src/share/vm/opto/lcm.cpp

Thu, 27 Jun 2013 13:04:51 -0700

author
kvn
date
Thu, 27 Jun 2013 13:04:51 -0700
changeset 6443
f4f6ae481e1a
parent 6441
d2907f74462e
child 6462
e2722a66aba7
permissions
-rw-r--r--

Merge

duke@435 1 /*
kvn@3882 2 * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "memory/allocation.inline.hpp"
stefank@2314 27 #include "opto/block.hpp"
stefank@2314 28 #include "opto/c2compiler.hpp"
stefank@2314 29 #include "opto/callnode.hpp"
stefank@2314 30 #include "opto/cfgnode.hpp"
stefank@2314 31 #include "opto/machnode.hpp"
stefank@2314 32 #include "opto/runtime.hpp"
stefank@2314 33 #ifdef TARGET_ARCH_MODEL_x86_32
stefank@2314 34 # include "adfiles/ad_x86_32.hpp"
stefank@2314 35 #endif
stefank@2314 36 #ifdef TARGET_ARCH_MODEL_x86_64
stefank@2314 37 # include "adfiles/ad_x86_64.hpp"
stefank@2314 38 #endif
stefank@2314 39 #ifdef TARGET_ARCH_MODEL_sparc
stefank@2314 40 # include "adfiles/ad_sparc.hpp"
stefank@2314 41 #endif
stefank@2314 42 #ifdef TARGET_ARCH_MODEL_zero
stefank@2314 43 # include "adfiles/ad_zero.hpp"
stefank@2314 44 #endif
roland@2683 45 #ifdef TARGET_ARCH_MODEL_arm
roland@2683 46 # include "adfiles/ad_arm.hpp"
roland@2683 47 #endif
goetz@6441 48 #ifdef TARGET_ARCH_MODEL_ppc_32
goetz@6441 49 # include "adfiles/ad_ppc_32.hpp"
goetz@6441 50 #endif
goetz@6441 51 #ifdef TARGET_ARCH_MODEL_ppc_64
goetz@6441 52 # include "adfiles/ad_ppc_64.hpp"
jcoomes@2993 53 #endif
stefank@2314 54
duke@435 55 // Optimization - Graph Style
duke@435 56
duke@435 57 //------------------------------implicit_null_check----------------------------
duke@435 58 // Detect implicit-null-check opportunities. Basically, find NULL checks
duke@435 59 // with suitable memory ops nearby. Use the memory op to do the NULL check.
duke@435 60 // I can generate a memory op if there is not one nearby.
duke@435 61 // The proj is the control projection for the not-null case.
kvn@1930 62 // The val is the pointer being checked for nullness or
kvn@1930 63 // decodeHeapOop_not_null node if it did not fold into address.
duke@435 64 void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
duke@435 65 // Assume if null check need for 0 offset then always needed
duke@435 66 // Intel solaris doesn't support any null checks yet and no
duke@435 67 // mechanism exists (yet) to set the switches at an os_cpu level
duke@435 68 if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
duke@435 69
duke@435 70 // Make sure the ptr-is-null path appears to be uncommon!
duke@435 71 float f = end()->as_MachIf()->_prob;
duke@435 72 if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
duke@435 73 if( f > PROB_UNLIKELY_MAG(4) ) return;
duke@435 74
duke@435 75 uint bidx = 0; // Capture index of value into memop
duke@435 76 bool was_store; // Memory op is a store op
duke@435 77
duke@435 78 // Get the successor block for if the test ptr is non-null
duke@435 79 Block* not_null_block; // this one goes with the proj
duke@435 80 Block* null_block;
duke@435 81 if (_nodes[_nodes.size()-1] == proj) {
duke@435 82 null_block = _succs[0];
duke@435 83 not_null_block = _succs[1];
duke@435 84 } else {
duke@435 85 assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
duke@435 86 not_null_block = _succs[0];
duke@435 87 null_block = _succs[1];
duke@435 88 }
kvn@767 89 while (null_block->is_Empty() == Block::empty_with_goto) {
kvn@767 90 null_block = null_block->_succs[0];
kvn@767 91 }
duke@435 92
duke@435 93 // Search the exception block for an uncommon trap.
duke@435 94 // (See Parse::do_if and Parse::do_ifnull for the reason
duke@435 95 // we need an uncommon trap. Briefly, we need a way to
duke@435 96 // detect failure of this optimization, as in 6366351.)
duke@435 97 {
duke@435 98 bool found_trap = false;
duke@435 99 for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
duke@435 100 Node* nn = null_block->_nodes[i1];
duke@435 101 if (nn->is_MachCall() &&
twisti@2103 102 nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
duke@435 103 const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
duke@435 104 if (trtype->isa_int() && trtype->is_int()->is_con()) {
duke@435 105 jint tr_con = trtype->is_int()->get_con();
duke@435 106 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
duke@435 107 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
duke@435 108 assert((int)reason < (int)BitsPerInt, "recode bit map");
duke@435 109 if (is_set_nth_bit(allowed_reasons, (int) reason)
duke@435 110 && action != Deoptimization::Action_none) {
duke@435 111 // This uncommon trap is sure to recompile, eventually.
duke@435 112 // When that happens, C->too_many_traps will prevent
duke@435 113 // this transformation from happening again.
duke@435 114 found_trap = true;
duke@435 115 }
duke@435 116 }
duke@435 117 break;
duke@435 118 }
duke@435 119 }
duke@435 120 if (!found_trap) {
duke@435 121 // We did not find an uncommon trap.
duke@435 122 return;
duke@435 123 }
duke@435 124 }
duke@435 125
kvn@1930 126 // Check for decodeHeapOop_not_null node which did not fold into address
kvn@1930 127 bool is_decoden = ((intptr_t)val) & 1;
kvn@1930 128 val = (Node*)(((intptr_t)val) & ~1);
kvn@1930 129
kvn@1930 130 assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
kvn@1930 131 (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
kvn@1930 132
duke@435 133 // Search the successor block for a load or store who's base value is also
duke@435 134 // the tested value. There may be several.
