src/share/vm/gc_implementation/parallelScavenge/psAdaptiveSizePolicy.cpp

Thu, 09 Apr 2015 15:58:49 +0200

author
mlarsson
date
Thu, 09 Apr 2015 15:58:49 +0200
changeset 7686
fb69749583e8
parent 6680
78bbf4d43a14
child 6876
710a3c8b516e
permissions
-rw-r--r--

8072621: Clean up around VM_GC_Operations
Reviewed-by: brutisso, jmasa

duke@435 1 /*
drchase@6680 2 * Copyright (c) 2002, 2014, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
jwilhelm@6267 26 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
stefank@2314 27 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
stefank@2314 28 #include "gc_implementation/parallelScavenge/psGCAdaptivePolicyCounters.hpp"
stefank@2314 29 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
stefank@2314 30 #include "gc_implementation/shared/gcPolicyCounters.hpp"
stefank@2314 31 #include "gc_interface/gcCause.hpp"
stefank@2314 32 #include "memory/collectorPolicy.hpp"
stefank@2314 33 #include "runtime/timer.hpp"
stefank@2314 34 #include "utilities/top.hpp"
duke@435 35
duke@435 36 #include <math.h>
duke@435 37
drchase@6680 38 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
drchase@6680 39
duke@435 40 PSAdaptiveSizePolicy::PSAdaptiveSizePolicy(size_t init_eden_size,
duke@435 41 size_t init_promo_size,
duke@435 42 size_t init_survivor_size,
jwilhelm@6085 43 size_t space_alignment,
duke@435 44 double gc_pause_goal_sec,
duke@435 45 double gc_minor_pause_goal_sec,
duke@435 46 uint gc_cost_ratio) :
duke@435 47 AdaptiveSizePolicy(init_eden_size,
duke@435 48 init_promo_size,
duke@435 49 init_survivor_size,
duke@435 50 gc_pause_goal_sec,
duke@435 51 gc_cost_ratio),
jwilhelm@6084 52 _collection_cost_margin_fraction(AdaptiveSizePolicyCollectionCostMargin / 100.0),
jwilhelm@6085 53 _space_alignment(space_alignment),
duke@435 54 _live_at_last_full_gc(init_promo_size),
duke@435 55 _gc_minor_pause_goal_sec(gc_minor_pause_goal_sec),
duke@435 56 _latest_major_mutator_interval_seconds(0),
duke@435 57 _young_gen_change_for_major_pause_count(0)
duke@435 58 {
duke@435 59 // Sizing policy statistics
duke@435 60 _avg_major_pause =
duke@435 61 new AdaptivePaddedAverage(AdaptiveTimeWeight, PausePadding);
duke@435 62 _avg_minor_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 63 _avg_major_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 64
duke@435 65 _avg_base_footprint = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight);
duke@435 66 _major_pause_old_estimator =
duke@435 67 new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
duke@435 68 _major_pause_young_estimator =
duke@435 69 new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
duke@435 70 _major_collection_estimator =
duke@435 71 new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
duke@435 72
duke@435 73 _young_gen_size_increment_supplement = YoungGenerationSizeSupplement;
duke@435 74 _old_gen_size_increment_supplement = TenuredGenerationSizeSupplement;
duke@435 75
duke@435 76 // Start the timers
duke@435 77 _major_timer.start();
duke@435 78
duke@435 79 _old_gen_policy_is_ready = false;
duke@435 80 }
duke@435 81
jwilhelm@6267 82 size_t PSAdaptiveSizePolicy::calculate_free_based_on_live(size_t live, uintx ratio_as_percentage) {
jwilhelm@6267 83 // We want to calculate how much free memory there can be based on the
jwilhelm@6267 84 // amount of live data currently in the old gen. Using the formula:
jwilhelm@6267 85 // ratio * (free + live) = free
jwilhelm@6267 86 // Some equation solving later we get:
jwilhelm@6267 87 // free = (live * ratio) / (1 - ratio)
jwilhelm@6267 88
jwilhelm@6267 89 const double ratio = ratio_as_percentage / 100.0;
jwilhelm@6267 90 const double ratio_inverse = 1.0 - ratio;
jwilhelm@6267 91 const double tmp = live * ratio;
jwilhelm@6267 92 size_t free = (size_t)(tmp / ratio_inverse);
jwilhelm@6267 93
jwilhelm@6267 94 return free;
jwilhelm@6267 95 }
jwilhelm@6267 96
jwilhelm@6267 97 size_t PSAdaptiveSizePolicy::calculated_old_free_size_in_bytes() const {
jwilhelm@6267 98 size_t free_size = (size_t)(_promo_size + avg_promoted()->padded_average());
jwilhelm@6267 99 size_t live = ParallelScavengeHeap::heap()->old_gen()->used_in_bytes();
jwilhelm@6267 100
jwilhelm@6267 101 if (MinHeapFreeRatio != 0) {
jwilhelm@6267 102 size_t min_free = calculate_free_based_on_live(live, MinHeapFreeRatio);
jwilhelm@6267 103 free_size = MAX2(free_size, min_free);
jwilhelm@6267 104 }
jwilhelm@6267 105
jwilhelm@6267 106 if (MaxHeapFreeRatio != 100) {
jwilhelm@6267 107 size_t max_free = calculate_free_based_on_live(live, MaxHeapFreeRatio);
jwilhelm@6267 108 free_size = MIN2(max_free, free_size);
jwilhelm@6267 109 }
jwilhelm@6267 110
jwilhelm@6267 111 return free_size;
jwilhelm@6267 112 }
jwilhelm@6267 113
duke@435 114 void PSAdaptiveSizePolicy::major_collection_begin() {
duke@435 115 // Update the interval time
duke@435 116 _major_timer.stop();
duke@435 117 // Save most recent collection time
duke@435 118 _latest_major_mutator_interval_seconds = _major_timer.seconds();
duke@435 119 _major_timer.reset();
duke@435 120 _major_timer.start();
duke@435 121 }
duke@435 122
duke@435 123 void PSAdaptiveSizePolicy::update_minor_pause_old_estimator(
duke@435 124 double minor_pause_in_ms) {
duke@435 125 double promo_size_in_mbytes = ((double)_promo_size)/((double)M);
duke@435 126 _minor_pause_old_estimator->update(promo_size_in_mbytes,
duke@435 127 minor_pause_in_ms);
duke@435 128 }
duke@435 129
duke@435 130 void PSAdaptiveSizePolicy::major_collection_end(size_t amount_live,
duke@435 131 GCCause::Cause gc_cause) {
duke@435 132 // Update the pause time.
duke@435 133 _major_timer.stop();
duke@435 134
duke@435 135 if (gc_cause != GCCause::_java_lang_system_gc ||
duke@435 136 UseAdaptiveSizePolicyWithSystemGC) {
duke@435 137 double major_pause_in_seconds = _major_timer.seconds();
duke@435 138 double major_pause_in_ms = major_pause_in_seconds * MILLIUNITS;
duke@435 139
duke@435 140 // Sample for performance counter
duke@435 141 _avg_major_pause->sample(major_pause_in_seconds);
duke@435 142
duke@435 143 // Cost of collection (unit-less)
duke@435 144 double collection_cost = 0.0;
duke@435 145 if ((_latest_major_mutator_interval_seconds > 0.0) &&
duke@435 146 (major_pause_in_seconds > 0.0)) {
duke@435 147 double interval_in_seconds =
duke@435 148 _latest_major_mutator_interval_seconds + major_pause_in_seconds;
duke@435 149 collection_cost =
duke@435 150 major_pause_in_seconds / interval_in_seconds;
duke@435 151 avg_major_gc_cost()->sample(collection_cost);
duke@435 152
duke@435 153 // Sample for performance counter
duke@435 154 _avg_major_interval->sample(interval_in_seconds);
duke@435 155 }
duke@435 156
duke@435 157 // Calculate variables used to estimate pause time vs. gen sizes
duke@435 158 double eden_size_in_mbytes = ((double)_eden_size)/((double)M);
duke@435 159 double promo_size_in_mbytes = ((double)_promo_size)/((double)M);
duke@435 160 _major_pause_old_estimator->update(promo_size_in_mbytes,
duke@435 161 major_pause_in_ms);
duke@435 162 _major_pause_young_estimator->update(eden_size_in_mbytes,
duke@435 163 major_pause_in_ms);
duke@435 164
duke@435 165 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 166 gclog_or_tty->print("psAdaptiveSizePolicy::major_collection_end: "
duke@435 167 "major gc cost: %f average: %f", collection_cost,
duke@435 168 avg_major_gc_cost()->average());
duke@435 169 gclog_or_tty->print_cr(" major pause: %f major period %f",
duke@435 170 major_pause_in_ms,
duke@435 171 _latest_major_mutator_interval_seconds * MILLIUNITS);
duke@435 172 }
duke@435 173
duke@435 174 // Calculate variable used to estimate collection cost vs. gen sizes
duke@435 175 assert(collection_cost >= 0.0, "Expected to be non-negative");
duke@435 176 _major_collection_estimator->update(promo_size_in_mbytes,
duke@435 177 collection_cost);
duke@435 178 }
duke@435 179
duke@435 180 // Update the amount live at the end of a full GC
duke@435 181 _live_at_last_full_gc = amount_live;
duke@435 182
duke@435 183 // The policy does not have enough data until at least some major collections
duke@435 184 // have been done.
