src/cpu/sparc/vm/assembler_sparc.hpp

Tue, 14 Jun 2011 14:41:33 -0700

author
never
date
Tue, 14 Jun 2011 14:41:33 -0700
changeset 2954
f8c9417e3571
parent 2950
cba7b5c2d53f
child 3001
faa472957b38
permissions
-rw-r--r--

7052219: JSR 292: Crash in ~BufferBlob::MethodHandles adapters
Reviewed-by: twisti, kvn, jrose

duke@435 1 /*
phh@2423 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
stefank@2314 26 #define CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
stefank@2314 27
duke@435 28 class BiasedLockingCounters;
duke@435 29
duke@435 30 // <sys/trap.h> promises that the system will not use traps 16-31
duke@435 31 #define ST_RESERVED_FOR_USER_0 0x10
duke@435 32
duke@435 33 /* Written: David Ungar 4/19/97 */
duke@435 34
duke@435 35 // Contains all the definitions needed for sparc assembly code generation.
duke@435 36
duke@435 37 // Register aliases for parts of the system:
duke@435 38
duke@435 39 // 64 bit values can be kept in g1-g5, o1-o5 and o7 and all 64 bits are safe
duke@435 40 // across context switches in V8+ ABI. Of course, there are no 64 bit regs
duke@435 41 // in V8 ABI. All 64 bits are preserved in V9 ABI for all registers.
duke@435 42
duke@435 43 // g2-g4 are scratch registers called "application globals". Their
duke@435 44 // meaning is reserved to the "compilation system"--which means us!
duke@435 45 // They are are not supposed to be touched by ordinary C code, although
duke@435 46 // highly-optimized C code might steal them for temps. They are safe
duke@435 47 // across thread switches, and the ABI requires that they be safe
duke@435 48 // across function calls.
duke@435 49 //
duke@435 50 // g1 and g3 are touched by more modules. V8 allows g1 to be clobbered
duke@435 51 // across func calls, and V8+ also allows g5 to be clobbered across
duke@435 52 // func calls. Also, g1 and g5 can get touched while doing shared
duke@435 53 // library loading.
duke@435 54 //
duke@435 55 // We must not touch g7 (it is the thread-self register) and g6 is
duke@435 56 // reserved for certain tools. g0, of course, is always zero.
duke@435 57 //
duke@435 58 // (Sources: SunSoft Compilers Group, thread library engineers.)
duke@435 59
duke@435 60 // %%%% The interpreter should be revisited to reduce global scratch regs.
duke@435 61
duke@435 62 // This global always holds the current JavaThread pointer:
duke@435 63
duke@435 64 REGISTER_DECLARATION(Register, G2_thread , G2);
coleenp@548 65 REGISTER_DECLARATION(Register, G6_heapbase , G6);
duke@435 66
duke@435 67 // The following globals are part of the Java calling convention:
duke@435 68
duke@435 69 REGISTER_DECLARATION(Register, G5_method , G5);
duke@435 70 REGISTER_DECLARATION(Register, G5_megamorphic_method , G5_method);
duke@435 71 REGISTER_DECLARATION(Register, G5_inline_cache_reg , G5_method);
duke@435 72
duke@435 73 // The following globals are used for the new C1 & interpreter calling convention:
duke@435 74 REGISTER_DECLARATION(Register, Gargs , G4); // pointing to the last argument
duke@435 75
duke@435 76 // This local is used to preserve G2_thread in the interpreter and in stubs:
duke@435 77 REGISTER_DECLARATION(Register, L7_thread_cache , L7);
duke@435 78
duke@435 79 // These globals are used as scratch registers in the interpreter:
duke@435 80
duke@435 81 REGISTER_DECLARATION(Register, Gframe_size , G1); // SAME REG as G1_scratch
duke@435 82 REGISTER_DECLARATION(Register, G1_scratch , G1); // also SAME
duke@435 83 REGISTER_DECLARATION(Register, G3_scratch , G3);
duke@435 84 REGISTER_DECLARATION(Register, G4_scratch , G4);
duke@435 85
duke@435 86 // These globals are used as short-lived scratch registers in the compiler:
duke@435 87
duke@435 88 REGISTER_DECLARATION(Register, Gtemp , G5);
duke@435 89
jrose@1145 90 // JSR 292 fixed register usages:
jrose@1145 91 REGISTER_DECLARATION(Register, G5_method_type , G5);
jrose@1145 92 REGISTER_DECLARATION(Register, G3_method_handle , G3);
twisti@1919 93 REGISTER_DECLARATION(Register, L7_mh_SP_save , L7);
jrose@1145 94
duke@435 95 // The compiler requires that G5_megamorphic_method is G5_inline_cache_klass,
duke@435 96 // because a single patchable "set" instruction (NativeMovConstReg,
duke@435 97 // or NativeMovConstPatching for compiler1) instruction
duke@435 98 // serves to set up either quantity, depending on whether the compiled
duke@435 99 // call site is an inline cache or is megamorphic. See the function
duke@435 100 // CompiledIC::set_to_megamorphic.
duke@435 101 //
jrose@1145 102 // If a inline cache targets an interpreted method, then the
jrose@1145 103 // G5 register will be used twice during the call. First,
jrose@1145 104 // the call site will be patched to load a compiledICHolder
jrose@1145 105 // into G5. (This is an ordered pair of ic_klass, method.)
jrose@1145 106 // The c2i adapter will first check the ic_klass, then load
jrose@1145 107 // G5_method with the method part of the pair just before
jrose@1145 108 // jumping into the interpreter.
duke@435 109 //
duke@435 110 // Note that G5_method is only the method-self for the interpreter,
duke@435 111 // and is logically unrelated to G5_megamorphic_method.
duke@435 112 //
duke@435 113 // Invariants on G2_thread (the JavaThread pointer):
duke@435 114 // - it should not be used for any other purpose anywhere
duke@435 115 // - it must be re-initialized by StubRoutines::call_stub()
duke@435 116 // - it must be preserved around every use of call_VM
duke@435 117
duke@435 118 // We can consider using g2/g3/g4 to cache more values than the
duke@435 119 // JavaThread, such as the card-marking base or perhaps pointers into
duke@435 120 // Eden. It's something of a waste to use them as scratch temporaries,
duke@435 121 // since they are not supposed to be volatile. (Of course, if we find
duke@435 122 // that Java doesn't benefit from application globals, then we can just
duke@435 123 // use them as ordinary temporaries.)
duke@435 124 //
duke@435 125 // Since g1 and g5 (and/or g6) are the volatile (caller-save) registers,
duke@435 126 // it makes sense to use them routinely for procedure linkage,
duke@435 127 // whenever the On registers are not applicable. Examples: G5_method,
duke@435 128 // G5_inline_cache_klass, and a double handful of miscellaneous compiler
duke@435 129 // stubs. This means that compiler stubs, etc., should be kept to a
duke@435 130 // maximum of two or three G-register arguments.
duke@435 131
duke@435 132
duke@435 133 // stub frames
duke@435 134
duke@435 135 REGISTER_DECLARATION(Register, Lentry_args , L0); // pointer to args passed to callee (interpreter) not stub itself
duke@435 136
duke@435 137 // Interpreter frames
duke@435 138
duke@435 139 #ifdef CC_INTERP
duke@435 140 REGISTER_DECLARATION(Register, Lstate , L0); // interpreter state object pointer
duke@435 141 REGISTER_DECLARATION(Register, L1_scratch , L1); // scratch
duke@435 142 REGISTER_DECLARATION(Register, Lmirror , L1); // mirror (for native methods only)
duke@435 143 REGISTER_DECLARATION(Register, L2_scratch , L2);
duke@435 144 REGISTER_DECLARATION(Register, L3_scratch , L3);
duke@435 145 REGISTER_DECLARATION(Register, L4_scratch , L4);
duke@435 146 REGISTER_DECLARATION(Register, Lscratch , L5); // C1 uses
duke@435 147 REGISTER_DECLARATION(Register, Lscratch2 , L6); // C1 uses
duke@435 148 REGISTER_DECLARATION(Register, L7_scratch , L7); // constant pool cache
duke@435 149 REGISTER_DECLARATION(Register, O5_savedSP , O5);
duke@435 150 REGISTER_DECLARATION(Register, I5_savedSP , I5); // Saved SP before bumping for locals. This is simply
duke@435 151 // a copy SP, so in 64-bit it's a biased value. The bias
duke@435 152 // is added and removed as needed in the frame code.
duke@435 153 // Interface to signature handler
duke@435 154 REGISTER_DECLARATION(Register, Llocals , L7); // pointer to locals for signature handler
duke@435 155 REGISTER_DECLARATION(Register, Lmethod , L6); // methodOop when calling signature handler
duke@435 156
duke@435 157 #else
duke@435 158 REGISTER_DECLARATION(Register, Lesp , L0); // expression stack pointer
duke@435 159 REGISTER_DECLARATION(Register, Lbcp , L1); // pointer to next bytecode
duke@435 160 REGISTER_DECLARATION(Register, Lmethod , L2);
duke@435 161 REGISTER_DECLARATION(Register, Llocals , L3);
duke@435 162 REGISTER_DECLARATION(Register, Largs , L3); // pointer to locals for signature handler
duke@435 163 // must match Llocals in asm interpreter
duke@435 164 REGISTER_DECLARATION(Register, Lmonitors , L4);
duke@435 165 REGISTER_DECLARATION(Register, Lbyte_code , L5);
duke@435 166 // When calling out from the interpreter we record SP so that we can remove any extra stack
duke@435 167 // space allocated during adapter transitions. This register is only live from the point
duke@435 168 // of the call until we return.
duke@435 169 REGISTER_DECLARATION(Register, Llast_SP , L5);
duke@435 170 REGISTER_DECLARATION(Register, Lscratch , L5);
duke@435 171 REGISTER_DECLARATION(Register, Lscratch2 , L6);
duke@435 172 REGISTER_DECLARATION(Register, LcpoolCache , L6); // constant pool cache
duke@435 173
duke@435 174 REGISTER_DECLARATION(Register, O5_savedSP , O5);
duke@435 175 REGISTER_DECLARATION(Register, I5_savedSP , I5); // Saved SP before bumping for locals. This is simply
duke@435 176 // a copy SP, so in 64-bit it's a biased value. The bias
duke@435 177 // is added and removed as needed in the frame code.
duke@435 178 REGISTER_DECLARATION(Register, IdispatchTables , I4); // Base address of the bytecode dispatch tables
duke@435 179 REGISTER_DECLARATION(Register, IdispatchAddress , I3); // Register which saves the dispatch address for each bytecode
duke@435 180 REGISTER_DECLARATION(Register, ImethodDataPtr , I2); // Pointer to the current method data
duke@435 181 #endif /* CC_INTERP */
duke@435 182
duke@435 183 // NOTE: Lscratch2 and LcpoolCache point to the same registers in
duke@435 184 // the interpreter code. If Lscratch2 needs to be used for some
duke@435 185 // purpose than LcpoolCache should be restore after that for
duke@435 186 // the interpreter to work right
duke@435 187 // (These assignments must be compatible with L7_thread_cache; see above.)
duke@435 188
duke@435 189 // Since Lbcp points into the middle of the method object,
duke@435 190 // it is temporarily converted into a "bcx" during GC.
duke@435 191
duke@435 192 // Exception processing
duke@435 193 // These registers are passed into exception handlers.
duke@435 194 // All exception handlers require the exception object being thrown.
duke@435 195 // In addition, an nmethod's exception handler must be passed
duke@435 196 // the address of the call site within the nmethod, to allow
duke@435 197 // proper selection of the applicable catch block.
duke@435 198 // (Interpreter frames use their own bcp() for this purpose.)
duke@435 199 //
duke@435 200 // The Oissuing_pc value is not always needed. When jumping to a
duke@435 201 // handler that is known to be interpreted, the Oissuing_pc value can be
duke@435 202 // omitted. An actual catch block in compiled code receives (from its
duke@435 203 // nmethod's exception handler) the thrown exception in the Oexception,
duke@435 204 // but it doesn't need the Oissuing_pc.
duke@435 205 //
duke@435 206 // If an exception handler (either interpreted or compiled)
duke@435 207 // discovers there is no applicable catch block, it updates
duke@435 208 // the Oissuing_pc to the continuation PC of its own caller,
duke@435 209 // pops back to that caller's stack frame, and executes that
duke@435 210 // caller's exception handler. Obviously, this process will
duke@435 211 // iterate until the control stack is popped back to a method
duke@435 212 // containing an applicable catch block. A key invariant is
duke@435 213 // that the Oissuing_pc value is always a value local to
duke@435 214 // the method whose exception handler is currently executing.
duke@435 215 //
duke@435 216 // Note: The issuing PC value is __not__ a raw return address (I7 value).
duke@435 217 // It is a "return pc", the address __following__ the call.
duke@435 218 // Raw return addresses are converted to issuing PCs by frame::pc(),
duke@435 219 // or by stubs. Issuing PCs can be used directly with PC range tables.
duke@435 220 //
duke@435 221 REGISTER_DECLARATION(Register, Oexception , O0); // exception being thrown
duke@435 222 REGISTER_DECLARATION(Register, Oissuing_pc , O1); // where the exception is coming from
duke@435 223
duke@435 224
duke@435 225 // These must occur after the declarations above
duke@435 226 #ifndef DONT_USE_REGISTER_DEFINES
duke@435 227
duke@435 228 #define Gthread AS_REGISTER(Register, Gthread)
duke@435 229 #define Gmethod AS_REGISTER(Register, Gmethod)
duke@435 230 #define Gmegamorphic_method AS_REGISTER(Register, Gmegamorphic_method)
duke@435 231 #define Ginline_cache_reg AS_REGISTER(Register, Ginline_cache_reg)
duke@435 232 #define Gargs AS_REGISTER(Register, Gargs)
duke@435 233 #define Lthread_cache AS_REGISTER(Register, Lthread_cache)
duke@435 234 #define Gframe_size AS_REGISTER(Register, Gframe_size)
duke@435 235 #define Gtemp AS_REGISTER(Register, Gtemp)
duke@435 236
duke@435 237 #ifdef CC_INTERP
duke@435 238 #define Lstate AS_REGISTER(Register, Lstate)
duke@435 239 #define Lesp AS_REGISTER(Register, Lesp)
duke@435 240 #define L1_scratch AS_REGISTER(Register, L1_scratch)
duke@435 241 #define Lmirror AS_REGISTER(Register, Lmirror)
duke@435 242 #define L2_scratch AS_REGISTER(Register, L2_scratch)
duke@435 243 #define L3_scratch AS_REGISTER(Register, L3_scratch)
duke@435 244 #define L4_scratch AS_REGISTER(Register, L4_scratch)
duke@435 245 #define Lscratch AS_REGISTER(Register, Lscratch)
duke@435 246 #define Lscratch2 AS_REGISTER(Register, Lscratch2)
duke@435 247 #define L7_scratch AS_REGISTER(Register, L7_scratch)
duke@435 248 #define Ostate AS_REGISTER(Register, Ostate)
duke@435 249 #else
duke@435 250 #define Lesp AS_REGISTER(Register, Lesp)
duke@435 251 #define Lbcp AS_REGISTER(Register, Lbcp)
duke@435 252 #define Lmethod AS_REGISTER(Register, Lmethod)
duke@435 253 #define Llocals AS_REGISTER(Register, Llocals)
duke@435 254 #define Lmonitors AS_REGISTER(Register, Lmonitors)
duke@435 255 #define Lbyte_code AS_REGISTER(Register, Lbyte_code)
duke@435 256 #define Lscratch AS_REGISTER(Register, Lscratch)
duke@435 257 #define Lscratch2 AS_REGISTER(Register, Lscratch2)
duke@435 258 #define LcpoolCache AS_REGISTER(Register, LcpoolCache)
duke@435 259 #endif /* ! CC_INTERP */
duke@435 260
duke@435 261 #define Lentry_args AS_REGISTER(Register, Lentry_args)
duke@435 262 #define I5_savedSP AS_REGISTER(Register, I5_savedSP)
duke@435 263 #define O5_savedSP AS_REGISTER(Register, O5_savedSP)
duke@435 264 #define IdispatchAddress AS_REGISTER(Register, IdispatchAddress)
duke@435 265 #define ImethodDataPtr AS_REGISTER(Register, ImethodDataPtr)
duke@435 266 #define IdispatchTables AS_REGISTER(Register, IdispatchTables)
duke@435 267
duke@435 268 #define Oexception AS_REGISTER(Register, Oexception)
duke@435 269 #define Oissuing_pc AS_REGISTER(Register, Oissuing_pc)
duke@435 270
duke@435 271
duke@435 272 #endif
duke@435 273
duke@435 274 // Address is an abstraction used to represent a memory location.
