src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

changeset 0
f90c822e73f8
child 6876
710a3c8b516e
equal deleted inserted replaced
-1:000000000000 0:f90c822e73f8
1 /*
2 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "asm/macroAssembler.hpp"
27 #include "asm/macroAssembler.inline.hpp"
28 #include "c1/c1_Compilation.hpp"
29 #include "c1/c1_LIRAssembler.hpp"
30 #include "c1/c1_MacroAssembler.hpp"
31 #include "c1/c1_Runtime1.hpp"
32 #include "c1/c1_ValueStack.hpp"
33 #include "ci/ciArrayKlass.hpp"
34 #include "ci/ciInstance.hpp"
35 #include "gc_interface/collectedHeap.hpp"
36 #include "memory/barrierSet.hpp"
37 #include "memory/cardTableModRefBS.hpp"
38 #include "nativeInst_x86.hpp"
39 #include "oops/objArrayKlass.hpp"
40 #include "runtime/sharedRuntime.hpp"
41 #include "vmreg_x86.inline.hpp"
42
43
44 // These masks are used to provide 128-bit aligned bitmasks to the XMM
45 // instructions, to allow sign-masking or sign-bit flipping. They allow
46 // fast versions of NegF/NegD and AbsF/AbsD.
47
48 // Note: 'double' and 'long long' have 32-bits alignment on x86.
49 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
50 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
51 // of 128-bits operands for SSE instructions.
52 jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
53 // Store the value to a 128-bits operand.
54 operand[0] = lo;
55 operand[1] = hi;
56 return operand;
57 }
58
59 // Buffer for 128-bits masks used by SSE instructions.
60 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
61
62 // Static initialization during VM startup.
63 static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
64 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
65 static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
66 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
67
68
69
70 NEEDS_CLEANUP // remove this definitions ?
71 const Register IC_Klass = rax; // where the IC klass is cached
72 const Register SYNC_header = rax; // synchronization header
73 const Register SHIFT_count = rcx; // where count for shift operations must be
74
75 #define __ _masm->
76
77
78 static void select_different_registers(Register preserve,
79 Register extra,
80 Register &tmp1,
81 Register &tmp2) {
82 if (tmp1 == preserve) {
83 assert_different_registers(tmp1, tmp2, extra);
84 tmp1 = extra;
85 } else if (tmp2 == preserve) {
86 assert_different_registers(tmp1, tmp2, extra);
87 tmp2 = extra;
88 }
89 assert_different_registers(preserve, tmp1, tmp2);
90 }
91
92
93
94 static void select_different_registers(Register preserve,
95 Register extra,
96 Register &tmp1,
97 Register &tmp2,
98 Register &tmp3) {
99 if (tmp1 == preserve) {
100 assert_different_registers(tmp1, tmp2, tmp3, extra);
101 tmp1 = extra;
102 } else if (tmp2 == preserve) {
103 assert_different_registers(tmp1, tmp2, tmp3, extra);
104 tmp2 = extra;
105 } else if (tmp3 == preserve) {
106 assert_different_registers(tmp1, tmp2, tmp3, extra);
107 tmp3 = extra;
108 }
109 assert_different_registers(preserve, tmp1, tmp2, tmp3);
110 }
111
112
113
114 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
115 if (opr->is_constant()) {
116 LIR_Const* constant = opr->as_constant_ptr();
117 switch (constant->type()) {
118 case T_INT: {
119 return true;
120 }
121
122 default:
123 return false;
124 }
125 }
126 return false;
127 }
128
129
130 LIR_Opr LIR_Assembler::receiverOpr() {
131 return FrameMap::receiver_opr;
132 }
133
134 LIR_Opr LIR_Assembler::osrBufferPointer() {
135 return FrameMap::as_pointer_opr(receiverOpr()->as_register());
136 }
137
138 //--------------fpu register translations-----------------------
139
140
141 address LIR_Assembler::float_constant(float f) {
142 address const_addr = __ float_constant(f);
143 if (const_addr == NULL) {
144 bailout("const section overflow");
145 return __ code()->consts()->start();
146 } else {
147 return const_addr;
148 }
149 }
150
151
152 address LIR_Assembler::double_constant(double d) {
153 address const_addr = __ double_constant(d);
154 if (const_addr == NULL) {
155 bailout("const section overflow");
156 return __ code()->consts()->start();
157 } else {
158 return const_addr;
159 }
160 }
161
162
163 void LIR_Assembler::set_24bit_FPU() {
164 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
165 }
166
167 void LIR_Assembler::reset_FPU() {
168 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
169 }
170
171 void LIR_Assembler::fpop() {
172 __ fpop();
173 }
174
175 void LIR_Assembler::fxch(int i) {
176 __ fxch(i);
177 }
178
179 void LIR_Assembler::fld(int i) {
180 __ fld_s(i);
181 }
182
183 void LIR_Assembler::ffree(int i) {
184 __ ffree(i);
185 }
186
187 void LIR_Assembler::breakpoint() {
188 __ int3();
189 }
190
191 void LIR_Assembler::push(LIR_Opr opr) {
192 if (opr->is_single_cpu()) {
193 __ push_reg(opr->as_register());
194 } else if (opr->is_double_cpu()) {
195 NOT_LP64(__ push_reg(opr->as_register_hi()));
196 __ push_reg(opr->as_register_lo());
197 } else if (opr->is_stack()) {
198 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
199 } else if (opr->is_constant()) {
200 LIR_Const* const_opr = opr->as_constant_ptr();
201 if (const_opr->type() == T_OBJECT) {
202 __ push_oop(const_opr->as_jobject());
203 } else if (const_opr->type() == T_INT) {
204 __ push_jint(const_opr->as_jint());
205 } else {
206 ShouldNotReachHere();
207 }
208
209 } else {
210 ShouldNotReachHere();
211 }
212 }
213
214 void LIR_Assembler::pop(LIR_Opr opr) {
215 if (opr->is_single_cpu()) {
216 __ pop_reg(opr->as_register());
217 } else {
218 ShouldNotReachHere();
219 }
220 }
221
222 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
223 return addr->base()->is_illegal() && addr->index()->is_illegal();
224 }
225
226 //-------------------------------------------
227
228 Address LIR_Assembler::as_Address(LIR_Address* addr) {
229 return as_Address(addr, rscratch1);
230 }
231
232 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
233 if (addr->base()->is_illegal()) {
234 assert(addr->index()->is_illegal(), "must be illegal too");
235 AddressLiteral laddr((address)addr->disp(), relocInfo::none);
236 if (! __ reachable(laddr)) {
237 __ movptr(tmp, laddr.addr());
238 Address res(tmp, 0);
239 return res;
240 } else {
241 return __ as_Address(laddr);
242 }
243 }
244
245 Register base = addr->base()->as_pointer_register();
246
247 if (addr->index()->is_illegal()) {
248 return Address( base, addr->disp());
249 } else if (addr->index()->is_cpu_register()) {
250 Register index = addr->index()->as_pointer_register();
251 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
252 } else if (addr->index()->is_constant()) {
253 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
254 assert(Assembler::is_simm32(addr_offset), "must be");
255
256 return Address(base, addr_offset);
257 } else {
258 Unimplemented();
259 return Address();
260 }
261 }
262
263
264 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
265 Address base = as_Address(addr);
266 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
267 }
268
269
270 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
271 return as_Address(addr);
272 }
273
274
275 void LIR_Assembler::osr_entry() {
276 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
277 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
278 ValueStack* entry_state = osr_entry->state();
279 int number_of_locks = entry_state->locks_size();
280
281 // we jump here if osr happens with the interpreter
282 // state set up to continue at the beginning of the
283 // loop that triggered osr - in particular, we have
284 // the following registers setup:
285 //
286 // rcx: osr buffer
287 //
288
289 // build frame
290 ciMethod* m = compilation()->method();
291 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
292
293 // OSR buffer is
294 //
295 // locals[nlocals-1..0]
296 // monitors[0..number_of_locks]
297 //
298 // locals is a direct copy of the interpreter frame so in the osr buffer
299 // so first slot in the local array is the last local from the interpreter
300 // and last slot is local[0] (receiver) from the interpreter
301 //
302 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
303 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
304 // in the interpreter frame (the method lock if a sync method)
305
306 // Initialize monitors in the compiled activation.
307 // rcx: pointer to osr buffer
308 //
309 // All other registers are dead at this point and the locals will be
310 // copied into place by code emitted in the IR.
311
312 Register OSR_buf = osrBufferPointer()->as_pointer_register();
313 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
314 int monitor_offset = BytesPerWord * method()->max_locals() +
315 (2 * BytesPerWord) * (number_of_locks - 1);
316 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
317 // the OSR buffer using 2 word entries: first the lock and then
318 // the oop.
319 for (int i = 0; i < number_of_locks; i++) {
320 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
321 #ifdef ASSERT
322 // verify the interpreter's monitor has a non-null object
323 {
324 Label L;
325 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
326 __ jcc(Assembler::notZero, L);
327 __ stop("locked object is NULL");
328 __ bind(L);
329 }
330 #endif
331 __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
332 __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
333 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
334 __ movptr(frame_map()->address_for_monitor_object(i), rbx);
335 }
336 }
337 }
338
339
340 // inline cache check; done before the frame is built.
341 int LIR_Assembler::check_icache() {
342 Register receiver = FrameMap::receiver_opr->as_register();
343 Register ic_klass = IC_Klass;
344 const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
345 const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
346 if (!do_post_padding) {
347 // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
348 while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
349 __ nop();
350 }
351 }
352 int offset = __ offset();
353 __ inline_cache_check(receiver, IC_Klass);
354 assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
355 if (do_post_padding) {
356 // force alignment after the cache check.
357 // It's been verified to be aligned if !VerifyOops
358 __ align(CodeEntryAlignment);
359 }
360 return offset;
361 }
362
363
364 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
365 jobject o = NULL;
366 PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
367 __ movoop(reg, o);
368 patching_epilog(patch, lir_patch_normal, reg, info);
369 }
370
371 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
372 Metadata* o = NULL;
373 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
374 __ mov_metadata(reg, o);
375 patching_epilog(patch, lir_patch_normal, reg, info);
376 }
377
378 // This specifies the rsp decrement needed to build the frame
379 int LIR_Assembler::initial_frame_size_in_bytes() const {
380 // if rounding, must let FrameMap know!
381
382 // The frame_map records size in slots (32bit word)
383
384 // subtract two words to account for return address and link
385 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size;
386 }
387
388
389 int LIR_Assembler::emit_exception_handler() {
390 // if the last instruction is a call (typically to do a throw which
391 // is coming at the end after block reordering) the return address
392 // must still point into the code area in order to avoid assertion
393 // failures when searching for the corresponding bci => add a nop
394 // (was bug 5/14/1999 - gri)
395 __ nop();
396
397 // generate code for exception handler
398 address handler_base = __ start_a_stub(exception_handler_size);
399 if (handler_base == NULL) {
400 // not enough space left for the handler
401 bailout("exception handler overflow");
402 return -1;
403 }
404
405 int offset = code_offset();
406
407 // the exception oop and pc are in rax, and rdx
408 // no other registers need to be preserved, so invalidate them
409 __ invalidate_registers(false, true, true, false, true, true);
410
411 // check that there is really an exception
412 __ verify_not_null_oop(rax);
413
414 // search an exception handler (rax: exception oop, rdx: throwing pc)
415 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
416 __ should_not_reach_here();
417 guarantee(code_offset() - offset <= exception_handler_size, "overflow");
418 __ end_a_stub();
419
420 return offset;
421 }
422
423
424 // Emit the code to remove the frame from the stack in the exception
425 // unwind path.
426 int LIR_Assembler::emit_unwind_handler() {
427 #ifndef PRODUCT
428 if (CommentedAssembly) {
429 _masm->block_comment("Unwind handler");
430 }
431 #endif
432
433 int offset = code_offset();
434
435 // Fetch the exception from TLS and clear out exception related thread state
436 Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
437 NOT_LP64(__ get_thread(rsi));
438 __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
439 __ movptr(Address(thread, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
440 __ movptr(Address(thread, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
441
442 __ bind(_unwind_handler_entry);
443 __ verify_not_null_oop(rax);
444 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
445 __ mov(rbx, rax); // Preserve the exception (rbx is always callee-saved)
446 }
447
448 // Preform needed unlocking
449 MonitorExitStub* stub = NULL;
450 if (method()->is_synchronized()) {
451 monitor_address(0, FrameMap::rax_opr);
452 stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
453 __ unlock_object(rdi, rsi, rax, *stub->entry());
454 __ bind(*stub->continuation());
455 }
456
457 if (compilation()->env()->dtrace_method_probes()) {
458 #ifdef _LP64
459 __ mov(rdi, r15_thread);
460 __ mov_metadata(rsi, method()->constant_encoding());
461 #else
462 __ get_thread(rax);
463 __ movptr(Address(rsp, 0), rax);
464 __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
465 #endif
466 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
467 }
468
469 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
470 __ mov(rax, rbx); // Restore the exception
471 }
472
473 // remove the activation and dispatch to the unwind handler
474 __ remove_frame(initial_frame_size_in_bytes());
475 __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
476
477 // Emit the slow path assembly
478 if (stub != NULL) {
479 stub->emit_code(this);
480 }
481
482 return offset;
483 }
484
485
486 int LIR_Assembler::emit_deopt_handler() {
487 // if the last instruction is a call (typically to do a throw which
488 // is coming at the end after block reordering) the return address
489 // must still point into the code area in order to avoid assertion
490 // failures when searching for the corresponding bci => add a nop
491 // (was bug 5/14/1999 - gri)
492 __ nop();
493
494 // generate code for exception handler
495 address handler_base = __ start_a_stub(deopt_handler_size);
496 if (handler_base == NULL) {
497 // not enough space left for the handler
498 bailout("deopt handler overflow");
499 return -1;
500 }
501
502 int offset = code_offset();
503 InternalAddress here(__ pc());
504
505 __ pushptr(here.addr());
506 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
507 guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
508 __ end_a_stub();
509
510 return offset;
511 }
512
513
514 // This is the fast version of java.lang.String.compare; it has not
515 // OSR-entry and therefore, we generate a slow version for OSR's
516 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
517 __ movptr (rbx, rcx); // receiver is in rcx
518 __ movptr (rax, arg1->as_register());
519
520 // Get addresses of first characters from both Strings
521 __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
522 if (java_lang_String::has_offset_field()) {
523 __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
524 __ movl (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
525 __ lea (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
526 } else {
527 __ movl (rax, Address(rsi, arrayOopDesc::length_offset_in_bytes()));
528 __ lea (rsi, Address(rsi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
529 }
530
531 // rbx, may be NULL
532 add_debug_info_for_null_check_here(info);
533 __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
534 if (java_lang_String::has_offset_field()) {
535 __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
536 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
537 __ lea (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
538 } else {
539 __ movl (rbx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
540 __ lea (rdi, Address(rdi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
541 }
542
543 // compute minimum length (in rax) and difference of lengths (on top of stack)
544 __ mov (rcx, rbx);
545 __ subptr(rbx, rax); // subtract lengths
546 __ push (rbx); // result
547 __ cmov (Assembler::lessEqual, rax, rcx);
548
549 // is minimum length 0?