duke@435 135 Node_List *out = new Node_List(Thread::current()->resource_area());
duke@435 136 MachNode *best = NULL; // Best found so far
duke@435 137 for (DUIterator i = val->outs(); val->has_out(i); i++) {
duke@435 138 Node *m = val->out(i);
duke@435 139 if( !m->is_Mach() ) continue;
duke@435 140 MachNode *mach = m->as_Mach();
duke@435 141 was_store = false;
kvn@2048 142 int iop = mach->ideal_Opcode();
kvn@2048 143 switch( iop ) {
duke@435 144 case Op_LoadB:
kvn@3882 145 case Op_LoadUB:
twisti@993 146 case Op_LoadUS:
duke@435 147 case Op_LoadD:
duke@435 148 case Op_LoadF:
duke@435 149 case Op_LoadI:
duke@435 150 case Op_LoadL:
duke@435 151 case Op_LoadP:
coleenp@548 152 case Op_LoadN:
duke@435 153 case Op_LoadS:
duke@435 154 case Op_LoadKlass:
kvn@599 155 case Op_LoadNKlass:
duke@435 156 case Op_LoadRange:
duke@435 157 case Op_LoadD_unaligned:
duke@435 158 case Op_LoadL_unaligned:
kvn@1586 159 assert(mach->in(2) == val, "should be address");
duke@435 160 break;
duke@435 161 case Op_StoreB:
duke@435 162 case Op_StoreC:
duke@435 163 case Op_StoreCM:
duke@435 164 case Op_StoreD:
duke@435 165 case Op_StoreF:
duke@435 166 case Op_StoreI:
duke@435 167 case Op_StoreL:
duke@435 168 case Op_StoreP:
coleenp@548 169 case Op_StoreN:
roland@4159 170 case Op_StoreNKlass:
duke@435 171 was_store = true; // Memory op is a store op
duke@435 172 // Stores will have their address in slot 2 (memory in slot 1).
duke@435 173 // If the value being nul-checked is in another slot, it means we
duke@435 174 // are storing the checked value, which does NOT check the value!
duke@435 175 if( mach->in(2) != val ) continue;
duke@435 176 break; // Found a memory op?
duke@435 177 case Op_StrComp:
cfang@1116 178 case Op_StrEquals:
cfang@1116 179 case Op_StrIndexOf:
rasbold@604 180 case Op_AryEq:
kvn@4479 181 case Op_EncodeISOArray:
duke@435 182 // Not a legit memory op for implicit null check regardless of
duke@435 183 // embedded loads
duke@435 184 continue;
duke@435 185 default: // Also check for embedded loads
duke@435 186 if( !mach->needs_anti_dependence_check() )
duke@435 187 continue; // Not an memory op; skip it
kvn@2048 188 if( must_clone[iop] ) {
kvn@2048 189 // Do not move nodes which produce flags because
kvn@2048 190 // RA will try to clone it to place near branch and
kvn@2048 191 // it will cause recompilation, see clone_node().
kvn@2048 192 continue;
kvn@2048 193 }
kvn@1586 194 {
kvn@1930 195 // Check that value is used in memory address in
kvn@1930 196 // instructions with embedded load (CmpP val1,(val2+off)).
kvn@1586 197 Node* base;
kvn@1586 198 Node* index;
kvn@1586 199 const MachOper* oper = mach->memory_inputs(base, index);
kvn@1586 200 if (oper == NULL || oper == (MachOper*)-1) {
kvn@1586 201 continue; // Not an memory op; skip it
kvn@1586 202 }
kvn@1586 203 if (val == base ||
kvn@1586 204 val == index && val->bottom_type()->isa_narrowoop()) {
kvn@1586 205 break; // Found it
kvn@1586 206 } else {
kvn@1586 207 continue; // Skip it
kvn@1586 208 }
kvn@1586 209 }
duke@435 210 break;
duke@435 211 }
duke@435 212 // check if the offset is not too high for implicit exception
duke@435 213 {
duke@435 214 intptr_t offset = 0;
duke@435 215 const TypePtr *adr_type = NULL; // Do not need this return value here
duke@435 216 const Node* base = mach->get_base_and_disp(offset, adr_type);
duke@435 217 if (base == NULL || base == NodeSentinel) {
kvn@767 218 // Narrow oop address doesn't have base, only index
kvn@767 219 if( val->bottom_type()->isa_narrowoop() &&
kvn@767 220 MacroAssembler::needs_explicit_null_check(offset) )
kvn@767 221 continue; // Give up if offset is beyond page size
duke@435 222 // cannot reason about it; is probably not implicit null exception
duke@435 223 } else {
kvn@1077 224 const TypePtr* tptr;
kvn@5111 225 if (UseCompressedOops && (Universe::narrow_oop_shift() == 0 ||
kvn@5111 226 Universe::narrow_klass_shift() == 0)) {
kvn@1077 227 // 32-bits narrow oop can be the base of address expressions
kvn@5111 228 tptr = base->get_ptr_type();
kvn@1077 229 } else {
kvn@1077 230 // only regular oops are expected here
kvn@1077 231 tptr = base->bottom_type()->is_ptr();
kvn@1077 232 }
duke@435 233 // Give up if offset is not a compile-time constant
duke@435 234 if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
duke@435 235 continue;
duke@435 236 offset += tptr->_offset; // correct if base is offseted
duke@435 237 if( MacroAssembler::needs_explicit_null_check(offset) )
duke@435 238 continue; // Give up is reference is beyond 4K page size
duke@435 239 }
duke@435 240 }
duke@435 241
duke@435 242 // Check ctrl input to see if the null-check dominates the memory op
duke@435 243 Block *cb = cfg->_bbs[mach->_idx];
duke@435 244 cb = cb->_idom; // Always hoist at least 1 block
duke@435 245 if( !was_store ) { // Stores can be hoisted only one block
duke@435 246 while( cb->_dom_depth > (_dom_depth + 1))
duke@435 247 cb = cb->_idom; // Hoist loads as far as we want
duke@435 248 // The non-null-block should dominate the memory op, too. Live
duke@435 249 // range spilling will insert a spill in the non-null-block if it is
duke@435 250 // needs to spill the memory op for an implicit null check.
duke@435 251 if (cb->_dom_depth == (_dom_depth + 1)) {
duke@435 252 if (cb != not_null_block) continue;
duke@435 253 cb = cb->_idom;
duke@435 254 }
duke@435 255 }
duke@435 256 if( cb != this ) continue;
duke@435 257
duke@435 258 // Found a memory user; see if it can be hoisted to check-block
duke@435 259 uint vidx = 0; // Capture index of value into memop
duke@435 260 uint j;
duke@435 261 for( j = mach->req()-1; j > 0; j-- ) {
kvn@1930 262 if( mach->in(j) == val ) {
kvn@1930 263 vidx = j;
kvn@1930 264 // Ignore DecodeN val which could be hoisted to where needed.
kvn@1930 265 if( is_decoden ) continue;
kvn@1930 266 }
duke@435 267 // Block of memory-op input
duke@435 268 Block *inb = cfg->_bbs[mach->in(j)->_idx];
duke@435 269 Block *b = this; // Start from nul check
duke@435 270 while( b != inb && b->_dom_depth > inb->_dom_depth )
duke@435 271 b = b->_idom; // search upwards for input
duke@435 272 // See if input dominates null check
duke@435 273 if( b != inb )
duke@435 274 break;
duke@435 275 }
duke@435 276 if( j > 0 )
duke@435 277 continue;
duke@435 278 Block *mb = cfg->_bbs[mach->_idx];
duke@435 279 // Hoisting stores requires more checks for the anti-dependence case.
