src/share/vm/memory/collectorPolicy.cpp

Tue, 11 May 2010 14:35:43 -0700

author
prr
date
Tue, 11 May 2010 14:35:43 -0700
changeset 1840
fb57d4cf76c2
parent 1822
0bfd3fb24150
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6931180: Migration to recent versions of MS Platform SDK
6951582: Build problems on win64
Summary: Changes to enable building JDK7 with Microsoft Visual Studio 2010
Reviewed-by: ohair, art, ccheung, dcubed

duke@435 1 /*
jmasa@1822 2 * Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_collectorPolicy.cpp.incl"
duke@435 27
duke@435 28 // CollectorPolicy methods.
duke@435 29
duke@435 30 void CollectorPolicy::initialize_flags() {
duke@435 31 if (PermSize > MaxPermSize) {
duke@435 32 MaxPermSize = PermSize;
duke@435 33 }
ysr@777 34 PermSize = MAX2(min_alignment(), align_size_down_(PermSize, min_alignment()));
duke@435 35 MaxPermSize = align_size_up(MaxPermSize, max_alignment());
duke@435 36
ysr@777 37 MinPermHeapExpansion = MAX2(min_alignment(), align_size_down_(MinPermHeapExpansion, min_alignment()));
ysr@777 38 MaxPermHeapExpansion = MAX2(min_alignment(), align_size_down_(MaxPermHeapExpansion, min_alignment()));
duke@435 39
duke@435 40 MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, min_alignment());
duke@435 41
duke@435 42 SharedReadOnlySize = align_size_up(SharedReadOnlySize, max_alignment());
duke@435 43 SharedReadWriteSize = align_size_up(SharedReadWriteSize, max_alignment());
duke@435 44 SharedMiscDataSize = align_size_up(SharedMiscDataSize, max_alignment());
duke@435 45
duke@435 46 assert(PermSize % min_alignment() == 0, "permanent space alignment");
duke@435 47 assert(MaxPermSize % max_alignment() == 0, "maximum permanent space alignment");
duke@435 48 assert(SharedReadOnlySize % max_alignment() == 0, "read-only space alignment");
duke@435 49 assert(SharedReadWriteSize % max_alignment() == 0, "read-write space alignment");
duke@435 50 assert(SharedMiscDataSize % max_alignment() == 0, "misc-data space alignment");
duke@435 51 if (PermSize < M) {
duke@435 52 vm_exit_during_initialization("Too small initial permanent heap");
duke@435 53 }
duke@435 54 }
duke@435 55
duke@435 56 void CollectorPolicy::initialize_size_info() {
duke@435 57 // User inputs from -mx and ms are aligned
phh@1499 58 set_initial_heap_byte_size(InitialHeapSize);
jmasa@448 59 if (initial_heap_byte_size() == 0) {
jmasa@448 60 set_initial_heap_byte_size(NewSize + OldSize);
duke@435 61 }
ysr@777 62 set_initial_heap_byte_size(align_size_up(_initial_heap_byte_size,
ysr@777 63 min_alignment()));
ysr@777 64
ysr@777 65 set_min_heap_byte_size(Arguments::min_heap_size());
jmasa@448 66 if (min_heap_byte_size() == 0) {
jmasa@448 67 set_min_heap_byte_size(NewSize + OldSize);
duke@435 68 }
ysr@777 69 set_min_heap_byte_size(align_size_up(_min_heap_byte_size,
ysr@777 70 min_alignment()));
ysr@777 71
ysr@777 72 set_max_heap_byte_size(align_size_up(MaxHeapSize, max_alignment()));
duke@435 73
duke@435 74 // Check heap parameter properties
jmasa@448 75 if (initial_heap_byte_size() < M) {
duke@435 76 vm_exit_during_initialization("Too small initial heap");
duke@435 77 }
duke@435 78 // Check heap parameter properties
jmasa@448 79 if (min_heap_byte_size() < M) {
duke@435 80 vm_exit_during_initialization("Too small minimum heap");
duke@435 81 }
jmasa@448 82 if (initial_heap_byte_size() <= NewSize) {
duke@435 83 // make sure there is at least some room in old space
duke@435 84 vm_exit_during_initialization("Too small initial heap for new size specified");
duke@435 85 }
jmasa@448 86 if (max_heap_byte_size() < min_heap_byte_size()) {
duke@435 87 vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
duke@435 88 }
jmasa@448 89 if (initial_heap_byte_size() < min_heap_byte_size()) {
duke@435 90 vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
duke@435 91 }
jmasa@448 92 if (max_heap_byte_size() < initial_heap_byte_size()) {
duke@435 93 vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
duke@435 94 }
jmasa@448 95
jmasa@448 96 if (PrintGCDetails && Verbose) {
jmasa@448 97 gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT " Initial heap "
jmasa@448 98 SIZE_FORMAT " Maximum heap " SIZE_FORMAT,
jmasa@448 99 min_heap_byte_size(), initial_heap_byte_size(), max_heap_byte_size());
jmasa@448 100 }
duke@435 101 }
duke@435 102
duke@435 103 void CollectorPolicy::initialize_perm_generation(PermGen::Name pgnm) {
duke@435 104 _permanent_generation =
duke@435 105 new PermanentGenerationSpec(pgnm, PermSize, MaxPermSize,
