src/cpu/x86/vm/macroAssembler_x86.hpp

changeset 0
f90c822e73f8
child 6876
710a3c8b516e
equal deleted inserted replaced
-1:000000000000 0:f90c822e73f8
1 /*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
27
28 #include "asm/assembler.hpp"
29 #include "utilities/macros.hpp"
30 #include "runtime/rtmLocking.hpp"
31
32
33 // MacroAssembler extends Assembler by frequently used macros.
34 //
35 // Instructions for which a 'better' code sequence exists depending
36 // on arguments should also go in here.
37
38 class MacroAssembler: public Assembler {
39 friend class LIR_Assembler;
40 friend class Runtime1; // as_Address()
41
42 protected:
43
44 Address as_Address(AddressLiteral adr);
45 Address as_Address(ArrayAddress adr);
46
47 // Support for VM calls
48 //
49 // This is the base routine called by the different versions of call_VM_leaf. The interpreter
50 // may customize this version by overriding it for its purposes (e.g., to save/restore
51 // additional registers when doing a VM call).
52 #ifdef CC_INTERP
53 // c++ interpreter never wants to use interp_masm version of call_VM
54 #define VIRTUAL
55 #else
56 #define VIRTUAL virtual
57 #endif
58
59 VIRTUAL void call_VM_leaf_base(
60 address entry_point, // the entry point
61 int number_of_arguments // the number of arguments to pop after the call
62 );
63
64 // This is the base routine called by the different versions of call_VM. The interpreter
65 // may customize this version by overriding it for its purposes (e.g., to save/restore
66 // additional registers when doing a VM call).
67 //
68 // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
69 // returns the register which contains the thread upon return. If a thread register has been
70 // specified, the return value will correspond to that register. If no last_java_sp is specified
71 // (noreg) than rsp will be used instead.
72 VIRTUAL void call_VM_base( // returns the register containing the thread upon return
73 Register oop_result, // where an oop-result ends up if any; use noreg otherwise
74 Register java_thread, // the thread if computed before ; use noreg otherwise
75 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
76 address entry_point, // the entry point
77 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call
78 bool check_exceptions // whether to check for pending exceptions after return
79 );
80
81 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
82 // The implementation is only non-empty for the InterpreterMacroAssembler,
83 // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
84 virtual void check_and_handle_popframe(Register java_thread);
85 virtual void check_and_handle_earlyret(Register java_thread);
86
87 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
88
89 // helpers for FPU flag access
90 // tmp is a temporary register, if none is available use noreg
91 void save_rax (Register tmp);
92 void restore_rax(Register tmp);
93
94 public:
95 MacroAssembler(CodeBuffer* code) : Assembler(code) {}
96
97 // Support for NULL-checks
98 //
99 // Generates code that causes a NULL OS exception if the content of reg is NULL.
100 // If the accessed location is M[reg + offset] and the offset is known, provide the
101 // offset. No explicit code generation is needed if the offset is within a certain
102 // range (0 <= offset <= page_size).
103
104 void null_check(Register reg, int offset = -1);
105 static bool needs_explicit_null_check(intptr_t offset);
106
107 // Required platform-specific helpers for Label::patch_instructions.
108 // They _shadow_ the declarations in AbstractAssembler, which are undefined.
109 void pd_patch_instruction(address branch, address target) {
110 unsigned char op = branch[0];
111 assert(op == 0xE8 /* call */ ||
112 op == 0xE9 /* jmp */ ||
113 op == 0xEB /* short jmp */ ||
114 (op & 0xF0) == 0x70 /* short jcc */ ||
115 op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
116 op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
117 "Invalid opcode at patch point");
118
119 if (op == 0xEB || (op & 0xF0) == 0x70) {
120 // short offset operators (jmp and jcc)
121 char* disp = (char*) &branch[1];
122 int imm8 = target - (address) &disp[1];
123 guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
124 *disp = imm8;
125 } else {
126 int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
127 int imm32 = target - (address) &disp[1];
128 *disp = imm32;
129 }
130 }
131
132 // The following 4 methods return the offset of the appropriate move instruction
133
134 // Support for fast byte/short loading with zero extension (depending on particular CPU)
135 int load_unsigned_byte(Register dst, Address src);
136 int load_unsigned_short(Register dst, Address src);
137
138 // Support for fast byte/short loading with sign extension (depending on particular CPU)
139 int load_signed_byte(Register dst, Address src);
140 int load_signed_short(Register dst, Address src);
141
142 // Support for sign-extension (hi:lo = extend_sign(lo))
143 void extend_sign(Register hi, Register lo);
144
145 // Load and store values by size and signed-ness
146 void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
147 void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
148
149 // Support for inc/dec with optimal instruction selection depending on value
150
151 void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
152 void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
153
154 void decrementl(Address dst, int value = 1);
155 void decrementl(Register reg, int value = 1);
156
157 void decrementq(Register reg, int value = 1);
158 void decrementq(Address dst, int value = 1);
159
160 void incrementl(Address dst, int value = 1);
161 void incrementl(Register reg, int value = 1);
162
163 void incrementq(Register reg, int value = 1);
164 void incrementq(Address dst, int value = 1);
165
166 // Support optimal SSE move instructions.
