src/cpu/x86/vm/stubGenerator_x86_64.cpp

Wed, 07 May 2008 08:06:46 -0700

author
rasbold
date
Wed, 07 May 2008 08:06:46 -0700
changeset 580
f3de1255b035
parent 559
b130b98db9cf
child 631
d1605aabd0a1
child 777
37f87013dfd8
permissions
-rw-r--r--

6603011: RFE: Optimize long division
Summary: Transform long division by constant into multiply
Reviewed-by: never, kvn

duke@435 1 /*
duke@435 2 * Copyright 2003-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_stubGenerator_x86_64.cpp.incl"
duke@435 27
duke@435 28 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 29 // For a more detailed description of the stub routine structure
duke@435 30 // see the comment in stubRoutines.hpp
duke@435 31
duke@435 32 #define __ _masm->
coleenp@548 33 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
duke@435 34
duke@435 35 #ifdef PRODUCT
duke@435 36 #define BLOCK_COMMENT(str) /* nothing */
duke@435 37 #else
duke@435 38 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 39 #endif
duke@435 40
duke@435 41 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 42 const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions
duke@435 43
duke@435 44 // Stub Code definitions
duke@435 45
duke@435 46 static address handle_unsafe_access() {
duke@435 47 JavaThread* thread = JavaThread::current();
duke@435 48 address pc = thread->saved_exception_pc();
duke@435 49 // pc is the instruction which we must emulate
duke@435 50 // doing a no-op is fine: return garbage from the load
duke@435 51 // therefore, compute npc
duke@435 52 address npc = Assembler::locate_next_instruction(pc);
duke@435 53
duke@435 54 // request an async exception
duke@435 55 thread->set_pending_unsafe_access_error();
duke@435 56
duke@435 57 // return address of next instruction to execute
duke@435 58 return npc;
duke@435 59 }
duke@435 60
duke@435 61 class StubGenerator: public StubCodeGenerator {
duke@435 62 private:
duke@435 63
duke@435 64 #ifdef PRODUCT
duke@435 65 #define inc_counter_np(counter) (0)
duke@435 66 #else
duke@435 67 void inc_counter_np_(int& counter) {
duke@435 68 __ incrementl(ExternalAddress((address)&counter));
duke@435 69 }
duke@435 70 #define inc_counter_np(counter) \
duke@435 71 BLOCK_COMMENT("inc_counter " #counter); \
duke@435 72 inc_counter_np_(counter);
duke@435 73 #endif
duke@435 74
duke@435 75 // Call stubs are used to call Java from C
duke@435 76 //
duke@435 77 // Linux Arguments:
duke@435 78 // c_rarg0: call wrapper address address
duke@435 79 // c_rarg1: result address
duke@435 80 // c_rarg2: result type BasicType
duke@435 81 // c_rarg3: method methodOop
duke@435 82 // c_rarg4: (interpreter) entry point address
duke@435 83 // c_rarg5: parameters intptr_t*
duke@435 84 // 16(rbp): parameter size (in words) int
duke@435 85 // 24(rbp): thread Thread*
duke@435 86 //
duke@435 87 // [ return_from_Java ] <--- rsp
duke@435 88 // [ argument word n ]
duke@435 89 // ...
duke@435 90 // -12 [ argument word 1 ]
duke@435 91 // -11 [ saved r15 ] <--- rsp_after_call
duke@435 92 // -10 [ saved r14 ]
duke@435 93 // -9 [ saved r13 ]
duke@435 94 // -8 [ saved r12 ]
duke@435 95 // -7 [ saved rbx ]
duke@435 96 // -6 [ call wrapper ]
duke@435 97 // -5 [ result ]
duke@435 98 // -4 [ result type ]
duke@435 99 // -3 [ method ]
duke@435 100 // -2 [ entry point ]
duke@435 101 // -1 [ parameters ]
duke@435 102 // 0 [ saved rbp ] <--- rbp
duke@435 103 // 1 [ return address ]
duke@435 104 // 2 [ parameter size ]
duke@435 105 // 3 [ thread ]
duke@435 106 //
duke@435 107 // Windows Arguments:
duke@435 108 // c_rarg0: call wrapper address address
duke@435 109 // c_rarg1: result address
duke@435 110 // c_rarg2: result type BasicType
duke@435 111 // c_rarg3: method methodOop
duke@435 112 // 48(rbp): (interpreter) entry point address
duke@435 113 // 56(rbp): parameters intptr_t*
duke@435 114 // 64(rbp): parameter size (in words) int
duke@435 115 // 72(rbp): thread Thread*
duke@435 116 //
duke@435 117 // [ return_from_Java ] <--- rsp
duke@435 118 // [ argument word n ]
duke@435 119 // ...
