src/share/vm/runtime/sharedRuntime.cpp

Fri, 12 Dec 2008 15:37:46 -0800

author
jmasa
date
Fri, 12 Dec 2008 15:37:46 -0800
changeset 919
ffe19141e312
parent 900
dc16daa0329d
child 943
6d8fc951eb25
child 1045
70998f2e05ef
permissions
-rw-r--r--

Merge

duke@435 1 /*
xdono@631 2 * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_sharedRuntime.cpp.incl"
duke@435 27 #include <math.h>
duke@435 28
duke@435 29 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
duke@435 30 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
duke@435 31 char*, int, char*, int, char*, int);
duke@435 32 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
duke@435 33 char*, int, char*, int, char*, int);
duke@435 34
duke@435 35 // Implementation of SharedRuntime
duke@435 36
duke@435 37 #ifndef PRODUCT
duke@435 38 // For statistics
duke@435 39 int SharedRuntime::_ic_miss_ctr = 0;
duke@435 40 int SharedRuntime::_wrong_method_ctr = 0;
duke@435 41 int SharedRuntime::_resolve_static_ctr = 0;
duke@435 42 int SharedRuntime::_resolve_virtual_ctr = 0;
duke@435 43 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
duke@435 44 int SharedRuntime::_implicit_null_throws = 0;
duke@435 45 int SharedRuntime::_implicit_div0_throws = 0;
duke@435 46 int SharedRuntime::_throw_null_ctr = 0;
duke@435 47
duke@435 48 int SharedRuntime::_nof_normal_calls = 0;
duke@435 49 int SharedRuntime::_nof_optimized_calls = 0;
duke@435 50 int SharedRuntime::_nof_inlined_calls = 0;
duke@435 51 int SharedRuntime::_nof_megamorphic_calls = 0;
duke@435 52 int SharedRuntime::_nof_static_calls = 0;
duke@435 53 int SharedRuntime::_nof_inlined_static_calls = 0;
duke@435 54 int SharedRuntime::_nof_interface_calls = 0;
duke@435 55 int SharedRuntime::_nof_optimized_interface_calls = 0;
duke@435 56 int SharedRuntime::_nof_inlined_interface_calls = 0;
duke@435 57 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
duke@435 58 int SharedRuntime::_nof_removable_exceptions = 0;
duke@435 59
duke@435 60 int SharedRuntime::_new_instance_ctr=0;
duke@435 61 int SharedRuntime::_new_array_ctr=0;
duke@435 62 int SharedRuntime::_multi1_ctr=0;
duke@435 63 int SharedRuntime::_multi2_ctr=0;
duke@435 64 int SharedRuntime::_multi3_ctr=0;
duke@435 65 int SharedRuntime::_multi4_ctr=0;
duke@435 66 int SharedRuntime::_multi5_ctr=0;
duke@435 67 int SharedRuntime::_mon_enter_stub_ctr=0;
duke@435 68 int SharedRuntime::_mon_exit_stub_ctr=0;
duke@435 69 int SharedRuntime::_mon_enter_ctr=0;
duke@435 70 int SharedRuntime::_mon_exit_ctr=0;
duke@435 71 int SharedRuntime::_partial_subtype_ctr=0;
duke@435 72 int SharedRuntime::_jbyte_array_copy_ctr=0;
duke@435 73 int SharedRuntime::_jshort_array_copy_ctr=0;
duke@435 74 int SharedRuntime::_jint_array_copy_ctr=0;
duke@435 75 int SharedRuntime::_jlong_array_copy_ctr=0;
duke@435 76 int SharedRuntime::_oop_array_copy_ctr=0;
duke@435 77 int SharedRuntime::_checkcast_array_copy_ctr=0;
duke@435 78 int SharedRuntime::_unsafe_array_copy_ctr=0;
duke@435 79 int SharedRuntime::_generic_array_copy_ctr=0;
duke@435 80 int SharedRuntime::_slow_array_copy_ctr=0;
duke@435 81 int SharedRuntime::_find_handler_ctr=0;
duke@435 82 int SharedRuntime::_rethrow_ctr=0;
duke@435 83
duke@435 84 int SharedRuntime::_ICmiss_index = 0;
duke@435 85 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
duke@435 86 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
duke@435 87
duke@435 88 void SharedRuntime::trace_ic_miss(address at) {
duke@435 89 for (int i = 0; i < _ICmiss_index; i++) {
duke@435 90 if (_ICmiss_at[i] == at) {
duke@435 91 _ICmiss_count[i]++;
duke@435 92 return;
duke@435 93 }
duke@435 94 }
duke@435 95 int index = _ICmiss_index++;
duke@435 96 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
duke@435 97 _ICmiss_at[index] = at;
duke@435 98 _ICmiss_count[index] = 1;
duke@435 99 }
duke@435 100
duke@435 101 void SharedRuntime::print_ic_miss_histogram() {
duke@435 102 if (ICMissHistogram) {
duke@435 103 tty->print_cr ("IC Miss Histogram:");
duke@435 104 int tot_misses = 0;
duke@435 105 for (int i = 0; i < _ICmiss_index; i++) {
duke@435 106 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
duke@435 107 tot_misses += _ICmiss_count[i];
duke@435 108 }
duke@435 109 tty->print_cr ("Total IC misses: %7d", tot_misses);
duke@435 110 }
duke@435 111 }
duke@435 112 #endif // PRODUCT
duke@435 113
ysr@777 114 #ifndef SERIALGC
ysr@777 115
ysr@777 116 // G1 write-barrier pre: executed before a pointer store.
ysr@777 117 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
ysr@777 118 if (orig == NULL) {
ysr@777 119 assert(false, "should be optimized out");
ysr@777 120 return;
ysr@777 121 }
ysr@777 122 // store the original value that was in the field reference
ysr@777 123 thread->satb_mark_queue().enqueue(orig);
ysr@777 124 JRT_END
ysr@777 125
ysr@777 126 // G1 write-barrier post: executed after a pointer store.
ysr@777 127 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
ysr@777 128 thread->dirty_card_queue().enqueue(card_addr);
ysr@777 129 JRT_END
ysr@777 130
ysr@777 131 #endif // !SERIALGC
ysr@777 132
duke@435 133
duke@435 134 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
duke@435 135 return x * y;
duke@435 136 JRT_END
duke@435 137
duke@435 138
duke@435 139 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
duke@435 140 if (x == min_jlong && y == CONST64(-1)) {
duke@435 141 return x;
duke@435 142 } else {
duke@435 143 return x / y;
duke@435 144 }
duke@435 145 JRT_END
duke@435 146
duke@435 147
duke@435 148 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
duke@435 149 if (x == min_jlong && y == CONST64(-1)) {
duke@435 150 return 0;
duke@435 151 } else {
duke@435 152 return x % y;
duke@435 153 }
duke@435 154 JRT_END
duke@435 155
duke@435 156
duke@435 157 const juint float_sign_mask = 0x7FFFFFFF;
duke@435 158 const juint float_infinity = 0x7F800000;
duke@435 159 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
duke@435 160 const julong double_infinity = CONST64(0x7FF0000000000000);
duke@435 161
duke@435 162 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
duke@435 163 #ifdef _WIN64
duke@435 164 // 64-bit Windows on amd64 returns the wrong values for
duke@435 165 // infinity operands.
duke@435 166 union { jfloat f; juint i; } xbits, ybits;
duke@435 167 xbits.f = x;
duke@435 168 ybits.f = y;
duke@435 169 // x Mod Infinity == x unless x is infinity
duke@435 170 if ( ((xbits.i & float_sign_mask) != float_infinity) &&
duke@435 171 ((ybits.i & float_sign_mask) == float_infinity) ) {
duke@435 172 return x;
duke@435 173 }
duke@435 174 #endif
duke@435 175 return ((jfloat)fmod((double)x,(double)y));
duke@435 176 JRT_END
duke@435 177
duke@435 178
duke@435 179 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
duke@435 180 #ifdef _WIN64
duke@435 181 union { jdouble d; julong l; } xbits, ybits;
duke@435 182 xbits.d = x;
duke@435 183 ybits.d = y;
duke@435 184 // x Mod Infinity == x unless x is infinity
duke@435 185 if ( ((xbits.l & double_sign_mask) != double_infinity) &&
duke@435 186 ((ybits.l & double_sign_mask) == double_infinity) ) {
duke@435 187 return x;
duke@435 188 }
duke@435 189 #endif
duke@435 190 return ((jdouble)fmod((double)x,(double)y));
duke@435 191 JRT_END
duke@435 192
duke@435 193
duke@435 194 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x))
duke@435 195 if (g_isnan(x)) {return 0;}
duke@435 196 jlong lltmp = (jlong)x;
duke@435 197 jint ltmp = (jint)lltmp;
duke@435 198 if (ltmp == lltmp) {
duke@435 199 return ltmp;
duke@435 200 } else {
duke@435 201 if (x < 0) {
duke@435 202 return min_jint;
duke@435 203 } else {
duke@435 204 return max_jint;
duke@435 205 }
duke@435 206 }
duke@435 207 JRT_END
duke@435 208
duke@435 209
duke@435 210 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x))
duke@435 211 if (g_isnan(x)) {return 0;}
duke@435 212 jlong lltmp = (jlong)x;
duke@435 213 if (lltmp != min_jlong) {
duke@435 214 return lltmp;
duke@435 215 } else {
duke@435 216 if (x < 0) {
duke@435 217 return min_jlong;
duke@435 218 } else {
duke@435 219 return max_jlong;
duke@435 220 }
duke@435 221 }
duke@435 222 JRT_END
duke@435 223
duke@435 224
duke@435 225 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
duke@435 226 if (g_isnan(x)) {return 0;}
duke@435 227 jlong lltmp = (jlong)x;
duke@435 228 jint ltmp = (jint)lltmp;
duke@435 229 if (ltmp == lltmp) {
duke@435 230 return ltmp;
duke@435 231 } else {
duke@435 232 if (x < 0) {
duke@435 233 return min_jint;
duke@435 234 } else {
duke@435 235 return max_jint;
duke@435 236 }
duke@435 237 }
duke@435 238 JRT_END
duke@435 239
duke@435 240
duke@435 241 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
duke@435 242 if (g_isnan(x)) {return 0;}
duke@435 243 jlong lltmp = (jlong)x;
duke@435 244 if (lltmp != min_jlong) {
duke@435 245 return lltmp;
duke@435 246 } else {
duke@435 247 if (x < 0) {
duke@435 248 return min_jlong;
duke@435 249 } else {
duke@435 250 return max_jlong;
duke@435 251 }
duke@435 252 }
duke@435 253 JRT_END
duke@435 254
duke@435 255
duke@435 256 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
duke@435 257 return (jfloat)x;
duke@435 258 JRT_END
duke@435 259
duke@435 260
duke@435 261 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
duke@435 262 return (jfloat)x;
duke@435 263 JRT_END
duke@435 264
duke@435 265
duke@435 266 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
duke@435 267 return (jdouble)x;
duke@435 268 JRT_END
duke@435 269
duke@435 270 // Exception handling accross interpreter/compiler boundaries
duke@435 271 //
duke@435 272 // exception_handler_for_return_address(...) returns the continuation address.
duke@435 273 // The continuation address is the entry point of the exception handler of the
duke@435 274 // previous frame depending on the return address.