duke@435 185 if (_avg_major_pause->count() >= AdaptiveSizePolicyReadyThreshold) {
duke@435 186 _old_gen_policy_is_ready = true;
duke@435 187 }
duke@435 188
duke@435 189 // Interval times use this timer to measure the interval that
duke@435 190 // the mutator runs. Reset after the GC pause has been measured.
duke@435 191 _major_timer.reset();
duke@435 192 _major_timer.start();
duke@435 193 }
duke@435 194
duke@435 195 // If the remaining free space in the old generation is less that
duke@435 196 // that expected to be needed by the next collection, do a full
duke@435 197 // collection now.
duke@435 198 bool PSAdaptiveSizePolicy::should_full_GC(size_t old_free_in_bytes) {
duke@435 199
duke@435 200 // A similar test is done in the scavenge's should_attempt_scavenge(). If
duke@435 201 // this is changed, decide if that test should also be changed.
duke@435 202 bool result = padded_average_promoted_in_bytes() > (float) old_free_in_bytes;
duke@435 203 if (PrintGCDetails && Verbose) {
duke@435 204 if (result) {
duke@435 205 gclog_or_tty->print(" full after scavenge: ");
duke@435 206 } else {
duke@435 207 gclog_or_tty->print(" no full after scavenge: ");
duke@435 208 }
duke@435 209 gclog_or_tty->print_cr(" average_promoted " SIZE_FORMAT
duke@435 210 " padded_average_promoted " SIZE_FORMAT
duke@435 211 " free in old gen " SIZE_FORMAT,
duke@435 212 (size_t) average_promoted_in_bytes(),
duke@435 213 (size_t) padded_average_promoted_in_bytes(),
duke@435 214 old_free_in_bytes);
duke@435 215 }
duke@435 216 return result;
duke@435 217 }
duke@435 218
duke@435 219 void PSAdaptiveSizePolicy::clear_generation_free_space_flags() {
duke@435 220
duke@435 221 AdaptiveSizePolicy::clear_generation_free_space_flags();
duke@435 222
duke@435 223 set_change_old_gen_for_min_pauses(0);
duke@435 224
duke@435 225 set_change_young_gen_for_maj_pauses(0);
duke@435 226 }
duke@435 227
duke@435 228 // If this is not a full GC, only test and modify the young generation.
duke@435 229
tamao@5192 230 void PSAdaptiveSizePolicy::compute_generations_free_space(
jmasa@1822 231 size_t young_live,
jmasa@1822 232 size_t eden_live,
jmasa@1822 233 size_t old_live,
jmasa@1822 234 size_t cur_eden,
jmasa@1822 235 size_t max_old_gen_size,
jmasa@1822 236 size_t max_eden_size,
tamao@5120 237 bool is_full_gc) {
tamao@5120 238 compute_eden_space_size(young_live,
tamao@5120 239 eden_live,
tamao@5120 240 cur_eden,
tamao@5120 241 max_eden_size,
tamao@5120 242 is_full_gc);
tamao@5120 243
tamao@5120 244 compute_old_gen_free_space(old_live,
tamao@5120 245 cur_eden,
tamao@5120 246 max_old_gen_size,
tamao@5120 247 is_full_gc);
tamao@5120 248 }
tamao@5120 249
tamao@5120 250 void PSAdaptiveSizePolicy::compute_eden_space_size(
tamao@5120 251 size_t young_live,
tamao@5120 252 size_t eden_live,
tamao@5120 253 size_t cur_eden,
tamao@5120 254 size_t max_eden_size,
tamao@5120 255 bool is_full_gc) {
duke@435 256
duke@435 257 // Update statistics
duke@435 258 // Time statistics are updated as we go, update footprint stats here
coleenp@4037 259 _avg_base_footprint->sample(BaseFootPrintEstimate);
duke@435 260 avg_young_live()->sample(young_live);
duke@435 261 avg_eden_live()->sample(eden_live);
tamao@5120 262
tamao@5120 263 // This code used to return if the policy was not ready , i.e.,
tamao@5120 264 // policy_is_ready() returning false. The intent was that
tamao@5120 265 // decisions below needed major collection times and so could
tamao@5120 266 // not be made before two major collections. A consequence was
tamao@5120 267 // adjustments to the young generation were not done until after
tamao@5120 268 // two major collections even if the minor collections times
tamao@5120 269 // exceeded the requested goals. Now let the young generation
tamao@5120 270 // adjust for the minor collection times. Major collection times
tamao@5120 271 // will be zero for the first collection and will naturally be
tamao@5120 272 // ignored. Tenured generation adjustments are only made at the
tamao@5120 273 // full collections so until the second major collection has
tamao@5120 274 // been reached, no tenured generation adjustments will be made.
tamao@5120 275
tamao@5120 276 // Until we know better, desired promotion size uses the last calculation
tamao@5120 277 size_t desired_promo_size = _promo_size;
tamao@5120 278
tamao@5120 279 // Start eden at the current value. The desired value that is stored
tamao@5120 280 // in _eden_size is not bounded by constraints of the heap and can
tamao@5120 281 // run away.
tamao@5120 282 //
tamao@5120 283 // As expected setting desired_eden_size to the current
tamao@5120 284 // value of desired_eden_size as a starting point
tamao@5120 285 // caused desired_eden_size to grow way too large and caused
tamao@5120 286 // an overflow down stream. It may have improved performance in
tamao@5120 287 // some case but is dangerous.
tamao@5120 288 size_t desired_eden_size = cur_eden;
tamao@5120 289
tamao@5120 290 // Cache some values. There's a bit of work getting these, so
tamao@5120 291 // we might save a little time.
tamao@5120 292 const double major_cost = major_gc_cost();
tamao@5120 293 const double minor_cost = minor_gc_cost();
tamao@5120 294
tamao@5120 295 // This method sets the desired eden size. That plus the
tamao@5120 296 // desired survivor space sizes sets the desired young generation
tamao@5120 297 // size. This methods does not know what the desired survivor
tamao@5120 298 // size is but expects that other policy will attempt to make
tamao@5120 299 // the survivor sizes compatible with the live data in the
tamao@5120 300 // young generation. This limit is an estimate of the space left
tamao@5120 301 // in the young generation after the survivor spaces have been
tamao@5120 302 // subtracted out.
tamao@5120 303 size_t eden_limit = max_eden_size;
tamao@5120 304
tamao@5120 305 const double gc_cost_limit = GCTimeLimit/100.0;
tamao@5120 306
tamao@5120 307 // Which way should we go?
tamao@5120 308 // if pause requirement is not met
tamao@5120 309 // adjust size of any generation with average paus exceeding
tamao@5120 310 // the pause limit. Adjust one pause at a time (the larger)
tamao@5120 311 // and only make adjustments for the major pause at full collections.
tamao@5120 312 // else if throughput requirement not met
tamao@5120 313 // adjust the size of the generation with larger gc time. Only
tamao@5120 314 // adjust one generation at a time.
tamao@5120 315 // else
tamao@5120 316 // adjust down the total heap size. Adjust down the larger of the
tamao@5120 317 // generations.
tamao@5120 318
tamao@5120 319 // Add some checks for a threshold for a change. For example,
tamao@5120 320 // a change less than the necessary alignment is probably not worth
tamao@5120 321 // attempting.
tamao@5120 322
tamao@5120 323
tamao@5120 324 if ((_avg_minor_pause->padded_average() > gc_pause_goal_sec()) ||
tamao@5120 325 (_avg_major_pause->padded_average() > gc_pause_goal_sec())) {
tamao@5120 326 //
tamao@5120 327 // Check pauses
tamao@5120 328 //
tamao@5120 329 // Make changes only to affect one of the pauses (the larger)
tamao@5120 330 // at a time.
tamao@5120 331 adjust_eden_for_pause_time(is_full_gc, &desired_promo_size, &desired_eden_size);
tamao@5120 332
tamao@5120 333 } else if (_avg_minor_pause->padded_average() > gc_minor_pause_goal_sec()) {
tamao@5120 334 // Adjust only for the minor pause time goal
tamao@5120 335 adjust_eden_for_minor_pause_time(is_full_gc, &desired_eden_size);
tamao@5120 336
tamao@5120 337 } else if(adjusted_mutator_cost() < _throughput_goal) {
tamao@5120 338 // This branch used to require that (mutator_cost() > 0.0 in 1.4.2.
tamao@5120 339 // This sometimes resulted in skipping to the minimize footprint
tamao@5120 340 // code. Change this to try and reduce GC time if mutator time is
tamao@5120 341 // negative for whatever reason. Or for future consideration,
tamao@5120 342 // bail out of the code if mutator time is negative.
tamao@5120 343 //
tamao@5120 344 // Throughput
tamao@5120 345 //
tamao@5120 346 assert(major_cost >= 0.0, "major cost is < 0.0");
tamao@5120 347 assert(minor_cost >= 0.0, "minor cost is < 0.0");
tamao@5120 348 // Try to reduce the GC times.
tamao@5120 349 adjust_eden_for_throughput(is_full_gc, &desired_eden_size);
tamao@5120 350
tamao@5120 351 } else {
tamao@5120 352
tamao@5120 353 // Be conservative about reducing the footprint.
tamao@5120 354 // Do a minimum number of major collections first.
tamao@5120 355 // Have reasonable averages for major and minor collections costs.