duke@435 106 SharedReadOnlySize,
duke@435 107 SharedReadWriteSize,
duke@435 108 SharedMiscDataSize,
duke@435 109 SharedMiscCodeSize);
duke@435 110 if (_permanent_generation == NULL) {
duke@435 111 vm_exit_during_initialization("Unable to allocate gen spec");
duke@435 112 }
duke@435 113 }
duke@435 114
jmasa@1822 115 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
jmasa@1822 116 bool result = _should_clear_all_soft_refs;
jmasa@1822 117 set_should_clear_all_soft_refs(false);
jmasa@1822 118 return result;
jmasa@1822 119 }
duke@435 120
duke@435 121 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
duke@435 122 int max_covered_regions) {
duke@435 123 switch (rem_set_name()) {
duke@435 124 case GenRemSet::CardTable: {
duke@435 125 CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
duke@435 126 return res;
duke@435 127 }
duke@435 128 default:
duke@435 129 guarantee(false, "unrecognized GenRemSet::Name");
duke@435 130 return NULL;
duke@435 131 }
duke@435 132 }
duke@435 133
jmasa@1822 134 void CollectorPolicy::cleared_all_soft_refs() {
jmasa@1822 135 // If near gc overhear limit, continue to clear SoftRefs. SoftRefs may
jmasa@1822 136 // have been cleared in the last collection but if the gc overhear
jmasa@1822 137 // limit continues to be near, SoftRefs should still be cleared.
jmasa@1822 138 if (size_policy() != NULL) {
jmasa@1822 139 _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
jmasa@1822 140 }
jmasa@1822 141 _all_soft_refs_clear = true;
jmasa@1822 142 }
jmasa@1822 143
jmasa@1822 144
duke@435 145 // GenCollectorPolicy methods.
duke@435 146
jmasa@448 147 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
jmasa@448 148 size_t x = base_size / (NewRatio+1);
jmasa@448 149 size_t new_gen_size = x > min_alignment() ?
jmasa@448 150 align_size_down(x, min_alignment()) :
jmasa@448 151 min_alignment();
jmasa@448 152 return new_gen_size;
jmasa@448 153 }
jmasa@448 154
jmasa@448 155 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
jmasa@448 156 size_t maximum_size) {
jmasa@448 157 size_t alignment = min_alignment();
jmasa@448 158 size_t max_minus = maximum_size - alignment;
jmasa@448 159 return desired_size < max_minus ? desired_size : max_minus;
jmasa@448 160 }
jmasa@448 161
jmasa@448 162
duke@435 163 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
duke@435 164 size_t init_promo_size,
duke@435 165 size_t init_survivor_size) {
jmasa@448 166 const double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
duke@435 167 _size_policy = new AdaptiveSizePolicy(init_eden_size,
duke@435 168 init_promo_size,
duke@435 169 init_survivor_size,
duke@435 170 max_gc_minor_pause_sec,
duke@435 171 GCTimeRatio);
duke@435 172 }
duke@435 173
duke@435 174 size_t GenCollectorPolicy::compute_max_alignment() {
duke@435 175 // The card marking array and the offset arrays for old generations are
duke@435 176 // committed in os pages as well. Make sure they are entirely full (to
duke@435 177 // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
duke@435 178 // byte entry and the os page size is 4096, the maximum heap size should
duke@435 179 // be 512*4096 = 2MB aligned.
duke@435 180 size_t alignment = GenRemSet::max_alignment_constraint(rem_set_name());
duke@435 181
duke@435 182 // Parallel GC does its own alignment of the generations to avoid requiring a
duke@435 183 // large page (256M on some platforms) for the permanent generation. The
duke@435 184 // other collectors should also be updated to do their own alignment and then
duke@435 185 // this use of lcm() should be removed.
duke@435 186 if (UseLargePages && !UseParallelGC) {
duke@435 187 // in presence of large pages we have to make sure that our
duke@435 188 // alignment is large page aware
duke@435 189 alignment = lcm(os::large_page_size(), alignment);
duke@435 190 }
duke@435 191
duke@435 192 return alignment;
duke@435 193 }
duke@435 194
duke@435 195 void GenCollectorPolicy::initialize_flags() {
duke@435 196 // All sizes must be multiples of the generation granularity.
duke@435 197 set_min_alignment((uintx) Generation::GenGrain);
duke@435 198 set_max_alignment(compute_max_alignment());
duke@435 199 assert(max_alignment() >= min_alignment() &&
duke@435 200 max_alignment() % min_alignment() == 0,
duke@435 201 "invalid alignment constraints");
duke@435 202
duke@435 203 CollectorPolicy::initialize_flags();
duke@435 204
duke@435 205 // All generational heaps have a youngest gen; handle those flags here.