duke@435 275
duke@435 276 address SharedRuntime::raw_exception_handler_for_return_address(address return_address) {
duke@435 277 assert(frame::verify_return_pc(return_address), "must be a return pc");
duke@435 278
duke@435 279 // the fastest case first
duke@435 280 CodeBlob* blob = CodeCache::find_blob(return_address);
duke@435 281 if (blob != NULL && blob->is_nmethod()) {
duke@435 282 nmethod* code = (nmethod*)blob;
duke@435 283 assert(code != NULL, "nmethod must be present");
duke@435 284 // native nmethods don't have exception handlers
duke@435 285 assert(!code->is_native_method(), "no exception handler");
duke@435 286 assert(code->header_begin() != code->exception_begin(), "no exception handler");
duke@435 287 if (code->is_deopt_pc(return_address)) {
duke@435 288 return SharedRuntime::deopt_blob()->unpack_with_exception();
duke@435 289 } else {
duke@435 290 return code->exception_begin();
duke@435 291 }
duke@435 292 }
duke@435 293
duke@435 294 // Entry code
duke@435 295 if (StubRoutines::returns_to_call_stub(return_address)) {
duke@435 296 return StubRoutines::catch_exception_entry();
duke@435 297 }
duke@435 298 // Interpreted code
duke@435 299 if (Interpreter::contains(return_address)) {
duke@435 300 return Interpreter::rethrow_exception_entry();
duke@435 301 }
duke@435 302
duke@435 303 // Compiled code
duke@435 304 if (CodeCache::contains(return_address)) {
duke@435 305 CodeBlob* blob = CodeCache::find_blob(return_address);
duke@435 306 if (blob->is_nmethod()) {
duke@435 307 nmethod* code = (nmethod*)blob;
duke@435 308 assert(code != NULL, "nmethod must be present");
duke@435 309 assert(code->header_begin() != code->exception_begin(), "no exception handler");
duke@435 310 return code->exception_begin();
duke@435 311 }
duke@435 312 if (blob->is_runtime_stub()) {
duke@435 313 ShouldNotReachHere(); // callers are responsible for skipping runtime stub frames
duke@435 314 }
duke@435 315 }
duke@435 316 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
duke@435 317 #ifndef PRODUCT
duke@435 318 { ResourceMark rm;
duke@435 319 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
duke@435 320 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
duke@435 321 tty->print_cr("b) other problem");
duke@435 322 }
duke@435 323 #endif // PRODUCT
duke@435 324 ShouldNotReachHere();
duke@435 325 return NULL;
duke@435 326 }
duke@435 327
duke@435 328
duke@435 329 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(address return_address))
duke@435 330 return raw_exception_handler_for_return_address(return_address);
duke@435 331 JRT_END
duke@435 332
duke@435 333 address SharedRuntime::get_poll_stub(address pc) {
duke@435 334 address stub;
duke@435 335 // Look up the code blob
duke@435 336 CodeBlob *cb = CodeCache::find_blob(pc);
duke@435 337
duke@435 338 // Should be an nmethod
duke@435 339 assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
duke@435 340
duke@435 341 // Look up the relocation information
duke@435 342 assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
duke@435 343 "safepoint polling: type must be poll" );
duke@435 344
duke@435 345 assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
duke@435 346 "Only polling locations are used for safepoint");
duke@435 347
duke@435 348 bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
duke@435 349 if (at_poll_return) {
duke@435 350 assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
duke@435 351 "polling page return stub not created yet");
duke@435 352 stub = SharedRuntime::polling_page_return_handler_blob()->instructions_begin();
duke@435 353 } else {
duke@435 354 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
duke@435 355 "polling page safepoint stub not created yet");
duke@435 356 stub = SharedRuntime::polling_page_safepoint_handler_blob()->instructions_begin();
duke@435 357 }
duke@435 358 #ifndef PRODUCT
duke@435 359 if( TraceSafepoint ) {
duke@435 360 char buf[256];
duke@435 361 jio_snprintf(buf, sizeof(buf),
duke@435 362 "... found polling page %s exception at pc = "
duke@435 363 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
duke@435 364 at_poll_return ? "return" : "loop",
duke@435 365 (intptr_t)pc, (intptr_t)stub);
duke@435 366 tty->print_raw_cr(buf);
duke@435 367 }
duke@435 368 #endif // PRODUCT
duke@435 369 return stub;
duke@435 370 }
duke@435 371
duke@435 372
duke@435 373 oop SharedRuntime::retrieve_receiver( symbolHandle sig, frame caller ) {
duke@435 374 assert(caller.is_interpreted_frame(), "");
duke@435 375 int args_size = ArgumentSizeComputer(sig).size() + 1;
duke@435 376 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
duke@435 377 oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
duke@435 378 assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
duke@435 379 return result;
duke@435 380 }
duke@435 381
duke@435 382
duke@435 383 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
duke@435 384 if (JvmtiExport::can_post_exceptions()) {
duke@435 385 vframeStream vfst(thread, true);
duke@435 386 methodHandle method = methodHandle(thread, vfst.method());
duke@435 387 address bcp = method()->bcp_from(vfst.bci());
duke@435 388 JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
duke@435 389 }
duke@435 390 Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
duke@435 391 }
duke@435 392
duke@435 393 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, symbolOop name, const char *message) {
duke@435 394 Handle h_exception = Exceptions::new_exception(thread, name, message);
duke@435 395 throw_and_post_jvmti_exception(thread, h_exception);
duke@435 396 }
duke@435 397
duke@435 398 // ret_pc points into caller; we are returning caller's exception handler
duke@435 399 // for given exception
duke@435 400 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
duke@435 401 bool force_unwind, bool top_frame_only) {
duke@435 402 assert(nm != NULL, "must exist");
duke@435 403 ResourceMark rm;
duke@435 404
duke@435 405 ScopeDesc* sd = nm->scope_desc_at(ret_pc);
duke@435 406 // determine handler bci, if any
duke@435 407 EXCEPTION_MARK;
duke@435 408
duke@435 409 int handler_bci = -1;
duke@435 410 int scope_depth = 0;
duke@435 411 if (!force_unwind) {
duke@435 412 int bci = sd->bci();
duke@435 413 do {
duke@435 414 bool skip_scope_increment = false;
duke@435 415 // exception handler lookup
duke@435 416 KlassHandle ek (THREAD, exception->klass());
duke@435 417 handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
duke@435 418 if (HAS_PENDING_EXCEPTION) {
duke@435 419 // We threw an exception while trying to find the exception handler.
duke@435 420 // Transfer the new exception to the exception handle which will
duke@435 421 // be set into thread local storage, and do another lookup for an
duke@435 422 // exception handler for this exception, this time starting at the
duke@435 423 // BCI of the exception handler which caused the exception to be
duke@435 424 // thrown (bugs 4307310 and 4546590). Set "exception" reference
duke@435 425 // argument to ensure that the correct exception is thrown (4870175).
duke@435 426 exception = Handle(THREAD, PENDING_EXCEPTION);
duke@435 427 CLEAR_PENDING_EXCEPTION;
duke@435 428 if (handler_bci >= 0) {
duke@435 429 bci = handler_bci;
duke@435 430 handler_bci = -1;
duke@435 431 skip_scope_increment = true;
duke@435 432 }
duke@435 433 }
duke@435 434 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
duke@435 435 sd = sd->sender();
duke@435 436 if (sd != NULL) {
duke@435 437 bci = sd->bci();
duke@435 438 }
duke@435 439 ++scope_depth;
duke@435 440 }
duke@435 441 } while (!top_frame_only && handler_bci < 0 && sd != NULL);
duke@435 442 }
duke@435 443
duke@435 444 // found handling method => lookup exception handler
duke@435 445 int catch_pco = ret_pc - nm->instructions_begin();
duke@435 446
duke@435 447 ExceptionHandlerTable table(nm);
duke@435 448 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
duke@435 449 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
duke@435 450 // Allow abbreviated catch tables. The idea is to allow a method
duke@435 451 // to materialize its exceptions without committing to the exact
duke@435 452 // routing of exceptions. In particular this is needed for adding
duke@435 453 // a synthethic handler to unlock monitors when inlining
duke@435 454 // synchonized methods since the unlock path isn't represented in
duke@435 455 // the bytecodes.
duke@435 456 t = table.entry_for(catch_pco, -1, 0);
duke@435 457 }
duke@435 458
duke@435 459 #ifdef COMPILER1
duke@435 460 if (nm->is_compiled_by_c1() && t == NULL && handler_bci == -1) {
duke@435 461 // Exception is not handled by this frame so unwind. Note that
duke@435 462 // this is not the same as how C2 does this. C2 emits a table
duke@435 463 // entry that dispatches to the unwind code in the nmethod.
duke@435 464 return NULL;
duke@435 465 }
duke@435 466 #endif /* COMPILER1 */
duke@435 467
duke@435 468
duke@435 469 if (t == NULL) {
duke@435 470 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
duke@435 471 tty->print_cr(" Exception:");
duke@435 472 exception->print();
duke@435 473 tty->cr();
duke@435 474 tty->print_cr(" Compiled exception table :");
duke@435 475 table.print();
duke@435 476 nm->print_code();
duke@435 477 guarantee(false, "missing exception handler");
duke@435 478 return NULL;
duke@435 479 }
duke@435 480
duke@435 481 return nm->instructions_begin() + t->pco();
duke@435 482 }
duke@435 483
duke@435 484 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
duke@435 485 // These errors occur only at call sites
duke@435 486 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
duke@435 487 JRT_END
duke@435 488
dcubed@451 489 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
dcubed@451 490 // These errors occur only at call sites
dcubed@451 491 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
dcubed@451 492 JRT_END
dcubed@451 493
duke@435 494 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
duke@435 495 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
duke@435 496 JRT_END
duke@435 497
duke@435 498 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
duke@435 499 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 500 JRT_END
duke@435 501
duke@435 502 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
duke@435 503 // This entry point is effectively only used for NullPointerExceptions which occur at inline
duke@435 504 // cache sites (when the callee activation is not yet set up) so we are at a call site
duke@435 505 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 506 JRT_END
duke@435 507
duke@435 508 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
duke@435 509 // We avoid using the normal exception construction in this case because
duke@435 510 // it performs an upcall to Java, and we're already out of stack space.
duke@435 511 klassOop k = SystemDictionary::StackOverflowError_klass();
duke@435 512 oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
duke@435 513 Handle exception (thread, exception_oop);
duke@435 514 if (StackTraceInThrowable) {
duke@435 515 java_lang_Throwable::fill_in_stack_trace(exception);
duke@435 516 }
duke@435 517 throw_and_post_jvmti_exception(thread, exception);
duke@435 518 JRT_END
duke@435 519
duke@435 520 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
duke@435 521 address pc,
duke@435 522 SharedRuntime::ImplicitExceptionKind exception_kind)
duke@435 523 {
duke@435 524 address target_pc = NULL;
duke@435 525
duke@435 526 if (Interpreter::contains(pc)) {
duke@435 527 #ifdef CC_INTERP
duke@435 528 // C++ interpreter doesn't throw implicit exceptions
duke@435 529 ShouldNotReachHere();
duke@435 530 #else
duke@435 531 switch (exception_kind) {
duke@435 532 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry();
duke@435 533 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
duke@435 534 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry();
duke@435 535 default: ShouldNotReachHere();
duke@435 536 }
duke@435 537 #endif // !CC_INTERP
duke@435 538 } else {
duke@435 539 switch (exception_kind) {
duke@435 540 case STACK_OVERFLOW: {
duke@435 541 // Stack overflow only occurs upon frame setup; the callee is
duke@435 542 // going to be unwound. Dispatch to a shared runtime stub
duke@435 543 // which will cause the StackOverflowError to be fabricated
duke@435 544 // and processed.
duke@435 545 // For stack overflow in deoptimization blob, cleanup thread.
duke@435 546 if (thread->deopt_mark() != NULL) {
duke@435 547 Deoptimization::cleanup_deopt_info(thread, NULL);
duke@435 548 }
duke@435 549 return StubRoutines::throw_StackOverflowError_entry();
duke@435 550 }
duke@435 551
duke@435 552 case IMPLICIT_NULL: {
duke@435 553 if (VtableStubs::contains(pc)) {
duke@435 554 // We haven't yet entered the callee frame. Fabricate an
duke@435 555 // exception and begin dispatching it in the caller. Since
duke@435 556 // the caller was at a call site, it's safe to destroy all
duke@435 557 // caller-saved registers, as these entry points do.
duke@435 558 VtableStub* vt_stub = VtableStubs::stub_containing(pc);
poonam@900 559
poonam@900 560 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
poonam@900 561 if (vt_stub == NULL) return NULL;
poonam@900 562
duke@435 563 if (vt_stub->is_abstract_method_error(pc)) {
duke@435 564 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
duke@435 565 return StubRoutines::throw_AbstractMethodError_entry();
duke@435 566 } else {
duke@435 567 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 568 }
duke@435 569 } else {
duke@435 570 CodeBlob* cb = CodeCache::find_blob(pc);
poonam@900 571
poonam@900 572 // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
poonam@900 573 if (cb == NULL) return NULL;
duke@435 574
duke@435 575 // Exception happened in CodeCache. Must be either:
duke@435 576 // 1. Inline-cache check in C2I handler blob,
duke@435 577 // 2. Inline-cache check in nmethod, or
duke@435 578 // 3. Implict null exception in nmethod
duke@435 579
duke@435 580 if (!cb->is_nmethod()) {
duke@435 581 guarantee(cb->is_adapter_blob(),
poonam@900 582 "exception happened outside interpreter, nmethods and vtable stubs (1)");
duke@435 583 // There is no handler here, so we will simply unwind.
duke@435 584 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 585 }
duke@435 586
duke@435 587 // Otherwise, it's an nmethod. Consult its exception handlers.