550 Label noLoop, haveResult;
551 __ testptr (rax, rax);
552 __ jcc (Assembler::zero, noLoop);
553
554 // compare first characters
555 __ load_unsigned_short(rcx, Address(rdi, 0));
556 __ load_unsigned_short(rbx, Address(rsi, 0));
557 __ subl(rcx, rbx);
558 __ jcc(Assembler::notZero, haveResult);
559 // starting loop
560 __ decrement(rax); // we already tested index: skip one
561 __ jcc(Assembler::zero, noLoop);
562
563 // set rsi.edi to the end of the arrays (arrays have same length)
564 // negate the index
565
566 __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
567 __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
568 __ negptr(rax);
569
570 // compare the strings in a loop
571
572 Label loop;
573 __ align(wordSize);
574 __ bind(loop);
575 __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
576 __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
577 __ subl(rcx, rbx);
578 __ jcc(Assembler::notZero, haveResult);
579 __ increment(rax);
580 __ jcc(Assembler::notZero, loop);
581
582 // strings are equal up to min length
583
584 __ bind(noLoop);
585 __ pop(rax);
586 return_op(LIR_OprFact::illegalOpr);
587
588 __ bind(haveResult);
589 // leave instruction is going to discard the TOS value
590 __ mov (rax, rcx); // result of call is in rax,
591 }
592
593
594 void LIR_Assembler::return_op(LIR_Opr result) {
595 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
596 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
597 assert(result->fpu() == 0, "result must already be on TOS");
598 }
599
600 // Pop the stack before the safepoint code
601 __ remove_frame(initial_frame_size_in_bytes());
602
603 bool result_is_oop = result->is_valid() ? result->is_oop() : false;
604
605 // Note: we do not need to round double result; float result has the right precision
606 // the poll sets the condition code, but no data registers
607 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
608 relocInfo::poll_return_type);
609
610 if (Assembler::is_polling_page_far()) {
611 __ lea(rscratch1, polling_page);
612 __ relocate(relocInfo::poll_return_type);
613 __ testl(rax, Address(rscratch1, 0));
614 } else {
615 __ testl(rax, polling_page);
616 }
617 __ ret(0);
618 }
619
620
621 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
622 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
623 relocInfo::poll_type);
624 guarantee(info != NULL, "Shouldn't be NULL");
625 int offset = __ offset();
626 if (Assembler::is_polling_page_far()) {
627 __ lea(rscratch1, polling_page);
628 offset = __ offset();
629 add_debug_info_for_branch(info);
630 __ testl(rax, Address(rscratch1, 0));
631 } else {
632 add_debug_info_for_branch(info);
633 __ testl(rax, polling_page);
634 }
635 return offset;
636 }
637
638
639 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
640 if (from_reg != to_reg) __ mov(to_reg, from_reg);
641 }
642
643 void LIR_Assembler::swap_reg(Register a, Register b) {
644 __ xchgptr(a, b);
645 }
646
647
648 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
649 assert(src->is_constant(), "should not call otherwise");
650 assert(dest->is_register(), "should not call otherwise");
651 LIR_Const* c = src->as_constant_ptr();
652
653 switch (c->type()) {
654 case T_INT: {
655 assert(patch_code == lir_patch_none, "no patching handled here");
656 __ movl(dest->as_register(), c->as_jint());
657 break;
658 }
659
660 case T_ADDRESS: {
661 assert(patch_code == lir_patch_none, "no patching handled here");
662 __ movptr(dest->as_register(), c->as_jint());
663 break;
664 }
665
666 case T_LONG: {
667 assert(patch_code == lir_patch_none, "no patching handled here");
668 #ifdef _LP64
669 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
670 #else
671 __ movptr(dest->as_register_lo(), c->as_jint_lo());
672 __ movptr(dest->as_register_hi(), c->as_jint_hi());
673 #endif // _LP64
674 break;
675 }
676
677 case T_OBJECT: {
678 if (patch_code != lir_patch_none) {
679 jobject2reg_with_patching(dest->as_register(), info);
680 } else {
681 __ movoop(dest->as_register(), c->as_jobject());
682 }
683 break;
684 }
685
686 case T_METADATA: {
687 if (patch_code != lir_patch_none) {
688 klass2reg_with_patching(dest->as_register(), info);
689 } else {
690 __ mov_metadata(dest->as_register(), c->as_metadata());
691 }
692 break;
693 }
694
695 case T_FLOAT: {
696 if (dest->is_single_xmm()) {
697 if (c->is_zero_float()) {
698 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
699 } else {
700 __ movflt(dest->as_xmm_float_reg(),
701 InternalAddress(float_constant(c->as_jfloat())));
702 }
703 } else {
704 assert(dest->is_single_fpu(), "must be");
705 assert(dest->fpu_regnr() == 0, "dest must be TOS");
706 if (c->is_zero_float()) {
707 __ fldz();
708 } else if (c->is_one_float()) {
709 __ fld1();
710 } else {
711 __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
712 }
713 }
714 break;
715 }
716
717 case T_DOUBLE: {
718 if (dest->is_double_xmm()) {
719 if (c->is_zero_double()) {
720 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
721 } else {
722 __ movdbl(dest->as_xmm_double_reg(),
723 InternalAddress(double_constant(c->as_jdouble())));
724 }
725 } else {
726 assert(dest->is_double_fpu(), "must be");
727 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
728 if (c->is_zero_double()) {
729 __ fldz();
730 } else if (c->is_one_double()) {
731 __ fld1();
732 } else {
733 __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
734 }
735 }
736 break;
737 }
738
739 default:
740 ShouldNotReachHere();
741 }
742 }
743
744 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
745 assert(src->is_constant(), "should not call otherwise");
746 assert(dest->is_stack(), "should not call otherwise");
747 LIR_Const* c = src->as_constant_ptr();
748
749 switch (c->type()) {
750 case T_INT: // fall through
751 case T_FLOAT:
752 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
753 break;
754
755 case T_ADDRESS:
756 __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
757 break;
758
759 case T_OBJECT:
760 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
761 break;
762
763 case T_LONG: // fall through
764 case T_DOUBLE:
765 #ifdef _LP64
766 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
767 lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
768 #else
769 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
770 lo_word_offset_in_bytes), c->as_jint_lo_bits());
771 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
772 hi_word_offset_in_bytes), c->as_jint_hi_bits());
773 #endif // _LP64
774 break;
775
776 default:
777 ShouldNotReachHere();
778 }
779 }
780
781 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
782 assert(src->is_constant(), "should not call otherwise");
783 assert(dest->is_address(), "should not call otherwise");
784 LIR_Const* c = src->as_constant_ptr();
785 LIR_Address* addr = dest->as_address_ptr();
786
787 int null_check_here = code_offset();
788 switch (type) {
789 case T_INT: // fall through
790 case T_FLOAT:
791 __ movl(as_Address(addr), c->as_jint_bits());
792 break;
793
794 case T_ADDRESS:
795 __ movptr(as_Address(addr), c->as_jint_bits());
796 break;
797
798 case T_OBJECT: // fall through
799 case T_ARRAY:
800 if (c->as_jobject() == NULL) {
801 if (UseCompressedOops && !wide) {
802 __ movl(as_Address(addr), (int32_t)NULL_WORD);
803 } else {
804 #ifdef _LP64
805 __ xorptr(rscratch1, rscratch1);
806 null_check_here = code_offset();
807 __ movptr(as_Address(addr), rscratch1);
808 #else
809 __ movptr(as_Address(addr), NULL_WORD);
810 #endif
811 }
812 } else {
813 if (is_literal_address(addr)) {
814 ShouldNotReachHere();
815 __ movoop(as_Address(addr, noreg), c->as_jobject());
816 } else {
817 #ifdef _LP64
818 __ movoop(rscratch1, c->as_jobject());
819 if (UseCompressedOops && !wide) {
820 __ encode_heap_oop(rscratch1);
821 null_check_here = code_offset();
822 __ movl(as_Address_lo(addr), rscratch1);
823 } else {
824 null_check_here = code_offset();
825 __ movptr(as_Address_lo(addr), rscratch1);
826 }
827 #else
828 __ movoop(as_Address(addr), c->as_jobject());
829 #endif
830 }
831 }
832 break;
833
834 case T_LONG: // fall through
835 case T_DOUBLE:
836 #ifdef _LP64
837 if (is_literal_address(addr)) {
838 ShouldNotReachHere();
839 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
840 } else {
841 __ movptr(r10, (intptr_t)c->as_jlong_bits());
842 null_check_here = code_offset();
843 __ movptr(as_Address_lo(addr), r10);
844 }
845 #else
846 // Always reachable in 32bit so this doesn't produce useless move literal
847 __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
848 __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
849 #endif // _LP64
850 break;
851
852 case T_BOOLEAN: // fall through
853 case T_BYTE:
854 __ movb(as_Address(addr), c->as_jint() & 0xFF);
855 break;
856
857 case T_CHAR: // fall through
858 case T_SHORT:
859 __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
860 break;
861
862 default:
863 ShouldNotReachHere();
864 };
865
866 if (info != NULL) {
867 add_debug_info_for_null_check(null_check_here, info);
868 }
869 }
870
871
872 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
873 assert(src->is_register(), "should not call otherwise");
874 assert(dest->is_register(), "should not call otherwise");
875
876 // move between cpu-registers
877 if (dest->is_single_cpu()) {
878 #ifdef _LP64
879 if (src->type() == T_LONG) {
880 // Can do LONG -> OBJECT
881 move_regs(src->as_register_lo(), dest->as_register());
882 return;
883 }
884 #endif
885 assert(src->is_single_cpu(), "must match");
886 if (src->type() == T_OBJECT) {
887 __ verify_oop(src->as_register());
888 }
889 move_regs(src->as_register(), dest->as_register());
890
891 } else if (dest->is_double_cpu()) {
892 #ifdef _LP64
893 if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
894 // Surprising to me but we can see move of a long to t_object
895 __ verify_oop(src->as_register());
896 move_regs(src->as_register(), dest->as_register_lo());
897 return;
898 }
899 #endif
900 assert(src->is_double_cpu(), "must match");
901 Register f_lo = src->as_register_lo();
902 Register f_hi = src->as_register_hi();
903 Register t_lo = dest->as_register_lo();
904 Register t_hi = dest->as_register_hi();
905 #ifdef _LP64
906 assert(f_hi == f_lo, "must be same");
907 assert(t_hi == t_lo, "must be same");
908 move_regs(f_lo, t_lo);
909 #else
910 assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
911
912
913 if (f_lo == t_hi && f_hi == t_lo) {
914 swap_reg(f_lo, f_hi);
915 } else if (f_hi == t_lo) {
916 assert(f_lo != t_hi, "overwriting register");
917 move_regs(f_hi, t_hi);
918 move_regs(f_lo, t_lo);
919 } else {
920 assert(f_hi != t_lo, "overwriting register");
921 move_regs(f_lo, t_lo);
922 move_regs(f_hi, t_hi);
923 }
924 #endif // LP64
925
926 // special moves from fpu-register to xmm-register
927 // necessary for method results
928 } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
929 __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
930 __ fld_s(Address(rsp, 0));
931 } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
932 __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
933 __ fld_d(Address(rsp, 0));
934 } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
935 __ fstp_s(Address(rsp, 0));
936 __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
937 } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
938 __ fstp_d(Address(rsp, 0));
939 __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
940
941 // move between xmm-registers
942 } else if (dest->is_single_xmm()) {
943 assert(src->is_single_xmm(), "must match");
944 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
945 } else if (dest->is_double_xmm()) {
946 assert(src->is_double_xmm(), "must match");
947 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
948
949 // move between fpu-registers (no instruction necessary because of fpu-stack)
950 } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
951 assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
952 assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
953 } else {
954 ShouldNotReachHere();
955 }
956 }
957
958 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
959 assert(src->is_register(), "should not call otherwise");
960 assert(dest->is_stack(), "should not call otherwise");
961
962 if (src->is_single_cpu()) {
963 Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
964 if (type == T_OBJECT || type == T_ARRAY) {
965 __ verify_oop(src->as_register());
966 __ movptr (dst, src->as_register());
967 } else if (type == T_METADATA) {
968 __ movptr (dst, src->as_register());
969 } else {
970 __ movl (dst, src->as_register());
971 }
972
973 } else if (src->is_double_cpu()) {
974 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
975 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
976 __ movptr (dstLO, src->as_register_lo());
977 NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
978
979 } else if (src->is_single_xmm()) {
980 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
981 __ movflt(dst_addr, src->as_xmm_float_reg());
982
983 } else if (src->is_double_xmm()) {
984 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
985 __ movdbl(dst_addr, src->as_xmm_double_reg());
986
987 } else if (src->is_single_fpu()) {
988 assert(src->fpu_regnr() == 0, "argument must be on TOS");
989 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
990 if (pop_fpu_stack) __ fstp_s (dst_addr);
991 else __ fst_s (dst_addr);
992
993 } else if (src->is_double_fpu()) {
994 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
995 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
996 if (pop_fpu_stack) __ fstp_d (dst_addr);
997 else __ fst_d (dst_addr);
998
999 } else {
1000 ShouldNotReachHere();
1001 }
1002 }
1003
1004
1005 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
1006 LIR_Address* to_addr = dest->as_address_ptr();
1007 PatchingStub* patch = NULL;
1008 Register compressed_src = rscratch1;
1009
1010 if (type == T_ARRAY || type == T_OBJECT) {
1011 __ verify_oop(src->as_register());
1012 #ifdef _LP64
1013 if (UseCompressedOops && !wide) {
1014 __ movptr(compressed_src, src->as_register());
1015 __ encode_heap_oop(compressed_src);
1016 if (patch_code != lir_patch_none) {
1017 info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
1018 }
1019 }
1020 #endif
1021 }
1022
1023 if (patch_code != lir_patch_none) {
1024 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1025 Address toa = as_Address(to_addr);
1026 assert(toa.disp() != 0, "must have");
1027 }
1028
1029 int null_check_here = code_offset();
1030 switch (type) {
1031 case T_FLOAT: {
1032 if (src->is_single_xmm()) {
1033 __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
1034 } else {
1035 assert(src->is_single_fpu(), "must be");
1036 assert(src->fpu_regnr() == 0, "argument must be on TOS");
1037 if (pop_fpu_stack) __ fstp_s(as_Address(to_addr));
1038 else __ fst_s (as_Address(to_addr));
1039 }
1040 break;
1041 }
1042
1043 case T_DOUBLE: {
1044 if (src->is_double_xmm()) {
1045 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1046 } else {
1047 assert(src->is_double_fpu(), "must be");
1048 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1049 if (pop_fpu_stack) __ fstp_d(as_Address(to_addr));
1050 else __ fst_d (as_Address(to_addr));
1051 }
1052 break;
1053 }
1054
1055 case T_ARRAY: // fall through
1056 case T_OBJECT: // fall through
1057 if (UseCompressedOops && !wide) {
1058 __ movl(as_Address(to_addr), compressed_src);
1059 } else {
1060 __ movptr(as_Address(to_addr), src->as_register());
1061 }
1062 break;
1063 case T_METADATA:
1064 // We get here to store a method pointer to the stack to pass to
1065 // a dtrace runtime call. This can't work on 64 bit with
1066 // compressed klass ptrs: T_METADATA can be a compressed klass
1067 // ptr or a 64 bit method pointer.