duke@435 275 //
duke@435 276 // Note: A register location is represented via a Register, not
duke@435 277 // via an address for efficiency & simplicity reasons.
duke@435 278
duke@435 279 class Address VALUE_OBJ_CLASS_SPEC {
duke@435 280 private:
twisti@1162 281 Register _base; // Base register.
twisti@1162 282 RegisterOrConstant _index_or_disp; // Index register or constant displacement.
twisti@1162 283 RelocationHolder _rspec;
twisti@1162 284
twisti@1162 285 public:
twisti@1162 286 Address() : _base(noreg), _index_or_disp(noreg) {}
twisti@1162 287
twisti@1162 288 Address(Register base, RegisterOrConstant index_or_disp)
twisti@1162 289 : _base(base),
twisti@1162 290 _index_or_disp(index_or_disp) {
twisti@1162 291 }
twisti@1162 292
twisti@1162 293 Address(Register base, Register index)
twisti@1162 294 : _base(base),
twisti@1162 295 _index_or_disp(index) {
twisti@1162 296 }
twisti@1162 297
twisti@1162 298 Address(Register base, int disp)
twisti@1162 299 : _base(base),
twisti@1162 300 _index_or_disp(disp) {
twisti@1162 301 }
twisti@1162 302
twisti@1162 303 #ifdef ASSERT
twisti@1162 304 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
twisti@1162 305 Address(Register base, ByteSize disp)
twisti@1162 306 : _base(base),
twisti@1162 307 _index_or_disp(in_bytes(disp)) {
twisti@1162 308 }
duke@435 309 #endif
twisti@1162 310
twisti@1162 311 // accessors
never@2950 312 Register base() const { return _base; }
never@2950 313 Register index() const { return _index_or_disp.as_register(); }
never@2950 314 int disp() const { return _index_or_disp.as_constant(); }
never@2950 315
never@2950 316 bool has_index() const { return _index_or_disp.is_register(); }
never@2950 317 bool has_disp() const { return _index_or_disp.is_constant(); }
never@2950 318
never@2950 319 bool uses(Register reg) const { return base() == reg || (has_index() && index() == reg); }
twisti@1162 320
twisti@1162 321 const relocInfo::relocType rtype() { return _rspec.type(); }
twisti@1162 322 const RelocationHolder& rspec() { return _rspec; }
twisti@1162 323
twisti@1162 324 RelocationHolder rspec(int offset) const {
twisti@1162 325 return offset == 0 ? _rspec : _rspec.plus(offset);
twisti@1162 326 }
twisti@1162 327
twisti@1162 328 inline bool is_simm13(int offset = 0); // check disp+offset for overflow
twisti@1162 329
twisti@1162 330 Address plus_disp(int plusdisp) const { // bump disp by a small amount
twisti@1162 331 assert(_index_or_disp.is_constant(), "must have a displacement");
twisti@1162 332 Address a(base(), disp() + plusdisp);
twisti@1162 333 return a;
twisti@1162 334 }
never@2950 335 bool is_same_address(Address a) const {
never@2950 336 // disregard _rspec
never@2950 337 return base() == a.base() && (has_index() ? index() == a.index() : disp() == a.disp());
never@2950 338 }
twisti@1162 339
twisti@1162 340 Address after_save() const {
twisti@1162 341 Address a = (*this);
twisti@1162 342 a._base = a._base->after_save();
twisti@1162 343 return a;
twisti@1162 344 }
twisti@1162 345
twisti@1162 346 Address after_restore() const {
twisti@1162 347 Address a = (*this);
twisti@1162 348 a._base = a._base->after_restore();
twisti@1162 349 return a;
twisti@1162 350 }
twisti@1162 351
twisti@1162 352 // Convert the raw encoding form into the form expected by the
twisti@1162 353 // constructor for Address.
twisti@1162 354 static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
twisti@1162 355
twisti@1162 356 friend class Assembler;
twisti@1162 357 };
twisti@1162 358
twisti@1162 359
twisti@1162 360 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
twisti@1162 361 private:
twisti@1162 362 address _address;
twisti@1162 363 RelocationHolder _rspec;
twisti@1162 364
twisti@1162 365 RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
twisti@1162 366 switch (rtype) {
duke@435 367 case relocInfo::external_word_type:
twisti@1162 368 return external_word_Relocation::spec(addr);
duke@435 369 case relocInfo::internal_word_type:
twisti@1162 370 return internal_word_Relocation::spec(addr);
duke@435 371 #ifdef _LP64
duke@435 372 case relocInfo::opt_virtual_call_type:
duke@435 373 return opt_virtual_call_Relocation::spec();
duke@435 374 case relocInfo::static_call_type:
duke@435 375 return static_call_Relocation::spec();
duke@435 376 case relocInfo::runtime_call_type:
duke@435 377 return runtime_call_Relocation::spec();
duke@435 378 #endif
duke@435 379 case relocInfo::none:
duke@435 380 return RelocationHolder();
duke@435 381 default:
duke@435 382 ShouldNotReachHere();
duke@435 383 return RelocationHolder();
duke@435 384 }
duke@435 385 }
duke@435 386
twisti@1162 387 protected:
twisti@1162 388 // creation
twisti@1162 389 AddressLiteral() : _address(NULL), _rspec(NULL) {}
twisti@1162 390
duke@435 391 public:
twisti@1162 392 AddressLiteral(address addr, RelocationHolder const& rspec)
twisti@1162 393 : _address(addr),
twisti@1162 394 _rspec(rspec) {}
twisti@1162 395
twisti@1162 396 // Some constructors to avoid casting at the call site.
twisti@1162 397 AddressLiteral(jobject obj, RelocationHolder const& rspec)
twisti@1162 398 : _address((address) obj),
twisti@1162 399 _rspec(rspec) {}
twisti@1162 400
twisti@1162 401 AddressLiteral(intptr_t value, RelocationHolder const& rspec)
twisti@1162 402 : _address((address) value),
twisti@1162 403 _rspec(rspec) {}
twisti@1162 404
twisti@1162 405 AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 406 : _address((address) addr),
twisti@1162 407 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 408
twisti@1162 409 // Some constructors to avoid casting at the call site.
twisti@1162 410 AddressLiteral(address* addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 411 : _address((address) addr),
twisti@1162 412 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 413
twisti@1162 414 AddressLiteral(bool* addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 415 : _address((address) addr),
twisti@1162 416 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 417
twisti@1162 418 AddressLiteral(const bool* addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 419 : _address((address) addr),
twisti@1162 420 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 421
twisti@1162 422 AddressLiteral(signed char* addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 423 : _address((address) addr),
twisti@1162 424 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 425
twisti@1162 426 AddressLiteral(int* addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 427 : _address((address) addr),
twisti@1162 428 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 429
twisti@1162 430 AddressLiteral(intptr_t addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 431 : _address((address) addr),
twisti@1162 432 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 433
duke@435 434 #ifdef _LP64
twisti@1162 435 // 32-bit complains about a multiple declaration for int*.
twisti@1162 436 AddressLiteral(intptr_t* addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 437 : _address((address) addr),
twisti@1162 438 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
duke@435 439 #endif
twisti@1162 440
twisti@1162 441 AddressLiteral(oop addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 442 : _address((address) addr),
twisti@1162 443 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 444
never@2950 445 AddressLiteral(oop* addr, relocInfo::relocType rtype = relocInfo::none)
never@2950 446 : _address((address) addr),
never@2950 447 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
never@2950 448
twisti@1162 449 AddressLiteral(float* addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 450 : _address((address) addr),
twisti@1162 451 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 452
twisti@1162 453 AddressLiteral(double* addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 454 : _address((address) addr),
twisti@1162 455 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 456
twisti@1162 457 intptr_t value() const { return (intptr_t) _address; }
twisti@1162 458 int low10() const;
twisti@1162 459
twisti@1162 460 const relocInfo::relocType rtype() const { return _rspec.type(); }
twisti@1162 461 const RelocationHolder& rspec() const { return _rspec; }
twisti@1162 462
twisti@1162 463 RelocationHolder rspec(int offset) const {
duke@435 464 return offset == 0 ? _rspec : _rspec.plus(offset);
duke@435 465 }
duke@435 466 };
duke@435 467
never@2950 468 // Convenience classes
never@2950 469 class ExternalAddress: public AddressLiteral {
never@2950 470 private:
never@2950 471 static relocInfo::relocType reloc_for_target(address target) {
never@2950 472 // Sometimes ExternalAddress is used for values which aren't
never@2950 473 // exactly addresses, like the card table base.
never@2950 474 // external_word_type can't be used for values in the first page
never@2950 475 // so just skip the reloc in that case.
never@2950 476 return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
never@2950 477 }
never@2950 478
never@2950 479 public:
never@2950 480 ExternalAddress(address target) : AddressLiteral(target, reloc_for_target( target)) {}
never@2950 481 ExternalAddress(oop* target) : AddressLiteral(target, reloc_for_target((address) target)) {}
never@2950 482 };
duke@435 483
duke@435 484 inline Address RegisterImpl::address_in_saved_window() const {
twisti@1162 485 return (Address(SP, (sp_offset_in_saved_window() * wordSize) + STACK_BIAS));
duke@435 486 }
duke@435 487
duke@435 488
duke@435 489
duke@435 490 // Argument is an abstraction used to represent an outgoing
duke@435 491 // actual argument or an incoming formal parameter, whether
duke@435 492 // it resides in memory or in a register, in a manner consistent
duke@435 493 // with the SPARC Application Binary Interface, or ABI. This is
duke@435 494 // often referred to as the native or C calling convention.
duke@435 495
duke@435 496 class Argument VALUE_OBJ_CLASS_SPEC {
duke@435 497 private:
duke@435 498 int _number;
duke@435 499 bool _is_in;
duke@435 500
duke@435 501 public:
duke@435 502 #ifdef _LP64
duke@435 503 enum {
duke@435 504 n_register_parameters = 6, // only 6 registers may contain integer parameters
duke@435 505 n_float_register_parameters = 16 // Can have up to 16 floating registers
duke@435 506 };
duke@435 507 #else
duke@435 508 enum {
duke@435 509 n_register_parameters = 6 // only 6 registers may contain integer parameters
duke@435 510 };
duke@435 511 #endif
duke@435 512
duke@435 513 // creation
duke@435 514 Argument(int number, bool is_in) : _number(number), _is_in(is_in) {}
duke@435 515
duke@435 516 int number() const { return _number; }
duke@435 517 bool is_in() const { return _is_in; }
duke@435 518 bool is_out() const { return !is_in(); }
duke@435 519
duke@435 520 Argument successor() const { return Argument(number() + 1, is_in()); }
duke@435 521 Argument as_in() const { return Argument(number(), true ); }
duke@435 522 Argument as_out() const { return Argument(number(), false); }
duke@435 523
duke@435 524 // locating register-based arguments:
duke@435 525 bool is_register() const { return _number < n_register_parameters; }
duke@435 526
duke@435 527 #ifdef _LP64
duke@435 528 // locating Floating Point register-based arguments:
duke@435 529 bool is_float_register() const { return _number < n_float_register_parameters; }
duke@435 530
duke@435 531 FloatRegister as_float_register() const {
duke@435 532 assert(is_float_register(), "must be a register argument");
duke@435 533 return as_FloatRegister(( number() *2 ) + 1);
duke@435 534 }
duke@435 535 FloatRegister as_double_register() const {
duke@435 536 assert(is_float_register(), "must be a register argument");
duke@435 537 return as_FloatRegister(( number() *2 ));
duke@435 538 }
duke@435 539 #endif
duke@435 540
duke@435 541 Register as_register() const {
duke@435 542 assert(is_register(), "must be a register argument");
duke@435 543 return is_in() ? as_iRegister(number()) : as_oRegister(number());
duke@435 544 }
duke@435 545
duke@435 546 // locating memory-based arguments
duke@435 547 Address as_address() const {
duke@435 548 assert(!is_register(), "must be a memory argument");
duke@435 549 return address_in_frame();
duke@435 550 }
duke@435 551
duke@435 552 // When applied to a register-based argument, give the corresponding address
duke@435 553 // into the 6-word area "into which callee may store register arguments"
duke@435 554 // (This is a different place than the corresponding register-save area location.)
twisti@1162 555 Address address_in_frame() const;
duke@435 556
duke@435 557 // debugging
duke@435 558 const char* name() const;
duke@435 559
duke@435 560 friend class Assembler;
duke@435 561 };
duke@435 562
duke@435 563
duke@435 564 // The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
duke@435 565 // level; i.e., what you write
duke@435 566 // is what you get. The Assembler is generating code into a CodeBuffer.