tamao@5120 356 if (UseAdaptiveSizePolicyFootprintGoal &&
tamao@5120 357 young_gen_policy_is_ready() &&
tamao@5120 358 avg_major_gc_cost()->average() >= 0.0 &&
tamao@5120 359 avg_minor_gc_cost()->average() >= 0.0) {
tamao@5120 360 size_t desired_sum = desired_eden_size + desired_promo_size;
tamao@5120 361 desired_eden_size = adjust_eden_for_footprint(desired_eden_size, desired_sum);
tamao@5120 362 }
tamao@5120 363 }
tamao@5120 364
tamao@5120 365 // Note we make the same tests as in the code block below; the code
tamao@5120 366 // seems a little easier to read with the printing in another block.
tamao@5120 367 if (PrintAdaptiveSizePolicy) {
tamao@5120 368 if (desired_eden_size > eden_limit) {
tamao@5120 369 gclog_or_tty->print_cr(
tamao@5120 370 "PSAdaptiveSizePolicy::compute_eden_space_size limits:"
tamao@5120 371 " desired_eden_size: " SIZE_FORMAT
tamao@5120 372 " old_eden_size: " SIZE_FORMAT
tamao@5120 373 " eden_limit: " SIZE_FORMAT
tamao@5120 374 " cur_eden: " SIZE_FORMAT
tamao@5120 375 " max_eden_size: " SIZE_FORMAT
tamao@5120 376 " avg_young_live: " SIZE_FORMAT,
tamao@5120 377 desired_eden_size, _eden_size, eden_limit, cur_eden,
tamao@5120 378 max_eden_size, (size_t)avg_young_live()->average());
tamao@5120 379 }
tamao@5120 380 if (gc_cost() > gc_cost_limit) {
tamao@5120 381 gclog_or_tty->print_cr(
tamao@5120 382 "PSAdaptiveSizePolicy::compute_eden_space_size: gc time limit"
tamao@5120 383 " gc_cost: %f "
tamao@5120 384 " GCTimeLimit: %d",
tamao@5120 385 gc_cost(), GCTimeLimit);
tamao@5120 386 }
tamao@5120 387 }
tamao@5120 388
tamao@5120 389 // Align everything and make a final limit check
jwilhelm@6085 390 desired_eden_size = align_size_up(desired_eden_size, _space_alignment);
jwilhelm@6085 391 desired_eden_size = MAX2(desired_eden_size, _space_alignment);
tamao@5120 392
jwilhelm@6085 393 eden_limit = align_size_down(eden_limit, _space_alignment);
tamao@5120 394
tamao@5120 395 // And one last limit check, now that we've aligned things.
tamao@5120 396 if (desired_eden_size > eden_limit) {
tamao@5120 397 // If the policy says to get a larger eden but
tamao@5120 398 // is hitting the limit, don't decrease eden.
tamao@5120 399 // This can lead to a general drifting down of the
tamao@5120 400 // eden size. Let the tenuring calculation push more
tamao@5120 401 // into the old gen.
tamao@5120 402 desired_eden_size = MAX2(eden_limit, cur_eden);
tamao@5120 403 }
tamao@5120 404
tamao@5120 405 if (PrintAdaptiveSizePolicy) {
tamao@5120 406 // Timing stats
tamao@5120 407 gclog_or_tty->print(
tamao@5120 408 "PSAdaptiveSizePolicy::compute_eden_space_size: costs"
tamao@5120 409 " minor_time: %f"
tamao@5120 410 " major_cost: %f"
tamao@5120 411 " mutator_cost: %f"
tamao@5120 412 " throughput_goal: %f",
tamao@5120 413 minor_gc_cost(), major_gc_cost(), mutator_cost(),
tamao@5120 414 _throughput_goal);
tamao@5120 415
tamao@5120 416 // We give more details if Verbose is set
tamao@5120 417 if (Verbose) {
tamao@5120 418 gclog_or_tty->print( " minor_pause: %f"
tamao@5120 419 " major_pause: %f"
tamao@5120 420 " minor_interval: %f"
tamao@5120 421 " major_interval: %f"
tamao@5120 422 " pause_goal: %f",
tamao@5120 423 _avg_minor_pause->padded_average(),
tamao@5120 424 _avg_major_pause->padded_average(),
tamao@5120 425 _avg_minor_interval->average(),
tamao@5120 426 _avg_major_interval->average(),
tamao@5120 427 gc_pause_goal_sec());
tamao@5120 428 }
tamao@5120 429
tamao@5120 430 // Footprint stats
tamao@5120 431 gclog_or_tty->print( " live_space: " SIZE_FORMAT
tamao@5120 432 " free_space: " SIZE_FORMAT,
tamao@5120 433 live_space(), free_space());
tamao@5120 434 // More detail
tamao@5120 435 if (Verbose) {
tamao@5120 436 gclog_or_tty->print( " base_footprint: " SIZE_FORMAT
tamao@5120 437 " avg_young_live: " SIZE_FORMAT
tamao@5120 438 " avg_old_live: " SIZE_FORMAT,
tamao@5120 439 (size_t)_avg_base_footprint->average(),
tamao@5120 440 (size_t)avg_young_live()->average(),
tamao@5120 441 (size_t)avg_old_live()->average());
tamao@5120 442 }
tamao@5120 443
tamao@5120 444 // And finally, our old and new sizes.
tamao@5120 445 gclog_or_tty->print(" old_eden_size: " SIZE_FORMAT
tamao@5120 446 " desired_eden_size: " SIZE_FORMAT,
tamao@5120 447 _eden_size, desired_eden_size);
tamao@5120 448 gclog_or_tty->cr();
tamao@5120 449 }
tamao@5120 450
tamao@5120 451 set_eden_size(desired_eden_size);
tamao@5120 452 }
tamao@5120 453
tamao@5120 454 void PSAdaptiveSizePolicy::compute_old_gen_free_space(
tamao@5120 455 size_t old_live,
tamao@5120 456 size_t cur_eden,
tamao@5120 457 size_t max_old_gen_size,
tamao@5120 458 bool is_full_gc) {
tamao@5120 459
tamao@5120 460 // Update statistics
tamao@5120 461 // Time statistics are updated as we go, update footprint stats here
duke@435 462 if (is_full_gc) {
duke@435 463 // old_live is only accurate after a full gc
duke@435 464 avg_old_live()->sample(old_live);
duke@435 465 }
duke@435 466
duke@435 467 // This code used to return if the policy was not ready , i.e.,
duke@435 468 // policy_is_ready() returning false. The intent was that
duke@435 469 // decisions below needed major collection times and so could
duke@435 470 // not be made before two major collections. A consequence was
duke@435 471 // adjustments to the young generation were not done until after
duke@435 472 // two major collections even if the minor collections times
duke@435 473 // exceeded the requested goals. Now let the young generation
duke@435 474 // adjust for the minor collection times. Major collection times
duke@435 475 // will be zero for the first collection and will naturally be
duke@435 476 // ignored. Tenured generation adjustments are only made at the
duke@435 477 // full collections so until the second major collection has
duke@435 478 // been reached, no tenured generation adjustments will be made.
duke@435 479
duke@435 480 // Until we know better, desired promotion size uses the last calculation
duke@435 481 size_t desired_promo_size = _promo_size;
duke@435 482
duke@435 483 // Start eden at the current value. The desired value that is stored
duke@435 484 // in _eden_size is not bounded by constraints of the heap and can
duke@435 485 // run away.
duke@435 486 //
duke@435 487 // As expected setting desired_eden_size to the current
duke@435 488 // value of desired_eden_size as a starting point
duke@435 489 // caused desired_eden_size to grow way too large and caused
duke@435 490 // an overflow down stream. It may have improved performance in
duke@435 491 // some case but is dangerous.
duke@435 492 size_t desired_eden_size = cur_eden;
duke@435 493
duke@435 494 // Cache some values. There's a bit of work getting these, so
duke@435 495 // we might save a little time.
duke@435 496 const double major_cost = major_gc_cost();
duke@435 497 const double minor_cost = minor_gc_cost();
duke@435 498
duke@435 499 // Limits on our growth
duke@435 500 size_t promo_limit = (size_t)(max_old_gen_size - avg_old_live()->average());
duke@435 501
duke@435 502 // But don't force a promo size below the current promo size. Otherwise,
duke@435 503 // the promo size will shrink for no good reason.
duke@435 504 promo_limit = MAX2(promo_limit, _promo_size);
duke@435 505
duke@435 506 const double gc_cost_limit = GCTimeLimit/100.0;
duke@435 507
duke@435 508 // Which way should we go?
duke@435 509 // if pause requirement is not met
duke@435 510 // adjust size of any generation with average paus exceeding
duke@435 511 // the pause limit. Adjust one pause at a time (the larger)
duke@435 512 // and only make adjustments for the major pause at full collections.
duke@435 513 // else if throughput requirement not met
duke@435 514 // adjust the size of the generation with larger gc time. Only
duke@435 515 // adjust one generation at a time.
duke@435 516 // else
duke@435 517 // adjust down the total heap size. Adjust down the larger of the
duke@435 518 // generations.
duke@435 519
duke@435 520 // Add some checks for a threshhold for a change. For example,
duke@435 521 // a change less than the necessary alignment is probably not worth
duke@435 522 // attempting.
duke@435 523
duke@435 524 if ((_avg_minor_pause->padded_average() > gc_pause_goal_sec()) ||
duke@435 525 (_avg_major_pause->padded_average() > gc_pause_goal_sec())) {
duke@435 526 //
duke@435 527 // Check pauses
duke@435 528 //
duke@435 529 // Make changes only to affect one of the pauses (the larger)
duke@435 530 // at a time.
