src/share/vm/gc_implementation/g1/concurrentG1Refine.cpp

changeset 5078
194f52aa2f23
parent 3924
3a431b605145
child 5204
e72f7eecc96d
equal deleted inserted replaced
5077:923ac8d1df95 5078:194f52aa2f23
1 /* 1 /*
2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved. 2 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 * 4 *
5 * This code is free software; you can redistribute it and/or modify it 5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as 6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. 7 * published by the Free Software Foundation.
24 24
25 #include "precompiled.hpp" 25 #include "precompiled.hpp"
26 #include "gc_implementation/g1/concurrentG1Refine.hpp" 26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
27 #include "gc_implementation/g1/concurrentG1RefineThread.hpp" 27 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp" 28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
29 #include "gc_implementation/g1/g1CollectorPolicy.hpp" 29 #include "gc_implementation/g1/g1HotCardCache.hpp"
30 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
31 #include "gc_implementation/g1/g1RemSet.hpp"
32 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
33 #include "memory/space.inline.hpp"
34 #include "runtime/atomic.hpp"
35 #include "runtime/java.hpp"
36 #include "utilities/copy.hpp"
37 30
38 // Possible sizes for the card counts cache: odd primes that roughly double in size. 31 ConcurrentG1Refine::ConcurrentG1Refine(G1CollectedHeap* g1h) :
39 // (See jvmtiTagMap.cpp). 32 _threads(NULL), _n_threads(0),
40 33 _hot_card_cache(g1h)
41 #define MAX_SIZE ((size_t) -1)
42
43 size_t ConcurrentG1Refine::_cc_cache_sizes[] = {
44 16381, 32771, 76831, 150001, 307261,
45 614563, 1228891, 2457733, 4915219, 9830479,
46 19660831, 39321619, 78643219, 157286461, MAX_SIZE
47 };
48
49 ConcurrentG1Refine::ConcurrentG1Refine() :
50 _card_counts(NULL), _card_epochs(NULL),
51 _n_card_counts(0), _max_cards(0), _max_n_card_counts(0),
52 _cache_size_index(0), _expand_card_counts(false),
53 _hot_cache(NULL),
54 _def_use_cache(false), _use_cache(false),
55 // We initialize the epochs of the array to 0. By initializing
56 // _n_periods to 1 and not 0 we automatically invalidate all the
57 // entries on the array. Otherwise we might accidentally think that
58 // we claimed a card that was in fact never set (see CR7033292).
59 _n_periods(1),
60 _threads(NULL), _n_threads(0)
61 { 34 {
62
63 // Ergomonically select initial concurrent refinement parameters 35 // Ergomonically select initial concurrent refinement parameters
64 if (FLAG_IS_DEFAULT(G1ConcRefinementGreenZone)) { 36 if (FLAG_IS_DEFAULT(G1ConcRefinementGreenZone)) {
65 FLAG_SET_DEFAULT(G1ConcRefinementGreenZone, MAX2<int>(ParallelGCThreads, 1)); 37 FLAG_SET_DEFAULT(G1ConcRefinementGreenZone, MAX2<int>(ParallelGCThreads, 1));
66 } 38 }
67 set_green_zone(G1ConcRefinementGreenZone); 39 set_green_zone(G1ConcRefinementGreenZone);
73 45
74 if (FLAG_IS_DEFAULT(G1ConcRefinementRedZone)) { 46 if (FLAG_IS_DEFAULT(G1ConcRefinementRedZone)) {
75 FLAG_SET_DEFAULT(G1ConcRefinementRedZone, yellow_zone() * 2); 47 FLAG_SET_DEFAULT(G1ConcRefinementRedZone, yellow_zone() * 2);
76 } 48 }
77 set_red_zone(MAX2<int>(G1ConcRefinementRedZone, yellow_zone())); 49 set_red_zone(MAX2<int>(G1ConcRefinementRedZone, yellow_zone()));
50
78 _n_worker_threads = thread_num(); 51 _n_worker_threads = thread_num();
79 // We need one extra thread to do the young gen rset size sampling. 52 // We need one extra thread to do the young gen rset size sampling.