duke@435 567
duke@435 568 class Assembler : public AbstractAssembler {
duke@435 569 protected:
duke@435 570
duke@435 571 static void print_instruction(int inst);
duke@435 572 static int patched_branch(int dest_pos, int inst, int inst_pos);
duke@435 573 static int branch_destination(int inst, int pos);
duke@435 574
duke@435 575
duke@435 576 friend class AbstractAssembler;
twisti@1162 577 friend class AddressLiteral;
duke@435 578
duke@435 579 // code patchers need various routines like inv_wdisp()
duke@435 580 friend class NativeInstruction;
duke@435 581 friend class NativeGeneralJump;
duke@435 582 friend class Relocation;
duke@435 583 friend class Label;
duke@435 584
duke@435 585 public:
duke@435 586 // op carries format info; see page 62 & 267
duke@435 587
duke@435 588 enum ops {
duke@435 589 call_op = 1, // fmt 1
duke@435 590 branch_op = 0, // also sethi (fmt2)
duke@435 591 arith_op = 2, // fmt 3, arith & misc
duke@435 592 ldst_op = 3 // fmt 3, load/store
duke@435 593 };
duke@435 594
duke@435 595 enum op2s {
duke@435 596 bpr_op2 = 3,
duke@435 597 fb_op2 = 6,
duke@435 598 fbp_op2 = 5,
duke@435 599 br_op2 = 2,
duke@435 600 bp_op2 = 1,
duke@435 601 cb_op2 = 7, // V8
duke@435 602 sethi_op2 = 4
duke@435 603 };
duke@435 604
duke@435 605 enum op3s {
duke@435 606 // selected op3s
duke@435 607 add_op3 = 0x00,
duke@435 608 and_op3 = 0x01,
duke@435 609 or_op3 = 0x02,
duke@435 610 xor_op3 = 0x03,
duke@435 611 sub_op3 = 0x04,
duke@435 612 andn_op3 = 0x05,
duke@435 613 orn_op3 = 0x06,
duke@435 614 xnor_op3 = 0x07,
duke@435 615 addc_op3 = 0x08,
duke@435 616 mulx_op3 = 0x09,
duke@435 617 umul_op3 = 0x0a,
duke@435 618 smul_op3 = 0x0b,
duke@435 619 subc_op3 = 0x0c,
duke@435 620 udivx_op3 = 0x0d,
duke@435 621 udiv_op3 = 0x0e,
duke@435 622 sdiv_op3 = 0x0f,
duke@435 623
duke@435 624 addcc_op3 = 0x10,
duke@435 625 andcc_op3 = 0x11,
duke@435 626 orcc_op3 = 0x12,
duke@435 627 xorcc_op3 = 0x13,
duke@435 628 subcc_op3 = 0x14,
duke@435 629 andncc_op3 = 0x15,
duke@435 630 orncc_op3 = 0x16,
duke@435 631 xnorcc_op3 = 0x17,
duke@435 632 addccc_op3 = 0x18,
duke@435 633 umulcc_op3 = 0x1a,
duke@435 634 smulcc_op3 = 0x1b,
duke@435 635 subccc_op3 = 0x1c,
duke@435 636 udivcc_op3 = 0x1e,
duke@435 637 sdivcc_op3 = 0x1f,
duke@435 638
duke@435 639 taddcc_op3 = 0x20,
duke@435 640 tsubcc_op3 = 0x21,
duke@435 641 taddcctv_op3 = 0x22,
duke@435 642 tsubcctv_op3 = 0x23,
duke@435 643 mulscc_op3 = 0x24,
duke@435 644 sll_op3 = 0x25,
duke@435 645 sllx_op3 = 0x25,
duke@435 646 srl_op3 = 0x26,
duke@435 647 srlx_op3 = 0x26,
duke@435 648 sra_op3 = 0x27,
duke@435 649 srax_op3 = 0x27,
duke@435 650 rdreg_op3 = 0x28,
duke@435 651 membar_op3 = 0x28,
duke@435 652
duke@435 653 flushw_op3 = 0x2b,
duke@435 654 movcc_op3 = 0x2c,
duke@435 655 sdivx_op3 = 0x2d,
duke@435 656 popc_op3 = 0x2e,
duke@435 657 movr_op3 = 0x2f,
duke@435 658
duke@435 659 sir_op3 = 0x30,
duke@435 660 wrreg_op3 = 0x30,
duke@435 661 saved_op3 = 0x31,
duke@435 662
duke@435 663 fpop1_op3 = 0x34,
duke@435 664 fpop2_op3 = 0x35,
duke@435 665 impdep1_op3 = 0x36,
duke@435 666 impdep2_op3 = 0x37,
duke@435 667 jmpl_op3 = 0x38,
duke@435 668 rett_op3 = 0x39,
duke@435 669 trap_op3 = 0x3a,
duke@435 670 flush_op3 = 0x3b,
duke@435 671 save_op3 = 0x3c,
duke@435 672 restore_op3 = 0x3d,
duke@435 673 done_op3 = 0x3e,
duke@435 674 retry_op3 = 0x3e,
duke@435 675
duke@435 676 lduw_op3 = 0x00,
duke@435 677 ldub_op3 = 0x01,
duke@435 678 lduh_op3 = 0x02,
duke@435 679 ldd_op3 = 0x03,
duke@435 680 stw_op3 = 0x04,
duke@435 681 stb_op3 = 0x05,
duke@435 682 sth_op3 = 0x06,
duke@435 683 std_op3 = 0x07,
duke@435 684 ldsw_op3 = 0x08,
duke@435 685 ldsb_op3 = 0x09,
duke@435 686 ldsh_op3 = 0x0a,
duke@435 687 ldx_op3 = 0x0b,
duke@435 688
duke@435 689 ldstub_op3 = 0x0d,
duke@435 690 stx_op3 = 0x0e,
duke@435 691 swap_op3 = 0x0f,
duke@435 692
duke@435 693 stwa_op3 = 0x14,
duke@435 694 stxa_op3 = 0x1e,
duke@435 695
duke@435 696 ldf_op3 = 0x20,
duke@435 697 ldfsr_op3 = 0x21,
duke@435 698 ldqf_op3 = 0x22,
duke@435 699 lddf_op3 = 0x23,
duke@435 700 stf_op3 = 0x24,
duke@435 701 stfsr_op3 = 0x25,
duke@435 702 stqf_op3 = 0x26,
duke@435 703 stdf_op3 = 0x27,
duke@435 704
duke@435 705 prefetch_op3 = 0x2d,
duke@435 706
duke@435 707
duke@435 708 ldc_op3 = 0x30,
duke@435 709 ldcsr_op3 = 0x31,
duke@435 710 lddc_op3 = 0x33,
duke@435 711 stc_op3 = 0x34,
duke@435 712 stcsr_op3 = 0x35,
duke@435 713 stdcq_op3 = 0x36,
duke@435 714 stdc_op3 = 0x37,
duke@435 715
duke@435 716 casa_op3 = 0x3c,
duke@435 717 casxa_op3 = 0x3e,
duke@435 718
duke@435 719 alt_bit_op3 = 0x10,
duke@435 720 cc_bit_op3 = 0x10
duke@435 721 };
duke@435 722
duke@435 723 enum opfs {
duke@435 724 // selected opfs
duke@435 725 fmovs_opf = 0x01,
duke@435 726 fmovd_opf = 0x02,
duke@435 727
duke@435 728 fnegs_opf = 0x05,
duke@435 729 fnegd_opf = 0x06,
duke@435 730
duke@435 731 fadds_opf = 0x41,
duke@435 732 faddd_opf = 0x42,
duke@435 733 fsubs_opf = 0x45,
duke@435 734 fsubd_opf = 0x46,
duke@435 735
duke@435 736 fmuls_opf = 0x49,
duke@435 737 fmuld_opf = 0x4a,
duke@435 738 fdivs_opf = 0x4d,
duke@435 739 fdivd_opf = 0x4e,
duke@435 740
duke@435 741 fcmps_opf = 0x51,
duke@435 742 fcmpd_opf = 0x52,
duke@435 743
duke@435 744 fstox_opf = 0x81,
duke@435 745 fdtox_opf = 0x82,
duke@435 746 fxtos_opf = 0x84,
duke@435 747 fxtod_opf = 0x88,
duke@435 748 fitos_opf = 0xc4,
duke@435 749 fdtos_opf = 0xc6,
duke@435 750 fitod_opf = 0xc8,
duke@435 751 fstod_opf = 0xc9,
duke@435 752 fstoi_opf = 0xd1,
duke@435 753 fdtoi_opf = 0xd2
duke@435 754 };
duke@435 755
duke@435 756 enum RCondition { rc_z = 1, rc_lez = 2, rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7 };
duke@435 757
duke@435 758 enum Condition {
duke@435 759 // for FBfcc & FBPfcc instruction
duke@435 760 f_never = 0,
duke@435 761 f_notEqual = 1,
duke@435 762 f_notZero = 1,
duke@435 763 f_lessOrGreater = 2,
duke@435 764 f_unorderedOrLess = 3,
duke@435 765 f_less = 4,
duke@435 766 f_unorderedOrGreater = 5,
duke@435 767 f_greater = 6,
duke@435 768 f_unordered = 7,
duke@435 769 f_always = 8,
duke@435 770 f_equal = 9,
duke@435 771 f_zero = 9,
duke@435 772 f_unorderedOrEqual = 10,
duke@435 773 f_greaterOrEqual = 11,
duke@435 774 f_unorderedOrGreaterOrEqual = 12,
duke@435 775 f_lessOrEqual = 13,
duke@435 776 f_unorderedOrLessOrEqual = 14,
duke@435 777 f_ordered = 15,
duke@435 778
duke@435 779 // V8 coproc, pp 123 v8 manual
duke@435 780
duke@435 781 cp_always = 8,
duke@435 782 cp_never = 0,
duke@435 783 cp_3 = 7,
duke@435 784 cp_2 = 6,
duke@435 785 cp_2or3 = 5,
duke@435 786 cp_1 = 4,
duke@435 787 cp_1or3 = 3,
duke@435 788 cp_1or2 = 2,
duke@435 789 cp_1or2or3 = 1,
duke@435 790 cp_0 = 9,
duke@435 791 cp_0or3 = 10,
duke@435 792 cp_0or2 = 11,
duke@435 793 cp_0or2or3 = 12,
duke@435 794 cp_0or1 = 13,
duke@435 795 cp_0or1or3 = 14,
duke@435 796 cp_0or1or2 = 15,
duke@435 797
duke@435 798
duke@435 799 // for integers
duke@435 800
duke@435 801 never = 0,
duke@435 802 equal = 1,
duke@435 803 zero = 1,
duke@435 804 lessEqual = 2,
duke@435 805 less = 3,
duke@435 806 lessEqualUnsigned = 4,
duke@435 807 lessUnsigned = 5,
duke@435 808 carrySet = 5,
duke@435 809 negative = 6,
duke@435 810 overflowSet = 7,
duke@435 811 always = 8,
duke@435 812 notEqual = 9,
duke@435 813 notZero = 9,
duke@435 814 greater = 10,
duke@435 815 greaterEqual = 11,
duke@435 816 greaterUnsigned = 12,
duke@435 817 greaterEqualUnsigned = 13,
duke@435 818 carryClear = 13,
duke@435 819 positive = 14,
duke@435 820 overflowClear = 15
duke@435 821 };
duke@435 822
duke@435 823 enum CC {
duke@435 824 icc = 0, xcc = 2,
duke@435 825 // ptr_cc is the correct condition code for a pointer or intptr_t:
duke@435 826 ptr_cc = NOT_LP64(icc) LP64_ONLY(xcc),
duke@435 827 fcc0 = 0, fcc1 = 1, fcc2 = 2, fcc3 = 3
duke@435 828 };
duke@435 829
duke@435 830 enum PrefetchFcn {
duke@435 831 severalReads = 0, oneRead = 1, severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4
duke@435 832 };
duke@435 833
duke@435 834 public:
duke@435 835 // Helper functions for groups of instructions
duke@435 836
duke@435 837 enum Predict { pt = 1, pn = 0 }; // pt = predict taken
duke@435 838
duke@435 839 enum Membar_mask_bits { // page 184, v9
duke@435 840 StoreStore = 1 << 3,
duke@435 841 LoadStore = 1 << 2,
duke@435 842 StoreLoad = 1 << 1,
duke@435 843 LoadLoad = 1 << 0,
duke@435 844
duke@435 845 Sync = 1 << 6,
duke@435 846 MemIssue = 1 << 5,
duke@435 847 Lookaside = 1 << 4
duke@435 848 };
duke@435 849
duke@435 850 // test if x is within signed immediate range for nbits
iveresov@2441 851 static bool is_simm(intptr_t x, int nbits) { return -( intptr_t(1) << nbits-1 ) <= x && x < ( intptr_t(1) << nbits-1 ); }
duke@435 852
duke@435 853 // test if -4096 <= x <= 4095
iveresov@2441 854 static bool is_simm13(intptr_t x) { return is_simm(x, 13); }
iveresov@2441 855
iveresov@2441 856 static bool is_in_wdisp_range(address a, address b, int nbits) {
iveresov@2441 857 intptr_t d = intptr_t(b) - intptr_t(a);
iveresov@2441 858 return is_simm(d, nbits + 2);
iveresov@2441 859 }
duke@435 860
iveresov@2203 861 // test if label is in simm16 range in words (wdisp16).
iveresov@2203 862 bool is_in_wdisp16_range(Label& L) {
iveresov@2441 863 return is_in_wdisp_range(target(L), pc(), 16);
iveresov@2441 864 }
iveresov@2441 865 // test if the distance between two addresses fits in simm30 range in words
iveresov@2441 866 static bool is_in_wdisp30_range(address a, address b) {
iveresov@2441 867 return is_in_wdisp_range(a, b, 30);
iveresov@2203 868 }
iveresov@2203 869
duke@435 870 enum ASIs { // page 72, v9
duke@435 871 ASI_PRIMARY = 0x80,
duke@435 872 ASI_PRIMARY_LITTLE = 0x88
duke@435 873 // add more from book as needed
duke@435 874 };
duke@435 875
duke@435 876 protected:
duke@435 877 // helpers
duke@435 878
duke@435 879 // x is supposed to fit in a field "nbits" wide
duke@435 880 // and be sign-extended. Check the range.
duke@435 881
duke@435 882 static void assert_signed_range(intptr_t x, int nbits) {
never@2950 883 assert(nbits == 32 || (-(1 << nbits-1) <= x && x < ( 1 << nbits-1)),
never@2950 884 err_msg("value out of range: x=" INTPTR_FORMAT ", nbits=%d", x, nbits));
duke@435 885 }
duke@435 886
duke@435 887 static void assert_signed_word_disp_range(intptr_t x, int nbits) {
duke@435 888 assert( (x & 3) == 0, "not word aligned");
duke@435 889 assert_signed_range(x, nbits + 2);
duke@435 890 }
duke@435 891
duke@435 892 static void assert_unsigned_const(int x, int nbits) {
duke@435 893 assert( juint(x) < juint(1 << nbits), "unsigned constant out of range");
duke@435 894 }
duke@435 895
duke@435 896 // fields: note bits numbered from LSB = 0,
duke@435 897 // fields known by inclusive bit range
duke@435 898
duke@435 899 static int fmask(juint hi_bit, juint lo_bit) {
duke@435 900 assert( hi_bit >= lo_bit && 0 <= lo_bit && hi_bit < 32, "bad bits");
duke@435 901 return (1 << ( hi_bit-lo_bit + 1 )) - 1;
duke@435 902 }
duke@435 903
duke@435 904 // inverse of u_field
duke@435 905
duke@435 906 static int inv_u_field(int x, int hi_bit, int lo_bit) {
duke@435 907 juint r = juint(x) >> lo_bit;
duke@435 908 r &= fmask( hi_bit, lo_bit);
duke@435 909 return int(r);
duke@435 910 }
duke@435 911
duke@435 912
duke@435 913 // signed version: extract from field and sign-extend
duke@435 914
duke@435 915 static int inv_s_field(int x, int hi_bit, int lo_bit) {
duke@435 916 int sign_shift = 31 - hi_bit;
duke@435 917 return inv_u_field( ((x << sign_shift) >> sign_shift), hi_bit, lo_bit);
duke@435 918 }
duke@435 919
duke@435 920 // given a field that ranges from hi_bit to lo_bit (inclusive,
duke@435 921 // LSB = 0), and an unsigned value for the field,
duke@435 922 // shift it into the field
duke@435 923
duke@435 924 #ifdef ASSERT
duke@435 925 static int u_field(int x, int hi_bit, int lo_bit) {
duke@435 926 assert( ( x & ~fmask(hi_bit, lo_bit)) == 0,
duke@435 927 "value out of range");
duke@435 928 int r = x << lo_bit;
duke@435 929 assert( inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
duke@435 930 return r;
duke@435 931 }
duke@435 932 #else
duke@435 933 // make sure this is inlined as it will reduce code size significantly
duke@435 934 #define u_field(x, hi_bit, lo_bit) ((x) << (lo_bit))
duke@435 935 #endif
duke@435 936
duke@435 937 static int inv_op( int x ) { return inv_u_field(x, 31, 30); }
duke@435 938 static int inv_op2( int x ) { return inv_u_field(x, 24, 22); }
duke@435 939 static int inv_op3( int x ) { return inv_u_field(x, 24, 19); }
duke@435 940 static int inv_cond( int x ){ return inv_u_field(x, 28, 25); }
duke@435 941
duke@435 942 static bool inv_immed( int x ) { return (x & Assembler::immed(true)) != 0; }
duke@435 943
duke@435 944 static Register inv_rd( int x ) { return as_Register(inv_u_field(x, 29, 25)); }
duke@435 945 static Register inv_rs1( int x ) { return as_Register(inv_u_field(x, 18, 14)); }
duke@435 946 static Register inv_rs2( int x ) { return as_Register(inv_u_field(x, 4, 0)); }
duke@435 947
duke@435 948 static int op( int x) { return u_field(x, 31, 30); }
duke@435 949 static int rd( Register r) { return u_field(r->encoding(), 29, 25); }
duke@435 950 static int fcn( int x) { return u_field(x, 29, 25); }
duke@435 951 static int op3( int x) { return u_field(x, 24, 19); }
duke@435 952 static int rs1( Register r) { return u_field(r->encoding(), 18, 14); }
duke@435 953 static int rs2( Register r) { return u_field(r->encoding(), 4, 0); }
duke@435 954 static int annul( bool a) { return u_field(a ? 1 : 0, 29, 29); }
duke@435 955 static int cond( int x) { return u_field(x, 28, 25); }
duke@435 956 static int cond_mov( int x) { return u_field(x, 17, 14); }
duke@435 957 static int rcond( RCondition x) { return u_field(x, 12, 10); }
duke@435 958 static int op2( int x) { return u_field(x, 24, 22); }
duke@435 959 static int predict( bool p) { return u_field(p ? 1 : 0, 19, 19); }
duke@435 960 static int branchcc( CC fcca) { return u_field(fcca, 21, 20); }
duke@435 961 static int cmpcc( CC fcca) { return u_field(fcca, 26, 25); }
duke@435 962 static int imm_asi( int x) { return u_field(x, 12, 5); }
duke@435 963 static int immed( bool i) { return u_field(i ? 1 : 0, 13, 13); }
duke@435 964 static int opf_low6( int w) { return u_field(w, 10, 5); }
duke@435 965 static int opf_low5( int w) { return u_field(w, 9, 5); }
duke@435 966 static int trapcc( CC cc) { return u_field(cc, 12, 11); }
duke@435 967 static int sx( int i) { return u_field(i, 12, 12); } // shift x=1 means 64-bit
duke@435 968 static int opf( int x) { return u_field(x, 13, 5); }
