src/share/vm/opto/matcher.cpp

Wed, 07 May 2008 08:06:46 -0700

author
rasbold
date
Wed, 07 May 2008 08:06:46 -0700
changeset 580
f3de1255b035
parent 548
ba764ed4b6f2
child 598
885ed790ecf0
permissions
-rw-r--r--

6603011: RFE: Optimize long division
Summary: Transform long division by constant into multiply
Reviewed-by: never, kvn

duke@435 1 /*
duke@435 2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_matcher.cpp.incl"
duke@435 27
duke@435 28 OptoReg::Name OptoReg::c_frame_pointer;
duke@435 29
duke@435 30
duke@435 31
duke@435 32 const int Matcher::base2reg[Type::lastype] = {
coleenp@548 33 Node::NotAMachineReg,0,0, Op_RegI, Op_RegL, 0, Op_RegN,
duke@435 34 Node::NotAMachineReg, Node::NotAMachineReg, /* tuple, array */
duke@435 35 Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, /* the pointers */
duke@435 36 0, 0/*abio*/,
duke@435 37 Op_RegP /* Return address */, 0, /* the memories */
duke@435 38 Op_RegF, Op_RegF, Op_RegF, Op_RegD, Op_RegD, Op_RegD,
duke@435 39 0 /*bottom*/
duke@435 40 };
duke@435 41
duke@435 42 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
duke@435 43 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
duke@435 44 RegMask Matcher::STACK_ONLY_mask;
duke@435 45 RegMask Matcher::c_frame_ptr_mask;
duke@435 46 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
duke@435 47 const uint Matcher::_end_rematerialize = _END_REMATERIALIZE;
duke@435 48
duke@435 49 //---------------------------Matcher-------------------------------------------
duke@435 50 Matcher::Matcher( Node_List &proj_list ) :
duke@435 51 PhaseTransform( Phase::Ins_Select ),
duke@435 52 #ifdef ASSERT
duke@435 53 _old2new_map(C->comp_arena()),
duke@435 54 #endif
duke@435 55 _shared_constants(C->comp_arena()),
duke@435 56 _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
duke@435 57 _swallowed(swallowed),
duke@435 58 _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
duke@435 59 _end_inst_chain_rule(_END_INST_CHAIN_RULE),
duke@435 60 _must_clone(must_clone), _proj_list(proj_list),
duke@435 61 _register_save_policy(register_save_policy),
duke@435 62 _c_reg_save_policy(c_reg_save_policy),
duke@435 63 _register_save_type(register_save_type),
duke@435 64 _ruleName(ruleName),
duke@435 65 _allocation_started(false),
duke@435 66 _states_arena(Chunk::medium_size),
duke@435 67 _visited(&_states_arena),
duke@435 68 _shared(&_states_arena),
duke@435 69 _dontcare(&_states_arena) {
duke@435 70 C->set_matcher(this);
duke@435 71
duke@435 72 idealreg2spillmask[Op_RegI] = NULL;
coleenp@548 73 idealreg2spillmask[Op_RegN] = NULL;
duke@435 74 idealreg2spillmask[Op_RegL] = NULL;
duke@435 75 idealreg2spillmask[Op_RegF] = NULL;
duke@435 76 idealreg2spillmask[Op_RegD] = NULL;
duke@435 77 idealreg2spillmask[Op_RegP] = NULL;
duke@435 78
duke@435 79 idealreg2debugmask[Op_RegI] = NULL;
coleenp@548 80 idealreg2debugmask[Op_RegN] = NULL;
duke@435 81 idealreg2debugmask[Op_RegL] = NULL;
duke@435 82 idealreg2debugmask[Op_RegF] = NULL;
duke@435 83 idealreg2debugmask[Op_RegD] = NULL;
duke@435 84 idealreg2debugmask[Op_RegP] = NULL;
duke@435 85 }
duke@435 86
duke@435 87 //------------------------------warp_incoming_stk_arg------------------------
duke@435 88 // This warps a VMReg into an OptoReg::Name
duke@435 89 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
duke@435 90 OptoReg::Name warped;
duke@435 91 if( reg->is_stack() ) { // Stack slot argument?
duke@435 92 warped = OptoReg::add(_old_SP, reg->reg2stack() );
duke@435 93 warped = OptoReg::add(warped, C->out_preserve_stack_slots());
duke@435 94 if( warped >= _in_arg_limit )
duke@435 95 _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
duke@435 96 if (!RegMask::can_represent(warped)) {
duke@435 97 // the compiler cannot represent this method's calling sequence
duke@435 98 C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
duke@435 99 return OptoReg::Bad;
duke@435 100 }
duke@435 101 return warped;
duke@435 102 }
duke@435 103 return OptoReg::as_OptoReg(reg);
duke@435 104 }
duke@435 105
duke@435 106 //---------------------------compute_old_SP------------------------------------
duke@435 107 OptoReg::Name Compile::compute_old_SP() {
duke@435 108 int fixed = fixed_slots();
duke@435 109 int preserve = in_preserve_stack_slots();
duke@435 110 return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
duke@435 111 }
duke@435 112
duke@435 113
duke@435 114
duke@435 115 #ifdef ASSERT
duke@435 116 void Matcher::verify_new_nodes_only(Node* xroot) {
duke@435 117 // Make sure that the new graph only references new nodes
duke@435 118 ResourceMark rm;
duke@435 119 Unique_Node_List worklist;
duke@435 120 VectorSet visited(Thread::current()->resource_area());
duke@435 121 worklist.push(xroot);
duke@435 122 while (worklist.size() > 0) {
duke@435 123 Node* n = worklist.pop();
duke@435 124 visited <<= n->_idx;
duke@435 125 assert(C->node_arena()->contains(n), "dead node");
duke@435 126 for (uint j = 0; j < n->req(); j++) {
duke@435 127 Node* in = n->in(j);
duke@435 128 if (in != NULL) {
duke@435 129 assert(C->node_arena()->contains(in), "dead node");
duke@435 130 if (!visited.test(in->_idx)) {
duke@435 131 worklist.push(in);
duke@435 132 }
duke@435 133 }
duke@435 134 }
duke@435 135 }
duke@435 136 }
duke@435 137 #endif
duke@435 138
duke@435 139
duke@435 140 //---------------------------match---------------------------------------------
duke@435 141 void Matcher::match( ) {
duke@435 142 // One-time initialization of some register masks.
duke@435 143 init_spill_mask( C->root()->in(1) );
duke@435 144 _return_addr_mask = return_addr();
duke@435 145 #ifdef _LP64
duke@435 146 // Pointers take 2 slots in 64-bit land
duke@435 147 _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
duke@435 148 #endif
duke@435 149
duke@435 150 // Map a Java-signature return type into return register-value
duke@435 151 // machine registers for 0, 1 and 2 returned values.
duke@435 152 const TypeTuple *range = C->tf()->range();
duke@435 153 if( range->cnt() > TypeFunc::Parms ) { // If not a void function
duke@435 154 // Get ideal-register return type
duke@435 155 int ireg = base2reg[range->field_at(TypeFunc::Parms)->base()];
duke@435 156 // Get machine return register
duke@435 157 uint sop = C->start()->Opcode();
duke@435 158 OptoRegPair regs = return_value(ireg, false);
duke@435 159
duke@435 160 // And mask for same
duke@435 161 _return_value_mask = RegMask(regs.first());
duke@435 162 if( OptoReg::is_valid(regs.second()) )
duke@435 163 _return_value_mask.Insert(regs.second());
duke@435 164 }
duke@435 165
duke@435 166 // ---------------
duke@435 167 // Frame Layout
duke@435 168
duke@435 169 // Need the method signature to determine the incoming argument types,
duke@435 170 // because the types determine which registers the incoming arguments are
duke@435 171 // in, and this affects the matched code.
duke@435 172 const TypeTuple *domain = C->tf()->domain();
duke@435 173 uint argcnt = domain->cnt() - TypeFunc::Parms;
duke@435 174 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt );
duke@435 175 VMRegPair *vm_parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
duke@435 176 _parm_regs = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
duke@435 177 _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
duke@435 178 uint i;
duke@435 179 for( i = 0; i<argcnt; i++ ) {
duke@435 180 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
duke@435 181 }
duke@435 182
duke@435 183 // Pass array of ideal registers and length to USER code (from the AD file)
duke@435 184 // that will convert this to an array of register numbers.
duke@435 185 const StartNode *start = C->start();
duke@435 186 start->calling_convention( sig_bt, vm_parm_regs, argcnt );
duke@435 187 #ifdef ASSERT
duke@435 188 // Sanity check users' calling convention. Real handy while trying to
duke@435 189 // get the initial port correct.
duke@435 190 { for (uint i = 0; i<argcnt; i++) {
duke@435 191 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
duke@435 192 assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
duke@435 193 _parm_regs[i].set_bad();
duke@435 194 continue;
duke@435 195 }
duke@435 196 VMReg parm_reg = vm_parm_regs[i].first();
duke@435 197 assert(parm_reg->is_valid(), "invalid arg?");
duke@435 198 if (parm_reg->is_reg()) {
duke@435 199 OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
duke@435 200 assert(can_be_java_arg(opto_parm_reg) ||
duke@435 201 C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
duke@435 202 opto_parm_reg == inline_cache_reg(),
duke@435 203 "parameters in register must be preserved by runtime stubs");
duke@435 204 }
duke@435 205 for (uint j = 0; j < i; j++) {
duke@435 206 assert(parm_reg != vm_parm_regs[j].first(),
duke@435 207 "calling conv. must produce distinct regs");
duke@435 208 }
duke@435 209 }
duke@435 210 }
duke@435 211 #endif
duke@435 212
duke@435 213 // Do some initial frame layout.
duke@435 214
duke@435 215 // Compute the old incoming SP (may be called FP) as
duke@435 216 // OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
duke@435 217 _old_SP = C->compute_old_SP();
duke@435 218 assert( is_even(_old_SP), "must be even" );
duke@435 219
duke@435 220 // Compute highest incoming stack argument as
duke@435 221 // _old_SP + out_preserve_stack_slots + incoming argument size.
duke@435 222 _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
duke@435 223 assert( is_even(_in_arg_limit), "out_preserve must be even" );
duke@435 224 for( i = 0; i < argcnt; i++ ) {
duke@435 225 // Permit args to have no register
duke@435 226 _calling_convention_mask[i].Clear();
duke@435 227 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
duke@435 228 continue;
duke@435 229 }
duke@435 230 // calling_convention returns stack arguments as a count of
duke@435 231 // slots beyond OptoReg::stack0()/VMRegImpl::stack0. We need to convert this to
duke@435 232 // the allocators point of view, taking into account all the
duke@435 233 // preserve area, locks & pad2.
duke@435 234
duke@435 235 OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
duke@435 236 if( OptoReg::is_valid(reg1))
duke@435 237 _calling_convention_mask[i].Insert(reg1);
duke@435 238
duke@435 239 OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
duke@435 240 if( OptoReg::is_valid(reg2))
duke@435 241 _calling_convention_mask[i].Insert(reg2);
duke@435 242
duke@435 243 // Saved biased stack-slot register number
duke@435 244 _parm_regs[i].set_pair(reg2, reg1);
duke@435 245 }
duke@435 246
duke@435 247 // Finally, make sure the incoming arguments take up an even number of
duke@435 248 // words, in case the arguments or locals need to contain doubleword stack
duke@435 249 // slots. The rest of the system assumes that stack slot pairs (in
duke@435 250 // particular, in the spill area) which look aligned will in fact be
duke@435 251 // aligned relative to the stack pointer in the target machine. Double
duke@435 252 // stack slots will always be allocated aligned.
duke@435 253 _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
duke@435 254
duke@435 255 // Compute highest outgoing stack argument as
duke@435 256 // _new_SP + out_preserve_stack_slots + max(outgoing argument size).
duke@435 257 _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
duke@435 258 assert( is_even(_out_arg_limit), "out_preserve must be even" );
duke@435 259
duke@435 260 if (!RegMask::can_represent(OptoReg::add(_out_arg_limit,-1))) {
duke@435 261 // the compiler cannot represent this method's calling sequence
duke@435 262 C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
duke@435 263 }
duke@435 264
duke@435 265 if (C->failing()) return; // bailed out on incoming arg failure
duke@435 266
duke@435 267 // ---------------
duke@435 268 // Collect roots of matcher trees. Every node for which
duke@435 269 // _shared[_idx] is cleared is guaranteed to not be shared, and thus
duke@435 270 // can be a valid interior of some tree.
duke@435 271 find_shared( C->root() );
duke@435 272 find_shared( C->top() );
duke@435 273
duke@435 274 C->print_method("Before Matching", 2);
duke@435 275
duke@435 276 // Swap out to old-space; emptying new-space
duke@435 277 Arena *old = C->node_arena()->move_contents(C->old_arena());
duke@435 278
duke@435 279 // Save debug and profile information for nodes in old space:
duke@435 280 _old_node_note_array = C->node_note_array();
duke@435 281 if (_old_node_note_array != NULL) {
duke@435 282 C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
duke@435 283 (C->comp_arena(), _old_node_note_array->length(),
duke@435 284 0, NULL));
duke@435 285 }
duke@435 286
duke@435 287 // Pre-size the new_node table to avoid the need for range checks.