duke@435 206
duke@435 207 // Adjust max size parameters
duke@435 208 if (NewSize > MaxNewSize) {
duke@435 209 MaxNewSize = NewSize;
duke@435 210 }
duke@435 211 NewSize = align_size_down(NewSize, min_alignment());
duke@435 212 MaxNewSize = align_size_down(MaxNewSize, min_alignment());
duke@435 213
duke@435 214 // Check validity of heap flags
duke@435 215 assert(NewSize % min_alignment() == 0, "eden space alignment");
duke@435 216 assert(MaxNewSize % min_alignment() == 0, "survivor space alignment");
duke@435 217
duke@435 218 if (NewSize < 3*min_alignment()) {
duke@435 219 // make sure there room for eden and two survivor spaces
duke@435 220 vm_exit_during_initialization("Too small new size specified");
duke@435 221 }
duke@435 222 if (SurvivorRatio < 1 || NewRatio < 1) {
duke@435 223 vm_exit_during_initialization("Invalid heap ratio specified");
duke@435 224 }
duke@435 225 }
duke@435 226
duke@435 227 void TwoGenerationCollectorPolicy::initialize_flags() {
duke@435 228 GenCollectorPolicy::initialize_flags();
duke@435 229
duke@435 230 OldSize = align_size_down(OldSize, min_alignment());
duke@435 231 if (NewSize + OldSize > MaxHeapSize) {
duke@435 232 MaxHeapSize = NewSize + OldSize;
duke@435 233 }
duke@435 234 MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
duke@435 235
duke@435 236 always_do_update_barrier = UseConcMarkSweepGC;
duke@435 237 BlockOffsetArrayUseUnallocatedBlock =
duke@435 238 BlockOffsetArrayUseUnallocatedBlock || ParallelGCThreads > 0;
duke@435 239
duke@435 240 // Check validity of heap flags
duke@435 241 assert(OldSize % min_alignment() == 0, "old space alignment");
duke@435 242 assert(MaxHeapSize % max_alignment() == 0, "maximum heap alignment");
duke@435 243 }
duke@435 244
jmasa@448 245 // Values set on the command line win over any ergonomically
jmasa@448 246 // set command line parameters.
jmasa@448 247 // Ergonomic choice of parameters are done before this
jmasa@448 248 // method is called. Values for command line parameters such as NewSize
jmasa@448 249 // and MaxNewSize feed those ergonomic choices into this method.
jmasa@448 250 // This method makes the final generation sizings consistent with
jmasa@448 251 // themselves and with overall heap sizings.
jmasa@448 252 // In the absence of explicitly set command line flags, policies
jmasa@448 253 // such as the use of NewRatio are used to size the generation.
duke@435 254 void GenCollectorPolicy::initialize_size_info() {
duke@435 255 CollectorPolicy::initialize_size_info();
duke@435 256
jmasa@448 257 // min_alignment() is used for alignment within a generation.
jmasa@448 258 // There is additional alignment done down stream for some
jmasa@448 259 // collectors that sometimes causes unwanted rounding up of
jmasa@448 260 // generations sizes.
jmasa@448 261
jmasa@448 262 // Determine maximum size of gen0
jmasa@448 263
jmasa@448 264 size_t max_new_size = 0;
jmasa@448 265 if (FLAG_IS_CMDLINE(MaxNewSize)) {
jmasa@448 266 if (MaxNewSize < min_alignment()) {
jmasa@448 267 max_new_size = min_alignment();
jmasa@448 268 } else if (MaxNewSize >= max_heap_byte_size()) {
jmasa@448 269 max_new_size = align_size_down(max_heap_byte_size() - min_alignment(),
jmasa@448 270 min_alignment());
jmasa@448 271 warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
jmasa@448 272 "greater than the entire heap (" SIZE_FORMAT "k). A "
jmasa@448 273 "new generation size of " SIZE_FORMAT "k will be used.",
jmasa@448 274 MaxNewSize/K, max_heap_byte_size()/K, max_new_size/K);
jmasa@448 275 } else {
jmasa@448 276 max_new_size = align_size_down(MaxNewSize, min_alignment());
jmasa@448 277 }
jmasa@448 278
jmasa@448 279 // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
jmasa@448 280 // specially at this point to just use an ergonomically set
jmasa@448 281 // MaxNewSize to set max_new_size. For cases with small
jmasa@448 282 // heaps such a policy often did not work because the MaxNewSize
jmasa@448 283 // was larger than the entire heap. The interpretation given
jmasa@448 284 // to ergonomically set flags is that the flags are set
jmasa@448 285 // by different collectors for their own special needs but
jmasa@448 286 // are not allowed to badly shape the heap. This allows the
jmasa@448 287 // different collectors to decide what's best for themselves
jmasa@448 288 // without having to factor in the overall heap shape. It
jmasa@448 289 // can be the case in the future that the collectors would
jmasa@448 290 // only make "wise" ergonomics choices and this policy could
jmasa@448 291 // just accept those choices. The choices currently made are
jmasa@448 292 // not always "wise".
duke@435 293 } else {
jmasa@448 294 max_new_size = scale_by_NewRatio_aligned(max_heap_byte_size());
jmasa@448 295 // Bound the maximum size by NewSize below (since it historically
duke@435 296 // would have been NewSize and because the NewRatio calculation could
duke@435 297 // yield a size that is too small) and bound it by MaxNewSize above.