duke@435 969
duke@435 970 static int opf_cc( CC c, bool useFloat ) { return u_field((useFloat ? 0 : 4) + c, 13, 11); }
duke@435 971 static int mov_cc( CC c, bool useFloat ) { return u_field(useFloat ? 0 : 1, 18, 18) | u_field(c, 12, 11); }
duke@435 972
duke@435 973 static int fd( FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); };
duke@435 974 static int fs1(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); };
duke@435 975 static int fs2(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 4, 0); };
duke@435 976
duke@435 977 // some float instructions use this encoding on the op3 field
duke@435 978 static int alt_op3(int op, FloatRegisterImpl::Width w) {
duke@435 979 int r;
duke@435 980 switch(w) {
duke@435 981 case FloatRegisterImpl::S: r = op + 0; break;
duke@435 982 case FloatRegisterImpl::D: r = op + 3; break;
duke@435 983 case FloatRegisterImpl::Q: r = op + 2; break;
duke@435 984 default: ShouldNotReachHere(); break;
duke@435 985 }
duke@435 986 return op3(r);
duke@435 987 }
duke@435 988
duke@435 989
duke@435 990 // compute inverse of simm
duke@435 991 static int inv_simm(int x, int nbits) {
duke@435 992 return (int)(x << (32 - nbits)) >> (32 - nbits);
duke@435 993 }
duke@435 994
duke@435 995 static int inv_simm13( int x ) { return inv_simm(x, 13); }
duke@435 996
duke@435 997 // signed immediate, in low bits, nbits long
duke@435 998 static int simm(int x, int nbits) {
duke@435 999 assert_signed_range(x, nbits);
duke@435 1000 return x & (( 1 << nbits ) - 1);
duke@435 1001 }
duke@435 1002
duke@435 1003 // compute inverse of wdisp16
duke@435 1004 static intptr_t inv_wdisp16(int x, intptr_t pos) {
duke@435 1005 int lo = x & (( 1 << 14 ) - 1);
duke@435 1006 int hi = (x >> 20) & 3;
duke@435 1007 if (hi >= 2) hi |= ~1;
duke@435 1008 return (((hi << 14) | lo) << 2) + pos;
duke@435 1009 }
duke@435 1010
duke@435 1011 // word offset, 14 bits at LSend, 2 bits at B21, B20
duke@435 1012 static int wdisp16(intptr_t x, intptr_t off) {
duke@435 1013 intptr_t xx = x - off;
duke@435 1014 assert_signed_word_disp_range(xx, 16);
duke@435 1015 int r = (xx >> 2) & ((1 << 14) - 1)
duke@435 1016 | ( ( (xx>>(2+14)) & 3 ) << 20 );
duke@435 1017 assert( inv_wdisp16(r, off) == x, "inverse is not inverse");
duke@435 1018 return r;
duke@435 1019 }
duke@435 1020
duke@435 1021
duke@435 1022 // word displacement in low-order nbits bits
duke@435 1023
duke@435 1024 static intptr_t inv_wdisp( int x, intptr_t pos, int nbits ) {
duke@435 1025 int pre_sign_extend = x & (( 1 << nbits ) - 1);
duke@435 1026 int r = pre_sign_extend >= ( 1 << (nbits-1) )
duke@435 1027 ? pre_sign_extend | ~(( 1 << nbits ) - 1)
duke@435 1028 : pre_sign_extend;
duke@435 1029 return (r << 2) + pos;
duke@435 1030 }
duke@435 1031
duke@435 1032 static int wdisp( intptr_t x, intptr_t off, int nbits ) {
duke@435 1033 intptr_t xx = x - off;
duke@435 1034 assert_signed_word_disp_range(xx, nbits);
duke@435 1035 int r = (xx >> 2) & (( 1 << nbits ) - 1);
duke@435 1036 assert( inv_wdisp( r, off, nbits ) == x, "inverse not inverse");
duke@435 1037 return r;
duke@435 1038 }
duke@435 1039
duke@435 1040
duke@435 1041 // Extract the top 32 bits in a 64 bit word
duke@435 1042 static int32_t hi32( int64_t x ) {
duke@435 1043 int32_t r = int32_t( (uint64_t)x >> 32 );
duke@435 1044 return r;
duke@435 1045 }
duke@435 1046
duke@435 1047 // given a sethi instruction, extract the constant, left-justified
duke@435 1048 static int inv_hi22( int x ) {
duke@435 1049 return x << 10;
duke@435 1050 }
duke@435 1051
duke@435 1052 // create an imm22 field, given a 32-bit left-justified constant
duke@435 1053 static int hi22( int x ) {
duke@435 1054 int r = int( juint(x) >> 10 );
duke@435 1055 assert( (r & ~((1 << 22) - 1)) == 0, "just checkin'");
duke@435 1056 return r;
duke@435 1057 }
duke@435 1058
duke@435 1059 // create a low10 __value__ (not a field) for a given a 32-bit constant
duke@435 1060 static int low10( int x ) {
duke@435 1061 return x & ((1 << 10) - 1);
duke@435 1062 }
duke@435 1063
duke@435 1064 // instruction only in v9
duke@435 1065 static void v9_only() { assert( VM_Version::v9_instructions_work(), "This instruction only works on SPARC V9"); }
duke@435 1066
duke@435 1067 // instruction only in v8
duke@435 1068 static void v8_only() { assert( VM_Version::v8_instructions_work(), "This instruction only works on SPARC V8"); }
duke@435 1069
duke@435 1070 // instruction deprecated in v9
duke@435 1071 static void v9_dep() { } // do nothing for now
duke@435 1072
duke@435 1073 // some float instructions only exist for single prec. on v8
duke@435 1074 static void v8_s_only(FloatRegisterImpl::Width w) { if (w != FloatRegisterImpl::S) v9_only(); }
duke@435 1075
duke@435 1076 // v8 has no CC field
duke@435 1077 static void v8_no_cc(CC cc) { if (cc) v9_only(); }
duke@435 1078
duke@435 1079 protected:
duke@435 1080 // Simple delay-slot scheme:
duke@435 1081 // In order to check the programmer, the assembler keeps track of deley slots.
duke@435 1082 // It forbids CTIs in delay slots (conservative, but should be OK).
duke@435 1083 // Also, when putting an instruction into a delay slot, you must say
duke@435 1084 // asm->delayed()->add(...), in order to check that you don't omit
duke@435 1085 // delay-slot instructions.
duke@435 1086 // To implement this, we use a simple FSA
duke@435 1087
duke@435 1088 #ifdef ASSERT
duke@435 1089 #define CHECK_DELAY
duke@435 1090 #endif
duke@435 1091 #ifdef CHECK_DELAY
duke@435 1092 enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state;
duke@435 1093 #endif
duke@435 1094
duke@435 1095 public:
duke@435 1096 // Tells assembler next instruction must NOT be in delay slot.
duke@435 1097 // Use at start of multinstruction macros.
duke@435 1098 void assert_not_delayed() {
duke@435 1099 // This is a separate overloading to avoid creation of string constants
duke@435 1100 // in non-asserted code--with some compilers this pollutes the object code.
duke@435 1101 #ifdef CHECK_DELAY
duke@435 1102 assert_not_delayed("next instruction should not be a delay slot");
duke@435 1103 #endif
duke@435 1104 }
duke@435 1105 void assert_not_delayed(const char* msg) {
duke@435 1106 #ifdef CHECK_DELAY
jcoomes@1845 1107 assert(delay_state == no_delay, msg);
duke@435 1108 #endif
duke@435 1109 }
duke@435 1110
duke@435 1111 protected:
duke@435 1112 // Delay slot helpers
duke@435 1113 // cti is called when emitting control-transfer instruction,
duke@435 1114 // BEFORE doing the emitting.
duke@435 1115 // Only effective when assertion-checking is enabled.
duke@435 1116 void cti() {
duke@435 1117 #ifdef CHECK_DELAY
duke@435 1118 assert_not_delayed("cti should not be in delay slot");
duke@435 1119 #endif
duke@435 1120 }
duke@435 1121
duke@435 1122 // called when emitting cti with a delay slot, AFTER emitting
duke@435 1123 void has_delay_slot() {
duke@435 1124 #ifdef CHECK_DELAY
duke@435 1125 assert_not_delayed("just checking");
duke@435 1126 delay_state = at_delay_slot;
duke@435 1127 #endif
duke@435 1128 }
duke@435 1129
duke@435 1130 public:
duke@435 1131 // Tells assembler you know that next instruction is delayed
duke@435 1132 Assembler* delayed() {
duke@435 1133 #ifdef CHECK_DELAY
duke@435 1134 assert ( delay_state == at_delay_slot, "delayed instruction is not in delay slot");
duke@435 1135 delay_state = filling_delay_slot;
duke@435 1136 #endif
duke@435 1137 return this;
duke@435 1138 }
duke@435 1139
duke@435 1140 void flush() {
duke@435 1141 #ifdef CHECK_DELAY
duke@435 1142 assert ( delay_state == no_delay, "ending code with a delay slot");
duke@435 1143 #endif
duke@435 1144 AbstractAssembler::flush();
duke@435 1145 }
duke@435 1146
duke@435 1147 inline void emit_long(int); // shadows AbstractAssembler::emit_long
duke@435 1148 inline void emit_data(int x) { emit_long(x); }
duke@435 1149 inline void emit_data(int, RelocationHolder const&);
duke@435 1150 inline void emit_data(int, relocInfo::relocType rtype);
duke@435 1151 // helper for above fcns
duke@435 1152 inline void check_delay();
duke@435 1153
duke@435 1154
duke@435 1155 public:
duke@435 1156 // instructions, refer to page numbers in the SPARC Architecture Manual, V9
duke@435 1157
duke@435 1158 // pp 135 (addc was addx in v8)
duke@435 1159
twisti@1162 1160 inline void add(Register s1, Register s2, Register d );
twisti@1162 1161 inline void add(Register s1, int simm13a, Register d, relocInfo::relocType rtype = relocInfo::none);
twisti@1162 1162 inline void add(Register s1, int simm13a, Register d, RelocationHolder const& rspec);
twisti@1162 1163 inline void add(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
jrose@2266 1164 inline void add(const Address& a, Register d, int offset = 0);
duke@435 1165
duke@435 1166 void addcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1167 void addcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1168 void addc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1169 void addc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1170 void addccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1171 void addccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1172
duke@435 1173 // pp 136
duke@435 1174
duke@435 1175 inline void bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1176 inline void bpr( RCondition c, bool a, Predict p, Register s1, Label& L);
duke@435 1177
duke@435 1178 protected: // use MacroAssembler::br instead
duke@435 1179
duke@435 1180 // pp 138
duke@435 1181
duke@435 1182 inline void fb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1183 inline void fb( Condition c, bool a, Label& L );
duke@435 1184
duke@435 1185 // pp 141
duke@435 1186
duke@435 1187 inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1188 inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
duke@435 1189
duke@435 1190 public:
duke@435 1191
duke@435 1192 // pp 144
duke@435 1193
duke@435 1194 inline void br( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1195 inline void br( Condition c, bool a, Label& L );
duke@435 1196
duke@435 1197 // pp 146
duke@435 1198
duke@435 1199 inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1200 inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
duke@435 1201
duke@435 1202 // pp 121 (V8)
duke@435 1203
duke@435 1204 inline void cb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1205 inline void cb( Condition c, bool a, Label& L );
duke@435 1206
duke@435 1207 // pp 149
duke@435 1208
duke@435 1209 inline void call( address d, relocInfo::relocType rt = relocInfo::runtime_call_type );
duke@435 1210 inline void call( Label& L, relocInfo::relocType rt = relocInfo::runtime_call_type );
duke@435 1211
duke@435 1212 // pp 150
duke@435 1213
duke@435 1214 // These instructions compare the contents of s2 with the contents of
duke@435 1215 // memory at address in s1. If the values are equal, the contents of memory
duke@435 1216 // at address s1 is swapped with the data in d. If the values are not equal,
duke@435 1217 // the the contents of memory at s1 is loaded into d, without the swap.
duke@435 1218
duke@435 1219 void casa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(casa_op3 ) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); }
duke@435 1220 void casxa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(casxa_op3) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); }
duke@435 1221
duke@435 1222 // pp 152
duke@435 1223
duke@435 1224 void udiv( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | rs2(s2)); }
duke@435 1225 void udiv( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1226 void sdiv( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | rs2(s2)); }
duke@435 1227 void sdiv( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1228 void udivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
duke@435 1229 void udivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1230 void sdivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
duke@435 1231 void sdivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1232
duke@435 1233 // pp 155
duke@435 1234
duke@435 1235 void done() { v9_only(); cti(); emit_long( op(arith_op) | fcn(0) | op3(done_op3) ); }
duke@435 1236 void retry() { v9_only(); cti(); emit_long( op(arith_op) | fcn(1) | op3(retry_op3) ); }
duke@435 1237
duke@435 1238 // pp 156
duke@435 1239
duke@435 1240 void fadd( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x40 + w) | fs2(s2, w)); }
duke@435 1241 void fsub( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x44 + w) | fs2(s2, w)); }
duke@435 1242
duke@435 1243 // pp 157
duke@435 1244
duke@435 1245 void fcmp( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc); emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x50 + w) | fs2(s2, w)); }
duke@435 1246 void fcmpe( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc); emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x54 + w) | fs2(s2, w)); }
duke@435 1247
duke@435 1248 // pp 159
duke@435 1249
duke@435 1250 void ftox( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w) | fs2(s, w)); }
duke@435 1251 void ftoi( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xd0 + w) | fs2(s, w)); }
duke@435 1252
duke@435 1253 // pp 160
duke@435 1254
duke@435 1255 void ftof( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | opf(0xc0 + sw + dw*4) | fs2(s, sw)); }
duke@435 1256
duke@435 1257 // pp 161
duke@435 1258
duke@435 1259 void fxtof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w*4) | fs2(s, w)); }
duke@435 1260 void fitof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xc0 + w*4) | fs2(s, w)); }
duke@435 1261
duke@435 1262 // pp 162
duke@435 1263
duke@435 1264 void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x00 + w) | fs2(s, w)); }
duke@435 1265
duke@435 1266 void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(s, w)); }
duke@435 1267
duke@435 1268 // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fnegs is the only instruction available
duke@435 1269 // on v8 to do negation of single, double and quad precision floats.
duke@435 1270
duke@435 1271 void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x05) | fs2(sd, w)); }
duke@435 1272
duke@435 1273 void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(s, w)); }
duke@435 1274
duke@435 1275 // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fabss is the only instruction available
duke@435 1276 // on v8 to do abs operation on single/double/quad precision floats.