duke@435 288 grow_new_node_array(C->unique());
duke@435 289
duke@435 290 // Reset node counter so MachNodes start with _idx at 0
duke@435 291 int nodes = C->unique(); // save value
duke@435 292 C->set_unique(0);
duke@435 293
duke@435 294 // Recursively match trees from old space into new space.
duke@435 295 // Correct leaves of new-space Nodes; they point to old-space.
duke@435 296 _visited.Clear(); // Clear visit bits for xform call
duke@435 297 C->set_cached_top_node(xform( C->top(), nodes ));
duke@435 298 if (!C->failing()) {
duke@435 299 Node* xroot = xform( C->root(), 1 );
duke@435 300 if (xroot == NULL) {
duke@435 301 Matcher::soft_match_failure(); // recursive matching process failed
duke@435 302 C->record_method_not_compilable("instruction match failed");
duke@435 303 } else {
duke@435 304 // During matching shared constants were attached to C->root()
duke@435 305 // because xroot wasn't available yet, so transfer the uses to
duke@435 306 // the xroot.
duke@435 307 for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
duke@435 308 Node* n = C->root()->fast_out(j);
duke@435 309 if (C->node_arena()->contains(n)) {
duke@435 310 assert(n->in(0) == C->root(), "should be control user");
duke@435 311 n->set_req(0, xroot);
duke@435 312 --j;
duke@435 313 --jmax;
duke@435 314 }
duke@435 315 }
duke@435 316
duke@435 317 C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
duke@435 318 #ifdef ASSERT
duke@435 319 verify_new_nodes_only(xroot);
duke@435 320 #endif
duke@435 321 }
duke@435 322 }
duke@435 323 if (C->top() == NULL || C->root() == NULL) {
duke@435 324 C->record_method_not_compilable("graph lost"); // %%% cannot happen?
duke@435 325 }
duke@435 326 if (C->failing()) {
duke@435 327 // delete old;
duke@435 328 old->destruct_contents();
duke@435 329 return;
duke@435 330 }
duke@435 331 assert( C->top(), "" );
duke@435 332 assert( C->root(), "" );
duke@435 333 validate_null_checks();
duke@435 334
duke@435 335 // Now smoke old-space
duke@435 336 NOT_DEBUG( old->destruct_contents() );
duke@435 337
duke@435 338 // ------------------------
duke@435 339 // Set up save-on-entry registers
duke@435 340 Fixup_Save_On_Entry( );
duke@435 341 }
duke@435 342
duke@435 343
duke@435 344 //------------------------------Fixup_Save_On_Entry----------------------------
duke@435 345 // The stated purpose of this routine is to take care of save-on-entry
duke@435 346 // registers. However, the overall goal of the Match phase is to convert into
duke@435 347 // machine-specific instructions which have RegMasks to guide allocation.
duke@435 348 // So what this procedure really does is put a valid RegMask on each input
duke@435 349 // to the machine-specific variations of all Return, TailCall and Halt
duke@435 350 // instructions. It also adds edgs to define the save-on-entry values (and of
duke@435 351 // course gives them a mask).
duke@435 352
duke@435 353 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
duke@435 354 RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
duke@435 355 // Do all the pre-defined register masks
duke@435 356 rms[TypeFunc::Control ] = RegMask::Empty;
duke@435 357 rms[TypeFunc::I_O ] = RegMask::Empty;
duke@435 358 rms[TypeFunc::Memory ] = RegMask::Empty;
duke@435 359 rms[TypeFunc::ReturnAdr] = ret_adr;
duke@435 360 rms[TypeFunc::FramePtr ] = fp;
duke@435 361 return rms;
duke@435 362 }
duke@435 363
duke@435 364 //---------------------------init_first_stack_mask-----------------------------
duke@435 365 // Create the initial stack mask used by values spilling to the stack.
duke@435 366 // Disallow any debug info in outgoing argument areas by setting the
duke@435 367 // initial mask accordingly.
duke@435 368 void Matcher::init_first_stack_mask() {
duke@435 369
duke@435 370 // Allocate storage for spill masks as masks for the appropriate load type.
coleenp@548 371 RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask)*12);
coleenp@548 372 idealreg2spillmask[Op_RegN] = &rms[0];
coleenp@548 373 idealreg2spillmask[Op_RegI] = &rms[1];
coleenp@548 374 idealreg2spillmask[Op_RegL] = &rms[2];
coleenp@548 375 idealreg2spillmask[Op_RegF] = &rms[3];
coleenp@548 376 idealreg2spillmask[Op_RegD] = &rms[4];
coleenp@548 377 idealreg2spillmask[Op_RegP] = &rms[5];
coleenp@548 378 idealreg2debugmask[Op_RegN] = &rms[6];
coleenp@548 379 idealreg2debugmask[Op_RegI] = &rms[7];
coleenp@548 380 idealreg2debugmask[Op_RegL] = &rms[8];
coleenp@548 381 idealreg2debugmask[Op_RegF] = &rms[9];
coleenp@548 382 idealreg2debugmask[Op_RegD] = &rms[10];
coleenp@548 383 idealreg2debugmask[Op_RegP] = &rms[11];
duke@435 384
duke@435 385 OptoReg::Name i;
duke@435 386
duke@435 387 // At first, start with the empty mask
duke@435 388 C->FIRST_STACK_mask().Clear();
duke@435 389
duke@435 390 // Add in the incoming argument area
duke@435 391 OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
duke@435 392 for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
duke@435 393 C->FIRST_STACK_mask().Insert(i);
duke@435 394
duke@435 395 // Add in all bits past the outgoing argument area
duke@435 396 guarantee(RegMask::can_represent(OptoReg::add(_out_arg_limit,-1)),
duke@435 397 "must be able to represent all call arguments in reg mask");
duke@435 398 init = _out_arg_limit;
duke@435 399 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
duke@435 400 C->FIRST_STACK_mask().Insert(i);
duke@435 401
duke@435 402 // Finally, set the "infinite stack" bit.
duke@435 403 C->FIRST_STACK_mask().set_AllStack();
duke@435 404
duke@435 405 // Make spill masks. Registers for their class, plus FIRST_STACK_mask.
coleenp@548 406 #ifdef _LP64
coleenp@548 407 *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
coleenp@548 408 idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
coleenp@548 409 #endif
duke@435 410 *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
duke@435 411 idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
duke@435 412 *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
duke@435 413 idealreg2spillmask[Op_RegL]->OR(C->FIRST_STACK_mask());
duke@435 414 *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
duke@435 415 idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
duke@435 416 *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
duke@435 417 idealreg2spillmask[Op_RegD]->OR(C->FIRST_STACK_mask());
duke@435 418 *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
duke@435 419 idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
duke@435 420
duke@435 421 // Make up debug masks. Any spill slot plus callee-save registers.
duke@435 422 // Caller-save registers are assumed to be trashable by the various
duke@435 423 // inline-cache fixup routines.
coleenp@548 424 *idealreg2debugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
duke@435 425 *idealreg2debugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
duke@435 426 *idealreg2debugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
duke@435 427 *idealreg2debugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
duke@435 428 *idealreg2debugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
duke@435 429 *idealreg2debugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
duke@435 430
duke@435 431 // Prevent stub compilations from attempting to reference
duke@435 432 // callee-saved registers from debug info
duke@435 433 bool exclude_soe = !Compile::current()->is_method_compilation();
duke@435 434
duke@435 435 for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
duke@435 436 // registers the caller has to save do not work
duke@435 437 if( _register_save_policy[i] == 'C' ||
duke@435 438 _register_save_policy[i] == 'A' ||
duke@435 439 (_register_save_policy[i] == 'E' && exclude_soe) ) {
coleenp@548 440 idealreg2debugmask[Op_RegN]->Remove(i);
duke@435 441 idealreg2debugmask[Op_RegI]->Remove(i); // Exclude save-on-call
duke@435 442 idealreg2debugmask[Op_RegL]->Remove(i); // registers from debug
duke@435 443 idealreg2debugmask[Op_RegF]->Remove(i); // masks
duke@435 444 idealreg2debugmask[Op_RegD]->Remove(i);
duke@435 445 idealreg2debugmask[Op_RegP]->Remove(i);
duke@435 446 }
duke@435 447 }
duke@435 448 }
duke@435 449
duke@435 450 //---------------------------is_save_on_entry----------------------------------
duke@435 451 bool Matcher::is_save_on_entry( int reg ) {
duke@435 452 return
duke@435 453 _register_save_policy[reg] == 'E' ||
duke@435 454 _register_save_policy[reg] == 'A' || // Save-on-entry register?
duke@435 455 // Also save argument registers in the trampolining stubs
duke@435 456 (C->save_argument_registers() && is_spillable_arg(reg));
duke@435 457 }
duke@435 458
duke@435 459 //---------------------------Fixup_Save_On_Entry-------------------------------
duke@435 460 void Matcher::Fixup_Save_On_Entry( ) {
duke@435 461 init_first_stack_mask();
duke@435 462
duke@435 463 Node *root = C->root(); // Short name for root
duke@435 464 // Count number of save-on-entry registers.
duke@435 465 uint soe_cnt = number_of_saved_registers();
duke@435 466 uint i;
duke@435 467
duke@435 468 // Find the procedure Start Node
duke@435 469 StartNode *start = C->start();
duke@435 470 assert( start, "Expect a start node" );
duke@435 471
duke@435 472 // Save argument registers in the trampolining stubs
duke@435 473 if( C->save_argument_registers() )
duke@435 474 for( i = 0; i < _last_Mach_Reg; i++ )
duke@435 475 if( is_spillable_arg(i) )
duke@435 476 soe_cnt++;
duke@435 477
duke@435 478 // Input RegMask array shared by all Returns.
duke@435 479 // The type for doubles and longs has a count of 2, but
duke@435 480 // there is only 1 returned value
duke@435 481 uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
duke@435 482 RegMask *ret_rms = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 483 // Returns have 0 or 1 returned values depending on call signature.
duke@435 484 // Return register is specified by return_value in the AD file.
duke@435 485 if (ret_edge_cnt > TypeFunc::Parms)
duke@435 486 ret_rms[TypeFunc::Parms+0] = _return_value_mask;
duke@435 487
duke@435 488 // Input RegMask array shared by all Rethrows.
duke@435 489 uint reth_edge_cnt = TypeFunc::Parms+1;
duke@435 490 RegMask *reth_rms = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 491 // Rethrow takes exception oop only, but in the argument 0 slot.
duke@435 492 reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
duke@435 493 #ifdef _LP64
duke@435 494 // Need two slots for ptrs in 64-bit land
duke@435 495 reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
duke@435 496 #endif
duke@435 497
duke@435 498 // Input RegMask array shared by all TailCalls
duke@435 499 uint tail_call_edge_cnt = TypeFunc::Parms+2;
duke@435 500 RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 501
duke@435 502 // Input RegMask array shared by all TailJumps
duke@435 503 uint tail_jump_edge_cnt = TypeFunc::Parms+2;
duke@435 504 RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 505
duke@435 506 // TailCalls have 2 returned values (target & moop), whose masks come
duke@435 507 // from the usual MachNode/MachOper mechanism. Find a sample
duke@435 508 // TailCall to extract these masks and put the correct masks into
duke@435 509 // the tail_call_rms array.
duke@435 510 for( i=1; i < root->req(); i++ ) {
duke@435 511 MachReturnNode *m = root->in(i)->as_MachReturn();
duke@435 512 if( m->ideal_Opcode() == Op_TailCall ) {
duke@435 513 tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
duke@435 514 tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
duke@435 515 break;
duke@435 516 }
duke@435 517 }
duke@435 518
duke@435 519 // TailJumps have 2 returned values (target & ex_oop), whose masks come
duke@435 520 // from the usual MachNode/MachOper mechanism. Find a sample
duke@435 521 // TailJump to extract these masks and put the correct masks into
duke@435 522 // the tail_jump_rms array.
duke@435 523 for( i=1; i < root->req(); i++ ) {
duke@435 524 MachReturnNode *m = root->in(i)->as_MachReturn();
duke@435 525 if( m->ideal_Opcode() == Op_TailJump ) {
duke@435 526 tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
duke@435 527 tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
duke@435 528 break;
duke@435 529 }
duke@435 530 }
duke@435 531
duke@435 532 // Input RegMask array shared by all Halts
duke@435 533 uint halt_edge_cnt = TypeFunc::Parms;
duke@435 534 RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 535
duke@435 536 // Capture the return input masks into each exit flavor
duke@435 537 for( i=1; i < root->req(); i++ ) {
duke@435 538 MachReturnNode *exit = root->in(i)->as_MachReturn();
duke@435 539 switch( exit->ideal_Opcode() ) {
duke@435 540 case Op_Return : exit->_in_rms = ret_rms; break;
duke@435 541 case Op_Rethrow : exit->_in_rms = reth_rms; break;
duke@435 542 case Op_TailCall : exit->_in_rms = tail_call_rms; break;
duke@435 543 case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
duke@435 544 case Op_Halt : exit->_in_rms = halt_rms; break;
duke@435 545 default : ShouldNotReachHere();
duke@435 546 }
duke@435 547 }
duke@435 548
duke@435 549 // Next unused projection number from Start.
duke@435 550 int proj_cnt = C->tf()->domain()->cnt();
duke@435 551
duke@435 552 // Do all the save-on-entry registers. Make projections from Start for
duke@435 553 // them, and give them a use at the exit points. To the allocator, they
duke@435 554 // look like incoming register arguments.