duke@435 280 // Give up hoisting if we have to move the store past any load.
duke@435 281 if( was_store ) {
duke@435 282 Block *b = mb; // Start searching here for a local load
duke@435 283 // mach use (faulting) trying to hoist
duke@435 284 // n might be blocker to hoisting
duke@435 285 while( b != this ) {
duke@435 286 uint k;
duke@435 287 for( k = 1; k < b->_nodes.size(); k++ ) {
duke@435 288 Node *n = b->_nodes[k];
duke@435 289 if( n->needs_anti_dependence_check() &&
duke@435 290 n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
duke@435 291 break; // Found anti-dependent load
duke@435 292 }
duke@435 293 if( k < b->_nodes.size() )
duke@435 294 break; // Found anti-dependent load
duke@435 295 // Make sure control does not do a merge (would have to check allpaths)
duke@435 296 if( b->num_preds() != 2 ) break;
duke@435 297 b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
duke@435 298 }
duke@435 299 if( b != this ) continue;
duke@435 300 }
duke@435 301
duke@435 302 // Make sure this memory op is not already being used for a NullCheck
duke@435 303 Node *e = mb->end();
duke@435 304 if( e->is_MachNullCheck() && e->in(1) == mach )
duke@435 305 continue; // Already being used as a NULL check
duke@435 306
duke@435 307 // Found a candidate! Pick one with least dom depth - the highest
duke@435 308 // in the dom tree should be closest to the null check.
duke@435 309 if( !best ||
duke@435 310 cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
duke@435 311 best = mach;
duke@435 312 bidx = vidx;
duke@435 313
duke@435 314 }
duke@435 315 }
duke@435 316 // No candidate!
duke@435 317 if( !best ) return;
duke@435 318
duke@435 319 // ---- Found an implicit null check
duke@435 320 extern int implicit_null_checks;
duke@435 321 implicit_null_checks++;
duke@435 322
kvn@1930 323 if( is_decoden ) {
kvn@1930 324 // Check if we need to hoist decodeHeapOop_not_null first.
kvn@1930 325 Block *valb = cfg->_bbs[val->_idx];
kvn@1930 326 if( this != valb && this->_dom_depth < valb->_dom_depth ) {
kvn@1930 327 // Hoist it up to the end of the test block.
kvn@1930 328 valb->find_remove(val);
kvn@1930 329 this->add_inst(val);
kvn@1930 330 cfg->_bbs.map(val->_idx,this);
kvn@1930 331 // DecodeN on x86 may kill flags. Check for flag-killing projections
kvn@1930 332 // that also need to be hoisted.
kvn@1930 333 for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
kvn@1930 334 Node* n = val->fast_out(j);
kvn@3040 335 if( n->is_MachProj() ) {
kvn@1930 336 cfg->_bbs[n->_idx]->find_remove(n);
kvn@1930 337 this->add_inst(n);
kvn@1930 338 cfg->_bbs.map(n->_idx,this);
kvn@1930 339 }
kvn@1930 340 }
kvn@1930 341 }
kvn@1930 342 }
duke@435 343 // Hoist the memory candidate up to the end of the test block.
duke@435 344 Block *old_block = cfg->_bbs[best->_idx];
duke@435 345 old_block->find_remove(best);
duke@435 346 add_inst(best);
duke@435 347 cfg->_bbs.map(best->_idx,this);
duke@435 348
duke@435 349 // Move the control dependence
duke@435 350 if (best->in(0) && best->in(0) == old_block->_nodes[0])
duke@435 351 best->set_req(0, _nodes[0]);
duke@435 352
duke@435 353 // Check for flag-killing projections that also need to be hoisted
duke@435 354 // Should be DU safe because no edge updates.
duke@435 355 for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
duke@435 356 Node* n = best->fast_out(j);
kvn@3040 357 if( n->is_MachProj() ) {
duke@435 358 cfg->_bbs[n->_idx]->find_remove(n);
duke@435 359 add_inst(n);
duke@435 360 cfg->_bbs.map(n->_idx,this);
duke@435 361 }
duke@435 362 }
duke@435 363
duke@435 364 Compile *C = cfg->C;
duke@435 365 // proj==Op_True --> ne test; proj==Op_False --> eq test.
duke@435 366 // One of two graph shapes got matched:
duke@435 367 // (IfTrue (If (Bool NE (CmpP ptr NULL))))
duke@435 368 // (IfFalse (If (Bool EQ (CmpP ptr NULL))))
duke@435 369 // NULL checks are always branch-if-eq. If we see a IfTrue projection
duke@435 370 // then we are replacing a 'ne' test with a 'eq' NULL check test.
duke@435 371 // We need to flip the projections to keep the same semantics.
duke@435 372 if( proj->Opcode() == Op_IfTrue ) {
duke@435 373 // Swap order of projections in basic block to swap branch targets
duke@435 374 Node *tmp1 = _nodes[end_idx()+1];
duke@435 375 Node *tmp2 = _nodes[end_idx()+2];
duke@435 376 _nodes.map(end_idx()+1, tmp2);
duke@435 377 _nodes.map(end_idx()+2, tmp1);
kvn@4115 378 Node *tmp = new (C) Node(C->top()); // Use not NULL input
duke@435 379 tmp1->replace_by(tmp);
duke@435 380 tmp2->replace_by(tmp1);
duke@435 381 tmp->replace_by(tmp2);
duke@435 382 tmp->destruct();
duke@435 383 }
duke@435 384
duke@435 385 // Remove the existing null check; use a new implicit null check instead.
duke@435 386 // Since schedule-local needs precise def-use info, we need to correct
duke@435 387 // it as well.
duke@435 388 Node *old_tst = proj->in(0);
duke@435 389 MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
duke@435 390 _nodes.map(end_idx(),nul_chk);
duke@435 391 cfg->_bbs.map(nul_chk->_idx,this);
duke@435 392 // Redirect users of old_test to nul_chk
duke@435 393 for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
duke@435 394 old_tst->last_out(i2)->set_req(0, nul_chk);
duke@435 395 // Clean-up any dead code
duke@435 396 for (uint i3 = 0; i3 < old_tst->req(); i3++)
duke@435 397 old_tst->set_req(i3, NULL);
duke@435 398
duke@435 399 cfg->latency_from_uses(nul_chk);
duke@435 400 cfg->latency_from_uses(best);
duke@435 401 }
duke@435 402
duke@435 403
duke@435 404 //------------------------------select-----------------------------------------
duke@435 405 // Select a nice fellow from the worklist to schedule next. If there is only
duke@435 406 // one choice, then use it. Projections take top priority for correctness
duke@435 407 // reasons - if I see a projection, then it is next. There are a number of
duke@435 408 // other special cases, for instructions that consume condition codes, et al.
