src/cpu/x86/vm/templateTable_x86_32.cpp

changeset 435
a61af66fc99e
child 542
93b6525e3b82
equal deleted inserted replaced
-1:000000000000 435:a61af66fc99e
1 /*
2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 #include "incls/_precompiled.incl"
26 #include "incls/_templateTable_x86_32.cpp.incl"
27
28 #ifndef CC_INTERP
29 #define __ _masm->
30
31 //----------------------------------------------------------------------------------------------------
32 // Platform-dependent initialization
33
34 void TemplateTable::pd_initialize() {
35 // No i486 specific initialization
36 }
37
38 //----------------------------------------------------------------------------------------------------
39 // Address computation
40
41 // local variables
42 static inline Address iaddress(int n) {
43 return Address(rdi, Interpreter::local_offset_in_bytes(n));
44 }
45
46 static inline Address laddress(int n) { return iaddress(n + 1); }
47 static inline Address haddress(int n) { return iaddress(n + 0); }
48 static inline Address faddress(int n) { return iaddress(n); }
49 static inline Address daddress(int n) { return laddress(n); }
50 static inline Address aaddress(int n) { return iaddress(n); }
51
52 static inline Address iaddress(Register r) {
53 return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::value_offset_in_bytes());
54 }
55 static inline Address laddress(Register r) {
56 return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(1));
57 }
58 static inline Address haddress(Register r) {
59 return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
60 }
61
62 static inline Address faddress(Register r) { return iaddress(r); };
63 static inline Address daddress(Register r) {
64 assert(!TaggedStackInterpreter, "This doesn't work");
65 return laddress(r);
66 };
67 static inline Address aaddress(Register r) { return iaddress(r); };
68
69 // expression stack
70 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
71 // data beyond the rsp which is potentially unsafe in an MT environment;
72 // an interrupt may overwrite that data.)
73 static inline Address at_rsp () {
74 return Address(rsp, 0);
75 }
76
77 // At top of Java expression stack which may be different than rsp(). It
78 // isn't for category 1 objects.
79 static inline Address at_tos () {
80 Address tos = Address(rsp, Interpreter::expr_offset_in_bytes(0));
81 return tos;
82 }
83
84 static inline Address at_tos_p1() {
85 return Address(rsp, Interpreter::expr_offset_in_bytes(1));
86 }
87
88 static inline Address at_tos_p2() {
89 return Address(rsp, Interpreter::expr_offset_in_bytes(2));
90 }
91
92 // Condition conversion
93 static Assembler::Condition j_not(TemplateTable::Condition cc) {
94 switch (cc) {
95 case TemplateTable::equal : return Assembler::notEqual;
96 case TemplateTable::not_equal : return Assembler::equal;
97 case TemplateTable::less : return Assembler::greaterEqual;
98 case TemplateTable::less_equal : return Assembler::greater;
99 case TemplateTable::greater : return Assembler::lessEqual;
100 case TemplateTable::greater_equal: return Assembler::less;
101 }
102 ShouldNotReachHere();
103 return Assembler::zero;
104 }
105
106
107 //----------------------------------------------------------------------------------------------------
108 // Miscelaneous helper routines
109
110 Address TemplateTable::at_bcp(int offset) {
111 assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
112 return Address(rsi, offset);
113 }
114
115
116 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc,
117 Register scratch,
118 bool load_bc_into_scratch/*=true*/) {
119
120 if (!RewriteBytecodes) return;
121 // the pair bytecodes have already done the load.
122 if (load_bc_into_scratch) __ movl(bc, bytecode);
123 Label patch_done;
124 if (JvmtiExport::can_post_breakpoint()) {
125 Label fast_patch;
126 // if a breakpoint is present we can't rewrite the stream directly
127 __ movzxb(scratch, at_bcp(0));
128 __ cmpl(scratch, Bytecodes::_breakpoint);
129 __ jcc(Assembler::notEqual, fast_patch);
130 __ get_method(scratch);
131 // Let breakpoint table handling rewrite to quicker bytecode
132 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), scratch, rsi, bc);
133 #ifndef ASSERT
134 __ jmpb(patch_done);
135 __ bind(fast_patch);
136 }
137 #else
138 __ jmp(patch_done);
139 __ bind(fast_patch);
140 }
141 Label okay;
142 __ load_unsigned_byte(scratch, at_bcp(0));
143 __ cmpl(scratch, (int)Bytecodes::java_code(bytecode));
144 __ jccb(Assembler::equal, okay);
145 __ cmpl(scratch, bc);
146 __ jcc(Assembler::equal, okay);
147 __ stop("patching the wrong bytecode");
148 __ bind(okay);
149 #endif
150 // patch bytecode
151 __ movb(at_bcp(0), bc);
152 __ bind(patch_done);
153 }
154
155 //----------------------------------------------------------------------------------------------------
156 // Individual instructions
157
158 void TemplateTable::nop() {
159 transition(vtos, vtos);
160 // nothing to do
161 }
162
163 void TemplateTable::shouldnotreachhere() {
164 transition(vtos, vtos);
165 __ stop("shouldnotreachhere bytecode");
166 }
167
168
169
170 void TemplateTable::aconst_null() {
171 transition(vtos, atos);
172 __ xorl(rax, rax);
173 }
174
175
176 void TemplateTable::iconst(int value) {
177 transition(vtos, itos);
178 if (value == 0) {
179 __ xorl(rax, rax);
180 } else {
181 __ movl(rax, value);
182 }
183 }
184
185
186 void TemplateTable::lconst(int value) {
187 transition(vtos, ltos);
188 if (value == 0) {
189 __ xorl(rax, rax);
190 } else {
191 __ movl(rax, value);
192 }
193 assert(value >= 0, "check this code");
194 __ xorl(rdx, rdx);
195 }
196
197
198 void TemplateTable::fconst(int value) {
199 transition(vtos, ftos);
200 if (value == 0) { __ fldz();
201 } else if (value == 1) { __ fld1();
202 } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
203 } else { ShouldNotReachHere();
204 }
205 }
206
207
208 void TemplateTable::dconst(int value) {
209 transition(vtos, dtos);
210 if (value == 0) { __ fldz();
211 } else if (value == 1) { __ fld1();
212 } else { ShouldNotReachHere();
213 }
214 }
215
216
217 void TemplateTable::bipush() {
218 transition(vtos, itos);
219 __ load_signed_byte(rax, at_bcp(1));
220 }
221
222
223 void TemplateTable::sipush() {
224 transition(vtos, itos);
225 __ load_unsigned_word(rax, at_bcp(1));
226 __ bswap(rax);
227 __ sarl(rax, 16);
228 }
229
230 void TemplateTable::ldc(bool wide) {
231 transition(vtos, vtos);
232 Label call_ldc, notFloat, notClass, Done;
233
234 if (wide) {
235 __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
236 } else {
237 __ load_unsigned_byte(rbx, at_bcp(1));
238 }
239 __ get_cpool_and_tags(rcx, rax);
240 const int base_offset = constantPoolOopDesc::header_size() * wordSize;
241 const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
242
243 // get type
244 __ xorl(rdx, rdx);
245 __ movb(rdx, Address(rax, rbx, Address::times_1, tags_offset));
246
247 // unresolved string - get the resolved string
248 __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
249 __ jccb(Assembler::equal, call_ldc);
250
251 // unresolved class - get the resolved class
252 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
253 __ jccb(Assembler::equal, call_ldc);
254
255 // unresolved class in error (resolution failed) - call into runtime
256 // so that the same error from first resolution attempt is thrown.
257 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
258 __ jccb(Assembler::equal, call_ldc);
259
260 // resolved class - need to call vm to get java mirror of the class
261 __ cmpl(rdx, JVM_CONSTANT_Class);
262 __ jcc(Assembler::notEqual, notClass);
263
264 __ bind(call_ldc);
265 __ movl(rcx, wide);
266 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rcx);
267 __ push(atos);
268 __ jmp(Done);
269
270 __ bind(notClass);
271 __ cmpl(rdx, JVM_CONSTANT_Float);
272 __ jccb(Assembler::notEqual, notFloat);
273 // ftos
274 __ fld_s( Address(rcx, rbx, Address::times_4, base_offset));
275 __ push(ftos);
276 __ jmp(Done);
277
278 __ bind(notFloat);
279 #ifdef ASSERT
280 { Label L;
281 __ cmpl(rdx, JVM_CONSTANT_Integer);
282 __ jcc(Assembler::equal, L);
283 __ cmpl(rdx, JVM_CONSTANT_String);
284 __ jcc(Assembler::equal, L);
285 __ stop("unexpected tag type in ldc");
286 __ bind(L);
287 }
288 #endif
289 Label isOop;
290 // atos and itos
291 __ movl(rax, Address(rcx, rbx, Address::times_4, base_offset));
292 // String is only oop type we will see here
293 __ cmpl(rdx, JVM_CONSTANT_String);
294 __ jccb(Assembler::equal, isOop);
295 __ push(itos);
296 __ jmp(Done);
297 __ bind(isOop);
298 __ push(atos);
299
300 if (VerifyOops) {
301 __ verify_oop(rax);
302 }
303 __ bind(Done);
304 }
305
306 void TemplateTable::ldc2_w() {
307 transition(vtos, vtos);
308 Label Long, Done;
309 __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
310
311 __ get_cpool_and_tags(rcx, rax);
312 const int base_offset = constantPoolOopDesc::header_size() * wordSize;
313 const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
314
315 // get type
316 __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), JVM_CONSTANT_Double);
317 __ jccb(Assembler::notEqual, Long);
318 // dtos
319 __ fld_d( Address(rcx, rbx, Address::times_4, base_offset));
320 __ push(dtos);
321 __ jmpb(Done);
322
323 __ bind(Long);
324 // ltos
325 __ movl(rax, Address(rcx, rbx, Address::times_4, base_offset + 0 * wordSize));
326 __ movl(rdx, Address(rcx, rbx, Address::times_4, base_offset + 1 * wordSize));
327
328 __ push(ltos);
329
330 __ bind(Done);
331 }
332
333
334 void TemplateTable::locals_index(Register reg, int offset) {
335 __ load_unsigned_byte(reg, at_bcp(offset));
336 __ negl(reg);
337 }
338
339
340 void TemplateTable::iload() {
341 transition(vtos, itos);
342 if (RewriteFrequentPairs) {
343 Label rewrite, done;
344
345 // get next byte
346 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
347 // if _iload, wait to rewrite to iload2. We only want to rewrite the
348 // last two iloads in a pair. Comparing against fast_iload means that
349 // the next bytecode is neither an iload or a caload, and therefore
350 // an iload pair.
351 __ cmpl(rbx, Bytecodes::_iload);
352 __ jcc(Assembler::equal, done);
353
354 __ cmpl(rbx, Bytecodes::_fast_iload);
355 __ movl(rcx, Bytecodes::_fast_iload2);
356 __ jccb(Assembler::equal, rewrite);
357
358 // if _caload, rewrite to fast_icaload
359 __ cmpl(rbx, Bytecodes::_caload);
360 __ movl(rcx, Bytecodes::_fast_icaload);
361 __ jccb(Assembler::equal, rewrite);
362
363 // rewrite so iload doesn't check again.