duke@435 588 nmethod* nm = (nmethod*)cb;
duke@435 589 if (nm->inlinecache_check_contains(pc)) {
duke@435 590 // exception happened inside inline-cache check code
duke@435 591 // => the nmethod is not yet active (i.e., the frame
duke@435 592 // is not set up yet) => use return address pushed by
duke@435 593 // caller => don't push another return address
duke@435 594 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 595 }
duke@435 596
duke@435 597 #ifndef PRODUCT
duke@435 598 _implicit_null_throws++;
duke@435 599 #endif
duke@435 600 target_pc = nm->continuation_for_implicit_exception(pc);
duke@435 601 guarantee(target_pc != 0, "must have a continuation point");
duke@435 602 }
duke@435 603
duke@435 604 break; // fall through
duke@435 605 }
duke@435 606
duke@435 607
duke@435 608 case IMPLICIT_DIVIDE_BY_ZERO: {
duke@435 609 nmethod* nm = CodeCache::find_nmethod(pc);
duke@435 610 guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
duke@435 611 #ifndef PRODUCT
duke@435 612 _implicit_div0_throws++;
duke@435 613 #endif
duke@435 614 target_pc = nm->continuation_for_implicit_exception(pc);
duke@435 615 guarantee(target_pc != 0, "must have a continuation point");
duke@435 616 break; // fall through
duke@435 617 }
duke@435 618
duke@435 619 default: ShouldNotReachHere();
duke@435 620 }
duke@435 621
duke@435 622 guarantee(target_pc != NULL, "must have computed destination PC for implicit exception");
duke@435 623 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
duke@435 624
duke@435 625 // for AbortVMOnException flag
duke@435 626 NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
duke@435 627 if (exception_kind == IMPLICIT_NULL) {
duke@435 628 Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@435 629 } else {
duke@435 630 Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@435 631 }
duke@435 632 return target_pc;
duke@435 633 }
duke@435 634
duke@435 635 ShouldNotReachHere();
duke@435 636 return NULL;
duke@435 637 }
duke@435 638
duke@435 639
duke@435 640 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
duke@435 641 {
duke@435 642 THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
duke@435 643 }
duke@435 644 JNI_END
duke@435 645
duke@435 646
duke@435 647 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
duke@435 648 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
duke@435 649 }
duke@435 650
duke@435 651
duke@435 652 #ifndef PRODUCT
duke@435 653 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
duke@435 654 const frame f = thread->last_frame();
duke@435 655 assert(f.is_interpreted_frame(), "must be an interpreted frame");
duke@435 656 #ifndef PRODUCT
duke@435 657 methodHandle mh(THREAD, f.interpreter_frame_method());
duke@435 658 BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
duke@435 659 #endif // !PRODUCT
duke@435 660 return preserve_this_value;
duke@435 661 JRT_END
duke@435 662 #endif // !PRODUCT
duke@435 663
duke@435 664
duke@435 665 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
duke@435 666 os::yield_all(attempts);
duke@435 667 JRT_END
duke@435 668
duke@435 669
duke@435 670 // ---------------------------------------------------------------------------------------------------------
duke@435 671 // Non-product code
duke@435 672 #ifndef PRODUCT
duke@435 673
duke@435 674 void SharedRuntime::verify_caller_frame(frame caller_frame, methodHandle callee_method) {
duke@435 675 ResourceMark rm;
duke@435 676 assert (caller_frame.is_interpreted_frame(), "sanity check");
duke@435 677 assert (callee_method->has_compiled_code(), "callee must be compiled");
duke@435 678 methodHandle caller_method (Thread::current(), caller_frame.interpreter_frame_method());
duke@435 679 jint bci = caller_frame.interpreter_frame_bci();
duke@435 680 methodHandle method = find_callee_method_inside_interpreter(caller_frame, caller_method, bci);
duke@435 681 assert (callee_method == method, "incorrect method");
duke@435 682 }
duke@435 683
duke@435 684 methodHandle SharedRuntime::find_callee_method_inside_interpreter(frame caller_frame, methodHandle caller_method, int bci) {
duke@435 685 EXCEPTION_MARK;
duke@435 686 Bytecode_invoke* bytecode = Bytecode_invoke_at(caller_method, bci);
duke@435 687 methodHandle staticCallee = bytecode->static_target(CATCH); // Non-product code
duke@435 688
duke@435 689 bytecode = Bytecode_invoke_at(caller_method, bci);
duke@435 690 int bytecode_index = bytecode->index();
duke@435 691 Bytecodes::Code bc = bytecode->adjusted_invoke_code();
duke@435 692
duke@435 693 Handle receiver;
duke@435 694 if (bc == Bytecodes::_invokeinterface ||
duke@435 695 bc == Bytecodes::_invokevirtual ||
duke@435 696 bc == Bytecodes::_invokespecial) {
duke@435 697 symbolHandle signature (THREAD, staticCallee->signature());
duke@435 698 receiver = Handle(THREAD, retrieve_receiver(signature, caller_frame));
duke@435 699 } else {
duke@435 700 receiver = Handle();
duke@435 701 }
duke@435 702 CallInfo result;
duke@435 703 constantPoolHandle constants (THREAD, caller_method->constants());
duke@435 704 LinkResolver::resolve_invoke(result, receiver, constants, bytecode_index, bc, CATCH); // Non-product code
duke@435 705 methodHandle calleeMethod = result.selected_method();
duke@435 706 return calleeMethod;
duke@435 707 }
duke@435 708
duke@435 709 #endif // PRODUCT
duke@435 710
duke@435 711
duke@435 712 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
duke@435 713 assert(obj->is_oop(), "must be a valid oop");
duke@435 714 assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
duke@435 715 instanceKlass::register_finalizer(instanceOop(obj), CHECK);
duke@435 716 JRT_END
duke@435 717
duke@435 718
duke@435 719 jlong SharedRuntime::get_java_tid(Thread* thread) {
duke@435 720 if (thread != NULL) {
duke@435 721 if (thread->is_Java_thread()) {
duke@435 722 oop obj = ((JavaThread*)thread)->threadObj();
duke@435 723 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
duke@435 724 }
duke@435 725 }
duke@435 726 return 0;
duke@435 727 }
duke@435 728
duke@435 729 /**
duke@435 730 * This function ought to be a void function, but cannot be because
duke@435 731 * it gets turned into a tail-call on sparc, which runs into dtrace bug
duke@435 732 * 6254741. Once that is fixed we can remove the dummy return value.
duke@435 733 */
duke@435 734 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
duke@435 735 return dtrace_object_alloc_base(Thread::current(), o);
duke@435 736 }
duke@435 737
duke@435 738 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
duke@435 739 assert(DTraceAllocProbes, "wrong call");
duke@435 740 Klass* klass = o->blueprint();
duke@435 741 int size = o->size();
duke@435 742 symbolOop name = klass->name();
duke@435 743 HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
duke@435 744 name->bytes(), name->utf8_length(), size * HeapWordSize);
duke@435 745 return 0;
duke@435 746 }
duke@435 747
duke@435 748 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
duke@435 749 JavaThread* thread, methodOopDesc* method))
duke@435 750 assert(DTraceMethodProbes, "wrong call");
duke@435 751 symbolOop kname = method->klass_name();
duke@435 752 symbolOop name = method->name();
duke@435 753 symbolOop sig = method->signature();
duke@435 754 HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
duke@435 755 kname->bytes(), kname->utf8_length(),
duke@435 756 name->bytes(), name->utf8_length(),
duke@435 757 sig->bytes(), sig->utf8_length());
duke@435 758 return 0;
duke@435 759 JRT_END
duke@435 760
duke@435 761 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
duke@435 762 JavaThread* thread, methodOopDesc* method))
duke@435 763 assert(DTraceMethodProbes, "wrong call");
duke@435 764 symbolOop kname = method->klass_name();
duke@435 765 symbolOop name = method->name();
duke@435 766 symbolOop sig = method->signature();
duke@435 767 HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
duke@435 768 kname->bytes(), kname->utf8_length(),
duke@435 769 name->bytes(), name->utf8_length(),
duke@435 770 sig->bytes(), sig->utf8_length());
duke@435 771 return 0;
duke@435 772 JRT_END
duke@435 773
duke@435 774
duke@435 775 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
duke@435 776 // for a call current in progress, i.e., arguments has been pushed on stack
duke@435 777 // put callee has not been invoked yet. Used by: resolve virtual/static,
duke@435 778 // vtable updates, etc. Caller frame must be compiled.
duke@435 779 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
duke@435 780 ResourceMark rm(THREAD);
duke@435 781
duke@435 782 // last java frame on stack (which includes native call frames)
duke@435 783 vframeStream vfst(thread, true); // Do not skip and javaCalls
duke@435 784
duke@435 785 return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
duke@435 786 }
duke@435 787
duke@435 788
duke@435 789 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
duke@435 790 // for a call current in progress, i.e., arguments has been pushed on stack
duke@435 791 // but callee has not been invoked yet. Caller frame must be compiled.
duke@435 792 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
duke@435 793 vframeStream& vfst,
duke@435 794 Bytecodes::Code& bc,
duke@435 795 CallInfo& callinfo, TRAPS) {
duke@435 796 Handle receiver;
duke@435 797 Handle nullHandle; //create a handy null handle for exception returns
duke@435 798
duke@435 799 assert(!vfst.at_end(), "Java frame must exist");
duke@435 800
duke@435 801 // Find caller and bci from vframe
duke@435 802 methodHandle caller (THREAD, vfst.method());
duke@435 803 int bci = vfst.bci();
duke@435 804
duke@435 805 // Find bytecode
duke@435 806 Bytecode_invoke* bytecode = Bytecode_invoke_at(caller, bci);
duke@435 807 bc = bytecode->adjusted_invoke_code();
duke@435 808 int bytecode_index = bytecode->index();
duke@435 809
duke@435 810 // Find receiver for non-static call
duke@435 811 if (bc != Bytecodes::_invokestatic) {
duke@435 812 // This register map must be update since we need to find the receiver for
duke@435 813 // compiled frames. The receiver might be in a register.
duke@435 814 RegisterMap reg_map2(thread);
duke@435 815 frame stubFrame = thread->last_frame();
duke@435 816 // Caller-frame is a compiled frame
duke@435 817 frame callerFrame = stubFrame.sender(&reg_map2);
duke@435 818
duke@435 819 methodHandle callee = bytecode->static_target(CHECK_(nullHandle));
duke@435 820 if (callee.is_null()) {
duke@435 821 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
duke@435 822 }
duke@435 823 // Retrieve from a compiled argument list
duke@435 824 receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
duke@435 825
duke@435 826 if (receiver.is_null()) {
duke@435 827 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
duke@435 828 }
duke@435 829 }
duke@435 830
duke@435 831 // Resolve method. This is parameterized by bytecode.
duke@435 832 constantPoolHandle constants (THREAD, caller->constants());
duke@435 833 assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
duke@435 834 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
duke@435 835
duke@435 836 #ifdef ASSERT
duke@435 837 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
duke@435 838 if (bc != Bytecodes::_invokestatic) {
duke@435 839 assert(receiver.not_null(), "should have thrown exception");
duke@435 840 KlassHandle receiver_klass (THREAD, receiver->klass());
duke@435 841 klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
duke@435 842 // klass is already loaded
duke@435 843 KlassHandle static_receiver_klass (THREAD, rk);
duke@435 844 assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
duke@435 845 if (receiver_klass->oop_is_instance()) {
duke@435 846 if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
duke@435 847 tty->print_cr("ERROR: Klass not yet initialized!!");
duke@435 848 receiver_klass.print();
duke@435 849 }
duke@435 850 assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
duke@435 851 }
duke@435 852 }
duke@435 853 #endif
duke@435 854
duke@435 855 return receiver;
duke@435 856 }
duke@435 857
duke@435 858 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
duke@435 859 ResourceMark rm(THREAD);
duke@435 860 // We need first to check if any Java activations (compiled, interpreted)
duke@435 861 // exist on the stack since last JavaCall. If not, we need
duke@435 862 // to get the target method from the JavaCall wrapper.
duke@435 863 vframeStream vfst(thread, true); // Do not skip any javaCalls
duke@435 864 methodHandle callee_method;
duke@435 865 if (vfst.at_end()) {
duke@435 866 // No Java frames were found on stack since we did the JavaCall.
duke@435 867 // Hence the stack can only contain an entry_frame. We need to
duke@435 868 // find the target method from the stub frame.
duke@435 869 RegisterMap reg_map(thread, false);
duke@435 870 frame fr = thread->last_frame();
duke@435 871 assert(fr.is_runtime_frame(), "must be a runtimeStub");
duke@435 872 fr = fr.sender(&reg_map);
duke@435 873 assert(fr.is_entry_frame(), "must be");
duke@435 874 // fr is now pointing to the entry frame.
duke@435 875 callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
duke@435 876 assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
duke@435 877 } else {
duke@435 878 Bytecodes::Code bc;
duke@435 879 CallInfo callinfo;
duke@435 880 find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
duke@435 881 callee_method = callinfo.selected_method();
duke@435 882 }
duke@435 883 assert(callee_method()->is_method(), "must be");
duke@435 884 return callee_method;
duke@435 885 }
duke@435 886
duke@435 887 // Resolves a call.
duke@435 888 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
duke@435 889 bool is_virtual,
duke@435 890 bool is_optimized, TRAPS) {
duke@435 891 methodHandle callee_method;
duke@435 892 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@435 893 if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
duke@435 894 int retry_count = 0;
duke@435 895 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
duke@435 896 callee_method->method_holder() != SystemDictionary::object_klass()) {
duke@435 897 // If has a pending exception then there is no need to re-try to
duke@435 898 // resolve this method.
duke@435 899 // If the method has been redefined, we need to try again.
duke@435 900 // Hack: we have no way to update the vtables of arrays, so don't
duke@435 901 // require that java.lang.Object has been updated.
duke@435 902
duke@435 903 // It is very unlikely that method is redefined more than 100 times
duke@435 904 // in the middle of resolve. If it is looping here more than 100 times
duke@435 905 // means then there could be a bug here.
duke@435 906 guarantee((retry_count++ < 100),
duke@435 907 "Could not resolve to latest version of redefined method");
duke@435 908 // method is redefined in the middle of resolve so re-try.