167 void movflt(XMMRegister dst, XMMRegister src) {
168 if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
169 else { movss (dst, src); return; }
170 }
171 void movflt(XMMRegister dst, Address src) { movss(dst, src); }
172 void movflt(XMMRegister dst, AddressLiteral src);
173 void movflt(Address dst, XMMRegister src) { movss(dst, src); }
174
175 void movdbl(XMMRegister dst, XMMRegister src) {
176 if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
177 else { movsd (dst, src); return; }
178 }
179
180 void movdbl(XMMRegister dst, AddressLiteral src);
181
182 void movdbl(XMMRegister dst, Address src) {
183 if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
184 else { movlpd(dst, src); return; }
185 }
186 void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
187
188 void incrementl(AddressLiteral dst);
189 void incrementl(ArrayAddress dst);
190
191 void incrementq(AddressLiteral dst);
192
193 // Alignment
194 void align(int modulus);
195
196 // A 5 byte nop that is safe for patching (see patch_verified_entry)
197 void fat_nop();
198
199 // Stack frame creation/removal
200 void enter();
201 void leave();
202
203 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
204 // The pointer will be loaded into the thread register.
205 void get_thread(Register thread);
206
207
208 // Support for VM calls
209 //
210 // It is imperative that all calls into the VM are handled via the call_VM macros.
211 // They make sure that the stack linkage is setup correctly. call_VM's correspond
212 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
213
214
215 void call_VM(Register oop_result,
216 address entry_point,
217 bool check_exceptions = true);
218 void call_VM(Register oop_result,
219 address entry_point,
220 Register arg_1,
221 bool check_exceptions = true);
222 void call_VM(Register oop_result,
223 address entry_point,
224 Register arg_1, Register arg_2,
225 bool check_exceptions = true);
226 void call_VM(Register oop_result,
227 address entry_point,
228 Register arg_1, Register arg_2, Register arg_3,
229 bool check_exceptions = true);
230
231 // Overloadings with last_Java_sp
232 void call_VM(Register oop_result,
233 Register last_java_sp,
234 address entry_point,
235 int number_of_arguments = 0,
236 bool check_exceptions = true);
237 void call_VM(Register oop_result,
238 Register last_java_sp,
239 address entry_point,
240 Register arg_1, bool
241 check_exceptions = true);
242 void call_VM(Register oop_result,
243 Register last_java_sp,
244 address entry_point,
245 Register arg_1, Register arg_2,
246 bool check_exceptions = true);
247 void call_VM(Register oop_result,
248 Register last_java_sp,
249 address entry_point,
250 Register arg_1, Register arg_2, Register arg_3,
251 bool check_exceptions = true);
252
253 void get_vm_result (Register oop_result, Register thread);
254 void get_vm_result_2(Register metadata_result, Register thread);
255
256 // These always tightly bind to MacroAssembler::call_VM_base
257 // bypassing the virtual implementation
258 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
259 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
260 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
261 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
262 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
263
264 void call_VM_leaf(address entry_point,
265 int number_of_arguments = 0);
266 void call_VM_leaf(address entry_point,
267 Register arg_1);
268 void call_VM_leaf(address entry_point,
269 Register arg_1, Register arg_2);
270 void call_VM_leaf(address entry_point,
271 Register arg_1, Register arg_2, Register arg_3);
272
273 // These always tightly bind to MacroAssembler::call_VM_leaf_base
274 // bypassing the virtual implementation
275 void super_call_VM_leaf(address entry_point);
276 void super_call_VM_leaf(address entry_point, Register arg_1);
277 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
278 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
279 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
280
281 // last Java Frame (fills frame anchor)
282 void set_last_Java_frame(Register thread,
283 Register last_java_sp,
284 Register last_java_fp,
285 address last_java_pc);
286
287 // thread in the default location (r15_thread on 64bit)
288 void set_last_Java_frame(Register last_java_sp,
289 Register last_java_fp,
290 address last_java_pc);
291
292 void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
293
294 // thread in the default location (r15_thread on 64bit)
295 void reset_last_Java_frame(bool clear_fp, bool clear_pc);
296
297 // Stores
298 void store_check(Register obj); // store check for obj - register is destroyed afterwards
299 void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed)
300
301 #if INCLUDE_ALL_GCS
302
303 void g1_write_barrier_pre(Register obj,
304 Register pre_val,
305 Register thread,
306 Register tmp,
307 bool tosca_live,
308 bool expand_call);
309
310 void g1_write_barrier_post(Register store_addr,
311 Register new_val,
312 Register thread,
313 Register tmp,
314 Register tmp2);
315
316 #endif // INCLUDE_ALL_GCS
317
318 // split store_check(Register obj) to enhance instruction interleaving
319 void store_check_part_1(Register obj);
320 void store_check_part_2(Register obj);
321
322 // C 'boolean' to Java boolean: x == 0 ? 0 : 1
323 void c2bool(Register x);
324
325 // C++ bool manipulation
326
327 void movbool(Register dst, Address src);
328 void movbool(Address dst, bool boolconst);
329 void movbool(Address dst, Register src);
330 void testbool(Register dst);
331
332 // oop manipulations
333 void load_klass(Register dst, Register src);
334 void store_klass(Register dst, Register src);
335
336 void load_heap_oop(Register dst, Address src);
337 void load_heap_oop_not_null(Register dst, Address src);
338 void store_heap_oop(Address dst, Register src);
339 void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
340
341 // Used for storing NULL. All other oop constants should be
342 // stored using routines that take a jobject.