364 __ movl(rcx, Bytecodes::_fast_iload);
365
366 // rewrite
367 // rcx: fast bytecode
368 __ bind(rewrite);
369 patch_bytecode(Bytecodes::_iload, rcx, rbx, false);
370 __ bind(done);
371 }
372
373 // Get the local value into tos
374 locals_index(rbx);
375 __ movl(rax, iaddress(rbx));
376 debug_only(__ verify_local_tag(frame::TagValue, rbx));
377 }
378
379
380 void TemplateTable::fast_iload2() {
381 transition(vtos, itos);
382 locals_index(rbx);
383 __ movl(rax, iaddress(rbx));
384 debug_only(__ verify_local_tag(frame::TagValue, rbx));
385 __ push(itos);
386 locals_index(rbx, 3);
387 __ movl(rax, iaddress(rbx));
388 debug_only(__ verify_local_tag(frame::TagValue, rbx));
389 }
390
391 void TemplateTable::fast_iload() {
392 transition(vtos, itos);
393 locals_index(rbx);
394 __ movl(rax, iaddress(rbx));
395 debug_only(__ verify_local_tag(frame::TagValue, rbx));
396 }
397
398
399 void TemplateTable::lload() {
400 transition(vtos, ltos);
401 locals_index(rbx);
402 __ movl(rax, laddress(rbx));
403 __ movl(rdx, haddress(rbx));
404 debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
405 }
406
407
408 void TemplateTable::fload() {
409 transition(vtos, ftos);
410 locals_index(rbx);
411 __ fld_s(faddress(rbx));
412 debug_only(__ verify_local_tag(frame::TagValue, rbx));
413 }
414
415
416 void TemplateTable::dload() {
417 transition(vtos, dtos);
418 locals_index(rbx);
419 if (TaggedStackInterpreter) {
420 // Get double out of locals array, onto temp stack and load with
421 // float instruction into ST0
422 __ movl(rax, laddress(rbx));
423 __ movl(rdx, haddress(rbx));
424 __ pushl(rdx); // push hi first
425 __ pushl(rax);
426 __ fld_d(Address(rsp, 0));
427 __ addl(rsp, 2*wordSize);
428 debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
429 } else {
430 __ fld_d(daddress(rbx));
431 }
432 }
433
434
435 void TemplateTable::aload() {
436 transition(vtos, atos);
437 locals_index(rbx);
438 __ movl(rax, iaddress(rbx));
439 debug_only(__ verify_local_tag(frame::TagReference, rbx));
440 }
441
442
443 void TemplateTable::locals_index_wide(Register reg) {
444 __ movl(reg, at_bcp(2));
445 __ bswap(reg);
446 __ shrl(reg, 16);
447 __ negl(reg);
448 }
449
450
451 void TemplateTable::wide_iload() {
452 transition(vtos, itos);
453 locals_index_wide(rbx);
454 __ movl(rax, iaddress(rbx));
455 debug_only(__ verify_local_tag(frame::TagValue, rbx));
456 }
457
458
459 void TemplateTable::wide_lload() {
460 transition(vtos, ltos);
461 locals_index_wide(rbx);
462 __ movl(rax, laddress(rbx));
463 __ movl(rdx, haddress(rbx));
464 debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
465 }
466
467
468 void TemplateTable::wide_fload() {
469 transition(vtos, ftos);
470 locals_index_wide(rbx);
471 __ fld_s(faddress(rbx));
472 debug_only(__ verify_local_tag(frame::TagValue, rbx));
473 }
474
475
476 void TemplateTable::wide_dload() {
477 transition(vtos, dtos);
478 locals_index_wide(rbx);
479 if (TaggedStackInterpreter) {
480 // Get double out of locals array, onto temp stack and load with
481 // float instruction into ST0
482 __ movl(rax, laddress(rbx));
483 __ movl(rdx, haddress(rbx));
484 __ pushl(rdx); // push hi first
485 __ pushl(rax);
486 __ fld_d(Address(rsp, 0));
487 __ addl(rsp, 2*wordSize);
488 debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
489 } else {
490 __ fld_d(daddress(rbx));
491 }
492 }
493
494
495 void TemplateTable::wide_aload() {
496 transition(vtos, atos);
497 locals_index_wide(rbx);
498 __ movl(rax, iaddress(rbx));
499 debug_only(__ verify_local_tag(frame::TagReference, rbx));
500 }
501
502 void TemplateTable::index_check(Register array, Register index) {
503 // Pop ptr into array
504 __ pop_ptr(array);
505 index_check_without_pop(array, index);
506 }
507
508 void TemplateTable::index_check_without_pop(Register array, Register index) {
509 // destroys rbx,
510 // check array
511 __ null_check(array, arrayOopDesc::length_offset_in_bytes());
512 // check index
513 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
514 if (index != rbx) {
515 // ??? convention: move aberrant index into rbx, for exception message
516 assert(rbx != array, "different registers");
517 __ movl(rbx, index);
518 }
519 __ jump_cc(Assembler::aboveEqual,
520 ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
521 }
522
523
524 void TemplateTable::iaload() {
525 transition(itos, itos);
526 // rdx: array
527 index_check(rdx, rax); // kills rbx,
528 // rax,: index
529 __ movl(rax, Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)));
530 }
531
532
533 void TemplateTable::laload() {
534 transition(itos, ltos);
535 // rax,: index
536 // rdx: array
537 index_check(rdx, rax);
538 __ movl(rbx, rax);
539 // rbx,: index
540 __ movl(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize));
541 __ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize));
542 }
543
544
545 void TemplateTable::faload() {
546 transition(itos, ftos);
547 // rdx: array
548 index_check(rdx, rax); // kills rbx,
549 // rax,: index
550 __ fld_s(Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
551 }
552
553
554 void TemplateTable::daload() {
555 transition(itos, dtos);
556 // rdx: array
557 index_check(rdx, rax); // kills rbx,
558 // rax,: index
559 __ fld_d(Address(rdx, rax, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
560 }
561
562
563 void TemplateTable::aaload() {
564 transition(itos, atos);
565 // rdx: array
566 index_check(rdx, rax); // kills rbx,
567 // rax,: index
568 __ movl(rax, Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
569 }
570
571
572 void TemplateTable::baload() {
573 transition(itos, itos);
574 // rdx: array
575 index_check(rdx, rax); // kills rbx,
576 // rax,: index
577 // can do better code for P5 - fix this at some point
578 __ load_signed_byte(rbx, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
579 __ movl(rax, rbx);
580 }
581
582
583 void TemplateTable::caload() {
584 transition(itos, itos);
585 // rdx: array
586 index_check(rdx, rax); // kills rbx,
587 // rax,: index
588 // can do better code for P5 - may want to improve this at some point
589 __ load_unsigned_word(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
590 __ movl(rax, rbx);
591 }
592
593 // iload followed by caload frequent pair
594 void TemplateTable::fast_icaload() {
595 transition(vtos, itos);
596 // load index out of locals
597 locals_index(rbx);
598 __ movl(rax, iaddress(rbx));
599 debug_only(__ verify_local_tag(frame::TagValue, rbx));
600
601 // rdx: array
602 index_check(rdx, rax);
603 // rax,: index
604 __ load_unsigned_word(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
605 __ movl(rax, rbx);
606 }
607
608 void TemplateTable::saload() {
609 transition(itos, itos);
610 // rdx: array
611 index_check(rdx, rax); // kills rbx,
612 // rax,: index
613 // can do better code for P5 - may want to improve this at some point
614 __ load_signed_word(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
615 __ movl(rax, rbx);
616 }
617
618
619 void TemplateTable::iload(int n) {
620 transition(vtos, itos);
621 __ movl(rax, iaddress(n));
622 debug_only(__ verify_local_tag(frame::TagValue, n));
623 }
624
625
626 void TemplateTable::lload(int n) {
627 transition(vtos, ltos);
628 __ movl(rax, laddress(n));
629 __ movl(rdx, haddress(n));
630 debug_only(__ verify_local_tag(frame::TagCategory2, n));
631 }
632
633
634 void TemplateTable::fload(int n) {
635 transition(vtos, ftos);
636 __ fld_s(faddress(n));
637 debug_only(__ verify_local_tag(frame::TagValue, n));
638 }
639
640
641 void TemplateTable::dload(int n) {
642 transition(vtos, dtos);
643 if (TaggedStackInterpreter) {
644 // Get double out of locals array, onto temp stack and load with
645 // float instruction into ST0
646 __ movl(rax, laddress(n));
647 __ movl(rdx, haddress(n));
648 __ pushl(rdx); // push hi first
649 __ pushl(rax);
650 __ fld_d(Address(rsp, 0));
651 __ addl(rsp, 2*wordSize); // reset rsp
652 debug_only(__ verify_local_tag(frame::TagCategory2, n));
653 } else {
654 __ fld_d(daddress(n));
655 }
656 }
657
658
659 void TemplateTable::aload(int n) {
660 transition(vtos, atos);
661 __ movl(rax, aaddress(n));
662 debug_only(__ verify_local_tag(frame::TagReference, n));
663 }
664
665
666 void TemplateTable::aload_0() {
667 transition(vtos, atos);
668 // According to bytecode histograms, the pairs:
669 //
670 // _aload_0, _fast_igetfield
671 // _aload_0, _fast_agetfield
672 // _aload_0, _fast_fgetfield
673 //
674 // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
675 // bytecode checks if the next bytecode is either _fast_igetfield,
676 // _fast_agetfield or _fast_fgetfield and then rewrites the
677 // current bytecode into a pair bytecode; otherwise it rewrites the current
678 // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
679 //
680 // Note: If the next bytecode is _getfield, the rewrite must be delayed,
681 // otherwise we may miss an opportunity for a pair.
682 //
683 // Also rewrite frequent pairs
684 // aload_0, aload_1
685 // aload_0, iload_1
686 // These bytecodes with a small amount of code are most profitable to rewrite
687 if (RewriteFrequentPairs) {
688 Label rewrite, done;
689 // get next byte
690 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
691
692 // do actual aload_0
693 aload(0);
694
695 // if _getfield then wait with rewrite
696 __ cmpl(rbx, Bytecodes::_getfield);
697 __ jcc(Assembler::equal, done);
698
699 // if _igetfield then reqrite to _fast_iaccess_0
700 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
701 __ cmpl(rbx, Bytecodes::_fast_igetfield);
702 __ movl(rcx, Bytecodes::_fast_iaccess_0);
703 __ jccb(Assembler::equal, rewrite);
704
705 // if _agetfield then reqrite to _fast_aaccess_0
706 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
707 __ cmpl(rbx, Bytecodes::_fast_agetfield);
708 __ movl(rcx, Bytecodes::_fast_aaccess_0);
709 __ jccb(Assembler::equal, rewrite);
710
711 // if _fgetfield then reqrite to _fast_faccess_0
712 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
713 __ cmpl(rbx, Bytecodes::_fast_fgetfield);
714 __ movl(rcx, Bytecodes::_fast_faccess_0);
715 __ jccb(Assembler::equal, rewrite);
716
717 // else rewrite to _fast_aload0
718 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
719 __ movl(rcx, Bytecodes::_fast_aload_0);
720
721 // rewrite
722 // rcx: fast bytecode
723 __ bind(rewrite);
724 patch_bytecode(Bytecodes::_aload_0, rcx, rbx, false);
725
726 __ bind(done);
727 } else {
728 aload(0);
729 }
730 }
731
732 void TemplateTable::istore() {
733 transition(itos, vtos);
734 locals_index(rbx);
735 __ movl(iaddress(rbx), rax);
736 __ tag_local(frame::TagValue, rbx);
737 }
738
739
740 void TemplateTable::lstore() {
741 transition(ltos, vtos);
742 locals_index(rbx);
743 __ movl(laddress(rbx), rax);
744 __ movl(haddress(rbx), rdx);
745 __ tag_local(frame::TagCategory2, rbx);
746 }
747
748
749 void TemplateTable::fstore() {
750 transition(ftos, vtos);
751 locals_index(rbx);
752 __ fstp_s(faddress(rbx));
753 __ tag_local(frame::TagValue, rbx);
754 }
755
756
757 void TemplateTable::dstore() {
758 transition(dtos, vtos);
759 locals_index(rbx);
760 if (TaggedStackInterpreter) {
761 // Store double on stack and reload into locals nonadjacently
762 __ subl(rsp, 2 * wordSize);
763 __ fstp_d(Address(rsp, 0));
764 __ popl(rax);
765 __ popl(rdx);
766 __ movl(laddress(rbx), rax);
767 __ movl(haddress(rbx), rdx);
768 __ tag_local(frame::TagCategory2, rbx);
769 } else {
770 __ fstp_d(daddress(rbx));
771 }
772 }
773
774
775 void TemplateTable::astore() {
776 transition(vtos, vtos);
777 __ pop_ptr(rax, rdx); // will need to pop tag too
778 locals_index(rbx);
779 __ movl(aaddress(rbx), rax);
780 __ tag_local(rdx, rbx); // need to store same tag in local may be returnAddr
781 }
782
783
784 void TemplateTable::wide_istore() {
785 transition(vtos, vtos);
786 __ pop_i(rax);
787 locals_index_wide(rbx);
788 __ movl(iaddress(rbx), rax);
789 __ tag_local(frame::TagValue, rbx);
790 }
791
792
793 void TemplateTable::wide_lstore() {
794 transition(vtos, vtos);
795 __ pop_l(rax, rdx);
796 locals_index_wide(rbx);
797 __ movl(laddress(rbx), rax);
798 __ movl(haddress(rbx), rdx);
799 __ tag_local(frame::TagCategory2, rbx);
800 }
801
802
803 void TemplateTable::wide_fstore() {
804 wide_istore();
805 }
806
807
808 void TemplateTable::wide_dstore() {
809 wide_lstore();
810 }
811
812
813 void TemplateTable::wide_astore() {
814 transition(vtos, vtos);
815 __ pop_ptr(rax, rdx);
816 locals_index_wide(rbx);
817 __ movl(aaddress(rbx), rax);
818 __ tag_local(rdx, rbx);
819 }
820
821
822 void TemplateTable::iastore() {
823 transition(itos, vtos);
824 __ pop_i(rbx);
825 // rax,: value
826 // rdx: array
827 index_check(rdx, rbx); // prefer index in rbx,
828 // rbx,: index
829 __ movl(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)), rax);
830 }
831
832
833 void TemplateTable::lastore() {
834 transition(ltos, vtos);
835 __ pop_i(rbx);
836 // rax,: low(value)
837 // rcx: array
838 // rdx: high(value)
839 index_check(rcx, rbx); // prefer index in rbx,
840 // rbx,: index
841 __ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax);
842 __ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx);
843 }
844
845
846 void TemplateTable::fastore() {
847 transition(ftos, vtos);
848 __ pop_i(rbx);
849 // rdx: array
850 // st0: value
851 index_check(rdx, rbx); // prefer index in rbx,
852 // rbx,: index
853 __ fstp_s(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
854 }
855
856
857 void TemplateTable::dastore() {
858 transition(dtos, vtos);
859 __ pop_i(rbx);
860 // rdx: array
861 // st0: value
862 index_check(rdx, rbx); // prefer index in rbx,
863 // rbx,: index
864 __ fstp_d(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
865 }
866
867
868 void TemplateTable::aastore() {
869 Label is_null, ok_is_subtype, done;
870 transition(vtos, vtos);
871 // stack: ..., array, index, value
872 __ movl(rax, at_tos()); // Value
873 __ movl(rcx, at_tos_p1()); // Index
874 __ movl(rdx, at_tos_p2()); // Array
875 index_check_without_pop(rdx, rcx); // kills rbx,
876 // do array store check - check for NULL value first
877 __ testl(rax, rax);
878 __ jcc(Assembler::zero, is_null);
879
880 // Move subklass into EBX
881 __ movl(rbx, Address(rax, oopDesc::klass_offset_in_bytes()));
882 // Move superklass into EAX
883 __ movl(rax, Address(rdx, oopDesc::klass_offset_in_bytes()));
884 __ movl(rax, Address(rax, sizeof(oopDesc) + objArrayKlass::element_klass_offset_in_bytes()));
885 // Compress array+index*4+12 into a single register. Frees ECX.
886 __ leal(rdx, Address(rdx, rcx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
887
888 // Generate subtype check. Blows ECX. Resets EDI to locals.
889 // Superklass in EAX. Subklass in EBX.