jmasa@448 298 // Ergonomics plays here by previously calculating the desired
jmasa@448 299 // NewSize and MaxNewSize.
jmasa@448 300 max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
jmasa@448 301 }
jmasa@448 302 assert(max_new_size > 0, "All paths should set max_new_size");
jmasa@448 303
jmasa@448 304 // Given the maximum gen0 size, determine the initial and
jmasa@448 305 // minimum sizes.
jmasa@448 306
jmasa@448 307 if (max_heap_byte_size() == min_heap_byte_size()) {
jmasa@448 308 // The maximum and minimum heap sizes are the same so
jmasa@448 309 // the generations minimum and initial must be the
jmasa@448 310 // same as its maximum.
jmasa@448 311 set_min_gen0_size(max_new_size);
jmasa@448 312 set_initial_gen0_size(max_new_size);
jmasa@448 313 set_max_gen0_size(max_new_size);
jmasa@448 314 } else {
jmasa@448 315 size_t desired_new_size = 0;
jmasa@448 316 if (!FLAG_IS_DEFAULT(NewSize)) {
jmasa@448 317 // If NewSize is set ergonomically (for example by cms), it
jmasa@448 318 // would make sense to use it. If it is used, also use it
jmasa@448 319 // to set the initial size. Although there is no reason
jmasa@448 320 // the minimum size and the initial size have to be the same,
jmasa@448 321 // the current implementation gets into trouble during the calculation
jmasa@448 322 // of the tenured generation sizes if they are different.
jmasa@448 323 // Note that this makes the initial size and the minimum size
jmasa@448 324 // generally small compared to the NewRatio calculation.
jmasa@448 325 _min_gen0_size = NewSize;
jmasa@448 326 desired_new_size = NewSize;
jmasa@448 327 max_new_size = MAX2(max_new_size, NewSize);
jmasa@448 328 } else {
jmasa@448 329 // For the case where NewSize is the default, use NewRatio
jmasa@448 330 // to size the minimum and initial generation sizes.
jmasa@448 331 // Use the default NewSize as the floor for these values. If
jmasa@448 332 // NewRatio is overly large, the resulting sizes can be too
jmasa@448 333 // small.
jmasa@448 334 _min_gen0_size = MAX2(scale_by_NewRatio_aligned(min_heap_byte_size()),
jmasa@448 335 NewSize);
jmasa@448 336 desired_new_size =
jmasa@448 337 MAX2(scale_by_NewRatio_aligned(initial_heap_byte_size()),
jmasa@448 338 NewSize);
jmasa@448 339 }
jmasa@448 340
jmasa@448 341 assert(_min_gen0_size > 0, "Sanity check");
jmasa@448 342 set_initial_gen0_size(desired_new_size);
jmasa@448 343 set_max_gen0_size(max_new_size);
jmasa@448 344
jmasa@448 345 // At this point the desirable initial and minimum sizes have been
jmasa@448 346 // determined without regard to the maximum sizes.
jmasa@448 347
jmasa@448 348 // Bound the sizes by the corresponding overall heap sizes.
jmasa@448 349 set_min_gen0_size(
jmasa@448 350 bound_minus_alignment(_min_gen0_size, min_heap_byte_size()));
jmasa@448 351 set_initial_gen0_size(
jmasa@448 352 bound_minus_alignment(_initial_gen0_size, initial_heap_byte_size()));
jmasa@448 353 set_max_gen0_size(
jmasa@448 354 bound_minus_alignment(_max_gen0_size, max_heap_byte_size()));
jmasa@448 355
jmasa@448 356 // At this point all three sizes have been checked against the
jmasa@448 357 // maximum sizes but have not been checked for consistency
ysr@777 358 // among the three.
jmasa@448 359
jmasa@448 360 // Final check min <= initial <= max
jmasa@448 361 set_min_gen0_size(MIN2(_min_gen0_size, _max_gen0_size));
jmasa@448 362 set_initial_gen0_size(
jmasa@448 363 MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size));
jmasa@448 364 set_min_gen0_size(MIN2(_min_gen0_size, _initial_gen0_size));
duke@435 365 }
duke@435 366
jmasa@448 367 if (PrintGCDetails && Verbose) {
jmasa@448 368 gclog_or_tty->print_cr("Minimum gen0 " SIZE_FORMAT " Initial gen0 "
jmasa@448 369 SIZE_FORMAT " Maximum gen0 " SIZE_FORMAT,
jmasa@448 370 min_gen0_size(), initial_gen0_size(), max_gen0_size());
jmasa@448 371 }
jmasa@448 372 }
duke@435 373
jmasa@448 374 // Call this method during the sizing of the gen1 to make
jmasa@448 375 // adjustments to gen0 because of gen1 sizing policy. gen0 initially has
jmasa@448 376 // the most freedom in sizing because it is done before the
jmasa@448 377 // policy for gen1 is applied. Once gen1 policies have been applied,
jmasa@448 378 // there may be conflicts in the shape of the heap and this method
jmasa@448 379 // is used to make the needed adjustments. The application of the
jmasa@448 380 // policies could be more sophisticated (iterative for example) but
jmasa@448 381 // keeping it simple also seems a worthwhile goal.