duke@435 909 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@435 910 }
duke@435 911 }
duke@435 912 return callee_method;
duke@435 913 }
duke@435 914
duke@435 915 // Resolves a call. The compilers generate code for calls that go here
duke@435 916 // and are patched with the real destination of the call.
duke@435 917 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
duke@435 918 bool is_virtual,
duke@435 919 bool is_optimized, TRAPS) {
duke@435 920
duke@435 921 ResourceMark rm(thread);
duke@435 922 RegisterMap cbl_map(thread, false);
duke@435 923 frame caller_frame = thread->last_frame().sender(&cbl_map);
duke@435 924
duke@435 925 CodeBlob* cb = caller_frame.cb();
duke@435 926 guarantee(cb != NULL && cb->is_nmethod(), "must be called from nmethod");
duke@435 927 // make sure caller is not getting deoptimized
duke@435 928 // and removed before we are done with it.
duke@435 929 // CLEANUP - with lazy deopt shouldn't need this lock
duke@435 930 nmethodLocker caller_lock((nmethod*)cb);
duke@435 931
duke@435 932
duke@435 933 // determine call info & receiver
duke@435 934 // note: a) receiver is NULL for static calls
duke@435 935 // b) an exception is thrown if receiver is NULL for non-static calls
duke@435 936 CallInfo call_info;
duke@435 937 Bytecodes::Code invoke_code = Bytecodes::_illegal;
duke@435 938 Handle receiver = find_callee_info(thread, invoke_code,
duke@435 939 call_info, CHECK_(methodHandle()));
duke@435 940 methodHandle callee_method = call_info.selected_method();
duke@435 941
duke@435 942 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
duke@435 943 ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
duke@435 944
duke@435 945 #ifndef PRODUCT
duke@435 946 // tracing/debugging/statistics
duke@435 947 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
duke@435 948 (is_virtual) ? (&_resolve_virtual_ctr) :
duke@435 949 (&_resolve_static_ctr);
duke@435 950 Atomic::inc(addr);
duke@435 951
duke@435 952 if (TraceCallFixup) {
duke@435 953 ResourceMark rm(thread);
duke@435 954 tty->print("resolving %s%s (%s) call to",
duke@435 955 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
duke@435 956 Bytecodes::name(invoke_code));
duke@435 957 callee_method->print_short_name(tty);
duke@435 958 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 959 }
duke@435 960 #endif
duke@435 961
duke@435 962 // Compute entry points. This might require generation of C2I converter
duke@435 963 // frames, so we cannot be holding any locks here. Furthermore, the
duke@435 964 // computation of the entry points is independent of patching the call. We
duke@435 965 // always return the entry-point, but we only patch the stub if the call has
duke@435 966 // not been deoptimized. Return values: For a virtual call this is an
duke@435 967 // (cached_oop, destination address) pair. For a static call/optimized
duke@435 968 // virtual this is just a destination address.
duke@435 969
duke@435 970 StaticCallInfo static_call_info;
duke@435 971 CompiledICInfo virtual_call_info;
duke@435 972
duke@435 973
duke@435 974 // Make sure the callee nmethod does not get deoptimized and removed before
duke@435 975 // we are done patching the code.
duke@435 976 nmethod* nm = callee_method->code();
duke@435 977 nmethodLocker nl_callee(nm);
duke@435 978 #ifdef ASSERT
duke@435 979 address dest_entry_point = nm == NULL ? 0 : nm->entry_point(); // used below
duke@435 980 #endif
duke@435 981
duke@435 982 if (is_virtual) {
duke@435 983 assert(receiver.not_null(), "sanity check");
duke@435 984 bool static_bound = call_info.resolved_method()->can_be_statically_bound();
duke@435 985 KlassHandle h_klass(THREAD, receiver->klass());
duke@435 986 CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
duke@435 987 is_optimized, static_bound, virtual_call_info,
duke@435 988 CHECK_(methodHandle()));
duke@435 989 } else {
duke@435 990 // static call
duke@435 991 CompiledStaticCall::compute_entry(callee_method, static_call_info);
duke@435 992 }
duke@435 993
duke@435 994 // grab lock, check for deoptimization and potentially patch caller
duke@435 995 {
duke@435 996 MutexLocker ml_patch(CompiledIC_lock);
duke@435 997
duke@435 998 // Now that we are ready to patch if the methodOop was redefined then
duke@435 999 // don't update call site and let the caller retry.
duke@435 1000
duke@435 1001 if (!callee_method->is_old()) {
duke@435 1002 #ifdef ASSERT
duke@435 1003 // We must not try to patch to jump to an already unloaded method.
duke@435 1004 if (dest_entry_point != 0) {
duke@435 1005 assert(CodeCache::find_blob(dest_entry_point) != NULL,
duke@435 1006 "should not unload nmethod while locked");
duke@435 1007 }
duke@435 1008 #endif
duke@435 1009 if (is_virtual) {
duke@435 1010 CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
duke@435 1011 if (inline_cache->is_clean()) {
duke@435 1012 inline_cache->set_to_monomorphic(virtual_call_info);
duke@435 1013 }
duke@435 1014 } else {
duke@435 1015 CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
duke@435 1016 if (ssc->is_clean()) ssc->set(static_call_info);
duke@435 1017 }
duke@435 1018 }
duke@435 1019
duke@435 1020 } // unlock CompiledIC_lock
duke@435 1021
duke@435 1022 return callee_method;
duke@435 1023 }
duke@435 1024
duke@435 1025
duke@435 1026 // Inline caches exist only in compiled code
duke@435 1027 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
duke@435 1028 #ifdef ASSERT
duke@435 1029 RegisterMap reg_map(thread, false);
duke@435 1030 frame stub_frame = thread->last_frame();
duke@435 1031 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@435 1032 frame caller_frame = stub_frame.sender(&reg_map);
duke@435 1033 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
duke@435 1034 #endif /* ASSERT */
duke@435 1035
duke@435 1036 methodHandle callee_method;
duke@435 1037 JRT_BLOCK
duke@435 1038 callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
duke@435 1039 // Return methodOop through TLS
duke@435 1040 thread->set_vm_result(callee_method());
duke@435 1041 JRT_BLOCK_END
duke@435 1042 // return compiled code entry point after potential safepoints
duke@435 1043 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1044 return callee_method->verified_code_entry();
duke@435 1045 JRT_END
duke@435 1046
duke@435 1047
duke@435 1048 // Handle call site that has been made non-entrant
duke@435 1049 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
duke@435 1050 // 6243940 We might end up in here if the callee is deoptimized
duke@435 1051 // as we race to call it. We don't want to take a safepoint if
duke@435 1052 // the caller was interpreted because the caller frame will look
duke@435 1053 // interpreted to the stack walkers and arguments are now
duke@435 1054 // "compiled" so it is much better to make this transition
duke@435 1055 // invisible to the stack walking code. The i2c path will
duke@435 1056 // place the callee method in the callee_target. It is stashed
duke@435 1057 // there because if we try and find the callee by normal means a
duke@435 1058 // safepoint is possible and have trouble gc'ing the compiled args.
duke@435 1059 RegisterMap reg_map(thread, false);
duke@435 1060 frame stub_frame = thread->last_frame();
duke@435 1061 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@435 1062 frame caller_frame = stub_frame.sender(&reg_map);
duke@435 1063 if (caller_frame.is_interpreted_frame() || caller_frame.is_entry_frame() ) {
duke@435 1064 methodOop callee = thread->callee_target();
duke@435 1065 guarantee(callee != NULL && callee->is_method(), "bad handshake");
duke@435 1066 thread->set_vm_result(callee);
duke@435 1067 thread->set_callee_target(NULL);
duke@435 1068 return callee->get_c2i_entry();
duke@435 1069 }
duke@435 1070
duke@435 1071 // Must be compiled to compiled path which is safe to stackwalk
duke@435 1072 methodHandle callee_method;
duke@435 1073 JRT_BLOCK
duke@435 1074 // Force resolving of caller (if we called from compiled frame)
duke@435 1075 callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
duke@435 1076 thread->set_vm_result(callee_method());
duke@435 1077 JRT_BLOCK_END
duke@435 1078 // return compiled code entry point after potential safepoints
duke@435 1079 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1080 return callee_method->verified_code_entry();
duke@435 1081 JRT_END
duke@435 1082
duke@435 1083
duke@435 1084 // resolve a static call and patch code
duke@435 1085 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
duke@435 1086 methodHandle callee_method;
duke@435 1087 JRT_BLOCK
duke@435 1088 callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
duke@435 1089 thread->set_vm_result(callee_method());
duke@435 1090 JRT_BLOCK_END
duke@435 1091 // return compiled code entry point after potential safepoints
duke@435 1092 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1093 return callee_method->verified_code_entry();
duke@435 1094 JRT_END
duke@435 1095
duke@435 1096
duke@435 1097 // resolve virtual call and update inline cache to monomorphic
duke@435 1098 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
duke@435 1099 methodHandle callee_method;
duke@435 1100 JRT_BLOCK
duke@435 1101 callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
duke@435 1102 thread->set_vm_result(callee_method());
duke@435 1103 JRT_BLOCK_END
duke@435 1104 // return compiled code entry point after potential safepoints
duke@435 1105 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1106 return callee_method->verified_code_entry();
duke@435 1107 JRT_END
duke@435 1108
duke@435 1109
duke@435 1110 // Resolve a virtual call that can be statically bound (e.g., always
duke@435 1111 // monomorphic, so it has no inline cache). Patch code to resolved target.
duke@435 1112 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
duke@435 1113 methodHandle callee_method;
duke@435 1114 JRT_BLOCK
duke@435 1115 callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
duke@435 1116 thread->set_vm_result(callee_method());
duke@435 1117 JRT_BLOCK_END
duke@435 1118 // return compiled code entry point after potential safepoints
duke@435 1119 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1120 return callee_method->verified_code_entry();
duke@435 1121 JRT_END
duke@435 1122
duke@435 1123
duke@435 1124
duke@435 1125
duke@435 1126
duke@435 1127 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
duke@435 1128 ResourceMark rm(thread);
duke@435 1129 CallInfo call_info;
duke@435 1130 Bytecodes::Code bc;
duke@435 1131
duke@435 1132 // receiver is NULL for static calls. An exception is thrown for NULL
duke@435 1133 // receivers for non-static calls
duke@435 1134 Handle receiver = find_callee_info(thread, bc, call_info,
duke@435 1135 CHECK_(methodHandle()));
duke@435 1136 // Compiler1 can produce virtual call sites that can actually be statically bound
duke@435 1137 // If we fell thru to below we would think that the site was going megamorphic
duke@435 1138 // when in fact the site can never miss. Worse because we'd think it was megamorphic
duke@435 1139 // we'd try and do a vtable dispatch however methods that can be statically bound
duke@435 1140 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
duke@435 1141 // reresolution of the call site (as if we did a handle_wrong_method and not an
duke@435 1142 // plain ic_miss) and the site will be converted to an optimized virtual call site
duke@435 1143 // never to miss again. I don't believe C2 will produce code like this but if it
duke@435 1144 // did this would still be the correct thing to do for it too, hence no ifdef.
duke@435 1145 //
duke@435 1146 if (call_info.resolved_method()->can_be_statically_bound()) {
duke@435 1147 methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
duke@435 1148 if (TraceCallFixup) {
duke@435 1149 RegisterMap reg_map(thread, false);
duke@435 1150 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@435 1151 ResourceMark rm(thread);
duke@435 1152 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
duke@435 1153 callee_method->print_short_name(tty);
duke@435 1154 tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
duke@435 1155 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1156 }
duke@435 1157 return callee_method;
duke@435 1158 }
duke@435 1159
duke@435 1160 methodHandle callee_method = call_info.selected_method();
duke@435 1161
duke@435 1162 bool should_be_mono = false;
duke@435 1163
duke@435 1164 #ifndef PRODUCT
duke@435 1165 Atomic::inc(&_ic_miss_ctr);
duke@435 1166
duke@435 1167 // Statistics & Tracing
duke@435 1168 if (TraceCallFixup) {
duke@435 1169 ResourceMark rm(thread);
duke@435 1170 tty->print("IC miss (%s) call to", Bytecodes::name(bc));
duke@435 1171 callee_method->print_short_name(tty);
duke@435 1172 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1173 }
duke@435 1174
duke@435 1175 if (ICMissHistogram) {
duke@435 1176 MutexLocker m(VMStatistic_lock);
duke@435 1177 RegisterMap reg_map(thread, false);
duke@435 1178 frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
duke@435 1179 // produce statistics under the lock
duke@435 1180 trace_ic_miss(f.pc());
duke@435 1181 }
duke@435 1182 #endif
duke@435 1183
duke@435 1184 // install an event collector so that when a vtable stub is created the
duke@435 1185 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
duke@435 1186 // event can't be posted when the stub is created as locks are held
duke@435 1187 // - instead the event will be deferred until the event collector goes
duke@435 1188 // out of scope.
duke@435 1189 JvmtiDynamicCodeEventCollector event_collector;
duke@435 1190
duke@435 1191 // Update inline cache to megamorphic. Skip update if caller has been
duke@435 1192 // made non-entrant or we are called from interpreted.