tamao@5120 531 if (is_full_gc) {
tamao@5120 532 set_decide_at_full_gc(decide_at_full_gc_true);
tamao@5120 533 adjust_promo_for_pause_time(is_full_gc, &desired_promo_size, &desired_eden_size);
tamao@5120 534 }
duke@435 535 } else if (_avg_minor_pause->padded_average() > gc_minor_pause_goal_sec()) {
duke@435 536 // Adjust only for the minor pause time goal
tamao@5120 537 adjust_promo_for_minor_pause_time(is_full_gc, &desired_promo_size, &desired_eden_size);
duke@435 538 } else if(adjusted_mutator_cost() < _throughput_goal) {
duke@435 539 // This branch used to require that (mutator_cost() > 0.0 in 1.4.2.
duke@435 540 // This sometimes resulted in skipping to the minimize footprint
duke@435 541 // code. Change this to try and reduce GC time if mutator time is
duke@435 542 // negative for whatever reason. Or for future consideration,
duke@435 543 // bail out of the code if mutator time is negative.
duke@435 544 //
duke@435 545 // Throughput
duke@435 546 //
duke@435 547 assert(major_cost >= 0.0, "major cost is < 0.0");
duke@435 548 assert(minor_cost >= 0.0, "minor cost is < 0.0");
duke@435 549 // Try to reduce the GC times.
tamao@5120 550 if (is_full_gc) {
tamao@5120 551 set_decide_at_full_gc(decide_at_full_gc_true);
tamao@5120 552 adjust_promo_for_throughput(is_full_gc, &desired_promo_size);
tamao@5120 553 }
duke@435 554 } else {
duke@435 555
duke@435 556 // Be conservative about reducing the footprint.
duke@435 557 // Do a minimum number of major collections first.
duke@435 558 // Have reasonable averages for major and minor collections costs.
duke@435 559 if (UseAdaptiveSizePolicyFootprintGoal &&
duke@435 560 young_gen_policy_is_ready() &&
duke@435 561 avg_major_gc_cost()->average() >= 0.0 &&
duke@435 562 avg_minor_gc_cost()->average() >= 0.0) {
duke@435 563 if (is_full_gc) {
duke@435 564 set_decide_at_full_gc(decide_at_full_gc_true);
tamao@5120 565 size_t desired_sum = desired_eden_size + desired_promo_size;
tamao@5120 566 desired_promo_size = adjust_promo_for_footprint(desired_promo_size, desired_sum);
duke@435 567 }
duke@435 568 }
duke@435 569 }
duke@435 570
duke@435 571 // Note we make the same tests as in the code block below; the code
duke@435 572 // seems a little easier to read with the printing in another block.
duke@435 573 if (PrintAdaptiveSizePolicy) {
duke@435 574 if (desired_promo_size > promo_limit) {
duke@435 575 // "free_in_old_gen" was the original value for used for promo_limit
duke@435 576 size_t free_in_old_gen = (size_t)(max_old_gen_size - avg_old_live()->average());
duke@435 577 gclog_or_tty->print_cr(
tamao@5120 578 "PSAdaptiveSizePolicy::compute_old_gen_free_space limits:"
duke@435 579 " desired_promo_size: " SIZE_FORMAT
duke@435 580 " promo_limit: " SIZE_FORMAT
duke@435 581 " free_in_old_gen: " SIZE_FORMAT
duke@435 582 " max_old_gen_size: " SIZE_FORMAT
duke@435 583 " avg_old_live: " SIZE_FORMAT,
duke@435 584 desired_promo_size, promo_limit, free_in_old_gen,
duke@435 585 max_old_gen_size, (size_t) avg_old_live()->average());
duke@435 586 }
duke@435 587 if (gc_cost() > gc_cost_limit) {
duke@435 588 gclog_or_tty->print_cr(
tamao@5120 589 "PSAdaptiveSizePolicy::compute_old_gen_free_space: gc time limit"
duke@435 590 " gc_cost: %f "
duke@435 591 " GCTimeLimit: %d",
duke@435 592 gc_cost(), GCTimeLimit);
duke@435 593 }
duke@435 594 }
duke@435 595
duke@435 596 // Align everything and make a final limit check
jwilhelm@6085 597 desired_promo_size = align_size_up(desired_promo_size, _space_alignment);
jwilhelm@6085 598 desired_promo_size = MAX2(desired_promo_size, _space_alignment);
duke@435 599
jwilhelm@6085 600 promo_limit = align_size_down(promo_limit, _space_alignment);
duke@435 601
duke@435 602 // And one last limit check, now that we've aligned things.
duke@435 603 desired_promo_size = MIN2(desired_promo_size, promo_limit);
duke@435 604
duke@435 605 if (PrintAdaptiveSizePolicy) {
duke@435 606 // Timing stats
duke@435 607 gclog_or_tty->print(
tamao@5120 608 "PSAdaptiveSizePolicy::compute_old_gen_free_space: costs"
duke@435 609 " minor_time: %f"
duke@435 610 " major_cost: %f"
duke@435 611 " mutator_cost: %f"
duke@435 612 " throughput_goal: %f",
duke@435 613 minor_gc_cost(), major_gc_cost(), mutator_cost(),
duke@435 614 _throughput_goal);
duke@435 615
duke@435 616 // We give more details if Verbose is set
duke@435 617 if (Verbose) {
duke@435 618 gclog_or_tty->print( " minor_pause: %f"
duke@435 619 " major_pause: %f"
duke@435 620 " minor_interval: %f"
duke@435 621 " major_interval: %f"
duke@435 622 " pause_goal: %f",
duke@435 623 _avg_minor_pause->padded_average(),
duke@435 624 _avg_major_pause->padded_average(),
duke@435 625 _avg_minor_interval->average(),
duke@435 626 _avg_major_interval->average(),
duke@435 627 gc_pause_goal_sec());
duke@435 628 }
duke@435 629
duke@435 630 // Footprint stats
duke@435 631 gclog_or_tty->print( " live_space: " SIZE_FORMAT
duke@435 632 " free_space: " SIZE_FORMAT,
duke@435 633 live_space(), free_space());
duke@435 634 // More detail
duke@435 635 if (Verbose) {
duke@435 636 gclog_or_tty->print( " base_footprint: " SIZE_FORMAT
duke@435 637 " avg_young_live: " SIZE_FORMAT
duke@435 638 " avg_old_live: " SIZE_FORMAT,
duke@435 639 (size_t)_avg_base_footprint->average(),
duke@435 640 (size_t)avg_young_live()->average(),
duke@435 641 (size_t)avg_old_live()->average());
duke@435 642 }
duke@435 643
duke@435 644 // And finally, our old and new sizes.
duke@435 645 gclog_or_tty->print(" old_promo_size: " SIZE_FORMAT
tamao@5120 646 " desired_promo_size: " SIZE_FORMAT,
tamao@5120 647 _promo_size, desired_promo_size);
duke@435 648 gclog_or_tty->cr();
duke@435 649 }
duke@435 650
duke@435 651 set_promo_size(desired_promo_size);
tamao@5120 652 }
duke@435 653
duke@435 654 void PSAdaptiveSizePolicy::decay_supplemental_growth(bool is_full_gc) {
duke@435 655 // Decay the supplemental increment? Decay the supplement growth
duke@435 656 // factor even if it is not used. It is only meant to give a boost
duke@435 657 // to the initial growth and if it is not used, then it was not
duke@435 658 // needed.
duke@435 659 if (is_full_gc) {
duke@435 660 // Don't wait for the threshold value for the major collections. If
duke@435 661 // here, the supplemental growth term was used and should decay.
duke@435 662 if ((_avg_major_pause->count() % TenuredGenerationSizeSupplementDecay)
duke@435 663 == 0) {
duke@435 664 _old_gen_size_increment_supplement =
duke@435 665 _old_gen_size_increment_supplement >> 1;
duke@435 666 }
duke@435 667 } else {
duke@435 668 if ((_avg_minor_pause->count() >= AdaptiveSizePolicyReadyThreshold) &&
duke@435 669 (_avg_minor_pause->count() % YoungGenerationSizeSupplementDecay) == 0) {
duke@435 670 _young_gen_size_increment_supplement =
duke@435 671 _young_gen_size_increment_supplement >> 1;
duke@435 672 }
duke@435 673 }
duke@435 674 }
duke@435 675
tamao@5120 676 void PSAdaptiveSizePolicy::adjust_promo_for_minor_pause_time(bool is_full_gc,
duke@435 677 size_t* desired_promo_size_ptr, size_t* desired_eden_size_ptr) {
duke@435 678
tamao@5120 679 if (PSAdjustTenuredGenForMinorPause) {
tamao@5120 680 if (is_full_gc) {
tamao@5120 681 set_decide_at_full_gc(decide_at_full_gc_true);
tamao@5120 682 }
tamao@5120 683 // If the desired eden size is as small as it will get,
tamao@5120 684 // try to adjust the old gen size.
jwilhelm@6085 685 if (*desired_eden_size_ptr <= _space_alignment) {
tamao@5120 686 // Vary the old gen size to reduce the young gen pause. This
tamao@5120 687 // may not be a good idea. This is just a test.