1068 LP64_ONLY(ShouldNotReachHere());
1069 __ movptr(as_Address(to_addr), src->as_register());
1070 break;
1071 case T_ADDRESS:
1072 __ movptr(as_Address(to_addr), src->as_register());
1073 break;
1074 case T_INT:
1075 __ movl(as_Address(to_addr), src->as_register());
1076 break;
1077
1078 case T_LONG: {
1079 Register from_lo = src->as_register_lo();
1080 Register from_hi = src->as_register_hi();
1081 #ifdef _LP64
1082 __ movptr(as_Address_lo(to_addr), from_lo);
1083 #else
1084 Register base = to_addr->base()->as_register();
1085 Register index = noreg;
1086 if (to_addr->index()->is_register()) {
1087 index = to_addr->index()->as_register();
1088 }
1089 if (base == from_lo || index == from_lo) {
1090 assert(base != from_hi, "can't be");
1091 assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1092 __ movl(as_Address_hi(to_addr), from_hi);
1093 if (patch != NULL) {
1094 patching_epilog(patch, lir_patch_high, base, info);
1095 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1096 patch_code = lir_patch_low;
1097 }
1098 __ movl(as_Address_lo(to_addr), from_lo);
1099 } else {
1100 assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1101 __ movl(as_Address_lo(to_addr), from_lo);
1102 if (patch != NULL) {
1103 patching_epilog(patch, lir_patch_low, base, info);
1104 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1105 patch_code = lir_patch_high;
1106 }
1107 __ movl(as_Address_hi(to_addr), from_hi);
1108 }
1109 #endif // _LP64
1110 break;
1111 }
1112
1113 case T_BYTE: // fall through
1114 case T_BOOLEAN: {
1115 Register src_reg = src->as_register();
1116 Address dst_addr = as_Address(to_addr);
1117 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1118 __ movb(dst_addr, src_reg);
1119 break;
1120 }
1121
1122 case T_CHAR: // fall through
1123 case T_SHORT:
1124 __ movw(as_Address(to_addr), src->as_register());
1125 break;
1126
1127 default:
1128 ShouldNotReachHere();
1129 }
1130 if (info != NULL) {
1131 add_debug_info_for_null_check(null_check_here, info);
1132 }
1133
1134 if (patch_code != lir_patch_none) {
1135 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1136 }
1137 }
1138
1139
1140 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1141 assert(src->is_stack(), "should not call otherwise");
1142 assert(dest->is_register(), "should not call otherwise");
1143
1144 if (dest->is_single_cpu()) {
1145 if (type == T_ARRAY || type == T_OBJECT) {
1146 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1147 __ verify_oop(dest->as_register());
1148 } else if (type == T_METADATA) {
1149 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1150 } else {
1151 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1152 }
1153
1154 } else if (dest->is_double_cpu()) {
1155 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1156 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1157 __ movptr(dest->as_register_lo(), src_addr_LO);
1158 NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1159
1160 } else if (dest->is_single_xmm()) {
1161 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1162 __ movflt(dest->as_xmm_float_reg(), src_addr);
1163
1164 } else if (dest->is_double_xmm()) {
1165 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1166 __ movdbl(dest->as_xmm_double_reg(), src_addr);
1167
1168 } else if (dest->is_single_fpu()) {
1169 assert(dest->fpu_regnr() == 0, "dest must be TOS");
1170 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1171 __ fld_s(src_addr);
1172
1173 } else if (dest->is_double_fpu()) {
1174 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1175 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1176 __ fld_d(src_addr);
1177
1178 } else {
1179 ShouldNotReachHere();
1180 }
1181 }
1182
1183
1184 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1185 if (src->is_single_stack()) {
1186 if (type == T_OBJECT || type == T_ARRAY) {
1187 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1188 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1189 } else {
1190 #ifndef _LP64
1191 __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1192 __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1193 #else
1194 //no pushl on 64bits
1195 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1196 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1197 #endif
1198 }
1199
1200 } else if (src->is_double_stack()) {
1201 #ifdef _LP64
1202 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1203 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1204 #else
1205 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1206 // push and pop the part at src + wordSize, adding wordSize for the previous push
1207 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1208 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1209 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1210 #endif // _LP64
1211
1212 } else {
1213 ShouldNotReachHere();
1214 }
1215 }
1216
1217
1218 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
1219 assert(src->is_address(), "should not call otherwise");
1220 assert(dest->is_register(), "should not call otherwise");
1221
1222 LIR_Address* addr = src->as_address_ptr();
1223 Address from_addr = as_Address(addr);
1224
1225 if (addr->base()->type() == T_OBJECT) {
1226 __ verify_oop(addr->base()->as_pointer_register());
1227 }
1228
1229 switch (type) {
1230 case T_BOOLEAN: // fall through
1231 case T_BYTE: // fall through
1232 case T_CHAR: // fall through
1233 case T_SHORT:
1234 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1235 // on pre P6 processors we may get partial register stalls
1236 // so blow away the value of to_rinfo before loading a
1237 // partial word into it. Do it here so that it precedes
1238 // the potential patch point below.
1239 __ xorptr(dest->as_register(), dest->as_register());
1240 }
1241 break;
1242 }
1243
1244 PatchingStub* patch = NULL;
1245 if (patch_code != lir_patch_none) {
1246 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1247 assert(from_addr.disp() != 0, "must have");
1248 }
1249 if (info != NULL) {
1250 add_debug_info_for_null_check_here(info);
1251 }
1252
1253 switch (type) {
1254 case T_FLOAT: {
1255 if (dest->is_single_xmm()) {
1256 __ movflt(dest->as_xmm_float_reg(), from_addr);
1257 } else {
1258 assert(dest->is_single_fpu(), "must be");
1259 assert(dest->fpu_regnr() == 0, "dest must be TOS");
1260 __ fld_s(from_addr);
1261 }
1262 break;
1263 }
1264
1265 case T_DOUBLE: {
1266 if (dest->is_double_xmm()) {
1267 __ movdbl(dest->as_xmm_double_reg(), from_addr);
1268 } else {
1269 assert(dest->is_double_fpu(), "must be");
1270 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1271 __ fld_d(from_addr);
1272 }
1273 break;
1274 }
1275
1276 case T_OBJECT: // fall through
1277 case T_ARRAY: // fall through
1278 if (UseCompressedOops && !wide) {
1279 __ movl(dest->as_register(), from_addr);
1280 } else {
1281 __ movptr(dest->as_register(), from_addr);
1282 }
1283 break;
1284
1285 case T_ADDRESS:
1286 if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1287 __ movl(dest->as_register(), from_addr);
1288 } else {
1289 __ movptr(dest->as_register(), from_addr);
1290 }
1291 break;
1292 case T_INT:
1293 __ movl(dest->as_register(), from_addr);
1294 break;
1295
1296 case T_LONG: {
1297 Register to_lo = dest->as_register_lo();
1298 Register to_hi = dest->as_register_hi();
1299 #ifdef _LP64
1300 __ movptr(to_lo, as_Address_lo(addr));
1301 #else
1302 Register base = addr->base()->as_register();
1303 Register index = noreg;
1304 if (addr->index()->is_register()) {
1305 index = addr->index()->as_register();
1306 }
1307 if ((base == to_lo && index == to_hi) ||
1308 (base == to_hi && index == to_lo)) {
1309 // addresses with 2 registers are only formed as a result of
1310 // array access so this code will never have to deal with
1311 // patches or null checks.
1312 assert(info == NULL && patch == NULL, "must be");
1313 __ lea(to_hi, as_Address(addr));
1314 __ movl(to_lo, Address(to_hi, 0));
1315 __ movl(to_hi, Address(to_hi, BytesPerWord));
1316 } else if (base == to_lo || index == to_lo) {
1317 assert(base != to_hi, "can't be");
1318 assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1319 __ movl(to_hi, as_Address_hi(addr));
1320 if (patch != NULL) {
1321 patching_epilog(patch, lir_patch_high, base, info);
1322 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1323 patch_code = lir_patch_low;
1324 }
1325 __ movl(to_lo, as_Address_lo(addr));
1326 } else {
1327 assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1328 __ movl(to_lo, as_Address_lo(addr));
1329 if (patch != NULL) {
1330 patching_epilog(patch, lir_patch_low, base, info);
1331 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1332 patch_code = lir_patch_high;
1333 }
1334 __ movl(to_hi, as_Address_hi(addr));
1335 }
1336 #endif // _LP64
1337 break;
1338 }
1339
1340 case T_BOOLEAN: // fall through
1341 case T_BYTE: {
1342 Register dest_reg = dest->as_register();
1343 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1344 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1345 __ movsbl(dest_reg, from_addr);
1346 } else {
1347 __ movb(dest_reg, from_addr);
1348 __ shll(dest_reg, 24);
1349 __ sarl(dest_reg, 24);
1350 }
1351 break;
1352 }
1353
1354 case T_CHAR: {
1355 Register dest_reg = dest->as_register();
1356 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1357 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1358 __ movzwl(dest_reg, from_addr);
1359 } else {
1360 __ movw(dest_reg, from_addr);
1361 }
1362 break;
1363 }
1364
1365 case T_SHORT: {
1366 Register dest_reg = dest->as_register();
1367 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1368 __ movswl(dest_reg, from_addr);
1369 } else {
1370 __ movw(dest_reg, from_addr);
1371 __ shll(dest_reg, 16);
1372 __ sarl(dest_reg, 16);
1373 }
1374 break;
1375 }
1376
1377 default:
1378 ShouldNotReachHere();
1379 }
1380
1381 if (patch != NULL) {
1382 patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1383 }
1384
1385 if (type == T_ARRAY || type == T_OBJECT) {
1386 #ifdef _LP64
1387 if (UseCompressedOops && !wide) {
1388 __ decode_heap_oop(dest->as_register());
1389 }
1390 #endif
1391 __ verify_oop(dest->as_register());
1392 } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1393 #ifdef _LP64
1394 if (UseCompressedClassPointers) {
1395 __ decode_klass_not_null(dest->as_register());
1396 }
1397 #endif
1398 }
1399 }
1400
1401
1402 void LIR_Assembler::prefetchr(LIR_Opr src) {
1403 LIR_Address* addr = src->as_address_ptr();
1404 Address from_addr = as_Address(addr);
1405
1406 if (VM_Version::supports_sse()) {
1407 switch (ReadPrefetchInstr) {
1408 case 0:
1409 __ prefetchnta(from_addr); break;
1410 case 1:
1411 __ prefetcht0(from_addr); break;
1412 case 2:
1413 __ prefetcht2(from_addr); break;
1414 default:
1415 ShouldNotReachHere(); break;
1416 }
1417 } else if (VM_Version::supports_3dnow_prefetch()) {
1418 __ prefetchr(from_addr);
1419 }
1420 }
1421
1422
1423 void LIR_Assembler::prefetchw(LIR_Opr src) {
1424 LIR_Address* addr = src->as_address_ptr();
1425 Address from_addr = as_Address(addr);
1426
1427 if (VM_Version::supports_sse()) {
1428 switch (AllocatePrefetchInstr) {
1429 case 0:
1430 __ prefetchnta(from_addr); break;
1431 case 1:
1432 __ prefetcht0(from_addr); break;
1433 case 2:
1434 __ prefetcht2(from_addr); break;
1435 case 3:
1436 __ prefetchw(from_addr); break;
1437 default:
1438 ShouldNotReachHere(); break;
1439 }
1440 } else if (VM_Version::supports_3dnow_prefetch()) {
1441 __ prefetchw(from_addr);
1442 }
1443 }
1444
1445
1446 NEEDS_CLEANUP; // This could be static?
1447 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1448 int elem_size = type2aelembytes(type);
1449 switch (elem_size) {
1450 case 1: return Address::times_1;
1451 case 2: return Address::times_2;
1452 case 4: return Address::times_4;
1453 case 8: return Address::times_8;
1454 }
1455 ShouldNotReachHere();
1456 return Address::no_scale;
1457 }
1458
1459
1460 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1461 switch (op->code()) {
1462 case lir_idiv:
1463 case lir_irem:
1464 arithmetic_idiv(op->code(),
1465 op->in_opr1(),
1466 op->in_opr2(),
1467 op->in_opr3(),
1468 op->result_opr(),
1469 op->info());
1470 break;
1471 default: ShouldNotReachHere(); break;
1472 }
1473 }
1474
1475 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1476 #ifdef ASSERT
1477 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1478 if (op->block() != NULL) _branch_target_blocks.append(op->block());
1479 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1480 #endif
1481
1482 if (op->cond() == lir_cond_always) {
1483 if (op->info() != NULL) add_debug_info_for_branch(op->info());
1484 __ jmp (*(op->label()));
1485 } else {
1486 Assembler::Condition acond = Assembler::zero;
1487 if (op->code() == lir_cond_float_branch) {
1488 assert(op->ublock() != NULL, "must have unordered successor");
1489 __ jcc(Assembler::parity, *(op->ublock()->label()));
1490 switch(op->cond()) {
1491 case lir_cond_equal: acond = Assembler::equal; break;
1492 case lir_cond_notEqual: acond = Assembler::notEqual; break;
1493 case lir_cond_less: acond = Assembler::below; break;
1494 case lir_cond_lessEqual: acond = Assembler::belowEqual; break;
1495 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1496 case lir_cond_greater: acond = Assembler::above; break;
1497 default: ShouldNotReachHere();
1498 }
1499 } else {
1500 switch (op->cond()) {
1501 case lir_cond_equal: acond = Assembler::equal; break;
1502 case lir_cond_notEqual: acond = Assembler::notEqual; break;
1503 case lir_cond_less: acond = Assembler::less; break;
1504 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
1505 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1506 case lir_cond_greater: acond = Assembler::greater; break;
1507 case lir_cond_belowEqual: acond = Assembler::belowEqual; break;
1508 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break;
1509 default: ShouldNotReachHere();
1510 }
1511 }
1512 __ jcc(acond,*(op->label()));
1513 }
1514 }
1515
1516 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1517 LIR_Opr src = op->in_opr();
1518 LIR_Opr dest = op->result_opr();
1519
1520 switch (op->bytecode()) {
1521 case Bytecodes::_i2l:
1522 #ifdef _LP64
1523 __ movl2ptr(dest->as_register_lo(), src->as_register());
1524 #else
1525 move_regs(src->as_register(), dest->as_register_lo());
1526 move_regs(src->as_register(), dest->as_register_hi());
1527 __ sarl(dest->as_register_hi(), 31);
1528 #endif // LP64
1529 break;
1530
1531 case Bytecodes::_l2i:
1532 #ifdef _LP64
1533 __ movl(dest->as_register(), src->as_register_lo());
1534 #else
1535 move_regs(src->as_register_lo(), dest->as_register());
1536 #endif
1537 break;
1538
1539 case Bytecodes::_i2b:
1540 move_regs(src->as_register(), dest->as_register());
1541 __ sign_extend_byte(dest->as_register());
1542 break;
1543
1544 case Bytecodes::_i2c:
1545 move_regs(src->as_register(), dest->as_register());
1546 __ andl(dest->as_register(), 0xFFFF);
1547 break;
1548
1549 case Bytecodes::_i2s:
1550 move_regs(src->as_register(), dest->as_register());
1551 __ sign_extend_short(dest->as_register());
1552 break;
1553
1554
1555 case Bytecodes::_f2d:
1556 case Bytecodes::_d2f:
1557 if (dest->is_single_xmm()) {
1558 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1559 } else if (dest->is_double_xmm()) {
1560 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1561 } else {
1562 assert(src->fpu() == dest->fpu(), "register must be equal");
1563 // do nothing (float result is rounded later through spilling)
1564 }
1565 break;
1566
1567 case Bytecodes::_i2f:
1568 case Bytecodes::_i2d:
1569 if (dest->is_single_xmm()) {
1570 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1571 } else if (dest->is_double_xmm()) {
1572 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1573 } else {
1574 assert(dest->fpu() == 0, "result must be on TOS");
1575 __ movl(Address(rsp, 0), src->as_register());
1576 __ fild_s(Address(rsp, 0));
1577 }
1578 break;
1579
1580 case Bytecodes::_f2i:
1581 case Bytecodes::_d2i:
1582 if (src->is_single_xmm()) {
1583 __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1584 } else if (src->is_double_xmm()) {
1585 __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1586 } else {
1587 assert(src->fpu() == 0, "input must be on TOS");
1588 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1589 __ fist_s(Address(rsp, 0));
1590 __ movl(dest->as_register(), Address(rsp, 0));
1591 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1592 }
1593
1594 // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1595 assert(op->stub() != NULL, "stub required");
1596 __ cmpl(dest->as_register(), 0x80000000);
1597 __ jcc(Assembler::equal, *op->stub()->entry());
1598 __ bind(*op->stub()->continuation());
1599 break;
1600
1601 case Bytecodes::_l2f:
1602 case Bytecodes::_l2d:
1603 assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1604 assert(dest->fpu() == 0, "result must be on TOS");
1605
1606 __ movptr(Address(rsp, 0), src->as_register_lo());
1607 NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1608 __ fild_d(Address(rsp, 0));
1609 // float result is rounded later through spilling
1610 break;
1611
1612 case Bytecodes::_f2l:
1613 case Bytecodes::_d2l:
1614 assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1615 assert(src->fpu() == 0, "input must be on TOS");
1616 assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1617
1618 // instruction sequence too long to inline it here
1619 {
1620 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1621 }
1622 break;
1623
1624 default: ShouldNotReachHere();
1625 }
1626 }
1627
1628 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1629 if (op->init_check()) {
1630 __ cmpb(Address(op->klass()->as_register(),
1631 InstanceKlass::init_state_offset()),
1632 InstanceKlass::fully_initialized);
1633 add_debug_info_for_null_check_here(op->stub()->info());
1634 __ jcc(Assembler::notEqual, *op->stub()->entry());
1635 }
1636 __ allocate_object(op->obj()->as_register(),
1637 op->tmp1()->as_register(),
1638 op->tmp2()->as_register(),
1639 op->header_size(),
1640 op->object_size(),
1641 op->klass()->as_register(),
1642 *op->stub()->entry());
1643 __ bind(*op->stub()->continuation());
1644 }
1645
1646 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1647 Register len = op->len()->as_register();
1648 LP64_ONLY( __ movslq(len, len); )
1649
1650 if (UseSlowPath ||
1651 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1652 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1653 __ jmp(*op->stub()->entry());
1654 } else {
1655 Register tmp1 = op->tmp1()->as_register();
1656 Register tmp2 = op->tmp2()->as_register();
1657 Register tmp3 = op->tmp3()->as_register();
1658 if (len == tmp1) {
1659 tmp1 = tmp3;
1660 } else if (len == tmp2) {
1661 tmp2 = tmp3;
1662 } else if (len == tmp3) {
1663 // everything is ok
1664 } else {
1665 __ mov(tmp3, len);
1666 }
1667 __ allocate_array(op->obj()->as_register(),
1668 len,
1669 tmp1,
1670 tmp2,
1671 arrayOopDesc::header_size(op->type()),
1672 array_element_size(op->type()),
1673 op->klass()->as_register(),
1674 *op->stub()->entry());
1675 }
1676 __ bind(*op->stub()->continuation());
1677 }
1678
1679 void LIR_Assembler::type_profile_helper(Register mdo,
1680 ciMethodData *md, ciProfileData *data,
1681 Register recv, Label* update_done) {
1682 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1683 Label next_test;
1684 // See if the receiver is receiver[n].