duke@435 1193 { MutexLocker ml_patch (CompiledIC_lock);
duke@435 1194 RegisterMap reg_map(thread, false);
duke@435 1195 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@435 1196 CodeBlob* cb = caller_frame.cb();
duke@435 1197 if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
duke@435 1198 // Not a non-entrant nmethod, so find inline_cache
duke@435 1199 CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
duke@435 1200 bool should_be_mono = false;
duke@435 1201 if (inline_cache->is_optimized()) {
duke@435 1202 if (TraceCallFixup) {
duke@435 1203 ResourceMark rm(thread);
duke@435 1204 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
duke@435 1205 callee_method->print_short_name(tty);
duke@435 1206 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1207 }
duke@435 1208 should_be_mono = true;
duke@435 1209 } else {
duke@435 1210 compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
duke@435 1211 if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
duke@435 1212
duke@435 1213 if (receiver()->klass() == ic_oop->holder_klass()) {
duke@435 1214 // This isn't a real miss. We must have seen that compiled code
duke@435 1215 // is now available and we want the call site converted to a
duke@435 1216 // monomorphic compiled call site.
duke@435 1217 // We can't assert for callee_method->code() != NULL because it
duke@435 1218 // could have been deoptimized in the meantime
duke@435 1219 if (TraceCallFixup) {
duke@435 1220 ResourceMark rm(thread);
duke@435 1221 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
duke@435 1222 callee_method->print_short_name(tty);
duke@435 1223 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1224 }
duke@435 1225 should_be_mono = true;
duke@435 1226 }
duke@435 1227 }
duke@435 1228 }
duke@435 1229
duke@435 1230 if (should_be_mono) {
duke@435 1231
duke@435 1232 // We have a path that was monomorphic but was going interpreted
duke@435 1233 // and now we have (or had) a compiled entry. We correct the IC
duke@435 1234 // by using a new icBuffer.
duke@435 1235 CompiledICInfo info;
duke@435 1236 KlassHandle receiver_klass(THREAD, receiver()->klass());
duke@435 1237 inline_cache->compute_monomorphic_entry(callee_method,
duke@435 1238 receiver_klass,
duke@435 1239 inline_cache->is_optimized(),
duke@435 1240 false,
duke@435 1241 info, CHECK_(methodHandle()));
duke@435 1242 inline_cache->set_to_monomorphic(info);
duke@435 1243 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
duke@435 1244 // Change to megamorphic
duke@435 1245 inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
duke@435 1246 } else {
duke@435 1247 // Either clean or megamorphic
duke@435 1248 }
duke@435 1249 }
duke@435 1250 } // Release CompiledIC_lock
duke@435 1251
duke@435 1252 return callee_method;
duke@435 1253 }
duke@435 1254
duke@435 1255 //
duke@435 1256 // Resets a call-site in compiled code so it will get resolved again.
duke@435 1257 // This routines handles both virtual call sites, optimized virtual call
duke@435 1258 // sites, and static call sites. Typically used to change a call sites
duke@435 1259 // destination from compiled to interpreted.
duke@435 1260 //
duke@435 1261 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
duke@435 1262 ResourceMark rm(thread);
duke@435 1263 RegisterMap reg_map(thread, false);
duke@435 1264 frame stub_frame = thread->last_frame();
duke@435 1265 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
duke@435 1266 frame caller = stub_frame.sender(&reg_map);
duke@435 1267
duke@435 1268 // Do nothing if the frame isn't a live compiled frame.
duke@435 1269 // nmethod could be deoptimized by the time we get here
duke@435 1270 // so no update to the caller is needed.
duke@435 1271
duke@435 1272 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
duke@435 1273
duke@435 1274 address pc = caller.pc();
duke@435 1275 Events::log("update call-site at pc " INTPTR_FORMAT, pc);
duke@435 1276
duke@435 1277 // Default call_addr is the location of the "basic" call.
duke@435 1278 // Determine the address of the call we a reresolving. With
duke@435 1279 // Inline Caches we will always find a recognizable call.
duke@435 1280 // With Inline Caches disabled we may or may not find a
duke@435 1281 // recognizable call. We will always find a call for static
duke@435 1282 // calls and for optimized virtual calls. For vanilla virtual
duke@435 1283 // calls it depends on the state of the UseInlineCaches switch.
duke@435 1284 //
duke@435 1285 // With Inline Caches disabled we can get here for a virtual call
duke@435 1286 // for two reasons:
duke@435 1287 // 1 - calling an abstract method. The vtable for abstract methods
duke@435 1288 // will run us thru handle_wrong_method and we will eventually
duke@435 1289 // end up in the interpreter to throw the ame.
duke@435 1290 // 2 - a racing deoptimization. We could be doing a vanilla vtable
duke@435 1291 // call and between the time we fetch the entry address and
duke@435 1292 // we jump to it the target gets deoptimized. Similar to 1
duke@435 1293 // we will wind up in the interprter (thru a c2i with c2).
duke@435 1294 //
duke@435 1295 address call_addr = NULL;
duke@435 1296 {
duke@435 1297 // Get call instruction under lock because another thread may be
duke@435 1298 // busy patching it.
duke@435 1299 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@435 1300 // Location of call instruction
duke@435 1301 if (NativeCall::is_call_before(pc)) {
duke@435 1302 NativeCall *ncall = nativeCall_before(pc);
duke@435 1303 call_addr = ncall->instruction_address();
duke@435 1304 }
duke@435 1305 }
duke@435 1306
duke@435 1307 // Check for static or virtual call
duke@435 1308 bool is_static_call = false;
duke@435 1309 nmethod* caller_nm = CodeCache::find_nmethod(pc);
duke@435 1310 // Make sure nmethod doesn't get deoptimized and removed until
duke@435 1311 // this is done with it.
duke@435 1312 // CLEANUP - with lazy deopt shouldn't need this lock
duke@435 1313 nmethodLocker nmlock(caller_nm);
duke@435 1314
duke@435 1315 if (call_addr != NULL) {
duke@435 1316 RelocIterator iter(caller_nm, call_addr, call_addr+1);
duke@435 1317 int ret = iter.next(); // Get item
duke@435 1318 if (ret) {
duke@435 1319 assert(iter.addr() == call_addr, "must find call");
duke@435 1320 if (iter.type() == relocInfo::static_call_type) {
duke@435 1321 is_static_call = true;
duke@435 1322 } else {
duke@435 1323 assert(iter.type() == relocInfo::virtual_call_type ||
duke@435 1324 iter.type() == relocInfo::opt_virtual_call_type
duke@435 1325 , "unexpected relocInfo. type");
duke@435 1326 }
duke@435 1327 } else {
duke@435 1328 assert(!UseInlineCaches, "relocation info. must exist for this address");
duke@435 1329 }
duke@435 1330
duke@435 1331 // Cleaning the inline cache will force a new resolve. This is more robust
duke@435 1332 // than directly setting it to the new destination, since resolving of calls
duke@435 1333 // is always done through the same code path. (experience shows that it
duke@435 1334 // leads to very hard to track down bugs, if an inline cache gets updated
duke@435 1335 // to a wrong method). It should not be performance critical, since the
duke@435 1336 // resolve is only done once.
duke@435 1337
duke@435 1338 MutexLocker ml(CompiledIC_lock);
duke@435 1339 //
duke@435 1340 // We do not patch the call site if the nmethod has been made non-entrant
duke@435 1341 // as it is a waste of time
duke@435 1342 //
duke@435 1343 if (caller_nm->is_in_use()) {
duke@435 1344 if (is_static_call) {
duke@435 1345 CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
duke@435 1346 ssc->set_to_clean();
duke@435 1347 } else {
duke@435 1348 // compiled, dispatched call (which used to call an interpreted method)
duke@435 1349 CompiledIC* inline_cache = CompiledIC_at(call_addr);
duke@435 1350 inline_cache->set_to_clean();
duke@435 1351 }
duke@435 1352 }
duke@435 1353 }
duke@435 1354
duke@435 1355 }
duke@435 1356
duke@435 1357 methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
duke@435 1358
duke@435 1359
duke@435 1360 #ifndef PRODUCT
duke@435 1361 Atomic::inc(&_wrong_method_ctr);
duke@435 1362
duke@435 1363 if (TraceCallFixup) {
duke@435 1364 ResourceMark rm(thread);
duke@435 1365 tty->print("handle_wrong_method reresolving call to");
duke@435 1366 callee_method->print_short_name(tty);
duke@435 1367 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1368 }
duke@435 1369 #endif
duke@435 1370
duke@435 1371 return callee_method;
duke@435 1372 }
duke@435 1373
duke@435 1374 // ---------------------------------------------------------------------------
duke@435 1375 // We are calling the interpreter via a c2i. Normally this would mean that
duke@435 1376 // we were called by a compiled method. However we could have lost a race
duke@435 1377 // where we went int -> i2c -> c2i and so the caller could in fact be
duke@435 1378 // interpreted. If the caller is compiled we attampt to patch the caller
duke@435 1379 // so he no longer calls into the interpreter.
duke@435 1380 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
duke@435 1381 methodOop moop(method);
duke@435 1382
duke@435 1383 address entry_point = moop->from_compiled_entry();
duke@435 1384
duke@435 1385 // It's possible that deoptimization can occur at a call site which hasn't
duke@435 1386 // been resolved yet, in which case this function will be called from
duke@435 1387 // an nmethod that has been patched for deopt and we can ignore the
duke@435 1388 // request for a fixup.
duke@435 1389 // Also it is possible that we lost a race in that from_compiled_entry
duke@435 1390 // is now back to the i2c in that case we don't need to patch and if
duke@435 1391 // we did we'd leap into space because the callsite needs to use
duke@435 1392 // "to interpreter" stub in order to load up the methodOop. Don't
duke@435 1393 // ask me how I know this...
duke@435 1394 //
duke@435 1395
duke@435 1396 CodeBlob* cb = CodeCache::find_blob(caller_pc);
duke@435 1397 if ( !cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
duke@435 1398 return;
duke@435 1399 }
duke@435 1400
duke@435 1401 // There is a benign race here. We could be attempting to patch to a compiled
duke@435 1402 // entry point at the same time the callee is being deoptimized. If that is
duke@435 1403 // the case then entry_point may in fact point to a c2i and we'd patch the
duke@435 1404 // call site with the same old data. clear_code will set code() to NULL
duke@435 1405 // at the end of it. If we happen to see that NULL then we can skip trying
duke@435 1406 // to patch. If we hit the window where the callee has a c2i in the
duke@435 1407 // from_compiled_entry and the NULL isn't present yet then we lose the race
duke@435 1408 // and patch the code with the same old data. Asi es la vida.
duke@435 1409
duke@435 1410 if (moop->code() == NULL) return;
duke@435 1411
duke@435 1412 if (((nmethod*)cb)->is_in_use()) {
duke@435 1413
duke@435 1414 // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
duke@435 1415 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@435 1416 if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
duke@435 1417 NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
duke@435 1418 //
duke@435 1419 // bug 6281185. We might get here after resolving a call site to a vanilla
duke@435 1420 // virtual call. Because the resolvee uses the verified entry it may then
duke@435 1421 // see compiled code and attempt to patch the site by calling us. This would
duke@435 1422 // then incorrectly convert the call site to optimized and its downhill from
duke@435 1423 // there. If you're lucky you'll get the assert in the bugid, if not you've
duke@435 1424 // just made a call site that could be megamorphic into a monomorphic site
duke@435 1425 // for the rest of its life! Just another racing bug in the life of
duke@435 1426 // fixup_callers_callsite ...
duke@435 1427 //
duke@435 1428 RelocIterator iter(cb, call->instruction_address(), call->next_instruction_address());
duke@435 1429 iter.next();
duke@435 1430 assert(iter.has_current(), "must have a reloc at java call site");
duke@435 1431 relocInfo::relocType typ = iter.reloc()->type();
duke@435 1432 if ( typ != relocInfo::static_call_type &&
duke@435 1433 typ != relocInfo::opt_virtual_call_type &&
duke@435 1434 typ != relocInfo::static_stub_type) {
duke@435 1435 return;
duke@435 1436 }
duke@435 1437 address destination = call->destination();
duke@435 1438 if (destination != entry_point) {
duke@435 1439 CodeBlob* callee = CodeCache::find_blob(destination);
duke@435 1440 // callee == cb seems weird. It means calling interpreter thru stub.
duke@435 1441 if (callee == cb || callee->is_adapter_blob()) {
duke@435 1442 // static call or optimized virtual
duke@435 1443 if (TraceCallFixup) {
duke@435 1444 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1445 moop->print_short_name(tty);
duke@435 1446 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1447 }
duke@435 1448 call->set_destination_mt_safe(entry_point);
duke@435 1449 } else {
duke@435 1450 if (TraceCallFixup) {
duke@435 1451 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1452 moop->print_short_name(tty);
duke@435 1453 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1454 }
duke@435 1455 // assert is too strong could also be resolve destinations.