jmasa@448 382 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
jmasa@448 383 size_t* gen1_size_ptr,
jmasa@448 384 size_t heap_size,
jmasa@448 385 size_t min_gen0_size) {
jmasa@448 386 bool result = false;
jmasa@448 387 if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
jmasa@448 388 if (((*gen0_size_ptr + OldSize) > heap_size) &&
jmasa@448 389 (heap_size - min_gen0_size) >= min_alignment()) {
jmasa@448 390 // Adjust gen0 down to accomodate OldSize
jmasa@448 391 *gen0_size_ptr = heap_size - min_gen0_size;
jmasa@448 392 *gen0_size_ptr =
jmasa@448 393 MAX2((uintx)align_size_down(*gen0_size_ptr, min_alignment()),
jmasa@448 394 min_alignment());
jmasa@448 395 assert(*gen0_size_ptr > 0, "Min gen0 is too large");
jmasa@448 396 result = true;
jmasa@448 397 } else {
jmasa@448 398 *gen1_size_ptr = heap_size - *gen0_size_ptr;
jmasa@448 399 *gen1_size_ptr =
jmasa@448 400 MAX2((uintx)align_size_down(*gen1_size_ptr, min_alignment()),
jmasa@448 401 min_alignment());
jmasa@448 402 }
jmasa@448 403 }
jmasa@448 404 return result;
jmasa@448 405 }
duke@435 406
jmasa@448 407 // Minimum sizes of the generations may be different than
jmasa@448 408 // the initial sizes. An inconsistently is permitted here
jmasa@448 409 // in the total size that can be specified explicitly by
jmasa@448 410 // command line specification of OldSize and NewSize and
jmasa@448 411 // also a command line specification of -Xms. Issue a warning
jmasa@448 412 // but allow the values to pass.
duke@435 413
duke@435 414 void TwoGenerationCollectorPolicy::initialize_size_info() {
duke@435 415 GenCollectorPolicy::initialize_size_info();
duke@435 416
jmasa@448 417 // At this point the minimum, initial and maximum sizes
jmasa@448 418 // of the overall heap and of gen0 have been determined.
jmasa@448 419 // The maximum gen1 size can be determined from the maximum gen0
jmasa@448 420 // and maximum heap size since not explicit flags exits
jmasa@448 421 // for setting the gen1 maximum.
jmasa@448 422 _max_gen1_size = max_heap_byte_size() - _max_gen0_size;
jmasa@448 423 _max_gen1_size =
jmasa@448 424 MAX2((uintx)align_size_down(_max_gen1_size, min_alignment()),
jmasa@448 425 min_alignment());
jmasa@448 426 // If no explicit command line flag has been set for the
jmasa@448 427 // gen1 size, use what is left for gen1.
jmasa@448 428 if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
jmasa@448 429 // The user has not specified any value or ergonomics
jmasa@448 430 // has chosen a value (which may or may not be consistent
jmasa@448 431 // with the overall heap size). In either case make
jmasa@448 432 // the minimum, maximum and initial sizes consistent
jmasa@448 433 // with the gen0 sizes and the overall heap sizes.
jmasa@448 434 assert(min_heap_byte_size() > _min_gen0_size,
jmasa@448 435 "gen0 has an unexpected minimum size");
jmasa@448 436 set_min_gen1_size(min_heap_byte_size() - min_gen0_size());
jmasa@448 437 set_min_gen1_size(
jmasa@448 438 MAX2((uintx)align_size_down(_min_gen1_size, min_alignment()),
jmasa@448 439 min_alignment()));
jmasa@448 440 set_initial_gen1_size(initial_heap_byte_size() - initial_gen0_size());
jmasa@448 441 set_initial_gen1_size(
jmasa@448 442 MAX2((uintx)align_size_down(_initial_gen1_size, min_alignment()),
jmasa@448 443 min_alignment()));
jmasa@448 444
jmasa@448 445 } else {
jmasa@448 446 // It's been explicitly set on the command line. Use the
jmasa@448 447 // OldSize and then determine the consequences.
jmasa@448 448 set_min_gen1_size(OldSize);
jmasa@448 449 set_initial_gen1_size(OldSize);
jmasa@448 450
jmasa@448 451 // If the user has explicitly set an OldSize that is inconsistent
jmasa@448 452 // with other command line flags, issue a warning.
duke@435 453 // The generation minimums and the overall heap mimimum should
duke@435 454 // be within one heap alignment.
jmasa@448 455 if ((_min_gen1_size + _min_gen0_size + min_alignment()) <
jmasa@448 456 min_heap_byte_size()) {
duke@435 457 warning("Inconsistency between minimum heap size and minimum "
jmasa@448 458 "generation sizes: using minimum heap = " SIZE_FORMAT,
jmasa@448 459 min_heap_byte_size());
duke@435 460 }
jmasa@448 461 if ((OldSize > _max_gen1_size)) {
jmasa@448 462 warning("Inconsistency between maximum heap size and maximum "
jmasa@448 463 "generation sizes: using maximum heap = " SIZE_FORMAT
jmasa@448 464 " -XX:OldSize flag is being ignored",
jmasa@448 465 max_heap_byte_size());
duke@435 466 }
jmasa@448 467 // If there is an inconsistency between the OldSize and the minimum and/or
jmasa@448 468 // initial size of gen0, since OldSize was explicitly set, OldSize wins.