343 void store_heap_oop_null(Address dst);
344
345 void load_prototype_header(Register dst, Register src);
346
347 #ifdef _LP64
348 void store_klass_gap(Register dst, Register src);
349
350 // This dummy is to prevent a call to store_heap_oop from
351 // converting a zero (like NULL) into a Register by giving
352 // the compiler two choices it can't resolve
353
354 void store_heap_oop(Address dst, void* dummy);
355
356 void encode_heap_oop(Register r);
357 void decode_heap_oop(Register r);
358 void encode_heap_oop_not_null(Register r);
359 void decode_heap_oop_not_null(Register r);
360 void encode_heap_oop_not_null(Register dst, Register src);
361 void decode_heap_oop_not_null(Register dst, Register src);
362
363 void set_narrow_oop(Register dst, jobject obj);
364 void set_narrow_oop(Address dst, jobject obj);
365 void cmp_narrow_oop(Register dst, jobject obj);
366 void cmp_narrow_oop(Address dst, jobject obj);
367
368 void encode_klass_not_null(Register r);
369 void decode_klass_not_null(Register r);
370 void encode_klass_not_null(Register dst, Register src);
371 void decode_klass_not_null(Register dst, Register src);
372 void set_narrow_klass(Register dst, Klass* k);
373 void set_narrow_klass(Address dst, Klass* k);
374 void cmp_narrow_klass(Register dst, Klass* k);
375 void cmp_narrow_klass(Address dst, Klass* k);
376
377 // Returns the byte size of the instructions generated by decode_klass_not_null()
378 // when compressed klass pointers are being used.
379 static int instr_size_for_decode_klass_not_null();
380
381 // if heap base register is used - reinit it with the correct value
382 void reinit_heapbase();
383
384 DEBUG_ONLY(void verify_heapbase(const char* msg);)
385
386 #endif // _LP64
387
388 // Int division/remainder for Java
389 // (as idivl, but checks for special case as described in JVM spec.)
390 // returns idivl instruction offset for implicit exception handling
391 int corrected_idivl(Register reg);
392
393 // Long division/remainder for Java
394 // (as idivq, but checks for special case as described in JVM spec.)
395 // returns idivq instruction offset for implicit exception handling
396 int corrected_idivq(Register reg);
397
398 void int3();
399
400 // Long operation macros for a 32bit cpu
401 // Long negation for Java
402 void lneg(Register hi, Register lo);
403
404 // Long multiplication for Java
405 // (destroys contents of eax, ebx, ecx and edx)
406 void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
407
408 // Long shifts for Java
409 // (semantics as described in JVM spec.)
410 void lshl(Register hi, Register lo); // hi:lo << (rcx & 0x3f)
411 void lshr(Register hi, Register lo, bool sign_extension = false); // hi:lo >> (rcx & 0x3f)
412
413 // Long compare for Java
414 // (semantics as described in JVM spec.)
415 void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
416
417
418 // misc
419
420 // Sign extension
421 void sign_extend_short(Register reg);
422 void sign_extend_byte(Register reg);
423
424 // Division by power of 2, rounding towards 0
425 void division_with_shift(Register reg, int shift_value);
426
427 // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
428 //
429 // CF (corresponds to C0) if x < y
430 // PF (corresponds to C2) if unordered
431 // ZF (corresponds to C3) if x = y
432 //
433 // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
434 // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
435 void fcmp(Register tmp);
436 // Variant of the above which allows y to be further down the stack
437 // and which only pops x and y if specified. If pop_right is
438 // specified then pop_left must also be specified.
439 void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
440
441 // Floating-point comparison for Java
442 // Compares the top-most stack entries on the FPU stack and stores the result in dst.
443 // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
444 // (semantics as described in JVM spec.)
445 void fcmp2int(Register dst, bool unordered_is_less);
446 // Variant of the above which allows y to be further down the stack
447 // and which only pops x and y if specified. If pop_right is
448 // specified then pop_left must also be specified.
449 void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
450
451 // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
452 // tmp is a temporary register, if none is available use noreg
453 void fremr(Register tmp);
454
455
456 // same as fcmp2int, but using SSE2
457 void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
458 void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
459
460 // Inlined sin/cos generator for Java; must not use CPU instruction
461 // directly on Intel as it does not have high enough precision
462 // outside of the range [-pi/4, pi/4]. Extra argument indicate the
463 // number of FPU stack slots in use; all but the topmost will
464 // require saving if a slow case is necessary. Assumes argument is
465 // on FP TOS; result is on FP TOS. No cpu registers are changed by
466 // this code.