tamao@5120 688 if (minor_pause_old_estimator()->decrement_will_decrease()) {
tamao@5120 689 set_change_old_gen_for_min_pauses(decrease_old_gen_for_min_pauses_true);
tamao@5120 690 *desired_promo_size_ptr =
tamao@5120 691 _promo_size - promo_decrement_aligned_down(*desired_promo_size_ptr);
tamao@5120 692 } else {
tamao@5120 693 set_change_old_gen_for_min_pauses(increase_old_gen_for_min_pauses_true);
tamao@5120 694 size_t promo_heap_delta =
tamao@5120 695 promo_increment_with_supplement_aligned_up(*desired_promo_size_ptr);
tamao@5120 696 if ((*desired_promo_size_ptr + promo_heap_delta) >
tamao@5120 697 *desired_promo_size_ptr) {
tamao@5120 698 *desired_promo_size_ptr =
tamao@5120 699 _promo_size + promo_heap_delta;
tamao@5120 700 }
tamao@5120 701 }
tamao@5120 702 }
tamao@5120 703 }
tamao@5120 704 }
tamao@5120 705
tamao@5120 706 void PSAdaptiveSizePolicy::adjust_eden_for_minor_pause_time(bool is_full_gc,
tamao@5120 707 size_t* desired_eden_size_ptr) {
tamao@5120 708
duke@435 709 // Adjust the young generation size to reduce pause time of
duke@435 710 // of collections.
duke@435 711 //
duke@435 712 // The AdaptiveSizePolicyInitializingSteps test is not used
duke@435 713 // here. It has not seemed to be needed but perhaps should
duke@435 714 // be added for consistency.
duke@435 715 if (minor_pause_young_estimator()->decrement_will_decrease()) {
duke@435 716 // reduce eden size
duke@435 717 set_change_young_gen_for_min_pauses(
duke@435 718 decrease_young_gen_for_min_pauses_true);
duke@435 719 *desired_eden_size_ptr = *desired_eden_size_ptr -
duke@435 720 eden_decrement_aligned_down(*desired_eden_size_ptr);
duke@435 721 } else {
duke@435 722 // EXPERIMENTAL ADJUSTMENT
duke@435 723 // Only record that the estimator indicated such an action.
duke@435 724 // *desired_eden_size_ptr = *desired_eden_size_ptr + eden_heap_delta;
duke@435 725 set_change_young_gen_for_min_pauses(
duke@435 726 increase_young_gen_for_min_pauses_true);
duke@435 727 }
duke@435 728 }
duke@435 729
tamao@5120 730 void PSAdaptiveSizePolicy::adjust_promo_for_pause_time(bool is_full_gc,
duke@435 731 size_t* desired_promo_size_ptr,
duke@435 732 size_t* desired_eden_size_ptr) {
duke@435 733
duke@435 734 size_t promo_heap_delta = 0;
tamao@5120 735 // Add some checks for a threshold for a change. For example,
duke@435 736 // a change less than the required alignment is probably not worth
duke@435 737 // attempting.
duke@435 738
duke@435 739 if (_avg_minor_pause->padded_average() > _avg_major_pause->padded_average()) {
tamao@5120 740 adjust_promo_for_minor_pause_time(is_full_gc, desired_promo_size_ptr, desired_eden_size_ptr);
duke@435 741 // major pause adjustments
duke@435 742 } else if (is_full_gc) {
duke@435 743 // Adjust for the major pause time only at full gc's because the
duke@435 744 // affects of a change can only be seen at full gc's.
duke@435 745
duke@435 746 // Reduce old generation size to reduce pause?
duke@435 747 if (major_pause_old_estimator()->decrement_will_decrease()) {
duke@435 748 // reduce old generation size
duke@435 749 set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true);
duke@435 750 promo_heap_delta = promo_decrement_aligned_down(*desired_promo_size_ptr);
duke@435 751 *desired_promo_size_ptr = _promo_size - promo_heap_delta;
duke@435 752 } else {
duke@435 753 // EXPERIMENTAL ADJUSTMENT
duke@435 754 // Only record that the estimator indicated such an action.
duke@435 755 // *desired_promo_size_ptr = _promo_size +
duke@435 756 // promo_increment_aligned_up(*desired_promo_size_ptr);
duke@435 757 set_change_old_gen_for_maj_pauses(increase_old_gen_for_maj_pauses_true);
duke@435 758 }
tamao@5120 759 }
tamao@5120 760
tamao@5120 761 if (PrintAdaptiveSizePolicy && Verbose) {
tamao@5120 762 gclog_or_tty->print_cr(
tamao@5192 763 "PSAdaptiveSizePolicy::adjust_promo_for_pause_time "
tamao@5120 764 "adjusting gen sizes for major pause (avg %f goal %f). "
tamao@5120 765 "desired_promo_size " SIZE_FORMAT " promo delta " SIZE_FORMAT,
tamao@5120 766 _avg_major_pause->average(), gc_pause_goal_sec(),
tamao@5120 767 *desired_promo_size_ptr, promo_heap_delta);
tamao@5120 768 }
tamao@5120 769 }
tamao@5120 770
tamao@5120 771 void PSAdaptiveSizePolicy::adjust_eden_for_pause_time(bool is_full_gc,
tamao@5120 772 size_t* desired_promo_size_ptr,
tamao@5120 773 size_t* desired_eden_size_ptr) {
tamao@5120 774
tamao@5120 775 size_t eden_heap_delta = 0;
tamao@5120 776 // Add some checks for a threshold for a change. For example,
tamao@5120 777 // a change less than the required alignment is probably not worth
tamao@5120 778 // attempting.
tamao@5120 779 if (_avg_minor_pause->padded_average() > _avg_major_pause->padded_average()) {
tamao@5120 780 adjust_eden_for_minor_pause_time(is_full_gc,
tamao@5120 781 desired_eden_size_ptr);
tamao@5120 782 // major pause adjustments
tamao@5120 783 } else if (is_full_gc) {
tamao@5120 784 // Adjust for the major pause time only at full gc's because the
tamao@5120 785 // affects of a change can only be seen at full gc's.
duke@435 786 if (PSAdjustYoungGenForMajorPause) {
duke@435 787 // If the promo size is at the minimum (i.e., the old gen
duke@435 788 // size will not actually decrease), consider changing the
duke@435 789 // young gen size.
jwilhelm@6085 790 if (*desired_promo_size_ptr < _space_alignment) {
duke@435 791 // If increasing the young generation will decrease the old gen
duke@435 792 // pause, do it.
duke@435 793 // During startup there is noise in the statistics for deciding
duke@435 794 // on whether to increase or decrease the young gen size. For
duke@435 795 // some number of iterations, just try to increase the young
duke@435 796 // gen size if the major pause is too long to try and establish
duke@435 797 // good statistics for later decisions.
duke@435 798 if (major_pause_young_estimator()->increment_will_decrease() ||
duke@435 799 (_young_gen_change_for_major_pause_count
duke@435 800 <= AdaptiveSizePolicyInitializingSteps)) {
duke@435 801 set_change_young_gen_for_maj_pauses(
duke@435 802 increase_young_gen_for_maj_pauses_true);
duke@435 803 eden_heap_delta = eden_increment_aligned_up(*desired_eden_size_ptr);
duke@435 804 *desired_eden_size_ptr = _eden_size + eden_heap_delta;
duke@435 805 _young_gen_change_for_major_pause_count++;
duke@435 806 } else {
duke@435 807 // Record that decreasing the young gen size would decrease
duke@435 808 // the major pause
duke@435 809 set_change_young_gen_for_maj_pauses(
duke@435 810 decrease_young_gen_for_maj_pauses_true);
duke@435 811 eden_heap_delta = eden_decrement_aligned_down(*desired_eden_size_ptr);
duke@435 812 *desired_eden_size_ptr = _eden_size - eden_heap_delta;
duke@435 813 }
duke@435 814 }
duke@435 815 }
duke@435 816 }
duke@435 817
duke@435 818 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 819 gclog_or_tty->print_cr(
tamao@5192 820 "PSAdaptiveSizePolicy::adjust_eden_for_pause_time "
duke@435 821 "adjusting gen sizes for major pause (avg %f goal %f). "
tamao@5120 822 "desired_eden_size " SIZE_FORMAT " eden delta " SIZE_FORMAT,
duke@435 823 _avg_major_pause->average(), gc_pause_goal_sec(),
tamao@5120 824 *desired_eden_size_ptr, eden_heap_delta);
duke@435 825 }
duke@435 826 }
duke@435 827
tamao@5120 828 void PSAdaptiveSizePolicy::adjust_promo_for_throughput(bool is_full_gc,
tamao@5120 829 size_t* desired_promo_size_ptr) {
duke@435 830
tamao@5120 831 // Add some checks for a threshold for a change. For example,
duke@435 832 // a change less than the required alignment is probably not worth
duke@435 833 // attempting.
duke@435 834
duke@435 835 if ((gc_cost() + mutator_cost()) == 0.0) {
duke@435 836 return;
duke@435 837 }
duke@435 838
duke@435 839 if (PrintAdaptiveSizePolicy && Verbose) {
tamao@5120 840 gclog_or_tty->print("\nPSAdaptiveSizePolicy::adjust_promo_for_throughput("
tamao@5120 841 "is_full: %d, promo: " SIZE_FORMAT "): ",
tamao@5120 842 is_full_gc, *desired_promo_size_ptr);
duke@435 843 gclog_or_tty->print_cr("mutator_cost %f major_gc_cost %f "
duke@435 844 "minor_gc_cost %f", mutator_cost(), major_gc_cost(), minor_gc_cost());
duke@435 845 }
duke@435 846
duke@435 847 // Tenured generation
duke@435 848 if (is_full_gc) {
duke@435 849 // Calculate the change to use for the tenured gen.
duke@435 850 size_t scaled_promo_heap_delta = 0;
duke@435 851 // Can the increment to the generation be scaled?