80 _n_threads = _n_worker_threads + 1; 53 _n_threads = _n_worker_threads + 1;
54
81 reset_threshold_step(); 55 reset_threshold_step();
82 56
83 _threads = NEW_C_HEAP_ARRAY(ConcurrentG1RefineThread*, _n_threads, mtGC); 57 _threads = NEW_C_HEAP_ARRAY(ConcurrentG1RefineThread*, _n_threads, mtGC);
58
84 int worker_id_offset = (int)DirtyCardQueueSet::num_par_ids(); 59 int worker_id_offset = (int)DirtyCardQueueSet::num_par_ids();
60
85 ConcurrentG1RefineThread *next = NULL; 61 ConcurrentG1RefineThread *next = NULL;
86 for (int i = _n_threads - 1; i >= 0; i--) { 62 for (int i = _n_threads - 1; i >= 0; i--) {
87 ConcurrentG1RefineThread* t = new ConcurrentG1RefineThread(this, next, worker_id_offset, i); 63 ConcurrentG1RefineThread* t = new ConcurrentG1RefineThread(this, next, worker_id_offset, i);
88 assert(t != NULL, "Conc refine should have been created"); 64 assert(t != NULL, "Conc refine should have been created");
89 assert(t->cg1r() == this, "Conc refine thread should refer to this"); 65 assert(t->cg1r() == this, "Conc refine thread should refer to this");
98 } else { 74 } else {
99 _thread_threshold_step = G1ConcRefinementThresholdStep; 75 _thread_threshold_step = G1ConcRefinementThresholdStep;
100 } 76 }
101 } 77 }
102 78
103 int ConcurrentG1Refine::thread_num() {
104 return MAX2<int>((G1ConcRefinementThreads > 0) ? G1ConcRefinementThreads : ParallelGCThreads, 1);
105 }
106
107 void ConcurrentG1Refine::init() { 79 void ConcurrentG1Refine::init() {
108 if (G1ConcRSLogCacheSize > 0) { 80 _hot_card_cache.initialize();
109 _g1h = G1CollectedHeap::heap();
110
111 _max_cards = _g1h->max_capacity() >> CardTableModRefBS::card_shift;
112 _max_n_card_counts = _max_cards * G1MaxHotCardCountSizePercent / 100;
113
114 size_t max_card_num = ((size_t)1 << (sizeof(unsigned)*BitsPerByte-1)) - 1;
115 guarantee(_max_cards < max_card_num, "card_num representation");
116
117 // We need _n_card_counts to be less than _max_n_card_counts here
118 // so that the expansion call (below) actually allocates the
119 // _counts and _epochs arrays.
120 assert(_n_card_counts == 0, "pre-condition");
121 assert(_max_n_card_counts > 0, "pre-condition");
122
123 // Find the index into cache size array that is of a size that's
124 // large enough to hold desired_sz.
125 size_t desired_sz = _max_cards / InitialCacheFraction;
126 int desired_sz_index = 0;
127 while (_cc_cache_sizes[desired_sz_index] < desired_sz) {
128 desired_sz_index += 1;
129 assert(desired_sz_index < MAX_CC_CACHE_INDEX, "invariant");
130 }
131 assert(desired_sz_index < MAX_CC_CACHE_INDEX, "invariant");
132
133 // If the desired_sz value is between two sizes then
134 // _cc_cache_sizes[desired_sz_index-1] < desired_sz <= _cc_cache_sizes[desired_sz_index]
135 // we will start with the lower size in the optimistic expectation that
136 // we will not need to expand up. Note desired_sz_index could also be 0.