duke@435 555 for( i = 0; i < _last_Mach_Reg; i++ ) {
duke@435 556 if( is_save_on_entry(i) ) {
duke@435 557
duke@435 558 // Add the save-on-entry to the mask array
duke@435 559 ret_rms [ ret_edge_cnt] = mreg2regmask[i];
duke@435 560 reth_rms [ reth_edge_cnt] = mreg2regmask[i];
duke@435 561 tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
duke@435 562 tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
duke@435 563 // Halts need the SOE registers, but only in the stack as debug info.
duke@435 564 // A just-prior uncommon-trap or deoptimization will use the SOE regs.
duke@435 565 halt_rms [ halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
duke@435 566
duke@435 567 Node *mproj;
duke@435 568
duke@435 569 // Is this a RegF low half of a RegD? Double up 2 adjacent RegF's
duke@435 570 // into a single RegD.
duke@435 571 if( (i&1) == 0 &&
duke@435 572 _register_save_type[i ] == Op_RegF &&
duke@435 573 _register_save_type[i+1] == Op_RegF &&
duke@435 574 is_save_on_entry(i+1) ) {
duke@435 575 // Add other bit for double
duke@435 576 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 577 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 578 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 579 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 580 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 581 mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
duke@435 582 proj_cnt += 2; // Skip 2 for doubles
duke@435 583 }
duke@435 584 else if( (i&1) == 1 && // Else check for high half of double
duke@435 585 _register_save_type[i-1] == Op_RegF &&
duke@435 586 _register_save_type[i ] == Op_RegF &&
duke@435 587 is_save_on_entry(i-1) ) {
duke@435 588 ret_rms [ ret_edge_cnt] = RegMask::Empty;
duke@435 589 reth_rms [ reth_edge_cnt] = RegMask::Empty;
duke@435 590 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
duke@435 591 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
duke@435 592 halt_rms [ halt_edge_cnt] = RegMask::Empty;
duke@435 593 mproj = C->top();
duke@435 594 }
duke@435 595 // Is this a RegI low half of a RegL? Double up 2 adjacent RegI's
duke@435 596 // into a single RegL.
duke@435 597 else if( (i&1) == 0 &&
duke@435 598 _register_save_type[i ] == Op_RegI &&
duke@435 599 _register_save_type[i+1] == Op_RegI &&
duke@435 600 is_save_on_entry(i+1) ) {
duke@435 601 // Add other bit for long
duke@435 602 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 603 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 604 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 605 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 606 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 607 mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
duke@435 608 proj_cnt += 2; // Skip 2 for longs
duke@435 609 }
duke@435 610 else if( (i&1) == 1 && // Else check for high half of long
duke@435 611 _register_save_type[i-1] == Op_RegI &&
duke@435 612 _register_save_type[i ] == Op_RegI &&
duke@435 613 is_save_on_entry(i-1) ) {
duke@435 614 ret_rms [ ret_edge_cnt] = RegMask::Empty;
duke@435 615 reth_rms [ reth_edge_cnt] = RegMask::Empty;
duke@435 616 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
duke@435 617 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
duke@435 618 halt_rms [ halt_edge_cnt] = RegMask::Empty;
duke@435 619 mproj = C->top();
duke@435 620 } else {
duke@435 621 // Make a projection for it off the Start
duke@435 622 mproj = new (C, 1) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
duke@435 623 }
duke@435 624
duke@435 625 ret_edge_cnt ++;
duke@435 626 reth_edge_cnt ++;
duke@435 627 tail_call_edge_cnt ++;
duke@435 628 tail_jump_edge_cnt ++;
duke@435 629 halt_edge_cnt ++;
duke@435 630
duke@435 631 // Add a use of the SOE register to all exit paths
duke@435 632 for( uint j=1; j < root->req(); j++ )
duke@435 633 root->in(j)->add_req(mproj);
duke@435 634 } // End of if a save-on-entry register
duke@435 635 } // End of for all machine registers
duke@435 636 }
duke@435 637
duke@435 638 //------------------------------init_spill_mask--------------------------------
duke@435 639 void Matcher::init_spill_mask( Node *ret ) {
duke@435 640 if( idealreg2regmask[Op_RegI] ) return; // One time only init
duke@435 641
duke@435 642 OptoReg::c_frame_pointer = c_frame_pointer();
duke@435 643 c_frame_ptr_mask = c_frame_pointer();
duke@435 644 #ifdef _LP64
duke@435 645 // pointers are twice as big
duke@435 646 c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
duke@435 647 #endif
duke@435 648
duke@435 649 // Start at OptoReg::stack0()
duke@435 650 STACK_ONLY_mask.Clear();
duke@435 651 OptoReg::Name init = OptoReg::stack2reg(0);
duke@435 652 // STACK_ONLY_mask is all stack bits
duke@435 653 OptoReg::Name i;
duke@435 654 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
duke@435 655 STACK_ONLY_mask.Insert(i);
duke@435 656 // Also set the "infinite stack" bit.
duke@435 657 STACK_ONLY_mask.set_AllStack();
duke@435 658
duke@435 659 // Copy the register names over into the shared world
duke@435 660 for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
duke@435 661 // SharedInfo::regName[i] = regName[i];
duke@435 662 // Handy RegMasks per machine register
duke@435 663 mreg2regmask[i].Insert(i);
duke@435 664 }
duke@435 665
duke@435 666 // Grab the Frame Pointer
duke@435 667 Node *fp = ret->in(TypeFunc::FramePtr);
duke@435 668 Node *mem = ret->in(TypeFunc::Memory);
duke@435 669 const TypePtr* atp = TypePtr::BOTTOM;
duke@435 670 // Share frame pointer while making spill ops
duke@435 671 set_shared(fp);
duke@435 672
duke@435 673 // Compute generic short-offset Loads
coleenp@548 674 #ifdef _LP64
coleenp@548 675 MachNode *spillCP = match_tree(new (C, 3) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
coleenp@548 676 #endif
duke@435 677 MachNode *spillI = match_tree(new (C, 3) LoadINode(NULL,mem,fp,atp));
duke@435 678 MachNode *spillL = match_tree(new (C, 3) LoadLNode(NULL,mem,fp,atp));
duke@435 679 MachNode *spillF = match_tree(new (C, 3) LoadFNode(NULL,mem,fp,atp));
duke@435 680 MachNode *spillD = match_tree(new (C, 3) LoadDNode(NULL,mem,fp,atp));
duke@435 681 MachNode *spillP = match_tree(new (C, 3) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
duke@435 682 assert(spillI != NULL && spillL != NULL && spillF != NULL &&
duke@435 683 spillD != NULL && spillP != NULL, "");
duke@435 684
duke@435 685 // Get the ADLC notion of the right regmask, for each basic type.
coleenp@548 686 #ifdef _LP64
coleenp@548 687 idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
coleenp@548 688 #endif
duke@435 689 idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
duke@435 690 idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
duke@435 691 idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
duke@435 692 idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
duke@435 693 idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
duke@435 694 }
duke@435 695
duke@435 696 #ifdef ASSERT
duke@435 697 static void match_alias_type(Compile* C, Node* n, Node* m) {
duke@435 698 if (!VerifyAliases) return; // do not go looking for trouble by default
duke@435 699 const TypePtr* nat = n->adr_type();
duke@435 700 const TypePtr* mat = m->adr_type();
duke@435 701 int nidx = C->get_alias_index(nat);
duke@435 702 int midx = C->get_alias_index(mat);
duke@435 703 // Detune the assert for cases like (AndI 0xFF (LoadB p)).
duke@435 704 if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
duke@435 705 for (uint i = 1; i < n->req(); i++) {
duke@435 706 Node* n1 = n->in(i);
duke@435 707 const TypePtr* n1at = n1->adr_type();
duke@435 708 if (n1at != NULL) {
duke@435 709 nat = n1at;
duke@435 710 nidx = C->get_alias_index(n1at);
duke@435 711 }
duke@435 712 }
duke@435 713 }
duke@435 714 // %%% Kludgery. Instead, fix ideal adr_type methods for all these cases:
duke@435 715 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
duke@435 716 switch (n->Opcode()) {
duke@435 717 case Op_PrefetchRead:
duke@435 718 case Op_PrefetchWrite:
duke@435 719 nidx = Compile::AliasIdxRaw;
duke@435 720 nat = TypeRawPtr::BOTTOM;
duke@435 721 break;
duke@435 722 }
duke@435 723 }
duke@435 724 if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
duke@435 725 switch (n->Opcode()) {
duke@435 726 case Op_ClearArray:
duke@435 727 midx = Compile::AliasIdxRaw;
duke@435 728 mat = TypeRawPtr::BOTTOM;
duke@435 729 break;
duke@435 730 }
duke@435 731 }
duke@435 732 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
duke@435 733 switch (n->Opcode()) {
duke@435 734 case Op_Return:
duke@435 735 case Op_Rethrow:
duke@435 736 case Op_Halt:
duke@435 737 case Op_TailCall:
duke@435 738 case Op_TailJump:
duke@435 739 nidx = Compile::AliasIdxBot;
duke@435 740 nat = TypePtr::BOTTOM;
duke@435 741 break;
duke@435 742 }
duke@435 743 }
duke@435 744 if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
duke@435 745 switch (n->Opcode()) {
duke@435 746 case Op_StrComp:
duke@435 747 case Op_MemBarVolatile:
duke@435 748 case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
duke@435 749 nidx = Compile::AliasIdxTop;
duke@435 750 nat = NULL;
duke@435 751 break;
duke@435 752 }
duke@435 753 }
duke@435 754 if (nidx != midx) {
duke@435 755 if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
duke@435 756 tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
duke@435 757 n->dump();
duke@435 758 m->dump();
duke@435 759 }
duke@435 760 assert(C->subsume_loads() && C->must_alias(nat, midx),
duke@435 761 "must not lose alias info when matching");
duke@435 762 }
duke@435 763 }
duke@435 764 #endif
duke@435 765
duke@435 766
duke@435 767 //------------------------------MStack-----------------------------------------
duke@435 768 // State and MStack class used in xform() and find_shared() iterative methods.
duke@435 769 enum Node_State { Pre_Visit, // node has to be pre-visited
duke@435 770 Visit, // visit node
duke@435 771 Post_Visit, // post-visit node
duke@435 772 Alt_Post_Visit // alternative post-visit path
duke@435 773 };
duke@435 774
duke@435 775 class MStack: public Node_Stack {
duke@435 776 public:
duke@435 777 MStack(int size) : Node_Stack(size) { }
duke@435 778
duke@435 779 void push(Node *n, Node_State ns) {
duke@435 780 Node_Stack::push(n, (uint)ns);
duke@435 781 }
duke@435 782 void push(Node *n, Node_State ns, Node *parent, int indx) {
duke@435 783 ++_inode_top;
duke@435 784 if ((_inode_top + 1) >= _inode_max) grow();
duke@435 785 _inode_top->node = parent;
duke@435 786 _inode_top->indx = (uint)indx;
duke@435 787 ++_inode_top;
duke@435 788 _inode_top->node = n;
duke@435 789 _inode_top->indx = (uint)ns;
duke@435 790 }
duke@435 791 Node *parent() {
duke@435 792 pop();
duke@435 793 return node();
duke@435 794 }
duke@435 795 Node_State state() const {
duke@435 796 return (Node_State)index();
duke@435 797 }
duke@435 798 void set_state(Node_State ns) {
duke@435 799 set_index((uint)ns);
duke@435 800 }
duke@435 801 };
duke@435 802
duke@435 803
duke@435 804 //------------------------------xform------------------------------------------
duke@435 805 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
duke@435 806 // Node in new-space. Given a new-space Node, recursively walk his children.
duke@435 807 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
duke@435 808 Node *Matcher::xform( Node *n, int max_stack ) {
duke@435 809 // Use one stack to keep both: child's node/state and parent's node/index
duke@435 810 MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
duke@435 811 mstack.push(n, Visit, NULL, -1); // set NULL as parent to indicate root
duke@435 812
duke@435 813 while (mstack.is_nonempty()) {
duke@435 814 n = mstack.node(); // Leave node on stack
duke@435 815 Node_State nstate = mstack.state();
duke@435 816 if (nstate == Visit) {
duke@435 817 mstack.set_state(Post_Visit);
duke@435 818 Node *oldn = n;
duke@435 819 // Old-space or new-space check
duke@435 820 if (!C->node_arena()->contains(n)) {
duke@435 821 // Old space!
duke@435 822 Node* m;
duke@435 823 if (has_new_node(n)) { // Not yet Label/Reduced
duke@435 824 m = new_node(n);
duke@435 825 } else {
duke@435 826 if (!is_dontcare(n)) { // Matcher can match this guy
duke@435 827 // Calls match special. They match alone with no children.
duke@435 828 // Their children, the incoming arguments, match normally.
duke@435 829 m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
duke@435 830 if (C->failing()) return NULL;
duke@435 831 if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
duke@435 832 } else { // Nothing the matcher cares about
duke@435 833 if( n->is_Proj() && n->in(0)->is_Multi()) { // Projections?
duke@435 834 // Convert to machine-dependent projection
duke@435 835 m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
duke@435 836 if (m->in(0) != NULL) // m might be top
duke@435 837 collect_null_checks(m);
duke@435 838 } else { // Else just a regular 'ol guy
duke@435 839 m = n->clone(); // So just clone into new-space
duke@435 840 // Def-Use edges will be added incrementally as Uses
duke@435 841 // of this node are matched.