duke@435 409 // These are chosen immediately. Some instructions are required to immediately
duke@435 410 // precede the last instruction in the block, and these are taken last. Of the
duke@435 411 // remaining cases (most), choose the instruction with the greatest latency
duke@435 412 // (that is, the most number of pseudo-cycles required to the end of the
duke@435 413 // routine). If there is a tie, choose the instruction with the most inputs.
roland@3447 414 Node *Block::select(PhaseCFG *cfg, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot) {
duke@435 415
duke@435 416 // If only a single entry on the stack, use it
duke@435 417 uint cnt = worklist.size();
duke@435 418 if (cnt == 1) {
duke@435 419 Node *n = worklist[0];
duke@435 420 worklist.map(0,worklist.pop());
duke@435 421 return n;
duke@435 422 }
duke@435 423
duke@435 424 uint choice = 0; // Bigger is most important
duke@435 425 uint latency = 0; // Bigger is scheduled first
duke@435 426 uint score = 0; // Bigger is better
kvn@688 427 int idx = -1; // Index in worklist
shade@4691 428 int cand_cnt = 0; // Candidate count
duke@435 429
duke@435 430 for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
duke@435 431 // Order in worklist is used to break ties.
duke@435 432 // See caller for how this is used to delay scheduling
duke@435 433 // of induction variable increments to after the other
duke@435 434 // uses of the phi are scheduled.
duke@435 435 Node *n = worklist[i]; // Get Node on worklist
duke@435 436
duke@435 437 int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
duke@435 438 if( n->is_Proj() || // Projections always win
duke@435 439 n->Opcode()== Op_Con || // So does constant 'Top'
duke@435 440 iop == Op_CreateEx || // Create-exception must start block
duke@435 441 iop == Op_CheckCastPP
duke@435 442 ) {
duke@435 443 worklist.map(i,worklist.pop());
duke@435 444 return n;
duke@435 445 }
duke@435 446
duke@435 447 // Final call in a block must be adjacent to 'catch'
duke@435 448 Node *e = end();
duke@435 449 if( e->is_Catch() && e->in(0)->in(0) == n )
duke@435 450 continue;
duke@435 451
duke@435 452 // Memory op for an implicit null check has to be at the end of the block
duke@435 453 if( e->is_MachNullCheck() && e->in(1) == n )
duke@435 454 continue;
duke@435 455
kvn@3882 456 // Schedule IV increment last.
kvn@3882 457 if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd &&
kvn@3882 458 e->in(1)->in(1) == n && n->is_iteratively_computed())
kvn@3882 459 continue;
kvn@3882 460
duke@435 461 uint n_choice = 2;
duke@435 462
duke@435 463 // See if this instruction is consumed by a branch. If so, then (as the
duke@435 464 // branch is the last instruction in the basic block) force it to the
duke@435 465 // end of the basic block
duke@435 466 if ( must_clone[iop] ) {
duke@435 467 // See if any use is a branch
duke@435 468 bool found_machif = false;
duke@435 469
duke@435 470 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
duke@435 471 Node* use = n->fast_out(j);
duke@435 472
duke@435 473 // The use is a conditional branch, make them adjacent
duke@435 474 if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
duke@435 475 found_machif = true;
duke@435 476 break;
duke@435 477 }
duke@435 478
duke@435 479 // More than this instruction pending for successor to be ready,
duke@435 480 // don't choose this if other opportunities are ready
roland@3447 481 if (ready_cnt.at(use->_idx) > 1)
duke@435 482 n_choice = 1;
duke@435 483 }
duke@435 484
duke@435 485 // loop terminated, prefer not to use this instruction
duke@435 486 if (found_machif)
duke@435 487 continue;
duke@435 488 }
duke@435 489
duke@435 490 // See if this has a predecessor that is "must_clone", i.e. sets the
duke@435 491 // condition code. If so, choose this first
duke@435 492 for (uint j = 0; j < n->req() ; j++) {
duke@435 493 Node *inn = n->in(j);
duke@435 494 if (inn) {
duke@435 495 if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
duke@435 496 n_choice = 3;
duke@435 497 break;
duke@435 498 }
duke@435 499 }
duke@435 500 }
duke@435 501
duke@435 502 // MachTemps should be scheduled last so they are near their uses
duke@435 503 if (n->is_MachTemp()) {
duke@435 504 n_choice = 1;
duke@435 505 }
duke@435 506
kvn@2040 507 uint n_latency = cfg->_node_latency->at_grow(n->_idx);
duke@435 508 uint n_score = n->req(); // Many inputs get high score to break ties
duke@435 509
duke@435 510 // Keep best latency found
shade@4691 511 cand_cnt++;
shade@4691 512 if (choice < n_choice ||
shade@4691 513 (choice == n_choice &&
shade@4691 514 ((StressLCM && Compile::randomized_select(cand_cnt)) ||
shade@4691 515 (!StressLCM &&
shade@4691 516 (latency < n_latency ||
shade@4691 517 (latency == n_latency &&
shade@4691 518 (score < n_score))))))) {
duke@435 519 choice = n_choice;
duke@435 520 latency = n_latency;
duke@435 521 score = n_score;
duke@435 522 idx = i; // Also keep index in worklist
duke@435 523 }
duke@435 524 } // End of for all ready nodes in worklist
duke@435 525
kvn@688 526 assert(idx >= 0, "index should be set");
kvn@688 527 Node *n = worklist[(uint)idx]; // Get the winner
duke@435 528
kvn@688 529 worklist.map((uint)idx, worklist.pop()); // Compress worklist
duke@435 530 return n;
duke@435 531 }
duke@435 532
duke@435 533
duke@435 534 //------------------------------set_next_call----------------------------------
duke@435 535 void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
duke@435 536 if( next_call.test_set(n->_idx) ) return;
duke@435 537 for( uint i=0; i<n->len(); i++ ) {
duke@435 538 Node *m = n->in(i);
duke@435 539 if( !m ) continue; // must see all nodes in block that precede call
duke@435 540 if( bbs[m->_idx] == this )
duke@435 541 set_next_call( m, next_call, bbs );
duke@435 542 }
duke@435 543 }
duke@435 544
duke@435 545 //------------------------------needed_for_next_call---------------------------
duke@435 546 // Set the flag 'next_call' for each Node that is needed for the next call to
duke@435 547 // be scheduled. This flag lets me bias scheduling so Nodes needed for the
duke@435 548 // next subroutine call get priority - basically it moves things NOT needed
duke@435 549 // for the next call till after the call. This prevents me from trying to
duke@435 550 // carry lots of stuff live across a call.