137 if (desired_sz_index > 0 &&
138 _cc_cache_sizes[desired_sz_index] > desired_sz) {
139 desired_sz_index -= 1;
140 }
141
142 if (!expand_card_count_cache(desired_sz_index)) {
143 // Allocation was unsuccessful - exit
144 vm_exit_during_initialization("Could not reserve enough space for card count cache");
145 }
146 assert(_n_card_counts > 0, "post-condition");
147 assert(_cache_size_index == desired_sz_index, "post-condition");
148
149 Copy::fill_to_bytes(&_card_counts[0],
150 _n_card_counts * sizeof(CardCountCacheEntry));
151 Copy::fill_to_bytes(&_card_epochs[0], _n_card_counts * sizeof(CardEpochCacheEntry));
152
153 ModRefBarrierSet* bs = _g1h->mr_bs();
154 guarantee(bs->is_a(BarrierSet::CardTableModRef), "Precondition");
155 _ct_bs = (CardTableModRefBS*)bs;
156 _ct_bot = _ct_bs->byte_for_const(_g1h->reserved_region().start());
157
158 _def_use_cache = true;
159 _use_cache = true;
160 _hot_cache_size = (1 << G1ConcRSLogCacheSize);
161 _hot_cache = NEW_C_HEAP_ARRAY(jbyte*, _hot_cache_size, mtGC);
162 _n_hot = 0;
163 _hot_cache_idx = 0;
164
165 // For refining the cards in the hot cache in parallel
166 int n_workers = (ParallelGCThreads > 0 ?
167 _g1h->workers()->total_workers() : 1);
168 _hot_cache_par_chunk_size = MAX2(1, _hot_cache_size / n_workers);
169 _hot_cache_par_claimed_idx = 0;
170 }
171 } 81 }
172 82
173 void ConcurrentG1Refine::stop() { 83 void ConcurrentG1Refine::stop() {
174 if (_threads != NULL) { 84 if (_threads != NULL) {
175 for (int i = 0; i < _n_threads; i++) { 85 for (int i = 0; i < _n_threads; i++) {
186 } 96 }
187 } 97 }
188 } 98 }
189 99
190 ConcurrentG1Refine::~ConcurrentG1Refine() { 100 ConcurrentG1Refine::~ConcurrentG1Refine() {
191 if (G1ConcRSLogCacheSize > 0) {
192 // Please see the comment in allocate_card_count_cache
193 // for why we call os::malloc() and os::free() directly.
194 assert(_card_counts != NULL, "Logic");
195 os::free(_card_counts, mtGC);
196 assert(_card_epochs != NULL, "Logic");
197 os::free(_card_epochs, mtGC);
198
199 assert(_hot_cache != NULL, "Logic");
200 FREE_C_HEAP_ARRAY(jbyte*, _hot_cache, mtGC);
201 }
202 if (_threads != NULL) { 101 if (_threads != NULL) {
203 for (int i = 0; i < _n_threads; i++) { 102 for (int i = 0; i < _n_threads; i++) {
204 delete _threads[i]; 103 delete _threads[i];
205 } 104 }
206 FREE_C_HEAP_ARRAY(ConcurrentG1RefineThread*, _threads, mtGC); 105 FREE_C_HEAP_ARRAY(ConcurrentG1RefineThread*, _threads, mtGC);
213 tc->do_thread(_threads[i]); 112 tc->do_thread(_threads[i]);
214 } 113 }
215 } 114 }
216 } 115 }
217 116
218 bool ConcurrentG1Refine::is_young_card(jbyte* card_ptr) { 117 int ConcurrentG1Refine::thread_num() {
219 HeapWord* start = _ct_bs->addr_for(card_ptr); 118 int n_threads = (G1ConcRefinementThreads > 0) ? G1ConcRefinementThreads
220 HeapRegion* r = _g1h->heap_region_containing(start); 119 : ParallelGCThreads;
221 if (r != NULL && r->is_young()) { 120 return MAX2<int>(n_threads, 1);
222 return true;
223 }
224 // This card is not associated with a heap region
225 // so can't be young.
226 return false;
227 }
228
229 jbyte* ConcurrentG1Refine::add_card_count(jbyte* card_ptr, int* count, bool* defer) {
230 unsigned new_card_num = ptr_2_card_num(card_ptr);
231 unsigned bucket = hash(new_card_num);
232 assert(0 <= bucket && bucket < _n_card_counts, "Bounds");
233
234 CardCountCacheEntry* count_ptr = &_card_counts[bucket];
235 CardEpochCacheEntry* epoch_ptr = &_card_epochs[bucket];
236
237 // We have to construct a new entry if we haven't updated the counts
238 // during the current period, or if the count was updated for a
239 // different card number.