duke@435 1277
duke@435 1278 void fabs( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x09) | fs2(sd, w)); }
duke@435 1279
duke@435 1280 // pp 163
duke@435 1281
duke@435 1282 void fmul( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x48 + w) | fs2(s2, w)); }
duke@435 1283 void fmul( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | fs1(s1, sw) | opf(0x60 + sw + dw*4) | fs2(s2, sw)); }
duke@435 1284 void fdiv( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x4c + w) | fs2(s2, w)); }
duke@435 1285
duke@435 1286 // pp 164
duke@435 1287
duke@435 1288 void fsqrt( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x28 + w) | fs2(s, w)); }
duke@435 1289
duke@435 1290 // pp 165
duke@435 1291
duke@435 1292 inline void flush( Register s1, Register s2 );
duke@435 1293 inline void flush( Register s1, int simm13a);
duke@435 1294
duke@435 1295 // pp 167
duke@435 1296
duke@435 1297 void flushw() { v9_only(); emit_long( op(arith_op) | op3(flushw_op3) ); }
duke@435 1298
duke@435 1299 // pp 168
duke@435 1300
duke@435 1301 void illtrap( int const22a) { if (const22a != 0) v9_only(); emit_long( op(branch_op) | u_field(const22a, 21, 0) ); }
duke@435 1302 // v8 unimp == illtrap(0)
duke@435 1303
duke@435 1304 // pp 169
duke@435 1305
duke@435 1306 void impdep1( int id1, int const19a ) { v9_only(); emit_long( op(arith_op) | fcn(id1) | op3(impdep1_op3) | u_field(const19a, 18, 0)); }
duke@435 1307 void impdep2( int id1, int const19a ) { v9_only(); emit_long( op(arith_op) | fcn(id1) | op3(impdep2_op3) | u_field(const19a, 18, 0)); }
duke@435 1308
duke@435 1309 // pp 149 (v8)
duke@435 1310
duke@435 1311 void cpop1( int opc, int cr1, int cr2, int crd ) { v8_only(); emit_long( op(arith_op) | fcn(crd) | op3(impdep1_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
duke@435 1312 void cpop2( int opc, int cr1, int cr2, int crd ) { v8_only(); emit_long( op(arith_op) | fcn(crd) | op3(impdep2_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
duke@435 1313
duke@435 1314 // pp 170
duke@435 1315
duke@435 1316 void jmpl( Register s1, Register s2, Register d );
duke@435 1317 void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() );
duke@435 1318
duke@435 1319 // 171
duke@435 1320
twisti@1441 1321 inline void ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d);
twisti@1162 1322 inline void ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d);
twisti@1162 1323 inline void ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec = RelocationHolder());
twisti@1162 1324
twisti@1162 1325 inline void ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset = 0);
duke@435 1326
duke@435 1327
duke@435 1328 inline void ldfsr( Register s1, Register s2 );
duke@435 1329 inline void ldfsr( Register s1, int simm13a);
duke@435 1330 inline void ldxfsr( Register s1, Register s2 );
duke@435 1331 inline void ldxfsr( Register s1, int simm13a);
duke@435 1332
duke@435 1333 // pp 94 (v8)
duke@435 1334
duke@435 1335 inline void ldc( Register s1, Register s2, int crd );
duke@435 1336 inline void ldc( Register s1, int simm13a, int crd);
duke@435 1337 inline void lddc( Register s1, Register s2, int crd );
duke@435 1338 inline void lddc( Register s1, int simm13a, int crd);
duke@435 1339 inline void ldcsr( Register s1, Register s2, int crd );
duke@435 1340 inline void ldcsr( Register s1, int simm13a, int crd);
duke@435 1341
duke@435 1342
duke@435 1343 // 173
duke@435 1344
duke@435 1345 void ldfa( FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1346 void ldfa( FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1347
duke@435 1348 // pp 175, lduw is ld on v8
duke@435 1349
duke@435 1350 inline void ldsb( Register s1, Register s2, Register d );
duke@435 1351 inline void ldsb( Register s1, int simm13a, Register d);
duke@435 1352 inline void ldsh( Register s1, Register s2, Register d );
duke@435 1353 inline void ldsh( Register s1, int simm13a, Register d);
duke@435 1354 inline void ldsw( Register s1, Register s2, Register d );
duke@435 1355 inline void ldsw( Register s1, int simm13a, Register d);
duke@435 1356 inline void ldub( Register s1, Register s2, Register d );
duke@435 1357 inline void ldub( Register s1, int simm13a, Register d);
duke@435 1358 inline void lduh( Register s1, Register s2, Register d );
duke@435 1359 inline void lduh( Register s1, int simm13a, Register d);
duke@435 1360 inline void lduw( Register s1, Register s2, Register d );
duke@435 1361 inline void lduw( Register s1, int simm13a, Register d);
duke@435 1362 inline void ldx( Register s1, Register s2, Register d );
duke@435 1363 inline void ldx( Register s1, int simm13a, Register d);
duke@435 1364 inline void ld( Register s1, Register s2, Register d );
duke@435 1365 inline void ld( Register s1, int simm13a, Register d);
duke@435 1366 inline void ldd( Register s1, Register s2, Register d );
duke@435 1367 inline void ldd( Register s1, int simm13a, Register d);
duke@435 1368
twisti@1162 1369 #ifdef ASSERT
twisti@1162 1370 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
twisti@1162 1371 inline void ld( Register s1, ByteSize simm13a, Register d);
twisti@1162 1372 #endif
twisti@1162 1373
twisti@1162 1374 inline void ldsb(const Address& a, Register d, int offset = 0);
twisti@1162 1375 inline void ldsh(const Address& a, Register d, int offset = 0);
twisti@1162 1376 inline void ldsw(const Address& a, Register d, int offset = 0);
twisti@1162 1377 inline void ldub(const Address& a, Register d, int offset = 0);
twisti@1162 1378 inline void lduh(const Address& a, Register d, int offset = 0);
twisti@1162 1379 inline void lduw(const Address& a, Register d, int offset = 0);
twisti@1162 1380 inline void ldx( const Address& a, Register d, int offset = 0);
twisti@1162 1381 inline void ld( const Address& a, Register d, int offset = 0);
twisti@1162 1382 inline void ldd( const Address& a, Register d, int offset = 0);
duke@435 1383
jrose@1100 1384 inline void ldub( Register s1, RegisterOrConstant s2, Register d );
jrose@1100 1385 inline void ldsb( Register s1, RegisterOrConstant s2, Register d );
jrose@1100 1386 inline void lduh( Register s1, RegisterOrConstant s2, Register d );
jrose@1100 1387 inline void ldsh( Register s1, RegisterOrConstant s2, Register d );
jrose@1100 1388 inline void lduw( Register s1, RegisterOrConstant s2, Register d );
jrose@1100 1389 inline void ldsw( Register s1, RegisterOrConstant s2, Register d );
jrose@1100 1390 inline void ldx( Register s1, RegisterOrConstant s2, Register d );
jrose@1100 1391 inline void ld( Register s1, RegisterOrConstant s2, Register d );
jrose@1100 1392 inline void ldd( Register s1, RegisterOrConstant s2, Register d );
jrose@1057 1393
duke@435 1394 // pp 177
duke@435 1395
duke@435 1396 void ldsba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1397 void ldsba( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1398 void ldsha( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1399 void ldsha( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1400 void ldswa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1401 void ldswa( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1402 void lduba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1403 void lduba( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1404 void lduha( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1405 void lduha( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1406 void lduwa( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1407 void lduwa( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1408 void ldxa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1409 void ldxa( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1410 void ldda( Register s1, Register s2, int ia, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1411 void ldda( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1412
duke@435 1413 // pp 179
duke@435 1414
duke@435 1415 inline void ldstub( Register s1, Register s2, Register d );
duke@435 1416 inline void ldstub( Register s1, int simm13a, Register d);
duke@435 1417
duke@435 1418 // pp 180
duke@435 1419
duke@435 1420 void ldstuba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1421 void ldstuba( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1422
duke@435 1423 // pp 181
duke@435 1424
twisti@1858 1425 void and3( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@1858 1426 void and3( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1427 void andcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1428 void andcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1429 void andn( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1430 void andn( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@1858 1431 void andn( Register s1, RegisterOrConstant s2, Register d);
duke@435 1432 void andncc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1433 void andncc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@1858 1434 void or3( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@1858 1435 void or3( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1436 void orcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1437 void orcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1438 void orn( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1439 void orn( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1440 void orncc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1441 void orncc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@1858 1442 void xor3( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@1858 1443 void xor3( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1444 void xorcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1445 void xorcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1446 void xnor( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1447 void xnor( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1448 void xnorcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1449 void xnorcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1450
duke@435 1451 // pp 183
duke@435 1452
duke@435 1453 void membar( Membar_mask_bits const7a ) { v9_only(); emit_long( op(arith_op) | op3(membar_op3) | rs1(O7) | immed(true) | u_field( int(const7a), 6, 0)); }
duke@435 1454
duke@435 1455 // pp 185
duke@435 1456
duke@435 1457 void fmov( FloatRegisterImpl::Width w, Condition c, bool floatCC, CC cca, FloatRegister s2, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | cond_mov(c) | opf_cc(cca, floatCC) | opf_low6(w) | fs2(s2, w)); }
duke@435 1458
duke@435 1459 // pp 189
duke@435 1460
duke@435 1461 void fmov( FloatRegisterImpl::Width w, RCondition c, Register s1, FloatRegister s2, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | rs1(s1) | rcond(c) | opf_low5(4 + w) | fs2(s2, w)); }
duke@435 1462
duke@435 1463 // pp 191
duke@435 1464
duke@435 1465 void movcc( Condition c, bool floatCC, CC cca, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | rs2(s2) ); }
duke@435 1466 void movcc( Condition c, bool floatCC, CC cca, int simm11a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | immed(true) | simm(simm11a, 11) ); }
duke@435 1467
duke@435 1468 // pp 195
duke@435 1469
duke@435 1470 void movr( RCondition c, Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | rs2(s2) ); }
duke@435 1471 void movr( RCondition c, Register s1, int simm10a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | immed(true) | simm(simm10a, 10) ); }
duke@435 1472
duke@435 1473 // pp 196
duke@435 1474
duke@435 1475 void mulx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1476 void mulx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1477 void sdivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1478 void sdivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1479 void udivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1480 void udivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1481
duke@435 1482 // pp 197
duke@435 1483
duke@435 1484 void umul( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1485 void umul( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1486 void smul( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1487 void smul( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1488 void umulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1489 void umulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1490 void smulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1491 void smulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1492
duke@435 1493 // pp 199
duke@435 1494
duke@435 1495 void mulscc( Register s1, Register s2, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1496 void mulscc( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1497
duke@435 1498 // pp 201
duke@435 1499
duke@435 1500 void nop() { emit_long( op(branch_op) | op2(sethi_op2) ); }
duke@435 1501
duke@435 1502
duke@435 1503 // pp 202
duke@435 1504
duke@435 1505 void popc( Register s, Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); }
duke@435 1506 void popc( int simm13a, Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); }
duke@435 1507
duke@435 1508 // pp 203
duke@435 1509
duke@435 1510 void prefetch( Register s1, Register s2, PrefetchFcn f);
duke@435 1511 void prefetch( Register s1, int simm13a, PrefetchFcn f);
duke@435 1512 void prefetcha( Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only(); emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1513 void prefetcha( Register s1, int simm13a, PrefetchFcn f ) { v9_only(); emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1514
duke@435 1515 inline void prefetch(const Address& a, PrefetchFcn F, int offset = 0);
duke@435 1516
duke@435 1517 // pp 208
duke@435 1518
duke@435 1519 // not implementing read privileged register
duke@435 1520
duke@435 1521 inline void rdy( Register d) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(0, 18, 14)); }
duke@435 1522 inline void rdccr( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(2, 18, 14)); }
duke@435 1523 inline void rdasi( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(3, 18, 14)); }
duke@435 1524 inline void rdtick( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(4, 18, 14)); } // Spoon!
duke@435 1525 inline void rdpc( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(5, 18, 14)); }
duke@435 1526 inline void rdfprs( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(6, 18, 14)); }
duke@435 1527
duke@435 1528 // pp 213
duke@435 1529
duke@435 1530 inline void rett( Register s1, Register s2);
duke@435 1531 inline void rett( Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none);
duke@435 1532
duke@435 1533 // pp 214
duke@435 1534
duke@435 1535 void save( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | rs2(s2) ); }
ysr@777 1536 void save( Register s1, int simm13a, Register d ) {
ysr@777 1537 // make sure frame is at least large enough for the register save area
ysr@777 1538 assert(-simm13a >= 16 * wordSize, "frame too small");
ysr@777 1539 emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) );
ysr@777 1540 }
duke@435 1541
duke@435 1542 void restore( Register s1 = G0, Register s2 = G0, Register d = G0 ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1543 void restore( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1544
duke@435 1545 // pp 216
duke@435 1546
duke@435 1547 void saved() { v9_only(); emit_long( op(arith_op) | fcn(0) | op3(saved_op3)); }
duke@435 1548 void restored() { v9_only(); emit_long( op(arith_op) | fcn(1) | op3(saved_op3)); }
duke@435 1549
duke@435 1550 // pp 217
duke@435 1551
duke@435 1552 inline void sethi( int imm22a, Register d, RelocationHolder const& rspec = RelocationHolder() );
duke@435 1553 // pp 218
duke@435 1554
duke@435 1555 void sll( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
duke@435 1556 void sll( Register s1, int imm5a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
duke@435 1557 void srl( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
duke@435 1558 void srl( Register s1, int imm5a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
duke@435 1559 void sra( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
duke@435 1560 void sra( Register s1, int imm5a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
duke@435 1561
duke@435 1562 void sllx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
duke@435 1563 void sllx( Register s1, int imm6a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
duke@435 1564 void srlx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
duke@435 1565 void srlx( Register s1, int imm6a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
duke@435 1566 void srax( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
duke@435 1567 void srax( Register s1, int imm6a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
duke@435 1568
duke@435 1569 // pp 220
duke@435 1570
duke@435 1571 void sir( int simm13a ) { emit_long( op(arith_op) | fcn(15) | op3(sir_op3) | immed(true) | simm(simm13a, 13)); }
duke@435 1572
duke@435 1573 // pp 221
duke@435 1574
duke@435 1575 void stbar() { emit_long( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); }
duke@435 1576
duke@435 1577 // pp 222
duke@435 1578
twisti@1441 1579 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2);
twisti@1441 1580 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2);
duke@435 1581 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
duke@435 1582 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset = 0);
duke@435 1583
duke@435 1584 inline void stfsr( Register s1, Register s2 );
duke@435 1585 inline void stfsr( Register s1, int simm13a);
duke@435 1586 inline void stxfsr( Register s1, Register s2 );
duke@435 1587 inline void stxfsr( Register s1, int simm13a);
duke@435 1588
duke@435 1589 // pp 224
duke@435 1590
duke@435 1591 void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1592 void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1593
duke@435 1594 // p 226
duke@435 1595
duke@435 1596 inline void stb( Register d, Register s1, Register s2 );
duke@435 1597 inline void stb( Register d, Register s1, int simm13a);
duke@435 1598 inline void sth( Register d, Register s1, Register s2 );
duke@435 1599 inline void sth( Register d, Register s1, int simm13a);
duke@435 1600 inline void stw( Register d, Register s1, Register s2 );
duke@435 1601 inline void stw( Register d, Register s1, int simm13a);
duke@435 1602 inline void st( Register d, Register s1, Register s2 );
duke@435 1603 inline void st( Register d, Register s1, int simm13a);
duke@435 1604 inline void stx( Register d, Register s1, Register s2 );
duke@435 1605 inline void stx( Register d, Register s1, int simm13a);
duke@435 1606 inline void std( Register d, Register s1, Register s2 );
duke@435 1607 inline void std( Register d, Register s1, int simm13a);
duke@435 1608
twisti@1162 1609 #ifdef ASSERT
twisti@1162 1610 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
twisti@1162 1611 inline void st( Register d, Register s1, ByteSize simm13a);
twisti@1162 1612 #endif
twisti@1162 1613
duke@435 1614 inline void stb( Register d, const Address& a, int offset = 0 );
duke@435 1615 inline void sth( Register d, const Address& a, int offset = 0 );
duke@435 1616 inline void stw( Register d, const Address& a, int offset = 0 );
duke@435 1617 inline void stx( Register d, const Address& a, int offset = 0 );
duke@435 1618 inline void st( Register d, const Address& a, int offset = 0 );
duke@435 1619 inline void std( Register d, const Address& a, int offset = 0 );
duke@435 1620
jrose@1100 1621 inline void stb( Register d, Register s1, RegisterOrConstant s2 );
jrose@1100 1622 inline void sth( Register d, Register s1, RegisterOrConstant s2 );
jrose@1100 1623 inline void stw( Register d, Register s1, RegisterOrConstant s2 );
jrose@1100 1624 inline void stx( Register d, Register s1, RegisterOrConstant s2 );
jrose@1100 1625 inline void std( Register d, Register s1, RegisterOrConstant s2 );
jrose@1100 1626 inline void st( Register d, Register s1, RegisterOrConstant s2 );
jrose@1057 1627
duke@435 1628 // pp 177
duke@435 1629
duke@435 1630 void stba( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1631 void stba( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1632 void stha( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1633 void stha( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1634 void stwa( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1635 void stwa( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1636 void stxa( Register d, Register s1, Register s2, int ia ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1637 void stxa( Register d, Register s1, int simm13a ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1638 void stda( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1639 void stda( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1640
duke@435 1641 // pp 97 (v8)
duke@435 1642
duke@435 1643 inline void stc( int crd, Register s1, Register s2 );
duke@435 1644 inline void stc( int crd, Register s1, int simm13a);
duke@435 1645 inline void stdc( int crd, Register s1, Register s2 );
duke@435 1646 inline void stdc( int crd, Register s1, int simm13a);
duke@435 1647 inline void stcsr( int crd, Register s1, Register s2 );
duke@435 1648 inline void stcsr( int crd, Register s1, int simm13a);
duke@435 1649 inline void stdcq( int crd, Register s1, Register s2 );
duke@435 1650 inline void stdcq( int crd, Register s1, int simm13a);
duke@435 1651
duke@435 1652 // pp 230
duke@435 1653
duke@435 1654 void sub( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1655 void sub( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@2350 1656
twisti@2350 1657 // Note: offset is added to s2.