duke@435 852 if (gc_cost() >= 0.0 && major_gc_cost() >= 0.0) {
duke@435 853 size_t promo_heap_delta =
duke@435 854 promo_increment_with_supplement_aligned_up(*desired_promo_size_ptr);
duke@435 855 double scale_by_ratio = major_gc_cost() / gc_cost();
duke@435 856 scaled_promo_heap_delta =
duke@435 857 (size_t) (scale_by_ratio * (double) promo_heap_delta);
duke@435 858 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 859 gclog_or_tty->print_cr(
duke@435 860 "Scaled tenured increment: " SIZE_FORMAT " by %f down to "
duke@435 861 SIZE_FORMAT,
duke@435 862 promo_heap_delta, scale_by_ratio, scaled_promo_heap_delta);
duke@435 863 }
duke@435 864 } else if (major_gc_cost() >= 0.0) {
duke@435 865 // Scaling is not going to work. If the major gc time is the
duke@435 866 // larger, give it a full increment.
duke@435 867 if (major_gc_cost() >= minor_gc_cost()) {
duke@435 868 scaled_promo_heap_delta =
duke@435 869 promo_increment_with_supplement_aligned_up(*desired_promo_size_ptr);
duke@435 870 }
duke@435 871 } else {
duke@435 872 // Don't expect to get here but it's ok if it does
duke@435 873 // in the product build since the delta will be 0
duke@435 874 // and nothing will change.
duke@435 875 assert(false, "Unexpected value for gc costs");
duke@435 876 }
duke@435 877
duke@435 878 switch (AdaptiveSizeThroughPutPolicy) {
duke@435 879 case 1:
duke@435 880 // Early in the run the statistics might not be good. Until
duke@435 881 // a specific number of collections have been, use the heuristic
duke@435 882 // that a larger generation size means lower collection costs.
duke@435 883 if (major_collection_estimator()->increment_will_decrease() ||
duke@435 884 (_old_gen_change_for_major_throughput
duke@435 885 <= AdaptiveSizePolicyInitializingSteps)) {
duke@435 886 // Increase tenured generation size to reduce major collection cost
duke@435 887 if ((*desired_promo_size_ptr + scaled_promo_heap_delta) >
duke@435 888 *desired_promo_size_ptr) {
duke@435 889 *desired_promo_size_ptr = _promo_size + scaled_promo_heap_delta;
duke@435 890 }
duke@435 891 set_change_old_gen_for_throughput(
duke@435 892 increase_old_gen_for_throughput_true);
duke@435 893 _old_gen_change_for_major_throughput++;
duke@435 894 } else {
duke@435 895 // EXPERIMENTAL ADJUSTMENT
duke@435 896 // Record that decreasing the old gen size would decrease
duke@435 897 // the major collection cost but don't do it.
duke@435 898 // *desired_promo_size_ptr = _promo_size -
duke@435 899 // promo_decrement_aligned_down(*desired_promo_size_ptr);
duke@435 900 set_change_old_gen_for_throughput(
duke@435 901 decrease_old_gen_for_throughput_true);
duke@435 902 }
duke@435 903
duke@435 904 break;
duke@435 905 default:
duke@435 906 // Simplest strategy
duke@435 907 if ((*desired_promo_size_ptr + scaled_promo_heap_delta) >
duke@435 908 *desired_promo_size_ptr) {
duke@435 909 *desired_promo_size_ptr = *desired_promo_size_ptr +
duke@435 910 scaled_promo_heap_delta;
duke@435 911 }
duke@435 912 set_change_old_gen_for_throughput(
duke@435 913 increase_old_gen_for_throughput_true);
duke@435 914 _old_gen_change_for_major_throughput++;
duke@435 915 }
duke@435 916
duke@435 917 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 918 gclog_or_tty->print_cr(
duke@435 919 "adjusting tenured gen for throughput (avg %f goal %f). "
duke@435 920 "desired_promo_size " SIZE_FORMAT " promo_delta " SIZE_FORMAT ,
duke@435 921 mutator_cost(), _throughput_goal,
duke@435 922 *desired_promo_size_ptr, scaled_promo_heap_delta);
duke@435 923 }
duke@435 924 }
tamao@5120 925 }
tamao@5120 926
tamao@5120 927 void PSAdaptiveSizePolicy::adjust_eden_for_throughput(bool is_full_gc,
tamao@5120 928 size_t* desired_eden_size_ptr) {
tamao@5120 929
tamao@5120 930 // Add some checks for a threshold for a change. For example,
tamao@5120 931 // a change less than the required alignment is probably not worth
tamao@5120 932 // attempting.
tamao@5120 933
tamao@5120 934 if ((gc_cost() + mutator_cost()) == 0.0) {
tamao@5120 935 return;
tamao@5120 936 }
tamao@5120 937
tamao@5120 938 if (PrintAdaptiveSizePolicy && Verbose) {
tamao@5120 939 gclog_or_tty->print("\nPSAdaptiveSizePolicy::adjust_eden_for_throughput("
tamao@5120 940 "is_full: %d, cur_eden: " SIZE_FORMAT "): ",
tamao@5120 941 is_full_gc, *desired_eden_size_ptr);
tamao@5120 942 gclog_or_tty->print_cr("mutator_cost %f major_gc_cost %f "
tamao@5120 943 "minor_gc_cost %f", mutator_cost(), major_gc_cost(), minor_gc_cost());
tamao@5120 944 }
duke@435 945
duke@435 946 // Young generation
duke@435 947 size_t scaled_eden_heap_delta = 0;
duke@435 948 // Can the increment to the generation be scaled?
duke@435 949 if (gc_cost() >= 0.0 && minor_gc_cost() >= 0.0) {
duke@435 950 size_t eden_heap_delta =
duke@435 951 eden_increment_with_supplement_aligned_up(*desired_eden_size_ptr);
duke@435 952 double scale_by_ratio = minor_gc_cost() / gc_cost();
duke@435 953 assert(scale_by_ratio <= 1.0 && scale_by_ratio >= 0.0, "Scaling is wrong");
duke@435 954 scaled_eden_heap_delta =
duke@435 955 (size_t) (scale_by_ratio * (double) eden_heap_delta);
duke@435 956 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 957 gclog_or_tty->print_cr(
duke@435 958 "Scaled eden increment: " SIZE_FORMAT " by %f down to "
duke@435 959 SIZE_FORMAT,
duke@435 960 eden_heap_delta, scale_by_ratio, scaled_eden_heap_delta);
duke@435 961 }
duke@435 962 } else if (minor_gc_cost() >= 0.0) {
duke@435 963 // Scaling is not going to work. If the minor gc time is the
duke@435 964 // larger, give it a full increment.
duke@435 965 if (minor_gc_cost() > major_gc_cost()) {
duke@435 966 scaled_eden_heap_delta =
duke@435 967 eden_increment_with_supplement_aligned_up(*desired_eden_size_ptr);
duke@435 968 }
duke@435 969 } else {
duke@435 970 // Don't expect to get here but it's ok if it does
duke@435 971 // in the product build since the delta will be 0
duke@435 972 // and nothing will change.
duke@435 973 assert(false, "Unexpected value for gc costs");
duke@435 974 }
duke@435 975
duke@435 976 // Use a heuristic for some number of collections to give
duke@435 977 // the averages time to settle down.
duke@435 978 switch (AdaptiveSizeThroughPutPolicy) {
duke@435 979 case 1:
duke@435 980 if (minor_collection_estimator()->increment_will_decrease() ||
duke@435 981 (_young_gen_change_for_minor_throughput
duke@435 982 <= AdaptiveSizePolicyInitializingSteps)) {
duke@435 983 // Expand young generation size to reduce frequency of
duke@435 984 // of collections.
duke@435 985 if ((*desired_eden_size_ptr + scaled_eden_heap_delta) >
duke@435 986 *desired_eden_size_ptr) {
duke@435 987 *desired_eden_size_ptr =
duke@435 988 *desired_eden_size_ptr + scaled_eden_heap_delta;
duke@435 989 }
duke@435 990 set_change_young_gen_for_throughput(
duke@435 991 increase_young_gen_for_througput_true);
duke@435 992 _young_gen_change_for_minor_throughput++;
duke@435 993 } else {
duke@435 994 // EXPERIMENTAL ADJUSTMENT
duke@435 995 // Record that decreasing the young gen size would decrease
duke@435 996 // the minor collection cost but don't do it.
