk_t, class FreeList_t>
1190 void BinaryTreeDictionary<Chunk_t, FreeList_t>::end_sweep_dict_census(double splitSurplusPercent) {
1191 // Does walking the tree 3 times hurt?
1192 set_tree_surplus(splitSurplusPercent);
1193 set_tree_hints();
1194 if (PrintGC && Verbose) {
1195 report_statistics();
1196 }
1197 clear_tree_census();
1198 }
1199
1200 // Print summary statistics
1201 template <class Chunk_t, class FreeList_t>
1202 void BinaryTreeDictionary<Chunk_t, FreeList_t>::report_statistics() const {
1203 FreeBlockDictionary<Chunk_t>::verify_par_locked();
1204 gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
1205 "------------------------------------\n");
1206 size_t total_size = total_chunk_size(debug_only(NULL));
1207 size_t free_blocks = num_free_blocks();
1208 gclog_or_tty->print("Total Free Space: " SIZE_FORMAT "\n", total_size);
1209 gclog_or_tty->print("Max Chunk Size: " SIZE_FORMAT "\n", max_chunk_size());
1210 gclog_or_tty->print("Number of Blocks: " SIZE_FORMAT "\n", free_blocks);
1211 if (free_blocks > 0) {
1212 gclog_or_tty->print("Av. Block Size: " SIZE_FORMAT "\n", total_size/free_blocks);
1213 }
1214 gclog_or_tty->print("Tree Height: " SIZE_FORMAT "\n", tree_height());
1215 }
1216
1217 // Print census information - counts, births, deaths, etc.
1218 // for each list in the tree. Also print some summary
1219 // information.
1220 template <class Chunk_t, class FreeList_t>
1221 class PrintTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1222 int _print_line;
1223 size_t _total_free;
1224 FreeList_t _total;
1225
1226 public:
1227 PrintTreeCensusClosure() {
1228 _print_line = 0;
1229 _total_free = 0;
1230 }
1231 FreeList_t* total() { return &_total; }
1232 size_t total_free() { return _total_free; }
1233 void do_list(FreeList<Chunk_t>* fl) {
1234 if (++_print_line >= 40) {
1235 FreeList_t::print_labels_on(gclog_or_tty, "size");
1236 _print_line = 0;
1237 }
1238 fl->print_on(gclog_or_tty);
1239 _total_free += fl->count() * fl->size() ;
1240 total()->set_count( total()->count() + fl->count() );
1241 }
1242
1243 #if INCLUDE_ALL_GCS
1244 void do_list(AdaptiveFreeList<Chunk_t>* fl) {
1245 if (++_print_line >= 40) {
1246 FreeList_t::print_labels_on(gclog_or_tty, "size");
1247 _print_line = 0;
1248 }
1249 fl->print_on(gclog_or_tty);
1250 _total_free += fl->count() * fl->size() ;
1251 total()->set_count( total()->count() + fl->count() );
1252 total()->set_bfr_surp( total()->bfr_surp() + fl->bfr_surp() );
1253 total()->set_surplus( total()->split_deaths() + fl->surplus() );
1254 total()->set_desired( total()->desired() + fl->desired() );
1255 total()->set_prev_sweep( total()->prev_sweep() + fl->prev_sweep() );
1256 total()->set_before_sweep(total()->before_sweep() + fl->before_sweep());
1257 total()->set_coal_births( total()->coal_births() + fl->coal_births() );
1258 total()->set_coal_deaths( total()->coal_deaths() + fl->coal_deaths() );
1259 total()->set_split_births(total()->split_births() + fl->split_births());
1260 total()->set_split_deaths(total()->split_deaths() + fl->split_deaths());
1261 }
1262 #endif // INCLUDE_ALL_GCS
1263 };
1264
1265 template <class Chunk_t, class FreeList_t>
1266 void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_dict_census(void) const {
1267
1268 gclog_or_tty->print("\nBinaryTree\n");
1269 FreeList_t::print_labels_on(gclog_or_tty, "size");
1270 PrintTreeCensusClosure<Chunk_t, FreeList_t> ptc;
1271 ptc.do_tree(root());
1272
1273 FreeList_t* total = ptc.total();
1274 FreeList_t::print_labels_on(gclog_or_tty, " ");
1275 }
1276
1277 #if INCLUDE_ALL_GCS
1278 template <>
1279 void AFLBinaryTreeDictionary::print_dict_census(void) const {
1280
1281 gclog_or_tty->print("\nBinaryTree\n");
1282 AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
1283 PrintTreeCensusClosure<FreeChunk, AdaptiveFreeList<FreeChunk> > ptc;
1284 ptc.do_tree(root());
1285
1286 AdaptiveFreeList<FreeChunk>* total = ptc.total();
1287 AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, " ");
1288 total->print_on(gclog_or_tty, "TOTAL\t");
1289 gclog_or_tty->print(
1290 "total_free(words): " SIZE_FORMAT_W(16)
1291 " growth: %8.5f deficit: %8.5f\n",
1292 ptc.total_free(),
1293 (double)(total->split_births() + total->coal_births()
1294 - total->split_deaths() - total->coal_deaths())
1295 /(total->prev_sweep() != 0 ? (double)total->prev_sweep() : 1.0),
1296 (double)(total->desired() - total->count())
1297 /(total->desired() != 0 ? (double)total->desired() : 1.0));