467 void trigfunc(char trig, int num_fpu_regs_in_use = 1);
468
469 // branch to L if FPU flag C2 is set/not set
470 // tmp is a temporary register, if none is available use noreg
471 void jC2 (Register tmp, Label& L);
472 void jnC2(Register tmp, Label& L);
473
474 // Pop ST (ffree & fincstp combined)
475 void fpop();
476
477 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
478 void push_fTOS();
479
480 // pops double TOS element from CPU stack and pushes on FPU stack
481 void pop_fTOS();
482
483 void empty_FPU_stack();
484
485 void push_IU_state();
486 void pop_IU_state();
487
488 void push_FPU_state();
489 void pop_FPU_state();
490
491 void push_CPU_state();
492 void pop_CPU_state();
493
494 // Round up to a power of two
495 void round_to(Register reg, int modulus);
496
497 // Callee saved registers handling
498 void push_callee_saved_registers();
499 void pop_callee_saved_registers();
500
501 // allocation
502 void eden_allocate(
503 Register obj, // result: pointer to object after successful allocation
504 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
505 int con_size_in_bytes, // object size in bytes if known at compile time
506 Register t1, // temp register
507 Label& slow_case // continuation point if fast allocation fails
508 );
509 void tlab_allocate(
510 Register obj, // result: pointer to object after successful allocation
511 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
512 int con_size_in_bytes, // object size in bytes if known at compile time
513 Register t1, // temp register
514 Register t2, // temp register
515 Label& slow_case // continuation point if fast allocation fails
516 );
517 Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
518 void incr_allocated_bytes(Register thread,
519 Register var_size_in_bytes, int con_size_in_bytes,
520 Register t1 = noreg);
521
522 // interface method calling
523 void lookup_interface_method(Register recv_klass,
524 Register intf_klass,
525 RegisterOrConstant itable_index,
526 Register method_result,
527 Register scan_temp,
528 Label& no_such_interface);
529
530 // virtual method calling
531 void lookup_virtual_method(Register recv_klass,
532 RegisterOrConstant vtable_index,
533 Register method_result);
534
535 // Test sub_klass against super_klass, with fast and slow paths.
536
537 // The fast path produces a tri-state answer: yes / no / maybe-slow.
538 // One of the three labels can be NULL, meaning take the fall-through.
539 // If super_check_offset is -1, the value is loaded up from super_klass.
540 // No registers are killed, except temp_reg.
541 void check_klass_subtype_fast_path(Register sub_klass,
542 Register super_klass,
543 Register temp_reg,
544 Label* L_success,
545 Label* L_failure,
546 Label* L_slow_path,
547 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
548
549 // The rest of the type check; must be wired to a corresponding fast path.
550 // It does not repeat the fast path logic, so don't use it standalone.
551 // The temp_reg and temp2_reg can be noreg, if no temps are available.
552 // Updates the sub's secondary super cache as necessary.
553 // If set_cond_codes, condition codes will be Z on success, NZ on failure.
554 void check_klass_subtype_slow_path(Register sub_klass,
555 Register super_klass,
556 Register temp_reg,
557 Register temp2_reg,
558 Label* L_success,
559 Label* L_failure,
560 bool set_cond_codes = false);
561
562 // Simplified, combined version, good for typical uses.
563 // Falls through on failure.
564 void check_klass_subtype(Register sub_klass,
565 Register super_klass,
566 Register temp_reg,
567 Label& L_success);
568
569 // method handles (JSR 292)
570 Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
571
572 //----
573 void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
574
575 // Debugging
576
577 // only if +VerifyOops
578 // TODO: Make these macros with file and line like sparc version!
579 void verify_oop(Register reg, const char* s = "broken oop");
580 void verify_oop_addr(Address addr, const char * s = "broken oop addr");
581
582 // TODO: verify method and klass metadata (compare against vptr?)
583 void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
584 void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
585
586 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
587 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
588
589 // only if +VerifyFPU
590 void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
591
592 // Verify or restore cpu control state after JNI call
593 void restore_cpu_control_state_after_jni();
594
595 // prints msg, dumps registers and stops execution
596 void stop(const char* msg);
597
598 // prints msg and continues
599 void warn(const char* msg);
600
601 // dumps registers and other state
602 void print_state();
603
604 static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
605 static void debug64(char* msg, int64_t pc, int64_t regs[]);
606 static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
607 static void print_state64(int64_t pc, int64_t regs[]);
608
609 void os_breakpoint();
610
611 void untested() { stop("untested"); }
612
613 void unimplemented(const char* what = "") { char* b = new char[1024]; jio_snprintf(b, 1024, "unimplemented: %s", what); stop(b); }
614
615 void should_not_reach_here() { stop("should not reach here"); }
616
617 void print_CPU_state();
618
619 // Stack overflow checking
620 void bang_stack_with_offset(int offset) {
621 // stack grows down, caller passes positive offset
622 assert(offset > 0, "must bang with negative offset");
623 movl(Address(rsp, (-offset)), rax);
624 }
625
626 // Writes to stack successive pages until offset reached to check for
627 // stack overflow + shadow pages. Also, clobbers tmp
628 void bang_stack_size(Register size, Register tmp);
629
630 virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
631 Register tmp,
632 int offset);
633
634 // Support for serializing memory accesses between threads
635 void serialize_memory(Register thread, Register tmp);
636
637 void verify_tlab();
638
639 // Biased locking support
640 // lock_reg and obj_reg must be loaded up with the appropriate values.
641 // swap_reg must be rax, and is killed.
642 // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
643 // be killed; if not supplied, push/pop will be used internally to
644 // allocate a temporary (inefficient, avoid if possible).