1685 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1686 __ jccb(Assembler::notEqual, next_test);
1687 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1688 __ addptr(data_addr, DataLayout::counter_increment);
1689 __ jmp(*update_done);
1690 __ bind(next_test);
1691 }
1692
1693 // Didn't find receiver; find next empty slot and fill it in
1694 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1695 Label next_test;
1696 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1697 __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1698 __ jccb(Assembler::notEqual, next_test);
1699 __ movptr(recv_addr, recv);
1700 __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1701 __ jmp(*update_done);
1702 __ bind(next_test);
1703 }
1704 }
1705
1706 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1707 // we always need a stub for the failure case.
1708 CodeStub* stub = op->stub();
1709 Register obj = op->object()->as_register();
1710 Register k_RInfo = op->tmp1()->as_register();
1711 Register klass_RInfo = op->tmp2()->as_register();
1712 Register dst = op->result_opr()->as_register();
1713 ciKlass* k = op->klass();
1714 Register Rtmp1 = noreg;
1715
1716 // check if it needs to be profiled
1717 ciMethodData* md;
1718 ciProfileData* data;
1719
1720 if (op->should_profile()) {
1721 ciMethod* method = op->profiled_method();
1722 assert(method != NULL, "Should have method");
1723 int bci = op->profiled_bci();
1724 md = method->method_data_or_null();
1725 assert(md != NULL, "Sanity");
1726 data = md->bci_to_data(bci);
1727 assert(data != NULL, "need data for type check");
1728 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1729 }
1730 Label profile_cast_success, profile_cast_failure;
1731 Label *success_target = op->should_profile() ? &profile_cast_success : success;
1732 Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1733
1734 if (obj == k_RInfo) {
1735 k_RInfo = dst;
1736 } else if (obj == klass_RInfo) {
1737 klass_RInfo = dst;
1738 }
1739 if (k->is_loaded() && !UseCompressedClassPointers) {
1740 select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1741 } else {
1742 Rtmp1 = op->tmp3()->as_register();
1743 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1744 }
1745
1746 assert_different_registers(obj, k_RInfo, klass_RInfo);
1747
1748 __ cmpptr(obj, (int32_t)NULL_WORD);
1749 if (op->should_profile()) {
1750 Label not_null;
1751 __ jccb(Assembler::notEqual, not_null);
1752 // Object is null; update MDO and exit
1753 Register mdo = klass_RInfo;
1754 __ mov_metadata(mdo, md->constant_encoding());
1755 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1756 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1757 __ orl(data_addr, header_bits);
1758 __ jmp(*obj_is_null);
1759 __ bind(not_null);
1760 } else {
1761 __ jcc(Assembler::equal, *obj_is_null);
1762 }
1763
1764 if (!k->is_loaded()) {
1765 klass2reg_with_patching(k_RInfo, op->info_for_patch());
1766 } else {
1767 #ifdef _LP64
1768 __ mov_metadata(k_RInfo, k->constant_encoding());
1769 #endif // _LP64
1770 }
1771 __ verify_oop(obj);
1772
1773 if (op->fast_check()) {
1774 // get object class
1775 // not a safepoint as obj null check happens earlier
1776 #ifdef _LP64
1777 if (UseCompressedClassPointers) {
1778 __ load_klass(Rtmp1, obj);
1779 __ cmpptr(k_RInfo, Rtmp1);
1780 } else {
1781 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1782 }
1783 #else
1784 if (k->is_loaded()) {
1785 __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1786 } else {
1787 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1788 }
1789 #endif
1790 __ jcc(Assembler::notEqual, *failure_target);
1791 // successful cast, fall through to profile or jump
1792 } else {
1793 // get object class
1794 // not a safepoint as obj null check happens earlier
1795 __ load_klass(klass_RInfo, obj);
1796 if (k->is_loaded()) {
1797 // See if we get an immediate positive hit
1798 #ifdef _LP64
1799 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1800 #else
1801 __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1802 #endif // _LP64
1803 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1804 __ jcc(Assembler::notEqual, *failure_target);
1805 // successful cast, fall through to profile or jump
1806 } else {
1807 // See if we get an immediate positive hit
1808 __ jcc(Assembler::equal, *success_target);
1809 // check for self
1810 #ifdef _LP64
1811 __ cmpptr(klass_RInfo, k_RInfo);
1812 #else
1813 __ cmpklass(klass_RInfo, k->constant_encoding());
1814 #endif // _LP64
1815 __ jcc(Assembler::equal, *success_target);
1816
1817 __ push(klass_RInfo);
1818 #ifdef _LP64
1819 __ push(k_RInfo);
1820 #else
1821 __ pushklass(k->constant_encoding());
1822 #endif // _LP64
1823 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1824 __ pop(klass_RInfo);
1825 __ pop(klass_RInfo);
1826 // result is a boolean
1827 __ cmpl(klass_RInfo, 0);
1828 __ jcc(Assembler::equal, *failure_target);
1829 // successful cast, fall through to profile or jump
1830 }
1831 } else {
1832 // perform the fast part of the checking logic
1833 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1834 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1835 __ push(klass_RInfo);
1836 __ push(k_RInfo);
1837 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1838 __ pop(klass_RInfo);
1839 __ pop(k_RInfo);
1840 // result is a boolean
1841 __ cmpl(k_RInfo, 0);
1842 __ jcc(Assembler::equal, *failure_target);
1843 // successful cast, fall through to profile or jump
1844 }
1845 }
1846 if (op->should_profile()) {
1847 Register mdo = klass_RInfo, recv = k_RInfo;
1848 __ bind(profile_cast_success);
1849 __ mov_metadata(mdo, md->constant_encoding());
1850 __ load_klass(recv, obj);
1851 Label update_done;
1852 type_profile_helper(mdo, md, data, recv, success);
1853 __ jmp(*success);
1854
1855 __ bind(profile_cast_failure);
1856 __ mov_metadata(mdo, md->constant_encoding());
1857 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1858 __ subptr(counter_addr, DataLayout::counter_increment);
1859 __ jmp(*failure);
1860 }
1861 __ jmp(*success);
1862 }
1863
1864
1865 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1866 LIR_Code code = op->code();
1867 if (code == lir_store_check) {
1868 Register value = op->object()->as_register();
1869 Register array = op->array()->as_register();
1870 Register k_RInfo = op->tmp1()->as_register();
1871 Register klass_RInfo = op->tmp2()->as_register();
1872 Register Rtmp1 = op->tmp3()->as_register();
1873
1874 CodeStub* stub = op->stub();
1875
1876 // check if it needs to be profiled
1877 ciMethodData* md;
1878 ciProfileData* data;
1879
1880 if (op->should_profile()) {
1881 ciMethod* method = op->profiled_method();
1882 assert(method != NULL, "Should have method");
1883 int bci = op->profiled_bci();
1884 md = method->method_data_or_null();
1885 assert(md != NULL, "Sanity");
1886 data = md->bci_to_data(bci);
1887 assert(data != NULL, "need data for type check");
1888 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1889 }
1890 Label profile_cast_success, profile_cast_failure, done;
1891 Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1892 Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1893
1894 __ cmpptr(value, (int32_t)NULL_WORD);
1895 if (op->should_profile()) {
1896 Label not_null;
1897 __ jccb(Assembler::notEqual, not_null);
1898 // Object is null; update MDO and exit
1899 Register mdo = klass_RInfo;
1900 __ mov_metadata(mdo, md->constant_encoding());
1901 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1902 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1903 __ orl(data_addr, header_bits);
1904 __ jmp(done);
1905 __ bind(not_null);
1906 } else {
1907 __ jcc(Assembler::equal, done);
1908 }
1909
1910 add_debug_info_for_null_check_here(op->info_for_exception());
1911 __ load_klass(k_RInfo, array);
1912 __ load_klass(klass_RInfo, value);
1913
1914 // get instance klass (it's already uncompressed)
1915 __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1916 // perform the fast part of the checking logic
1917 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1918 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1919 __ push(klass_RInfo);
1920 __ push(k_RInfo);
1921 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1922 __ pop(klass_RInfo);
1923 __ pop(k_RInfo);
1924 // result is a boolean
1925 __ cmpl(k_RInfo, 0);
1926 __ jcc(Assembler::equal, *failure_target);
1927 // fall through to the success case
1928
1929 if (op->should_profile()) {
1930 Register mdo = klass_RInfo, recv = k_RInfo;
1931 __ bind(profile_cast_success);
1932 __ mov_metadata(mdo, md->constant_encoding());
1933 __ load_klass(recv, value);
1934 Label update_done;
1935 type_profile_helper(mdo, md, data, recv, &done);
1936 __ jmpb(done);
1937
1938 __ bind(profile_cast_failure);
1939 __ mov_metadata(mdo, md->constant_encoding());
1940 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1941 __ subptr(counter_addr, DataLayout::counter_increment);
1942 __ jmp(*stub->entry());
1943 }
1944
1945 __ bind(done);
1946 } else
1947 if (code == lir_checkcast) {
1948 Register obj = op->object()->as_register();
1949 Register dst = op->result_opr()->as_register();
1950 Label success;
1951 emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1952 __ bind(success);
1953 if (dst != obj) {
1954 __ mov(dst, obj);
1955 }
1956 } else
1957 if (code == lir_instanceof) {
1958 Register obj = op->object()->as_register();
1959 Register dst = op->result_opr()->as_register();
1960 Label success, failure, done;
1961 emit_typecheck_helper(op, &success, &failure, &failure);
1962 __ bind(failure);
1963 __ xorptr(dst, dst);
1964 __ jmpb(done);
1965 __ bind(success);
1966 __ movptr(dst, 1);
1967 __ bind(done);
1968 } else {
1969 ShouldNotReachHere();
1970 }
1971
1972 }
1973
1974
1975 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1976 if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1977 assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1978 assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1979 assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1980 assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1981 Register addr = op->addr()->as_register();
1982 if (os::is_MP()) {
1983 __ lock();
1984 }
1985 NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1986
1987 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1988 NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1989 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1990 Register newval = op->new_value()->as_register();
1991 Register cmpval = op->cmp_value()->as_register();
1992 assert(cmpval == rax, "wrong register");
1993 assert(newval != NULL, "new val must be register");
1994 assert(cmpval != newval, "cmp and new values must be in different registers");
1995 assert(cmpval != addr, "cmp and addr must be in different registers");
1996 assert(newval != addr, "new value and addr must be in different registers");
1997
1998 if ( op->code() == lir_cas_obj) {
1999 #ifdef _LP64
2000 if (UseCompressedOops) {
2001 __ encode_heap_oop(cmpval);
2002 __ mov(rscratch1, newval);
2003 __ encode_heap_oop(rscratch1);
2004 if (os::is_MP()) {
2005 __ lock();
2006 }
2007 // cmpval (rax) is implicitly used by this instruction
2008 __ cmpxchgl(rscratch1, Address(addr, 0));
2009 } else
2010 #endif
2011 {
2012 if (os::is_MP()) {
2013 __ lock();
2014 }
2015 __ cmpxchgptr(newval, Address(addr, 0));
2016 }
2017 } else {
2018 assert(op->code() == lir_cas_int, "lir_cas_int expected");
2019 if (os::is_MP()) {
2020 __ lock();
2021 }
2022 __ cmpxchgl(newval, Address(addr, 0));
2023 }
2024 #ifdef _LP64
2025 } else if (op->code() == lir_cas_long) {
2026 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
2027 Register newval = op->new_value()->as_register_lo();
2028 Register cmpval = op->cmp_value()->as_register_lo();
2029 assert(cmpval == rax, "wrong register");
2030 assert(newval != NULL, "new val must be register");
2031 assert(cmpval != newval, "cmp and new values must be in different registers");
2032 assert(cmpval != addr, "cmp and addr must be in different registers");
2033 assert(newval != addr, "new value and addr must be in different registers");
2034 if (os::is_MP()) {
2035 __ lock();
2036 }
2037 __ cmpxchgq(newval, Address(addr, 0));
2038 #endif // _LP64
2039 } else {
2040 Unimplemented();
2041 }
2042 }
2043
2044 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
2045 Assembler::Condition acond, ncond;
2046 switch (condition) {
2047 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break;
2048 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break;
2049 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break;
2050 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break;
2051 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break;
2052 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break;
2053 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break;
2054 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break;
2055 default: ShouldNotReachHere();
2056 }
2057
2058 if (opr1->is_cpu_register()) {
2059 reg2reg(opr1, result);
2060 } else if (opr1->is_stack()) {
2061 stack2reg(opr1, result, result->type());
2062 } else if (opr1->is_constant()) {
2063 const2reg(opr1, result, lir_patch_none, NULL);
2064 } else {
2065 ShouldNotReachHere();
2066 }
2067
2068 if (VM_Version::supports_cmov() && !opr2->is_constant()) {
2069 // optimized version that does not require a branch
2070 if (opr2->is_single_cpu()) {
2071 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2072 __ cmov(ncond, result->as_register(), opr2->as_register());
2073 } else if (opr2->is_double_cpu()) {
2074 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2075 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2076 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2077 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2078 } else if (opr2->is_single_stack()) {
2079 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2080 } else if (opr2->is_double_stack()) {
2081 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2082 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2083 } else {
2084 ShouldNotReachHere();
2085 }
2086
2087 } else {
2088 Label skip;
2089 __ jcc (acond, skip);
2090 if (opr2->is_cpu_register()) {
2091 reg2reg(opr2, result);
2092 } else if (opr2->is_stack()) {
2093 stack2reg(opr2, result, result->type());
2094 } else if (opr2->is_constant()) {
2095 const2reg(opr2, result, lir_patch_none, NULL);
2096 } else {
2097 ShouldNotReachHere();
2098 }
2099 __ bind(skip);
2100 }
2101 }
2102
2103
2104 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2105 assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2106
2107 if (left->is_single_cpu()) {
2108 assert(left == dest, "left and dest must be equal");
2109 Register lreg = left->as_register();
2110
2111 if (right->is_single_cpu()) {
2112 // cpu register - cpu register
2113 Register rreg = right->as_register();
2114 switch (code) {
2115 case lir_add: __ addl (lreg, rreg); break;
2116 case lir_sub: __ subl (lreg, rreg); break;
2117 case lir_mul: __ imull(lreg, rreg); break;
2118 default: ShouldNotReachHere();
2119 }
2120
2121 } else if (right->is_stack()) {
2122 // cpu register - stack
2123 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2124 switch (code) {
2125 case lir_add: __ addl(lreg, raddr); break;
2126 case lir_sub: __ subl(lreg, raddr); break;
2127 default: ShouldNotReachHere();
2128 }
2129
2130 } else if (right->is_constant()) {
2131 // cpu register - constant
2132 jint c = right->as_constant_ptr()->as_jint();
2133 switch (code) {
2134 case lir_add: {
2135 __ incrementl(lreg, c);
2136 break;
2137 }
2138 case lir_sub: {
2139 __ decrementl(lreg, c);
2140 break;
2141 }
2142 default: ShouldNotReachHere();
2143 }
2144
2145 } else {
2146 ShouldNotReachHere();
2147 }
2148
2149 } else if (left->is_double_cpu()) {