240 unsigned int new_epoch = (unsigned int) _n_periods;
241 julong new_epoch_entry = make_epoch_entry(new_card_num, new_epoch);
242
243 while (true) {
244 // Fetch the previous epoch value
245 julong prev_epoch_entry = epoch_ptr->_value;
246 julong cas_res;
247
248 if (extract_epoch(prev_epoch_entry) != new_epoch) {
249 // This entry has not yet been updated during this period.
250 // Note: we update the epoch value atomically to ensure
251 // that there is only one winner that updates the cached
252 // card_ptr value even though all the refine threads share
253 // the same epoch value.
254
255 cas_res = (julong) Atomic::cmpxchg((jlong) new_epoch_entry,
256 (volatile jlong*)&epoch_ptr->_value,
257 (jlong) prev_epoch_entry);
258
259 if (cas_res == prev_epoch_entry) {
260 // We have successfully won the race to update the
261 // epoch and card_num value. Make it look like the
262 // count and eviction count were previously cleared.
263 count_ptr->_count = 1;
264 count_ptr->_evict_count = 0;
265 *count = 0;
266 // We can defer the processing of card_ptr
267 *defer = true;
268 return card_ptr;
269 }
270 // We did not win the race to update the epoch field, so some other
271 // thread must have done it. The value that gets returned by CAS
272 // should be the new epoch value.
273 assert(extract_epoch(cas_res) == new_epoch, "unexpected epoch");
274 // We could 'continue' here or just re-read the previous epoch value
275 prev_epoch_entry = epoch_ptr->_value;
276 }
277
278 // The epoch entry for card_ptr has been updated during this period.
279 unsigned old_card_num = extract_card_num(prev_epoch_entry);
280
281 // The card count that will be returned to caller
282 *count = count_ptr->_count;
283
284 // Are we updating the count for the same card?
285 if (new_card_num == old_card_num) {
286 // Same card - just update the count. We could have more than one
287 // thread racing to update count for the current card. It should be
288 // OK not to use a CAS as the only penalty should be some missed
289 // increments of the count which delays identifying the card as "hot".
290
291 if (*count < max_jubyte) count_ptr->_count++;
292 // We can defer the processing of card_ptr
293 *defer = true;
294 return card_ptr;
295 }
296
297 // Different card - evict old card info
298 if (count_ptr->_evict_count < max_jubyte) count_ptr->_evict_count++;
299 if (count_ptr->_evict_count > G1CardCountCacheExpandThreshold) {
300 // Trigger a resize the next time we clear
301 _expand_card_counts = true;
302 }
303
304 cas_res = (julong) Atomic::cmpxchg((jlong) new_epoch_entry,
305 (volatile jlong*)&epoch_ptr->_value,
306 (jlong) prev_epoch_entry);
307
308 if (cas_res == prev_epoch_entry) {
309 // We successfully updated the card num value in the epoch entry
310 count_ptr->_count = 0; // initialize counter for new card num
311 jbyte* old_card_ptr = card_num_2_ptr(old_card_num);
312
313 // Even though the region containg the card at old_card_num was not
314 // in the young list when old_card_num was recorded in the epoch
315 // cache it could have been added to the free list and subsequently
316 // added to the young list in the intervening time. See CR 6817995.
317 // We do not deal with this case here - it will be handled in
318 // HeapRegion::oops_on_card_seq_iterate_careful after it has been
319 // determined that the region containing the card has been allocated
320 // to, and it's safe to check the young type of the region.
321
322 // We do not want to defer processing of card_ptr in this case
323 // (we need to refine old_card_ptr and card_ptr)
324 *defer = false;
325 return old_card_ptr;
326 }
327 // Someone else beat us - try again.
328 }
329 }
330
331 jbyte* ConcurrentG1Refine::cache_insert(jbyte* card_ptr, bool* defer) {
332 int count;
333 jbyte* cached_ptr = add_card_count(card_ptr, &count, defer);
334 assert(cached_ptr != NULL, "bad cached card ptr");
335
336 // We've just inserted a card pointer into the card count cache
337 // and got back the card that we just inserted or (evicted) the
338 // previous contents of that count slot.