duke@435 120 // -8 [ argument word 1 ]
duke@435 121 // -7 [ saved r15 ] <--- rsp_after_call
duke@435 122 // -6 [ saved r14 ]
duke@435 123 // -5 [ saved r13 ]
duke@435 124 // -4 [ saved r12 ]
duke@435 125 // -3 [ saved rdi ]
duke@435 126 // -2 [ saved rsi ]
duke@435 127 // -1 [ saved rbx ]
duke@435 128 // 0 [ saved rbp ] <--- rbp
duke@435 129 // 1 [ return address ]
duke@435 130 // 2 [ call wrapper ]
duke@435 131 // 3 [ result ]
duke@435 132 // 4 [ result type ]
duke@435 133 // 5 [ method ]
duke@435 134 // 6 [ entry point ]
duke@435 135 // 7 [ parameters ]
duke@435 136 // 8 [ parameter size ]
duke@435 137 // 9 [ thread ]
duke@435 138 //
duke@435 139 // Windows reserves the callers stack space for arguments 1-4.
duke@435 140 // We spill c_rarg0-c_rarg3 to this space.
duke@435 141
duke@435 142 // Call stub stack layout word offsets from rbp
duke@435 143 enum call_stub_layout {
duke@435 144 #ifdef _WIN64
duke@435 145 rsp_after_call_off = -7,
duke@435 146 r15_off = rsp_after_call_off,
duke@435 147 r14_off = -6,
duke@435 148 r13_off = -5,
duke@435 149 r12_off = -4,
duke@435 150 rdi_off = -3,
duke@435 151 rsi_off = -2,
duke@435 152 rbx_off = -1,
duke@435 153 rbp_off = 0,
duke@435 154 retaddr_off = 1,
duke@435 155 call_wrapper_off = 2,
duke@435 156 result_off = 3,
duke@435 157 result_type_off = 4,
duke@435 158 method_off = 5,
duke@435 159 entry_point_off = 6,
duke@435 160 parameters_off = 7,
duke@435 161 parameter_size_off = 8,
duke@435 162 thread_off = 9
duke@435 163 #else
duke@435 164 rsp_after_call_off = -12,
duke@435 165 mxcsr_off = rsp_after_call_off,
duke@435 166 r15_off = -11,
duke@435 167 r14_off = -10,
duke@435 168 r13_off = -9,
duke@435 169 r12_off = -8,
duke@435 170 rbx_off = -7,
duke@435 171 call_wrapper_off = -6,
duke@435 172 result_off = -5,
duke@435 173 result_type_off = -4,
duke@435 174 method_off = -3,
duke@435 175 entry_point_off = -2,
duke@435 176 parameters_off = -1,
duke@435 177 rbp_off = 0,
duke@435 178 retaddr_off = 1,
duke@435 179 parameter_size_off = 2,
duke@435 180 thread_off = 3
duke@435 181 #endif
duke@435 182 };
duke@435 183
duke@435 184 address generate_call_stub(address& return_address) {
duke@435 185 assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
duke@435 186 (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
duke@435 187 "adjust this code");
duke@435 188 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 189 address start = __ pc();
duke@435 190
duke@435 191 // same as in generate_catch_exception()!
duke@435 192 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
duke@435 193
duke@435 194 const Address call_wrapper (rbp, call_wrapper_off * wordSize);
duke@435 195 const Address result (rbp, result_off * wordSize);
duke@435 196 const Address result_type (rbp, result_type_off * wordSize);
duke@435 197 const Address method (rbp, method_off * wordSize);
duke@435 198 const Address entry_point (rbp, entry_point_off * wordSize);
duke@435 199 const Address parameters (rbp, parameters_off * wordSize);
duke@435 200 const Address parameter_size(rbp, parameter_size_off * wordSize);
duke@435 201
duke@435 202 // same as in generate_catch_exception()!