duke@435 997 // *desired_eden_size_ptr = _eden_size -
duke@435 998 // eden_decrement_aligned_down(*desired_eden_size_ptr);
duke@435 999 set_change_young_gen_for_throughput(
duke@435 1000 decrease_young_gen_for_througput_true);
duke@435 1001 }
duke@435 1002 break;
duke@435 1003 default:
duke@435 1004 if ((*desired_eden_size_ptr + scaled_eden_heap_delta) >
duke@435 1005 *desired_eden_size_ptr) {
duke@435 1006 *desired_eden_size_ptr =
duke@435 1007 *desired_eden_size_ptr + scaled_eden_heap_delta;
duke@435 1008 }
duke@435 1009 set_change_young_gen_for_throughput(
duke@435 1010 increase_young_gen_for_througput_true);
duke@435 1011 _young_gen_change_for_minor_throughput++;
duke@435 1012 }
duke@435 1013
duke@435 1014 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 1015 gclog_or_tty->print_cr(
duke@435 1016 "adjusting eden for throughput (avg %f goal %f). desired_eden_size "
duke@435 1017 SIZE_FORMAT " eden delta " SIZE_FORMAT "\n",
duke@435 1018 mutator_cost(), _throughput_goal,
duke@435 1019 *desired_eden_size_ptr, scaled_eden_heap_delta);
duke@435 1020 }
duke@435 1021 }
duke@435 1022
duke@435 1023 size_t PSAdaptiveSizePolicy::adjust_promo_for_footprint(
duke@435 1024 size_t desired_promo_size, size_t desired_sum) {
duke@435 1025 assert(desired_promo_size <= desired_sum, "Inconsistent parameters");
duke@435 1026 set_decrease_for_footprint(decrease_old_gen_for_footprint_true);
duke@435 1027
duke@435 1028 size_t change = promo_decrement(desired_promo_size);
duke@435 1029 change = scale_down(change, desired_promo_size, desired_sum);
duke@435 1030
duke@435 1031 size_t reduced_size = desired_promo_size - change;
duke@435 1032
duke@435 1033 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 1034 gclog_or_tty->print_cr(
tamao@5192 1035 "AdaptiveSizePolicy::adjust_promo_for_footprint "
duke@435 1036 "adjusting tenured gen for footprint. "
duke@435 1037 "starting promo size " SIZE_FORMAT
drchase@6680 1038 " reduced promo size " SIZE_FORMAT
duke@435 1039 " promo delta " SIZE_FORMAT,
duke@435 1040 desired_promo_size, reduced_size, change );
duke@435 1041 }
duke@435 1042
duke@435 1043 assert(reduced_size <= desired_promo_size, "Inconsistent result");
duke@435 1044 return reduced_size;
duke@435 1045 }
duke@435 1046
duke@435 1047 size_t PSAdaptiveSizePolicy::adjust_eden_for_footprint(
duke@435 1048 size_t desired_eden_size, size_t desired_sum) {
duke@435 1049 assert(desired_eden_size <= desired_sum, "Inconsistent parameters");
duke@435 1050 set_decrease_for_footprint(decrease_young_gen_for_footprint_true);
duke@435 1051
duke@435 1052 size_t change = eden_decrement(desired_eden_size);
duke@435 1053 change = scale_down(change, desired_eden_size, desired_sum);
duke@435 1054
duke@435 1055 size_t reduced_size = desired_eden_size - change;
duke@435 1056
duke@435 1057 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 1058 gclog_or_tty->print_cr(
tamao@5192 1059 "AdaptiveSizePolicy::adjust_eden_for_footprint "
duke@435 1060 "adjusting eden for footprint. "
duke@435 1061 " starting eden size " SIZE_FORMAT
duke@435 1062 " reduced eden size " SIZE_FORMAT
duke@435 1063 " eden delta " SIZE_FORMAT,
duke@435 1064 desired_eden_size, reduced_size, change);
duke@435 1065 }
duke@435 1066
duke@435 1067 assert(reduced_size <= desired_eden_size, "Inconsistent result");
duke@435 1068 return reduced_size;
duke@435 1069 }
duke@435 1070
duke@435 1071 // Scale down "change" by the factor
duke@435 1072 // part / total
duke@435 1073 // Don't align the results.
duke@435 1074
duke@435 1075 size_t PSAdaptiveSizePolicy::scale_down(size_t change,
duke@435 1076 double part,
duke@435 1077 double total) {
duke@435 1078 assert(part <= total, "Inconsistent input");
duke@435 1079 size_t reduced_change = change;
duke@435 1080 if (total > 0) {
duke@435 1081 double fraction = part / total;
duke@435 1082 reduced_change = (size_t) (fraction * (double) change);
duke@435 1083 }
duke@435 1084 assert(reduced_change <= change, "Inconsistent result");
duke@435 1085 return reduced_change;
duke@435 1086 }
duke@435 1087
duke@435 1088 size_t PSAdaptiveSizePolicy::eden_increment(size_t cur_eden,
duke@435 1089 uint percent_change) {
duke@435 1090 size_t eden_heap_delta;
duke@435 1091 eden_heap_delta = cur_eden / 100 * percent_change;
duke@435 1092 return eden_heap_delta;
duke@435 1093 }
duke@435 1094
duke@435 1095 size_t PSAdaptiveSizePolicy::eden_increment(size_t cur_eden) {
duke@435 1096 return eden_increment(cur_eden, YoungGenerationSizeIncrement);
duke@435 1097 }
duke@435 1098
duke@435 1099 size_t PSAdaptiveSizePolicy::eden_increment_aligned_up(size_t cur_eden) {
duke@435 1100 size_t result = eden_increment(cur_eden, YoungGenerationSizeIncrement);
jwilhelm@6085 1101 return align_size_up(result, _space_alignment);
duke@435 1102 }
duke@435 1103
duke@435 1104 size_t PSAdaptiveSizePolicy::eden_increment_aligned_down(size_t cur_eden) {
duke@435 1105 size_t result = eden_increment(cur_eden);
jwilhelm@6085 1106 return align_size_down(result, _space_alignment);
duke@435 1107 }
duke@435 1108
duke@435 1109 size_t PSAdaptiveSizePolicy::eden_increment_with_supplement_aligned_up(
duke@435 1110 size_t cur_eden) {
duke@435 1111 size_t result = eden_increment(cur_eden,
duke@435 1112 YoungGenerationSizeIncrement + _young_gen_size_increment_supplement);
jwilhelm@6085 1113 return align_size_up(result, _space_alignment);
duke@435 1114 }
duke@435 1115
duke@435 1116 size_t PSAdaptiveSizePolicy::eden_decrement_aligned_down(size_t cur_eden) {
duke@435 1117 size_t eden_heap_delta = eden_decrement(cur_eden);
jwilhelm@6085 1118 return align_size_down(eden_heap_delta, _space_alignment);
duke@435 1119 }
duke@435 1120
duke@435 1121 size_t PSAdaptiveSizePolicy::eden_decrement(size_t cur_eden) {
duke@435 1122 size_t eden_heap_delta = eden_increment(cur_eden) /
duke@435 1123 AdaptiveSizeDecrementScaleFactor;
duke@435 1124 return eden_heap_delta;
duke@435 1125 }
duke@435 1126
duke@435 1127 size_t PSAdaptiveSizePolicy::promo_increment(size_t cur_promo,
duke@435 1128 uint percent_change) {
duke@435 1129 size_t promo_heap_delta;
duke@435 1130 promo_heap_delta = cur_promo / 100 * percent_change;
duke@435 1131 return promo_heap_delta;
duke@435 1132 }
duke@435 1133
duke@435 1134 size_t PSAdaptiveSizePolicy::promo_increment(size_t cur_promo) {
duke@435 1135 return promo_increment(cur_promo, TenuredGenerationSizeIncrement);
duke@435 1136 }
duke@435 1137
duke@435 1138 size_t PSAdaptiveSizePolicy::promo_increment_aligned_up(size_t cur_promo) {
duke@435 1139 size_t result = promo_increment(cur_promo, TenuredGenerationSizeIncrement);
jwilhelm@6085 1140 return align_size_up(result, _space_alignment);
duke@435 1141 }
duke@435 1142
duke@435 1143 size_t PSAdaptiveSizePolicy::promo_increment_aligned_down(size_t cur_promo) {
duke@435 1144 size_t result = promo_increment(cur_promo, TenuredGenerationSizeIncrement);
jwilhelm@6085 1145 return align_size_down(result, _space_alignment);
duke@435 1146 }
duke@435 1147
duke@435 1148 size_t PSAdaptiveSizePolicy::promo_increment_with_supplement_aligned_up(
duke@435 1149 size_t cur_promo) {
duke@435 1150 size_t result = promo_increment(cur_promo,
duke@435 1151 TenuredGenerationSizeIncrement + _old_gen_size_increment_supplement);
jwilhelm@6085 1152 return align_size_up(result, _space_alignment);
duke@435 1153 }
duke@435 1154
duke@435 1155 size_t PSAdaptiveSizePolicy::promo_decrement_aligned_down(size_t cur_promo) {
duke@435 1156 size_t promo_heap_delta = promo_decrement(cur_promo);
jwilhelm@6085 1157 return align_size_down(promo_heap_delta, _space_alignment);
duke@435 1158 }
duke@435 1159
duke@435 1160 size_t PSAdaptiveSizePolicy::promo_decrement(size_t cur_promo) {
duke@435 1161 size_t promo_heap_delta = promo_increment(cur_promo);
duke@435 1162 promo_heap_delta = promo_heap_delta / AdaptiveSizeDecrementScaleFactor;
duke@435 1163 return promo_heap_delta;
duke@435 1164 }
duke@435 1165
jwilhelm@4129 1166 uint PSAdaptiveSizePolicy::compute_survivor_space_size_and_threshold(
duke@435 1167 bool is_survivor_overflow,
jwilhelm@4129 1168 uint tenuring_threshold,
duke@435 1169 size_t survivor_limit) {
jwilhelm@6085 1170 assert(survivor_limit >= _space_alignment,
duke@435 1171 "survivor_limit too small");
jwilhelm@6085 1172 assert((size_t)align_size_down(survivor_limit, _space_alignment)
duke@435 1173 == survivor_limit, "survivor_limit not aligned");
duke@435 1174
duke@435 1175 // This method is called even if the tenuring threshold and survivor
duke@435 1176 // spaces are not adjusted so that the averages are sampled above.