twisti@2350 1658 inline void sub(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
twisti@2350 1659
duke@435 1660 void subcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1661 void subcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1662 void subc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1663 void subc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1664 void subccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1665 void subccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1666
duke@435 1667 // pp 231
duke@435 1668
duke@435 1669 inline void swap( Register s1, Register s2, Register d );
duke@435 1670 inline void swap( Register s1, int simm13a, Register d);
duke@435 1671 inline void swap( Address& a, Register d, int offset = 0 );
duke@435 1672
duke@435 1673 // pp 232
duke@435 1674
duke@435 1675 void swapa( Register s1, Register s2, int ia, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1676 void swapa( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1677
duke@435 1678 // pp 234, note op in book is wrong, see pp 268
duke@435 1679
duke@435 1680 void taddcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1681 void taddcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1682 void taddcctv( Register s1, Register s2, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1683 void taddcctv( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1684
duke@435 1685 // pp 235
duke@435 1686
duke@435 1687 void tsubcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1688 void tsubcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1689 void tsubcctv( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1690 void tsubcctv( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1691
duke@435 1692 // pp 237
duke@435 1693
duke@435 1694 void trap( Condition c, CC cc, Register s1, Register s2 ) { v8_no_cc(cc); emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | rs2(s2)); }
duke@435 1695 void trap( Condition c, CC cc, Register s1, int trapa ) { v8_no_cc(cc); emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | immed(true) | u_field(trapa, 6, 0)); }
duke@435 1696 // simple uncond. trap
duke@435 1697 void trap( int trapa ) { trap( always, icc, G0, trapa ); }
duke@435 1698
duke@435 1699 // pp 239 omit write priv register for now
duke@435 1700
duke@435 1701 inline void wry( Register d) { v9_dep(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(0, 29, 25)); }
duke@435 1702 inline void wrccr(Register s) { v9_only(); emit_long( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25)); }
duke@435 1703 inline void wrccr(Register s, int simm13a) { v9_only(); emit_long( op(arith_op) |
duke@435 1704 rs1(s) |
duke@435 1705 op3(wrreg_op3) |
duke@435 1706 u_field(2, 29, 25) |
duke@435 1707 u_field(1, 13, 13) |
duke@435 1708 simm(simm13a, 13)); }
duke@435 1709 inline void wrasi( Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25)); }
duke@435 1710 inline void wrfprs( Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(6, 29, 25)); }
duke@435 1711
ysr@777 1712 // For a given register condition, return the appropriate condition code
ysr@777 1713 // Condition (the one you would use to get the same effect after "tst" on
ysr@777 1714 // the target register.)
ysr@777 1715 Assembler::Condition reg_cond_to_cc_cond(RCondition in);
ysr@777 1716
duke@435 1717
duke@435 1718 // Creation
duke@435 1719 Assembler(CodeBuffer* code) : AbstractAssembler(code) {
duke@435 1720 #ifdef CHECK_DELAY
duke@435 1721 delay_state = no_delay;
duke@435 1722 #endif
duke@435 1723 }
duke@435 1724
duke@435 1725 // Testing
duke@435 1726 #ifndef PRODUCT
duke@435 1727 void test_v9();
duke@435 1728 void test_v8_onlys();
duke@435 1729 #endif
duke@435 1730 };
duke@435 1731
duke@435 1732
duke@435 1733 class RegistersForDebugging : public StackObj {
duke@435 1734 public:
duke@435 1735 intptr_t i[8], l[8], o[8], g[8];
duke@435 1736 float f[32];
duke@435 1737 double d[32];
duke@435 1738
duke@435 1739 void print(outputStream* s);
duke@435 1740
duke@435 1741 static int i_offset(int j) { return offset_of(RegistersForDebugging, i[j]); }
duke@435 1742 static int l_offset(int j) { return offset_of(RegistersForDebugging, l[j]); }
duke@435 1743 static int o_offset(int j) { return offset_of(RegistersForDebugging, o[j]); }
duke@435 1744 static int g_offset(int j) { return offset_of(RegistersForDebugging, g[j]); }
duke@435 1745 static int f_offset(int j) { return offset_of(RegistersForDebugging, f[j]); }
duke@435 1746 static int d_offset(int j) { return offset_of(RegistersForDebugging, d[j / 2]); }
duke@435 1747
duke@435 1748 // gen asm code to save regs
duke@435 1749 static void save_registers(MacroAssembler* a);
duke@435 1750
duke@435 1751 // restore global registers in case C code disturbed them
duke@435 1752 static void restore_registers(MacroAssembler* a, Register r);
ysr@777 1753
ysr@777 1754
duke@435 1755 };
duke@435 1756
duke@435 1757
duke@435 1758 // MacroAssembler extends Assembler by a few frequently used macros.
duke@435 1759 //
duke@435 1760 // Most of the standard SPARC synthetic ops are defined here.
duke@435 1761 // Instructions for which a 'better' code sequence exists depending
duke@435 1762 // on arguments should also go in here.
duke@435 1763
duke@435 1764 #define JMP2(r1, r2) jmp(r1, r2, __FILE__, __LINE__)
duke@435 1765 #define JMP(r1, off) jmp(r1, off, __FILE__, __LINE__)
twisti@1162 1766 #define JUMP(a, temp, off) jump(a, temp, off, __FILE__, __LINE__)
twisti@1162 1767 #define JUMPL(a, temp, d, off) jumpl(a, temp, d, off, __FILE__, __LINE__)
duke@435 1768
duke@435 1769
duke@435 1770 class MacroAssembler: public Assembler {
duke@435 1771 protected:
duke@435 1772 // Support for VM calls
duke@435 1773 // This is the base routine called by the different versions of call_VM_leaf. The interpreter
duke@435 1774 // may customize this version by overriding it for its purposes (e.g., to save/restore
duke@435 1775 // additional registers when doing a VM call).
duke@435 1776 #ifdef CC_INTERP
duke@435 1777 #define VIRTUAL
duke@435 1778 #else
duke@435 1779 #define VIRTUAL virtual
duke@435 1780 #endif
duke@435 1781
duke@435 1782 VIRTUAL void call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments);
duke@435 1783
duke@435 1784 //
duke@435 1785 // It is imperative that all calls into the VM are handled via the call_VM macros.
duke@435 1786 // They make sure that the stack linkage is setup correctly. call_VM's correspond
duke@435 1787 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
duke@435 1788 //
duke@435 1789 // This is the base routine called by the different versions of call_VM. The interpreter
duke@435 1790 // may customize this version by overriding it for its purposes (e.g., to save/restore
duke@435 1791 // additional registers when doing a VM call).
duke@435 1792 //
duke@435 1793 // A non-volatile java_thread_cache register should be specified so
duke@435 1794 // that the G2_thread value can be preserved across the call.
duke@435 1795 // (If java_thread_cache is noreg, then a slow get_thread call
duke@435 1796 // will re-initialize the G2_thread.) call_VM_base returns the register that contains the
duke@435 1797 // thread.
duke@435 1798 //
duke@435 1799 // If no last_java_sp is specified (noreg) than SP will be used instead.
duke@435 1800
duke@435 1801 virtual void call_VM_base(
duke@435 1802 Register oop_result, // where an oop-result ends up if any; use noreg otherwise
duke@435 1803 Register java_thread_cache, // the thread if computed before ; use noreg otherwise
duke@435 1804 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
duke@435 1805 address entry_point, // the entry point
duke@435 1806 int number_of_arguments, // the number of arguments (w/o thread) to pop after call
duke@435 1807 bool check_exception=true // flag which indicates if exception should be checked
duke@435 1808 );
duke@435 1809
duke@435 1810 // This routine should emit JVMTI PopFrame and ForceEarlyReturn handling code.
duke@435 1811 // The implementation is only non-empty for the InterpreterMacroAssembler,
duke@435 1812 // as only the interpreter handles and ForceEarlyReturn PopFrame requests.
duke@435 1813 virtual void check_and_handle_popframe(Register scratch_reg);
duke@435 1814 virtual void check_and_handle_earlyret(Register scratch_reg);
duke@435 1815
duke@435 1816 public:
duke@435 1817 MacroAssembler(CodeBuffer* code) : Assembler(code) {}
duke@435 1818
duke@435 1819 // Support for NULL-checks
duke@435 1820 //
duke@435 1821 // Generates code that causes a NULL OS exception if the content of reg is NULL.
duke@435 1822 // If the accessed location is M[reg + offset] and the offset is known, provide the
duke@435 1823 // offset. No explicit code generation is needed if the offset is within a certain
duke@435 1824 // range (0 <= offset <= page_size).
duke@435 1825 //
duke@435 1826 // %%%%%% Currently not done for SPARC
duke@435 1827
duke@435 1828 void null_check(Register reg, int offset = -1);
duke@435 1829 static bool needs_explicit_null_check(intptr_t offset);
duke@435 1830
duke@435 1831 // support for delayed instructions
duke@435 1832 MacroAssembler* delayed() { Assembler::delayed(); return this; }
duke@435 1833
duke@435 1834 // branches that use right instruction for v8 vs. v9
duke@435 1835 inline void br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1836 inline void br( Condition c, bool a, Predict p, Label& L );
iveresov@2344 1837
duke@435 1838 inline void fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1839 inline void fb( Condition c, bool a, Predict p, Label& L );
duke@435 1840
duke@435 1841 // compares register with zero and branches (V9 and V8 instructions)
duke@435 1842 void br_zero( Condition c, bool a, Predict p, Register s1, Label& L);
duke@435 1843 // Compares a pointer register with zero and branches on (not)null.
duke@435 1844 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
duke@435 1845 void br_null ( Register s1, bool a, Predict p, Label& L );
duke@435 1846 void br_notnull( Register s1, bool a, Predict p, Label& L );
duke@435 1847
ysr@777 1848 // These versions will do the most efficient thing on v8 and v9. Perhaps
ysr@777 1849 // this is what the routine above was meant to do, but it didn't (and
ysr@777 1850 // didn't cover both target address kinds.)
ysr@777 1851 void br_on_reg_cond( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none );
ysr@777 1852 void br_on_reg_cond( RCondition c, bool a, Predict p, Register s1, Label& L);
ysr@777 1853
duke@435 1854 inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1855 inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
duke@435 1856
duke@435 1857 // Branch that tests xcc in LP64 and icc in !LP64
duke@435 1858 inline void brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1859 inline void brx( Condition c, bool a, Predict p, Label& L );
duke@435 1860
duke@435 1861 // unconditional short branch
duke@435 1862 inline void ba( bool a, Label& L );
duke@435 1863
duke@435 1864 // Branch that tests fp condition codes
duke@435 1865 inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1866 inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
duke@435 1867
duke@435 1868 // get PC the best way
duke@435 1869 inline int get_pc( Register d );
duke@435 1870
duke@435 1871 // Sparc shorthands(pp 85, V8 manual, pp 289 V9 manual)
duke@435 1872 inline void cmp( Register s1, Register s2 ) { subcc( s1, s2, G0 ); }
duke@435 1873 inline void cmp( Register s1, int simm13a ) { subcc( s1, simm13a, G0 ); }
duke@435 1874
duke@435 1875 inline void jmp( Register s1, Register s2 );
duke@435 1876 inline void jmp( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
duke@435 1877
iveresov@2441 1878 // Check if the call target is out of wdisp30 range (relative to the code cache)
iveresov@2441 1879 static inline bool is_far_target(address d);
duke@435 1880 inline void call( address d, relocInfo::relocType rt = relocInfo::runtime_call_type );
duke@435 1881 inline void call( Label& L, relocInfo::relocType rt = relocInfo::runtime_call_type );
duke@435 1882 inline void callr( Register s1, Register s2 );
duke@435 1883 inline void callr( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
duke@435 1884
duke@435 1885 // Emits nothing on V8
duke@435 1886 inline void iprefetch( address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1887 inline void iprefetch( Label& L);
duke@435 1888
duke@435 1889 inline void tst( Register s ) { orcc( G0, s, G0 ); }
duke@435 1890
duke@435 1891 #ifdef PRODUCT
duke@435 1892 inline void ret( bool trace = TraceJumps ) { if (trace) {
duke@435 1893 mov(I7, O7); // traceable register
duke@435 1894 JMP(O7, 2 * BytesPerInstWord);
duke@435 1895 } else {
duke@435 1896 jmpl( I7, 2 * BytesPerInstWord, G0 );
duke@435 1897 }
duke@435 1898 }
duke@435 1899
duke@435 1900 inline void retl( bool trace = TraceJumps ) { if (trace) JMP(O7, 2 * BytesPerInstWord);
duke@435 1901 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
duke@435 1902 #else
duke@435 1903 void ret( bool trace = TraceJumps );
duke@435 1904 void retl( bool trace = TraceJumps );
duke@435 1905 #endif /* PRODUCT */
duke@435 1906
duke@435 1907 // Required platform-specific helpers for Label::patch_instructions.
duke@435 1908 // They _shadow_ the declarations in AbstractAssembler, which are undefined.