890 __ gen_subtype_check( rbx, ok_is_subtype );
891
892 // Come here on failure
893 // object is at TOS
894 __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
895
896 // Come here on success
897 __ bind(ok_is_subtype);
898 __ movl(rax, at_rsp()); // Value
899 __ movl(Address(rdx, 0), rax);
900 __ store_check(rdx);
901 __ jmpb(done);
902
903 // Have a NULL in EAX, EDX=array, ECX=index. Store NULL at ary[idx]
904 __ bind(is_null);
905 __ profile_null_seen(rbx);
906 __ movl(Address(rdx, rcx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_OBJECT)), rax);
907
908 // Pop stack arguments
909 __ bind(done);
910 __ addl(rsp, 3 * Interpreter::stackElementSize());
911 }
912
913
914 void TemplateTable::bastore() {
915 transition(itos, vtos);
916 __ pop_i(rbx);
917 // rax,: value
918 // rdx: array
919 index_check(rdx, rbx); // prefer index in rbx,
920 // rbx,: index
921 __ movb(Address(rdx, rbx, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), rax);
922 }
923
924
925 void TemplateTable::castore() {
926 transition(itos, vtos);
927 __ pop_i(rbx);
928 // rax,: value
929 // rdx: array
930 index_check(rdx, rbx); // prefer index in rbx,
931 // rbx,: index
932 __ movw(Address(rdx, rbx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), rax);
933 }
934
935
936 void TemplateTable::sastore() {
937 castore();
938 }
939
940
941 void TemplateTable::istore(int n) {
942 transition(itos, vtos);
943 __ movl(iaddress(n), rax);
944 __ tag_local(frame::TagValue, n);
945 }
946
947
948 void TemplateTable::lstore(int n) {
949 transition(ltos, vtos);
950 __ movl(laddress(n), rax);
951 __ movl(haddress(n), rdx);
952 __ tag_local(frame::TagCategory2, n);
953 }
954
955
956 void TemplateTable::fstore(int n) {
957 transition(ftos, vtos);
958 __ fstp_s(faddress(n));
959 __ tag_local(frame::TagValue, n);
960 }
961
962
963 void TemplateTable::dstore(int n) {
964 transition(dtos, vtos);
965 if (TaggedStackInterpreter) {
966 __ subl(rsp, 2 * wordSize);
967 __ fstp_d(Address(rsp, 0));
968 __ popl(rax);
969 __ popl(rdx);
970 __ movl(laddress(n), rax);
971 __ movl(haddress(n), rdx);
972 __ tag_local(frame::TagCategory2, n);
973 } else {
974 __ fstp_d(daddress(n));
975 }
976 }
977
978
979 void TemplateTable::astore(int n) {
980 transition(vtos, vtos);
981 __ pop_ptr(rax, rdx);
982 __ movl(aaddress(n), rax);
983 __ tag_local(rdx, n);
984 }
985
986
987 void TemplateTable::pop() {
988 transition(vtos, vtos);
989 __ addl(rsp, Interpreter::stackElementSize());
990 }
991
992
993 void TemplateTable::pop2() {
994 transition(vtos, vtos);
995 __ addl(rsp, 2*Interpreter::stackElementSize());
996 }
997
998
999 void TemplateTable::dup() {
1000 transition(vtos, vtos);
1001 // stack: ..., a
1002 __ load_ptr_and_tag(0, rax, rdx);
1003 __ push_ptr(rax, rdx);
1004 // stack: ..., a, a
1005 }
1006
1007
1008 void TemplateTable::dup_x1() {
1009 transition(vtos, vtos);
1010 // stack: ..., a, b
1011 __ load_ptr_and_tag(0, rax, rdx); // load b
1012 __ load_ptr_and_tag(1, rcx, rbx); // load a
1013 __ store_ptr_and_tag(1, rax, rdx); // store b
1014 __ store_ptr_and_tag(0, rcx, rbx); // store a
1015 __ push_ptr(rax, rdx); // push b
1016 // stack: ..., b, a, b
1017 }
1018
1019
1020 void TemplateTable::dup_x2() {
1021 transition(vtos, vtos);
1022 // stack: ..., a, b, c
1023 __ load_ptr_and_tag(0, rax, rdx); // load c
1024 __ load_ptr_and_tag(2, rcx, rbx); // load a
1025 __ store_ptr_and_tag(2, rax, rdx); // store c in a
1026 __ push_ptr(rax, rdx); // push c
1027 // stack: ..., c, b, c, c
1028 __ load_ptr_and_tag(2, rax, rdx); // load b
1029 __ store_ptr_and_tag(2, rcx, rbx); // store a in b
1030 // stack: ..., c, a, c, c
1031 __ store_ptr_and_tag(1, rax, rdx); // store b in c
1032 // stack: ..., c, a, b, c
1033 }
1034
1035
1036 void TemplateTable::dup2() {
1037 transition(vtos, vtos);
1038 // stack: ..., a, b
1039 __ load_ptr_and_tag(1, rax, rdx); // load a
1040 __ push_ptr(rax, rdx); // push a
1041 __ load_ptr_and_tag(1, rax, rdx); // load b
1042 __ push_ptr(rax, rdx); // push b
1043 // stack: ..., a, b, a, b
1044 }
1045
1046
1047 void TemplateTable::dup2_x1() {
1048 transition(vtos, vtos);
1049 // stack: ..., a, b, c
1050 __ load_ptr_and_tag(0, rcx, rbx); // load c
1051 __ load_ptr_and_tag(1, rax, rdx); // load b
1052 __ push_ptr(rax, rdx); // push b
1053 __ push_ptr(rcx, rbx); // push c
1054 // stack: ..., a, b, c, b, c
1055 __ store_ptr_and_tag(3, rcx, rbx); // store c in b
1056 // stack: ..., a, c, c, b, c
1057 __ load_ptr_and_tag(4, rcx, rbx); // load a
1058 __ store_ptr_and_tag(2, rcx, rbx); // store a in 2nd c
1059 // stack: ..., a, c, a, b, c
1060 __ store_ptr_and_tag(4, rax, rdx); // store b in a
1061 // stack: ..., b, c, a, b, c
1062 // stack: ..., b, c, a, b, c
1063 }
1064
1065
1066 void TemplateTable::dup2_x2() {
1067 transition(vtos, vtos);
1068 // stack: ..., a, b, c, d
1069 __ load_ptr_and_tag(0, rcx, rbx); // load d
1070 __ load_ptr_and_tag(1, rax, rdx); // load c
1071 __ push_ptr(rax, rdx); // push c
1072 __ push_ptr(rcx, rbx); // push d
1073 // stack: ..., a, b, c, d, c, d
1074 __ load_ptr_and_tag(4, rax, rdx); // load b
1075 __ store_ptr_and_tag(2, rax, rdx); // store b in d
1076 __ store_ptr_and_tag(4, rcx, rbx); // store d in b
1077 // stack: ..., a, d, c, b, c, d
1078 __ load_ptr_and_tag(5, rcx, rbx); // load a
1079 __ load_ptr_and_tag(3, rax, rdx); // load c
1080 __ store_ptr_and_tag(3, rcx, rbx); // store a in c
1081 __ store_ptr_and_tag(5, rax, rdx); // store c in a
1082 // stack: ..., c, d, a, b, c, d
1083 // stack: ..., c, d, a, b, c, d
1084 }
1085
1086
1087 void TemplateTable::swap() {
1088 transition(vtos, vtos);
1089 // stack: ..., a, b
1090 __ load_ptr_and_tag(1, rcx, rbx); // load a
1091 __ load_ptr_and_tag(0, rax, rdx); // load b
1092 __ store_ptr_and_tag(0, rcx, rbx); // store a in b
1093 __ store_ptr_and_tag(1, rax, rdx); // store b in a
1094 // stack: ..., b, a
1095 }
1096
1097
1098 void TemplateTable::iop2(Operation op) {
1099 transition(itos, itos);
1100 switch (op) {
1101 case add : __ pop_i(rdx); __ addl (rax, rdx); break;
1102 case sub : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1103 case mul : __ pop_i(rdx); __ imull(rax, rdx); break;
1104 case _and : __ pop_i(rdx); __ andl (rax, rdx); break;
1105 case _or : __ pop_i(rdx); __ orl (rax, rdx); break;
1106 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break;
1107 case shl : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax); break; // implicit masking of lower 5 bits by Intel shift instr.
1108 case shr : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax); break; // implicit masking of lower 5 bits by Intel shift instr.
1109 case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax); break; // implicit masking of lower 5 bits by Intel shift instr.
1110 default : ShouldNotReachHere();
1111 }
1112 }
1113
1114
1115 void TemplateTable::lop2(Operation op) {
1116 transition(ltos, ltos);
1117 __ pop_l(rbx, rcx);
1118 switch (op) {
1119 case add : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
1120 case sub : __ subl(rbx, rax); __ sbbl(rcx, rdx);
1121 __ movl(rax, rbx); __ movl(rdx, rcx); break;
1122 case _and: __ andl(rax, rbx); __ andl(rdx, rcx); break;
1123 case _or : __ orl (rax, rbx); __ orl (rdx, rcx); break;
1124 case _xor: __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
1125 default : ShouldNotReachHere();
1126 }
1127 }
1128
1129
1130 void TemplateTable::idiv() {
1131 transition(itos, itos);
1132 __ movl(rcx, rax);
1133 __ pop_i(rax);
1134 // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
1135 // they are not equal, one could do a normal division (no correction
1136 // needed), which may speed up this implementation for the common case.
1137 // (see also JVM spec., p.243 & p.271)
1138 __ corrected_idivl(rcx);
1139 }
1140
1141
1142 void TemplateTable::irem() {
1143 transition(itos, itos);
1144 __ movl(rcx, rax);
1145 __ pop_i(rax);
1146 // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
1147 // they are not equal, one could do a normal division (no correction
1148 // needed), which may speed up this implementation for the common case.
1149 // (see also JVM spec., p.243 & p.271)
1150 __ corrected_idivl(rcx);
1151 __ movl(rax, rdx);
1152 }
1153
1154
1155 void TemplateTable::lmul() {
1156 transition(ltos, ltos);
1157 __ pop_l(rbx, rcx);
1158 __ pushl(rcx); __ pushl(rbx);
1159 __ pushl(rdx); __ pushl(rax);
1160 __ lmul(2 * wordSize, 0);
1161 __ addl(rsp, 4 * wordSize); // take off temporaries
1162 }
1163
1164
1165 void TemplateTable::ldiv() {
1166 transition(ltos, ltos);
1167 __ pop_l(rbx, rcx);
1168 __ pushl(rcx); __ pushl(rbx);
1169 __ pushl(rdx); __ pushl(rax);
1170 // check if y = 0
1171 __ orl(rax, rdx);
1172 __ jump_cc(Assembler::zero,
1173 ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1174 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
1175 __ addl(rsp, 4 * wordSize); // take off temporaries
1176 }
1177
1178
1179 void TemplateTable::lrem() {
1180 transition(ltos, ltos);
1181 __ pop_l(rbx, rcx);
1182 __ pushl(rcx); __ pushl(rbx);
1183 __ pushl(rdx); __ pushl(rax);
1184 // check if y = 0
1185 __ orl(rax, rdx);
1186 __ jump_cc(Assembler::zero,
1187 ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1188 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
1189 __ addl(rsp, 4 * wordSize);
1190 }
1191
1192
1193 void TemplateTable::lshl() {
1194 transition(itos, ltos);
1195 __ movl(rcx, rax); // get shift count
1196 __ pop_l(rax, rdx); // get shift value
1197 __ lshl(rdx, rax);
1198 }
1199
1200
1201 void TemplateTable::lshr() {
1202 transition(itos, ltos);
1203 __ movl(rcx, rax); // get shift count
1204 __ pop_l(rax, rdx); // get shift value
1205 __ lshr(rdx, rax, true);
1206 }
1207
1208
1209 void TemplateTable::lushr() {
1210 transition(itos, ltos);
1211 __ movl(rcx, rax); // get shift count
1212 __ pop_l(rax, rdx); // get shift value
1213 __ lshr(rdx, rax);
1214 }
1215
1216
1217 void TemplateTable::fop2(Operation op) {
1218 transition(ftos, ftos);
1219 __ pop_ftos_to_rsp(); // pop ftos into rsp
1220 switch (op) {
1221 case add: __ fadd_s (at_rsp()); break;
1222 case sub: __ fsubr_s(at_rsp()); break;
1223 case mul: __ fmul_s (at_rsp()); break;
1224 case div: __ fdivr_s(at_rsp()); break;
1225 case rem: __ fld_s (at_rsp()); __ fremr(rax); break;
1226 default : ShouldNotReachHere();
1227 }
1228 __ f2ieee();
1229 __ popl(rax); // pop float thing off
1230 }
1231
1232
1233 void TemplateTable::dop2(Operation op) {
1234 transition(dtos, dtos);
1235 __ pop_dtos_to_rsp(); // pop dtos into rsp
1236
1237 switch (op) {
1238 case add: __ fadd_d (at_rsp()); break;
1239 case sub: __ fsubr_d(at_rsp()); break;
1240 case mul: {
1241 Label L_strict;
1242 Label L_join;
1243 const Address access_flags (rcx, methodOopDesc::access_flags_offset());
1244 __ get_method(rcx);
1245 __ movl(rcx, access_flags);
1246 __ testl(rcx, JVM_ACC_STRICT);
1247 __ jccb(Assembler::notZero, L_strict);
1248 __ fmul_d (at_rsp());
1249 __ jmpb(L_join);
1250 __ bind(L_strict);
1251 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
1252 __ fmulp();
1253 __ fmul_d (at_rsp());
1254 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
1255 __ fmulp();
1256 __ bind(L_join);
1257 break;
1258 }
1259 case div: {
1260 Label L_strict;
1261 Label L_join;
1262 const Address access_flags (rcx, methodOopDesc::access_flags_offset());
1263 __ get_method(rcx);
1264 __ movl(rcx, access_flags);
1265 __ testl(rcx, JVM_ACC_STRICT);
1266 __ jccb(Assembler::notZero, L_strict);
1267 __ fdivr_d(at_rsp());
1268 __ jmp(L_join);
1269 __ bind(L_strict);
1270 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
1271 __ fmul_d (at_rsp());
1272 __ fdivrp();
1273 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
1274 __ fmulp();
1275 __ bind(L_join);
1276 break;
1277 }
1278 case rem: __ fld_d (at_rsp()); __ fremr(rax); break;
1279 default : ShouldNotReachHere();
1280 }
1281 __ d2ieee();
1282 // Pop double precision number from rsp.
1283 __ popl(rax);
1284 __ popl(rdx);
1285 }
1286
1287
1288 void TemplateTable::ineg() {
1289 transition(itos, itos);
1290 __ negl(rax);
1291 }
1292
1293
1294 void TemplateTable::lneg() {
1295 transition(ltos, ltos);
1296 __ lneg(rdx, rax);
1297 }
1298
1299
1300 void TemplateTable::fneg() {
1301 transition(ftos, ftos);
1302 __ fchs();
1303 }
1304
1305
1306 void TemplateTable::dneg() {
1307 transition(dtos, dtos);
1308 __ fchs();
1309 }
1310
1311
1312 void TemplateTable::iinc() {
1313 transition(vtos, vtos);
1314 __ load_signed_byte(rdx, at_bcp(2)); // get constant
1315 locals_index(rbx);
1316 __ addl(iaddress(rbx), rdx);
1317 }
1318
1319
1320 void TemplateTable::wide_iinc() {
1321 transition(vtos, vtos);
1322 __ movl(rdx, at_bcp(4)); // get constant
1323 locals_index_wide(rbx);
1324 __ bswap(rdx); // swap bytes & sign-extend constant
1325 __ sarl(rdx, 16);
1326 __ addl(iaddress(rbx), rdx);
1327 // Note: should probably use only one movl to get both
1328 // the index and the constant -> fix this
1329 }
1330
1331
1332 void TemplateTable::convert() {
1333 // Checking
1334 #ifdef ASSERT
1335 { TosState tos_in = ilgl;
1336 TosState tos_out = ilgl;
1337 switch (bytecode()) {
1338 case Bytecodes::_i2l: // fall through
1339 case Bytecodes::_i2f: // fall through
1340 case Bytecodes::_i2d: // fall through
1341 case Bytecodes::_i2b: // fall through
1342 case Bytecodes::_i2c: // fall through
1343 case Bytecodes::_i2s: tos_in = itos; break;
1344 case Bytecodes::_l2i: // fall through
1345 case Bytecodes::_l2f: // fall through
1346 case Bytecodes::_l2d: tos_in = ltos; break;
1347 case Bytecodes::_f2i: // fall through
1348 case Bytecodes::_f2l: // fall through
1349 case Bytecodes::_f2d: tos_in = ftos; break;
1350 case Bytecodes::_d2i: // fall through
1351 case Bytecodes::_d2l: // fall through
1352 case Bytecodes::_d2f: tos_in = dtos; break;
1353 default : ShouldNotReachHere();
1354 }
1355 switch (bytecode()) {
1356 case Bytecodes::_l2i: // fall through
1357 case Bytecodes::_f2i: // fall through
1358 case Bytecodes::_d2i: // fall through
1359 case Bytecodes::_i2b: // fall through
1360 case Bytecodes::_i2c: // fall through
1361 case Bytecodes::_i2s: tos_out = itos; break;
1362 case Bytecodes::_i2l: // fall through
1363 case Bytecodes::_f2l: // fall through
1364 case Bytecodes::_d2l: tos_out = ltos; break;
1365 case Bytecodes::_i2f: // fall through
1366 case Bytecodes::_l2f: // fall through
1367 case Bytecodes::_d2f: tos_out = ftos; break;
1368 case Bytecodes::_i2d: // fall through
1369 case Bytecodes::_l2d: // fall through
1370 case Bytecodes::_f2d: tos_out = dtos; break;
1371 default : ShouldNotReachHere();
1372 }
1373 transition(tos_in, tos_out);
1374 }
1375 #endif // ASSERT
1376
1377 // Conversion
1378 // (Note: use pushl(rcx)/popl(rcx) for 1/2-word stack-ptr manipulation)
1379 switch (bytecode()) {
1380 case Bytecodes::_i2l:
1381 __ extend_sign(rdx, rax);
1382 break;
1383 case Bytecodes::_i2f:
1384 __ pushl(rax); // store int on tos
1385 __ fild_s(at_rsp()); // load int to ST0
1386 __ f2ieee(); // truncate to float size
1387 __ popl(rcx); // adjust rsp
1388 break;
1389 case Bytecodes::_i2d:
1390 __ pushl(rax); // add one slot for d2ieee()
1391 __ pushl(rax); // store int on tos
1392 __ fild_s(at_rsp()); // load int to ST0
1393 __ d2ieee(); // truncate to double size
1394 __ popl(rcx); // adjust rsp
1395 __ popl(rcx);
1396 break;
1397 case Bytecodes::_i2b:
1398 __ shll(rax, 24); // truncate upper 24 bits
1399 __ sarl(rax, 24); // and sign-extend byte
1400 break;
1401 case Bytecodes::_i2c:
1402 __ andl(rax, 0xFFFF); // truncate upper 16 bits
1403 break;
1404 case Bytecodes::_i2s:
1405 __ shll(rax, 16); // truncate upper 16 bits
1406 __ sarl(rax, 16); // and sign-extend short
1407 break;
1408 case Bytecodes::_l2i:
1409 /* nothing to do */
1410 break;
1411 case Bytecodes::_l2f:
1412 __ pushl(rdx); // store long on tos
1413 __ pushl(rax);
1414 __ fild_d(at_rsp()); // load long to ST0
1415 __ f2ieee(); // truncate to float size
1416 __ popl(rcx); // adjust rsp
1417 __ popl(rcx);
1418 break;
1419 case Bytecodes::_l2d:
1420 __ pushl(rdx); // store long on tos
1421 __ pushl(rax);
1422 __ fild_d(at_rsp()); // load long to ST0
1423 __ d2ieee(); // truncate to double size
1424 __ popl(rcx); // adjust rsp
1425 __ popl(rcx);
1426 break;
1427 case Bytecodes::_f2i:
1428 __ pushl(rcx); // reserve space for argument
1429 __ fstp_s(at_rsp()); // pass float argument on stack
1430 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1431 break;
1432 case Bytecodes::_f2l:
1433 __ pushl(rcx); // reserve space for argument
1434 __ fstp_s(at_rsp()); // pass float argument on stack
1435 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1436 break;
1437 case Bytecodes::_f2d:
1438 /* nothing to do */
1439 break;
1440 case Bytecodes::_d2i:
1441 __ pushl(rcx); // reserve space for argument
1442 __ pushl(rcx);
1443 __ fstp_d(at_rsp()); // pass double argument on stack
1444 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
1445 break;
1446 case Bytecodes::_d2l:
1447 __ pushl(rcx); // reserve space for argument
1448 __ pushl(rcx);
1449 __ fstp_d(at_rsp()); // pass double argument on stack
1450 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
1451 break;
1452 case Bytecodes::_d2f:
1453 __ pushl(rcx); // reserve space for f2ieee()
1454 __ f2ieee(); // truncate to float size
1455 __ popl(rcx); // adjust rsp
1456 break;
1457 default :
1458 ShouldNotReachHere();
1459 }
1460 }
1461
1462
1463 void TemplateTable::lcmp() {
1464 transition(ltos, itos);
1465 // y = rdx:rax
1466 __ pop_l(rbx, rcx); // get x = rcx:rbx
1467 __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
1468 __ movl(rax, rcx);
1469 }
1470
1471
1472 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1473 if (is_float) {
1474 __ pop_ftos_to_rsp();
1475 __ fld_s(at_rsp());
1476 } else {
1477 __ pop_dtos_to_rsp();
1478 __ fld_d(at_rsp());
1479 __ popl(rdx);
1480 }
1481 __ popl(rcx);
1482 __ fcmp2int(rax, unordered_result < 0);
1483 }
1484
1485
1486 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1487 __ get_method(rcx); // ECX holds method
1488 __ profile_taken_branch(rax,rbx); // EAX holds updated MDP, EBX holds bumped taken count
1489
1490 const ByteSize be_offset = methodOopDesc::backedge_counter_offset() + InvocationCounter::counter_offset();
1491 const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset();
1492 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
1493
1494 // Load up EDX with the branch displacement
1495 __ movl(rdx, at_bcp(1));
1496 __ bswap(rdx);
1497 if (!is_wide) __ sarl(rdx, 16);
1498
1499 // Handle all the JSR stuff here, then exit.