jmasa@448 469 if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
jmasa@448 470 min_heap_byte_size(), OldSize)) {
jmasa@448 471 if (PrintGCDetails && Verbose) {
jmasa@448 472 gclog_or_tty->print_cr("Minimum gen0 " SIZE_FORMAT " Initial gen0 "
jmasa@448 473 SIZE_FORMAT " Maximum gen0 " SIZE_FORMAT,
jmasa@448 474 min_gen0_size(), initial_gen0_size(), max_gen0_size());
jmasa@448 475 }
jmasa@448 476 }
jmasa@448 477 // Initial size
jmasa@448 478 if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
jmasa@448 479 initial_heap_byte_size(), OldSize)) {
jmasa@448 480 if (PrintGCDetails && Verbose) {
jmasa@448 481 gclog_or_tty->print_cr("Minimum gen0 " SIZE_FORMAT " Initial gen0 "
jmasa@448 482 SIZE_FORMAT " Maximum gen0 " SIZE_FORMAT,
jmasa@448 483 min_gen0_size(), initial_gen0_size(), max_gen0_size());
jmasa@448 484 }
jmasa@448 485 }
jmasa@448 486 }
jmasa@448 487 // Enforce the maximum gen1 size.
jmasa@448 488 set_min_gen1_size(MIN2(_min_gen1_size, _max_gen1_size));
duke@435 489
jmasa@448 490 // Check that min gen1 <= initial gen1 <= max gen1
jmasa@448 491 set_initial_gen1_size(MAX2(_initial_gen1_size, _min_gen1_size));
jmasa@448 492 set_initial_gen1_size(MIN2(_initial_gen1_size, _max_gen1_size));
jmasa@448 493
jmasa@448 494 if (PrintGCDetails && Verbose) {
jmasa@448 495 gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT " Initial gen1 "
jmasa@448 496 SIZE_FORMAT " Maximum gen1 " SIZE_FORMAT,
jmasa@448 497 min_gen1_size(), initial_gen1_size(), max_gen1_size());
jmasa@448 498 }
duke@435 499 }
duke@435 500
duke@435 501 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
duke@435 502 bool is_tlab,
duke@435 503 bool* gc_overhead_limit_was_exceeded) {
duke@435 504 GenCollectedHeap *gch = GenCollectedHeap::heap();
duke@435 505
duke@435 506 debug_only(gch->check_for_valid_allocation_state());
duke@435 507 assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
jmasa@1822 508
jmasa@1822 509 // In general gc_overhead_limit_was_exceeded should be false so
jmasa@1822 510 // set it so here and reset it to true only if the gc time
jmasa@1822 511 // limit is being exceeded as checked below.
jmasa@1822 512 *gc_overhead_limit_was_exceeded = false;
jmasa@1822 513
duke@435 514 HeapWord* result = NULL;
duke@435 515
duke@435 516 // Loop until the allocation is satisified,
duke@435 517 // or unsatisfied after GC.
duke@435 518 for (int try_count = 1; /* return or throw */; try_count += 1) {
duke@435 519 HandleMark hm; // discard any handles allocated in each iteration
duke@435 520
duke@435 521 // First allocation attempt is lock-free.
duke@435 522 Generation *gen0 = gch->get_gen(0);
duke@435 523 assert(gen0->supports_inline_contig_alloc(),
duke@435 524 "Otherwise, must do alloc within heap lock");
duke@435 525 if (gen0->should_allocate(size, is_tlab)) {
duke@435 526 result = gen0->par_allocate(size, is_tlab);
duke@435 527 if (result != NULL) {
duke@435 528 assert(gch->is_in_reserved(result), "result not in heap");
duke@435 529 return result;
duke@435 530 }
duke@435 531 }
duke@435 532 unsigned int gc_count_before; // read inside the Heap_lock locked region
duke@435 533 {
duke@435 534 MutexLocker ml(Heap_lock);
duke@435 535 if (PrintGC && Verbose) {
duke@435 536 gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
duke@435 537 " attempting locked slow path allocation");
duke@435 538 }
duke@435 539 // Note that only large objects get a shot at being
duke@435 540 // allocated in later generations.
duke@435 541 bool first_only = ! should_try_older_generation_allocation(size);
duke@435 542
duke@435 543 result = gch->attempt_allocation(size, is_tlab, first_only);
duke@435 544 if (result != NULL) {
duke@435 545 assert(gch->is_in_reserved(result), "result not in heap");
duke@435 546 return result;
duke@435 547 }
duke@435 548
duke@435 549 if (GC_locker::is_active_and_needs_gc()) {
duke@435 550 if (is_tlab) {
duke@435 551 return NULL; // Caller will retry allocating individual object
duke@435 552 }
duke@435 553 if (!gch->is_maximal_no_gc()) {
duke@435 554 // Try and expand heap to satisfy request
duke@435 555 result = expand_heap_and_allocate(size, is_tlab);
duke@435 556 // result could be null if we are out of space
duke@435 557 if (result != NULL) {
duke@435 558 return result;
duke@435 559 }
duke@435 560 }
duke@435 561
duke@435 562 // If this thread is not in a jni critical section, we stall
duke@435 563 // the requestor until the critical section has cleared and
duke@435 564 // GC allowed. When the critical section clears, a GC is
duke@435 565 // initiated by the last thread exiting the critical section; so
duke@435 566 // we retry the allocation sequence from the beginning of the loop,
duke@435 567 // rather than causing more, now probably unnecessary, GC attempts.