645 // Optional slow case is for implementations (interpreter and C1) which branch to
646 // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
647 // Returns offset of first potentially-faulting instruction for null
648 // check info (currently consumed only by C1). If
649 // swap_reg_contains_mark is true then returns -1 as it is assumed
650 // the calling code has already passed any potential faults.
651 int biased_locking_enter(Register lock_reg, Register obj_reg,
652 Register swap_reg, Register tmp_reg,
653 bool swap_reg_contains_mark,
654 Label& done, Label* slow_case = NULL,
655 BiasedLockingCounters* counters = NULL);
656 void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
657 #ifdef COMPILER2
658 // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
659 // See full desription in macroAssembler_x86.cpp.
660 void fast_lock(Register obj, Register box, Register tmp,
661 Register scr, Register cx1, Register cx2,
662 BiasedLockingCounters* counters,
663 RTMLockingCounters* rtm_counters,
664 RTMLockingCounters* stack_rtm_counters,
665 Metadata* method_data,
666 bool use_rtm, bool profile_rtm);
667 void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
668 #if INCLUDE_RTM_OPT
669 void rtm_counters_update(Register abort_status, Register rtm_counters);
670 void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
671 void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
672 RTMLockingCounters* rtm_counters,
673 Metadata* method_data);
674 void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
675 RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
676 void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
677 void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
678 void rtm_stack_locking(Register obj, Register tmp, Register scr,
679 Register retry_on_abort_count,
680 RTMLockingCounters* stack_rtm_counters,
681 Metadata* method_data, bool profile_rtm,
682 Label& DONE_LABEL, Label& IsInflated);
683 void rtm_inflated_locking(Register obj, Register box, Register tmp,
684 Register scr, Register retry_on_busy_count,
685 Register retry_on_abort_count,
686 RTMLockingCounters* rtm_counters,
687 Metadata* method_data, bool profile_rtm,
688 Label& DONE_LABEL);
689 #endif
690 #endif
691
692 Condition negate_condition(Condition cond);
693
694 // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
695 // operands. In general the names are modified to avoid hiding the instruction in Assembler
696 // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
697 // here in MacroAssembler. The major exception to this rule is call
698
699 // Arithmetics
700
701
702 void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
703 void addptr(Address dst, Register src);
704
705 void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
706 void addptr(Register dst, int32_t src);
707 void addptr(Register dst, Register src);
708 void addptr(Register dst, RegisterOrConstant src) {
709 if (src.is_constant()) addptr(dst, (int) src.as_constant());
710 else addptr(dst, src.as_register());
711 }
712
713 void andptr(Register dst, int32_t src);
714 void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
715
716 void cmp8(AddressLiteral src1, int imm);
717
718 // renamed to drag out the casting of address to int32_t/intptr_t
719 void cmp32(Register src1, int32_t imm);
720
721 void cmp32(AddressLiteral src1, int32_t imm);
722 // compare reg - mem, or reg - &mem
723 void cmp32(Register src1, AddressLiteral src2);
724
725 void cmp32(Register src1, Address src2);
726
727 #ifndef _LP64
728 void cmpklass(Address dst, Metadata* obj);
729 void cmpklass(Register dst, Metadata* obj);
730 void cmpoop(Address dst, jobject obj);
731 void cmpoop(Register dst, jobject obj);
732 #endif // _LP64
733
734 // NOTE src2 must be the lval. This is NOT an mem-mem compare
735 void cmpptr(Address src1, AddressLiteral src2);
736
737 void cmpptr(Register src1, AddressLiteral src2);
738
739 void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
740 void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
741 // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
742
743 void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
744 void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
745
746 // cmp64 to avoild hiding cmpq
747 void cmp64(Register src1, AddressLiteral src);
748
749 void cmpxchgptr(Register reg, Address adr);
750
751 void locked_cmpxchgptr(Register reg, AddressLiteral adr);
752
753
754 void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
755 void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
756
757
758 void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
759
760 void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
761
762 void shlptr(Register dst, int32_t shift);
763 void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
764
765 void shrptr(Register dst, int32_t shift);
766 void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
767
768 void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
769 void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
770
771 void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
772
773 void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
774 void subptr(Register dst, int32_t src);
775 // Force generation of a 4 byte immediate value even if it fits into 8bit
776 void subptr_imm32(Register dst, int32_t src);
777 void subptr(Register dst, Register src);
778 void subptr(Register dst, RegisterOrConstant src) {
779 if (src.is_constant()) subptr(dst, (int) src.as_constant());
780 else subptr(dst, src.as_register());
781 }
782
783 void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
784 void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
785
786 void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
787 void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
788
789 void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
790
791
792
793 // Helper functions for statistics gathering.
794 // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
795 void cond_inc32(Condition cond, AddressLiteral counter_addr);
796 // Unconditional atomic increment.
797 void atomic_incl(Address counter_addr);
798 void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
799 #ifdef _LP64
800 void atomic_incq(Address counter_addr);
801 void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
802 #endif
803 void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
804 void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
805
806 void lea(Register dst, AddressLiteral adr);
807 void lea(Address dst, AddressLiteral adr);
808 void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
809
810 void leal32(Register dst, Address src) { leal(dst, src); }
811
812 // Import other testl() methods from the parent class or else
813 // they will be hidden by the following overriding declaration.