1500 // It's much shorter and cleaner than intermingling with the
1501 // non-JSR normal-branch stuff occuring below.
1502 if (is_jsr) {
1503 // Pre-load the next target bytecode into EBX
1504 __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1, 0));
1505
1506 // compute return address as bci in rax,
1507 __ leal(rax, at_bcp((is_wide ? 5 : 3) - in_bytes(constMethodOopDesc::codes_offset())));
1508 __ subl(rax, Address(rcx, methodOopDesc::const_offset()));
1509 // Adjust the bcp in ESI by the displacement in EDX
1510 __ addl(rsi, rdx);
1511 // Push return address
1512 __ push_i(rax);
1513 // jsr returns vtos
1514 __ dispatch_only_noverify(vtos);
1515 return;
1516 }
1517
1518 // Normal (non-jsr) branch handling
1519
1520 // Adjust the bcp in ESI by the displacement in EDX
1521 __ addl(rsi, rdx);
1522
1523 assert(UseLoopCounter || !UseOnStackReplacement, "on-stack-replacement requires loop counters");
1524 Label backedge_counter_overflow;
1525 Label profile_method;
1526 Label dispatch;
1527 if (UseLoopCounter) {
1528 // increment backedge counter for backward branches
1529 // rax,: MDO
1530 // rbx,: MDO bumped taken-count
1531 // rcx: method
1532 // rdx: target offset
1533 // rsi: target bcp
1534 // rdi: locals pointer
1535 __ testl(rdx, rdx); // check if forward or backward branch
1536 __ jcc(Assembler::positive, dispatch); // count only if backward branch
1537
1538 // increment counter
1539 __ movl(rax, Address(rcx, be_offset)); // load backedge counter
1540 __ increment(rax, InvocationCounter::count_increment); // increment counter
1541 __ movl(Address(rcx, be_offset), rax); // store counter
1542
1543 __ movl(rax, Address(rcx, inv_offset)); // load invocation counter
1544 __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
1545 __ addl(rax, Address(rcx, be_offset)); // add both counters
1546
1547 if (ProfileInterpreter) {
1548 // Test to see if we should create a method data oop
1549 __ cmp32(rax,
1550 ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
1551 __ jcc(Assembler::less, dispatch);
1552
1553 // if no method data exists, go to profile method
1554 __ test_method_data_pointer(rax, profile_method);
1555
1556 if (UseOnStackReplacement) {
1557 // check for overflow against rbx, which is the MDO taken count
1558 __ cmp32(rbx,
1559 ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1560 __ jcc(Assembler::below, dispatch);
1561
1562 // When ProfileInterpreter is on, the backedge_count comes from the
1563 // methodDataOop, which value does not get reset on the call to
1564 // frequency_counter_overflow(). To avoid excessive calls to the overflow
1565 // routine while the method is being compiled, add a second test to make
1566 // sure the overflow function is called only once every overflow_frequency.
1567 const int overflow_frequency = 1024;
1568 __ andl(rbx, overflow_frequency-1);
1569 __ jcc(Assembler::zero, backedge_counter_overflow);
1570
1571 }
1572 } else {
1573 if (UseOnStackReplacement) {
1574 // check for overflow against rax, which is the sum of the counters
1575 __ cmp32(rax,
1576 ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1577 __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
1578
1579 }
1580 }
1581 __ bind(dispatch);
1582 }
1583
1584 // Pre-load the next target bytecode into EBX
1585 __ load_unsigned_byte(rbx, Address(rsi, 0));
1586
1587 // continue with the bytecode @ target
1588 // rax,: return bci for jsr's, unused otherwise
1589 // rbx,: target bytecode
1590 // rsi: target bcp
1591 __ dispatch_only(vtos);
1592
1593 if (UseLoopCounter) {
1594 if (ProfileInterpreter) {
1595 // Out-of-line code to allocate method data oop.
1596 __ bind(profile_method);
1597 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), rsi);
1598 __ load_unsigned_byte(rbx, Address(rsi, 0)); // restore target bytecode
1599 __ movl(rcx, Address(rbp, method_offset));
1600 __ movl(rcx, Address(rcx, in_bytes(methodOopDesc::method_data_offset())));
1601 __ movl(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rcx);
1602 __ test_method_data_pointer(rcx, dispatch);
1603 // offset non-null mdp by MDO::data_offset() + IR::profile_method()
1604 __ addl(rcx, in_bytes(methodDataOopDesc::data_offset()));
1605 __ addl(rcx, rax);
1606 __ movl(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rcx);
1607 __ jmp(dispatch);
1608 }
1609
1610 if (UseOnStackReplacement) {
1611
1612 // invocation counter overflow
1613 __ bind(backedge_counter_overflow);
1614 __ negl(rdx);
1615 __ addl(rdx, rsi); // branch bcp
1616 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rdx);
1617 __ load_unsigned_byte(rbx, Address(rsi, 0)); // restore target bytecode
1618
1619 // rax,: osr nmethod (osr ok) or NULL (osr not possible)
1620 // rbx,: target bytecode
1621 // rdx: scratch
1622 // rdi: locals pointer
1623 // rsi: bcp
1624 __ testl(rax, rax); // test result
1625 __ jcc(Assembler::zero, dispatch); // no osr if null
1626 // nmethod may have been invalidated (VM may block upon call_VM return)
1627 __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
1628 __ cmpl(rcx, InvalidOSREntryBci);
1629 __ jcc(Assembler::equal, dispatch);
1630
1631 // We have the address of an on stack replacement routine in rax,
1632 // We need to prepare to execute the OSR method. First we must
1633 // migrate the locals and monitors off of the stack.
1634
1635 __ movl(rsi, rax); // save the nmethod
1636
1637 const Register thread = rcx;
1638 __ get_thread(thread);
1639 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1640 // rax, is OSR buffer, move it to expected parameter location
1641 __ movl(rcx, rax);
1642
1643 // pop the interpreter frame
1644 __ movl(rdx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
1645 __ leave(); // remove frame anchor
1646 __ popl(rdi); // get return address
1647 __ movl(rsp, rdx); // set sp to sender sp
1648
1649
1650 Label skip;
1651 Label chkint;
1652
1653 // The interpreter frame we have removed may be returning to
1654 // either the callstub or the interpreter. Since we will
1655 // now be returning from a compiled (OSR) nmethod we must
1656 // adjust the return to the return were it can handler compiled
1657 // results and clean the fpu stack. This is very similar to
1658 // what a i2c adapter must do.
1659
1660 // Are we returning to the call stub?
1661
1662 __ cmp32(rdi, ExternalAddress(StubRoutines::_call_stub_return_address));
1663 __ jcc(Assembler::notEqual, chkint);
1664
1665 // yes adjust to the specialized call stub return.
1666 assert(StubRoutines::i486::get_call_stub_compiled_return() != NULL, "must be set");
1667 __ lea(rdi, ExternalAddress(StubRoutines::i486::get_call_stub_compiled_return()));
1668 __ jmp(skip);
1669
1670 __ bind(chkint);
1671
1672 // Are we returning to the interpreter? Look for sentinel
1673
1674 __ cmpl(Address(rdi, -8), Interpreter::return_sentinel);
1675 __ jcc(Assembler::notEqual, skip);
1676
1677 // Adjust to compiled return back to interpreter
1678
1679 __ movl(rdi, Address(rdi, -4));
1680 __ bind(skip);
1681
1682 // Align stack pointer for compiled code (note that caller is
1683 // responsible for undoing this fixup by remembering the old SP
1684 // in an rbp,-relative location)
1685 __ andl(rsp, -(StackAlignmentInBytes));
1686
1687 // push the (possibly adjusted) return address
1688 __ pushl(rdi);
1689
1690 // and begin the OSR nmethod
1691 __ jmp(Address(rsi, nmethod::osr_entry_point_offset()));
1692 }
1693 }
1694 }
1695
1696
1697 void TemplateTable::if_0cmp(Condition cc) {
1698 transition(itos, vtos);
1699 // assume branch is more often taken than not (loops use backward branches)
1700 Label not_taken;
1701 __ testl(rax, rax);
1702 __ jcc(j_not(cc), not_taken);
1703 branch(false, false);
1704 __ bind(not_taken);
1705 __ profile_not_taken_branch(rax);
1706 }
1707
1708
1709 void TemplateTable::if_icmp(Condition cc) {
1710 transition(itos, vtos);
1711 // assume branch is more often taken than not (loops use backward branches)
1712 Label not_taken;
1713 __ pop_i(rdx);
1714 __ cmpl(rdx, rax);
1715 __ jcc(j_not(cc), not_taken);
1716 branch(false, false);
1717 __ bind(not_taken);
1718 __ profile_not_taken_branch(rax);
1719 }
1720
1721
1722 void TemplateTable::if_nullcmp(Condition cc) {
1723 transition(atos, vtos);
1724 // assume branch is more often taken than not (loops use backward branches)
1725 Label not_taken;
1726 __ testl(rax, rax);
1727 __ jcc(j_not(cc), not_taken);
1728 branch(false, false);
1729 __ bind(not_taken);
1730 __ profile_not_taken_branch(rax);
1731 }
1732
1733
1734 void TemplateTable::if_acmp(Condition cc) {
1735 transition(atos, vtos);
1736 // assume branch is more often taken than not (loops use backward branches)
1737 Label not_taken;
1738 __ pop_ptr(rdx);
1739 __ cmpl(rdx, rax);
1740 __ jcc(j_not(cc), not_taken);
1741 branch(false, false);
1742 __ bind(not_taken);
1743 __ profile_not_taken_branch(rax);
1744 }
1745
1746
1747 void TemplateTable::ret() {
1748 transition(vtos, vtos);
1749 locals_index(rbx);
1750 __ movl(rbx, iaddress(rbx)); // get return bci, compute return bcp
1751 __ profile_ret(rbx, rcx);
1752 __ get_method(rax);
1753 __ movl(rsi, Address(rax, methodOopDesc::const_offset()));
1754 __ leal(rsi, Address(rsi, rbx, Address::times_1,
1755 constMethodOopDesc::codes_offset()));
1756 __ dispatch_next(vtos);
1757 }
1758
1759
1760 void TemplateTable::wide_ret() {
1761 transition(vtos, vtos);
1762 locals_index_wide(rbx);
1763 __ movl(rbx, iaddress(rbx)); // get return bci, compute return bcp
1764 __ profile_ret(rbx, rcx);
1765 __ get_method(rax);
1766 __ movl(rsi, Address(rax, methodOopDesc::const_offset()));
1767 __ leal(rsi, Address(rsi, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
1768 __ dispatch_next(vtos);
1769 }
1770
1771
1772 void TemplateTable::tableswitch() {
1773 Label default_case, continue_execution;
1774 transition(itos, vtos);
1775 // align rsi
1776 __ leal(rbx, at_bcp(wordSize));
1777 __ andl(rbx, -wordSize);
1778 // load lo & hi
1779 __ movl(rcx, Address(rbx, 1 * wordSize));
1780 __ movl(rdx, Address(rbx, 2 * wordSize));
1781 __ bswap(rcx);
1782 __ bswap(rdx);
1783 // check against lo & hi
1784 __ cmpl(rax, rcx);
1785 __ jccb(Assembler::less, default_case);
1786 __ cmpl(rax, rdx);
1787 __ jccb(Assembler::greater, default_case);
1788 // lookup dispatch offset
1789 __ subl(rax, rcx);
1790 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * wordSize));
1791 __ profile_switch_case(rax, rbx, rcx);
1792 // continue execution
1793 __ bind(continue_execution);
1794 __ bswap(rdx);
1795 __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
1796 __ addl(rsi, rdx);
1797 __ dispatch_only(vtos);
1798 // handle default
1799 __ bind(default_case);
1800 __ profile_switch_default(rax);
1801 __ movl(rdx, Address(rbx, 0));
1802 __ jmp(continue_execution);
1803 }
1804
1805
1806 void TemplateTable::lookupswitch() {
1807 transition(itos, itos);
1808 __ stop("lookupswitch bytecode should have been rewritten");
1809 }
1810
1811
1812 void TemplateTable::fast_linearswitch() {
1813 transition(itos, vtos);
1814 Label loop_entry, loop, found, continue_execution;
1815 // bswap rax, so we can avoid bswapping the table entries
1816 __ bswap(rax);
1817 // align rsi
1818 __ leal(rbx, at_bcp(wordSize)); // btw: should be able to get rid of this instruction (change offsets below)
1819 __ andl(rbx, -wordSize);
1820 // set counter
1821 __ movl(rcx, Address(rbx, wordSize));
1822 __ bswap(rcx);
1823 __ jmpb(loop_entry);
1824 // table search
1825 __ bind(loop);
1826 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * wordSize));
1827 __ jccb(Assembler::equal, found);
1828 __ bind(loop_entry);
1829 __ decrement(rcx);
1830 __ jcc(Assembler::greaterEqual, loop);
1831 // default case
1832 __ profile_switch_default(rax);
1833 __ movl(rdx, Address(rbx, 0));
1834 __ jmpb(continue_execution);
1835 // entry found -> get offset
1836 __ bind(found);
1837 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * wordSize));
1838 __ profile_switch_case(rcx, rax, rbx);
1839 // continue execution
1840 __ bind(continue_execution);
1841 __ bswap(rdx);
1842 __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
1843 __ addl(rsi, rdx);
1844 __ dispatch_only(vtos);
1845 }
1846
1847
1848 void TemplateTable::fast_binaryswitch() {
1849 transition(itos, vtos);
1850 // Implementation using the following core algorithm:
1851 //
1852 // int binary_search(int key, LookupswitchPair* array, int n) {
1853 // // Binary search according to "Methodik des Programmierens" by
1854 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1855 // int i = 0;
1856 // int j = n;
1857 // while (i+1 < j) {
1858 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1859 // // with Q: for all i: 0 <= i < n: key < a[i]
1860 // // where a stands for the array and assuming that the (inexisting)
1861 // // element a[n] is infinitely big.