duke@435 842 assert(m->outcnt() == 0, "no Uses of this clone yet");
duke@435 843 }
duke@435 844 }
duke@435 845
duke@435 846 set_new_node(n, m); // Map old to new
duke@435 847 if (_old_node_note_array != NULL) {
duke@435 848 Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
duke@435 849 n->_idx);
duke@435 850 C->set_node_notes_at(m->_idx, nn);
duke@435 851 }
duke@435 852 debug_only(match_alias_type(C, n, m));
duke@435 853 }
duke@435 854 n = m; // n is now a new-space node
duke@435 855 mstack.set_node(n);
duke@435 856 }
duke@435 857
duke@435 858 // New space!
duke@435 859 if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
duke@435 860
duke@435 861 int i;
duke@435 862 // Put precedence edges on stack first (match them last).
duke@435 863 for (i = oldn->req(); (uint)i < oldn->len(); i++) {
duke@435 864 Node *m = oldn->in(i);
duke@435 865 if (m == NULL) break;
duke@435 866 // set -1 to call add_prec() instead of set_req() during Step1
duke@435 867 mstack.push(m, Visit, n, -1);
duke@435 868 }
duke@435 869
duke@435 870 // For constant debug info, I'd rather have unmatched constants.
duke@435 871 int cnt = n->req();
duke@435 872 JVMState* jvms = n->jvms();
duke@435 873 int debug_cnt = jvms ? jvms->debug_start() : cnt;
duke@435 874
duke@435 875 // Now do only debug info. Clone constants rather than matching.
duke@435 876 // Constants are represented directly in the debug info without
duke@435 877 // the need for executable machine instructions.
duke@435 878 // Monitor boxes are also represented directly.
duke@435 879 for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
duke@435 880 Node *m = n->in(i); // Get input
duke@435 881 int op = m->Opcode();
duke@435 882 assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
duke@435 883 if( op == Op_ConI || op == Op_ConP ||
duke@435 884 op == Op_ConF || op == Op_ConD || op == Op_ConL
duke@435 885 // || op == Op_BoxLock // %%%% enable this and remove (+++) in chaitin.cpp
duke@435 886 ) {
duke@435 887 m = m->clone();
duke@435 888 mstack.push(m, Post_Visit, n, i); // Don't neet to visit
duke@435 889 mstack.push(m->in(0), Visit, m, 0);
duke@435 890 } else {
duke@435 891 mstack.push(m, Visit, n, i);
duke@435 892 }
duke@435 893 }
duke@435 894
duke@435 895 // And now walk his children, and convert his inputs to new-space.
duke@435 896 for( ; i >= 0; --i ) { // For all normal inputs do
duke@435 897 Node *m = n->in(i); // Get input
duke@435 898 if(m != NULL)
duke@435 899 mstack.push(m, Visit, n, i);
duke@435 900 }
duke@435 901
duke@435 902 }
duke@435 903 else if (nstate == Post_Visit) {
duke@435 904 // Set xformed input
duke@435 905 Node *p = mstack.parent();
duke@435 906 if (p != NULL) { // root doesn't have parent
duke@435 907 int i = (int)mstack.index();
duke@435 908 if (i >= 0)
duke@435 909 p->set_req(i, n); // required input
duke@435 910 else if (i == -1)
duke@435 911 p->add_prec(n); // precedence input
duke@435 912 else
duke@435 913 ShouldNotReachHere();
duke@435 914 }
duke@435 915 mstack.pop(); // remove processed node from stack
duke@435 916 }
duke@435 917 else {
duke@435 918 ShouldNotReachHere();
duke@435 919 }
duke@435 920 } // while (mstack.is_nonempty())
duke@435 921 return n; // Return new-space Node
duke@435 922 }
duke@435 923
duke@435 924 //------------------------------warp_outgoing_stk_arg------------------------
duke@435 925 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
duke@435 926 // Convert outgoing argument location to a pre-biased stack offset
duke@435 927 if (reg->is_stack()) {
duke@435 928 OptoReg::Name warped = reg->reg2stack();
duke@435 929 // Adjust the stack slot offset to be the register number used
duke@435 930 // by the allocator.
duke@435 931 warped = OptoReg::add(begin_out_arg_area, warped);
duke@435 932 // Keep track of the largest numbered stack slot used for an arg.
duke@435 933 // Largest used slot per call-site indicates the amount of stack
duke@435 934 // that is killed by the call.
duke@435 935 if( warped >= out_arg_limit_per_call )
duke@435 936 out_arg_limit_per_call = OptoReg::add(warped,1);
duke@435 937 if (!RegMask::can_represent(warped)) {
duke@435 938 C->record_method_not_compilable_all_tiers("unsupported calling sequence");
duke@435 939 return OptoReg::Bad;
duke@435 940 }
duke@435 941 return warped;
duke@435 942 }
duke@435 943 return OptoReg::as_OptoReg(reg);
duke@435 944 }
duke@435 945
duke@435 946
duke@435 947 //------------------------------match_sfpt-------------------------------------
duke@435 948 // Helper function to match call instructions. Calls match special.
duke@435 949 // They match alone with no children. Their children, the incoming
duke@435 950 // arguments, match normally.
duke@435 951 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
duke@435 952 MachSafePointNode *msfpt = NULL;
duke@435 953 MachCallNode *mcall = NULL;
duke@435 954 uint cnt;
duke@435 955 // Split out case for SafePoint vs Call
duke@435 956 CallNode *call;
duke@435 957 const TypeTuple *domain;
duke@435 958 ciMethod* method = NULL;
duke@435 959 if( sfpt->is_Call() ) {
duke@435 960 call = sfpt->as_Call();
duke@435 961 domain = call->tf()->domain();
duke@435 962 cnt = domain->cnt();
duke@435 963
duke@435 964 // Match just the call, nothing else
duke@435 965 MachNode *m = match_tree(call);
duke@435 966 if (C->failing()) return NULL;
duke@435 967 if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
duke@435 968
duke@435 969 // Copy data from the Ideal SafePoint to the machine version
duke@435 970 mcall = m->as_MachCall();
duke@435 971
duke@435 972 mcall->set_tf( call->tf());
duke@435 973 mcall->set_entry_point(call->entry_point());
duke@435 974 mcall->set_cnt( call->cnt());
duke@435 975
duke@435 976 if( mcall->is_MachCallJava() ) {
duke@435 977 MachCallJavaNode *mcall_java = mcall->as_MachCallJava();
duke@435 978 const CallJavaNode *call_java = call->as_CallJava();
duke@435 979 method = call_java->method();
duke@435 980 mcall_java->_method = method;
duke@435 981 mcall_java->_bci = call_java->_bci;
duke@435 982 mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
duke@435 983 if( mcall_java->is_MachCallStaticJava() )
duke@435 984 mcall_java->as_MachCallStaticJava()->_name =
duke@435 985 call_java->as_CallStaticJava()->_name;
duke@435 986 if( mcall_java->is_MachCallDynamicJava() )
duke@435 987 mcall_java->as_MachCallDynamicJava()->_vtable_index =
duke@435 988 call_java->as_CallDynamicJava()->_vtable_index;
duke@435 989 }
duke@435 990 else if( mcall->is_MachCallRuntime() ) {
duke@435 991 mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
duke@435 992 }
duke@435 993 msfpt = mcall;
duke@435 994 }
duke@435 995 // This is a non-call safepoint
duke@435 996 else {
duke@435 997 call = NULL;
duke@435 998 domain = NULL;
duke@435 999 MachNode *mn = match_tree(sfpt);
duke@435 1000 if (C->failing()) return NULL;
duke@435 1001 msfpt = mn->as_MachSafePoint();
duke@435 1002 cnt = TypeFunc::Parms;
duke@435 1003 }
duke@435 1004
duke@435 1005 // Advertise the correct memory effects (for anti-dependence computation).
duke@435 1006 msfpt->set_adr_type(sfpt->adr_type());
duke@435 1007
duke@435 1008 // Allocate a private array of RegMasks. These RegMasks are not shared.
duke@435 1009 msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
duke@435 1010 // Empty them all.
duke@435 1011 memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
duke@435 1012
duke@435 1013 // Do all the pre-defined non-Empty register masks
duke@435 1014 msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
duke@435 1015 msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
duke@435 1016
duke@435 1017 // Place first outgoing argument can possibly be put.
duke@435 1018 OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
duke@435 1019 assert( is_even(begin_out_arg_area), "" );
duke@435 1020 // Compute max outgoing register number per call site.
duke@435 1021 OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
duke@435 1022 // Calls to C may hammer extra stack slots above and beyond any arguments.
duke@435 1023 // These are usually backing store for register arguments for varargs.
duke@435 1024 if( call != NULL && call->is_CallRuntime() )
duke@435 1025 out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
duke@435 1026
duke@435 1027
duke@435 1028 // Do the normal argument list (parameters) register masks
duke@435 1029 int argcnt = cnt - TypeFunc::Parms;
duke@435 1030 if( argcnt > 0 ) { // Skip it all if we have no args
duke@435 1031 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt );
duke@435 1032 VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
duke@435 1033 int i;
duke@435 1034 for( i = 0; i < argcnt; i++ ) {
duke@435 1035 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
duke@435 1036 }
duke@435 1037 // V-call to pick proper calling convention
duke@435 1038 call->calling_convention( sig_bt, parm_regs, argcnt );
duke@435 1039
duke@435 1040 #ifdef ASSERT
duke@435 1041 // Sanity check users' calling convention. Really handy during
duke@435 1042 // the initial porting effort. Fairly expensive otherwise.
duke@435 1043 { for (int i = 0; i<argcnt; i++) {
duke@435 1044 if( !parm_regs[i].first()->is_valid() &&
duke@435 1045 !parm_regs[i].second()->is_valid() ) continue;
duke@435 1046 VMReg reg1 = parm_regs[i].first();
duke@435 1047 VMReg reg2 = parm_regs[i].second();
duke@435 1048 for (int j = 0; j < i; j++) {
duke@435 1049 if( !parm_regs[j].first()->is_valid() &&
duke@435 1050 !parm_regs[j].second()->is_valid() ) continue;
duke@435 1051 VMReg reg3 = parm_regs[j].first();
duke@435 1052 VMReg reg4 = parm_regs[j].second();
duke@435 1053 if( !reg1->is_valid() ) {
duke@435 1054 assert( !reg2->is_valid(), "valid halvsies" );
duke@435 1055 } else if( !reg3->is_valid() ) {
duke@435 1056 assert( !reg4->is_valid(), "valid halvsies" );
duke@435 1057 } else {
duke@435 1058 assert( reg1 != reg2, "calling conv. must produce distinct regs");
duke@435 1059 assert( reg1 != reg3, "calling conv. must produce distinct regs");
duke@435 1060 assert( reg1 != reg4, "calling conv. must produce distinct regs");
duke@435 1061 assert( reg2 != reg3, "calling conv. must produce distinct regs");
duke@435 1062 assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
duke@435 1063 assert( reg3 != reg4, "calling conv. must produce distinct regs");
duke@435 1064 }
duke@435 1065 }
duke@435 1066 }
duke@435 1067 }
duke@435 1068 #endif
duke@435 1069
duke@435 1070 // Visit each argument. Compute its outgoing register mask.
duke@435 1071 // Return results now can have 2 bits returned.
duke@435 1072 // Compute max over all outgoing arguments both per call-site
duke@435 1073 // and over the entire method.
duke@435 1074 for( i = 0; i < argcnt; i++ ) {
duke@435 1075 // Address of incoming argument mask to fill in
duke@435 1076 RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
duke@435 1077 if( !parm_regs[i].first()->is_valid() &&
duke@435 1078 !parm_regs[i].second()->is_valid() ) {
duke@435 1079 continue; // Avoid Halves
duke@435 1080 }
duke@435 1081 // Grab first register, adjust stack slots and insert in mask.
duke@435 1082 OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
duke@435 1083 if (OptoReg::is_valid(reg1))
duke@435 1084 rm->Insert( reg1 );
duke@435 1085 // Grab second register (if any), adjust stack slots and insert in mask.
duke@435 1086 OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
duke@435 1087 if (OptoReg::is_valid(reg2))
duke@435 1088 rm->Insert( reg2 );
duke@435 1089 } // End of for all arguments
duke@435 1090
duke@435 1091 // Compute number of stack slots needed to restore stack in case of
duke@435 1092 // Pascal-style argument popping.
duke@435 1093 mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
duke@435 1094 }
duke@435 1095
duke@435 1096 // Compute the max stack slot killed by any call. These will not be
duke@435 1097 // available for debug info, and will be used to adjust FIRST_STACK_mask
duke@435 1098 // after all call sites have been visited.
duke@435 1099 if( _out_arg_limit < out_arg_limit_per_call)
duke@435 1100 _out_arg_limit = out_arg_limit_per_call;
duke@435 1101
duke@435 1102 if (mcall) {
duke@435 1103 // Kill the outgoing argument area, including any non-argument holes and
duke@435 1104 // any legacy C-killed slots. Use Fat-Projections to do the killing.
duke@435 1105 // Since the max-per-method covers the max-per-call-site and debug info
duke@435 1106 // is excluded on the max-per-method basis, debug info cannot land in
duke@435 1107 // this killed area.