duke@435 1456 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
duke@435 1457 }
duke@435 1458 } else {
duke@435 1459 if (TraceCallFixup) {
duke@435 1460 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1461 moop->print_short_name(tty);
duke@435 1462 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1463 }
duke@435 1464 }
duke@435 1465 }
duke@435 1466 }
duke@435 1467
duke@435 1468 IRT_END
duke@435 1469
duke@435 1470
duke@435 1471 // same as JVM_Arraycopy, but called directly from compiled code
duke@435 1472 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos,
duke@435 1473 oopDesc* dest, jint dest_pos,
duke@435 1474 jint length,
duke@435 1475 JavaThread* thread)) {
duke@435 1476 #ifndef PRODUCT
duke@435 1477 _slow_array_copy_ctr++;
duke@435 1478 #endif
duke@435 1479 // Check if we have null pointers
duke@435 1480 if (src == NULL || dest == NULL) {
duke@435 1481 THROW(vmSymbols::java_lang_NullPointerException());
duke@435 1482 }
duke@435 1483 // Do the copy. The casts to arrayOop are necessary to the copy_array API,
duke@435 1484 // even though the copy_array API also performs dynamic checks to ensure
duke@435 1485 // that src and dest are truly arrays (and are conformable).
duke@435 1486 // The copy_array mechanism is awkward and could be removed, but
duke@435 1487 // the compilers don't call this function except as a last resort,
duke@435 1488 // so it probably doesn't matter.
duke@435 1489 Klass::cast(src->klass())->copy_array((arrayOopDesc*)src, src_pos,
duke@435 1490 (arrayOopDesc*)dest, dest_pos,
duke@435 1491 length, thread);
duke@435 1492 }
duke@435 1493 JRT_END
duke@435 1494
duke@435 1495 char* SharedRuntime::generate_class_cast_message(
duke@435 1496 JavaThread* thread, const char* objName) {
duke@435 1497
duke@435 1498 // Get target class name from the checkcast instruction
duke@435 1499 vframeStream vfst(thread, true);
duke@435 1500 assert(!vfst.at_end(), "Java frame must exist");
duke@435 1501 Bytecode_checkcast* cc = Bytecode_checkcast_at(
duke@435 1502 vfst.method()->bcp_from(vfst.bci()));
duke@435 1503 Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
duke@435 1504 cc->index(), thread));
duke@435 1505 return generate_class_cast_message(objName, targetKlass->external_name());
duke@435 1506 }
duke@435 1507
duke@435 1508 char* SharedRuntime::generate_class_cast_message(
duke@435 1509 const char* objName, const char* targetKlassName) {
duke@435 1510 const char* desc = " cannot be cast to ";
duke@435 1511 size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
duke@435 1512
kamg@488 1513 char* message = NEW_RESOURCE_ARRAY(char, msglen);
duke@435 1514 if (NULL == message) {
kamg@488 1515 // Shouldn't happen, but don't cause even more problems if it does
duke@435 1516 message = const_cast<char*>(objName);
duke@435 1517 } else {
duke@435 1518 jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
duke@435 1519 }
duke@435 1520 return message;
duke@435 1521 }
duke@435 1522
duke@435 1523 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
duke@435 1524 (void) JavaThread::current()->reguard_stack();
duke@435 1525 JRT_END
duke@435 1526
duke@435 1527
duke@435 1528 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
duke@435 1529 #ifndef PRODUCT
duke@435 1530 int SharedRuntime::_monitor_enter_ctr=0;
duke@435 1531 #endif
duke@435 1532 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
duke@435 1533 oop obj(_obj);
duke@435 1534 #ifndef PRODUCT
duke@435 1535 _monitor_enter_ctr++; // monitor enter slow
duke@435 1536 #endif
duke@435 1537 if (PrintBiasedLockingStatistics) {
duke@435 1538 Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
duke@435 1539 }
duke@435 1540 Handle h_obj(THREAD, obj);
duke@435 1541 if (UseBiasedLocking) {
duke@435 1542 // Retry fast entry if bias is revoked to avoid unnecessary inflation
duke@435 1543 ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
duke@435 1544 } else {
duke@435 1545 ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
duke@435 1546 }
duke@435 1547 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
duke@435 1548 JRT_END
duke@435 1549
duke@435 1550 #ifndef PRODUCT
duke@435 1551 int SharedRuntime::_monitor_exit_ctr=0;
duke@435 1552 #endif
duke@435 1553 // Handles the uncommon cases of monitor unlocking in compiled code
duke@435 1554 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
duke@435 1555 oop obj(_obj);
duke@435 1556 #ifndef PRODUCT
duke@435 1557 _monitor_exit_ctr++; // monitor exit slow
duke@435 1558 #endif
duke@435 1559 Thread* THREAD = JavaThread::current();
duke@435 1560 // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
duke@435 1561 // testing was unable to ever fire the assert that guarded it so I have removed it.
duke@435 1562 assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
duke@435 1563 #undef MIGHT_HAVE_PENDING
duke@435 1564 #ifdef MIGHT_HAVE_PENDING
duke@435 1565 // Save and restore any pending_exception around the exception mark.
duke@435 1566 // While the slow_exit must not throw an exception, we could come into
duke@435 1567 // this routine with one set.
duke@435 1568 oop pending_excep = NULL;
duke@435 1569 const char* pending_file;
duke@435 1570 int pending_line;
duke@435 1571 if (HAS_PENDING_EXCEPTION) {
duke@435 1572 pending_excep = PENDING_EXCEPTION;
duke@435 1573 pending_file = THREAD->exception_file();
duke@435 1574 pending_line = THREAD->exception_line();
duke@435 1575 CLEAR_PENDING_EXCEPTION;
duke@435 1576 }
duke@435 1577 #endif /* MIGHT_HAVE_PENDING */
duke@435 1578
duke@435 1579 {
duke@435 1580 // Exit must be non-blocking, and therefore no exceptions can be thrown.
duke@435 1581 EXCEPTION_MARK;
duke@435 1582 ObjectSynchronizer::slow_exit(obj, lock, THREAD);
duke@435 1583 }
duke@435 1584
duke@435 1585 #ifdef MIGHT_HAVE_PENDING
duke@435 1586 if (pending_excep != NULL) {
duke@435 1587 THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
duke@435 1588 }
duke@435 1589 #endif /* MIGHT_HAVE_PENDING */
duke@435 1590 JRT_END
duke@435 1591
duke@435 1592 #ifndef PRODUCT
duke@435 1593
duke@435 1594 void SharedRuntime::print_statistics() {
duke@435 1595 ttyLocker ttyl;
duke@435 1596 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'");
duke@435 1597
duke@435 1598 if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow", _monitor_enter_ctr);
duke@435 1599 if (_monitor_exit_ctr ) tty->print_cr("%5d monitor exit slow", _monitor_exit_ctr);
duke@435 1600 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
duke@435 1601
duke@435 1602 SharedRuntime::print_ic_miss_histogram();
duke@435 1603
duke@435 1604 if (CountRemovableExceptions) {
duke@435 1605 if (_nof_removable_exceptions > 0) {
duke@435 1606 Unimplemented(); // this counter is not yet incremented
duke@435 1607 tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
duke@435 1608 }
duke@435 1609 }
duke@435 1610
duke@435 1611 // Dump the JRT_ENTRY counters
duke@435 1612 if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
duke@435 1613 if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
duke@435 1614 if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
duke@435 1615 if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
duke@435 1616 if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
duke@435 1617 if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
duke@435 1618 if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
duke@435 1619
duke@435 1620 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
duke@435 1621 tty->print_cr("%5d wrong method", _wrong_method_ctr );
duke@435 1622 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
duke@435 1623 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
duke@435 1624 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
duke@435 1625
duke@435 1626 if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
duke@435 1627 if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
duke@435 1628 if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
duke@435 1629 if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
duke@435 1630 if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
duke@435 1631 if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
duke@435 1632 if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
duke@435 1633 if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
duke@435 1634 if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
duke@435 1635 if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
duke@435 1636 if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
duke@435 1637 if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
duke@435 1638 if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
duke@435 1639 if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
duke@435 1640 if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
duke@435 1641 if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
duke@435 1642
duke@435 1643 if (xtty != NULL) xtty->tail("statistics");
duke@435 1644 }
duke@435 1645
duke@435 1646 inline double percent(int x, int y) {
duke@435 1647 return 100.0 * x / MAX2(y, 1);
duke@435 1648 }
duke@435 1649
duke@435 1650 class MethodArityHistogram {
duke@435 1651 public:
duke@435 1652 enum { MAX_ARITY = 256 };
duke@435 1653 private:
duke@435 1654 static int _arity_histogram[MAX_ARITY]; // histogram of #args
duke@435 1655 static int _size_histogram[MAX_ARITY]; // histogram of arg size in words
duke@435 1656 static int _max_arity; // max. arity seen
duke@435 1657 static int _max_size; // max. arg size seen
duke@435 1658
duke@435 1659 static void add_method_to_histogram(nmethod* nm) {
duke@435 1660 methodOop m = nm->method();
duke@435 1661 ArgumentCount args(m->signature());
duke@435 1662 int arity = args.size() + (m->is_static() ? 0 : 1);
duke@435 1663 int argsize = m->size_of_parameters();
duke@435 1664 arity = MIN2(arity, MAX_ARITY-1);
duke@435 1665 argsize = MIN2(argsize, MAX_ARITY-1);
duke@435 1666 int count = nm->method()->compiled_invocation_count();
duke@435 1667 _arity_histogram[arity] += count;
duke@435 1668 _size_histogram[argsize] += count;
duke@435 1669 _max_arity = MAX2(_max_arity, arity);
duke@435 1670 _max_size = MAX2(_max_size, argsize);
duke@435 1671 }
duke@435 1672
duke@435 1673 void print_histogram_helper(int n, int* histo, const char* name) {
duke@435 1674 const int N = MIN2(5, n);
duke@435 1675 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@435 1676 double sum = 0;
duke@435 1677 double weighted_sum = 0;
duke@435 1678 int i;
duke@435 1679 for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
duke@435 1680 double rest = sum;
duke@435 1681 double percent = sum / 100;
duke@435 1682 for (i = 0; i <= N; i++) {
duke@435 1683 rest -= histo[i];
duke@435 1684 tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
duke@435 1685 }
duke@435 1686 tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
duke@435 1687 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
duke@435 1688 }
duke@435 1689
duke@435 1690 void print_histogram() {
duke@435 1691 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@435 1692 print_histogram_helper(_max_arity, _arity_histogram, "arity");
duke@435 1693 tty->print_cr("\nSame for parameter size (in words):");
duke@435 1694 print_histogram_helper(_max_size, _size_histogram, "size");
duke@435 1695 tty->cr();
duke@435 1696 }
duke@435 1697
duke@435 1698 public:
duke@435 1699 MethodArityHistogram() {
duke@435 1700 MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
duke@435 1701 _max_arity = _max_size = 0;
duke@435 1702 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
duke@435 1703 CodeCache::nmethods_do(add_method_to_histogram);
duke@435 1704 print_histogram();
duke@435 1705 }
duke@435 1706 };
duke@435 1707
duke@435 1708 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
duke@435 1709 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
duke@435 1710 int MethodArityHistogram::_max_arity;
duke@435 1711 int MethodArityHistogram::_max_size;
duke@435 1712
duke@435 1713 void SharedRuntime::print_call_statistics(int comp_total) {
duke@435 1714 tty->print_cr("Calls from compiled code:");
duke@435 1715 int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
duke@435 1716 int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
duke@435 1717 int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
duke@435 1718 tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total));
duke@435 1719 tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total));
duke@435 1720 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
duke@435 1721 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
duke@435 1722 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls));
duke@435 1723 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
duke@435 1724 tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total));
duke@435 1725 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
duke@435 1726 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
duke@435 1727 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls));
duke@435 1728 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
duke@435 1729 tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
duke@435 1730 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
duke@435 1731 tty->cr();
duke@435 1732 tty->print_cr("Note 1: counter updates are not MT-safe.");
duke@435 1733 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
duke@435 1734 tty->print_cr(" %% in nested categories are relative to their category");
duke@435 1735 tty->print_cr(" (and thus add up to more than 100%% with inlining)");
duke@435 1736 tty->cr();
duke@435 1737
duke@435 1738 MethodArityHistogram h;
duke@435 1739 }
duke@435 1740 #endif
duke@435 1741
duke@435 1742
duke@435 1743 // ---------------------------------------------------------------------------
duke@435 1744 // Implementation of AdapterHandlerLibrary
duke@435 1745 const char* AdapterHandlerEntry::name = "I2C/C2I adapters";
duke@435 1746 GrowableArray<uint64_t>* AdapterHandlerLibrary::_fingerprints = NULL;
duke@435 1747 GrowableArray<AdapterHandlerEntry* >* AdapterHandlerLibrary::_handlers = NULL;
duke@435 1748 const int AdapterHandlerLibrary_size = 16*K;
duke@435 1749 u_char AdapterHandlerLibrary::_buffer[AdapterHandlerLibrary_size + 32];
duke@435 1750
duke@435 1751 void AdapterHandlerLibrary::initialize() {
duke@435 1752 if (_fingerprints != NULL) return;
duke@435 1753 _fingerprints = new(ResourceObj::C_HEAP)GrowableArray<uint64_t>(32, true);
duke@435 1754 _handlers = new(ResourceObj::C_HEAP)GrowableArray<AdapterHandlerEntry*>(32, true);
duke@435 1755 // Index 0 reserved for the slow path handler
duke@435 1756 _fingerprints->append(0/*the never-allowed 0 fingerprint*/);
duke@435 1757 _handlers->append(NULL);
duke@435 1758
duke@435 1759 // Create a special handler for abstract methods. Abstract methods
duke@435 1760 // are never compiled so an i2c entry is somewhat meaningless, but
duke@435 1761 // fill it in with something appropriate just in case. Pass handle
duke@435 1762 // wrong method for the c2i transitions.