2150 assert(left == dest, "left and dest must be equal");
2151 Register lreg_lo = left->as_register_lo();
2152 Register lreg_hi = left->as_register_hi();
2153
2154 if (right->is_double_cpu()) {
2155 // cpu register - cpu register
2156 Register rreg_lo = right->as_register_lo();
2157 Register rreg_hi = right->as_register_hi();
2158 NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2159 LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2160 switch (code) {
2161 case lir_add:
2162 __ addptr(lreg_lo, rreg_lo);
2163 NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2164 break;
2165 case lir_sub:
2166 __ subptr(lreg_lo, rreg_lo);
2167 NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2168 break;
2169 case lir_mul:
2170 #ifdef _LP64
2171 __ imulq(lreg_lo, rreg_lo);
2172 #else
2173 assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2174 __ imull(lreg_hi, rreg_lo);
2175 __ imull(rreg_hi, lreg_lo);
2176 __ addl (rreg_hi, lreg_hi);
2177 __ mull (rreg_lo);
2178 __ addl (lreg_hi, rreg_hi);
2179 #endif // _LP64
2180 break;
2181 default:
2182 ShouldNotReachHere();
2183 }
2184
2185 } else if (right->is_constant()) {
2186 // cpu register - constant
2187 #ifdef _LP64
2188 jlong c = right->as_constant_ptr()->as_jlong_bits();
2189 __ movptr(r10, (intptr_t) c);
2190 switch (code) {
2191 case lir_add:
2192 __ addptr(lreg_lo, r10);
2193 break;
2194 case lir_sub:
2195 __ subptr(lreg_lo, r10);
2196 break;
2197 default:
2198 ShouldNotReachHere();
2199 }
2200 #else
2201 jint c_lo = right->as_constant_ptr()->as_jint_lo();
2202 jint c_hi = right->as_constant_ptr()->as_jint_hi();
2203 switch (code) {
2204 case lir_add:
2205 __ addptr(lreg_lo, c_lo);
2206 __ adcl(lreg_hi, c_hi);
2207 break;
2208 case lir_sub:
2209 __ subptr(lreg_lo, c_lo);
2210 __ sbbl(lreg_hi, c_hi);
2211 break;
2212 default:
2213 ShouldNotReachHere();
2214 }
2215 #endif // _LP64
2216
2217 } else {
2218 ShouldNotReachHere();
2219 }
2220
2221 } else if (left->is_single_xmm()) {
2222 assert(left == dest, "left and dest must be equal");
2223 XMMRegister lreg = left->as_xmm_float_reg();
2224
2225 if (right->is_single_xmm()) {
2226 XMMRegister rreg = right->as_xmm_float_reg();
2227 switch (code) {
2228 case lir_add: __ addss(lreg, rreg); break;
2229 case lir_sub: __ subss(lreg, rreg); break;
2230 case lir_mul_strictfp: // fall through
2231 case lir_mul: __ mulss(lreg, rreg); break;
2232 case lir_div_strictfp: // fall through
2233 case lir_div: __ divss(lreg, rreg); break;
2234 default: ShouldNotReachHere();
2235 }
2236 } else {
2237 Address raddr;
2238 if (right->is_single_stack()) {
2239 raddr = frame_map()->address_for_slot(right->single_stack_ix());
2240 } else if (right->is_constant()) {
2241 // hack for now
2242 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2243 } else {
2244 ShouldNotReachHere();
2245 }
2246 switch (code) {
2247 case lir_add: __ addss(lreg, raddr); break;
2248 case lir_sub: __ subss(lreg, raddr); break;
2249 case lir_mul_strictfp: // fall through
2250 case lir_mul: __ mulss(lreg, raddr); break;
2251 case lir_div_strictfp: // fall through
2252 case lir_div: __ divss(lreg, raddr); break;
2253 default: ShouldNotReachHere();
2254 }
2255 }
2256
2257 } else if (left->is_double_xmm()) {
2258 assert(left == dest, "left and dest must be equal");
2259
2260 XMMRegister lreg = left->as_xmm_double_reg();
2261 if (right->is_double_xmm()) {
2262 XMMRegister rreg = right->as_xmm_double_reg();
2263 switch (code) {
2264 case lir_add: __ addsd(lreg, rreg); break;
2265 case lir_sub: __ subsd(lreg, rreg); break;
2266 case lir_mul_strictfp: // fall through
2267 case lir_mul: __ mulsd(lreg, rreg); break;
2268 case lir_div_strictfp: // fall through
2269 case lir_div: __ divsd(lreg, rreg); break;
2270 default: ShouldNotReachHere();
2271 }
2272 } else {
2273 Address raddr;
2274 if (right->is_double_stack()) {
2275 raddr = frame_map()->address_for_slot(right->double_stack_ix());
2276 } else if (right->is_constant()) {
2277 // hack for now
2278 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2279 } else {
2280 ShouldNotReachHere();
2281 }
2282 switch (code) {
2283 case lir_add: __ addsd(lreg, raddr); break;
2284 case lir_sub: __ subsd(lreg, raddr); break;
2285 case lir_mul_strictfp: // fall through
2286 case lir_mul: __ mulsd(lreg, raddr); break;
2287 case lir_div_strictfp: // fall through
2288 case lir_div: __ divsd(lreg, raddr); break;
2289 default: ShouldNotReachHere();
2290 }
2291 }
2292
2293 } else if (left->is_single_fpu()) {
2294 assert(dest->is_single_fpu(), "fpu stack allocation required");
2295
2296 if (right->is_single_fpu()) {
2297 arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2298
2299 } else {
2300 assert(left->fpu_regnr() == 0, "left must be on TOS");
2301 assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2302
2303 Address raddr;
2304 if (right->is_single_stack()) {
2305 raddr = frame_map()->address_for_slot(right->single_stack_ix());
2306 } else if (right->is_constant()) {
2307 address const_addr = float_constant(right->as_jfloat());
2308 assert(const_addr != NULL, "incorrect float/double constant maintainance");
2309 // hack for now
2310 raddr = __ as_Address(InternalAddress(const_addr));
2311 } else {
2312 ShouldNotReachHere();
2313 }
2314
2315 switch (code) {
2316 case lir_add: __ fadd_s(raddr); break;
2317 case lir_sub: __ fsub_s(raddr); break;
2318 case lir_mul_strictfp: // fall through
2319 case lir_mul: __ fmul_s(raddr); break;
2320 case lir_div_strictfp: // fall through
2321 case lir_div: __ fdiv_s(raddr); break;
2322 default: ShouldNotReachHere();
2323 }
2324 }
2325
2326 } else if (left->is_double_fpu()) {
2327 assert(dest->is_double_fpu(), "fpu stack allocation required");
2328
2329 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2330 // Double values require special handling for strictfp mul/div on x86
2331 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2332 __ fmulp(left->fpu_regnrLo() + 1);
2333 }
2334
2335 if (right->is_double_fpu()) {
2336 arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2337
2338 } else {
2339 assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2340 assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2341
2342 Address raddr;
2343 if (right->is_double_stack()) {
2344 raddr = frame_map()->address_for_slot(right->double_stack_ix());
2345 } else if (right->is_constant()) {
2346 // hack for now
2347 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2348 } else {
2349 ShouldNotReachHere();
2350 }
2351
2352 switch (code) {
2353 case lir_add: __ fadd_d(raddr); break;
2354 case lir_sub: __ fsub_d(raddr); break;
2355 case lir_mul_strictfp: // fall through
2356 case lir_mul: __ fmul_d(raddr); break;
2357 case lir_div_strictfp: // fall through
2358 case lir_div: __ fdiv_d(raddr); break;
2359 default: ShouldNotReachHere();
2360 }
2361 }
2362
2363 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2364 // Double values require special handling for strictfp mul/div on x86
2365 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2366 __ fmulp(dest->fpu_regnrLo() + 1);
2367 }
2368
2369 } else if (left->is_single_stack() || left->is_address()) {
2370 assert(left == dest, "left and dest must be equal");
2371
2372 Address laddr;
2373 if (left->is_single_stack()) {
2374 laddr = frame_map()->address_for_slot(left->single_stack_ix());
2375 } else if (left->is_address()) {
2376 laddr = as_Address(left->as_address_ptr());
2377 } else {
2378 ShouldNotReachHere();
2379 }
2380
2381 if (right->is_single_cpu()) {
2382 Register rreg = right->as_register();
2383 switch (code) {
2384 case lir_add: __ addl(laddr, rreg); break;
2385 case lir_sub: __ subl(laddr, rreg); break;
2386 default: ShouldNotReachHere();
2387 }
2388 } else if (right->is_constant()) {
2389 jint c = right->as_constant_ptr()->as_jint();
2390 switch (code) {
2391 case lir_add: {
2392 __ incrementl(laddr, c);
2393 break;
2394 }
2395 case lir_sub: {
2396 __ decrementl(laddr, c);
2397 break;
2398 }
2399 default: ShouldNotReachHere();
2400 }
2401 } else {
2402 ShouldNotReachHere();
2403 }
2404
2405 } else {
2406 ShouldNotReachHere();
2407 }
2408 }
2409
2410 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2411 assert(pop_fpu_stack || (left_index == dest_index || right_index == dest_index), "invalid LIR");
2412 assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2413 assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2414
2415 bool left_is_tos = (left_index == 0);
2416 bool dest_is_tos = (dest_index == 0);
2417 int non_tos_index = (left_is_tos ? right_index : left_index);
2418
2419 switch (code) {
2420 case lir_add:
2421 if (pop_fpu_stack) __ faddp(non_tos_index);
2422 else if (dest_is_tos) __ fadd (non_tos_index);
2423 else __ fadda(non_tos_index);
2424 break;
2425
2426 case lir_sub:
2427 if (left_is_tos) {
2428 if (pop_fpu_stack) __ fsubrp(non_tos_index);
2429 else if (dest_is_tos) __ fsub (non_tos_index);
2430 else __ fsubra(non_tos_index);
2431 } else {
2432 if (pop_fpu_stack) __ fsubp (non_tos_index);
2433 else if (dest_is_tos) __ fsubr (non_tos_index);
2434 else __ fsuba (non_tos_index);
2435 }
2436 break;
2437
2438 case lir_mul_strictfp: // fall through
2439 case lir_mul:
2440 if (pop_fpu_stack) __ fmulp(non_tos_index);
2441 else if (dest_is_tos) __ fmul (non_tos_index);
2442 else __ fmula(non_tos_index);
2443 break;
2444
2445 case lir_div_strictfp: // fall through
2446 case lir_div:
2447 if (left_is_tos) {
2448 if (pop_fpu_stack) __ fdivrp(non_tos_index);
2449 else if (dest_is_tos) __ fdiv (non_tos_index);
2450 else __ fdivra(non_tos_index);
2451 } else {
2452 if (pop_fpu_stack) __ fdivp (non_tos_index);
2453 else if (dest_is_tos) __ fdivr (non_tos_index);
2454 else __ fdiva (non_tos_index);
2455 }
2456 break;
2457
2458 case lir_rem:
2459 assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2460 __ fremr(noreg);
2461 break;
2462
2463 default:
2464 ShouldNotReachHere();
2465 }
2466 }
2467
2468
2469 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2470 if (value->is_double_xmm()) {
2471 switch(code) {
2472 case lir_abs :
2473 {
2474 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2475 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2476 }
2477 __ andpd(dest->as_xmm_double_reg(),
2478 ExternalAddress((address)double_signmask_pool));
2479 }
2480 break;
2481
2482 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2483 // all other intrinsics are not available in the SSE instruction set, so FPU is used
2484 default : ShouldNotReachHere();
2485 }
2486
2487 } else if (value->is_double_fpu()) {
2488 assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2489 switch(code) {
2490 case lir_log : __ flog() ; break;
2491 case lir_log10 : __ flog10() ; break;
2492 case lir_abs : __ fabs() ; break;
2493 case lir_sqrt : __ fsqrt(); break;
2494 case lir_sin :
2495 // Should consider not saving rbx, if not necessary
2496 __ trigfunc('s', op->as_Op2()->fpu_stack_size());
2497 break;
2498 case lir_cos :
2499 // Should consider not saving rbx, if not necessary
2500 assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
2501 __ trigfunc('c', op->as_Op2()->fpu_stack_size());
2502 break;
2503 case lir_tan :
2504 // Should consider not saving rbx, if not necessary
2505 __ trigfunc('t', op->as_Op2()->fpu_stack_size());
2506 break;
2507 case lir_exp :
2508 __ exp_with_fallback(op->as_Op2()->fpu_stack_size());
2509 break;
2510 case lir_pow :
2511 __ pow_with_fallback(op->as_Op2()->fpu_stack_size());
2512 break;
2513 default : ShouldNotReachHere();
2514 }
2515 } else {
2516 Unimplemented();
2517 }
2518 }
2519
2520 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2521 // assert(left->destroys_register(), "check");
2522 if (left->is_single_cpu()) {
2523 Register reg = left->as_register();
2524 if (right->is_constant()) {
2525 int val = right->as_constant_ptr()->as_jint();
2526 switch (code) {
2527 case lir_logic_and: __ andl (reg, val); break;
2528 case lir_logic_or: __ orl (reg, val); break;
2529 case lir_logic_xor: __ xorl (reg, val); break;
2530 default: ShouldNotReachHere();
2531 }
2532 } else if (right->is_stack()) {
2533 // added support for stack operands
2534 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2535 switch (code) {
2536 case lir_logic_and: __ andl (reg, raddr); break;
2537 case lir_logic_or: __ orl (reg, raddr); break;
2538 case lir_logic_xor: __ xorl (reg, raddr); break;
2539 default: ShouldNotReachHere();
2540 }
2541 } else {
2542 Register rright = right->as_register();
2543 switch (code) {
2544 case lir_logic_and: __ andptr (reg, rright); break;
2545 case lir_logic_or : __ orptr (reg, rright); break;
2546 case lir_logic_xor: __ xorptr (reg, rright); break;
2547 default: ShouldNotReachHere();
2548 }
2549 }
2550 move_regs(reg, dst->as_register());
2551 } else {
2552 Register l_lo = left->as_register_lo();
2553 Register l_hi = left->as_register_hi();
2554 if (right->is_constant()) {
2555 #ifdef _LP64
2556 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2557 switch (code) {
2558 case lir_logic_and:
2559 __ andq(l_lo, rscratch1);
2560 break;
2561 case lir_logic_or:
2562 __ orq(l_lo, rscratch1);
2563 break;
2564 case lir_logic_xor:
2565 __ xorq(l_lo, rscratch1);
2566 break;
2567 default: ShouldNotReachHere();
2568 }
2569 #else
2570 int r_lo = right->as_constant_ptr()->as_jint_lo();
2571 int r_hi = right->as_constant_ptr()->as_jint_hi();
2572 switch (code) {
2573 case lir_logic_and:
2574 __ andl(l_lo, r_lo);
2575 __ andl(l_hi, r_hi);
2576 break;
2577 case lir_logic_or:
2578 __ orl(l_lo, r_lo);
2579 __ orl(l_hi, r_hi);
2580 break;
2581 case lir_logic_xor:
2582 __ xorl(l_lo, r_lo);
2583 __ xorl(l_hi, r_hi);
2584 break;
2585 default: ShouldNotReachHere();
2586 }
2587 #endif // _LP64
2588 } else {
2589 #ifdef _LP64
2590 Register r_lo;
2591 if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
2592 r_lo = right->as_register();
2593 } else {
2594 r_lo = right->as_register_lo();
2595 }
2596 #else
2597 Register r_lo = right->as_register_lo();
2598 Register r_hi = right->as_register_hi();
2599 assert(l_lo != r_hi, "overwriting registers");
2600 #endif
2601 switch (code) {
2602 case lir_logic_and:
2603 __ andptr(l_lo, r_lo);
2604 NOT_LP64(__ andptr(l_hi, r_hi);)
2605 break;
2606 case lir_logic_or:
2607 __ orptr(l_lo, r_lo);
2608 NOT_LP64(__ orptr(l_hi, r_hi);)
2609 break;
2610 case lir_logic_xor:
2611 __ xorptr(l_lo, r_lo);
2612 NOT_LP64(__ xorptr(l_hi, r_hi);)
2613 break;
2614 default: ShouldNotReachHere();
2615 }
2616 }
2617
2618 Register dst_lo = dst->as_register_lo();
2619 Register dst_hi = dst->as_register_hi();
2620
2621 #ifdef _LP64
2622 move_regs(l_lo, dst_lo);
2623 #else
2624 if (dst_lo == l_hi) {
2625 assert(dst_hi != l_lo, "overwriting registers");
2626 move_regs(l_hi, dst_hi);
2627 move_regs(l_lo, dst_lo);
2628 } else {
2629 assert(dst_lo != l_hi, "overwriting registers");
2630 move_regs(l_lo, dst_lo);
2631 move_regs(l_hi, dst_hi);
2632 }
2633 #endif // _LP64
2634 }
2635 }
2636
2637
2638 // we assume that rax, and rdx can be overwritten
2639 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2640
2641 assert(left->is_single_cpu(), "left must be register");
2642 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant");
2643 assert(result->is_single_cpu(), "result must be register");
2644
2645 // assert(left->destroys_register(), "check");
2646 // assert(right->destroys_register(), "check");
2647
2648 Register lreg = left->as_register();
2649 Register dreg = result->as_register();
2650
2651 if (right->is_constant()) {
2652 int divisor = right->as_constant_ptr()->as_jint();
2653 assert(divisor > 0 && is_power_of_2(divisor), "must be");
2654 if (code == lir_idiv) {
2655 assert(lreg == rax, "must be rax,");
2656 assert(temp->as_register() == rdx, "tmp register must be rdx");
2657 __ cdql(); // sign extend into rdx:rax
2658 if (divisor == 2) {
2659 __ subl(lreg, rdx);
2660 } else {
2661 __ andl(rdx, divisor - 1);
2662 __ addl(lreg, rdx);