duke@435 1909 void pd_patch_instruction(address branch, address target);
duke@435 1910 #ifndef PRODUCT
duke@435 1911 static void pd_print_patched_instruction(address branch);
duke@435 1912 #endif
duke@435 1913
duke@435 1914 // sethi Macro handles optimizations and relocations
twisti@1162 1915 private:
twisti@1162 1916 void internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable);
twisti@1162 1917 public:
twisti@1162 1918 void sethi(const AddressLiteral& addrlit, Register d);
twisti@1162 1919 void patchable_sethi(const AddressLiteral& addrlit, Register d);
duke@435 1920
twisti@2399 1921 // compute the number of instructions for a sethi/set
twisti@2399 1922 static int insts_for_sethi( address a, bool worst_case = false );
twisti@2399 1923 static int worst_case_insts_for_set();
duke@435 1924
duke@435 1925 // set may be either setsw or setuw (high 32 bits may be zero or sign)
twisti@1162 1926 private:
twisti@1162 1927 void internal_set(const AddressLiteral& al, Register d, bool ForceRelocatable);
twisti@2399 1928 static int insts_for_internal_set(intptr_t value);
twisti@1162 1929 public:
twisti@1162 1930 void set(const AddressLiteral& addrlit, Register d);
twisti@1162 1931 void set(intptr_t value, Register d);
twisti@1162 1932 void set(address addr, Register d, RelocationHolder const& rspec);
twisti@2399 1933 static int insts_for_set(intptr_t value) { return insts_for_internal_set(value); }
twisti@2399 1934
twisti@1162 1935 void patchable_set(const AddressLiteral& addrlit, Register d);
twisti@1162 1936 void patchable_set(intptr_t value, Register d);
twisti@1162 1937 void set64(jlong value, Register d, Register tmp);
twisti@2399 1938 static int insts_for_set64(jlong value);
twisti@2350 1939
duke@435 1940 // sign-extend 32 to 64
duke@435 1941 inline void signx( Register s, Register d ) { sra( s, G0, d); }
duke@435 1942 inline void signx( Register d ) { sra( d, G0, d); }
duke@435 1943
duke@435 1944 inline void not1( Register s, Register d ) { xnor( s, G0, d ); }
duke@435 1945 inline void not1( Register d ) { xnor( d, G0, d ); }
duke@435 1946
duke@435 1947 inline void neg( Register s, Register d ) { sub( G0, s, d ); }
duke@435 1948 inline void neg( Register d ) { sub( G0, d, d ); }
duke@435 1949
duke@435 1950 inline void cas( Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY); }
duke@435 1951 inline void casx( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY); }
duke@435 1952 // Functions for isolating 64 bit atomic swaps for LP64
duke@435 1953 // cas_ptr will perform cas for 32 bit VM's and casx for 64 bit VM's
duke@435 1954 inline void cas_ptr( Register s1, Register s2, Register d) {
duke@435 1955 #ifdef _LP64
duke@435 1956 casx( s1, s2, d );
duke@435 1957 #else
duke@435 1958 cas( s1, s2, d );
duke@435 1959 #endif
duke@435 1960 }
duke@435 1961
duke@435 1962 // Functions for isolating 64 bit shifts for LP64
duke@435 1963 inline void sll_ptr( Register s1, Register s2, Register d );
duke@435 1964 inline void sll_ptr( Register s1, int imm6a, Register d );
jrose@1100 1965 inline void sll_ptr( Register s1, RegisterOrConstant s2, Register d );
duke@435 1966 inline void srl_ptr( Register s1, Register s2, Register d );
duke@435 1967 inline void srl_ptr( Register s1, int imm6a, Register d );
duke@435 1968
duke@435 1969 // little-endian
duke@435 1970 inline void casl( Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY_LITTLE); }
duke@435 1971 inline void casxl( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY_LITTLE); }
duke@435 1972
duke@435 1973 inline void inc( Register d, int const13 = 1 ) { add( d, const13, d); }
duke@435 1974 inline void inccc( Register d, int const13 = 1 ) { addcc( d, const13, d); }
duke@435 1975
duke@435 1976 inline void dec( Register d, int const13 = 1 ) { sub( d, const13, d); }
duke@435 1977 inline void deccc( Register d, int const13 = 1 ) { subcc( d, const13, d); }
duke@435 1978
duke@435 1979 inline void btst( Register s1, Register s2 ) { andcc( s1, s2, G0 ); }
duke@435 1980 inline void btst( int simm13a, Register s ) { andcc( s, simm13a, G0 ); }
duke@435 1981
duke@435 1982 inline void bset( Register s1, Register s2 ) { or3( s1, s2, s2 ); }
duke@435 1983 inline void bset( int simm13a, Register s ) { or3( s, simm13a, s ); }
duke@435 1984
duke@435 1985 inline void bclr( Register s1, Register s2 ) { andn( s1, s2, s2 ); }
duke@435 1986 inline void bclr( int simm13a, Register s ) { andn( s, simm13a, s ); }
duke@435 1987
duke@435 1988 inline void btog( Register s1, Register s2 ) { xor3( s1, s2, s2 ); }
duke@435 1989 inline void btog( int simm13a, Register s ) { xor3( s, simm13a, s ); }
duke@435 1990
duke@435 1991 inline void clr( Register d ) { or3( G0, G0, d ); }
duke@435 1992
duke@435 1993 inline void clrb( Register s1, Register s2);
duke@435 1994 inline void clrh( Register s1, Register s2);
duke@435 1995 inline void clr( Register s1, Register s2);
duke@435 1996 inline void clrx( Register s1, Register s2);
duke@435 1997
duke@435 1998 inline void clrb( Register s1, int simm13a);
duke@435 1999 inline void clrh( Register s1, int simm13a);
duke@435 2000 inline void clr( Register s1, int simm13a);
duke@435 2001 inline void clrx( Register s1, int simm13a);
duke@435 2002
duke@435 2003 // copy & clear upper word
duke@435 2004 inline void clruw( Register s, Register d ) { srl( s, G0, d); }
duke@435 2005 // clear upper word
duke@435 2006 inline void clruwu( Register d ) { srl( d, G0, d); }
duke@435 2007
duke@435 2008 // membar psuedo instruction. takes into account target memory model.
duke@435 2009 inline void membar( Assembler::Membar_mask_bits const7a );
duke@435 2010
duke@435 2011 // returns if membar generates anything.
duke@435 2012 inline bool membar_has_effect( Assembler::Membar_mask_bits const7a );
duke@435 2013
duke@435 2014 // mov pseudo instructions
duke@435 2015 inline void mov( Register s, Register d) {
duke@435 2016 if ( s != d ) or3( G0, s, d);
duke@435 2017 else assert_not_delayed(); // Put something useful in the delay slot!
duke@435 2018 }
duke@435 2019
duke@435 2020 inline void mov_or_nop( Register s, Register d) {
duke@435 2021 if ( s != d ) or3( G0, s, d);
duke@435 2022 else nop();
duke@435 2023 }
duke@435 2024
duke@435 2025 inline void mov( int simm13a, Register d) { or3( G0, simm13a, d); }
duke@435 2026
duke@435 2027 // address pseudos: make these names unlike instruction names to avoid confusion
duke@435 2028 inline intptr_t load_pc_address( Register reg, int bytes_to_skip );
coleenp@2035 2029 inline void load_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
coleenp@2035 2030 inline void load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
coleenp@2035 2031 inline void store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
coleenp@2035 2032 inline void store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
coleenp@2035 2033 inline void jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset = 0);
coleenp@2035 2034 inline void jump_to(const AddressLiteral& addrlit, Register temp, int offset = 0);
twisti@1162 2035 inline void jump_indirect_to(Address& a, Register temp, int ld_offset = 0, int jmp_offset = 0);
duke@435 2036
duke@435 2037 // ring buffer traceable jumps
duke@435 2038
duke@435 2039 void jmp2( Register r1, Register r2, const char* file, int line );
duke@435 2040 void jmp ( Register r1, int offset, const char* file, int line );
duke@435 2041
coleenp@2035 2042 void jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line);
coleenp@2035 2043 void jump (const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line);
duke@435 2044
duke@435 2045
duke@435 2046 // argument pseudos:
duke@435 2047
duke@435 2048 inline void load_argument( Argument& a, Register d );
duke@435 2049 inline void store_argument( Register s, Argument& a );
duke@435 2050 inline void store_ptr_argument( Register s, Argument& a );
duke@435 2051 inline void store_float_argument( FloatRegister s, Argument& a );
duke@435 2052 inline void store_double_argument( FloatRegister s, Argument& a );
duke@435 2053 inline void store_long_argument( Register s, Argument& a );
duke@435 2054
duke@435 2055 // handy macros:
duke@435 2056
duke@435 2057 inline void round_to( Register r, int modulus ) {
duke@435 2058 assert_not_delayed();
duke@435 2059 inc( r, modulus - 1 );
duke@435 2060 and3( r, -modulus, r );
duke@435 2061 }
duke@435 2062
duke@435 2063 // --------------------------------------------------
duke@435 2064
duke@435 2065 // Functions for isolating 64 bit loads for LP64
duke@435 2066 // ld_ptr will perform ld for 32 bit VM's and ldx for 64 bit VM's
duke@435 2067 // st_ptr will perform st for 32 bit VM's and stx for 64 bit VM's
twisti@1162 2068 inline void ld_ptr(Register s1, Register s2, Register d);
twisti@1162 2069 inline void ld_ptr(Register s1, int simm13a, Register d);
twisti@1162 2070 inline void ld_ptr(Register s1, RegisterOrConstant s2, Register d);
twisti@1162 2071 inline void ld_ptr(const Address& a, Register d, int offset = 0);
twisti@1162 2072 inline void st_ptr(Register d, Register s1, Register s2);
twisti@1162 2073 inline void st_ptr(Register d, Register s1, int simm13a);
twisti@1162 2074 inline void st_ptr(Register d, Register s1, RegisterOrConstant s2);
twisti@1162 2075 inline void st_ptr(Register d, const Address& a, int offset = 0);
twisti@1162 2076
twisti@1162 2077 #ifdef ASSERT
twisti@1162 2078 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
twisti@1162 2079 inline void ld_ptr(Register s1, ByteSize simm13a, Register d);
twisti@1162 2080 inline void st_ptr(Register d, Register s1, ByteSize simm13a);
twisti@1162 2081 #endif
duke@435 2082
twisti@1858 2083 // ld_long will perform ldd for 32 bit VM's and ldx for 64 bit VM's
twisti@1858 2084 // st_long will perform std for 32 bit VM's and stx for 64 bit VM's
twisti@1162 2085 inline void ld_long(Register s1, Register s2, Register d);
twisti@1162 2086 inline void ld_long(Register s1, int simm13a, Register d);
twisti@1162 2087 inline void ld_long(Register s1, RegisterOrConstant s2, Register d);
twisti@1162 2088 inline void ld_long(const Address& a, Register d, int offset = 0);
twisti@1162 2089 inline void st_long(Register d, Register s1, Register s2);
twisti@1162 2090 inline void st_long(Register d, Register s1, int simm13a);
twisti@1162 2091 inline void st_long(Register d, Register s1, RegisterOrConstant s2);
twisti@1162 2092 inline void st_long(Register d, const Address& a, int offset = 0);
jrose@1057 2093
jrose@1058 2094 // Helpers for address formation.
twisti@1858 2095 // - They emit only a move if s2 is a constant zero.
twisti@1858 2096 // - If dest is a constant and either s1 or s2 is a register, the temp argument is required and becomes the result.
twisti@1858 2097 // - If dest is a register and either s1 or s2 is a non-simm13 constant, the temp argument is required and used to materialize the constant.
twisti@1858 2098 RegisterOrConstant regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
twisti@1858 2099 RegisterOrConstant regcon_inc_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
twisti@1858 2100 RegisterOrConstant regcon_sll_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
twisti@1858 2101
twisti@1858 2102 RegisterOrConstant ensure_simm13_or_reg(RegisterOrConstant src, Register temp) {
twisti@1858 2103 if (is_simm13(src.constant_or_zero()))
twisti@1858 2104 return src; // register or short constant
twisti@1858 2105 guarantee(temp != noreg, "constant offset overflow");
twisti@1858 2106 set(src.as_constant(), temp);
twisti@1858 2107 return temp;
jrose@1058 2108 }
jrose@1058 2109
duke@435 2110 // --------------------------------------------------
duke@435 2111
duke@435 2112 public:
duke@435 2113 // traps as per trap.h (SPARC ABI?)
duke@435 2114
duke@435 2115 void breakpoint_trap();
duke@435 2116 void breakpoint_trap(Condition c, CC cc = icc);
duke@435 2117 void flush_windows_trap();
duke@435 2118 void clean_windows_trap();
duke@435 2119 void get_psr_trap();
duke@435 2120 void set_psr_trap();
duke@435 2121
duke@435 2122 // V8/V9 flush_windows
duke@435 2123 void flush_windows();
duke@435 2124
duke@435 2125 // Support for serializing memory accesses between threads
duke@435 2126 void serialize_memory(Register thread, Register tmp1, Register tmp2);
duke@435 2127
duke@435 2128 // Stack frame creation/removal
duke@435 2129 void enter();
duke@435 2130 void leave();
duke@435 2131
duke@435 2132 // V8/V9 integer multiply
duke@435 2133 void mult(Register s1, Register s2, Register d);
duke@435 2134 void mult(Register s1, int simm13a, Register d);
duke@435 2135
duke@435 2136 // V8/V9 read and write of condition codes.
duke@435 2137 void read_ccr(Register d);
duke@435 2138 void write_ccr(Register s);
duke@435 2139
duke@435 2140 // Manipulation of C++ bools
duke@435 2141 // These are idioms to flag the need for care with accessing bools but on
duke@435 2142 // this platform we assume byte size
duke@435 2143
twisti@1162 2144 inline void stbool(Register d, const Address& a) { stb(d, a); }
twisti@1162 2145 inline void ldbool(const Address& a, Register d) { ldsb(a, d); }
duke@435 2146 inline void tstbool( Register s ) { tst(s); }
duke@435 2147 inline void movbool( bool boolconst, Register d) { mov( (int) boolconst, d); }
duke@435 2148
coleenp@548 2149 // klass oop manipulations if compressed
kvn@599 2150 void load_klass(Register src_oop, Register klass);
kvn@599 2151 void store_klass(Register klass, Register dst_oop);
coleenp@602 2152 void store_klass_gap(Register s, Register dst_oop);
coleenp@548 2153
coleenp@548 2154 // oop manipulations
twisti@1162 2155 void load_heap_oop(const Address& s, Register d);
coleenp@548 2156 void load_heap_oop(Register s1, Register s2, Register d);
coleenp@548 2157 void load_heap_oop(Register s1, int simm13a, Register d);
twisti@2201 2158 void load_heap_oop(Register s1, RegisterOrConstant s2, Register d);
coleenp@548 2159 void store_heap_oop(Register d, Register s1, Register s2);
coleenp@548 2160 void store_heap_oop(Register d, Register s1, int simm13a);
coleenp@548 2161 void store_heap_oop(Register d, const Address& a, int offset = 0);
coleenp@548 2162
coleenp@548 2163 void encode_heap_oop(Register src, Register dst);
coleenp@548 2164 void encode_heap_oop(Register r) {
coleenp@548 2165 encode_heap_oop(r, r);
coleenp@548 2166 }
coleenp@548 2167 void decode_heap_oop(Register src, Register dst);
coleenp@548 2168 void decode_heap_oop(Register r) {
coleenp@548 2169 decode_heap_oop(r, r);
coleenp@548 2170 }
coleenp@548 2171 void encode_heap_oop_not_null(Register r);
coleenp@548 2172 void decode_heap_oop_not_null(Register r);
kvn@559 2173 void encode_heap_oop_not_null(Register src, Register dst);
kvn@559 2174 void decode_heap_oop_not_null(Register src, Register dst);
coleenp@548 2175
duke@435 2176 // Support for managing the JavaThread pointer (i.e.; the reference to
duke@435 2177 // thread-local information).
duke@435 2178 void get_thread(); // load G2_thread
duke@435 2179 void verify_thread(); // verify G2_thread contents
duke@435 2180 void save_thread (const Register threache); // save to cache
duke@435 2181 void restore_thread(const Register thread_cache); // restore from cache
duke@435 2182
duke@435 2183 // Support for last Java frame (but use call_VM instead where possible)
duke@435 2184 void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
duke@435 2185 void reset_last_Java_frame(void);
duke@435 2186
duke@435 2187 // Call into the VM.
duke@435 2188 // Passes the thread pointer (in O0) as a prepended argument.
duke@435 2189 // Makes sure oop return values are visible to the GC.
duke@435 2190 void call_VM(Register oop_result, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
duke@435 2191 void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
duke@435 2192 void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
duke@435 2193 void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
duke@435 2194
duke@435 2195 // these overloadings are not presently used on SPARC:
duke@435 2196 void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
duke@435 2197 void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
duke@435 2198 void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
duke@435 2199 void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
duke@435 2200
duke@435 2201 void call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments = 0);
duke@435 2202 void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1);
duke@435 2203 void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2);
duke@435 2204 void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3);
duke@435 2205
duke@435 2206 void get_vm_result (Register oop_result);
duke@435 2207 void get_vm_result_2(Register oop_result);
duke@435 2208
duke@435 2209 // vm result is currently getting hijacked to for oop preservation
duke@435 2210 void set_vm_result(Register oop_result);
duke@435 2211
duke@435 2212 // if call_VM_base was called with check_exceptions=false, then call
duke@435 2213 // check_and_forward_exception to handle exceptions when it is safe
duke@435 2214 void check_and_forward_exception(Register scratch_reg);
duke@435 2215
duke@435 2216 private:
duke@435 2217 // For V8
duke@435 2218 void read_ccr_trap(Register ccr_save);
duke@435 2219 void write_ccr_trap(Register ccr_save1, Register scratch1, Register scratch2);
duke@435 2220
duke@435 2221 #ifdef ASSERT
duke@435 2222 // For V8 debugging. Uses V8 instruction sequence and checks
duke@435 2223 // result with V9 insturctions rdccr and wrccr.
duke@435 2224 // Uses Gscatch and Gscatch2
duke@435 2225 void read_ccr_v8_assert(Register ccr_save);
duke@435 2226 void write_ccr_v8_assert(Register ccr_save);
duke@435 2227 #endif // ASSERT
duke@435 2228
duke@435 2229 public:
ysr@777 2230
ysr@777 2231 // Write to card table for - register is destroyed afterwards.
ysr@777 2232 void card_table_write(jbyte* byte_map_base, Register tmp, Register obj);
ysr@777 2233
ysr@777 2234 void card_write_barrier_post(Register store_addr, Register new_val, Register tmp);
ysr@777 2235
ysr@777 2236 #ifndef SERIALGC
johnc@2781 2237 // General G1 pre-barrier generator.