duke@435 551 void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
duke@435 552 // Find the next control-defining Node in this block
duke@435 553 Node* call = NULL;
duke@435 554 for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
duke@435 555 Node* m = this_call->fast_out(i);
duke@435 556 if( bbs[m->_idx] == this && // Local-block user
duke@435 557 m != this_call && // Not self-start node
kvn@3040 558 m->is_MachCall() )
duke@435 559 call = m;
duke@435 560 break;
duke@435 561 }
duke@435 562 if (call == NULL) return; // No next call (e.g., block end is near)
duke@435 563 // Set next-call for all inputs to this call
duke@435 564 set_next_call(call, next_call, bbs);
duke@435 565 }
duke@435 566
roland@3316 567 //------------------------------add_call_kills-------------------------------------
roland@3316 568 void Block::add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
roland@3316 569 // Fill in the kill mask for the call
roland@3316 570 for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
roland@3316 571 if( !regs.Member(r) ) { // Not already defined by the call
roland@3316 572 // Save-on-call register?
roland@3316 573 if ((save_policy[r] == 'C') ||
roland@3316 574 (save_policy[r] == 'A') ||
roland@3316 575 ((save_policy[r] == 'E') && exclude_soe)) {
roland@3316 576 proj->_rout.Insert(r);
roland@3316 577 }
roland@3316 578 }
roland@3316 579 }
roland@3316 580 }
roland@3316 581
roland@3316 582
duke@435 583 //------------------------------sched_call-------------------------------------
roland@3447 584 uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, GrowableArray<int> &ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
duke@435 585 RegMask regs;
duke@435 586
duke@435 587 // Schedule all the users of the call right now. All the users are
duke@435 588 // projection Nodes, so they must be scheduled next to the call.
duke@435 589 // Collect all the defined registers.
duke@435 590 for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
duke@435 591 Node* n = mcall->fast_out(i);
kvn@3040 592 assert( n->is_MachProj(), "" );
roland@3447 593 int n_cnt = ready_cnt.at(n->_idx)-1;
roland@3447 594 ready_cnt.at_put(n->_idx, n_cnt);
roland@3447 595 assert( n_cnt == 0, "" );
duke@435 596 // Schedule next to call
duke@435 597 _nodes.map(node_cnt++, n);
duke@435 598 // Collect defined registers
duke@435 599 regs.OR(n->out_RegMask());
duke@435 600 // Check for scheduling the next control-definer
duke@435 601 if( n->bottom_type() == Type::CONTROL )
duke@435 602 // Warm up next pile of heuristic bits
duke@435 603 needed_for_next_call(n, next_call, bbs);
duke@435 604
duke@435 605 // Children of projections are now all ready
duke@435 606 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
duke@435 607 Node* m = n->fast_out(j); // Get user
duke@435 608 if( bbs[m->_idx] != this ) continue;
duke@435 609 if( m->is_Phi() ) continue;
roland@3447 610 int m_cnt = ready_cnt.at(m->_idx)-1;
roland@3447 611 ready_cnt.at_put(m->_idx, m_cnt);
roland@3447 612 if( m_cnt == 0 )
duke@435 613 worklist.push(m);
duke@435 614 }
duke@435 615
duke@435 616 }
duke@435 617
duke@435 618 // Act as if the call defines the Frame Pointer.
duke@435 619 // Certainly the FP is alive and well after the call.
duke@435 620 regs.Insert(matcher.c_frame_pointer());
duke@435 621
duke@435 622 // Set all registers killed and not already defined by the call.
duke@435 623 uint r_cnt = mcall->tf()->range()->cnt();
duke@435 624 int op = mcall->ideal_Opcode();
kvn@4115 625 MachProjNode *proj = new (matcher.C) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
duke@435 626 bbs.map(proj->_idx,this);
duke@435 627 _nodes.insert(node_cnt++, proj);
duke@435 628
duke@435 629 // Select the right register save policy.
duke@435 630 const char * save_policy;
duke@435 631 switch (op) {
duke@435 632 case Op_CallRuntime:
duke@435 633 case Op_CallLeaf:
duke@435 634 case Op_CallLeafNoFP:
duke@435 635 // Calling C code so use C calling convention
duke@435 636 save_policy = matcher._c_reg_save_policy;
duke@435 637 break;
duke@435 638
duke@435 639 case Op_CallStaticJava:
duke@435 640 case Op_CallDynamicJava:
duke@435 641 // Calling Java code so use Java calling convention
duke@435 642 save_policy = matcher._register_save_policy;
duke@435 643 break;
duke@435 644
duke@435 645 default:
duke@435 646 ShouldNotReachHere();
duke@435 647 }
duke@435 648
duke@435 649 // When using CallRuntime mark SOE registers as killed by the call
duke@435 650 // so values that could show up in the RegisterMap aren't live in a
duke@435 651 // callee saved register since the register wouldn't know where to
duke@435 652 // find them. CallLeaf and CallLeafNoFP are ok because they can't
duke@435 653 // have debug info on them. Strictly speaking this only needs to be
duke@435 654 // done for oops since idealreg2debugmask takes care of debug info
duke@435 655 // references but there no way to handle oops differently than other
duke@435 656 // pointers as far as the kill mask goes.
duke@435 657 bool exclude_soe = op == Op_CallRuntime;
duke@435 658
twisti@1572 659 // If the call is a MethodHandle invoke, we need to exclude the
twisti@1572 660 // register which is used to save the SP value over MH invokes from
twisti@1572 661 // the mask. Otherwise this register could be used for
twisti@1572 662 // deoptimization information.
twisti@1572 663 if (op == Op_CallStaticJava) {
twisti@1572 664 MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
twisti@1572 665 if (mcallstaticjava->_method_handle_invoke)
twisti@1572 666 proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
twisti@1572 667 }
twisti@1572 668
roland@3316 669 add_call_kills(proj, regs, save_policy, exclude_soe);
duke@435 670
duke@435 671 return node_cnt;
duke@435 672 }
duke@435 673
duke@435 674
duke@435 675 //------------------------------schedule_local---------------------------------
duke@435 676 // Topological sort within a block. Someday become a real scheduler.
roland@3447 677 bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, GrowableArray<int> &ready_cnt, VectorSet &next_call) {
duke@435 678 // Already "sorted" are the block start Node (as the first entry), and
duke@435 679 // the block-ending Node and any trailing control projections. We leave
duke@435 680 // these alone. PhiNodes and ParmNodes are made to follow the block start
duke@435 681 // Node. Everything else gets topo-sorted.