2663 }
2664 __ sarl(lreg, log2_intptr(divisor));
2665 move_regs(lreg, dreg);
2666 } else if (code == lir_irem) {
2667 Label done;
2668 __ mov(dreg, lreg);
2669 __ andl(dreg, 0x80000000 | (divisor - 1));
2670 __ jcc(Assembler::positive, done);
2671 __ decrement(dreg);
2672 __ orl(dreg, ~(divisor - 1));
2673 __ increment(dreg);
2674 __ bind(done);
2675 } else {
2676 ShouldNotReachHere();
2677 }
2678 } else {
2679 Register rreg = right->as_register();
2680 assert(lreg == rax, "left register must be rax,");
2681 assert(rreg != rdx, "right register must not be rdx");
2682 assert(temp->as_register() == rdx, "tmp register must be rdx");
2683
2684 move_regs(lreg, rax);
2685
2686 int idivl_offset = __ corrected_idivl(rreg);
2687 add_debug_info_for_div0(idivl_offset, info);
2688 if (code == lir_irem) {
2689 move_regs(rdx, dreg); // result is in rdx
2690 } else {
2691 move_regs(rax, dreg);
2692 }
2693 }
2694 }
2695
2696
2697 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2698 if (opr1->is_single_cpu()) {
2699 Register reg1 = opr1->as_register();
2700 if (opr2->is_single_cpu()) {
2701 // cpu register - cpu register
2702 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2703 __ cmpptr(reg1, opr2->as_register());
2704 } else {
2705 assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2706 __ cmpl(reg1, opr2->as_register());
2707 }
2708 } else if (opr2->is_stack()) {
2709 // cpu register - stack
2710 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2711 __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2712 } else {
2713 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2714 }
2715 } else if (opr2->is_constant()) {
2716 // cpu register - constant
2717 LIR_Const* c = opr2->as_constant_ptr();
2718 if (c->type() == T_INT) {
2719 __ cmpl(reg1, c->as_jint());
2720 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2721 // In 64bit oops are single register
2722 jobject o = c->as_jobject();
2723 if (o == NULL) {
2724 __ cmpptr(reg1, (int32_t)NULL_WORD);
2725 } else {
2726 #ifdef _LP64
2727 __ movoop(rscratch1, o);
2728 __ cmpptr(reg1, rscratch1);
2729 #else
2730 __ cmpoop(reg1, c->as_jobject());
2731 #endif // _LP64
2732 }
2733 } else {
2734 fatal(err_msg("unexpected type: %s", basictype_to_str(c->type())));
2735 }
2736 // cpu register - address
2737 } else if (opr2->is_address()) {
2738 if (op->info() != NULL) {
2739 add_debug_info_for_null_check_here(op->info());
2740 }
2741 __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2742 } else {
2743 ShouldNotReachHere();
2744 }
2745
2746 } else if(opr1->is_double_cpu()) {
2747 Register xlo = opr1->as_register_lo();
2748 Register xhi = opr1->as_register_hi();
2749 if (opr2->is_double_cpu()) {
2750 #ifdef _LP64
2751 __ cmpptr(xlo, opr2->as_register_lo());
2752 #else
2753 // cpu register - cpu register
2754 Register ylo = opr2->as_register_lo();
2755 Register yhi = opr2->as_register_hi();
2756 __ subl(xlo, ylo);
2757 __ sbbl(xhi, yhi);
2758 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2759 __ orl(xhi, xlo);
2760 }
2761 #endif // _LP64
2762 } else if (opr2->is_constant()) {
2763 // cpu register - constant 0
2764 assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2765 #ifdef _LP64
2766 __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2767 #else
2768 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2769 __ orl(xhi, xlo);
2770 #endif // _LP64
2771 } else {
2772 ShouldNotReachHere();
2773 }
2774
2775 } else if (opr1->is_single_xmm()) {
2776 XMMRegister reg1 = opr1->as_xmm_float_reg();
2777 if (opr2->is_single_xmm()) {
2778 // xmm register - xmm register
2779 __ ucomiss(reg1, opr2->as_xmm_float_reg());
2780 } else if (opr2->is_stack()) {
2781 // xmm register - stack
2782 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2783 } else if (opr2->is_constant()) {
2784 // xmm register - constant
2785 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2786 } else if (opr2->is_address()) {
2787 // xmm register - address
2788 if (op->info() != NULL) {
2789 add_debug_info_for_null_check_here(op->info());
2790 }
2791 __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2792 } else {
2793 ShouldNotReachHere();
2794 }
2795
2796 } else if (opr1->is_double_xmm()) {
2797 XMMRegister reg1 = opr1->as_xmm_double_reg();
2798 if (opr2->is_double_xmm()) {
2799 // xmm register - xmm register
2800 __ ucomisd(reg1, opr2->as_xmm_double_reg());
2801 } else if (opr2->is_stack()) {
2802 // xmm register - stack
2803 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2804 } else if (opr2->is_constant()) {
2805 // xmm register - constant
2806 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2807 } else if (opr2->is_address()) {
2808 // xmm register - address
2809 if (op->info() != NULL) {
2810 add_debug_info_for_null_check_here(op->info());
2811 }
2812 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2813 } else {
2814 ShouldNotReachHere();
2815 }
2816
2817 } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2818 assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2819 assert(opr2->is_fpu_register(), "both must be registers");
2820 __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2821
2822 } else if (opr1->is_address() && opr2->is_constant()) {
2823 LIR_Const* c = opr2->as_constant_ptr();
2824 #ifdef _LP64
2825 if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2826 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2827 __ movoop(rscratch1, c->as_jobject());
2828 }
2829 #endif // LP64
2830 if (op->info() != NULL) {
2831 add_debug_info_for_null_check_here(op->info());
2832 }
2833 // special case: address - constant
2834 LIR_Address* addr = opr1->as_address_ptr();
2835 if (c->type() == T_INT) {
2836 __ cmpl(as_Address(addr), c->as_jint());
2837 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2838 #ifdef _LP64
2839 // %%% Make this explode if addr isn't reachable until we figure out a
2840 // better strategy by giving noreg as the temp for as_Address
2841 __ cmpptr(rscratch1, as_Address(addr, noreg));
2842 #else
2843 __ cmpoop(as_Address(addr), c->as_jobject());
2844 #endif // _LP64
2845 } else {
2846 ShouldNotReachHere();
2847 }
2848
2849 } else {
2850 ShouldNotReachHere();
2851 }
2852 }
2853
2854 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2855 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2856 if (left->is_single_xmm()) {
2857 assert(right->is_single_xmm(), "must match");
2858 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2859 } else if (left->is_double_xmm()) {
2860 assert(right->is_double_xmm(), "must match");
2861 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2862
2863 } else {
2864 assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2865 assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2866
2867 assert(left->fpu() == 0, "left must be on TOS");
2868 __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2869 op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2870 }
2871 } else {
2872 assert(code == lir_cmp_l2i, "check");
2873 #ifdef _LP64
2874 Label done;
2875 Register dest = dst->as_register();
2876 __ cmpptr(left->as_register_lo(), right->as_register_lo());
2877 __ movl(dest, -1);
2878 __ jccb(Assembler::less, done);
2879 __ set_byte_if_not_zero(dest);
2880 __ movzbl(dest, dest);
2881 __ bind(done);
2882 #else
2883 __ lcmp2int(left->as_register_hi(),
2884 left->as_register_lo(),
2885 right->as_register_hi(),
2886 right->as_register_lo());
2887 move_regs(left->as_register_hi(), dst->as_register());
2888 #endif // _LP64
2889 }
2890 }
2891
2892
2893 void LIR_Assembler::align_call(LIR_Code code) {
2894 if (os::is_MP()) {
2895 // make sure that the displacement word of the call ends up word aligned
2896 int offset = __ offset();
2897 switch (code) {
2898 case lir_static_call:
2899 case lir_optvirtual_call:
2900 case lir_dynamic_call:
2901 offset += NativeCall::displacement_offset;
2902 break;
2903 case lir_icvirtual_call:
2904 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2905 break;
2906 case lir_virtual_call: // currently, sparc-specific for niagara
2907 default: ShouldNotReachHere();
2908 }
2909 while (offset++ % BytesPerWord != 0) {
2910 __ nop();
2911 }
2912 }
2913 }
2914
2915
2916 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2917 assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2918 "must be aligned");
2919 __ call(AddressLiteral(op->addr(), rtype));
2920 add_call_info(code_offset(), op->info());
2921 }
2922
2923
2924 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2925 __ ic_call(op->addr());
2926 add_call_info(code_offset(), op->info());
2927 assert(!os::is_MP() ||
2928 (__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
2929 "must be aligned");
2930 }
2931
2932
2933 /* Currently, vtable-dispatch is only enabled for sparc platforms */
2934 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2935 ShouldNotReachHere();
2936 }
2937
2938
2939 void LIR_Assembler::emit_static_call_stub() {
2940 address call_pc = __ pc();
2941 address stub = __ start_a_stub(call_stub_size);
2942 if (stub == NULL) {
2943 bailout("static call stub overflow");
2944 return;
2945 }
2946
2947 int start = __ offset();
2948 if (os::is_MP()) {
2949 // make sure that the displacement word of the call ends up word aligned
2950 int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
2951 while (offset++ % BytesPerWord != 0) {
2952 __ nop();
2953 }
2954 }
2955 __ relocate(static_stub_Relocation::spec(call_pc));
2956 __ mov_metadata(rbx, (Metadata*)NULL);
2957 // must be set to -1 at code generation time
2958 assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
2959 // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2960 __ jump(RuntimeAddress(__ pc()));
2961
2962 assert(__ offset() - start <= call_stub_size, "stub too big");
2963 __ end_a_stub();
2964 }
2965
2966
2967 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2968 assert(exceptionOop->as_register() == rax, "must match");
2969 assert(exceptionPC->as_register() == rdx, "must match");
2970
2971 // exception object is not added to oop map by LinearScan
2972 // (LinearScan assumes that no oops are in fixed registers)
2973 info->add_register_oop(exceptionOop);
2974 Runtime1::StubID unwind_id;
2975
2976 // get current pc information
2977 // pc is only needed if the method has an exception handler, the unwind code does not need it.
2978 int pc_for_athrow_offset = __ offset();
2979 InternalAddress pc_for_athrow(__ pc());
2980 __ lea(exceptionPC->as_register(), pc_for_athrow);
2981 add_call_info(pc_for_athrow_offset, info); // for exception handler
2982
2983 __ verify_not_null_oop(rax);
2984 // search an exception handler (rax: exception oop, rdx: throwing pc)
2985 if (compilation()->has_fpu_code()) {
2986 unwind_id = Runtime1::handle_exception_id;
2987 } else {
2988 unwind_id = Runtime1::handle_exception_nofpu_id;
2989 }
2990 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2991
2992 // enough room for two byte trap
2993 __ nop();
2994 }
2995
2996
2997 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2998 assert(exceptionOop->as_register() == rax, "must match");
2999
3000 __ jmp(_unwind_handler_entry);
3001 }
3002
3003
3004 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
3005
3006 // optimized version for linear scan:
3007 // * count must be already in ECX (guaranteed by LinearScan)
3008 // * left and dest must be equal
3009 // * tmp must be unused
3010 assert(count->as_register() == SHIFT_count, "count must be in ECX");
3011 assert(left == dest, "left and dest must be equal");
3012 assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
3013
3014 if (left->is_single_cpu()) {
3015 Register value = left->as_register();
3016 assert(value != SHIFT_count, "left cannot be ECX");
3017
3018 switch (code) {
3019 case lir_shl: __ shll(value); break;
3020 case lir_shr: __ sarl(value); break;
3021 case lir_ushr: __ shrl(value); break;
3022 default: ShouldNotReachHere();
3023 }
3024 } else if (left->is_double_cpu()) {
3025 Register lo = left->as_register_lo();
3026 Register hi = left->as_register_hi();
3027 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
3028 #ifdef _LP64
3029 switch (code) {
3030 case lir_shl: __ shlptr(lo); break;
3031 case lir_shr: __ sarptr(lo); break;
3032 case lir_ushr: __ shrptr(lo); break;
3033 default: ShouldNotReachHere();
3034 }
3035 #else
3036
3037 switch (code) {
3038 case lir_shl: __ lshl(hi, lo); break;
3039 case lir_shr: __ lshr(hi, lo, true); break;
3040 case lir_ushr: __ lshr(hi, lo, false); break;
3041 default: ShouldNotReachHere();
3042 }
3043 #endif // LP64
3044 } else {
3045 ShouldNotReachHere();
3046 }
3047 }
3048
3049
3050 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
3051 if (dest->is_single_cpu()) {
3052 // first move left into dest so that left is not destroyed by the shift
3053 Register value = dest->as_register();
3054 count = count & 0x1F; // Java spec
3055
3056 move_regs(left->as_register(), value);
3057 switch (code) {
3058 case lir_shl: __ shll(value, count); break;
3059 case lir_shr: __ sarl(value, count); break;
3060 case lir_ushr: __ shrl(value, count); break;
3061 default: ShouldNotReachHere();
3062 }
3063 } else if (dest->is_double_cpu()) {
3064 #ifndef _LP64
3065 Unimplemented();
3066 #else
3067 // first move left into dest so that left is not destroyed by the shift
3068 Register value = dest->as_register_lo();
3069 count = count & 0x1F; // Java spec
3070
3071 move_regs(left->as_register_lo(), value);
3072 switch (code) {
3073 case lir_shl: __ shlptr(value, count); break;
3074 case lir_shr: __ sarptr(value, count); break;
3075 case lir_ushr: __ shrptr(value, count); break;
3076 default: ShouldNotReachHere();
3077 }
3078 #endif // _LP64
3079 } else {
3080 ShouldNotReachHere();
3081 }
3082 }
3083
3084
3085 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3086 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3087 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3088 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3089 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3090 }
3091
3092
3093 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) {
3094 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3095 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3096 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3097 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3098 }
3099
3100
3101 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
3102 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3103 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3104 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3105 __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
3106 }
3107
3108
3109 // This code replaces a call to arraycopy; no exception may
3110 // be thrown in this code, they must be thrown in the System.arraycopy
3111 // activation frame; we could save some checks if this would not be the case
3112 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3113 ciArrayKlass* default_type = op->expected_type();
3114 Register src = op->src()->as_register();
3115 Register dst = op->dst()->as_register();
3116 Register src_pos = op->src_pos()->as_register();
3117 Register dst_pos = op->dst_pos()->as_register();
3118 Register length = op->length()->as_register();
3119 Register tmp = op->tmp()->as_register();
3120
3121 CodeStub* stub = op->stub();
3122 int flags = op->flags();
3123 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3124 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
3125
3126 // if we don't know anything, just go through the generic arraycopy
3127 if (default_type == NULL) {
3128 Label done;
3129 // save outgoing arguments on stack in case call to System.arraycopy is needed
3130 // HACK ALERT. This code used to push the parameters in a hardwired fashion
3131 // for interpreter calling conventions. Now we have to do it in new style conventions.