duke@435 1177 if (!UsePSAdaptiveSurvivorSizePolicy ||
duke@435 1178 !young_gen_policy_is_ready()) {
duke@435 1179 return tenuring_threshold;
duke@435 1180 }
duke@435 1181
duke@435 1182 // We'll decide whether to increase or decrease the tenuring
duke@435 1183 // threshold based partly on the newly computed survivor size
duke@435 1184 // (if we hit the maximum limit allowed, we'll always choose to
duke@435 1185 // decrement the threshold).
duke@435 1186 bool incr_tenuring_threshold = false;
duke@435 1187 bool decr_tenuring_threshold = false;
duke@435 1188
duke@435 1189 set_decrement_tenuring_threshold_for_gc_cost(false);
duke@435 1190 set_increment_tenuring_threshold_for_gc_cost(false);
duke@435 1191 set_decrement_tenuring_threshold_for_survivor_limit(false);
duke@435 1192
duke@435 1193 if (!is_survivor_overflow) {
duke@435 1194 // Keep running averages on how much survived
duke@435 1195
duke@435 1196 // We use the tenuring threshold to equalize the cost of major
duke@435 1197 // and minor collections.
duke@435 1198 // ThresholdTolerance is used to indicate how sensitive the
duke@435 1199 // tenuring threshold is to differences in cost betweent the
duke@435 1200 // collection types.
duke@435 1201
duke@435 1202 // Get the times of interest. This involves a little work, so
duke@435 1203 // we cache the values here.
duke@435 1204 const double major_cost = major_gc_cost();
duke@435 1205 const double minor_cost = minor_gc_cost();
duke@435 1206
duke@435 1207 if (minor_cost > major_cost * _threshold_tolerance_percent) {
duke@435 1208 // Minor times are getting too long; lower the threshold so
duke@435 1209 // less survives and more is promoted.
duke@435 1210 decr_tenuring_threshold = true;
duke@435 1211 set_decrement_tenuring_threshold_for_gc_cost(true);
duke@435 1212 } else if (major_cost > minor_cost * _threshold_tolerance_percent) {
duke@435 1213 // Major times are too long, so we want less promotion.
duke@435 1214 incr_tenuring_threshold = true;
duke@435 1215 set_increment_tenuring_threshold_for_gc_cost(true);
duke@435 1216 }
duke@435 1217
duke@435 1218 } else {
duke@435 1219 // Survivor space overflow occurred, so promoted and survived are
duke@435 1220 // not accurate. We'll make our best guess by combining survived
duke@435 1221 // and promoted and count them as survivors.
duke@435 1222 //
duke@435 1223 // We'll lower the tenuring threshold to see if we can correct
duke@435 1224 // things. Also, set the survivor size conservatively. We're
duke@435 1225 // trying to avoid many overflows from occurring if defnew size
duke@435 1226 // is just too small.
duke@435 1227
duke@435 1228 decr_tenuring_threshold = true;
duke@435 1229 }
duke@435 1230
duke@435 1231 // The padded average also maintains a deviation from the average;
duke@435 1232 // we use this to see how good of an estimate we have of what survived.
duke@435 1233 // We're trying to pad the survivor size as little as possible without
duke@435 1234 // overflowing the survivor spaces.
duke@435 1235 size_t target_size = align_size_up((size_t)_avg_survived->padded_average(),
jwilhelm@6085 1236 _space_alignment);
jwilhelm@6085 1237 target_size = MAX2(target_size, _space_alignment);
duke@435 1238
duke@435 1239 if (target_size > survivor_limit) {
duke@435 1240 // Target size is bigger than we can handle. Let's also reduce
duke@435 1241 // the tenuring threshold.
duke@435 1242 target_size = survivor_limit;
duke@435 1243 decr_tenuring_threshold = true;
duke@435 1244 set_decrement_tenuring_threshold_for_survivor_limit(true);
duke@435 1245 }
duke@435 1246
duke@435 1247 // Finally, increment or decrement the tenuring threshold, as decided above.
duke@435 1248 // We test for decrementing first, as we might have hit the target size
duke@435 1249 // limit.
duke@435 1250 if (decr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
duke@435 1251 if (tenuring_threshold > 1) {
duke@435 1252 tenuring_threshold--;
duke@435 1253 }
duke@435 1254 } else if (incr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
duke@435 1255 if (tenuring_threshold < MaxTenuringThreshold) {
duke@435 1256 tenuring_threshold++;
duke@435 1257 }
duke@435 1258 }
duke@435 1259
duke@435 1260 // We keep a running average of the amount promoted which is used
duke@435 1261 // to decide when we should collect the old generation (when
duke@435 1262 // the amount of old gen free space is less than what we expect to
duke@435 1263 // promote).
duke@435 1264
duke@435 1265 if (PrintAdaptiveSizePolicy) {
duke@435 1266 // A little more detail if Verbose is on
duke@435 1267 if (Verbose) {
duke@435 1268 gclog_or_tty->print( " avg_survived: %f"
duke@435 1269 " avg_deviation: %f",
duke@435 1270 _avg_survived->average(),
duke@435 1271 _avg_survived->deviation());
duke@435 1272 }
duke@435 1273
duke@435 1274 gclog_or_tty->print( " avg_survived_padded_avg: %f",
duke@435 1275 _avg_survived->padded_average());
duke@435 1276
duke@435 1277 if (Verbose) {
duke@435 1278 gclog_or_tty->print( " avg_promoted_avg: %f"
duke@435 1279 " avg_promoted_dev: %f",
duke@435 1280 avg_promoted()->average(),
duke@435 1281 avg_promoted()->deviation());
duke@435 1282 }
duke@435 1283
poonam@5279 1284 gclog_or_tty->print_cr( " avg_promoted_padded_avg: %f"
duke@435 1285 " avg_pretenured_padded_avg: %f"
duke@435 1286 " tenuring_thresh: %d"
duke@435 1287 " target_size: " SIZE_FORMAT,
duke@435 1288 avg_promoted()->padded_average(),
duke@435 1289 _avg_pretenured->padded_average(),
duke@435 1290 tenuring_threshold, target_size);
duke@435 1291 }
duke@435 1292
duke@435 1293 set_survivor_size(target_size);
duke@435 1294
duke@435 1295 return tenuring_threshold;
duke@435 1296 }
duke@435 1297
duke@435 1298 void PSAdaptiveSizePolicy::update_averages(bool is_survivor_overflow,
duke@435 1299 size_t survived,
duke@435 1300 size_t promoted) {
duke@435 1301 // Update averages
duke@435 1302 if (!is_survivor_overflow) {
duke@435 1303 // Keep running averages on how much survived
duke@435 1304 _avg_survived->sample(survived);
duke@435 1305 } else {
duke@435 1306 size_t survived_guess = survived + promoted;
duke@435 1307 _avg_survived->sample(survived_guess);
duke@435 1308 }
duke@435 1309 avg_promoted()->sample(promoted + _avg_pretenured->padded_average());
duke@435 1310
duke@435 1311 if (PrintAdaptiveSizePolicy) {
poonam@5279 1312 gclog_or_tty->print_cr(
tamao@5192 1313 "AdaptiveSizePolicy::update_averages:"
duke@435 1314 " survived: " SIZE_FORMAT
duke@435 1315 " promoted: " SIZE_FORMAT
duke@435 1316 " overflow: %s",
duke@435 1317 survived, promoted, is_survivor_overflow ? "true" : "false");
duke@435 1318 }
duke@435 1319 }
duke@435 1320
duke@435 1321 bool PSAdaptiveSizePolicy::print_adaptive_size_policy_on(outputStream* st)
duke@435 1322 const {
duke@435 1323
duke@435 1324 if (!UseAdaptiveSizePolicy) return false;
duke@435 1325
duke@435 1326 return AdaptiveSizePolicy::print_adaptive_size_policy_on(
duke@435 1327 st,
duke@435 1328 PSScavenge::tenuring_threshold());
duke@435 1329 }
jwilhelm@6267 1330
jwilhelm@6267 1331 #ifndef PRODUCT
jwilhelm@6267 1332
jwilhelm@6267 1333 void TestOldFreeSpaceCalculation_test() {
jwilhelm@6267 1334 assert(PSAdaptiveSizePolicy::calculate_free_based_on_live(100, 20) == 25, "Calculation of free memory failed");
jwilhelm@6267 1335 assert(PSAdaptiveSizePolicy::calculate_free_based_on_live(100, 50) == 100, "Calculation of free memory failed");
jwilhelm@6267 1336 assert(PSAdaptiveSizePolicy::calculate_free_based_on_live(100, 60) == 150, "Calculation of free memory failed");
jwilhelm@6267 1337 assert(PSAdaptiveSizePolicy::calculate_free_based_on_live(100, 75) == 300, "Calculation of free memory failed");
jwilhelm@6267 1338 assert(PSAdaptiveSizePolicy::calculate_free_based_on_live(400, 20) == 100, "Calculation of free memory failed");
jwilhelm@6267 1339 assert(PSAdaptiveSizePolicy::calculate_free_based_on_live(400, 50) == 400, "Calculation of free memory failed");
jwilhelm@6267 1340 assert(PSAdaptiveSizePolicy::calculate_free_based_on_live(400, 60) == 600, "Calculation of free memory failed");
jwilhelm@6267 1341 assert(PSAdaptiveSizePolicy::calculate_free_based_on_live(400, 75) == 1200, "Calculation of free memory failed");
jwilhelm@6267 1342 }
jwilhelm@6267 1343
jwilhelm@6267 1344 #endif /* !PRODUCT */

mercurial