duke@435 682
duke@435 683 #ifndef PRODUCT
duke@435 684 if (cfg->trace_opto_pipelining()) {
duke@435 685 tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
duke@435 686 for (uint i = 0;i < _nodes.size();i++) {
duke@435 687 tty->print("# ");
duke@435 688 _nodes[i]->fast_dump();
duke@435 689 }
duke@435 690 tty->print_cr("#");
duke@435 691 }
duke@435 692 #endif
duke@435 693
duke@435 694 // RootNode is already sorted
duke@435 695 if( _nodes.size() == 1 ) return true;
duke@435 696
duke@435 697 // Move PhiNodes and ParmNodes from 1 to cnt up to the start
duke@435 698 uint node_cnt = end_idx();
duke@435 699 uint phi_cnt = 1;
duke@435 700 uint i;
duke@435 701 for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
duke@435 702 Node *n = _nodes[i];
duke@435 703 if( n->is_Phi() || // Found a PhiNode or ParmNode
duke@435 704 (n->is_Proj() && n->in(0) == head()) ) {
duke@435 705 // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
duke@435 706 _nodes.map(i,_nodes[phi_cnt]);
duke@435 707 _nodes.map(phi_cnt++,n); // swap Phi/Parm up front
duke@435 708 } else { // All others
duke@435 709 // Count block-local inputs to 'n'
duke@435 710 uint cnt = n->len(); // Input count
duke@435 711 uint local = 0;
duke@435 712 for( uint j=0; j<cnt; j++ ) {
duke@435 713 Node *m = n->in(j);
duke@435 714 if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
duke@435 715 local++; // One more block-local input
duke@435 716 }
roland@3447 717 ready_cnt.at_put(n->_idx, local); // Count em up
duke@435 718
never@2780 719 #ifdef ASSERT
never@2780 720 if( UseConcMarkSweepGC || UseG1GC ) {
never@2780 721 if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
never@2780 722 // Check the precedence edges
never@2780 723 for (uint prec = n->req(); prec < n->len(); prec++) {
never@2780 724 Node* oop_store = n->in(prec);
never@2780 725 if (oop_store != NULL) {
never@2780 726 assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
never@2780 727 }
never@2780 728 }
never@2780 729 }
never@2780 730 }
never@2780 731 #endif
never@2780 732
duke@435 733 // A few node types require changing a required edge to a precedence edge
duke@435 734 // before allocation.
kvn@1535 735 if( n->is_Mach() && n->req() > TypeFunc::Parms &&
kvn@1535 736 (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
kvn@1535 737 n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
kvn@688 738 // MemBarAcquire could be created without Precedent edge.
kvn@688 739 // del_req() replaces the specified edge with the last input edge
kvn@688 740 // and then removes the last edge. If the specified edge > number of
kvn@688 741 // edges the last edge will be moved outside of the input edges array
kvn@688 742 // and the edge will be lost. This is why this code should be
kvn@688 743 // executed only when Precedent (== TypeFunc::Parms) edge is present.
duke@435 744 Node *x = n->in(TypeFunc::Parms);
duke@435 745 n->del_req(TypeFunc::Parms);
duke@435 746 n->add_prec(x);
duke@435 747 }
duke@435 748 }
duke@435 749 }
duke@435 750 for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
roland@3447 751 ready_cnt.at_put(_nodes[i2]->_idx, 0);
duke@435 752
duke@435 753 // All the prescheduled guys do not hold back internal nodes
duke@435 754 uint i3;
duke@435 755 for(i3 = 0; i3<phi_cnt; i3++ ) { // For all pre-scheduled
duke@435 756 Node *n = _nodes[i3]; // Get pre-scheduled
duke@435 757 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
duke@435 758 Node* m = n->fast_out(j);
roland@3447 759 if( cfg->_bbs[m->_idx] ==this ) { // Local-block user
roland@3447 760 int m_cnt = ready_cnt.at(m->_idx)-1;
roland@3447 761 ready_cnt.at_put(m->_idx, m_cnt); // Fix ready count
roland@3447 762 }
duke@435 763 }
duke@435 764 }
duke@435 765
duke@435 766 Node_List delay;
duke@435 767 // Make a worklist
duke@435 768 Node_List worklist;
duke@435 769 for(uint i4=i3; i4<node_cnt; i4++ ) { // Put ready guys on worklist
duke@435 770 Node *m = _nodes[i4];
roland@3447 771 if( !ready_cnt.at(m->_idx) ) { // Zero ready count?
duke@435 772 if (m->is_iteratively_computed()) {
duke@435 773 // Push induction variable increments last to allow other uses
duke@435 774 // of the phi to be scheduled first. The select() method breaks
duke@435 775 // ties in scheduling by worklist order.
duke@435 776 delay.push(m);
never@560 777 } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
never@560 778 // Force the CreateEx to the top of the list so it's processed
never@560 779 // first and ends up at the start of the block.
never@560 780 worklist.insert(0, m);
duke@435 781 } else {
duke@435 782 worklist.push(m); // Then on to worklist!