3132 // For the moment until C1 gets the new register allocator I just force all the
3133 // args to the right place (except the register args) and then on the back side
3134 // reload the register args properly if we go slow path. Yuck
3135
3136 // These are proper for the calling convention
3137 store_parameter(length, 2);
3138 store_parameter(dst_pos, 1);
3139 store_parameter(dst, 0);
3140
3141 // these are just temporary placements until we need to reload
3142 store_parameter(src_pos, 3);
3143 store_parameter(src, 4);
3144 NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3145
3146 address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
3147
3148 address copyfunc_addr = StubRoutines::generic_arraycopy();
3149
3150 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3151 #ifdef _LP64
3152 // The arguments are in java calling convention so we can trivially shift them to C
3153 // convention
3154 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3155 __ mov(c_rarg0, j_rarg0);
3156 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3157 __ mov(c_rarg1, j_rarg1);
3158 assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3159 __ mov(c_rarg2, j_rarg2);
3160 assert_different_registers(c_rarg3, j_rarg4);
3161 __ mov(c_rarg3, j_rarg3);
3162 #ifdef _WIN64
3163 // Allocate abi space for args but be sure to keep stack aligned
3164 __ subptr(rsp, 6*wordSize);
3165 store_parameter(j_rarg4, 4);
3166 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3167 __ call(RuntimeAddress(C_entry));
3168 } else {
3169 #ifndef PRODUCT
3170 if (PrintC1Statistics) {
3171 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3172 }
3173 #endif
3174 __ call(RuntimeAddress(copyfunc_addr));
3175 }
3176 __ addptr(rsp, 6*wordSize);
3177 #else
3178 __ mov(c_rarg4, j_rarg4);
3179 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3180 __ call(RuntimeAddress(C_entry));
3181 } else {
3182 #ifndef PRODUCT
3183 if (PrintC1Statistics) {
3184 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3185 }
3186 #endif
3187 __ call(RuntimeAddress(copyfunc_addr));
3188 }
3189 #endif // _WIN64
3190 #else
3191 __ push(length);
3192 __ push(dst_pos);
3193 __ push(dst);
3194 __ push(src_pos);
3195 __ push(src);
3196
3197 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3198 __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
3199 } else {
3200 #ifndef PRODUCT
3201 if (PrintC1Statistics) {
3202 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3203 }
3204 #endif
3205 __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3206 }
3207
3208 #endif // _LP64
3209
3210 __ cmpl(rax, 0);
3211 __ jcc(Assembler::equal, *stub->continuation());
3212
3213 if (copyfunc_addr != NULL) {
3214 __ mov(tmp, rax);
3215 __ xorl(tmp, -1);
3216 }
3217
3218 // Reload values from the stack so they are where the stub
3219 // expects them.
3220 __ movptr (dst, Address(rsp, 0*BytesPerWord));
3221 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord));
3222 __ movptr (length, Address(rsp, 2*BytesPerWord));
3223 __ movptr (src_pos, Address(rsp, 3*BytesPerWord));
3224 __ movptr (src, Address(rsp, 4*BytesPerWord));
3225
3226 if (copyfunc_addr != NULL) {
3227 __ subl(length, tmp);
3228 __ addl(src_pos, tmp);
3229 __ addl(dst_pos, tmp);
3230 }
3231 __ jmp(*stub->entry());
3232
3233 __ bind(*stub->continuation());
3234 return;
3235 }
3236
3237 assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3238
3239 int elem_size = type2aelembytes(basic_type);
3240 int shift_amount;
3241 Address::ScaleFactor scale;
3242
3243 switch (elem_size) {
3244 case 1 :
3245 shift_amount = 0;
3246 scale = Address::times_1;
3247 break;
3248 case 2 :
3249 shift_amount = 1;
3250 scale = Address::times_2;
3251 break;
3252 case 4 :
3253 shift_amount = 2;
3254 scale = Address::times_4;
3255 break;
3256 case 8 :
3257 shift_amount = 3;
3258 scale = Address::times_8;
3259 break;
3260 default:
3261 ShouldNotReachHere();
3262 }
3263
3264 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3265 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3266 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3267 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3268
3269 // length and pos's are all sign extended at this point on 64bit
3270
3271 // test for NULL
3272 if (flags & LIR_OpArrayCopy::src_null_check) {
3273 __ testptr(src, src);
3274 __ jcc(Assembler::zero, *stub->entry());
3275 }
3276 if (flags & LIR_OpArrayCopy::dst_null_check) {
3277 __ testptr(dst, dst);
3278 __ jcc(Assembler::zero, *stub->entry());
3279 }
3280
3281 // check if negative
3282 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3283 __ testl(src_pos, src_pos);
3284 __ jcc(Assembler::less, *stub->entry());
3285 }
3286 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3287 __ testl(dst_pos, dst_pos);
3288 __ jcc(Assembler::less, *stub->entry());
3289 }
3290
3291 if (flags & LIR_OpArrayCopy::src_range_check) {
3292 __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3293 __ cmpl(tmp, src_length_addr);
3294 __ jcc(Assembler::above, *stub->entry());
3295 }
3296 if (flags & LIR_OpArrayCopy::dst_range_check) {
3297 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3298 __ cmpl(tmp, dst_length_addr);
3299 __ jcc(Assembler::above, *stub->entry());
3300 }
3301
3302 if (flags & LIR_OpArrayCopy::length_positive_check) {
3303 __ testl(length, length);
3304 __ jcc(Assembler::less, *stub->entry());
3305 __ jcc(Assembler::zero, *stub->continuation());
3306 }
3307
3308 #ifdef _LP64
3309 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3310 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3311 #endif
3312
3313 if (flags & LIR_OpArrayCopy::type_check) {
3314 // We don't know the array types are compatible
3315 if (basic_type != T_OBJECT) {
3316 // Simple test for basic type arrays
3317 if (UseCompressedClassPointers) {
3318 __ movl(tmp, src_klass_addr);
3319 __ cmpl(tmp, dst_klass_addr);
3320 } else {
3321 __ movptr(tmp, src_klass_addr);
3322 __ cmpptr(tmp, dst_klass_addr);
3323 }
3324 __ jcc(Assembler::notEqual, *stub->entry());
3325 } else {
3326 // For object arrays, if src is a sub class of dst then we can
3327 // safely do the copy.
3328 Label cont, slow;
3329
3330 __ push(src);
3331 __ push(dst);
3332
3333 __ load_klass(src, src);
3334 __ load_klass(dst, dst);
3335
3336 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
3337
3338 __ push(src);
3339 __ push(dst);
3340 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
3341 __ pop(dst);
3342 __ pop(src);
3343
3344 __ cmpl(src, 0);
3345 __ jcc(Assembler::notEqual, cont);
3346
3347 __ bind(slow);
3348 __ pop(dst);
3349 __ pop(src);
3350
3351 address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3352 if (copyfunc_addr != NULL) { // use stub if available
3353 // src is not a sub class of dst so we have to do a
3354 // per-element check.
3355
3356 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3357 if ((flags & mask) != mask) {
3358 // Check that at least both of them object arrays.
3359 assert(flags & mask, "one of the two should be known to be an object array");
3360
3361 if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3362 __ load_klass(tmp, src);
3363 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3364 __ load_klass(tmp, dst);
3365 }
3366 int lh_offset = in_bytes(Klass::layout_helper_offset());
3367 Address klass_lh_addr(tmp, lh_offset);
3368 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3369 __ cmpl(klass_lh_addr, objArray_lh);
3370 __ jcc(Assembler::notEqual, *stub->entry());
3371 }
3372
3373 // Spill because stubs can use any register they like and it's
3374 // easier to restore just those that we care about.
3375 store_parameter(dst, 0);
3376 store_parameter(dst_pos, 1);
3377 store_parameter(length, 2);
3378 store_parameter(src_pos, 3);
3379 store_parameter(src, 4);
3380
3381 #ifndef _LP64
3382 __ movptr(tmp, dst_klass_addr);
3383 __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3384 __ push(tmp);
3385 __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3386 __ push(tmp);
3387 __ push(length);
3388 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3389 __ push(tmp);
3390 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3391 __ push(tmp);
3392
3393 __ call_VM_leaf(copyfunc_addr, 5);
3394 #else
3395 __ movl2ptr(length, length); //higher 32bits must be null
3396
3397 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3398 assert_different_registers(c_rarg0, dst, dst_pos, length);
3399 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3400 assert_different_registers(c_rarg1, dst, length);
3401
3402 __ mov(c_rarg2, length);
3403 assert_different_registers(c_rarg2, dst);
3404
3405 #ifdef _WIN64
3406 // Allocate abi space for args but be sure to keep stack aligned
3407 __ subptr(rsp, 6*wordSize);
3408 __ load_klass(c_rarg3, dst);
3409 __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3410 store_parameter(c_rarg3, 4);
3411 __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3412 __ call(RuntimeAddress(copyfunc_addr));
3413 __ addptr(rsp, 6*wordSize);
3414 #else
3415 __ load_klass(c_rarg4, dst);
3416 __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3417 __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3418 __ call(RuntimeAddress(copyfunc_addr));
3419 #endif
3420
3421 #endif
3422
3423 #ifndef PRODUCT
3424 if (PrintC1Statistics) {
3425 Label failed;
3426 __ testl(rax, rax);
3427 __ jcc(Assembler::notZero, failed);
3428 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
3429 __ bind(failed);
3430 }
3431 #endif
3432
3433 __ testl(rax, rax);
3434 __ jcc(Assembler::zero, *stub->continuation());
3435
3436 #ifndef PRODUCT
3437 if (PrintC1Statistics) {
3438 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
3439 }
3440 #endif
3441
3442 __ mov(tmp, rax);
3443
3444 __ xorl(tmp, -1);
3445
3446 // Restore previously spilled arguments
3447 __ movptr (dst, Address(rsp, 0*BytesPerWord));
3448 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord));
3449 __ movptr (length, Address(rsp, 2*BytesPerWord));
3450 __ movptr (src_pos, Address(rsp, 3*BytesPerWord));
3451 __ movptr (src, Address(rsp, 4*BytesPerWord));
3452
3453
3454 __ subl(length, tmp);
3455 __ addl(src_pos, tmp);
3456 __ addl(dst_pos, tmp);
3457 }
3458
3459 __ jmp(*stub->entry());
3460
3461 __ bind(cont);
3462 __ pop(dst);
3463 __ pop(src);
3464 }
3465 }
3466
3467 #ifdef ASSERT
3468 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3469 // Sanity check the known type with the incoming class. For the
3470 // primitive case the types must match exactly with src.klass and
3471 // dst.klass each exactly matching the default type. For the
3472 // object array case, if no type check is needed then either the
3473 // dst type is exactly the expected type and the src type is a
3474 // subtype which we can't check or src is the same array as dst
3475 // but not necessarily exactly of type default_type.
3476 Label known_ok, halt;
3477 __ mov_metadata(tmp, default_type->constant_encoding());
3478 #ifdef _LP64
3479 if (UseCompressedClassPointers) {
3480 __ encode_klass_not_null(tmp);
3481 }
3482 #endif
3483
3484 if (basic_type != T_OBJECT) {
3485
3486 if (UseCompressedClassPointers) __ cmpl(tmp, dst_klass_addr);
3487 else __ cmpptr(tmp, dst_klass_addr);
3488 __ jcc(Assembler::notEqual, halt);
3489 if (UseCompressedClassPointers) __ cmpl(tmp, src_klass_addr);
3490 else __ cmpptr(tmp, src_klass_addr);
3491 __ jcc(Assembler::equal, known_ok);
3492 } else {
3493 if (UseCompressedClassPointers) __ cmpl(tmp, dst_klass_addr);
3494 else __ cmpptr(tmp, dst_klass_addr);
3495 __ jcc(Assembler::equal, known_ok);
3496 __ cmpptr(src, dst);
3497 __ jcc(Assembler::equal, known_ok);
3498 }
3499 __ bind(halt);
3500 __ stop("incorrect type information in arraycopy");
3501 __ bind(known_ok);
3502 }
3503 #endif
3504
3505 #ifndef PRODUCT
3506 if (PrintC1Statistics) {
3507 __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
3508 }
3509 #endif
3510
3511 #ifdef _LP64
3512 assert_different_registers(c_rarg0, dst, dst_pos, length);
3513 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3514 assert_different_registers(c_rarg1, length);
3515 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3516 __ mov(c_rarg2, length);
3517
3518 #else
3519 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3520 store_parameter(tmp, 0);
3521 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3522 store_parameter(tmp, 1);
3523 store_parameter(length, 2);
3524 #endif // _LP64
3525
3526 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3527 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3528 const char *name;
3529 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3530 __ call_VM_leaf(entry, 0);
3531
3532 __ bind(*stub->continuation());
3533 }
3534
3535 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3536 assert(op->crc()->is_single_cpu(), "crc must be register");
3537 assert(op->val()->is_single_cpu(), "byte value must be register");
3538 assert(op->result_opr()->is_single_cpu(), "result must be register");
3539 Register crc = op->crc()->as_register();
3540 Register val = op->val()->as_register();
3541 Register res = op->result_opr()->as_register();
3542
3543 assert_different_registers(val, crc, res);
3544
3545 __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3546 __ notl(crc); // ~crc
3547 __ update_byte_crc32(crc, val, res);
3548 __ notl(crc); // ~crc
3549 __ mov(res, crc);
3550 }
3551
3552 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3553 Register obj = op->obj_opr()->as_register(); // may not be an oop
3554 Register hdr = op->hdr_opr()->as_register();
3555 Register lock = op->lock_opr()->as_register();
3556 if (!UseFastLocking) {
3557 __ jmp(*op->stub()->entry());
3558 } else if (op->code() == lir_lock) {
3559 Register scratch = noreg;
3560 if (UseBiasedLocking) {
3561 scratch = op->scratch_opr()->as_register();
3562 }
3563 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3564 // add debug info for NullPointerException only if one is possible
3565 int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3566 if (op->info() != NULL) {
3567 add_debug_info_for_null_check(null_check_offset, op->info());
3568 }
3569 // done
3570 } else if (op->code() == lir_unlock) {
3571 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3572 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3573 } else {
3574 Unimplemented();
3575 }
3576 __ bind(*op->stub()->continuation());
3577 }
3578
3579
3580 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3581 ciMethod* method = op->profiled_method();
3582 int bci = op->profiled_bci();
3583 ciMethod* callee = op->profiled_callee();
3584
3585 // Update counter for all call types
3586 ciMethodData* md = method->method_data_or_null();
3587 assert(md != NULL, "Sanity");
3588 ciProfileData* data = md->bci_to_data(bci);
3589 assert(data->is_CounterData(), "need CounterData for calls");
3590 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
3591 Register mdo = op->mdo()->as_register();
3592 __ mov_metadata(mdo, md->constant_encoding());
3593 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3594 Bytecodes::Code bc = method->java_code_at_bci(bci);
3595 const bool callee_is_static = callee->is_loaded() && callee->is_static();
3596 // Perform additional virtual call profiling for invokevirtual and
3597 // invokeinterface bytecodes
3598 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
3599 !callee_is_static && // required for optimized MH invokes
3600 C1ProfileVirtualCalls) {
3601 assert(op->recv()->is_single_cpu(), "recv must be allocated");
3602 Register recv = op->recv()->as_register();
3603 assert_different_registers(mdo, recv);
3604 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3605 ciKlass* known_klass = op->known_holder();
3606 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3607 // We know the type that will be seen at this call site; we can
3608 // statically update the MethodData* rather than needing to do
3609 // dynamic tests on the receiver type
3610
3611 // NOTE: we should probably put a lock around this search to
3612 // avoid collisions by concurrent compilations
3613 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3614 uint i;
3615 for (i = 0; i < VirtualCallData::row_limit(); i++) {
3616 ciKlass* receiver = vc_data->receiver(i);
3617 if (known_klass->equals(receiver)) {
3618 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3619 __ addptr(data_addr, DataLayout::counter_increment);
3620 return;
3621 }
3622 }
3623
3624 // Receiver type not found in profile data; select an empty slot
3625
3626 // Note that this is less efficient than it should be because it
3627 // always does a write to the receiver part of the
3628 // VirtualCallData rather than just the first time
3629 for (i = 0; i < VirtualCallData::row_limit(); i++) {
3630 ciKlass* receiver = vc_data->receiver(i);
3631 if (receiver == NULL) {
3632 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3633 __ mov_metadata(recv_addr, known_klass->constant_encoding());
3634 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3635 __ addptr(data_addr, DataLayout::counter_increment);
3636 return;
3637 }
3638 }
3639 } else {
3640 __ load_klass(recv, recv);
3641 Label update_done;
3642 type_profile_helper(mdo, md, data, recv, &update_done);
3643 // Receiver did not match any saved receiver and there is no empty row for it.