duke@435 568 JavaThread* jthr = JavaThread::current();
duke@435 569 if (!jthr->in_critical()) {
duke@435 570 MutexUnlocker mul(Heap_lock);
duke@435 571 // Wait for JNI critical section to be exited
duke@435 572 GC_locker::stall_until_clear();
duke@435 573 continue;
duke@435 574 } else {
duke@435 575 if (CheckJNICalls) {
duke@435 576 fatal("Possible deadlock due to allocating while"
duke@435 577 " in jni critical section");
duke@435 578 }
duke@435 579 return NULL;
duke@435 580 }
duke@435 581 }
duke@435 582
duke@435 583 // Read the gc count while the heap lock is held.
duke@435 584 gc_count_before = Universe::heap()->total_collections();
duke@435 585 }
duke@435 586
duke@435 587 VM_GenCollectForAllocation op(size,
duke@435 588 is_tlab,
duke@435 589 gc_count_before);
duke@435 590 VMThread::execute(&op);
duke@435 591 if (op.prologue_succeeded()) {
duke@435 592 result = op.result();
duke@435 593 if (op.gc_locked()) {
duke@435 594 assert(result == NULL, "must be NULL if gc_locked() is true");
duke@435 595 continue; // retry and/or stall as necessary
duke@435 596 }
jmasa@1822 597
jmasa@1822 598 // Allocation has failed and a collection
jmasa@1822 599 // has been done. If the gc time limit was exceeded the
jmasa@1822 600 // this time, return NULL so that an out-of-memory
jmasa@1822 601 // will be thrown. Clear gc_overhead_limit_exceeded
jmasa@1822 602 // so that the overhead exceeded does not persist.
jmasa@1822 603
jmasa@1822 604 const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
jmasa@1822 605 const bool softrefs_clear = all_soft_refs_clear();
jmasa@1822 606 assert(!limit_exceeded || softrefs_clear, "Should have been cleared");
jmasa@1822 607 if (limit_exceeded && softrefs_clear) {
jmasa@1822 608 *gc_overhead_limit_was_exceeded = true;
jmasa@1822 609 size_policy()->set_gc_overhead_limit_exceeded(false);
jmasa@1822 610 if (op.result() != NULL) {
jmasa@1822 611 CollectedHeap::fill_with_object(op.result(), size);
jmasa@1822 612 }
jmasa@1822 613 return NULL;
jmasa@1822 614 }
duke@435 615 assert(result == NULL || gch->is_in_reserved(result),
duke@435 616 "result not in heap");
duke@435 617 return result;
duke@435 618 }
duke@435 619
duke@435 620 // Give a warning if we seem to be looping forever.
duke@435 621 if ((QueuedAllocationWarningCount > 0) &&
duke@435 622 (try_count % QueuedAllocationWarningCount == 0)) {
duke@435 623 warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
duke@435 624 " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
duke@435 625 }
duke@435 626 }
duke@435 627 }
duke@435 628
duke@435 629 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
duke@435 630 bool is_tlab) {
duke@435 631 GenCollectedHeap *gch = GenCollectedHeap::heap();
duke@435 632 HeapWord* result = NULL;
duke@435 633 for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
duke@435 634 Generation *gen = gch->get_gen(i);
duke@435 635 if (gen->should_allocate(size, is_tlab)) {
duke@435 636 result = gen->expand_and_allocate(size, is_tlab);
duke@435 637 }
duke@435 638 }
duke@435 639 assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
duke@435 640 return result;
duke@435 641 }
duke@435 642
duke@435 643 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
duke@435 644 bool is_tlab) {
duke@435 645 GenCollectedHeap *gch = GenCollectedHeap::heap();
duke@435 646 GCCauseSetter x(gch, GCCause::_allocation_failure);
duke@435 647 HeapWord* result = NULL;
duke@435 648
duke@435 649 assert(size != 0, "Precondition violated");
duke@435 650 if (GC_locker::is_active_and_needs_gc()) {
duke@435 651 // GC locker is active; instead of a collection we will attempt
duke@435 652 // to expand the heap, if there's room for expansion.
duke@435 653 if (!gch->is_maximal_no_gc()) {
duke@435 654 result = expand_heap_and_allocate(size, is_tlab);
duke@435 655 }
duke@435 656 return result; // could be null if we are out of space
duke@435 657 } else if (!gch->incremental_collection_will_fail()) {
duke@435 658 // The gc_prologues have not executed yet. The value
duke@435 659 // for incremental_collection_will_fail() is the remanent
duke@435 660 // of the last collection.
duke@435 661 // Do an incremental collection.