339
340 // The card we got back could be in a young region. When the
341 // returned card (if evicted) was originally inserted, we had
342 // determined that its containing region was not young. However
343 // it is possible for the region to be freed during a cleanup
344 // pause, then reallocated and tagged as young which will result
345 // in the returned card residing in a young region.
346 //
347 // We do not deal with this case here - the change from non-young
348 // to young could be observed at any time - it will be handled in
349 // HeapRegion::oops_on_card_seq_iterate_careful after it has been
350 // determined that the region containing the card has been allocated
351 // to.
352
353 // The card pointer we obtained from card count cache is not hot
354 // so do not store it in the cache; return it for immediate
355 // refining.
356 if (count < G1ConcRSHotCardLimit) {
357 return cached_ptr;
358 }
359
360 // Otherwise, the pointer we got from the _card_counts cache is hot.
361 jbyte* res = NULL;
362 MutexLockerEx x(HotCardCache_lock, Mutex::_no_safepoint_check_flag);
363 if (_n_hot == _hot_cache_size) {
364 res = _hot_cache[_hot_cache_idx];
365 _n_hot--;
366 }
367 // Now _n_hot < _hot_cache_size, and we can insert at _hot_cache_idx.
368 _hot_cache[_hot_cache_idx] = cached_ptr;
369 _hot_cache_idx++;
370 if (_hot_cache_idx == _hot_cache_size) _hot_cache_idx = 0;
371 _n_hot++;
372
373 // The card obtained from the hot card cache could be in a young
374 // region. See above on how this can happen.
375
376 return res;
377 }
378
379 void ConcurrentG1Refine::clean_up_cache(int worker_i,
380 G1RemSet* g1rs,
381 DirtyCardQueue* into_cset_dcq) {
382 assert(!use_cache(), "cache should be disabled");
383 int start_idx;
384
385 while ((start_idx = _hot_cache_par_claimed_idx) < _n_hot) { // read once
386 int end_idx = start_idx + _hot_cache_par_chunk_size;
387
388 if (start_idx ==
389 Atomic::cmpxchg(end_idx, &_hot_cache_par_claimed_idx, start_idx)) {
390 // The current worker has successfully claimed the chunk [start_idx..end_idx)
391 end_idx = MIN2(end_idx, _n_hot);
392 for (int i = start_idx; i < end_idx; i++) {
393 jbyte* entry = _hot_cache[i];
394 if (entry != NULL) {
395 if (g1rs->concurrentRefineOneCard(entry, worker_i, true)) {
396 // 'entry' contains references that point into the current
397 // collection set. We need to record 'entry' in the DCQS
398 // that's used for that purpose.
399 //
400 // The only time we care about recording cards that contain
401 // references that point into the collection set is during
402 // RSet updating while within an evacuation pause.
403 // In this case worker_i should be the id of a GC worker thread
404 assert(SafepointSynchronize::is_at_safepoint(), "not during an evacuation pause");
405 assert(worker_i < (int) (ParallelGCThreads == 0 ? 1 : ParallelGCThreads), "incorrect worker id");
406 into_cset_dcq->enqueue(entry);
407 }
408 }
409 }
410 }
411 }
412 }
413
414 // The arrays used to hold the card counts and the epochs must have
415 // a 1:1 correspondence. Hence they are allocated and freed together
416 // Returns true if the allocations of both the counts and epochs
417 // were successful; false otherwise.
418 bool ConcurrentG1Refine::allocate_card_count_cache(size_t n,
419 CardCountCacheEntry** counts,
420 CardEpochCacheEntry** epochs) {
421 // We call the allocation/free routines directly for the counts
422 // and epochs arrays. The NEW_C_HEAP_ARRAY/FREE_C_HEAP_ARRAY
423 // macros call AllocateHeap and FreeHeap respectively.
424 // AllocateHeap will call vm_exit_out_of_memory in the event
425 // of an allocation failure and abort the JVM. With the
426 // _counts/epochs arrays we only need to abort the JVM if the
427 // initial allocation of these arrays fails.
428 //
429 // Additionally AllocateHeap/FreeHeap do some tracing of
430 // allocate/free calls so calling one without calling the
431 // other can cause inconsistencies in the tracing. So we
432 // call neither.