3644 // Increment total counter to indicate polymorphic case.
3645 __ addptr(counter_addr, DataLayout::counter_increment);
3646
3647 __ bind(update_done);
3648 }
3649 } else {
3650 // Static call
3651 __ addptr(counter_addr, DataLayout::counter_increment);
3652 }
3653 }
3654
3655 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3656 Register obj = op->obj()->as_register();
3657 Register tmp = op->tmp()->as_pointer_register();
3658 Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3659 ciKlass* exact_klass = op->exact_klass();
3660 intptr_t current_klass = op->current_klass();
3661 bool not_null = op->not_null();
3662 bool no_conflict = op->no_conflict();
3663
3664 Label update, next, none;
3665
3666 bool do_null = !not_null;
3667 bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3668 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3669
3670 assert(do_null || do_update, "why are we here?");
3671 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3672
3673 __ verify_oop(obj);
3674
3675 if (tmp != obj) {
3676 __ mov(tmp, obj);
3677 }
3678 if (do_null) {
3679 __ testptr(tmp, tmp);
3680 __ jccb(Assembler::notZero, update);
3681 if (!TypeEntries::was_null_seen(current_klass)) {
3682 __ orptr(mdo_addr, TypeEntries::null_seen);
3683 }
3684 if (do_update) {
3685 #ifndef ASSERT
3686 __ jmpb(next);
3687 }
3688 #else
3689 __ jmp(next);
3690 }
3691 } else {
3692 __ testptr(tmp, tmp);
3693 __ jccb(Assembler::notZero, update);
3694 __ stop("unexpect null obj");
3695 #endif
3696 }
3697
3698 __ bind(update);
3699
3700 if (do_update) {
3701 #ifdef ASSERT
3702 if (exact_klass != NULL) {
3703 Label ok;
3704 __ load_klass(tmp, tmp);
3705 __ push(tmp);
3706 __ mov_metadata(tmp, exact_klass->constant_encoding());
3707 __ cmpptr(tmp, Address(rsp, 0));
3708 __ jccb(Assembler::equal, ok);
3709 __ stop("exact klass and actual klass differ");
3710 __ bind(ok);
3711 __ pop(tmp);
3712 }
3713 #endif
3714 if (!no_conflict) {
3715 if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
3716 if (exact_klass != NULL) {
3717 __ mov_metadata(tmp, exact_klass->constant_encoding());
3718 } else {
3719 __ load_klass(tmp, tmp);
3720 }
3721
3722 __ xorptr(tmp, mdo_addr);
3723 __ testptr(tmp, TypeEntries::type_klass_mask);
3724 // klass seen before, nothing to do. The unknown bit may have been
3725 // set already but no need to check.
3726 __ jccb(Assembler::zero, next);
3727
3728 __ testptr(tmp, TypeEntries::type_unknown);
3729 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3730
3731 if (TypeEntries::is_type_none(current_klass)) {
3732 __ cmpptr(mdo_addr, 0);
3733 __ jccb(Assembler::equal, none);
3734 __ cmpptr(mdo_addr, TypeEntries::null_seen);
3735 __ jccb(Assembler::equal, none);
3736 // There is a chance that the checks above (re-reading profiling
3737 // data from memory) fail if another thread has just set the
3738 // profiling to this obj's klass
3739 __ xorptr(tmp, mdo_addr);
3740 __ testptr(tmp, TypeEntries::type_klass_mask);
3741 __ jccb(Assembler::zero, next);
3742 }
3743 } else {
3744 assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3745 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3746
3747 __ movptr(tmp, mdo_addr);
3748 __ testptr(tmp, TypeEntries::type_unknown);
3749 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3750 }
3751
3752 // different than before. Cannot keep accurate profile.
3753 __ orptr(mdo_addr, TypeEntries::type_unknown);
3754
3755 if (TypeEntries::is_type_none(current_klass)) {
3756 __ jmpb(next);
3757
3758 __ bind(none);
3759 // first time here. Set profile type.
3760 __ movptr(mdo_addr, tmp);
3761 }
3762 } else {
3763 // There's a single possible klass at this profile point
3764 assert(exact_klass != NULL, "should be");
3765 if (TypeEntries::is_type_none(current_klass)) {
3766 __ mov_metadata(tmp, exact_klass->constant_encoding());
3767 __ xorptr(tmp, mdo_addr);
3768 __ testptr(tmp, TypeEntries::type_klass_mask);
3769 #ifdef ASSERT
3770 __ jcc(Assembler::zero, next);
3771
3772 {
3773 Label ok;
3774 __ push(tmp);
3775 __ cmpptr(mdo_addr, 0);
3776 __ jcc(Assembler::equal, ok);
3777 __ cmpptr(mdo_addr, TypeEntries::null_seen);
3778 __ jcc(Assembler::equal, ok);
3779 // may have been set by another thread
3780 __ mov_metadata(tmp, exact_klass->constant_encoding());
3781 __ xorptr(tmp, mdo_addr);
3782 __ testptr(tmp, TypeEntries::type_mask);
3783 __ jcc(Assembler::zero, ok);
3784
3785 __ stop("unexpected profiling mismatch");
3786 __ bind(ok);
3787 __ pop(tmp);
3788 }
3789 #else
3790 __ jccb(Assembler::zero, next);
3791 #endif
3792 // first time here. Set profile type.
3793 __ movptr(mdo_addr, tmp);
3794 } else {
3795 assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3796 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3797
3798 __ movptr(tmp, mdo_addr);
3799 __ testptr(tmp, TypeEntries::type_unknown);
3800 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3801
3802 __ orptr(mdo_addr, TypeEntries::type_unknown);
3803 }
3804 }
3805
3806 __ bind(next);
3807 }
3808 }
3809
3810 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3811 Unimplemented();
3812 }
3813
3814
3815 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3816 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3817 }
3818
3819
3820 void LIR_Assembler::align_backward_branch_target() {
3821 __ align(BytesPerWord);
3822 }
3823
3824
3825 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3826 if (left->is_single_cpu()) {
3827 __ negl(left->as_register());
3828 move_regs(left->as_register(), dest->as_register());
3829
3830 } else if (left->is_double_cpu()) {
3831 Register lo = left->as_register_lo();
3832 #ifdef _LP64
3833 Register dst = dest->as_register_lo();
3834 __ movptr(dst, lo);
3835 __ negptr(dst);
3836 #else
3837 Register hi = left->as_register_hi();
3838 __ lneg(hi, lo);
3839 if (dest->as_register_lo() == hi) {
3840 assert(dest->as_register_hi() != lo, "destroying register");
3841 move_regs(hi, dest->as_register_hi());
3842 move_regs(lo, dest->as_register_lo());
3843 } else {
3844 move_regs(lo, dest->as_register_lo());
3845 move_regs(hi, dest->as_register_hi());
3846 }
3847 #endif // _LP64
3848
3849 } else if (dest->is_single_xmm()) {
3850 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3851 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3852 }
3853 __ xorps(dest->as_xmm_float_reg(),
3854 ExternalAddress((address)float_signflip_pool));
3855
3856 } else if (dest->is_double_xmm()) {
3857 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3858 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3859 }
3860 __ xorpd(dest->as_xmm_double_reg(),
3861 ExternalAddress((address)double_signflip_pool));
3862
3863 } else if (left->is_single_fpu() || left->is_double_fpu()) {
3864 assert(left->fpu() == 0, "arg must be on TOS");
3865 assert(dest->fpu() == 0, "dest must be TOS");
3866 __ fchs();
3867
3868 } else {
3869 ShouldNotReachHere();
3870 }
3871 }
3872
3873
3874 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
3875 assert(addr->is_address() && dest->is_register(), "check");
3876 Register reg;
3877 reg = dest->as_pointer_register();
3878 __ lea(reg, as_Address(addr->as_address_ptr()));
3879 }
3880
3881
3882
3883 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3884 assert(!tmp->is_valid(), "don't need temporary");
3885 __ call(RuntimeAddress(dest));
3886 if (info != NULL) {
3887 add_call_info_here(info);
3888 }
3889 }
3890
3891
3892 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3893 assert(type == T_LONG, "only for volatile long fields");
3894
3895 if (info != NULL) {
3896 add_debug_info_for_null_check_here(info);
3897 }
3898
3899 if (src->is_double_xmm()) {
3900 if (dest->is_double_cpu()) {
3901 #ifdef _LP64
3902 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3903 #else
3904 __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3905 __ psrlq(src->as_xmm_double_reg(), 32);
3906 __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3907 #endif // _LP64
3908 } else if (dest->is_double_stack()) {
3909 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3910 } else if (dest->is_address()) {
3911 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3912 } else {
3913 ShouldNotReachHere();
3914 }
3915
3916 } else if (dest->is_double_xmm()) {
3917 if (src->is_double_stack()) {
3918 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3919 } else if (src->is_address()) {
3920 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3921 } else {
3922 ShouldNotReachHere();
3923 }
3924
3925 } else if (src->is_double_fpu()) {
3926 assert(src->fpu_regnrLo() == 0, "must be TOS");
3927 if (dest->is_double_stack()) {
3928 __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3929 } else if (dest->is_address()) {
3930 __ fistp_d(as_Address(dest->as_address_ptr()));
3931 } else {
3932 ShouldNotReachHere();
3933 }
3934
3935 } else if (dest->is_double_fpu()) {
3936 assert(dest->fpu_regnrLo() == 0, "must be TOS");
3937 if (src->is_double_stack()) {
3938 __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3939 } else if (src->is_address()) {
3940 __ fild_d(as_Address(src->as_address_ptr()));
3941 } else {
3942 ShouldNotReachHere();
3943 }
3944 } else {
3945 ShouldNotReachHere();
3946 }
3947 }
3948
3949 #ifdef ASSERT
3950 // emit run-time assertion
3951 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3952 assert(op->code() == lir_assert, "must be");
3953
3954 if (op->in_opr1()->is_valid()) {
3955 assert(op->in_opr2()->is_valid(), "both operands must be valid");
3956 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3957 } else {
3958 assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3959 assert(op->condition() == lir_cond_always, "no other conditions allowed");
3960 }
3961
3962 Label ok;
3963 if (op->condition() != lir_cond_always) {
3964 Assembler::Condition acond = Assembler::zero;
3965 switch (op->condition()) {
3966 case lir_cond_equal: acond = Assembler::equal; break;
3967 case lir_cond_notEqual: acond = Assembler::notEqual; break;
3968 case lir_cond_less: acond = Assembler::less; break;
3969 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
3970 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
3971 case lir_cond_greater: acond = Assembler::greater; break;
3972 case lir_cond_belowEqual: acond = Assembler::belowEqual; break;
3973 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break;
3974 default: ShouldNotReachHere();
3975 }
3976 __ jcc(acond, ok);
3977 }
3978 if (op->halt()) {
3979 const char* str = __ code_string(op->msg());
3980 __ stop(str);
3981 } else {
3982 breakpoint();
3983 }
3984 __ bind(ok);
3985 }
3986 #endif
3987
3988 void LIR_Assembler::membar() {
3989 // QQQ sparc TSO uses this,
3990 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3991 }
3992
3993 void LIR_Assembler::membar_acquire() {
3994 // No x86 machines currently require load fences
3995 // __ load_fence();
3996 }
3997
3998 void LIR_Assembler::membar_release() {
3999 // No x86 machines currently require store fences
4000 // __ store_fence();
4001 }
4002
4003 void LIR_Assembler::membar_loadload() {
4004 // no-op
4005 //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
4006 }
4007
4008 void LIR_Assembler::membar_storestore() {
4009 // no-op
4010 //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
4011 }
4012
4013 void LIR_Assembler::membar_loadstore() {
4014 // no-op
4015 //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
4016 }
4017
4018 void LIR_Assembler::membar_storeload() {
4019 __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
4020 }
4021
4022 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
4023 assert(result_reg->is_register(), "check");
4024 #ifdef _LP64
4025 // __ get_thread(result_reg->as_register_lo());
4026 __ mov(result_reg->as_register(), r15_thread);
4027 #else
4028 __ get_thread(result_reg->as_register());
4029 #endif // _LP64
4030 }
4031
4032
4033 void LIR_Assembler::peephole(LIR_List*) {
4034 // do nothing for now
4035 }
4036
4037 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
4038 assert(data == dest, "xchg/xadd uses only 2 operands");
4039
4040 if (data->type() == T_INT) {
4041 if (code == lir_xadd) {
4042 if (os::is_MP()) {
4043 __ lock();
4044 }
4045 __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
4046 } else {
4047 __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
4048 }
4049 } else if (data->is_oop()) {
4050 assert (code == lir_xchg, "xadd for oops");
4051 Register obj = data->as_register();
4052 #ifdef _LP64
4053 if (UseCompressedOops) {
4054 __ encode_heap_oop(obj);
4055 __ xchgl(obj, as_Address(src->as_address_ptr()));
4056 __ decode_heap_oop(obj);
4057 } else {
4058 __ xchgptr(obj, as_Address(src->as_address_ptr()));
4059 }
4060 #else
4061 __ xchgl(obj, as_Address(src->as_address_ptr()));
4062 #endif
4063 } else if (data->type() == T_LONG) {
4064 #ifdef _LP64
4065 assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
4066 if (code == lir_xadd) {
4067 if (os::is_MP()) {
4068 __ lock();
4069 }
4070 __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
4071 } else {
4072 __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
4073 }
4074 #else
4075 ShouldNotReachHere();
4076 #endif
4077 } else {
4078 ShouldNotReachHere();
4079 }
4080 }
4081
4082 #undef __

mercurial