814 using Assembler::testl;
815 void testl(Register dst, AddressLiteral src);
816
817 void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
818 void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
819 void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
820 void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
821
822 void testptr(Register src, int32_t imm32) { LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
823 void testptr(Register src1, Register src2);
824
825 void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
826 void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
827
828 // Calls
829
830 void call(Label& L, relocInfo::relocType rtype);
831 void call(Register entry);
832
833 // NOTE: this call tranfers to the effective address of entry NOT
834 // the address contained by entry. This is because this is more natural
835 // for jumps/calls.
836 void call(AddressLiteral entry);
837
838 // Emit the CompiledIC call idiom
839 void ic_call(address entry);
840
841 // Jumps
842
843 // NOTE: these jumps tranfer to the effective address of dst NOT
844 // the address contained by dst. This is because this is more natural
845 // for jumps/calls.
846 void jump(AddressLiteral dst);
847 void jump_cc(Condition cc, AddressLiteral dst);
848
849 // 32bit can do a case table jump in one instruction but we no longer allow the base
850 // to be installed in the Address class. This jump will tranfers to the address
851 // contained in the location described by entry (not the address of entry)
852 void jump(ArrayAddress entry);
853
854 // Floating
855
856 void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
857 void andpd(XMMRegister dst, AddressLiteral src);
858
859 void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
860 void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
861 void andps(XMMRegister dst, AddressLiteral src);
862
863 void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
864 void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
865 void comiss(XMMRegister dst, AddressLiteral src);
866
867 void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
868 void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
869 void comisd(XMMRegister dst, AddressLiteral src);
870
871 void fadd_s(Address src) { Assembler::fadd_s(src); }
872 void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
873
874 void fldcw(Address src) { Assembler::fldcw(src); }
875 void fldcw(AddressLiteral src);
876
877 void fld_s(int index) { Assembler::fld_s(index); }
878 void fld_s(Address src) { Assembler::fld_s(src); }
879 void fld_s(AddressLiteral src);
880
881 void fld_d(Address src) { Assembler::fld_d(src); }
882 void fld_d(AddressLiteral src);
883
884 void fld_x(Address src) { Assembler::fld_x(src); }
885 void fld_x(AddressLiteral src);
886
887 void fmul_s(Address src) { Assembler::fmul_s(src); }
888 void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
889
890 void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
891 void ldmxcsr(AddressLiteral src);
892
893 // compute pow(x,y) and exp(x) with x86 instructions. Don't cover
894 // all corner cases and may result in NaN and require fallback to a
895 // runtime call.
896 void fast_pow();
897 void fast_exp();
898 void increase_precision();
899 void restore_precision();
900
901 // computes exp(x). Fallback to runtime call included.
902 void exp_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(true, num_fpu_regs_in_use); }
903 // computes pow(x,y). Fallback to runtime call included.
904 void pow_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(false, num_fpu_regs_in_use); }
905
906 private:
907
908 // call runtime as a fallback for trig functions and pow/exp.
909 void fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use);
910
911 // computes 2^(Ylog2X); Ylog2X in ST(0)
912 void pow_exp_core_encoding();
913
914 // computes pow(x,y) or exp(x). Fallback to runtime call included.
915 void pow_or_exp(bool is_exp, int num_fpu_regs_in_use);
916
917 // these are private because users should be doing movflt/movdbl
918
919 void movss(Address dst, XMMRegister src) { Assembler::movss(dst, src); }
920 void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
921 void movss(XMMRegister dst, Address src) { Assembler::movss(dst, src); }
922 void movss(XMMRegister dst, AddressLiteral src);
923
924 void movlpd(XMMRegister dst, Address src) {Assembler::movlpd(dst, src); }
925 void movlpd(XMMRegister dst, AddressLiteral src);
926
927 public:
928
929 void addsd(XMMRegister dst, XMMRegister src) { Assembler::addsd(dst, src); }
930 void addsd(XMMRegister dst, Address src) { Assembler::addsd(dst, src); }
931 void addsd(XMMRegister dst, AddressLiteral src);
932
933 void addss(XMMRegister dst, XMMRegister src) { Assembler::addss(dst, src); }
934 void addss(XMMRegister dst, Address src) { Assembler::addss(dst, src); }
935 void addss(XMMRegister dst, AddressLiteral src);
936
937 void divsd(XMMRegister dst, XMMRegister src) { Assembler::divsd(dst, src); }
938 void divsd(XMMRegister dst, Address src) { Assembler::divsd(dst, src); }
939 void divsd(XMMRegister dst, AddressLiteral src);
940
941 void divss(XMMRegister dst, XMMRegister src) { Assembler::divss(dst, src); }
942 void divss(XMMRegister dst, Address src) { Assembler::divss(dst, src); }
943 void divss(XMMRegister dst, AddressLiteral src);
944
945 // Move Unaligned Double Quadword
946 void movdqu(Address dst, XMMRegister src) { Assembler::movdqu(dst, src); }
947 void movdqu(XMMRegister dst, Address src) { Assembler::movdqu(dst, src); }
948 void movdqu(XMMRegister dst, XMMRegister src) { Assembler::movdqu(dst, src); }
949 void movdqu(XMMRegister dst, AddressLiteral src);
950
951 // Move Aligned Double Quadword
952 void movdqa(XMMRegister dst, Address src) { Assembler::movdqa(dst, src); }
953 void movdqa(XMMRegister dst, XMMRegister src) { Assembler::movdqa(dst, src); }
954 void movdqa(XMMRegister dst, AddressLiteral src);
955
956 void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
957 void movsd(Address dst, XMMRegister src) { Assembler::movsd(dst, src); }