1862 // int h = (i + j) >> 1;
1863 // // i < h < j
1864 // if (key < array[h].fast_match()) {
1865 // j = h;
1866 // } else {
1867 // i = h;
1868 // }
1869 // }
1870 // // R: a[i] <= key < a[i+1] or Q
1871 // // (i.e., if key is within array, i is the correct index)
1872 // return i;
1873 // }
1874
1875 // register allocation
1876 const Register key = rax; // already set (tosca)
1877 const Register array = rbx;
1878 const Register i = rcx;
1879 const Register j = rdx;
1880 const Register h = rdi; // needs to be restored
1881 const Register temp = rsi;
1882 // setup array
1883 __ save_bcp();
1884
1885 __ leal(array, at_bcp(3*wordSize)); // btw: should be able to get rid of this instruction (change offsets below)
1886 __ andl(array, -wordSize);
1887 // initialize i & j
1888 __ xorl(i, i); // i = 0;
1889 __ movl(j, Address(array, -wordSize)); // j = length(array);
1890 // Convert j into native byteordering
1891 __ bswap(j);
1892 // and start
1893 Label entry;
1894 __ jmp(entry);
1895
1896 // binary search loop
1897 { Label loop;
1898 __ bind(loop);
1899 // int h = (i + j) >> 1;
1900 __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
1901 __ sarl(h, 1); // h = (i + j) >> 1;
1902 // if (key < array[h].fast_match()) {
1903 // j = h;
1904 // } else {
1905 // i = h;
1906 // }
1907 // Convert array[h].match to native byte-ordering before compare
1908 __ movl(temp, Address(array, h, Address::times_8, 0*wordSize));
1909 __ bswap(temp);
1910 __ cmpl(key, temp);
1911 if (VM_Version::supports_cmov()) {
1912 __ cmovl(Assembler::less , j, h); // j = h if (key < array[h].fast_match())
1913 __ cmovl(Assembler::greaterEqual, i, h); // i = h if (key >= array[h].fast_match())
1914 } else {
1915 Label set_i, end_of_if;
1916 __ jccb(Assembler::greaterEqual, set_i); // {
1917 __ movl(j, h); // j = h;
1918 __ jmp(end_of_if); // }
1919 __ bind(set_i); // else {
1920 __ movl(i, h); // i = h;
1921 __ bind(end_of_if); // }
1922 }
1923 // while (i+1 < j)
1924 __ bind(entry);
1925 __ leal(h, Address(i, 1)); // i+1
1926 __ cmpl(h, j); // i+1 < j
1927 __ jcc(Assembler::less, loop);
1928 }
1929
1930 // end of binary search, result index is i (must check again!)
1931 Label default_case;
1932 // Convert array[i].match to native byte-ordering before compare
1933 __ movl(temp, Address(array, i, Address::times_8, 0*wordSize));
1934 __ bswap(temp);
1935 __ cmpl(key, temp);
1936 __ jcc(Assembler::notEqual, default_case);
1937
1938 // entry found -> j = offset
1939 __ movl(j , Address(array, i, Address::times_8, 1*wordSize));
1940 __ profile_switch_case(i, key, array);
1941 __ bswap(j);
1942 __ restore_bcp();
1943 __ restore_locals(); // restore rdi
1944 __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
1945
1946 __ addl(rsi, j);
1947 __ dispatch_only(vtos);
1948
1949 // default case -> j = default offset
1950 __ bind(default_case);
1951 __ profile_switch_default(i);
1952 __ movl(j, Address(array, -2*wordSize));
1953 __ bswap(j);
1954 __ restore_bcp();
1955 __ restore_locals(); // restore rdi
1956 __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
1957 __ addl(rsi, j);
1958 __ dispatch_only(vtos);
1959 }
1960
1961
1962 void TemplateTable::_return(TosState state) {
1963 transition(state, state);
1964 assert(_desc->calls_vm(), "inconsistent calls_vm information"); // call in remove_activation
1965
1966 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
1967 assert(state == vtos, "only valid state");
1968 __ movl(rax, aaddress(0));
1969 __ movl(rdi, Address(rax, oopDesc::klass_offset_in_bytes()));
1970 __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
1971 __ testl(rdi, JVM_ACC_HAS_FINALIZER);
1972 Label skip_register_finalizer;
1973 __ jcc(Assembler::zero, skip_register_finalizer);
1974
1975 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), rax);
1976
1977 __ bind(skip_register_finalizer);
1978 }
1979
1980 __ remove_activation(state, rsi);
1981 __ jmp(rsi);
1982 }
1983
1984
1985 // ----------------------------------------------------------------------------
1986 // Volatile variables demand their effects be made known to all CPU's in
1987 // order. Store buffers on most chips allow reads & writes to reorder; the
1988 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1989 // memory barrier (i.e., it's not sufficient that the interpreter does not
1990 // reorder volatile references, the hardware also must not reorder them).
1991 //
1992 // According to the new Java Memory Model (JMM):
1993 // (1) All volatiles are serialized wrt to each other.
1994 // ALSO reads & writes act as aquire & release, so:
1995 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1996 // the read float up to before the read. It's OK for non-volatile memory refs
1997 // that happen before the volatile read to float down below it.
1998 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1999 // that happen BEFORE the write float down to after the write. It's OK for
2000 // non-volatile memory refs that happen after the volatile write to float up
2001 // before it.
2002 //
2003 // We only put in barriers around volatile refs (they are expensive), not
2004 // _between_ memory refs (that would require us to track the flavor of the
2005 // previous memory refs). Requirements (2) and (3) require some barriers
2006 // before volatile stores and after volatile loads. These nearly cover
2007 // requirement (1) but miss the volatile-store-volatile-load case. This final
2008 // case is placed after volatile-stores although it could just as well go
2009 // before volatile-loads.
2010 void TemplateTable::volatile_barrier( ) {
2011 // Helper function to insert a is-volatile test and memory barrier
2012 if( !os::is_MP() ) return; // Not needed on single CPU
2013 __ membar();
2014 }
2015
2016 void TemplateTable::resolve_cache_and_index(int byte_no, Register Rcache, Register index) {
2017 assert(byte_no == 1 || byte_no == 2, "byte_no out of range");
2018
2019 Register temp = rbx;
2020
2021 assert_different_registers(Rcache, index, temp);
2022
2023 const int shift_count = (1 + byte_no)*BitsPerByte;
2024 Label resolved;
2025 __ get_cache_and_index_at_bcp(Rcache, index, 1);
2026 __ movl(temp, Address(Rcache, index, Address::times_4, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
2027 __ shrl(temp, shift_count);
2028 // have we resolved this bytecode?
2029 __ andl(temp, 0xFF);
2030 __ cmpl(temp, (int)bytecode());
2031 __ jcc(Assembler::equal, resolved);
2032
2033 // resolve first time through
2034 address entry;
2035 switch (bytecode()) {
2036 case Bytecodes::_getstatic : // fall through
2037 case Bytecodes::_putstatic : // fall through
2038 case Bytecodes::_getfield : // fall through
2039 case Bytecodes::_putfield : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
2040 case Bytecodes::_invokevirtual : // fall through
2041 case Bytecodes::_invokespecial : // fall through
2042 case Bytecodes::_invokestatic : // fall through
2043 case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); break;
2044 default : ShouldNotReachHere(); break;
2045 }
2046 __ movl(temp, (int)bytecode());
2047 __ call_VM(noreg, entry, temp);
2048 // Update registers with resolved info
2049 __ get_cache_and_index_at_bcp(Rcache, index, 1);
2050 __ bind(resolved);
2051 }
2052
2053
2054 // The cache and index registers must be set before call
2055 void TemplateTable::load_field_cp_cache_entry(Register obj,
2056 Register cache,
2057 Register index,
2058 Register off,
2059 Register flags,
2060 bool is_static = false) {
2061 assert_different_registers(cache, index, flags, off);
2062
2063 ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2064 // Field offset
2065 __ movl(off, Address(cache, index, Address::times_4,
2066 in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset())));
2067 // Flags
2068 __ movl(flags, Address(cache, index, Address::times_4,
2069 in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset())));
2070
2071 // klass overwrite register
2072 if (is_static) {
2073 __ movl(obj, Address(cache, index, Address::times_4,
2074 in_bytes(cp_base_offset + ConstantPoolCacheEntry::f1_offset())));
2075 }
2076 }
2077
2078 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2079 Register method,
2080 Register itable_index,
2081 Register flags,
2082 bool is_invokevirtual,
2083 bool is_invokevfinal /*unused*/) {
2084 // setup registers
2085 const Register cache = rcx;
2086 const Register index = rdx;
2087 assert_different_registers(method, flags);
2088 assert_different_registers(method, cache, index);
2089 assert_different_registers(itable_index, flags);
2090 assert_different_registers(itable_index, cache, index);
2091 // determine constant pool cache field offsets
2092 const int method_offset = in_bytes(
2093 constantPoolCacheOopDesc::base_offset() +
2094 (is_invokevirtual
2095 ? ConstantPoolCacheEntry::f2_offset()
2096 : ConstantPoolCacheEntry::f1_offset()
2097 )
2098 );
2099 const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
2100 ConstantPoolCacheEntry::flags_offset());
2101 // access constant pool cache fields
2102 const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
2103 ConstantPoolCacheEntry::f2_offset());
2104
2105 resolve_cache_and_index(byte_no, cache, index);
2106
2107 assert(wordSize == 4, "adjust code below");
2108 __ movl(method, Address(cache, index, Address::times_4, method_offset));
2109 if (itable_index != noreg) {
2110 __ movl(itable_index, Address(cache, index, Address::times_4, index_offset));
2111 }
2112 __ movl(flags , Address(cache, index, Address::times_4, flags_offset ));
2113 }
2114
2115
2116 // The registers cache and index expected to be set before call.
2117 // Correct values of the cache and index registers are preserved.
2118 void TemplateTable::jvmti_post_field_access(Register cache,
2119 Register index,
2120 bool is_static,
2121 bool has_tos) {
2122 if (JvmtiExport::can_post_field_access()) {
2123 // Check to see if a field access watch has been set before we take
2124 // the time to call into the VM.
2125 Label L1;
2126 assert_different_registers(cache, index, rax);
2127 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2128 __ testl(rax,rax);
2129 __ jcc(Assembler::zero, L1);
2130
2131 // cache entry pointer
2132 __ addl(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
2133 __ shll(index, LogBytesPerWord);
2134 __ addl(cache, index);
2135 if (is_static) {
2136 __ movl(rax, 0); // NULL object reference
2137 } else {
2138 __ pop(atos); // Get the object
2139 __ verify_oop(rax);
2140 __ push(atos); // Restore stack state
2141 }
2142 // rax,: object pointer or NULL
2143 // cache: cache entry pointer
2144 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2145 rax, cache);
2146 __ get_cache_and_index_at_bcp(cache, index, 1);
2147 __ bind(L1);
2148 }
2149 }
2150
2151 void TemplateTable::pop_and_check_object(Register r) {
2152 __ pop_ptr(r);
2153 __ null_check(r); // for field access must check obj.
2154 __ verify_oop(r);
2155 }
2156
2157 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2158 transition(vtos, vtos);
2159
2160 const Register cache = rcx;
2161 const Register index = rdx;
2162 const Register obj = rcx;
2163 const Register off = rbx;
2164 const Register flags = rax;
2165
2166 resolve_cache_and_index(byte_no, cache, index);
2167 jvmti_post_field_access(cache, index, is_static, false);
2168 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2169
2170 if (!is_static) pop_and_check_object(obj);
2171
2172 const Address lo(obj, off, Address::times_1, 0*wordSize);
2173 const Address hi(obj, off, Address::times_1, 1*wordSize);
2174
2175 Label Done, notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
2176
2177 __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2178 assert(btos == 0, "change code, btos != 0");
2179 // btos
2180 __ andl(flags, 0x0f);
2181 __ jcc(Assembler::notZero, notByte);
2182
2183 __ load_signed_byte(rax, lo );
2184 __ push(btos);
2185 // Rewrite bytecode to be faster
2186 if (!is_static) {
2187 patch_bytecode(Bytecodes::_fast_bgetfield, rcx, rbx);
2188 }
2189 __ jmp(Done);
2190
2191 __ bind(notByte);
2192 // itos
2193 __ cmpl(flags, itos );
2194 __ jcc(Assembler::notEqual, notInt);
2195
2196 __ movl(rax, lo );
2197 __ push(itos);
2198 // Rewrite bytecode to be faster
2199 if (!is_static) {
2200 patch_bytecode(Bytecodes::_fast_igetfield, rcx, rbx);
2201 }
2202 __ jmp(Done);
2203
2204 __ bind(notInt);
2205 // atos
2206 __ cmpl(flags, atos );
2207 __ jcc(Assembler::notEqual, notObj);
2208
2209 __ movl(rax, lo );
2210 __ push(atos);
2211 if (!is_static) {
2212 patch_bytecode(Bytecodes::_fast_agetfield, rcx, rbx);
2213 }
2214 __ jmp(Done);
2215
2216 __ bind(notObj);
2217 // ctos
2218 __ cmpl(flags, ctos );
2219 __ jcc(Assembler::notEqual, notChar);
2220
2221 __ load_unsigned_word(rax, lo );
2222 __ push(ctos);
2223 if (!is_static) {
2224 patch_bytecode(Bytecodes::_fast_cgetfield, rcx, rbx);
2225 }
2226 __ jmp(Done);
2227
2228 __ bind(notChar);
2229 // stos
2230 __ cmpl(flags, stos );
2231 __ jcc(Assembler::notEqual, notShort);
2232
2233 __ load_signed_word(rax, lo );
2234 __ push(stos);
2235 if (!is_static) {
2236 patch_bytecode(Bytecodes::_fast_sgetfield, rcx, rbx);
2237 }
2238 __ jmp(Done);
2239
2240 __ bind(notShort);
2241 // ltos
2242 __ cmpl(flags, ltos );
2243 __ jcc(Assembler::notEqual, notLong);
2244
2245 // Generate code as if volatile. There just aren't enough registers to
2246 // save that information and this code is faster than the test.