duke@435 1763 address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
duke@435 1764 _fingerprints->append(0/*the never-allowed 0 fingerprint*/);
duke@435 1765 assert(_handlers->length() == AbstractMethodHandler, "in wrong slot");
duke@435 1766 _handlers->append(new AdapterHandlerEntry(StubRoutines::throw_AbstractMethodError_entry(),
duke@435 1767 wrong_method, wrong_method));
duke@435 1768 }
duke@435 1769
duke@435 1770 int AdapterHandlerLibrary::get_create_adapter_index(methodHandle method) {
duke@435 1771 // Use customized signature handler. Need to lock around updates to the
duke@435 1772 // _fingerprints array (it is not safe for concurrent readers and a single
duke@435 1773 // writer: this can be fixed if it becomes a problem).
duke@435 1774
duke@435 1775 // Get the address of the ic_miss handlers before we grab the
duke@435 1776 // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
duke@435 1777 // was caused by the initialization of the stubs happening
duke@435 1778 // while we held the lock and then notifying jvmti while
duke@435 1779 // holding it. This just forces the initialization to be a little
duke@435 1780 // earlier.
duke@435 1781 address ic_miss = SharedRuntime::get_ic_miss_stub();
duke@435 1782 assert(ic_miss != NULL, "must have handler");
duke@435 1783
duke@435 1784 int result;
duke@435 1785 BufferBlob *B = NULL;
duke@435 1786 uint64_t fingerprint;
duke@435 1787 {
duke@435 1788 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@435 1789 // make sure data structure is initialized
duke@435 1790 initialize();
duke@435 1791
duke@435 1792 if (method->is_abstract()) {
duke@435 1793 return AbstractMethodHandler;
duke@435 1794 }
duke@435 1795
duke@435 1796 // Lookup method signature's fingerprint
duke@435 1797 fingerprint = Fingerprinter(method).fingerprint();
duke@435 1798 assert( fingerprint != CONST64( 0), "no zero fingerprints allowed" );
duke@435 1799 // Fingerprints are small fixed-size condensed representations of
duke@435 1800 // signatures. If the signature is too large, it won't fit in a
duke@435 1801 // fingerprint. Signatures which cannot support a fingerprint get a new i2c
duke@435 1802 // adapter gen'd each time, instead of searching the cache for one. This -1
duke@435 1803 // game can be avoided if I compared signatures instead of using
duke@435 1804 // fingerprints. However, -1 fingerprints are very rare.
duke@435 1805 if( fingerprint != UCONST64(-1) ) { // If this is a cache-able fingerprint
duke@435 1806 // Turns out i2c adapters do not care what the return value is. Mask it
duke@435 1807 // out so signatures that only differ in return type will share the same
duke@435 1808 // adapter.
duke@435 1809 fingerprint &= ~(SignatureIterator::result_feature_mask << SignatureIterator::static_feature_size);
duke@435 1810 // Search for a prior existing i2c/c2i adapter
duke@435 1811 int index = _fingerprints->find(fingerprint);
duke@435 1812 if( index >= 0 ) return index; // Found existing handlers?
duke@435 1813 } else {
duke@435 1814 // Annoyingly, I end up adding -1 fingerprints to the array of handlers,
duke@435 1815 // because I need a unique handler index. It cannot be scanned for
duke@435 1816 // because all -1's look alike. Instead, the matching index is passed out
duke@435 1817 // and immediately used to collect the 2 return values (the c2i and i2c
duke@435 1818 // adapters).
duke@435 1819 }
duke@435 1820
duke@435 1821 // Create I2C & C2I handlers
duke@435 1822 ResourceMark rm;
duke@435 1823 // Improve alignment slightly
duke@435 1824 u_char *buf = (u_char*)(((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
duke@435 1825 CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
duke@435 1826 short buffer_locs[20];
duke@435 1827 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
duke@435 1828 sizeof(buffer_locs)/sizeof(relocInfo));
duke@435 1829 MacroAssembler _masm(&buffer);
duke@435 1830
duke@435 1831 // Fill in the signature array, for the calling-convention call.
duke@435 1832 int total_args_passed = method->size_of_parameters(); // All args on stack
duke@435 1833
duke@435 1834 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
duke@435 1835 VMRegPair * regs = NEW_RESOURCE_ARRAY(VMRegPair ,total_args_passed);
duke@435 1836 int i=0;
duke@435 1837 if( !method->is_static() ) // Pass in receiver first
duke@435 1838 sig_bt[i++] = T_OBJECT;
duke@435 1839 for( SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
duke@435 1840 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
duke@435 1841 if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
duke@435 1842 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
duke@435 1843 }
duke@435 1844 assert( i==total_args_passed, "" );
duke@435 1845
duke@435 1846 // Now get the re-packed compiled-Java layout.
duke@435 1847 int comp_args_on_stack;
duke@435 1848
duke@435 1849 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
duke@435 1850 comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
duke@435 1851
duke@435 1852 AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
duke@435 1853 total_args_passed,
duke@435 1854 comp_args_on_stack,
duke@435 1855 sig_bt,
duke@435 1856 regs);
duke@435 1857
duke@435 1858 B = BufferBlob::create(AdapterHandlerEntry::name, &buffer);
kvn@463 1859 if (B == NULL) {
kvn@463 1860 // CodeCache is full, disable compilation
kvn@463 1861 // Ought to log this but compile log is only per compile thread
kvn@463 1862 // and we're some non descript Java thread.
kvn@463 1863 UseInterpreter = true;
kvn@463 1864 if (UseCompiler || AlwaysCompileLoopMethods ) {
kvn@463 1865 #ifndef PRODUCT
kvn@463 1866 warning("CodeCache is full. Compiler has been disabled");
kvn@463 1867 if (CompileTheWorld || ExitOnFullCodeCache) {
kvn@463 1868 before_exit(JavaThread::current());
kvn@463 1869 exit_globals(); // will delete tty
kvn@463 1870 vm_direct_exit(CompileTheWorld ? 0 : 1);
kvn@463 1871 }
kvn@463 1872 #endif
kvn@463 1873 UseCompiler = false;
kvn@463 1874 AlwaysCompileLoopMethods = false;
kvn@463 1875 }
kvn@463 1876 return 0; // Out of CodeCache space (_handlers[0] == NULL)
kvn@463 1877 }
duke@435 1878 entry->relocate(B->instructions_begin());
duke@435 1879 #ifndef PRODUCT
duke@435 1880 // debugging suppport
duke@435 1881 if (PrintAdapterHandlers) {
duke@435 1882 tty->cr();
duke@435 1883 tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = 0x%llx, %d bytes generated)",
duke@435 1884 _handlers->length(), (method->is_static() ? "static" : "receiver"),
duke@435 1885 method->signature()->as_C_string(), fingerprint, buffer.code_size() );
duke@435 1886 tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
duke@435 1887 Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + buffer.code_size());
duke@435 1888 }
duke@435 1889 #endif
duke@435 1890
duke@435 1891 // add handlers to library
duke@435 1892 _fingerprints->append(fingerprint);
duke@435 1893 _handlers->append(entry);
duke@435 1894 // set handler index
duke@435 1895 assert(_fingerprints->length() == _handlers->length(), "sanity check");
duke@435 1896 result = _fingerprints->length() - 1;
duke@435 1897 }
duke@435 1898 // Outside of the lock
duke@435 1899 if (B != NULL) {
duke@435 1900 char blob_id[256];
duke@435 1901 jio_snprintf(blob_id,
duke@435 1902 sizeof(blob_id),
duke@435 1903 "%s(" PTR64_FORMAT ")@" PTR_FORMAT,
duke@435 1904 AdapterHandlerEntry::name,
duke@435 1905 fingerprint,
duke@435 1906 B->instructions_begin());
duke@435 1907 VTune::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
duke@435 1908 Forte::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
duke@435 1909
duke@435 1910 if (JvmtiExport::should_post_dynamic_code_generated()) {
duke@435 1911 JvmtiExport::post_dynamic_code_generated(blob_id,
duke@435 1912 B->instructions_begin(),
duke@435 1913 B->instructions_end());
duke@435 1914 }
duke@435 1915 }
duke@435 1916 return result;
duke@435 1917 }
duke@435 1918
duke@435 1919 void AdapterHandlerEntry::relocate(address new_base) {
duke@435 1920 ptrdiff_t delta = new_base - _i2c_entry;
duke@435 1921 _i2c_entry += delta;
duke@435 1922 _c2i_entry += delta;
duke@435 1923 _c2i_unverified_entry += delta;
duke@435 1924 }
duke@435 1925
duke@435 1926 // Create a native wrapper for this native method. The wrapper converts the
duke@435 1927 // java compiled calling convention to the native convention, handlizes
duke@435 1928 // arguments, and transitions to native. On return from the native we transition
duke@435 1929 // back to java blocking if a safepoint is in progress.
duke@435 1930 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
duke@435 1931 ResourceMark rm;
duke@435 1932 nmethod* nm = NULL;
duke@435 1933
duke@435 1934 if (PrintCompilation) {
duke@435 1935 ttyLocker ttyl;
duke@435 1936 tty->print("--- n%s ", (method->is_synchronized() ? "s" : " "));
duke@435 1937 method->print_short_name(tty);
duke@435 1938 if (method->is_static()) {
duke@435 1939 tty->print(" (static)");
duke@435 1940 }
duke@435 1941 tty->cr();
duke@435 1942 }
duke@435 1943
duke@435 1944 assert(method->has_native_function(), "must have something valid to call!");
duke@435 1945
duke@435 1946 {
duke@435 1947 // perform the work while holding the lock, but perform any printing outside the lock
duke@435 1948 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@435 1949 // See if somebody beat us to it
duke@435 1950 nm = method->code();
duke@435 1951 if (nm) {
duke@435 1952 return nm;
duke@435 1953 }
duke@435 1954
duke@435 1955 // Improve alignment slightly
duke@435 1956 u_char* buf = (u_char*)(((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
duke@435 1957 CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
duke@435 1958 // Need a few relocation entries
duke@435 1959 double locs_buf[20];
duke@435 1960 buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
duke@435 1961 MacroAssembler _masm(&buffer);
duke@435 1962
duke@435 1963 // Fill in the signature array, for the calling-convention call.
duke@435 1964 int total_args_passed = method->size_of_parameters();
duke@435 1965
duke@435 1966 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
duke@435 1967 VMRegPair * regs = NEW_RESOURCE_ARRAY(VMRegPair ,total_args_passed);
duke@435 1968 int i=0;
duke@435 1969 if( !method->is_static() ) // Pass in receiver first
duke@435 1970 sig_bt[i++] = T_OBJECT;
duke@435 1971 SignatureStream ss(method->signature());
duke@435 1972 for( ; !ss.at_return_type(); ss.next()) {
duke@435 1973 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
duke@435 1974 if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
duke@435 1975 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
duke@435 1976 }
duke@435 1977 assert( i==total_args_passed, "" );
duke@435 1978 BasicType ret_type = ss.type();
duke@435 1979
duke@435 1980 // Now get the compiled-Java layout as input arguments
duke@435 1981 int comp_args_on_stack;
duke@435 1982 comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
duke@435 1983
duke@435 1984 // Generate the compiled-to-native wrapper code
duke@435 1985 nm = SharedRuntime::generate_native_wrapper(&_masm,
duke@435 1986 method,
duke@435 1987 total_args_passed,
duke@435 1988 comp_args_on_stack,
duke@435 1989 sig_bt,regs,
duke@435 1990 ret_type);
duke@435 1991 }
duke@435 1992
duke@435 1993 // Must unlock before calling set_code
duke@435 1994 // Install the generated code.
duke@435 1995 if (nm != NULL) {
duke@435 1996 method->set_code(method, nm);
duke@435 1997 nm->post_compiled_method_load_event();
duke@435 1998 } else {
duke@435 1999 // CodeCache is full, disable compilation
duke@435 2000 // Ought to log this but compile log is only per compile thread
duke@435 2001 // and we're some non descript Java thread.
duke@435 2002 UseInterpreter = true;
duke@435 2003 if (UseCompiler || AlwaysCompileLoopMethods ) {
duke@435 2004 #ifndef PRODUCT
duke@435 2005 warning("CodeCache is full. Compiler has been disabled");
duke@435 2006 if (CompileTheWorld || ExitOnFullCodeCache) {
duke@435 2007 before_exit(JavaThread::current());
duke@435 2008 exit_globals(); // will delete tty
duke@435 2009 vm_direct_exit(CompileTheWorld ? 0 : 1);
duke@435 2010 }
duke@435 2011 #endif
duke@435 2012 UseCompiler = false;
duke@435 2013 AlwaysCompileLoopMethods = false;
duke@435 2014 }
duke@435 2015 }
duke@435 2016 return nm;
duke@435 2017 }
duke@435 2018
kamg@551 2019 #ifdef HAVE_DTRACE_H
kamg@551 2020 // Create a dtrace nmethod for this method. The wrapper converts the
kamg@551 2021 // java compiled calling convention to the native convention, makes a dummy call
kamg@551 2022 // (actually nops for the size of the call instruction, which become a trap if
kamg@551 2023 // probe is enabled). The returns to the caller. Since this all looks like a
kamg@551 2024 // leaf no thread transition is needed.