958 void movsd(XMMRegister dst, Address src) { Assembler::movsd(dst, src); }
959 void movsd(XMMRegister dst, AddressLiteral src);
960
961 void mulsd(XMMRegister dst, XMMRegister src) { Assembler::mulsd(dst, src); }
962 void mulsd(XMMRegister dst, Address src) { Assembler::mulsd(dst, src); }
963 void mulsd(XMMRegister dst, AddressLiteral src);
964
965 void mulss(XMMRegister dst, XMMRegister src) { Assembler::mulss(dst, src); }
966 void mulss(XMMRegister dst, Address src) { Assembler::mulss(dst, src); }
967 void mulss(XMMRegister dst, AddressLiteral src);
968
969 void sqrtsd(XMMRegister dst, XMMRegister src) { Assembler::sqrtsd(dst, src); }
970 void sqrtsd(XMMRegister dst, Address src) { Assembler::sqrtsd(dst, src); }
971 void sqrtsd(XMMRegister dst, AddressLiteral src);
972
973 void sqrtss(XMMRegister dst, XMMRegister src) { Assembler::sqrtss(dst, src); }
974 void sqrtss(XMMRegister dst, Address src) { Assembler::sqrtss(dst, src); }
975 void sqrtss(XMMRegister dst, AddressLiteral src);
976
977 void subsd(XMMRegister dst, XMMRegister src) { Assembler::subsd(dst, src); }
978 void subsd(XMMRegister dst, Address src) { Assembler::subsd(dst, src); }
979 void subsd(XMMRegister dst, AddressLiteral src);
980
981 void subss(XMMRegister dst, XMMRegister src) { Assembler::subss(dst, src); }
982 void subss(XMMRegister dst, Address src) { Assembler::subss(dst, src); }
983 void subss(XMMRegister dst, AddressLiteral src);
984
985 void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
986 void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
987 void ucomiss(XMMRegister dst, AddressLiteral src);
988
989 void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
990 void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
991 void ucomisd(XMMRegister dst, AddressLiteral src);
992
993 // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
994 void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
995 void xorpd(XMMRegister dst, Address src) { Assembler::xorpd(dst, src); }
996 void xorpd(XMMRegister dst, AddressLiteral src);
997
998 // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
999 void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
1000 void xorps(XMMRegister dst, Address src) { Assembler::xorps(dst, src); }
1001 void xorps(XMMRegister dst, AddressLiteral src);
1002
1003 // Shuffle Bytes
1004 void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1005 void pshufb(XMMRegister dst, Address src) { Assembler::pshufb(dst, src); }
1006 void pshufb(XMMRegister dst, AddressLiteral src);
1007 // AVX 3-operands instructions
1008
1009 void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1010 void vaddsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vaddsd(dst, nds, src); }
1011 void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1012
1013 void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1014 void vaddss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vaddss(dst, nds, src); }
1015 void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1016
1017 void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandpd(dst, nds, src, vector256); }
1018 void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vandpd(dst, nds, src, vector256); }
1019 void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
1020
1021 void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandps(dst, nds, src, vector256); }
1022 void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vandps(dst, nds, src, vector256); }
1023 void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
1024
1025 void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1026 void vdivsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vdivsd(dst, nds, src); }
1027 void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1028
1029 void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1030 void vdivss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vdivss(dst, nds, src); }
1031 void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1032
1033 void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1034 void vmulsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vmulsd(dst, nds, src); }
1035 void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1036
1037 void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1038 void vmulss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vmulss(dst, nds, src); }
1039 void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1040
1041 void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1042 void vsubsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vsubsd(dst, nds, src); }
1043 void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1044
1045 void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1046 void vsubss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vsubss(dst, nds, src); }
1047 void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1048
1049 // AVX Vector instructions
1050
1051 void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
1052 void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
1053 void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
1054
1055 void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
1056 void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
1057 void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
1058
1059 void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
1060 if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
1061 Assembler::vpxor(dst, nds, src, vector256);
1062 else
1063 Assembler::vxorpd(dst, nds, src, vector256);
1064 }
1065 void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
1066 if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
1067 Assembler::vpxor(dst, nds, src, vector256);
1068 else
1069 Assembler::vxorpd(dst, nds, src, vector256);
1070 }
1071
1072 // Simple version for AVX2 256bit vectors
1073 void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1074 void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1075
1076 // Move packed integer values from low 128 bit to hign 128 bit in 256 bit vector.