duke@435 783 }
duke@435 784 }
duke@435 785 }
duke@435 786 while (delay.size()) {
duke@435 787 Node* d = delay.pop();
duke@435 788 worklist.push(d);
duke@435 789 }
duke@435 790
duke@435 791 // Warm up the 'next_call' heuristic bits
duke@435 792 needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
duke@435 793
duke@435 794 #ifndef PRODUCT
duke@435 795 if (cfg->trace_opto_pipelining()) {
duke@435 796 for (uint j=0; j<_nodes.size(); j++) {
duke@435 797 Node *n = _nodes[j];
duke@435 798 int idx = n->_idx;
roland@3447 799 tty->print("# ready cnt:%3d ", ready_cnt.at(idx));
kvn@2040 800 tty->print("latency:%3d ", cfg->_node_latency->at_grow(idx));
duke@435 801 tty->print("%4d: %s\n", idx, n->Name());
duke@435 802 }
duke@435 803 }
duke@435 804 #endif
duke@435 805
roland@3447 806 uint max_idx = (uint)ready_cnt.length();
duke@435 807 // Pull from worklist and schedule
duke@435 808 while( worklist.size() ) { // Worklist is not ready
duke@435 809
duke@435 810 #ifndef PRODUCT
duke@435 811 if (cfg->trace_opto_pipelining()) {
duke@435 812 tty->print("# ready list:");
duke@435 813 for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
duke@435 814 Node *n = worklist[i]; // Get Node on worklist
duke@435 815 tty->print(" %d", n->_idx);
duke@435 816 }
duke@435 817 tty->cr();
duke@435 818 }
duke@435 819 #endif
duke@435 820
duke@435 821 // Select and pop a ready guy from worklist
duke@435 822 Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
duke@435 823 _nodes.map(phi_cnt++,n); // Schedule him next
duke@435 824
duke@435 825 #ifndef PRODUCT
duke@435 826 if (cfg->trace_opto_pipelining()) {
duke@435 827 tty->print("# select %d: %s", n->_idx, n->Name());
kvn@2040 828 tty->print(", latency:%d", cfg->_node_latency->at_grow(n->_idx));
duke@435 829 n->dump();
duke@435 830 if (Verbose) {
duke@435 831 tty->print("# ready list:");
duke@435 832 for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
duke@435 833 Node *n = worklist[i]; // Get Node on worklist
duke@435 834 tty->print(" %d", n->_idx);
duke@435 835 }
duke@435 836 tty->cr();
duke@435 837 }
duke@435 838 }
duke@435 839
duke@435 840 #endif
duke@435 841 if( n->is_MachCall() ) {
duke@435 842 MachCallNode *mcall = n->as_MachCall();
duke@435 843 phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
duke@435 844 continue;
duke@435 845 }
roland@3316 846
roland@3316 847 if (n->is_Mach() && n->as_Mach()->has_call()) {
roland@3316 848 RegMask regs;
roland@3316 849 regs.Insert(matcher.c_frame_pointer());
roland@3316 850 regs.OR(n->out_RegMask());
roland@3316 851
kvn@4115 852 MachProjNode *proj = new (matcher.C) MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
roland@3316 853 cfg->_bbs.map(proj->_idx,this);
roland@3316 854 _nodes.insert(phi_cnt++, proj);
roland@3316 855
roland@3316 856 add_call_kills(proj, regs, matcher._c_reg_save_policy, false);
roland@3316 857 }
roland@3316 858
duke@435 859 // Children are now all ready
duke@435 860 for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
duke@435 861 Node* m = n->fast_out(i5); // Get user
duke@435 862 if( cfg->_bbs[m->_idx] != this ) continue;
duke@435 863 if( m->is_Phi() ) continue;
roland@3447 864 if (m->_idx >= max_idx) { // new node, skip it
roland@3316 865 assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
roland@3316 866 continue;
roland@3316 867 }
roland@3447 868 int m_cnt = ready_cnt.at(m->_idx)-1;
roland@3447 869 ready_cnt.at_put(m->_idx, m_cnt);
roland@3447 870 if( m_cnt == 0 )
duke@435 871 worklist.push(m);
duke@435 872 }
duke@435 873 }
duke@435 874
duke@435 875 if( phi_cnt != end_idx() ) {
duke@435 876 // did not schedule all. Retry, Bailout, or Die
duke@435 877 Compile* C = matcher.C;
duke@435 878 if (C->subsume_loads() == true && !C->failing()) {
duke@435 879 // Retry with subsume_loads == false
duke@435 880 // If this is the first failure, the sentinel string will "stick"
duke@435 881 // to the Compile object, and the C2Compiler will see it and retry.
duke@435 882 C->record_failure(C2Compiler::retry_no_subsuming_loads());
duke@435 883 }
duke@435 884 // assert( phi_cnt == end_idx(), "did not schedule all" );
duke@435 885 return false;
duke@435 886 }
duke@435 887
duke@435 888 #ifndef PRODUCT
duke@435 889 if (cfg->trace_opto_pipelining()) {
duke@435 890 tty->print_cr("#");
duke@435 891 tty->print_cr("# after schedule_local");
duke@435 892 for (uint i = 0;i < _nodes.size();i++) {
duke@435 893 tty->print("# ");
duke@435 894 _nodes[i]->fast_dump();
duke@435 895 }
duke@435 896 tty->cr();
duke@435 897 }
duke@435 898 #endif
duke@435 899
duke@435 900
duke@435 901 return true;
duke@435 902 }
duke@435 903
duke@435 904 //--------------------------catch_cleanup_fix_all_inputs-----------------------
duke@435 905 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
duke@435 906 for (uint l = 0; l < use->len(); l++) {
duke@435 907 if (use->in(l) == old_def) {
duke@435 908 if (l < use->req()) {
duke@435 909 use->set_req(l, new_def);
duke@435 910 } else {
duke@435 911 use->rm_prec(l);
duke@435 912 use->add_prec(new_def);
duke@435 913 l--;
duke@435 914 }
duke@435 915 }
duke@435 916 }
duke@435 917 }
duke@435 918
duke@435 919 //------------------------------catch_cleanup_find_cloned_def------------------
duke@435 920 static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
duke@435 921 assert( use_blk != def_blk, "Inter-block cleanup only");
duke@435 922
duke@435 923 // The use is some block below the Catch. Find and return the clone of the def
duke@435 924 // that dominates the use. If there is no clone in a dominating block, then
duke@435 925 // create a phi for the def in a dominating block.
duke@435 926
duke@435 927 // Find which successor block dominates this use. The successor
duke@435 928 // blocks must all be single-entry (from the Catch only; I will have
duke@435 929 // split blocks to make this so), hence they all dominate.
duke@435 930 while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
duke@435 931 use_blk = use_blk->_idom;
duke@435 932
duke@435 933 // Find the successor
duke@435 934 Node *fixup = NULL;
duke@435 935
duke@435 936 uint j;
duke@435 937 for( j = 0; j < def_blk->_num_succs; j++ )
duke@435 938 if( use_blk == def_blk->_succs[j] )
duke@435 939 break;
duke@435 940
duke@435 941 if( j == def_blk->_num_succs ) {
duke@435 942 // Block at same level in dom-tree is not a successor. It needs a
duke@435 943 // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
duke@435 944 Node_Array inputs = new Node_List(Thread::current()->resource_area());
duke@435 945 for(uint k = 1; k < use_blk->num_preds(); k++) {
duke@435 946 inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
duke@435 947 }
duke@435 948
duke@435 949 // Check to see if the use_blk already has an identical phi inserted.
duke@435 950 // If it exists, it will be at the first position since all uses of a
duke@435 951 // def are processed together.
duke@435 952 Node *phi = use_blk->_nodes[1];
duke@435 953 if( phi->is_Phi() ) {
duke@435 954 fixup = phi;
duke@435 955 for (uint k = 1; k < use_blk->num_preds(); k++) {
duke@435 956 if (phi->in(k) != inputs[k]) {
duke@435 957 // Not a match
duke@435 958 fixup = NULL;
duke@435 959 break;
duke@435 960 }
duke@435 961 }
duke@435 962 }
duke@435 963
duke@435 964 // If an existing PhiNode was not found, make a new one.
duke@435 965 if (fixup == NULL) {
duke@435 966 Node *new_phi = PhiNode::make(use_blk->head(), def);
duke@435 967 use_blk->_nodes.insert(1, new_phi);
duke@435 968 bbs.map(new_phi->_idx, use_blk);
duke@435 969 for (uint k = 1; k < use_blk->num_preds(); k++) {
duke@435 970 new_phi->set_req(k, inputs[k]);
duke@435 971 }
duke@435 972 fixup = new_phi;
duke@435 973 }
duke@435 974
duke@435 975 } else {
duke@435 976 // Found the use just below the Catch. Make it use the clone.