2247 __ fild_d(lo); // Must load atomically
2248 __ subl(rsp,2*wordSize); // Make space for store
2249 __ fistp_d(Address(rsp,0));
2250 __ popl(rax);
2251 __ popl(rdx);
2252
2253 __ push(ltos);
2254 // Don't rewrite to _fast_lgetfield for potential volatile case.
2255 __ jmp(Done);
2256
2257 __ bind(notLong);
2258 // ftos
2259 __ cmpl(flags, ftos );
2260 __ jcc(Assembler::notEqual, notFloat);
2261
2262 __ fld_s(lo);
2263 __ push(ftos);
2264 if (!is_static) {
2265 patch_bytecode(Bytecodes::_fast_fgetfield, rcx, rbx);
2266 }
2267 __ jmp(Done);
2268
2269 __ bind(notFloat);
2270 // dtos
2271 __ cmpl(flags, dtos );
2272 __ jcc(Assembler::notEqual, notDouble);
2273
2274 __ fld_d(lo);
2275 __ push(dtos);
2276 if (!is_static) {
2277 patch_bytecode(Bytecodes::_fast_dgetfield, rcx, rbx);
2278 }
2279 __ jmpb(Done);
2280
2281 __ bind(notDouble);
2282
2283 __ stop("Bad state");
2284
2285 __ bind(Done);
2286 // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
2287 // volatile_barrier( );
2288 }
2289
2290
2291 void TemplateTable::getfield(int byte_no) {
2292 getfield_or_static(byte_no, false);
2293 }
2294
2295
2296 void TemplateTable::getstatic(int byte_no) {
2297 getfield_or_static(byte_no, true);
2298 }
2299
2300 // The registers cache and index expected to be set before call.
2301 // The function may destroy various registers, just not the cache and index registers.
2302 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2303
2304 ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2305
2306 if (JvmtiExport::can_post_field_modification()) {
2307 // Check to see if a field modification watch has been set before we take
2308 // the time to call into the VM.
2309 Label L1;
2310 assert_different_registers(cache, index, rax);
2311 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2312 __ testl(rax, rax);
2313 __ jcc(Assembler::zero, L1);
2314
2315 // The cache and index registers have been already set.
2316 // This allows to eliminate this call but the cache and index
2317 // registers have to be correspondingly used after this line.
2318 __ get_cache_and_index_at_bcp(rax, rdx, 1);
2319
2320 if (is_static) {
2321 // Life is simple. Null out the object pointer.
2322 __ xorl(rbx, rbx);
2323 } else {
2324 // Life is harder. The stack holds the value on top, followed by the object.
2325 // We don't know the size of the value, though; it could be one or two words
2326 // depending on its type. As a result, we must find the type to determine where
2327 // the object is.
2328 Label two_word, valsize_known;
2329 __ movl(rcx, Address(rax, rdx, Address::times_4, in_bytes(cp_base_offset +
2330 ConstantPoolCacheEntry::flags_offset())));
2331 __ movl(rbx, rsp);
2332 __ shrl(rcx, ConstantPoolCacheEntry::tosBits);
2333 // Make sure we don't need to mask rcx for tosBits after the above shift
2334 ConstantPoolCacheEntry::verify_tosBits();
2335 __ cmpl(rcx, ltos);
2336 __ jccb(Assembler::equal, two_word);
2337 __ cmpl(rcx, dtos);
2338 __ jccb(Assembler::equal, two_word);
2339 __ addl(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
2340 __ jmpb(valsize_known);
2341
2342 __ bind(two_word);
2343 __ addl(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
2344
2345 __ bind(valsize_known);
2346 // setup object pointer
2347 __ movl(rbx, Address(rbx, 0));
2348 }
2349 // cache entry pointer
2350 __ addl(rax, in_bytes(cp_base_offset));
2351 __ shll(rdx, LogBytesPerWord);
2352 __ addl(rax, rdx);
2353 // object (tos)
2354 __ movl(rcx, rsp);
2355 // rbx,: object pointer set up above (NULL if static)
2356 // rax,: cache entry pointer
2357 // rcx: jvalue object on the stack
2358 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
2359 rbx, rax, rcx);
2360 __ get_cache_and_index_at_bcp(cache, index, 1);
2361 __ bind(L1);
2362 }
2363 }
2364
2365
2366 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2367 transition(vtos, vtos);
2368
2369 const Register cache = rcx;
2370 const Register index = rdx;
2371 const Register obj = rcx;
2372 const Register off = rbx;
2373 const Register flags = rax;
2374
2375 resolve_cache_and_index(byte_no, cache, index);
2376 jvmti_post_field_mod(cache, index, is_static);
2377 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2378
2379 // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
2380 // volatile_barrier( );
2381
2382 Label notVolatile, Done;
2383 __ movl(rdx, flags);
2384 __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2385 __ andl(rdx, 0x1);
2386
2387 // field addresses
2388 const Address lo(obj, off, Address::times_1, 0*wordSize);
2389 const Address hi(obj, off, Address::times_1, 1*wordSize);
2390
2391 Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
2392
2393 __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2394 assert(btos == 0, "change code, btos != 0");
2395 // btos
2396 __ andl(flags, 0x0f);
2397 __ jcc(Assembler::notZero, notByte);
2398
2399 __ pop(btos);
2400 if (!is_static) pop_and_check_object(obj);
2401 __ movb(lo, rax );
2402 if (!is_static) {
2403 patch_bytecode(Bytecodes::_fast_bputfield, rcx, rbx);
2404 }
2405 __ jmp(Done);
2406
2407 __ bind(notByte);
2408 // itos
2409 __ cmpl(flags, itos );
2410 __ jcc(Assembler::notEqual, notInt);
2411
2412 __ pop(itos);
2413 if (!is_static) pop_and_check_object(obj);
2414
2415 __ movl(lo, rax );
2416 if (!is_static) {
2417 patch_bytecode(Bytecodes::_fast_iputfield, rcx, rbx);
2418 }
2419 __ jmp(Done);
2420
2421 __ bind(notInt);
2422 // atos
2423 __ cmpl(flags, atos );
2424 __ jcc(Assembler::notEqual, notObj);
2425
2426 __ pop(atos);
2427 if (!is_static) pop_and_check_object(obj);
2428
2429 __ movl(lo, rax );
2430 __ store_check(obj, lo); // Need to mark card
2431 if (!is_static) {
2432 patch_bytecode(Bytecodes::_fast_aputfield, rcx, rbx);
2433 }
2434 __ jmp(Done);
2435
2436 __ bind(notObj);
2437 // ctos
2438 __ cmpl(flags, ctos );
2439 __ jcc(Assembler::notEqual, notChar);
2440
2441 __ pop(ctos);
2442 if (!is_static) pop_and_check_object(obj);
2443 __ movw(lo, rax );
2444 if (!is_static) {
2445 patch_bytecode(Bytecodes::_fast_cputfield, rcx, rbx);
2446 }
2447 __ jmp(Done);
2448
2449 __ bind(notChar);
2450 // stos
2451 __ cmpl(flags, stos );
2452 __ jcc(Assembler::notEqual, notShort);
2453
2454 __ pop(stos);
2455 if (!is_static) pop_and_check_object(obj);
2456 __ movw(lo, rax );
2457 if (!is_static) {
2458 patch_bytecode(Bytecodes::_fast_sputfield, rcx, rbx);
2459 }
2460 __ jmp(Done);
2461
2462 __ bind(notShort);
2463 // ltos
2464 __ cmpl(flags, ltos );
2465 __ jcc(Assembler::notEqual, notLong);
2466
2467 Label notVolatileLong;
2468 __ testl(rdx, rdx);
2469 __ jcc(Assembler::zero, notVolatileLong);
2470
2471 __ pop(ltos); // overwrites rdx, do this after testing volatile.
2472 if (!is_static) pop_and_check_object(obj);
2473
2474 // Replace with real volatile test
2475 __ pushl(rdx);
2476 __ pushl(rax); // Must update atomically with FIST
2477 __ fild_d(Address(rsp,0)); // So load into FPU register
2478 __ fistp_d(lo); // and put into memory atomically
2479 __ addl(rsp,2*wordSize);
2480 volatile_barrier();
2481 // Don't rewrite volatile version
2482 __ jmp(notVolatile);
2483
2484 __ bind(notVolatileLong);
2485
2486 __ pop(ltos); // overwrites rdx
2487 if (!is_static) pop_and_check_object(obj);
2488 __ movl(hi, rdx);
2489 __ movl(lo, rax);
2490 if (!is_static) {
2491 patch_bytecode(Bytecodes::_fast_lputfield, rcx, rbx);
2492 }
2493 __ jmp(notVolatile);
2494
2495 __ bind(notLong);
2496 // ftos
2497 __ cmpl(flags, ftos );
2498 __ jcc(Assembler::notEqual, notFloat);
2499
2500 __ pop(ftos);
2501 if (!is_static) pop_and_check_object(obj);
2502 __ fstp_s(lo);
2503 if (!is_static) {
2504 patch_bytecode(Bytecodes::_fast_fputfield, rcx, rbx);
2505 }
2506 __ jmp(Done);
2507
2508 __ bind(notFloat);
2509 // dtos
2510 __ cmpl(flags, dtos );
2511 __ jcc(Assembler::notEqual, notDouble);
2512
2513 __ pop(dtos);
2514 if (!is_static) pop_and_check_object(obj);
2515 __ fstp_d(lo);
2516 if (!is_static) {
2517 patch_bytecode(Bytecodes::_fast_dputfield, rcx, rbx);
2518 }
2519 __ jmp(Done);
2520
2521 __ bind(notDouble);
2522
2523 __ stop("Bad state");
2524
2525 __ bind(Done);
2526
2527 // Check for volatile store
2528 __ testl(rdx, rdx);
2529 __ jcc(Assembler::zero, notVolatile);
2530 volatile_barrier( );
2531 __ bind(notVolatile);
2532 }
2533
2534
2535 void TemplateTable::putfield(int byte_no) {
2536 putfield_or_static(byte_no, false);
2537 }
2538
2539
2540 void TemplateTable::putstatic(int byte_no) {
2541 putfield_or_static(byte_no, true);
2542 }
2543
2544 void TemplateTable::jvmti_post_fast_field_mod() {
2545 if (JvmtiExport::can_post_field_modification()) {
2546 // Check to see if a field modification watch has been set before we take
2547 // the time to call into the VM.
2548 Label L2;
2549 __ mov32(rcx, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2550 __ testl(rcx,rcx);
2551 __ jcc(Assembler::zero, L2);
2552 __ pop_ptr(rbx); // copy the object pointer from tos
2553 __ verify_oop(rbx);
2554 __ push_ptr(rbx); // put the object pointer back on tos
2555 __ subl(rsp, sizeof(jvalue)); // add space for a jvalue object
2556 __ movl(rcx, rsp);
2557 __ push_ptr(rbx); // save object pointer so we can steal rbx,
2558 __ movl(rbx, 0);
2559 const Address lo_value(rcx, rbx, Address::times_1, 0*wordSize);
2560 const Address hi_value(rcx, rbx, Address::times_1, 1*wordSize);
2561 switch (bytecode()) { // load values into the jvalue object
2562 case Bytecodes::_fast_bputfield: __ movb(lo_value, rax); break;
2563 case Bytecodes::_fast_sputfield: __ movw(lo_value, rax); break;
2564 case Bytecodes::_fast_cputfield: __ movw(lo_value, rax); break;
2565 case Bytecodes::_fast_iputfield: __ movl(lo_value, rax); break;
2566 case Bytecodes::_fast_lputfield: __ movl(hi_value, rdx); __ movl(lo_value, rax); break;
2567 // need to call fld_s() after fstp_s() to restore the value for below
2568 case Bytecodes::_fast_fputfield: __ fstp_s(lo_value); __ fld_s(lo_value); break;
2569 // need to call fld_d() after fstp_d() to restore the value for below
2570 case Bytecodes::_fast_dputfield: __ fstp_d(lo_value); __ fld_d(lo_value); break;
2571 // since rcx is not an object we don't call store_check() here
2572 case Bytecodes::_fast_aputfield: __ movl(lo_value, rax); break;
2573 default: ShouldNotReachHere();
2574 }
2575 __ pop_ptr(rbx); // restore copy of object pointer
2576
2577 // Save rax, and sometimes rdx because call_VM() will clobber them,
2578 // then use them for JVM/DI purposes
2579 __ pushl(rax);
2580 if (bytecode() == Bytecodes::_fast_lputfield) __ pushl(rdx);
2581 // access constant pool cache entry
2582 __ get_cache_entry_pointer_at_bcp(rax, rdx, 1);
2583 __ verify_oop(rbx);
2584 // rbx,: object pointer copied above
2585 // rax,: cache entry pointer
2586 // rcx: jvalue object on the stack
2587 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx);
2588 if (bytecode() == Bytecodes::_fast_lputfield) __ popl(rdx); // restore high value
2589 __ popl(rax); // restore lower value
2590 __ addl(rsp, sizeof(jvalue)); // release jvalue object space
2591 __ bind(L2);
2592 }
2593 }
2594
2595 void TemplateTable::fast_storefield(TosState state) {
2596 transition(state, vtos);
2597
2598 ByteSize base = constantPoolCacheOopDesc::base_offset();
2599
2600 jvmti_post_fast_field_mod();
2601
2602 // access constant pool cache
2603 __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2604
2605 // test for volatile with rdx but rdx is tos register for lputfield.
2606 if (bytecode() == Bytecodes::_fast_lputfield) __ pushl(rdx);
2607 __ movl(rdx, Address(rcx, rbx, Address::times_4, in_bytes(base +
2608 ConstantPoolCacheEntry::flags_offset())));
2609
2610 // replace index with field offset from cache entry
2611 __ movl(rbx, Address(rcx, rbx, Address::times_4, in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
2612
2613 // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
2614 // volatile_barrier( );
2615
2616 Label notVolatile, Done;
2617 __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2618 __ andl(rdx, 0x1);
2619 // Check for volatile store
2620 __ testl(rdx, rdx);
2621 __ jcc(Assembler::zero, notVolatile);
2622
2623 if (bytecode() == Bytecodes::_fast_lputfield) __ popl(rdx);
2624
2625 // Get object from stack
2626 pop_and_check_object(rcx);
2627
2628 // field addresses
2629 const Address lo(rcx, rbx, Address::times_1, 0*wordSize);
2630 const Address hi(rcx, rbx, Address::times_1, 1*wordSize);
2631
2632 // access field
2633 switch (bytecode()) {
2634 case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
2635 case Bytecodes::_fast_sputfield: // fall through
2636 case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
2637 case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
2638 case Bytecodes::_fast_lputfield: __ movl(hi, rdx); __ movl(lo, rax); break;
2639 case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
2640 case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
2641 case Bytecodes::_fast_aputfield: __ movl(lo, rax); __ store_check(rcx, lo); break;
2642 default:
2643 ShouldNotReachHere();
2644 }
2645
2646 Label done;
2647 volatile_barrier( );
2648 __ jmpb(done);
2649
2650 // Same code as above, but don't need rdx to test for volatile.