duke@435 1108 uint r_cnt = mcall->tf()->range()->cnt();
duke@435 1109 MachProjNode *proj = new (C, 1) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
duke@435 1110 if (!RegMask::can_represent(OptoReg::Name(out_arg_limit_per_call-1))) {
duke@435 1111 C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
duke@435 1112 } else {
duke@435 1113 for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
duke@435 1114 proj->_rout.Insert(OptoReg::Name(i));
duke@435 1115 }
duke@435 1116 if( proj->_rout.is_NotEmpty() )
duke@435 1117 _proj_list.push(proj);
duke@435 1118 }
duke@435 1119 // Transfer the safepoint information from the call to the mcall
duke@435 1120 // Move the JVMState list
duke@435 1121 msfpt->set_jvms(sfpt->jvms());
duke@435 1122 for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
duke@435 1123 jvms->set_map(sfpt);
duke@435 1124 }
duke@435 1125
duke@435 1126 // Debug inputs begin just after the last incoming parameter
duke@435 1127 assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
duke@435 1128 (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
duke@435 1129
duke@435 1130 // Move the OopMap
duke@435 1131 msfpt->_oop_map = sfpt->_oop_map;
duke@435 1132
duke@435 1133 // Registers killed by the call are set in the local scheduling pass
duke@435 1134 // of Global Code Motion.
duke@435 1135 return msfpt;
duke@435 1136 }
duke@435 1137
duke@435 1138 //---------------------------match_tree----------------------------------------
duke@435 1139 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce. Used as part
duke@435 1140 // of the whole-sale conversion from Ideal to Mach Nodes. Also used for
duke@435 1141 // making GotoNodes while building the CFG and in init_spill_mask() to identify
duke@435 1142 // a Load's result RegMask for memoization in idealreg2regmask[]
duke@435 1143 MachNode *Matcher::match_tree( const Node *n ) {
duke@435 1144 assert( n->Opcode() != Op_Phi, "cannot match" );
duke@435 1145 assert( !n->is_block_start(), "cannot match" );
duke@435 1146 // Set the mark for all locally allocated State objects.
duke@435 1147 // When this call returns, the _states_arena arena will be reset
duke@435 1148 // freeing all State objects.
duke@435 1149 ResourceMark rm( &_states_arena );
duke@435 1150
duke@435 1151 LabelRootDepth = 0;
duke@435 1152
duke@435 1153 // StoreNodes require their Memory input to match any LoadNodes
duke@435 1154 Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
duke@435 1155
duke@435 1156 // State object for root node of match tree
duke@435 1157 // Allocate it on _states_arena - stack allocation can cause stack overflow.
duke@435 1158 State *s = new (&_states_arena) State;
duke@435 1159 s->_kids[0] = NULL;
duke@435 1160 s->_kids[1] = NULL;
duke@435 1161 s->_leaf = (Node*)n;
duke@435 1162 // Label the input tree, allocating labels from top-level arena
duke@435 1163 Label_Root( n, s, n->in(0), mem );
duke@435 1164 if (C->failing()) return NULL;
duke@435 1165
duke@435 1166 // The minimum cost match for the whole tree is found at the root State
duke@435 1167 uint mincost = max_juint;
duke@435 1168 uint cost = max_juint;
duke@435 1169 uint i;
duke@435 1170 for( i = 0; i < NUM_OPERANDS; i++ ) {
duke@435 1171 if( s->valid(i) && // valid entry and
duke@435 1172 s->_cost[i] < cost && // low cost and
duke@435 1173 s->_rule[i] >= NUM_OPERANDS ) // not an operand
duke@435 1174 cost = s->_cost[mincost=i];
duke@435 1175 }
duke@435 1176 if (mincost == max_juint) {
duke@435 1177 #ifndef PRODUCT
duke@435 1178 tty->print("No matching rule for:");
duke@435 1179 s->dump();
duke@435 1180 #endif
duke@435 1181 Matcher::soft_match_failure();
duke@435 1182 return NULL;
duke@435 1183 }
duke@435 1184 // Reduce input tree based upon the state labels to machine Nodes
duke@435 1185 MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
duke@435 1186 #ifdef ASSERT
duke@435 1187 _old2new_map.map(n->_idx, m);
duke@435 1188 #endif
duke@435 1189
duke@435 1190 // Add any Matcher-ignored edges
duke@435 1191 uint cnt = n->req();
duke@435 1192 uint start = 1;
duke@435 1193 if( mem != (Node*)1 ) start = MemNode::Memory+1;
duke@435 1194 if( n->Opcode() == Op_AddP ) {
duke@435 1195 assert( mem == (Node*)1, "" );
duke@435 1196 start = AddPNode::Base+1;
duke@435 1197 }
duke@435 1198 for( i = start; i < cnt; i++ ) {
duke@435 1199 if( !n->match_edge(i) ) {
duke@435 1200 if( i < m->req() )
duke@435 1201 m->ins_req( i, n->in(i) );
duke@435 1202 else
duke@435 1203 m->add_req( n->in(i) );
duke@435 1204 }
duke@435 1205 }
duke@435 1206
duke@435 1207 return m;
duke@435 1208 }
duke@435 1209
duke@435 1210
duke@435 1211 //------------------------------match_into_reg---------------------------------
duke@435 1212 // Choose to either match this Node in a register or part of the current
duke@435 1213 // match tree. Return true for requiring a register and false for matching
duke@435 1214 // as part of the current match tree.
duke@435 1215 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
duke@435 1216
duke@435 1217 const Type *t = m->bottom_type();
duke@435 1218
duke@435 1219 if( t->singleton() ) {
duke@435 1220 // Never force constants into registers. Allow them to match as
duke@435 1221 // constants or registers. Copies of the same value will share
duke@435 1222 // the same register. See find_shared_constant.
duke@435 1223 return false;
duke@435 1224 } else { // Not a constant
duke@435 1225 // Stop recursion if they have different Controls.
duke@435 1226 // Slot 0 of constants is not really a Control.
duke@435 1227 if( control && m->in(0) && control != m->in(0) ) {
duke@435 1228
duke@435 1229 // Actually, we can live with the most conservative control we
duke@435 1230 // find, if it post-dominates the others. This allows us to
duke@435 1231 // pick up load/op/store trees where the load can float a little
duke@435 1232 // above the store.
duke@435 1233 Node *x = control;
duke@435 1234 const uint max_scan = 6; // Arbitrary scan cutoff
duke@435 1235 uint j;
duke@435 1236 for( j=0; j<max_scan; j++ ) {
duke@435 1237 if( x->is_Region() ) // Bail out at merge points
duke@435 1238 return true;
duke@435 1239 x = x->in(0);
duke@435 1240 if( x == m->in(0) ) // Does 'control' post-dominate
duke@435 1241 break; // m->in(0)? If so, we can use it
duke@435 1242 }
duke@435 1243 if( j == max_scan ) // No post-domination before scan end?
duke@435 1244 return true; // Then break the match tree up
duke@435 1245 }
coleenp@548 1246
coleenp@548 1247 if (m->Opcode() == Op_DecodeN && m->outcnt() == 2) {
coleenp@548 1248 // These are commonly used in address expressions and can
coleenp@548 1249 // efficiently fold into them in some cases but because they are
coleenp@548 1250 // consumed by AddP they commonly have two users.
coleenp@548 1251 if (m->raw_out(0) == m->raw_out(1) && m->raw_out(0)->Opcode() == Op_AddP) return false;
coleenp@548 1252 }
duke@435 1253 }
duke@435 1254
duke@435 1255 // Not forceably cloning. If shared, put it into a register.
duke@435 1256 return shared;
duke@435 1257 }
duke@435 1258
duke@435 1259
duke@435 1260 //------------------------------Instruction Selection--------------------------
duke@435 1261 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
duke@435 1262 // ideal nodes to machine instructions. Trees are delimited by shared Nodes,
duke@435 1263 // things the Matcher does not match (e.g., Memory), and things with different
duke@435 1264 // Controls (hence forced into different blocks). We pass in the Control
duke@435 1265 // selected for this entire State tree.
duke@435 1266
duke@435 1267 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
duke@435 1268 // Store and the Load must have identical Memories (as well as identical
duke@435 1269 // pointers). Since the Matcher does not have anything for Memory (and
duke@435 1270 // does not handle DAGs), I have to match the Memory input myself. If the
duke@435 1271 // Tree root is a Store, I require all Loads to have the identical memory.
duke@435 1272 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
duke@435 1273 // Since Label_Root is a recursive function, its possible that we might run
duke@435 1274 // out of stack space. See bugs 6272980 & 6227033 for more info.
duke@435 1275 LabelRootDepth++;
duke@435 1276 if (LabelRootDepth > MaxLabelRootDepth) {
duke@435 1277 C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
duke@435 1278 return NULL;
duke@435 1279 }
duke@435 1280 uint care = 0; // Edges matcher cares about
duke@435 1281 uint cnt = n->req();
duke@435 1282 uint i = 0;
duke@435 1283
duke@435 1284 // Examine children for memory state
duke@435 1285 // Can only subsume a child into your match-tree if that child's memory state
duke@435 1286 // is not modified along the path to another input.
duke@435 1287 // It is unsafe even if the other inputs are separate roots.
duke@435 1288 Node *input_mem = NULL;
duke@435 1289 for( i = 1; i < cnt; i++ ) {
duke@435 1290 if( !n->match_edge(i) ) continue;
duke@435 1291 Node *m = n->in(i); // Get ith input
duke@435 1292 assert( m, "expect non-null children" );
duke@435 1293 if( m->is_Load() ) {
duke@435 1294 if( input_mem == NULL ) {
duke@435 1295 input_mem = m->in(MemNode::Memory);
duke@435 1296 } else if( input_mem != m->in(MemNode::Memory) ) {
duke@435 1297 input_mem = NodeSentinel;
duke@435 1298 }
duke@435 1299 }
duke@435 1300 }
duke@435 1301
duke@435 1302 for( i = 1; i < cnt; i++ ){// For my children
duke@435 1303 if( !n->match_edge(i) ) continue;
duke@435 1304 Node *m = n->in(i); // Get ith input
duke@435 1305 // Allocate states out of a private arena
duke@435 1306 State *s = new (&_states_arena) State;
duke@435 1307 svec->_kids[care++] = s;
duke@435 1308 assert( care <= 2, "binary only for now" );
duke@435 1309
duke@435 1310 // Recursively label the State tree.
duke@435 1311 s->_kids[0] = NULL;
duke@435 1312 s->_kids[1] = NULL;
duke@435 1313 s->_leaf = m;
duke@435 1314
duke@435 1315 // Check for leaves of the State Tree; things that cannot be a part of
duke@435 1316 // the current tree. If it finds any, that value is matched as a
duke@435 1317 // register operand. If not, then the normal matching is used.
duke@435 1318 if( match_into_reg(n, m, control, i, is_shared(m)) ||
duke@435 1319 //
duke@435 1320 // Stop recursion if this is LoadNode and the root of this tree is a
duke@435 1321 // StoreNode and the load & store have different memories.
duke@435 1322 ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
duke@435 1323 // Can NOT include the match of a subtree when its memory state
duke@435 1324 // is used by any of the other subtrees
duke@435 1325 (input_mem == NodeSentinel) ) {
duke@435 1326 #ifndef PRODUCT
duke@435 1327 // Print when we exclude matching due to different memory states at input-loads
duke@435 1328 if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
duke@435 1329 && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
duke@435 1330 tty->print_cr("invalid input_mem");
duke@435 1331 }
duke@435 1332 #endif
duke@435 1333 // Switch to a register-only opcode; this value must be in a register
duke@435 1334 // and cannot be subsumed as part of a larger instruction.
duke@435 1335 s->DFA( m->ideal_reg(), m );
duke@435 1336
duke@435 1337 } else {
duke@435 1338 // If match tree has no control and we do, adopt it for entire tree
duke@435 1339 if( control == NULL && m->in(0) != NULL && m->req() > 1 )
duke@435 1340 control = m->in(0); // Pick up control
duke@435 1341 // Else match as a normal part of the match tree.
duke@435 1342 control = Label_Root(m,s,control,mem);
duke@435 1343 if (C->failing()) return NULL;
duke@435 1344 }
duke@435 1345 }
duke@435 1346
duke@435 1347
duke@435 1348 // Call DFA to match this node, and return
duke@435 1349 svec->DFA( n->Opcode(), n );
duke@435 1350
duke@435 1351 #ifdef ASSERT
duke@435 1352 uint x;
duke@435 1353 for( x = 0; x < _LAST_MACH_OPER; x++ )
duke@435 1354 if( svec->valid(x) )
duke@435 1355 break;
duke@435 1356
duke@435 1357 if (x >= _LAST_MACH_OPER) {
duke@435 1358 n->dump();
duke@435 1359 svec->dump();
duke@435 1360 assert( false, "bad AD file" );
duke@435 1361 }
duke@435 1362 #endif
duke@435 1363 return control;
duke@435 1364 }
duke@435 1365
duke@435 1366
duke@435 1367 // Con nodes reduced using the same rule can share their MachNode
duke@435 1368 // which reduces the number of copies of a constant in the final
duke@435 1369 // program. The register allocator is free to split uses later to
duke@435 1370 // split live ranges.
duke@435 1371 MachNode* Matcher::find_shared_constant(Node* leaf, uint rule) {
duke@435 1372 if (!leaf->is_Con()) return NULL;
duke@435 1373
duke@435 1374 // See if this Con has already been reduced using this rule.