duke@435 977 fixup = use_blk->_nodes[n_clone_idx];
duke@435 978 }
duke@435 979
duke@435 980 return fixup;
duke@435 981 }
duke@435 982
duke@435 983 //--------------------------catch_cleanup_intra_block--------------------------
duke@435 984 // Fix all input edges in use that reference "def". The use is in the same
duke@435 985 // block as the def and both have been cloned in each successor block.
duke@435 986 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
duke@435 987
duke@435 988 // Both the use and def have been cloned. For each successor block,
duke@435 989 // get the clone of the use, and make its input the clone of the def
duke@435 990 // found in that block.
duke@435 991
duke@435 992 uint use_idx = blk->find_node(use);
duke@435 993 uint offset_idx = use_idx - beg;
duke@435 994 for( uint k = 0; k < blk->_num_succs; k++ ) {
duke@435 995 // Get clone in each successor block
duke@435 996 Block *sb = blk->_succs[k];
duke@435 997 Node *clone = sb->_nodes[offset_idx+1];
duke@435 998 assert( clone->Opcode() == use->Opcode(), "" );
duke@435 999
duke@435 1000 // Make use-clone reference the def-clone
duke@435 1001 catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
duke@435 1002 }
duke@435 1003 }
duke@435 1004
duke@435 1005 //------------------------------catch_cleanup_inter_block---------------------
duke@435 1006 // Fix all input edges in use that reference "def". The use is in a different
duke@435 1007 // block than the def.
duke@435 1008 static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
duke@435 1009 if( !use_blk ) return; // Can happen if the use is a precedence edge
duke@435 1010
duke@435 1011 Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
duke@435 1012 catch_cleanup_fix_all_inputs(use, def, new_def);
duke@435 1013 }
duke@435 1014
duke@435 1015 //------------------------------call_catch_cleanup-----------------------------
duke@435 1016 // If we inserted any instructions between a Call and his CatchNode,
duke@435 1017 // clone the instructions on all paths below the Catch.
bharadwaj@4315 1018 void Block::call_catch_cleanup(Block_Array &bbs, Compile* C) {
duke@435 1019
duke@435 1020 // End of region to clone
duke@435 1021 uint end = end_idx();
duke@435 1022 if( !_nodes[end]->is_Catch() ) return;
duke@435 1023 // Start of region to clone
duke@435 1024 uint beg = end;
kvn@3040 1025 while(!_nodes[beg-1]->is_MachProj() ||
kvn@3040 1026 !_nodes[beg-1]->in(0)->is_MachCall() ) {
duke@435 1027 beg--;
duke@435 1028 assert(beg > 0,"Catch cleanup walking beyond block boundary");
duke@435 1029 }
duke@435 1030 // Range of inserted instructions is [beg, end)
duke@435 1031 if( beg == end ) return;
duke@435 1032
duke@435 1033 // Clone along all Catch output paths. Clone area between the 'beg' and
duke@435 1034 // 'end' indices.
duke@435 1035 for( uint i = 0; i < _num_succs; i++ ) {
duke@435 1036 Block *sb = _succs[i];
duke@435 1037 // Clone the entire area; ignoring the edge fixup for now.
duke@435 1038 for( uint j = end; j > beg; j-- ) {
kvn@2048 1039 // It is safe here to clone a node with anti_dependence
kvn@2048 1040 // since clones dominate on each path.
duke@435 1041 Node *clone = _nodes[j-1]->clone();
duke@435 1042 sb->_nodes.insert( 1, clone );
duke@435 1043 bbs.map(clone->_idx,sb);
duke@435 1044 }
duke@435 1045 }
duke@435 1046
duke@435 1047
duke@435 1048 // Fixup edges. Check the def-use info per cloned Node
duke@435 1049 for(uint i2 = beg; i2 < end; i2++ ) {
duke@435 1050 uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
duke@435 1051 Node *n = _nodes[i2]; // Node that got cloned
duke@435 1052 // Need DU safe iterator because of edge manipulation in calls.
duke@435 1053 Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
duke@435 1054 for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
duke@435 1055 out->push(n->fast_out(j1));
duke@435 1056 }
duke@435 1057 uint max = out->size();
duke@435 1058 for (uint j = 0; j < max; j++) {// For all users
duke@435 1059 Node *use = out->pop();
duke@435 1060 Block *buse = bbs[use->_idx];
duke@435 1061 if( use->is_Phi() ) {
duke@435 1062 for( uint k = 1; k < use->req(); k++ )
duke@435 1063 if( use->in(k) == n ) {
duke@435 1064 Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
duke@435 1065 use->set_req(k, fixup);
duke@435 1066 }
duke@435 1067 } else {
duke@435 1068 if (this == buse) {
duke@435 1069 catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
duke@435 1070 } else {
duke@435 1071 catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
duke@435 1072 }
duke@435 1073 }
duke@435 1074 } // End for all users
duke@435 1075
duke@435 1076 } // End of for all Nodes in cloned area
duke@435 1077
duke@435 1078 // Remove the now-dead cloned ops
duke@435 1079 for(uint i3 = beg; i3 < end; i3++ ) {
bharadwaj@4315 1080 _nodes[beg]->disconnect_inputs(NULL, C);
duke@435 1081 _nodes.remove(beg);
duke@435 1082 }
duke@435 1083
duke@435 1084 // If the successor blocks have a CreateEx node, move it back to the top
duke@435 1085 for(uint i4 = 0; i4 < _num_succs; i4++ ) {
duke@435 1086 Block *sb = _succs[i4];
duke@435 1087 uint new_cnt = end - beg;
duke@435 1088 // Remove any newly created, but dead, nodes.
duke@435 1089 for( uint j = new_cnt; j > 0; j-- ) {
duke@435 1090 Node *n = sb->_nodes[j];
duke@435 1091 if (n->outcnt() == 0 &&
duke@435 1092 (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
bharadwaj@4315 1093 n->disconnect_inputs(NULL, C);
duke@435 1094 sb->_nodes.remove(j);
duke@435 1095 new_cnt--;
duke@435 1096 }
duke@435 1097 }
duke@435 1098 // If any newly created nodes remain, move the CreateEx node to the top
duke@435 1099 if (new_cnt > 0) {
duke@435 1100 Node *cex = sb->_nodes[1+new_cnt];
duke@435 1101 if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
duke@435 1102 sb->_nodes.remove(1+new_cnt);
duke@435 1103 sb->_nodes.insert(1,cex);
duke@435 1104 }
duke@435 1105 }
duke@435 1106 }
duke@435 1107 }

mercurial