2651 __ bind(notVolatile);
2652
2653 if (bytecode() == Bytecodes::_fast_lputfield) __ popl(rdx);
2654
2655 // Get object from stack
2656 pop_and_check_object(rcx);
2657
2658 // access field
2659 switch (bytecode()) {
2660 case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
2661 case Bytecodes::_fast_sputfield: // fall through
2662 case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
2663 case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
2664 case Bytecodes::_fast_lputfield: __ movl(hi, rdx); __ movl(lo, rax); break;
2665 case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
2666 case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
2667 case Bytecodes::_fast_aputfield: __ movl(lo, rax); __ store_check(rcx, lo); break;
2668 default:
2669 ShouldNotReachHere();
2670 }
2671 __ bind(done);
2672 }
2673
2674
2675 void TemplateTable::fast_accessfield(TosState state) {
2676 transition(atos, state);
2677
2678 // do the JVMTI work here to avoid disturbing the register state below
2679 if (JvmtiExport::can_post_field_access()) {
2680 // Check to see if a field access watch has been set before we take
2681 // the time to call into the VM.
2682 Label L1;
2683 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2684 __ testl(rcx,rcx);
2685 __ jcc(Assembler::zero, L1);
2686 // access constant pool cache entry
2687 __ get_cache_entry_pointer_at_bcp(rcx, rdx, 1);
2688 __ push_ptr(rax); // save object pointer before call_VM() clobbers it
2689 __ verify_oop(rax);
2690 // rax,: object pointer copied above
2691 // rcx: cache entry pointer
2692 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx);
2693 __ pop_ptr(rax); // restore object pointer
2694 __ bind(L1);
2695 }
2696
2697 // access constant pool cache
2698 __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2699 // replace index with field offset from cache entry
2700 __ movl(rbx, Address(rcx, rbx, Address::times_4, in_bytes(constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset())));
2701
2702
2703 // rax,: object
2704 __ verify_oop(rax);
2705 __ null_check(rax);
2706 // field addresses
2707 const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
2708 const Address hi = Address(rax, rbx, Address::times_1, 1*wordSize);
2709
2710 // access field
2711 switch (bytecode()) {
2712 case Bytecodes::_fast_bgetfield: __ movsxb(rax, lo ); break;
2713 case Bytecodes::_fast_sgetfield: __ load_signed_word(rax, lo ); break;
2714 case Bytecodes::_fast_cgetfield: __ load_unsigned_word(rax, lo ); break;
2715 case Bytecodes::_fast_igetfield: __ movl(rax, lo); break;
2716 case Bytecodes::_fast_lgetfield: __ stop("should not be rewritten"); break;
2717 case Bytecodes::_fast_fgetfield: __ fld_s(lo); break;
2718 case Bytecodes::_fast_dgetfield: __ fld_d(lo); break;
2719 case Bytecodes::_fast_agetfield: __ movl(rax, lo); __ verify_oop(rax); break;
2720 default:
2721 ShouldNotReachHere();
2722 }
2723
2724 // Doug Lea believes this is not needed with current Sparcs(TSO) and Intel(PSO)
2725 // volatile_barrier( );
2726 }
2727
2728 void TemplateTable::fast_xaccess(TosState state) {
2729 transition(vtos, state);
2730 // get receiver
2731 __ movl(rax, aaddress(0));
2732 debug_only(__ verify_local_tag(frame::TagReference, 0));
2733 // access constant pool cache
2734 __ get_cache_and_index_at_bcp(rcx, rdx, 2);
2735 __ movl(rbx, Address(rcx, rdx, Address::times_4, in_bytes(constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset())));
2736 // make sure exception is reported in correct bcp range (getfield is next instruction)
2737 __ increment(rsi);
2738 __ null_check(rax);
2739 const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
2740 if (state == itos) {
2741 __ movl(rax, lo);
2742 } else if (state == atos) {
2743 __ movl(rax, lo);
2744 __ verify_oop(rax);
2745 } else if (state == ftos) {
2746 __ fld_s(lo);
2747 } else {
2748 ShouldNotReachHere();
2749 }
2750 __ decrement(rsi);
2751 }
2752
2753
2754
2755 //----------------------------------------------------------------------------------------------------
2756 // Calls
2757
2758 void TemplateTable::count_calls(Register method, Register temp) {
2759 // implemented elsewhere
2760 ShouldNotReachHere();
2761 }
2762
2763
2764 void TemplateTable::prepare_invoke(Register method, Register index, int byte_no, Bytecodes::Code code) {
2765 // determine flags
2766 const bool is_invokeinterface = code == Bytecodes::_invokeinterface;
2767 const bool is_invokevirtual = code == Bytecodes::_invokevirtual;
2768 const bool is_invokespecial = code == Bytecodes::_invokespecial;
2769 const bool load_receiver = code != Bytecodes::_invokestatic;
2770 const bool receiver_null_check = is_invokespecial;
2771 const bool save_flags = is_invokeinterface || is_invokevirtual;
2772 // setup registers & access constant pool cache
2773 const Register recv = rcx;
2774 const Register flags = rdx;
2775 assert_different_registers(method, index, recv, flags);
2776
2777 // save 'interpreter return address'
2778 __ save_bcp();
2779
2780 load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual);
2781
2782 // load receiver if needed (note: no return address pushed yet)
2783 if (load_receiver) {
2784 __ movl(recv, flags);
2785 __ andl(recv, 0xFF);
2786 // recv count is 0 based?
2787 __ movl(recv, Address(rsp, recv, Interpreter::stackElementScale(), -Interpreter::expr_offset_in_bytes(1)));
2788 __ verify_oop(recv);
2789 }
2790
2791 // do null check if needed
2792 if (receiver_null_check) {
2793 __ null_check(recv);
2794 }
2795
2796 if (save_flags) {
2797 __ movl(rsi, flags);
2798 }
2799
2800 // compute return type
2801 __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2802 // Make sure we don't need to mask flags for tosBits after the above shift
2803 ConstantPoolCacheEntry::verify_tosBits();
2804 // load return address
2805 { const int table =
2806 is_invokeinterface
2807 ? (int)Interpreter::return_5_addrs_by_index_table()
2808 : (int)Interpreter::return_3_addrs_by_index_table();
2809 __ movl(flags, Address(noreg, flags, Address::times_4, table));
2810 }
2811
2812 // push return address
2813 __ pushl(flags);
2814
2815 // Restore flag value from the constant pool cache, and restore rsi
2816 // for later null checks. rsi is the bytecode pointer
2817 if (save_flags) {
2818 __ movl(flags, rsi);
2819 __ restore_bcp();
2820 }
2821 }
2822
2823
2824 void TemplateTable::invokevirtual_helper(Register index, Register recv,
2825 Register flags) {
2826
2827 // Uses temporary registers rax, rdx
2828 assert_different_registers(index, recv, rax, rdx);
2829
2830 // Test for an invoke of a final method
2831 Label notFinal;
2832 __ movl(rax, flags);
2833 __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
2834 __ jcc(Assembler::zero, notFinal);
2835
2836 Register method = index; // method must be rbx,
2837 assert(method == rbx, "methodOop must be rbx, for interpreter calling convention");
2838
2839 // do the call - the index is actually the method to call
2840 __ verify_oop(method);
2841
2842 // It's final, need a null check here!
2843 __ null_check(recv);
2844
2845 // profile this call
2846 __ profile_final_call(rax);
2847
2848 __ jump_from_interpreted(method, rax);
2849
2850 __ bind(notFinal);
2851
2852 // get receiver klass
2853 __ null_check(recv, oopDesc::klass_offset_in_bytes());
2854 // Keep recv in rcx for callee expects it there
2855 __ movl(rax, Address(recv, oopDesc::klass_offset_in_bytes()));
2856 __ verify_oop(rax);
2857
2858 // profile this call
2859 __ profile_virtual_call(rax, rdi, rdx);
2860
2861 // get target methodOop & entry point
2862 const int base = instanceKlass::vtable_start_offset() * wordSize;
2863 assert(vtableEntry::size() * wordSize == 4, "adjust the scaling in the code below");
2864 __ movl(method, Address(rax, index, Address::times_4, base + vtableEntry::method_offset_in_bytes()));
2865 __ jump_from_interpreted(method, rdx);
2866 }
2867
2868
2869 void TemplateTable::invokevirtual(int byte_no) {
2870 transition(vtos, vtos);
2871 prepare_invoke(rbx, noreg, byte_no, bytecode());
2872
2873 // rbx,: index
2874 // rcx: receiver
2875 // rdx: flags
2876
2877 invokevirtual_helper(rbx, rcx, rdx);
2878 }
2879
2880
2881 void TemplateTable::invokespecial(int byte_no) {
2882 transition(vtos, vtos);
2883 prepare_invoke(rbx, noreg, byte_no, bytecode());
2884 // do the call
2885 __ verify_oop(rbx);
2886 __ profile_call(rax);
2887 __ jump_from_interpreted(rbx, rax);
2888 }
2889
2890
2891 void TemplateTable::invokestatic(int byte_no) {
2892 transition(vtos, vtos);
2893 prepare_invoke(rbx, noreg, byte_no, bytecode());
2894 // do the call
2895 __ verify_oop(rbx);
2896 __ profile_call(rax);
2897 __ jump_from_interpreted(rbx, rax);
2898 }
2899
2900
2901 void TemplateTable::fast_invokevfinal(int byte_no) {
2902 transition(vtos, vtos);
2903 __ stop("fast_invokevfinal not used on x86");
2904 }
2905
2906
2907 void TemplateTable::invokeinterface(int byte_no) {
2908 transition(vtos, vtos);
2909 prepare_invoke(rax, rbx, byte_no, bytecode());
2910
2911 // rax,: Interface
2912 // rbx,: index
2913 // rcx: receiver
2914 // rdx: flags
2915
2916 // Special case of invokeinterface called for virtual method of
2917 // java.lang.Object. See cpCacheOop.cpp for details.
2918 // This code isn't produced by javac, but could be produced by
2919 // another compliant java compiler.
2920 Label notMethod;
2921 __ movl(rdi, rdx);
2922 __ andl(rdi, (1 << ConstantPoolCacheEntry::methodInterface));
2923 __ jcc(Assembler::zero, notMethod);
2924
2925 invokevirtual_helper(rbx, rcx, rdx);
2926 __ bind(notMethod);
2927
2928 // Get receiver klass into rdx - also a null check
2929 __ restore_locals(); // restore rdi
2930 __ movl(rdx, Address(rcx, oopDesc::klass_offset_in_bytes()));
2931 __ verify_oop(rdx);
2932
2933 // profile this call
2934 __ profile_virtual_call(rdx, rsi, rdi);
2935
2936 __ movl(rdi, rdx); // Save klassOop in rdi
2937
2938 // Compute start of first itableOffsetEntry (which is at the end of the vtable)
2939 const int base = instanceKlass::vtable_start_offset() * wordSize;
2940 assert(vtableEntry::size() * wordSize == 4, "adjust the scaling in the code below");
2941 __ movl(rsi, Address(rdx, instanceKlass::vtable_length_offset() * wordSize)); // Get length of vtable
2942 __ leal(rdx, Address(rdx, rsi, Address::times_4, base));
2943 if (HeapWordsPerLong > 1) {
2944 // Round up to align_object_offset boundary
2945 __ round_to(rdx, BytesPerLong);
2946 }
2947
2948 Label entry, search, interface_ok;
2949
2950 __ jmpb(entry);
2951 __ bind(search);
2952 __ addl(rdx, itableOffsetEntry::size() * wordSize);
2953
2954 __ bind(entry);
2955
2956 // Check that the entry is non-null. A null entry means that the receiver
2957 // class doesn't implement the interface, and wasn't the same as the
2958 // receiver class checked when the interface was resolved.
2959 __ pushl(rdx);
2960 __ movl(rdx, Address(rdx, itableOffsetEntry::interface_offset_in_bytes()));
2961 __ testl(rdx, rdx);
2962 __ jcc(Assembler::notZero, interface_ok);
2963 // throw exception
2964 __ popl(rdx); // pop saved register first.
2965 __ popl(rbx); // pop return address (pushed by prepare_invoke)
2966 __ restore_bcp(); // rsi must be correct for exception handler (was destroyed)
2967 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
2968 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2969 InterpreterRuntime::throw_IncompatibleClassChangeError));
2970 // the call_VM checks for exception, so we should never return here.
2971 __ should_not_reach_here();
2972 __ bind(interface_ok);
2973
2974 __ popl(rdx);
2975
2976 __ cmpl(rax, Address(rdx, itableOffsetEntry::interface_offset_in_bytes()));
2977 __ jcc(Assembler::notEqual, search);
2978
2979 __ movl(rdx, Address(rdx, itableOffsetEntry::offset_offset_in_bytes()));
2980 __ addl(rdx, rdi); // Add offset to klassOop
2981 assert(itableMethodEntry::size() * wordSize == 4, "adjust the scaling in the code below");
2982 __ movl(rbx, Address(rdx, rbx, Address::times_4));
2983 // rbx,: methodOop to call
2984 // rcx: receiver
2985 // Check for abstract method error
2986 // Note: This should be done more efficiently via a throw_abstract_method_error
2987 // interpreter entry point and a conditional jump to it in case of a null
2988 // method.
2989 { Label L;
2990 __ testl(rbx, rbx);
2991 __ jcc(Assembler::notZero, L);
2992 // throw exception
2993 // note: must restore interpreter registers to canonical
2994 // state for exception handling to work correctly!
2995 __ popl(rbx); // pop return address (pushed by prepare_invoke)
2996 __ restore_bcp(); // rsi must be correct for exception handler (was destroyed)
2997 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
2998 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
2999 // the call_VM checks for exception, so we should never return here.
3000 __ should_not_reach_here();
3001 __ bind(L);
3002 }
3003
3004 // do the call
3005 // rcx: receiver
3006 // rbx,: methodOop
3007 __ jump_from_interpreted(rbx, rdx);
3008 }
3009
3010 //----------------------------------------------------------------------------------------------------
3011 // Allocation
3012
3013 void TemplateTable::_new() {
3014 transition(vtos, atos);
3015 __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3016 Label slow_case;
3017 Label done;
3018 Label initialize_header;
3019 Label initialize_object; // including clearing the fields
3020 Label allocate_shared;
3021
3022 ExternalAddress heap_top((address)Universe::heap()->top_addr());
3023
3024 __ get_cpool_and_tags(rcx, rax);
3025 // get instanceKlass
3026 __ movl(rcx, Address(rcx, rdx, Address::times_4, sizeof(constantPoolOopDesc)));
3027 __ pushl(rcx); // save the contexts of klass for initializing the header
3028
3029 // make sure the class we're about to instantiate has been resolved.
3030 // Note: slow_case does a pop of stack, which is why we loaded class/pushed above
3031 const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
3032 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
3033 __ jcc(Assembler::notEqual, slow_case);
3034
3035 // make sure klass is initialized & doesn't have finalizer
3036 // make sure klass is fully initialized
3037 __ cmpl(Address(rcx, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)), instanceKlass::fully_initialized);
3038 __ jcc(Assembler::notEqual, slow_case);
3039
3040 // get instance_size in instanceKlass (scaled to a count of bytes)
3041 __ movl(rdx, Address(rcx, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
3042 // test to see if it has a finalizer or is malformed in some way
3043 __ testl(rdx, Klass::_lh_instance_slow_path_bit);
3044 __ jcc(Assembler::notZero, slow_case);
3045
3046 //
3047 // Allocate the instance
3048 // 1) Try to allocate in the TLAB
3049 // 2) if fail and the object is large allocate in the shared Eden
3050 // 3) if the above fails (or is not applicable), go to a slow case
3051 // (creates a new TLAB, etc.)