duke@435 1375 if (_shared_constants.Size() <= leaf->_idx) return NULL;
duke@435 1376 MachNode* last = (MachNode*)_shared_constants.at(leaf->_idx);
duke@435 1377 if (last != NULL && rule == last->rule()) {
duke@435 1378 // Get the new space root.
duke@435 1379 Node* xroot = new_node(C->root());
duke@435 1380 if (xroot == NULL) {
duke@435 1381 // This shouldn't happen give the order of matching.
duke@435 1382 return NULL;
duke@435 1383 }
duke@435 1384
duke@435 1385 // Shared constants need to have their control be root so they
duke@435 1386 // can be scheduled properly.
duke@435 1387 Node* control = last->in(0);
duke@435 1388 if (control != xroot) {
duke@435 1389 if (control == NULL || control == C->root()) {
duke@435 1390 last->set_req(0, xroot);
duke@435 1391 } else {
duke@435 1392 assert(false, "unexpected control");
duke@435 1393 return NULL;
duke@435 1394 }
duke@435 1395 }
duke@435 1396 return last;
duke@435 1397 }
duke@435 1398 return NULL;
duke@435 1399 }
duke@435 1400
duke@435 1401
duke@435 1402 //------------------------------ReduceInst-------------------------------------
duke@435 1403 // Reduce a State tree (with given Control) into a tree of MachNodes.
duke@435 1404 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
duke@435 1405 // complicated machine Nodes. Each MachNode covers some tree of Ideal Nodes.
duke@435 1406 // Each MachNode has a number of complicated MachOper operands; each
duke@435 1407 // MachOper also covers a further tree of Ideal Nodes.
duke@435 1408
duke@435 1409 // The root of the Ideal match tree is always an instruction, so we enter
duke@435 1410 // the recursion here. After building the MachNode, we need to recurse
duke@435 1411 // the tree checking for these cases:
duke@435 1412 // (1) Child is an instruction -
duke@435 1413 // Build the instruction (recursively), add it as an edge.
duke@435 1414 // Build a simple operand (register) to hold the result of the instruction.
duke@435 1415 // (2) Child is an interior part of an instruction -
duke@435 1416 // Skip over it (do nothing)
duke@435 1417 // (3) Child is the start of a operand -
duke@435 1418 // Build the operand, place it inside the instruction
duke@435 1419 // Call ReduceOper.
duke@435 1420 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
duke@435 1421 assert( rule >= NUM_OPERANDS, "called with operand rule" );
duke@435 1422
duke@435 1423 MachNode* shared_con = find_shared_constant(s->_leaf, rule);
duke@435 1424 if (shared_con != NULL) {
duke@435 1425 return shared_con;
duke@435 1426 }
duke@435 1427
duke@435 1428 // Build the object to represent this state & prepare for recursive calls
duke@435 1429 MachNode *mach = s->MachNodeGenerator( rule, C );
duke@435 1430 mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
duke@435 1431 assert( mach->_opnds[0] != NULL, "Missing result operand" );
duke@435 1432 Node *leaf = s->_leaf;
duke@435 1433 // Check for instruction or instruction chain rule
duke@435 1434 if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
duke@435 1435 // Instruction
duke@435 1436 mach->add_req( leaf->in(0) ); // Set initial control
duke@435 1437 // Reduce interior of complex instruction
duke@435 1438 ReduceInst_Interior( s, rule, mem, mach, 1 );
duke@435 1439 } else {
duke@435 1440 // Instruction chain rules are data-dependent on their inputs
duke@435 1441 mach->add_req(0); // Set initial control to none
duke@435 1442 ReduceInst_Chain_Rule( s, rule, mem, mach );
duke@435 1443 }
duke@435 1444
duke@435 1445 // If a Memory was used, insert a Memory edge
duke@435 1446 if( mem != (Node*)1 )
duke@435 1447 mach->ins_req(MemNode::Memory,mem);
duke@435 1448
duke@435 1449 // If the _leaf is an AddP, insert the base edge
duke@435 1450 if( leaf->Opcode() == Op_AddP )
duke@435 1451 mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
duke@435 1452
duke@435 1453 uint num_proj = _proj_list.size();
duke@435 1454
duke@435 1455 // Perform any 1-to-many expansions required
duke@435 1456 MachNode *ex = mach->Expand(s,_proj_list);
duke@435 1457 if( ex != mach ) {
duke@435 1458 assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
duke@435 1459 if( ex->in(1)->is_Con() )
duke@435 1460 ex->in(1)->set_req(0, C->root());
duke@435 1461 // Remove old node from the graph
duke@435 1462 for( uint i=0; i<mach->req(); i++ ) {
duke@435 1463 mach->set_req(i,NULL);
duke@435 1464 }
duke@435 1465 }
duke@435 1466
duke@435 1467 // PhaseChaitin::fixup_spills will sometimes generate spill code
duke@435 1468 // via the matcher. By the time, nodes have been wired into the CFG,
duke@435 1469 // and any further nodes generated by expand rules will be left hanging
duke@435 1470 // in space, and will not get emitted as output code. Catch this.
duke@435 1471 // Also, catch any new register allocation constraints ("projections")
duke@435 1472 // generated belatedly during spill code generation.
duke@435 1473 if (_allocation_started) {
duke@435 1474 guarantee(ex == mach, "no expand rules during spill generation");
duke@435 1475 guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
duke@435 1476 }
duke@435 1477
duke@435 1478 if (leaf->is_Con()) {
duke@435 1479 // Record the con for sharing
duke@435 1480 _shared_constants.map(leaf->_idx, ex);
duke@435 1481 }
duke@435 1482
duke@435 1483 return ex;
duke@435 1484 }
duke@435 1485
duke@435 1486 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
duke@435 1487 // 'op' is what I am expecting to receive
duke@435 1488 int op = _leftOp[rule];
duke@435 1489 // Operand type to catch childs result
duke@435 1490 // This is what my child will give me.
duke@435 1491 int opnd_class_instance = s->_rule[op];
duke@435 1492 // Choose between operand class or not.
duke@435 1493 // This is what I will recieve.
duke@435 1494 int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
duke@435 1495 // New rule for child. Chase operand classes to get the actual rule.
duke@435 1496 int newrule = s->_rule[catch_op];
duke@435 1497
duke@435 1498 if( newrule < NUM_OPERANDS ) {
duke@435 1499 // Chain from operand or operand class, may be output of shared node
duke@435 1500 assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
duke@435 1501 "Bad AD file: Instruction chain rule must chain from operand");
duke@435 1502 // Insert operand into array of operands for this instruction
duke@435 1503 mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
duke@435 1504
duke@435 1505 ReduceOper( s, newrule, mem, mach );
duke@435 1506 } else {
duke@435 1507 // Chain from the result of an instruction
duke@435 1508 assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
duke@435 1509 mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
duke@435 1510 Node *mem1 = (Node*)1;
duke@435 1511 mach->add_req( ReduceInst(s, newrule, mem1) );
duke@435 1512 }
duke@435 1513 return;
duke@435 1514 }
duke@435 1515
duke@435 1516
duke@435 1517 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
duke@435 1518 if( s->_leaf->is_Load() ) {
duke@435 1519 Node *mem2 = s->_leaf->in(MemNode::Memory);
duke@435 1520 assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
duke@435 1521 mem = mem2;
duke@435 1522 }
duke@435 1523 if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
duke@435 1524 if( mach->in(0) == NULL )
duke@435 1525 mach->set_req(0, s->_leaf->in(0));
duke@435 1526 }
duke@435 1527
duke@435 1528 // Now recursively walk the state tree & add operand list.
duke@435 1529 for( uint i=0; i<2; i++ ) { // binary tree
duke@435 1530 State *newstate = s->_kids[i];
duke@435 1531 if( newstate == NULL ) break; // Might only have 1 child
duke@435 1532 // 'op' is what I am expecting to receive
duke@435 1533 int op;
duke@435 1534 if( i == 0 ) {
duke@435 1535 op = _leftOp[rule];
duke@435 1536 } else {
duke@435 1537 op = _rightOp[rule];
duke@435 1538 }
duke@435 1539 // Operand type to catch childs result
duke@435 1540 // This is what my child will give me.
duke@435 1541 int opnd_class_instance = newstate->_rule[op];
duke@435 1542 // Choose between operand class or not.
duke@435 1543 // This is what I will receive.
duke@435 1544 int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
duke@435 1545 // New rule for child. Chase operand classes to get the actual rule.
duke@435 1546 int newrule = newstate->_rule[catch_op];
duke@435 1547
duke@435 1548 if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
duke@435 1549 // Operand/operandClass
duke@435 1550 // Insert operand into array of operands for this instruction
duke@435 1551 mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
duke@435 1552 ReduceOper( newstate, newrule, mem, mach );
duke@435 1553
duke@435 1554 } else { // Child is internal operand or new instruction
duke@435 1555 if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
duke@435 1556 // internal operand --> call ReduceInst_Interior
duke@435 1557 // Interior of complex instruction. Do nothing but recurse.
duke@435 1558 num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
duke@435 1559 } else {
duke@435 1560 // instruction --> call build operand( ) to catch result
duke@435 1561 // --> ReduceInst( newrule )
duke@435 1562 mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
duke@435 1563 Node *mem1 = (Node*)1;
duke@435 1564 mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
duke@435 1565 }
duke@435 1566 }
duke@435 1567 assert( mach->_opnds[num_opnds-1], "" );
duke@435 1568 }
duke@435 1569 return num_opnds;
duke@435 1570 }
duke@435 1571
duke@435 1572 // This routine walks the interior of possible complex operands.
duke@435 1573 // At each point we check our children in the match tree:
duke@435 1574 // (1) No children -
duke@435 1575 // We are a leaf; add _leaf field as an input to the MachNode
duke@435 1576 // (2) Child is an internal operand -
duke@435 1577 // Skip over it ( do nothing )
duke@435 1578 // (3) Child is an instruction -
duke@435 1579 // Call ReduceInst recursively and
duke@435 1580 // and instruction as an input to the MachNode
duke@435 1581 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
duke@435 1582 assert( rule < _LAST_MACH_OPER, "called with operand rule" );
duke@435 1583 State *kid = s->_kids[0];
duke@435 1584 assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
duke@435 1585
duke@435 1586 // Leaf? And not subsumed?
duke@435 1587 if( kid == NULL && !_swallowed[rule] ) {
duke@435 1588 mach->add_req( s->_leaf ); // Add leaf pointer
duke@435 1589 return; // Bail out
duke@435 1590 }
duke@435 1591
duke@435 1592 if( s->_leaf->is_Load() ) {
duke@435 1593 assert( mem == (Node*)1, "multiple Memories being matched at once?" );
duke@435 1594 mem = s->_leaf->in(MemNode::Memory);
duke@435 1595 }
duke@435 1596 if( s->_leaf->in(0) && s->_leaf->req() > 1) {
duke@435 1597 if( !mach->in(0) )
duke@435 1598 mach->set_req(0,s->_leaf->in(0));
duke@435 1599 else {
duke@435 1600 assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
duke@435 1601 }
duke@435 1602 }
duke@435 1603
duke@435 1604 for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) { // binary tree
duke@435 1605 int newrule;
duke@435 1606 if( i == 0 )
duke@435 1607 newrule = kid->_rule[_leftOp[rule]];
duke@435 1608 else
duke@435 1609 newrule = kid->_rule[_rightOp[rule]];
duke@435 1610
duke@435 1611 if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
duke@435 1612 // Internal operand; recurse but do nothing else
duke@435 1613 ReduceOper( kid, newrule, mem, mach );
duke@435 1614
duke@435 1615 } else { // Child is a new instruction
duke@435 1616 // Reduce the instruction, and add a direct pointer from this
duke@435 1617 // machine instruction to the newly reduced one.
duke@435 1618 Node *mem1 = (Node*)1;
duke@435 1619 mach->add_req( ReduceInst( kid, newrule, mem1 ) );
duke@435 1620 }
duke@435 1621 }
duke@435 1622 }
duke@435 1623
duke@435 1624
duke@435 1625 // -------------------------------------------------------------------------
duke@435 1626 // Java-Java calling convention
duke@435 1627 // (what you use when Java calls Java)
duke@435 1628
duke@435 1629 //------------------------------find_receiver----------------------------------
duke@435 1630 // For a given signature, return the OptoReg for parameter 0.
duke@435 1631 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
duke@435 1632 VMRegPair regs;
duke@435 1633 BasicType sig_bt = T_OBJECT;
duke@435 1634 calling_convention(&sig_bt, &regs, 1, is_outgoing);
duke@435 1635 // Return argument 0 register. In the LP64 build pointers
duke@435 1636 // take 2 registers, but the VM wants only the 'main' name.
duke@435 1637 return OptoReg::as_OptoReg(regs.first());
duke@435 1638 }
duke@435 1639
duke@435 1640 // A method-klass-holder may be passed in the inline_cache_reg
duke@435 1641 // and then expanded into the inline_cache_reg and a method_oop register
duke@435 1642 // defined in ad_<arch>.cpp
duke@435 1643
duke@435 1644
duke@435 1645 //------------------------------find_shared------------------------------------
duke@435 1646 // Set bits if Node is shared or otherwise a root
duke@435 1647 void Matcher::find_shared( Node *n ) {
duke@435 1648 // Allocate stack of size C->unique() * 2 to avoid frequent realloc
duke@435 1649 MStack mstack(C->unique() * 2);
duke@435 1650 mstack.push(n, Visit); // Don't need to pre-visit root node
duke@435 1651 while (mstack.is_nonempty()) {
duke@435 1652 n = mstack.node(); // Leave node on stack
duke@435 1653 Node_State nstate = mstack.state();
duke@435 1654 if (nstate == Pre_Visit) {
duke@435 1655 if (is_visited(n)) { // Visited already?