duke@435 662 gch->do_collection(false /* full */,
duke@435 663 false /* clear_all_soft_refs */,
duke@435 664 size /* size */,
duke@435 665 is_tlab /* is_tlab */,
duke@435 666 number_of_generations() - 1 /* max_level */);
duke@435 667 } else {
duke@435 668 // Try a full collection; see delta for bug id 6266275
duke@435 669 // for the original code and why this has been simplified
duke@435 670 // with from-space allocation criteria modified and
duke@435 671 // such allocation moved out of the safepoint path.
duke@435 672 gch->do_collection(true /* full */,
duke@435 673 false /* clear_all_soft_refs */,
duke@435 674 size /* size */,
duke@435 675 is_tlab /* is_tlab */,
duke@435 676 number_of_generations() - 1 /* max_level */);
duke@435 677 }
duke@435 678
duke@435 679 result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
duke@435 680
duke@435 681 if (result != NULL) {
duke@435 682 assert(gch->is_in_reserved(result), "result not in heap");
duke@435 683 return result;
duke@435 684 }
duke@435 685
duke@435 686 // OK, collection failed, try expansion.
duke@435 687 result = expand_heap_and_allocate(size, is_tlab);
duke@435 688 if (result != NULL) {
duke@435 689 return result;
duke@435 690 }
duke@435 691
duke@435 692 // If we reach this point, we're really out of memory. Try every trick
duke@435 693 // we can to reclaim memory. Force collection of soft references. Force
duke@435 694 // a complete compaction of the heap. Any additional methods for finding
duke@435 695 // free memory should be here, especially if they are expensive. If this
duke@435 696 // attempt fails, an OOM exception will be thrown.
duke@435 697 {
duke@435 698 IntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
duke@435 699
duke@435 700 gch->do_collection(true /* full */,
duke@435 701 true /* clear_all_soft_refs */,
duke@435 702 size /* size */,
duke@435 703 is_tlab /* is_tlab */,
duke@435 704 number_of_generations() - 1 /* max_level */);
duke@435 705 }
duke@435 706
duke@435 707 result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
duke@435 708 if (result != NULL) {
duke@435 709 assert(gch->is_in_reserved(result), "result not in heap");
duke@435 710 return result;
duke@435 711 }
duke@435 712
jmasa@1822 713 assert(!should_clear_all_soft_refs(),
jmasa@1822 714 "Flag should have been handled and cleared prior to this point");
jmasa@1822 715
duke@435 716 // What else? We might try synchronous finalization later. If the total
duke@435 717 // space available is large enough for the allocation, then a more
duke@435 718 // complete compaction phase than we've tried so far might be
duke@435 719 // appropriate.
duke@435 720 return NULL;
duke@435 721 }
duke@435 722
duke@435 723 size_t GenCollectorPolicy::large_typearray_limit() {
duke@435 724 return FastAllocateSizeLimit;
duke@435 725 }
duke@435 726
duke@435 727 // Return true if any of the following is true:
duke@435 728 // . the allocation won't fit into the current young gen heap
duke@435 729 // . gc locker is occupied (jni critical section)
duke@435 730 // . heap memory is tight -- the most recent previous collection
duke@435 731 // was a full collection because a partial collection (would
duke@435 732 // have) failed and is likely to fail again
duke@435 733 bool GenCollectorPolicy::should_try_older_generation_allocation(
duke@435 734 size_t word_size) const {
duke@435 735 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 736 size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
duke@435 737 return (word_size > heap_word_size(gen0_capacity))
duke@435 738 || (GC_locker::is_active_and_needs_gc())
duke@435 739 || ( gch->last_incremental_collection_failed()
duke@435 740 && gch->incremental_collection_will_fail());
duke@435 741 }
duke@435 742
duke@435 743
duke@435 744 //
duke@435 745 // MarkSweepPolicy methods
duke@435 746 //
duke@435 747
duke@435 748 MarkSweepPolicy::MarkSweepPolicy() {
duke@435 749 initialize_all();
duke@435 750 }
duke@435 751
duke@435 752 void MarkSweepPolicy::initialize_generations() {
duke@435 753 initialize_perm_generation(PermGen::MarkSweepCompact);
duke@435 754 _generations = new GenerationSpecPtr[number_of_generations()];
duke@435 755 if (_generations == NULL)
duke@435 756 vm_exit_during_initialization("Unable to allocate gen spec");
duke@435 757
duke@435 758 if (UseParNewGC && ParallelGCThreads > 0) {
duke@435 759 _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
duke@435 760 } else {
duke@435 761 _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
duke@435 762 }
duke@435 763 _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
duke@435 764
duke@435 765 if (_generations[0] == NULL || _generations[1] == NULL)
duke@435 766 vm_exit_during_initialization("Unable to allocate gen spec");
duke@435 767 }
duke@435 768
duke@435 769 void MarkSweepPolicy::initialize_gc_policy_counters() {
duke@435 770 // initialize the policy counters - 2 collectors, 3 generations
duke@435 771 if (UseParNewGC && ParallelGCThreads > 0) {
duke@435 772 _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
duke@435 773 }
duke@435 774 else {
duke@435 775 _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
duke@435 776 }
duke@435 777 }

mercurial