3052
3053 const bool allow_shared_alloc =
3054 Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
3055
3056 if (UseTLAB) {
3057 const Register thread = rcx;
3058
3059 __ get_thread(thread);
3060 __ movl(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset())));
3061 __ leal(rbx, Address(rax, rdx, Address::times_1));
3062 __ cmpl(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset())));
3063 __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
3064 __ movl(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
3065 if (ZeroTLAB) {
3066 // the fields have been already cleared
3067 __ jmp(initialize_header);
3068 } else {
3069 // initialize both the header and fields
3070 __ jmp(initialize_object);
3071 }
3072 }
3073
3074 // Allocation in the shared Eden, if allowed.
3075 //
3076 // rdx: instance size in bytes
3077 if (allow_shared_alloc) {
3078 __ bind(allocate_shared);
3079
3080 Label retry;
3081 __ bind(retry);
3082 __ mov32(rax, heap_top);
3083 __ leal(rbx, Address(rax, rdx, Address::times_1));
3084 __ cmp32(rbx, ExternalAddress((address)Universe::heap()->end_addr()));
3085 __ jcc(Assembler::above, slow_case);
3086
3087 // Compare rax, with the top addr, and if still equal, store the new
3088 // top addr in rbx, at the address of the top addr pointer. Sets ZF if was
3089 // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
3090 //
3091 // rax,: object begin
3092 // rbx,: object end
3093 // rdx: instance size in bytes
3094 if (os::is_MP()) __ lock();
3095 __ cmpxchgptr(rbx, heap_top);
3096
3097 // if someone beat us on the allocation, try again, otherwise continue
3098 __ jcc(Assembler::notEqual, retry);
3099 }
3100
3101 if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3102 // The object is initialized before the header. If the object size is
3103 // zero, go directly to the header initialization.
3104 __ bind(initialize_object);
3105 __ decrement(rdx, sizeof(oopDesc));
3106 __ jcc(Assembler::zero, initialize_header);
3107
3108 // Initialize topmost object field, divide rdx by 8, check if odd and
3109 // test if zero.
3110 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
3111 __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
3112
3113 // rdx must have been multiple of 8
3114 #ifdef ASSERT
3115 // make sure rdx was multiple of 8
3116 Label L;
3117 // Ignore partial flag stall after shrl() since it is debug VM
3118 __ jccb(Assembler::carryClear, L);
3119 __ stop("object size is not multiple of 2 - adjust this code");
3120 __ bind(L);
3121 // rdx must be > 0, no extra check needed here
3122 #endif
3123
3124 // initialize remaining object fields: rdx was a multiple of 8
3125 { Label loop;
3126 __ bind(loop);
3127 __ movl(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
3128 __ movl(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx);
3129 __ decrement(rdx);
3130 __ jcc(Assembler::notZero, loop);
3131 }
3132
3133 // initialize object header only.
3134 __ bind(initialize_header);
3135 if (UseBiasedLocking) {
3136 __ popl(rcx); // get saved klass back in the register.
3137 __ movl(rbx, Address(rcx, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
3138 __ movl(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
3139 } else {
3140 __ movl(Address(rax, oopDesc::mark_offset_in_bytes ()),
3141 (int)markOopDesc::prototype()); // header
3142 __ popl(rcx); // get saved klass back in the register.
3143 }
3144 __ movl(Address(rax, oopDesc::klass_offset_in_bytes()), rcx); // klass
3145
3146 {
3147 SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
3148 // Trigger dtrace event for fastpath
3149 __ push(atos);
3150 __ call_VM_leaf(
3151 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
3152 __ pop(atos);
3153 }
3154
3155 __ jmp(done);
3156 }
3157
3158 // slow case
3159 __ bind(slow_case);
3160 __ popl(rcx); // restore stack pointer to what it was when we came in.
3161 __ get_constant_pool(rax);
3162 __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3163 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rax, rdx);
3164
3165 // continue
3166 __ bind(done);
3167 }
3168
3169
3170 void TemplateTable::newarray() {
3171 transition(itos, atos);
3172 __ push_i(rax); // make sure everything is on the stack
3173 __ load_unsigned_byte(rdx, at_bcp(1));
3174 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), rdx, rax);
3175 __ pop_i(rdx); // discard size
3176 }
3177
3178
3179 void TemplateTable::anewarray() {
3180 transition(itos, atos);
3181 __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3182 __ get_constant_pool(rcx);
3183 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), rcx, rdx, rax);
3184 }
3185
3186
3187 void TemplateTable::arraylength() {
3188 transition(atos, itos);
3189 __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
3190 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
3191 }
3192
3193
3194 void TemplateTable::checkcast() {
3195 transition(atos, atos);
3196 Label done, is_null, ok_is_subtype, quicked, resolved;
3197 __ testl(rax, rax); // Object is in EAX
3198 __ jcc(Assembler::zero, is_null);
3199
3200 // Get cpool & tags index
3201 __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
3202 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
3203 // See if bytecode has already been quicked
3204 __ cmpb(Address(rdx, rbx, Address::times_1, typeArrayOopDesc::header_size(T_BYTE) * wordSize), JVM_CONSTANT_Class);
3205 __ jcc(Assembler::equal, quicked);
3206
3207 __ push(atos);
3208 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3209 __ pop_ptr(rdx);
3210 __ jmpb(resolved);
3211
3212 // Get superklass in EAX and subklass in EBX
3213 __ bind(quicked);
3214 __ movl(rdx, rax); // Save object in EDX; EAX needed for subtype check
3215 __ movl(rax, Address(rcx, rbx, Address::times_4, sizeof(constantPoolOopDesc)));
3216
3217 __ bind(resolved);
3218 __ movl(rbx, Address(rdx, oopDesc::klass_offset_in_bytes()));
3219
3220 // Generate subtype check. Blows ECX. Resets EDI. Object in EDX.
3221 // Superklass in EAX. Subklass in EBX.
3222 __ gen_subtype_check( rbx, ok_is_subtype );
3223
3224 // Come here on failure
3225 __ pushl(rdx);
3226 // object is at TOS
3227 __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
3228
3229 // Come here on success
3230 __ bind(ok_is_subtype);
3231 __ movl(rax,rdx); // Restore object in EDX
3232
3233 // Collect counts on whether this check-cast sees NULLs a lot or not.
3234 if (ProfileInterpreter) {
3235 __ jmp(done);
3236 __ bind(is_null);
3237 __ profile_null_seen(rcx);
3238 } else {
3239 __ bind(is_null); // same as 'done'
3240 }
3241 __ bind(done);
3242 }
3243
3244
3245 void TemplateTable::instanceof() {
3246 transition(atos, itos);
3247 Label done, is_null, ok_is_subtype, quicked, resolved;
3248 __ testl(rax, rax);
3249 __ jcc(Assembler::zero, is_null);
3250
3251 // Get cpool & tags index
3252 __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
3253 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
3254 // See if bytecode has already been quicked
3255 __ cmpb(Address(rdx, rbx, Address::times_1, typeArrayOopDesc::header_size(T_BYTE) * wordSize), JVM_CONSTANT_Class);
3256 __ jcc(Assembler::equal, quicked);
3257
3258 __ push(atos);
3259 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3260 __ pop_ptr(rdx);
3261 __ movl(rdx, Address(rdx, oopDesc::klass_offset_in_bytes()));
3262 __ jmp(resolved);
3263
3264 // Get superklass in EAX and subklass in EDX
3265 __ bind(quicked);
3266 __ movl(rdx, Address(rax, oopDesc::klass_offset_in_bytes()));
3267 __ movl(rax, Address(rcx, rbx, Address::times_4, sizeof(constantPoolOopDesc)));
3268
3269 __ bind(resolved);
3270
3271 // Generate subtype check. Blows ECX. Resets EDI.
3272 // Superklass in EAX. Subklass in EDX.
3273 __ gen_subtype_check( rdx, ok_is_subtype );
3274
3275 // Come here on failure
3276 __ xorl(rax,rax);
3277 __ jmpb(done);
3278 // Come here on success
3279 __ bind(ok_is_subtype);
3280 __ movl(rax, 1);
3281
3282 // Collect counts on whether this test sees NULLs a lot or not.
3283 if (ProfileInterpreter) {
3284 __ jmp(done);
3285 __ bind(is_null);
3286 __ profile_null_seen(rcx);
3287 } else {
3288 __ bind(is_null); // same as 'done'
3289 }
3290 __ bind(done);
3291 // rax, = 0: obj == NULL or obj is not an instanceof the specified klass
3292 // rax, = 1: obj != NULL and obj is an instanceof the specified klass
3293 }
3294
3295
3296 //----------------------------------------------------------------------------------------------------
3297 // Breakpoints
3298 void TemplateTable::_breakpoint() {
3299
3300 // Note: We get here even if we are single stepping..
3301 // jbug inists on setting breakpoints at every bytecode
3302 // even if we are in single step mode.
3303
3304 transition(vtos, vtos);
3305
3306 // get the unpatched byte code
3307 __ get_method(rcx);
3308 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), rcx, rsi);
3309 __ movl(rbx, rax);
3310
3311 // post the breakpoint event
3312 __ get_method(rcx);
3313 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), rcx, rsi);
3314
3315 // complete the execution of original bytecode
3316 __ dispatch_only_normal(vtos);
3317 }
3318
3319
3320 //----------------------------------------------------------------------------------------------------
3321 // Exceptions
3322
3323 void TemplateTable::athrow() {
3324 transition(atos, vtos);
3325 __ null_check(rax);
3326 __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
3327 }
3328
3329
3330 //----------------------------------------------------------------------------------------------------
3331 // Synchronization
3332 //
3333 // Note: monitorenter & exit are symmetric routines; which is reflected
3334 // in the assembly code structure as well
3335 //
3336 // Stack layout:
3337 //
3338 // [expressions ] <--- rsp = expression stack top
3339 // ..
3340 // [expressions ]
3341 // [monitor entry] <--- monitor block top = expression stack bot
3342 // ..
3343 // [monitor entry]
3344 // [frame data ] <--- monitor block bot
3345 // ...
3346 // [saved rbp, ] <--- rbp,
3347
3348
3349 void TemplateTable::monitorenter() {
3350 transition(atos, vtos);
3351
3352 // check for NULL object
3353 __ null_check(rax);
3354
3355 const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3356 const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3357 const int entry_size = ( frame::interpreter_frame_monitor_size() * wordSize);
3358 Label allocated;
3359
3360 // initialize entry pointer
3361 __ xorl(rdx, rdx); // points to free slot or NULL
3362
3363 // find a free slot in the monitor block (result in rdx)
3364 { Label entry, loop, exit;
3365 __ movl(rcx, monitor_block_top); // points to current entry, starting with top-most entry
3366 __ leal(rbx, monitor_block_bot); // points to word before bottom of monitor block
3367 __ jmpb(entry);
3368
3369 __ bind(loop);
3370 __ cmpl(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD); // check if current entry is used
3371
3372 // TODO - need new func here - kbt
3373 if (VM_Version::supports_cmov()) {
3374 __ cmovl(Assembler::equal, rdx, rcx); // if not used then remember entry in rdx
3375 } else {
3376 Label L;
3377 __ jccb(Assembler::notEqual, L);
3378 __ movl(rdx, rcx); // if not used then remember entry in rdx
3379 __ bind(L);
3380 }
3381 __ cmpl(rax, Address(rcx, BasicObjectLock::obj_offset_in_bytes())); // check if current entry is for same object
3382 __ jccb(Assembler::equal, exit); // if same object then stop searching
3383 __ addl(rcx, entry_size); // otherwise advance to next entry
3384 __ bind(entry);
3385 __ cmpl(rcx, rbx); // check if bottom reached
3386 __ jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
3387 __ bind(exit);
3388 }
3389
3390 __ testl(rdx, rdx); // check if a slot has been found
3391 __ jccb(Assembler::notZero, allocated); // if found, continue with that one
3392
3393 // allocate one if there's no free slot
3394 { Label entry, loop;
3395 // 1. compute new pointers // rsp: old expression stack top
3396 __ movl(rdx, monitor_block_bot); // rdx: old expression stack bottom
3397 __ subl(rsp, entry_size); // move expression stack top
3398 __ subl(rdx, entry_size); // move expression stack bottom
3399 __ movl(rcx, rsp); // set start value for copy loop
3400 __ movl(monitor_block_bot, rdx); // set new monitor block top
3401 __ jmp(entry);
3402 // 2. move expression stack contents
3403 __ bind(loop);
3404 __ movl(rbx, Address(rcx, entry_size)); // load expression stack word from old location
3405 __ movl(Address(rcx, 0), rbx); // and store it at new location
3406 __ addl(rcx, wordSize); // advance to next word
3407 __ bind(entry);
3408 __ cmpl(rcx, rdx); // check if bottom reached
3409 __ jcc(Assembler::notEqual, loop); // if not at bottom then copy next word
3410 }
3411
3412 // call run-time routine
3413 // rdx: points to monitor entry
3414 __ bind(allocated);
3415
3416 // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
3417 // The object has already been poped from the stack, so the expression stack looks correct.
3418 __ increment(rsi);
3419
3420 __ movl(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
3421 __ lock_object(rdx);
3422
3423 // check to make sure this monitor doesn't cause stack overflow after locking
3424 __ save_bcp(); // in case of exception
3425 __ generate_stack_overflow_check(0);
3426
3427 // The bcp has already been incremented. Just need to dispatch to next instruction.
3428 __ dispatch_next(vtos);
3429 }
3430
3431
3432 void TemplateTable::monitorexit() {
3433 transition(atos, vtos);
3434
3435 // check for NULL object
3436 __ null_check(rax);
3437
3438 const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3439 const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3440 const int entry_size = ( frame::interpreter_frame_monitor_size() * wordSize);
3441 Label found;
3442
3443 // find matching slot
3444 { Label entry, loop;
3445 __ movl(rdx, monitor_block_top); // points to current entry, starting with top-most entry
3446 __ leal(rbx, monitor_block_bot); // points to word before bottom of monitor block
3447 __ jmpb(entry);
3448
3449 __ bind(loop);
3450 __ cmpl(rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes())); // check if current entry is for same object
3451 __ jcc(Assembler::equal, found); // if same object then stop searching
3452 __ addl(rdx, entry_size); // otherwise advance to next entry
3453 __ bind(entry);
3454 __ cmpl(rdx, rbx); // check if bottom reached
3455 __ jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
3456 }
3457
3458 // error handling. Unlocking was not block-structured
3459 Label end;
3460 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
3461 __ should_not_reach_here();
3462
3463 // call run-time routine
3464 // rcx: points to monitor entry
3465 __ bind(found);
3466 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
3467 __ unlock_object(rdx);
3468 __ pop_ptr(rax); // discard object
3469 __ bind(end);
3470 }
3471
3472
3473 //----------------------------------------------------------------------------------------------------
3474 // Wide instructions
3475
3476 void TemplateTable::wide() {
3477 transition(vtos, vtos);
3478 __ load_unsigned_byte(rbx, at_bcp(1));
3479 __ jmp(Address(noreg, rbx, Address::times_4, int(Interpreter::_wentry_point)));
3480 // Note: the rsi increment step is part of the individual wide bytecode implementations
3481 }
3482
3483
3484 //----------------------------------------------------------------------------------------------------
3485 // Multi arrays
3486
3487 void TemplateTable::multianewarray() {
3488 transition(vtos, atos);
3489 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
3490 // last dim is on top of stack; we want address of first one:
3491 // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
3492 // the latter wordSize to point to the beginning of the array.
3493 __ leal( rax, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
3494 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rax); // pass in rax,
3495 __ load_unsigned_byte(rbx, at_bcp(3));
3496 __ leal(rsp, Address(rsp, rbx, Interpreter::stackElementScale())); // get rid of counts
3497 }
3498
3499 #endif /* !CC_INTERP */

mercurial