duke@435 1656 // Node is shared and has no reason to clone. Flag it as shared.
duke@435 1657 // This causes it to match into a register for the sharing.
duke@435 1658 set_shared(n); // Flag as shared and
duke@435 1659 mstack.pop(); // remove node from stack
duke@435 1660 continue;
duke@435 1661 }
duke@435 1662 nstate = Visit; // Not already visited; so visit now
duke@435 1663 }
duke@435 1664 if (nstate == Visit) {
duke@435 1665 mstack.set_state(Post_Visit);
duke@435 1666 set_visited(n); // Flag as visited now
duke@435 1667 bool mem_op = false;
duke@435 1668
duke@435 1669 switch( n->Opcode() ) { // Handle some opcodes special
duke@435 1670 case Op_Phi: // Treat Phis as shared roots
duke@435 1671 case Op_Parm:
duke@435 1672 case Op_Proj: // All handled specially during matching
kvn@498 1673 case Op_SafePointScalarObject:
duke@435 1674 set_shared(n);
duke@435 1675 set_dontcare(n);
duke@435 1676 break;
duke@435 1677 case Op_If:
duke@435 1678 case Op_CountedLoopEnd:
duke@435 1679 mstack.set_state(Alt_Post_Visit); // Alternative way
duke@435 1680 // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)). Helps
duke@435 1681 // with matching cmp/branch in 1 instruction. The Matcher needs the
duke@435 1682 // Bool and CmpX side-by-side, because it can only get at constants
duke@435 1683 // that are at the leaves of Match trees, and the Bool's condition acts
duke@435 1684 // as a constant here.
duke@435 1685 mstack.push(n->in(1), Visit); // Clone the Bool
duke@435 1686 mstack.push(n->in(0), Pre_Visit); // Visit control input
duke@435 1687 continue; // while (mstack.is_nonempty())
duke@435 1688 case Op_ConvI2D: // These forms efficiently match with a prior
duke@435 1689 case Op_ConvI2F: // Load but not a following Store
duke@435 1690 if( n->in(1)->is_Load() && // Prior load
duke@435 1691 n->outcnt() == 1 && // Not already shared
duke@435 1692 n->unique_out()->is_Store() ) // Following store
duke@435 1693 set_shared(n); // Force it to be a root
duke@435 1694 break;
duke@435 1695 case Op_ReverseBytesI:
duke@435 1696 case Op_ReverseBytesL:
duke@435 1697 if( n->in(1)->is_Load() && // Prior load
duke@435 1698 n->outcnt() == 1 ) // Not already shared
duke@435 1699 set_shared(n); // Force it to be a root
duke@435 1700 break;
duke@435 1701 case Op_BoxLock: // Cant match until we get stack-regs in ADLC
duke@435 1702 case Op_IfFalse:
duke@435 1703 case Op_IfTrue:
duke@435 1704 case Op_MachProj:
duke@435 1705 case Op_MergeMem:
duke@435 1706 case Op_Catch:
duke@435 1707 case Op_CatchProj:
duke@435 1708 case Op_CProj:
duke@435 1709 case Op_JumpProj:
duke@435 1710 case Op_JProj:
duke@435 1711 case Op_NeverBranch:
duke@435 1712 set_dontcare(n);
duke@435 1713 break;
duke@435 1714 case Op_Jump:
duke@435 1715 mstack.push(n->in(1), Visit); // Switch Value
duke@435 1716 mstack.push(n->in(0), Pre_Visit); // Visit Control input
duke@435 1717 continue; // while (mstack.is_nonempty())
duke@435 1718 case Op_StrComp:
duke@435 1719 set_shared(n); // Force result into register (it will be anyways)
duke@435 1720 break;
duke@435 1721 case Op_ConP: { // Convert pointers above the centerline to NUL
duke@435 1722 TypeNode *tn = n->as_Type(); // Constants derive from type nodes
duke@435 1723 const TypePtr* tp = tn->type()->is_ptr();
duke@435 1724 if (tp->_ptr == TypePtr::AnyNull) {
duke@435 1725 tn->set_type(TypePtr::NULL_PTR);
duke@435 1726 }
duke@435 1727 break;
duke@435 1728 }
duke@435 1729 case Op_Binary: // These are introduced in the Post_Visit state.
duke@435 1730 ShouldNotReachHere();
duke@435 1731 break;
duke@435 1732 case Op_StoreB: // Do match these, despite no ideal reg
duke@435 1733 case Op_StoreC:
duke@435 1734 case Op_StoreCM:
duke@435 1735 case Op_StoreD:
duke@435 1736 case Op_StoreF:
duke@435 1737 case Op_StoreI:
duke@435 1738 case Op_StoreL:
duke@435 1739 case Op_StoreP:
coleenp@548 1740 case Op_StoreN:
duke@435 1741 case Op_Store16B:
duke@435 1742 case Op_Store8B:
duke@435 1743 case Op_Store4B:
duke@435 1744 case Op_Store8C:
duke@435 1745 case Op_Store4C:
duke@435 1746 case Op_Store2C:
duke@435 1747 case Op_Store4I:
duke@435 1748 case Op_Store2I:
duke@435 1749 case Op_Store2L:
duke@435 1750 case Op_Store4F:
duke@435 1751 case Op_Store2F:
duke@435 1752 case Op_Store2D:
duke@435 1753 case Op_ClearArray:
duke@435 1754 case Op_SafePoint:
duke@435 1755 mem_op = true;
duke@435 1756 break;
duke@435 1757 case Op_LoadB:
duke@435 1758 case Op_LoadC:
duke@435 1759 case Op_LoadD:
duke@435 1760 case Op_LoadF:
duke@435 1761 case Op_LoadI:
duke@435 1762 case Op_LoadKlass:
duke@435 1763 case Op_LoadL:
duke@435 1764 case Op_LoadS:
duke@435 1765 case Op_LoadP:
coleenp@548 1766 case Op_LoadN:
duke@435 1767 case Op_LoadRange:
duke@435 1768 case Op_LoadD_unaligned:
duke@435 1769 case Op_LoadL_unaligned:
duke@435 1770 case Op_Load16B:
duke@435 1771 case Op_Load8B:
duke@435 1772 case Op_Load4B:
duke@435 1773 case Op_Load4C:
duke@435 1774 case Op_Load2C:
duke@435 1775 case Op_Load8C:
duke@435 1776 case Op_Load8S:
duke@435 1777 case Op_Load4S:
duke@435 1778 case Op_Load2S:
duke@435 1779 case Op_Load4I:
duke@435 1780 case Op_Load2I:
duke@435 1781 case Op_Load2L:
duke@435 1782 case Op_Load4F:
duke@435 1783 case Op_Load2F:
duke@435 1784 case Op_Load2D:
duke@435 1785 mem_op = true;
duke@435 1786 // Must be root of match tree due to prior load conflict
duke@435 1787 if( C->subsume_loads() == false ) {
duke@435 1788 set_shared(n);
duke@435 1789 }
duke@435 1790 // Fall into default case
duke@435 1791 default:
duke@435 1792 if( !n->ideal_reg() )
duke@435 1793 set_dontcare(n); // Unmatchable Nodes
duke@435 1794 } // end_switch
duke@435 1795
duke@435 1796 for(int i = n->req() - 1; i >= 0; --i) { // For my children
duke@435 1797 Node *m = n->in(i); // Get ith input
duke@435 1798 if (m == NULL) continue; // Ignore NULLs
duke@435 1799 uint mop = m->Opcode();
duke@435 1800
duke@435 1801 // Must clone all producers of flags, or we will not match correctly.
duke@435 1802 // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
duke@435 1803 // then it will match into an ideal Op_RegFlags. Alas, the fp-flags
duke@435 1804 // are also there, so we may match a float-branch to int-flags and
duke@435 1805 // expect the allocator to haul the flags from the int-side to the
duke@435 1806 // fp-side. No can do.
duke@435 1807 if( _must_clone[mop] ) {
duke@435 1808 mstack.push(m, Visit);
duke@435 1809 continue; // for(int i = ...)
duke@435 1810 }
duke@435 1811
duke@435 1812 // Clone addressing expressions as they are "free" in most instructions
duke@435 1813 if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
duke@435 1814 Node *off = m->in(AddPNode::Offset);
duke@435 1815 if( off->is_Con() ) {
duke@435 1816 set_visited(m); // Flag as visited now
duke@435 1817 Node *adr = m->in(AddPNode::Address);
duke@435 1818
duke@435 1819 // Intel, ARM and friends can handle 2 adds in addressing mode
duke@435 1820 if( clone_shift_expressions && adr->Opcode() == Op_AddP &&
duke@435 1821 // AtomicAdd is not an addressing expression.
duke@435 1822 // Cheap to find it by looking for screwy base.
duke@435 1823 !adr->in(AddPNode::Base)->is_top() ) {
duke@435 1824 set_visited(adr); // Flag as visited now
duke@435 1825 Node *shift = adr->in(AddPNode::Offset);
duke@435 1826 // Check for shift by small constant as well
duke@435 1827 if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
duke@435 1828 shift->in(2)->get_int() <= 3 ) {
duke@435 1829 set_visited(shift); // Flag as visited now
duke@435 1830 mstack.push(shift->in(2), Visit);
duke@435 1831 #ifdef _LP64
duke@435 1832 // Allow Matcher to match the rule which bypass
duke@435 1833 // ConvI2L operation for an array index on LP64
duke@435 1834 // if the index value is positive.
duke@435 1835 if( shift->in(1)->Opcode() == Op_ConvI2L &&
duke@435 1836 shift->in(1)->as_Type()->type()->is_long()->_lo >= 0 ) {
duke@435 1837 set_visited(shift->in(1)); // Flag as visited now
duke@435 1838 mstack.push(shift->in(1)->in(1), Pre_Visit);
duke@435 1839 } else
duke@435 1840 #endif
duke@435 1841 mstack.push(shift->in(1), Pre_Visit);
duke@435 1842 } else {
duke@435 1843 mstack.push(shift, Pre_Visit);
duke@435 1844 }
duke@435 1845 mstack.push(adr->in(AddPNode::Address), Pre_Visit);
duke@435 1846 mstack.push(adr->in(AddPNode::Base), Pre_Visit);
duke@435 1847 } else { // Sparc, Alpha, PPC and friends
duke@435 1848 mstack.push(adr, Pre_Visit);
duke@435 1849 }
duke@435 1850
duke@435 1851 // Clone X+offset as it also folds into most addressing expressions
duke@435 1852 mstack.push(off, Visit);
duke@435 1853 mstack.push(m->in(AddPNode::Base), Pre_Visit);
duke@435 1854 continue; // for(int i = ...)
duke@435 1855 } // if( off->is_Con() )
duke@435 1856 } // if( mem_op &&
duke@435 1857 mstack.push(m, Pre_Visit);
duke@435 1858 } // for(int i = ...)
duke@435 1859 }
duke@435 1860 else if (nstate == Alt_Post_Visit) {
duke@435 1861 mstack.pop(); // Remove node from stack
duke@435 1862 // We cannot remove the Cmp input from the Bool here, as the Bool may be
duke@435 1863 // shared and all users of the Bool need to move the Cmp in parallel.
duke@435 1864 // This leaves both the Bool and the If pointing at the Cmp. To
duke@435 1865 // prevent the Matcher from trying to Match the Cmp along both paths
duke@435 1866 // BoolNode::match_edge always returns a zero.
duke@435 1867
duke@435 1868 // We reorder the Op_If in a pre-order manner, so we can visit without
duke@435 1869 // accidently sharing the Cmp (the Bool and the If make 2 users).
duke@435 1870 n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
duke@435 1871 }
duke@435 1872 else if (nstate == Post_Visit) {
duke@435 1873 mstack.pop(); // Remove node from stack
duke@435 1874
duke@435 1875 // Now hack a few special opcodes
duke@435 1876 switch( n->Opcode() ) { // Handle some opcodes special
duke@435 1877 case Op_StorePConditional:
duke@435 1878 case Op_StoreLConditional:
duke@435 1879 case Op_CompareAndSwapI:
duke@435 1880 case Op_CompareAndSwapL:
coleenp@548 1881 case Op_CompareAndSwapP:
coleenp@548 1882 case Op_CompareAndSwapN: { // Convert trinary to binary-tree
duke@435 1883 Node *newval = n->in(MemNode::ValueIn );
duke@435 1884 Node *oldval = n->in(LoadStoreNode::ExpectedIn);
duke@435 1885 Node *pair = new (C, 3) BinaryNode( oldval, newval );
duke@435 1886 n->set_req(MemNode::ValueIn,pair);
duke@435 1887 n->del_req(LoadStoreNode::ExpectedIn);
duke@435 1888 break;
duke@435 1889 }
duke@435 1890 case Op_CMoveD: // Convert trinary to binary-tree
duke@435 1891 case Op_CMoveF:
duke@435 1892 case Op_CMoveI:
duke@435 1893 case Op_CMoveL:
duke@435 1894 case Op_CMoveP: {
duke@435 1895 // Restructure into a binary tree for Matching. It's possible that
duke@435 1896 // we could move this code up next to the graph reshaping for IfNodes
duke@435 1897 // or vice-versa, but I do not want to debug this for Ladybird.