433
434 assert(*counts == NULL, "out param");
435 assert(*epochs == NULL, "out param");
436
437 size_t counts_size = n * sizeof(CardCountCacheEntry);
438 size_t epochs_size = n * sizeof(CardEpochCacheEntry);
439
440 *counts = (CardCountCacheEntry*) os::malloc(counts_size, mtGC);
441 if (*counts == NULL) {
442 // allocation was unsuccessful
443 return false;
444 }
445
446 *epochs = (CardEpochCacheEntry*) os::malloc(epochs_size, mtGC);
447 if (*epochs == NULL) {
448 // allocation was unsuccessful - free counts array
449 assert(*counts != NULL, "must be");
450 os::free(*counts, mtGC);
451 *counts = NULL;
452 return false;
453 }
454
455 // We successfully allocated both counts and epochs
456 return true;
457 }
458
459 // Returns true if the card counts/epochs cache was
460 // successfully expanded; false otherwise.
461 bool ConcurrentG1Refine::expand_card_count_cache(int cache_size_idx) {
462 // Can we expand the card count and epoch tables?
463 if (_n_card_counts < _max_n_card_counts) {
464 assert(cache_size_idx >= 0 && cache_size_idx < MAX_CC_CACHE_INDEX, "oob");
465
466 size_t cache_size = _cc_cache_sizes[cache_size_idx];
467 // Make sure we don't go bigger than we will ever need
468 cache_size = MIN2(cache_size, _max_n_card_counts);
469
470 // Should we expand the card count and card epoch tables?
471 if (cache_size > _n_card_counts) {
472 // We have been asked to allocate new, larger, arrays for
473 // the card counts and the epochs. Attempt the allocation
474 // of both before we free the existing arrays in case
475 // the allocation is unsuccessful...
476 CardCountCacheEntry* counts = NULL;
477 CardEpochCacheEntry* epochs = NULL;
478
479 if (allocate_card_count_cache(cache_size, &counts, &epochs)) {
480 // Allocation was successful.
481 // We can just free the old arrays; we're
482 // not interested in preserving the contents
483 if (_card_counts != NULL) os::free(_card_counts, mtGC);
484 if (_card_epochs != NULL) os::free(_card_epochs, mtGC);
485
486 // Cache the size of the arrays and the index that got us there.
487 _n_card_counts = cache_size;
488 _cache_size_index = cache_size_idx;
489
490 _card_counts = counts;
491 _card_epochs = epochs;
492
493 // We successfully allocated/expanded the caches.
494 return true;
495 }
496 }
497 }
498
499 // We did not successfully expand the caches.
500 return false;
501 }
502
503 void ConcurrentG1Refine::clear_and_record_card_counts() {
504 if (G1ConcRSLogCacheSize == 0) {
505 return;
506 }
507
508 double start = os::elapsedTime();
509
510 if (_expand_card_counts) {
511 int new_idx = _cache_size_index + 1;
512
513 if (expand_card_count_cache(new_idx)) {
514 // Allocation was successful and _n_card_counts has
515 // been updated to the new size. We only need to clear
516 // the epochs so we don't read a bogus epoch value
517 // when inserting a card into the hot card cache.
518 Copy::fill_to_bytes(&_card_epochs[0], _n_card_counts * sizeof(CardEpochCacheEntry));
519 }
520 _expand_card_counts = false;
521 }
522
523 int this_epoch = (int) _n_periods;
524 assert((this_epoch+1) <= max_jint, "to many periods");
525 // Update epoch
526 _n_periods++;
527 double cc_clear_time_ms = (os::elapsedTime() - start) * 1000;
528 _g1h->g1_policy()->phase_times()->record_cc_clear_time_ms(cc_clear_time_ms);
529 } 121 }
530 122
531 void ConcurrentG1Refine::print_worker_threads_on(outputStream* st) const { 123 void ConcurrentG1Refine::print_worker_threads_on(outputStream* st) const {
532 for (int i = 0; i < _n_threads; ++i) { 124 for (int i = 0; i < _n_threads; ++i) {
533 _threads[i]->print_on(st); 125 _threads[i]->print_on(st);

mercurial