johnc@2781 2238 void g1_write_barrier_pre(Register obj, Register index, int offset, Register pre_val, Register tmp, bool preserve_o_regs);
johnc@2781 2239
johnc@2781 2240 // General G1 post-barrier generator
ysr@777 2241 void g1_write_barrier_post(Register store_addr, Register new_val, Register tmp);
ysr@777 2242 #endif // SERIALGC
duke@435 2243
duke@435 2244 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
duke@435 2245 void push_fTOS();
duke@435 2246
duke@435 2247 // pops double TOS element from CPU stack and pushes on FPU stack
duke@435 2248 void pop_fTOS();
duke@435 2249
duke@435 2250 void empty_FPU_stack();
duke@435 2251
duke@435 2252 void push_IU_state();
duke@435 2253 void pop_IU_state();
duke@435 2254
duke@435 2255 void push_FPU_state();
duke@435 2256 void pop_FPU_state();
duke@435 2257
duke@435 2258 void push_CPU_state();
duke@435 2259 void pop_CPU_state();
duke@435 2260
coleenp@548 2261 // if heap base register is used - reinit it with the correct value
coleenp@548 2262 void reinit_heapbase();
coleenp@548 2263
duke@435 2264 // Debugging
duke@435 2265 void _verify_oop(Register reg, const char * msg, const char * file, int line);
duke@435 2266 void _verify_oop_addr(Address addr, const char * msg, const char * file, int line);
duke@435 2267
duke@435 2268 #define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__)
duke@435 2269 #define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop addr ", __FILE__, __LINE__)
duke@435 2270
duke@435 2271 // only if +VerifyOops
duke@435 2272 void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
duke@435 2273 // only if +VerifyFPU
duke@435 2274 void stop(const char* msg); // prints msg, dumps registers and stops execution
duke@435 2275 void warn(const char* msg); // prints msg, but don't stop
duke@435 2276 void untested(const char* what = "");
twisti@2201 2277 void unimplemented(const char* what = "") { char* b = new char[1024]; jio_snprintf(b, 1024, "unimplemented: %s", what); stop(b); }
duke@435 2278 void should_not_reach_here() { stop("should not reach here"); }
duke@435 2279 void print_CPU_state();
duke@435 2280
duke@435 2281 // oops in code
twisti@1162 2282 AddressLiteral allocate_oop_address(jobject obj); // allocate_index
twisti@1162 2283 AddressLiteral constant_oop_address(jobject obj); // find_index
twisti@1162 2284 inline void set_oop (jobject obj, Register d); // uses allocate_oop_address
twisti@1162 2285 inline void set_oop_constant (jobject obj, Register d); // uses constant_oop_address
jcoomes@1902 2286 inline void set_oop (const AddressLiteral& obj_addr, Register d); // same as load_address
duke@435 2287
kvn@599 2288 void set_narrow_oop( jobject obj, Register d );
kvn@599 2289
duke@435 2290 // nop padding
duke@435 2291 void align(int modulus);
duke@435 2292
duke@435 2293 // declare a safepoint
duke@435 2294 void safepoint();
duke@435 2295
duke@435 2296 // factor out part of stop into subroutine to save space
duke@435 2297 void stop_subroutine();
duke@435 2298 // factor out part of verify_oop into subroutine to save space
duke@435 2299 void verify_oop_subroutine();
duke@435 2300
duke@435 2301 // side-door communication with signalHandler in os_solaris.cpp
duke@435 2302 static address _verify_oop_implicit_branch[3];
duke@435 2303
duke@435 2304 #ifndef PRODUCT
duke@435 2305 static void test();
duke@435 2306 #endif
duke@435 2307
duke@435 2308 // convert an incoming arglist to varargs format; put the pointer in d
duke@435 2309 void set_varargs( Argument a, Register d );
duke@435 2310
duke@435 2311 int total_frame_size_in_bytes(int extraWords);
duke@435 2312
duke@435 2313 // used when extraWords known statically
never@2950 2314 void save_frame(int extraWords = 0);
duke@435 2315 void save_frame_c1(int size_in_bytes);
duke@435 2316 // make a frame, and simultaneously pass up one or two register value
duke@435 2317 // into the new register window
duke@435 2318 void save_frame_and_mov(int extraWords, Register s1, Register d1, Register s2 = Register(), Register d2 = Register());
duke@435 2319
duke@435 2320 // give no. (outgoing) params, calc # of words will need on frame
duke@435 2321 void calc_mem_param_words(Register Rparam_words, Register Rresult);
duke@435 2322
duke@435 2323 // used to calculate frame size dynamically
duke@435 2324 // result is in bytes and must be negated for save inst
duke@435 2325 void calc_frame_size(Register extraWords, Register resultReg);
duke@435 2326
duke@435 2327 // calc and also save
duke@435 2328 void calc_frame_size_and_save(Register extraWords, Register resultReg);
duke@435 2329
duke@435 2330 static void debug(char* msg, RegistersForDebugging* outWindow);
duke@435 2331
duke@435 2332 // implementations of bytecodes used by both interpreter and compiler
duke@435 2333
duke@435 2334 void lcmp( Register Ra_hi, Register Ra_low,
duke@435 2335 Register Rb_hi, Register Rb_low,
duke@435 2336 Register Rresult);
duke@435 2337
duke@435 2338 void lneg( Register Rhi, Register Rlow );
duke@435 2339
duke@435 2340 void lshl( Register Rin_high, Register Rin_low, Register Rcount,
duke@435 2341 Register Rout_high, Register Rout_low, Register Rtemp );
duke@435 2342
duke@435 2343 void lshr( Register Rin_high, Register Rin_low, Register Rcount,
duke@435 2344 Register Rout_high, Register Rout_low, Register Rtemp );
duke@435 2345
duke@435 2346 void lushr( Register Rin_high, Register Rin_low, Register Rcount,
duke@435 2347 Register Rout_high, Register Rout_low, Register Rtemp );
duke@435 2348
duke@435 2349 #ifdef _LP64
duke@435 2350 void lcmp( Register Ra, Register Rb, Register Rresult);
duke@435 2351 #endif
duke@435 2352
twisti@2565 2353 // Load and store values by size and signed-ness
twisti@2565 2354 void load_sized_value( Address src, Register dst, size_t size_in_bytes, bool is_signed);
twisti@2565 2355 void store_sized_value(Register src, Address dst, size_t size_in_bytes);
twisti@1858 2356
duke@435 2357 void float_cmp( bool is_float, int unordered_result,
duke@435 2358 FloatRegister Fa, FloatRegister Fb,
duke@435 2359 Register Rresult);
duke@435 2360
duke@435 2361 void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
duke@435 2362 void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { Assembler::fneg(w, sd); }
duke@435 2363 void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
duke@435 2364 void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
duke@435 2365
duke@435 2366 void save_all_globals_into_locals();
duke@435 2367 void restore_globals_from_locals();
duke@435 2368
duke@435 2369 void casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
duke@435 2370 address lock_addr=0, bool use_call_vm=false);
duke@435 2371 void cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
duke@435 2372 address lock_addr=0, bool use_call_vm=false);
duke@435 2373 void casn (Register addr_reg, Register cmp_reg, Register set_reg) ;
duke@435 2374
duke@435 2375 // These set the icc condition code to equal if the lock succeeded
duke@435 2376 // and notEqual if it failed and requires a slow case
kvn@855 2377 void compiler_lock_object(Register Roop, Register Rmark, Register Rbox,
kvn@855 2378 Register Rscratch,
kvn@855 2379 BiasedLockingCounters* counters = NULL,
kvn@855 2380 bool try_bias = UseBiasedLocking);
kvn@855 2381 void compiler_unlock_object(Register Roop, Register Rmark, Register Rbox,
kvn@855 2382 Register Rscratch,
kvn@855 2383 bool try_bias = UseBiasedLocking);
duke@435 2384
duke@435 2385 // Biased locking support
duke@435 2386 // Upon entry, lock_reg must point to the lock record on the stack,
duke@435 2387 // obj_reg must contain the target object, and mark_reg must contain
duke@435 2388 // the target object's header.
duke@435 2389 // Destroys mark_reg if an attempt is made to bias an anonymously
duke@435 2390 // biased lock. In this case a failure will go either to the slow
duke@435 2391 // case or fall through with the notEqual condition code set with
duke@435 2392 // the expectation that the slow case in the runtime will be called.
duke@435 2393 // In the fall-through case where the CAS-based lock is done,
duke@435 2394 // mark_reg is not destroyed.
duke@435 2395 void biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
duke@435 2396 Label& done, Label* slow_case = NULL,
duke@435 2397 BiasedLockingCounters* counters = NULL);
duke@435 2398 // Upon entry, the base register of mark_addr must contain the oop.
duke@435 2399 // Destroys temp_reg.
duke@435 2400
duke@435 2401 // If allow_delay_slot_filling is set to true, the next instruction
duke@435 2402 // emitted after this one will go in an annulled delay slot if the
duke@435 2403 // biased locking exit case failed.
duke@435 2404 void biased_locking_exit(Address mark_addr, Register temp_reg, Label& done, bool allow_delay_slot_filling = false);
duke@435 2405
duke@435 2406 // allocation
duke@435 2407 void eden_allocate(
duke@435 2408 Register obj, // result: pointer to object after successful allocation
duke@435 2409 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 2410 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 2411 Register t1, // temp register
duke@435 2412 Register t2, // temp register
duke@435 2413 Label& slow_case // continuation point if fast allocation fails
duke@435 2414 );
duke@435 2415 void tlab_allocate(
duke@435 2416 Register obj, // result: pointer to object after successful allocation
duke@435 2417 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 2418 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 2419 Register t1, // temp register
duke@435 2420 Label& slow_case // continuation point if fast allocation fails
duke@435 2421 );
duke@435 2422 void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
phh@2447 2423 void incr_allocated_bytes(RegisterOrConstant size_in_bytes,
phh@2447 2424 Register t1, Register t2);
duke@435 2425
jrose@1058 2426 // interface method calling
jrose@1058 2427 void lookup_interface_method(Register recv_klass,
jrose@1058 2428 Register intf_klass,
jrose@1100 2429 RegisterOrConstant itable_index,
jrose@1058 2430 Register method_result,
jrose@1058 2431 Register temp_reg, Register temp2_reg,
jrose@1058 2432 Label& no_such_interface);
jrose@1058 2433
jrose@1079 2434 // Test sub_klass against super_klass, with fast and slow paths.
jrose@1079 2435
jrose@1079 2436 // The fast path produces a tri-state answer: yes / no / maybe-slow.
jrose@1079 2437 // One of the three labels can be NULL, meaning take the fall-through.
jrose@1079 2438 // If super_check_offset is -1, the value is loaded up from super_klass.
jrose@1079 2439 // No registers are killed, except temp_reg and temp2_reg.
jrose@1079 2440 // If super_check_offset is not -1, temp2_reg is not used and can be noreg.
jrose@1079 2441 void check_klass_subtype_fast_path(Register sub_klass,
jrose@1079 2442 Register super_klass,
jrose@1079 2443 Register temp_reg,
jrose@1079 2444 Register temp2_reg,
jrose@1079 2445 Label* L_success,
jrose@1079 2446 Label* L_failure,
jrose@1079 2447 Label* L_slow_path,
jrose@1100 2448 RegisterOrConstant super_check_offset = RegisterOrConstant(-1),
jrose@1079 2449 Register instanceof_hack = noreg);
jrose@1079 2450
jrose@1079 2451 // The rest of the type check; must be wired to a corresponding fast path.
jrose@1079 2452 // It does not repeat the fast path logic, so don't use it standalone.
jrose@1079 2453 // The temp_reg can be noreg, if no temps are available.
jrose@1079 2454 // It can also be sub_klass or super_klass, meaning it's OK to kill that one.
jrose@1079 2455 // Updates the sub's secondary super cache as necessary.
jrose@1079 2456 void check_klass_subtype_slow_path(Register sub_klass,
jrose@1079 2457 Register super_klass,
jrose@1079 2458 Register temp_reg,
jrose@1079 2459 Register temp2_reg,
jrose@1079 2460 Register temp3_reg,
jrose@1079 2461 Register temp4_reg,
jrose@1079 2462 Label* L_success,
jrose@1079 2463 Label* L_failure);
jrose@1079 2464
jrose@1079 2465 // Simplified, combined version, good for typical uses.
jrose@1079 2466 // Falls through on failure.
jrose@1079 2467 void check_klass_subtype(Register sub_klass,
jrose@1079 2468 Register super_klass,
jrose@1079 2469 Register temp_reg,
jrose@1079 2470 Register temp2_reg,
jrose@1079 2471 Label& L_success);
jrose@1079 2472
jrose@1145 2473 // method handles (JSR 292)
jrose@1145 2474 void check_method_handle_type(Register mtype_reg, Register mh_reg,
jrose@1145 2475 Register temp_reg,
jrose@1145 2476 Label& wrong_method_type);
twisti@1858 2477 void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
twisti@1858 2478 Register temp_reg);
twisti@1858 2479 void jump_to_method_handle_entry(Register mh_reg, Register temp_reg, bool emit_delayed_nop = true);
jrose@1145 2480 // offset relative to Gargs of argument at tos[arg_slot].
jrose@1145 2481 // (arg_slot == 0 means the last argument, not the first).
jrose@1145 2482 RegisterOrConstant argument_offset(RegisterOrConstant arg_slot,
never@2950 2483 Register temp_reg,
jrose@1145 2484 int extra_slot_offset = 0);
twisti@1858 2485 // Address of Gargs and argument_offset.
twisti@1858 2486 Address argument_address(RegisterOrConstant arg_slot,
never@2950 2487 Register temp_reg,
twisti@1858 2488 int extra_slot_offset = 0);
jrose@1079 2489
duke@435 2490 // Stack overflow checking
duke@435 2491
duke@435 2492 // Note: this clobbers G3_scratch
duke@435 2493 void bang_stack_with_offset(int offset) {
duke@435 2494 // stack grows down, caller passes positive offset
duke@435 2495 assert(offset > 0, "must bang with negative offset");
duke@435 2496 set((-offset)+STACK_BIAS, G3_scratch);
duke@435 2497 st(G0, SP, G3_scratch);
duke@435 2498 }
duke@435 2499
duke@435 2500 // Writes to stack successive pages until offset reached to check for
duke@435 2501 // stack overflow + shadow pages. Clobbers tsp and scratch registers.
duke@435 2502 void bang_stack_size(Register Rsize, Register Rtsp, Register Rscratch);
duke@435 2503
jrose@1100 2504 virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset);
jrose@1057 2505
duke@435 2506 void verify_tlab();
duke@435 2507
duke@435 2508 Condition negate_condition(Condition cond);
duke@435 2509
duke@435 2510 // Helper functions for statistics gathering.
duke@435 2511 // Conditionally (non-atomically) increments passed counter address, preserving condition codes.
duke@435 2512 void cond_inc(Condition cond, address counter_addr, Register Rtemp1, Register Rtemp2);
duke@435 2513 // Unconditional increment.
twisti@1162 2514 void inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2);
twisti@1162 2515 void inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2);
duke@435 2516
kvn@1421 2517 // Compare char[] arrays aligned to 4 bytes.
kvn@1421 2518 void char_arrays_equals(Register ary1, Register ary2,
kvn@1421 2519 Register limit, Register result,
kvn@1421 2520 Register chr1, Register chr2, Label& Ldone);
kvn@1421 2521
duke@435 2522 #undef VIRTUAL
duke@435 2523
duke@435 2524 };
duke@435 2525
duke@435 2526 /**
duke@435 2527 * class SkipIfEqual:
duke@435 2528 *
duke@435 2529 * Instantiating this class will result in assembly code being output that will
duke@435 2530 * jump around any code emitted between the creation of the instance and it's
duke@435 2531 * automatic destruction at the end of a scope block, depending on the value of
duke@435 2532 * the flag passed to the constructor, which will be checked at run-time.
duke@435 2533 */
duke@435 2534 class SkipIfEqual : public StackObj {
duke@435 2535 private:
duke@435 2536 MacroAssembler* _masm;
duke@435 2537 Label _label;
duke@435 2538
duke@435 2539 public:
duke@435 2540 // 'temp' is a temp register that this object can use (and trash)
duke@435 2541 SkipIfEqual(MacroAssembler*, Register temp,
duke@435 2542 const bool* flag_addr, Assembler::Condition condition);
duke@435 2543 ~SkipIfEqual();
duke@435 2544 };
duke@435 2545
duke@435 2546 #ifdef ASSERT
duke@435 2547 // On RISC, there's no benefit to verifying instruction boundaries.
duke@435 2548 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
duke@435 2549 #endif
stefank@2314 2550
stefank@2314 2551 #endif // CPU_SPARC_VM_ASSEMBLER_SPARC_HPP

mercurial