1298 }
1299 #endif // INCLUDE_ALL_GCS
1300
1301 template <class Chunk_t, class FreeList_t>
1302 class PrintFreeListsClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1303 outputStream* _st;
1304 int _print_line;
1305
1306 public:
1307 PrintFreeListsClosure(outputStream* st) {
1308 _st = st;
1309 _print_line = 0;
1310 }
1311 void do_list(FreeList_t* fl) {
1312 if (++_print_line >= 40) {
1313 FreeList_t::print_labels_on(_st, "size");
1314 _print_line = 0;
1315 }
1316 fl->print_on(gclog_or_tty);
1317 size_t sz = fl->size();
1318 for (Chunk_t* fc = fl->head(); fc != NULL;
1319 fc = fc->next()) {
1320 _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ") %s",
1321 p2i(fc), p2i((HeapWord*)fc + sz),
1322 fc->cantCoalesce() ? "\t CC" : "");
1323 }
1324 }
1325 };
1326
1327 template <class Chunk_t, class FreeList_t>
1328 void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_free_lists(outputStream* st) const {
1329
1330 FreeList_t::print_labels_on(st, "size");
1331 PrintFreeListsClosure<Chunk_t, FreeList_t> pflc(st);
1332 pflc.do_tree(root());
1333 }
1334
1335 // Verify the following tree invariants:
1336 // . _root has no parent
1337 // . parent and child point to each other
1338 // . each node's key correctly related to that of its child(ren)
1339 template <class Chunk_t, class FreeList_t>
1340 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree() const {
1341 guarantee(root() == NULL || total_free_blocks() == 0 ||
1342 total_size() != 0, "_total_size should't be 0?");
1343 guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
1344 verify_tree_helper(root());
1345 }
1346
1347 template <class Chunk_t, class FreeList_t>
1348 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_prev_free_ptrs(TreeList<Chunk_t, FreeList_t>* tl) {
1349 size_t ct = 0;
1350 for (Chunk_t* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
1351 ct++;
1352 assert(curFC->prev() == NULL || curFC->prev()->is_free(),
1353 "Chunk should be free");
1354 }
1355 return ct;
1356 }
1357
1358 // Note: this helper is recursive rather than iterative, so use with
1359 // caution on very deep trees; and watch out for stack overflow errors;
1360 // In general, to be used only for debugging.
1361 template <class Chunk_t, class FreeList_t>
1362 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
1363 if (tl == NULL)
1364 return;
1365 guarantee(tl->size() != 0, "A list must has a size");
1366 guarantee(tl->left() == NULL || tl->left()->parent() == tl,
1367 "parent<-/->left");
1368 guarantee(tl->right() == NULL || tl->right()->parent() == tl,
1369 "parent<-/->right");;
1370 guarantee(tl->left() == NULL || tl->left()->size() < tl->size(),
1371 "parent !> left");
1372 guarantee(tl->right() == NULL || tl->right()->size() > tl->size(),
1373 "parent !< left");
1374 guarantee(tl->head() == NULL || tl->head()->is_free(), "!Free");
1375 guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
1376 "list inconsistency");
1377 guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
1378 "list count is inconsistent");
1379 guarantee(tl->count() > 1 || tl->head() == tl->tail(),
1380 "list is incorrectly constructed");
1381 size_t count = verify_prev_free_ptrs(tl);
1382 guarantee(count == (size_t)tl->count(), "Node count is incorrect");
1383 if (tl->head() != NULL) {
1384 tl->head_as_TreeChunk()->verify_tree_chunk_list();
1385 }
1386 verify_tree_helper(tl->left());
1387 verify_tree_helper(tl->right());
1388 }
1389
1390 template <class Chunk_t, class FreeList_t>
1391 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify() const {
1392 verify_tree();
1393 guarantee(total_size() == total_size_in_tree(root()), "Total Size inconsistency");
1394 }
1395
1396 template class TreeList<Metablock, FreeList<Metablock> >;
1397 template class BinaryTreeDictionary<Metablock, FreeList<Metablock> >;
1398 template class TreeChunk<Metablock, FreeList<Metablock> >;
1399
1400 template class TreeList<Metachunk, FreeList<Metachunk> >;
1401 template class BinaryTreeDictionary<Metachunk, FreeList<Metachunk> >;
1402 template class TreeChunk<Metachunk, FreeList<Metachunk> >;
1403
1404
1405 #if INCLUDE_ALL_GCS
1406 // Explicitly instantiate these types for FreeChunk.
1407 template class TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >;
1408 template class BinaryTreeDictionary<FreeChunk, AdaptiveFreeList<FreeChunk> >;
1409 template class TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >;
1410
1411 #endif // INCLUDE_ALL_GCS

mercurial