duke@435 1898 // 10/2/2000 CNC.
duke@435 1899 Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(1)->in(1));
duke@435 1900 n->set_req(1,pair1);
duke@435 1901 Node *pair2 = new (C, 3) BinaryNode(n->in(2),n->in(3));
duke@435 1902 n->set_req(2,pair2);
duke@435 1903 n->del_req(3);
duke@435 1904 break;
duke@435 1905 }
duke@435 1906 default:
duke@435 1907 break;
duke@435 1908 }
duke@435 1909 }
duke@435 1910 else {
duke@435 1911 ShouldNotReachHere();
duke@435 1912 }
duke@435 1913 } // end of while (mstack.is_nonempty())
duke@435 1914 }
duke@435 1915
duke@435 1916 #ifdef ASSERT
duke@435 1917 // machine-independent root to machine-dependent root
duke@435 1918 void Matcher::dump_old2new_map() {
duke@435 1919 _old2new_map.dump();
duke@435 1920 }
duke@435 1921 #endif
duke@435 1922
duke@435 1923 //---------------------------collect_null_checks-------------------------------
duke@435 1924 // Find null checks in the ideal graph; write a machine-specific node for
duke@435 1925 // it. Used by later implicit-null-check handling. Actually collects
duke@435 1926 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
duke@435 1927 // value being tested.
duke@435 1928 void Matcher::collect_null_checks( Node *proj ) {
duke@435 1929 Node *iff = proj->in(0);
duke@435 1930 if( iff->Opcode() == Op_If ) {
duke@435 1931 // During matching If's have Bool & Cmp side-by-side
duke@435 1932 BoolNode *b = iff->in(1)->as_Bool();
duke@435 1933 Node *cmp = iff->in(2);
coleenp@548 1934 int opc = cmp->Opcode();
coleenp@548 1935 if (opc != Op_CmpP && opc != Op_CmpN) return;
duke@435 1936
coleenp@548 1937 const Type* ct = cmp->in(2)->bottom_type();
coleenp@548 1938 if (ct == TypePtr::NULL_PTR ||
coleenp@548 1939 (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
coleenp@548 1940
coleenp@548 1941 if( proj->Opcode() == Op_IfTrue ) {
coleenp@548 1942 extern int all_null_checks_found;
coleenp@548 1943 all_null_checks_found++;
coleenp@548 1944 if( b->_test._test == BoolTest::ne ) {
coleenp@548 1945 _null_check_tests.push(proj);
coleenp@548 1946 _null_check_tests.push(cmp->in(1));
coleenp@548 1947 }
coleenp@548 1948 } else {
coleenp@548 1949 assert( proj->Opcode() == Op_IfFalse, "" );
coleenp@548 1950 if( b->_test._test == BoolTest::eq ) {
coleenp@548 1951 _null_check_tests.push(proj);
coleenp@548 1952 _null_check_tests.push(cmp->in(1));
duke@435 1953 }
duke@435 1954 }
duke@435 1955 }
duke@435 1956 }
duke@435 1957 }
duke@435 1958
duke@435 1959 //---------------------------validate_null_checks------------------------------
duke@435 1960 // Its possible that the value being NULL checked is not the root of a match
duke@435 1961 // tree. If so, I cannot use the value in an implicit null check.
duke@435 1962 void Matcher::validate_null_checks( ) {
duke@435 1963 uint cnt = _null_check_tests.size();
duke@435 1964 for( uint i=0; i < cnt; i+=2 ) {
duke@435 1965 Node *test = _null_check_tests[i];
duke@435 1966 Node *val = _null_check_tests[i+1];
duke@435 1967 if (has_new_node(val)) {
duke@435 1968 // Is a match-tree root, so replace with the matched value
duke@435 1969 _null_check_tests.map(i+1, new_node(val));
duke@435 1970 } else {
duke@435 1971 // Yank from candidate list
duke@435 1972 _null_check_tests.map(i+1,_null_check_tests[--cnt]);
duke@435 1973 _null_check_tests.map(i,_null_check_tests[--cnt]);
duke@435 1974 _null_check_tests.pop();
duke@435 1975 _null_check_tests.pop();
duke@435 1976 i-=2;
duke@435 1977 }
duke@435 1978 }
duke@435 1979 }
duke@435 1980
duke@435 1981
duke@435 1982 // Used by the DFA in dfa_sparc.cpp. Check for a prior FastLock
duke@435 1983 // acting as an Acquire and thus we don't need an Acquire here. We
duke@435 1984 // retain the Node to act as a compiler ordering barrier.
duke@435 1985 bool Matcher::prior_fast_lock( const Node *acq ) {
duke@435 1986 Node *r = acq->in(0);
duke@435 1987 if( !r->is_Region() || r->req() <= 1 ) return false;
duke@435 1988 Node *proj = r->in(1);
duke@435 1989 if( !proj->is_Proj() ) return false;
duke@435 1990 Node *call = proj->in(0);
duke@435 1991 if( !call->is_Call() || call->as_Call()->entry_point() != OptoRuntime::complete_monitor_locking_Java() )
duke@435 1992 return false;
duke@435 1993
duke@435 1994 return true;
duke@435 1995 }
duke@435 1996
duke@435 1997 // Used by the DFA in dfa_sparc.cpp. Check for a following FastUnLock
duke@435 1998 // acting as a Release and thus we don't need a Release here. We
duke@435 1999 // retain the Node to act as a compiler ordering barrier.
duke@435 2000 bool Matcher::post_fast_unlock( const Node *rel ) {
duke@435 2001 Compile *C = Compile::current();
duke@435 2002 assert( rel->Opcode() == Op_MemBarRelease, "" );
duke@435 2003 const MemBarReleaseNode *mem = (const MemBarReleaseNode*)rel;
duke@435 2004 DUIterator_Fast imax, i = mem->fast_outs(imax);
duke@435 2005 Node *ctrl = NULL;
duke@435 2006 while( true ) {
duke@435 2007 ctrl = mem->fast_out(i); // Throw out-of-bounds if proj not found
duke@435 2008 assert( ctrl->is_Proj(), "only projections here" );
duke@435 2009 ProjNode *proj = (ProjNode*)ctrl;
duke@435 2010 if( proj->_con == TypeFunc::Control &&
duke@435 2011 !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
duke@435 2012 break;
duke@435 2013 i++;
duke@435 2014 }
duke@435 2015 Node *iff = NULL;
duke@435 2016 for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
duke@435 2017 Node *x = ctrl->fast_out(j);
duke@435 2018 if( x->is_If() && x->req() > 1 &&
duke@435 2019 !C->node_arena()->contains(x) ) { // Unmatched old-space only
duke@435 2020 iff = x;
duke@435 2021 break;
duke@435 2022 }
duke@435 2023 }
duke@435 2024 if( !iff ) return false;
duke@435 2025 Node *bol = iff->in(1);
duke@435 2026 // The iff might be some random subclass of If or bol might be Con-Top
duke@435 2027 if (!bol->is_Bool()) return false;
duke@435 2028 assert( bol->req() > 1, "" );
duke@435 2029 return (bol->in(1)->Opcode() == Op_FastUnlock);
duke@435 2030 }
duke@435 2031
duke@435 2032 // Used by the DFA in dfa_xxx.cpp. Check for a following barrier or
duke@435 2033 // atomic instruction acting as a store_load barrier without any
duke@435 2034 // intervening volatile load, and thus we don't need a barrier here.
duke@435 2035 // We retain the Node to act as a compiler ordering barrier.
duke@435 2036 bool Matcher::post_store_load_barrier(const Node *vmb) {
duke@435 2037 Compile *C = Compile::current();
duke@435 2038 assert( vmb->is_MemBar(), "" );
duke@435 2039 assert( vmb->Opcode() != Op_MemBarAcquire, "" );
duke@435 2040 const MemBarNode *mem = (const MemBarNode*)vmb;
duke@435 2041
duke@435 2042 // Get the Proj node, ctrl, that can be used to iterate forward
duke@435 2043 Node *ctrl = NULL;
duke@435 2044 DUIterator_Fast imax, i = mem->fast_outs(imax);
duke@435 2045 while( true ) {
duke@435 2046 ctrl = mem->fast_out(i); // Throw out-of-bounds if proj not found
duke@435 2047 assert( ctrl->is_Proj(), "only projections here" );
duke@435 2048 ProjNode *proj = (ProjNode*)ctrl;
duke@435 2049 if( proj->_con == TypeFunc::Control &&
duke@435 2050 !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
duke@435 2051 break;
duke@435 2052 i++;
duke@435 2053 }
duke@435 2054
duke@435 2055 for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
duke@435 2056 Node *x = ctrl->fast_out(j);
duke@435 2057 int xop = x->Opcode();
duke@435 2058
duke@435 2059 // We don't need current barrier if we see another or a lock
duke@435 2060 // before seeing volatile load.
duke@435 2061 //
duke@435 2062 // Op_Fastunlock previously appeared in the Op_* list below.
duke@435 2063 // With the advent of 1-0 lock operations we're no longer guaranteed
duke@435 2064 // that a monitor exit operation contains a serializing instruction.
duke@435 2065
duke@435 2066 if (xop == Op_MemBarVolatile ||
duke@435 2067 xop == Op_FastLock ||
duke@435 2068 xop == Op_CompareAndSwapL ||
duke@435 2069 xop == Op_CompareAndSwapP ||
coleenp@548 2070 xop == Op_CompareAndSwapN ||
duke@435 2071 xop == Op_CompareAndSwapI)
duke@435 2072 return true;
duke@435 2073
duke@435 2074 if (x->is_MemBar()) {
duke@435 2075 // We must retain this membar if there is an upcoming volatile
duke@435 2076 // load, which will be preceded by acquire membar.
duke@435 2077 if (xop == Op_MemBarAcquire)
duke@435 2078 return false;
duke@435 2079 // For other kinds of barriers, check by pretending we
duke@435 2080 // are them, and seeing if we can be removed.
duke@435 2081 else
duke@435 2082 return post_store_load_barrier((const MemBarNode*)x);
duke@435 2083 }
duke@435 2084
duke@435 2085 // Delicate code to detect case of an upcoming fastlock block
duke@435 2086 if( x->is_If() && x->req() > 1 &&
duke@435 2087 !C->node_arena()->contains(x) ) { // Unmatched old-space only
duke@435 2088 Node *iff = x;
duke@435 2089 Node *bol = iff->in(1);
duke@435 2090 // The iff might be some random subclass of If or bol might be Con-Top
duke@435 2091 if (!bol->is_Bool()) return false;
duke@435 2092 assert( bol->req() > 1, "" );
duke@435 2093 return (bol->in(1)->Opcode() == Op_FastUnlock);
duke@435 2094 }
duke@435 2095 // probably not necessary to check for these
duke@435 2096 if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
duke@435 2097 return false;
duke@435 2098 }
duke@435 2099 return false;
duke@435 2100 }
duke@435 2101
duke@435 2102 //=============================================================================
duke@435 2103 //---------------------------State---------------------------------------------
duke@435 2104 State::State(void) {
duke@435 2105 #ifdef ASSERT
duke@435 2106 _id = 0;
duke@435 2107 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
duke@435 2108 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
duke@435 2109 //memset(_cost, -1, sizeof(_cost));
duke@435 2110 //memset(_rule, -1, sizeof(_rule));
duke@435 2111 #endif
duke@435 2112 memset(_valid, 0, sizeof(_valid));
duke@435 2113 }
duke@435 2114
duke@435 2115 #ifdef ASSERT
duke@435 2116 State::~State() {
duke@435 2117 _id = 99;
duke@435 2118 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
duke@435 2119 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
duke@435 2120 memset(_cost, -3, sizeof(_cost));
duke@435 2121 memset(_rule, -3, sizeof(_rule));
duke@435 2122 }
duke@435 2123 #endif
duke@435 2124
duke@435 2125 #ifndef PRODUCT
duke@435 2126 //---------------------------dump----------------------------------------------
duke@435 2127 void State::dump() {
duke@435 2128 tty->print("\n");
duke@435 2129 dump(0);
duke@435 2130 }
duke@435 2131
duke@435 2132 void State::dump(int depth) {
duke@435 2133 for( int j = 0; j < depth; j++ )
duke@435 2134 tty->print(" ");
duke@435 2135 tty->print("--N: ");
duke@435 2136 _leaf->dump();
duke@435 2137 uint i;
duke@435 2138 for( i = 0; i < _LAST_MACH_OPER; i++ )
duke@435 2139 // Check for valid entry
duke@435 2140 if( valid(i) ) {
duke@435 2141 for( int j = 0; j < depth; j++ )
duke@435 2142 tty->print(" ");
duke@435 2143 assert(_cost[i] != max_juint, "cost must be a valid value");
duke@435 2144 assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
duke@435 2145 tty->print_cr("%s %d %s",
duke@435 2146 ruleName[i], _cost[i], ruleName[_rule[i]] );
duke@435 2147 }
duke@435 2148 tty->print_cr("");
duke@435 2149
duke@435 2150 for( i=0; i<2; i++ )
duke@435 2151 if( _kids[i] )
duke@435 2152 _kids[i]->dump(depth+1);
duke@435 2153 }
duke@435 2154 #endif

mercurial