kamg@551 2025
kamg@551 2026 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
kamg@551 2027 ResourceMark rm;
kamg@551 2028 nmethod* nm = NULL;
kamg@551 2029
kamg@551 2030 if (PrintCompilation) {
kamg@551 2031 ttyLocker ttyl;
kamg@551 2032 tty->print("--- n%s ");
kamg@551 2033 method->print_short_name(tty);
kamg@551 2034 if (method->is_static()) {
kamg@551 2035 tty->print(" (static)");
kamg@551 2036 }
kamg@551 2037 tty->cr();
kamg@551 2038 }
kamg@551 2039
kamg@551 2040 {
kamg@551 2041 // perform the work while holding the lock, but perform any printing
kamg@551 2042 // outside the lock
kamg@551 2043 MutexLocker mu(AdapterHandlerLibrary_lock);
kamg@551 2044 // See if somebody beat us to it
kamg@551 2045 nm = method->code();
kamg@551 2046 if (nm) {
kamg@551 2047 return nm;
kamg@551 2048 }
kamg@551 2049
kamg@551 2050 // Improve alignment slightly
kamg@551 2051 u_char* buf = (u_char*)
kamg@551 2052 (((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
kamg@551 2053 CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
kamg@551 2054 // Need a few relocation entries
kamg@551 2055 double locs_buf[20];
kamg@551 2056 buffer.insts()->initialize_shared_locs(
kamg@551 2057 (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
kamg@551 2058 MacroAssembler _masm(&buffer);
kamg@551 2059
kamg@551 2060 // Generate the compiled-to-native wrapper code
kamg@551 2061 nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
kamg@551 2062 }
kamg@551 2063 return nm;
kamg@551 2064 }
kamg@551 2065
kamg@551 2066 // the dtrace method needs to convert java lang string to utf8 string.
kamg@551 2067 void SharedRuntime::get_utf(oopDesc* src, address dst) {
kamg@551 2068 typeArrayOop jlsValue = java_lang_String::value(src);
kamg@551 2069 int jlsOffset = java_lang_String::offset(src);
kamg@551 2070 int jlsLen = java_lang_String::length(src);
kamg@551 2071 jchar* jlsPos = (jlsLen == 0) ? NULL :
kamg@551 2072 jlsValue->char_at_addr(jlsOffset);
kamg@551 2073 (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
kamg@551 2074 }
kamg@551 2075 #endif // ndef HAVE_DTRACE_H
kamg@551 2076
duke@435 2077 // -------------------------------------------------------------------------
duke@435 2078 // Java-Java calling convention
duke@435 2079 // (what you use when Java calls Java)
duke@435 2080
duke@435 2081 //------------------------------name_for_receiver----------------------------------
duke@435 2082 // For a given signature, return the VMReg for parameter 0.
duke@435 2083 VMReg SharedRuntime::name_for_receiver() {
duke@435 2084 VMRegPair regs;
duke@435 2085 BasicType sig_bt = T_OBJECT;
duke@435 2086 (void) java_calling_convention(&sig_bt, &regs, 1, true);
duke@435 2087 // Return argument 0 register. In the LP64 build pointers
duke@435 2088 // take 2 registers, but the VM wants only the 'main' name.
duke@435 2089 return regs.first();
duke@435 2090 }
duke@435 2091
duke@435 2092 VMRegPair *SharedRuntime::find_callee_arguments(symbolOop sig, bool is_static, int* arg_size) {
duke@435 2093 // This method is returning a data structure allocating as a
duke@435 2094 // ResourceObject, so do not put any ResourceMarks in here.
duke@435 2095 char *s = sig->as_C_string();
duke@435 2096 int len = (int)strlen(s);
duke@435 2097 *s++; len--; // Skip opening paren
duke@435 2098 char *t = s+len;
duke@435 2099 while( *(--t) != ')' ) ; // Find close paren
duke@435 2100
duke@435 2101 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
duke@435 2102 VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
duke@435 2103 int cnt = 0;
duke@435 2104 if (!is_static) {
duke@435 2105 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
duke@435 2106 }
duke@435 2107
duke@435 2108 while( s < t ) {
duke@435 2109 switch( *s++ ) { // Switch on signature character
duke@435 2110 case 'B': sig_bt[cnt++] = T_BYTE; break;
duke@435 2111 case 'C': sig_bt[cnt++] = T_CHAR; break;
duke@435 2112 case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break;
duke@435 2113 case 'F': sig_bt[cnt++] = T_FLOAT; break;
duke@435 2114 case 'I': sig_bt[cnt++] = T_INT; break;
duke@435 2115 case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break;
duke@435 2116 case 'S': sig_bt[cnt++] = T_SHORT; break;
duke@435 2117 case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
duke@435 2118 case 'V': sig_bt[cnt++] = T_VOID; break;
duke@435 2119 case 'L': // Oop
duke@435 2120 while( *s++ != ';' ) ; // Skip signature
duke@435 2121 sig_bt[cnt++] = T_OBJECT;
duke@435 2122 break;
duke@435 2123 case '[': { // Array
duke@435 2124 do { // Skip optional size
duke@435 2125 while( *s >= '0' && *s <= '9' ) s++;
duke@435 2126 } while( *s++ == '[' ); // Nested arrays?
duke@435 2127 // Skip element type
duke@435 2128 if( s[-1] == 'L' )
duke@435 2129 while( *s++ != ';' ) ; // Skip signature
duke@435 2130 sig_bt[cnt++] = T_ARRAY;
duke@435 2131 break;
duke@435 2132 }
duke@435 2133 default : ShouldNotReachHere();
duke@435 2134 }
duke@435 2135 }
duke@435 2136 assert( cnt < 256, "grow table size" );
duke@435 2137
duke@435 2138 int comp_args_on_stack;
duke@435 2139 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
duke@435 2140
duke@435 2141 // the calling convention doesn't count out_preserve_stack_slots so
duke@435 2142 // we must add that in to get "true" stack offsets.
duke@435 2143
duke@435 2144 if (comp_args_on_stack) {
duke@435 2145 for (int i = 0; i < cnt; i++) {
duke@435 2146 VMReg reg1 = regs[i].first();
duke@435 2147 if( reg1->is_stack()) {
duke@435 2148 // Yuck
duke@435 2149 reg1 = reg1->bias(out_preserve_stack_slots());
duke@435 2150 }
duke@435 2151 VMReg reg2 = regs[i].second();
duke@435 2152 if( reg2->is_stack()) {
duke@435 2153 // Yuck
duke@435 2154 reg2 = reg2->bias(out_preserve_stack_slots());
duke@435 2155 }
duke@435 2156 regs[i].set_pair(reg2, reg1);
duke@435 2157 }
duke@435 2158 }
duke@435 2159
duke@435 2160 // results
duke@435 2161 *arg_size = cnt;
duke@435 2162 return regs;
duke@435 2163 }
duke@435 2164
duke@435 2165 // OSR Migration Code
duke@435 2166 //
duke@435 2167 // This code is used convert interpreter frames into compiled frames. It is
duke@435 2168 // called from very start of a compiled OSR nmethod. A temp array is
duke@435 2169 // allocated to hold the interesting bits of the interpreter frame. All
duke@435 2170 // active locks are inflated to allow them to move. The displaced headers and
duke@435 2171 // active interpeter locals are copied into the temp buffer. Then we return
duke@435 2172 // back to the compiled code. The compiled code then pops the current
duke@435 2173 // interpreter frame off the stack and pushes a new compiled frame. Then it
duke@435 2174 // copies the interpreter locals and displaced headers where it wants.
duke@435 2175 // Finally it calls back to free the temp buffer.
duke@435 2176 //
duke@435 2177 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
duke@435 2178
duke@435 2179 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
duke@435 2180
duke@435 2181 #ifdef IA64
duke@435 2182 ShouldNotReachHere(); // NYI
duke@435 2183 #endif /* IA64 */
duke@435 2184
duke@435 2185 //
duke@435 2186 // This code is dependent on the memory layout of the interpreter local
duke@435 2187 // array and the monitors. On all of our platforms the layout is identical
duke@435 2188 // so this code is shared. If some platform lays the their arrays out
duke@435 2189 // differently then this code could move to platform specific code or
duke@435 2190 // the code here could be modified to copy items one at a time using
duke@435 2191 // frame accessor methods and be platform independent.
duke@435 2192
duke@435 2193 frame fr = thread->last_frame();
duke@435 2194 assert( fr.is_interpreted_frame(), "" );
duke@435 2195 assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
duke@435 2196
duke@435 2197 // Figure out how many monitors are active.
duke@435 2198 int active_monitor_count = 0;
duke@435 2199 for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
duke@435 2200 kptr < fr.interpreter_frame_monitor_begin();
duke@435 2201 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
duke@435 2202 if( kptr->obj() != NULL ) active_monitor_count++;
duke@435 2203 }
duke@435 2204
duke@435 2205 // QQQ we could place number of active monitors in the array so that compiled code
duke@435 2206 // could double check it.
duke@435 2207
duke@435 2208 methodOop moop = fr.interpreter_frame_method();
duke@435 2209 int max_locals = moop->max_locals();
duke@435 2210 // Allocate temp buffer, 1 word per local & 2 per active monitor
duke@435 2211 int buf_size_words = max_locals + active_monitor_count*2;
duke@435 2212 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
duke@435 2213
duke@435 2214 // Copy the locals. Order is preserved so that loading of longs works.
duke@435 2215 // Since there's no GC I can copy the oops blindly.
duke@435 2216 assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
duke@435 2217 if (TaggedStackInterpreter) {
duke@435 2218 for (int i = 0; i < max_locals; i++) {
duke@435 2219 // copy only each local separately to the buffer avoiding the tag
duke@435 2220 buf[i] = *fr.interpreter_frame_local_at(max_locals-i-1);
duke@435 2221 }
duke@435 2222 } else {
duke@435 2223 Copy::disjoint_words(
duke@435 2224 (HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
duke@435 2225 (HeapWord*)&buf[0],
duke@435 2226 max_locals);
duke@435 2227 }
duke@435 2228
duke@435 2229 // Inflate locks. Copy the displaced headers. Be careful, there can be holes.
duke@435 2230 int i = max_locals;
duke@435 2231 for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
duke@435 2232 kptr2 < fr.interpreter_frame_monitor_begin();
duke@435 2233 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
duke@435 2234 if( kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array
duke@435 2235 BasicLock *lock = kptr2->lock();
duke@435 2236 // Inflate so the displaced header becomes position-independent
duke@435 2237 if (lock->displaced_header()->is_unlocked())
duke@435 2238 ObjectSynchronizer::inflate_helper(kptr2->obj());
duke@435 2239 // Now the displaced header is free to move
duke@435 2240 buf[i++] = (intptr_t)lock->displaced_header();
duke@435 2241 buf[i++] = (intptr_t)kptr2->obj();
duke@435 2242 }
duke@435 2243 }
duke@435 2244 assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
duke@435 2245
duke@435 2246 return buf;
duke@435 2247 JRT_END
duke@435 2248
duke@435 2249 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
duke@435 2250 FREE_C_HEAP_ARRAY(intptr_t,buf);
duke@435 2251 JRT_END
duke@435 2252
duke@435 2253 #ifndef PRODUCT
duke@435 2254 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
duke@435 2255
kvn@559 2256 if (_handlers == NULL) return false;
kvn@559 2257
duke@435 2258 for (int i = 0 ; i < _handlers->length() ; i++) {
duke@435 2259 AdapterHandlerEntry* a = get_entry(i);
duke@435 2260 if ( a != NULL && b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
duke@435 2261 }
duke@435 2262 return false;
duke@435 2263 }
duke@435 2264
duke@435 2265 void AdapterHandlerLibrary::print_handler(CodeBlob* b) {
duke@435 2266
duke@435 2267 for (int i = 0 ; i < _handlers->length() ; i++) {
duke@435 2268 AdapterHandlerEntry* a = get_entry(i);
duke@435 2269 if ( a != NULL && b == CodeCache::find_blob(a->get_i2c_entry()) ) {
duke@435 2270 tty->print("Adapter for signature: ");
duke@435 2271 // Fingerprinter::print(_fingerprints->at(i));
duke@435 2272 tty->print("0x%" FORMAT64_MODIFIER "x", _fingerprints->at(i));
duke@435 2273 tty->print_cr(" i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
duke@435 2274 a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
duke@435 2275
duke@435 2276 return;
duke@435 2277 }
duke@435 2278 }
duke@435 2279 assert(false, "Should have found handler");
duke@435 2280 }
duke@435 2281 #endif /* PRODUCT */

mercurial