1077 void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1078 if (UseAVX > 1) // vinserti128h is available only in AVX2
1079 Assembler::vinserti128h(dst, nds, src);
1080 else
1081 Assembler::vinsertf128h(dst, nds, src);
1082 }
1083
1084 // Carry-Less Multiplication Quadword
1085 void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1086 // 0x00 - multiply lower 64 bits [0:63]
1087 Assembler::vpclmulqdq(dst, nds, src, 0x00);
1088 }
1089 void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1090 // 0x11 - multiply upper 64 bits [64:127]
1091 Assembler::vpclmulqdq(dst, nds, src, 0x11);
1092 }
1093
1094 // Data
1095
1096 void cmov32( Condition cc, Register dst, Address src);
1097 void cmov32( Condition cc, Register dst, Register src);
1098
1099 void cmov( Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1100
1101 void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1102 void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1103
1104 void movoop(Register dst, jobject obj);
1105 void movoop(Address dst, jobject obj);
1106
1107 void mov_metadata(Register dst, Metadata* obj);
1108 void mov_metadata(Address dst, Metadata* obj);
1109
1110 void movptr(ArrayAddress dst, Register src);
1111 // can this do an lea?
1112 void movptr(Register dst, ArrayAddress src);
1113
1114 void movptr(Register dst, Address src);
1115
1116 #ifdef _LP64
1117 void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1118 #else
1119 void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1120 #endif
1121
1122 void movptr(Register dst, intptr_t src);
1123 void movptr(Register dst, Register src);
1124 void movptr(Address dst, intptr_t src);
1125
1126 void movptr(Address dst, Register src);
1127
1128 void movptr(Register dst, RegisterOrConstant src) {
1129 if (src.is_constant()) movptr(dst, src.as_constant());
1130 else movptr(dst, src.as_register());
1131 }
1132
1133 #ifdef _LP64
1134 // Generally the next two are only used for moving NULL
1135 // Although there are situations in initializing the mark word where
1136 // they could be used. They are dangerous.
1137
1138 // They only exist on LP64 so that int32_t and intptr_t are not the same
1139 // and we have ambiguous declarations.
1140
1141 void movptr(Address dst, int32_t imm32);
1142 void movptr(Register dst, int32_t imm32);
1143 #endif // _LP64
1144
1145 // to avoid hiding movl
1146 void mov32(AddressLiteral dst, Register src);
1147 void mov32(Register dst, AddressLiteral src);
1148
1149 // to avoid hiding movb
1150 void movbyte(ArrayAddress dst, int src);
1151
1152 // Import other mov() methods from the parent class or else
1153 // they will be hidden by the following overriding declaration.
1154 using Assembler::movdl;
1155 using Assembler::movq;
1156 void movdl(XMMRegister dst, AddressLiteral src);
1157 void movq(XMMRegister dst, AddressLiteral src);
1158
1159 // Can push value or effective address
1160 void pushptr(AddressLiteral src);
1161
1162 void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1163 void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1164
1165 void pushoop(jobject obj);
1166 void pushklass(Metadata* obj);
1167
1168 // sign extend as need a l to ptr sized element
1169 void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1170 void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1171
1172 // C2 compiled method's prolog code.
1173 void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1174
1175 // clear memory of size 'cnt' qwords, starting at 'base'.
1176 void clear_mem(Register base, Register cnt, Register rtmp);
1177
1178 // IndexOf strings.
1179 // Small strings are loaded through stack if they cross page boundary.
1180 void string_indexof(Register str1, Register str2,
1181 Register cnt1, Register cnt2,
1182 int int_cnt2, Register result,
1183 XMMRegister vec, Register tmp);
1184
1185 // IndexOf for constant substrings with size >= 8 elements
1186 // which don't need to be loaded through stack.
1187 void string_indexofC8(Register str1, Register str2,
1188 Register cnt1, Register cnt2,
1189 int int_cnt2, Register result,
1190 XMMRegister vec, Register tmp);
1191
1192 // Smallest code: we don't need to load through stack,
1193 // check string tail.
1194
1195 // Compare strings.
1196 void string_compare(Register str1, Register str2,
1197 Register cnt1, Register cnt2, Register result,
1198 XMMRegister vec1);
1199
1200 // Compare char[] arrays.
1201 void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1202 Register limit, Register result, Register chr,
1203 XMMRegister vec1, XMMRegister vec2);
1204
1205 // Fill primitive arrays
1206 void generate_fill(BasicType t, bool aligned,
1207 Register to, Register value, Register count,
1208 Register rtmp, XMMRegister xtmp);
1209
1210 void encode_iso_array(Register src, Register dst, Register len,
1211 XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1212 XMMRegister tmp4, Register tmp5, Register result);
1213
1214 // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1215 void update_byte_crc32(Register crc, Register val, Register table);
1216 void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1217 // Fold 128-bit data chunk
1218 void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1219 void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1220 // Fold 8-bit data
1221 void fold_8bit_crc32(Register crc, Register table, Register tmp);
1222 void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1223
1224 #undef VIRTUAL
1225
1226 };
1227
1228 /**
1229 * class SkipIfEqual:
1230 *
1231 * Instantiating this class will result in assembly code being output that will
1232 * jump around any code emitted between the creation of the instance and it's
1233 * automatic destruction at the end of a scope block, depending on the value of
1234 * the flag passed to the constructor, which will be checked at run-time.
1235 */
1236 class SkipIfEqual {
1237 private:
1238 MacroAssembler* _masm;
1239 Label _label;
1240
1241 public:
1242 SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1243 ~SkipIfEqual();
1244 };
1245
1246 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP

mercurial