duke@435 203 const Address thread (rbp, thread_off * wordSize);
duke@435 204
duke@435 205 const Address r15_save(rbp, r15_off * wordSize);
duke@435 206 const Address r14_save(rbp, r14_off * wordSize);
duke@435 207 const Address r13_save(rbp, r13_off * wordSize);
duke@435 208 const Address r12_save(rbp, r12_off * wordSize);
duke@435 209 const Address rbx_save(rbp, rbx_off * wordSize);
duke@435 210
duke@435 211 // stub code
duke@435 212 __ enter();
duke@435 213 __ subq(rsp, -rsp_after_call_off * wordSize);
duke@435 214
duke@435 215 // save register parameters
duke@435 216 #ifndef _WIN64
duke@435 217 __ movq(parameters, c_rarg5); // parameters
duke@435 218 __ movq(entry_point, c_rarg4); // entry_point
duke@435 219 #endif
duke@435 220
duke@435 221 __ movq(method, c_rarg3); // method
duke@435 222 __ movl(result_type, c_rarg2); // result type
duke@435 223 __ movq(result, c_rarg1); // result
duke@435 224 __ movq(call_wrapper, c_rarg0); // call wrapper
duke@435 225
duke@435 226 // save regs belonging to calling function
duke@435 227 __ movq(rbx_save, rbx);
duke@435 228 __ movq(r12_save, r12);
duke@435 229 __ movq(r13_save, r13);
duke@435 230 __ movq(r14_save, r14);
duke@435 231 __ movq(r15_save, r15);
duke@435 232
duke@435 233 #ifdef _WIN64
duke@435 234 const Address rdi_save(rbp, rdi_off * wordSize);
duke@435 235 const Address rsi_save(rbp, rsi_off * wordSize);
duke@435 236
duke@435 237 __ movq(rsi_save, rsi);
duke@435 238 __ movq(rdi_save, rdi);
duke@435 239 #else
duke@435 240 const Address mxcsr_save(rbp, mxcsr_off * wordSize);
duke@435 241 {
duke@435 242 Label skip_ldmx;
duke@435 243 __ stmxcsr(mxcsr_save);
duke@435 244 __ movl(rax, mxcsr_save);
duke@435 245 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
duke@435 246 ExternalAddress mxcsr_std(StubRoutines::amd64::mxcsr_std());
duke@435 247 __ cmp32(rax, mxcsr_std);
duke@435 248 __ jcc(Assembler::equal, skip_ldmx);
duke@435 249 __ ldmxcsr(mxcsr_std);
duke@435 250 __ bind(skip_ldmx);
duke@435 251 }
duke@435 252 #endif
duke@435 253
duke@435 254 // Load up thread register
duke@435 255 __ movq(r15_thread, thread);
coleenp@548 256 __ reinit_heapbase();
duke@435 257
duke@435 258 #ifdef ASSERT
duke@435 259 // make sure we have no pending exceptions
duke@435 260 {
duke@435 261 Label L;
duke@435 262 __ cmpq(Address(r15_thread, Thread::pending_exception_offset()), (int)NULL_WORD);
duke@435 263 __ jcc(Assembler::equal, L);
duke@435 264 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 265 __ bind(L);
duke@435 266 }
duke@435 267 #endif
duke@435 268
duke@435 269 // pass parameters if any
duke@435 270 BLOCK_COMMENT("pass parameters if any");
duke@435 271 Label parameters_done;
duke@435 272 __ movl(c_rarg3, parameter_size);
duke@435 273 __ testl(c_rarg3, c_rarg3);
duke@435 274 __ jcc(Assembler::zero, parameters_done);
duke@435 275
duke@435 276 Label loop;
duke@435 277 __ movq(c_rarg2, parameters); // parameter pointer
duke@435 278 __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1
duke@435 279 __ BIND(loop);
duke@435 280 if (TaggedStackInterpreter) {
duke@435 281 __ movq(rax, Address(c_rarg2, 0)); // get tag
duke@435 282 __ addq(c_rarg2, wordSize); // advance to next tag
duke@435 283 __ pushq(rax); // pass tag
duke@435 284 }
duke@435 285 __ movq(rax, Address(c_rarg2, 0)); // get parameter
duke@435 286 __ addq(c_rarg2, wordSize); // advance to next parameter
duke@435 287 __ decrementl(c_rarg1); // decrement counter
duke@435 288 __ pushq(rax); // pass parameter
duke@435 289 __ jcc(Assembler::notZero, loop);
duke@435 290
duke@435 291 // call Java function
duke@435 292 __ BIND(parameters_done);
duke@435 293 __ movq(rbx, method); // get methodOop
duke@435 294 __ movq(c_rarg1, entry_point); // get entry_point
duke@435 295 __ movq(r13, rsp); // set sender sp
duke@435 296 BLOCK_COMMENT("call Java function");
duke@435 297 __ call(c_rarg1);
duke@435 298
duke@435 299 BLOCK_COMMENT("call_stub_return_address:");
duke@435 300 return_address = __ pc();
duke@435 301
duke@435 302 // store result depending on type (everything that is not
duke@435 303 // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
duke@435 304 __ movq(c_rarg0, result);
duke@435 305 Label is_long, is_float, is_double, exit;
duke@435 306 __ movl(c_rarg1, result_type);
duke@435 307 __ cmpl(c_rarg1, T_OBJECT);
duke@435 308 __ jcc(Assembler::equal, is_long);
duke@435 309 __ cmpl(c_rarg1, T_LONG);
duke@435 310 __ jcc(Assembler::equal, is_long);
duke@435 311 __ cmpl(c_rarg1, T_FLOAT);
duke@435 312 __ jcc(Assembler::equal, is_float);
duke@435 313 __ cmpl(c_rarg1, T_DOUBLE);
duke@435 314 __ jcc(Assembler::equal, is_double);
duke@435 315
duke@435 316 // handle T_INT case
duke@435 317 __ movl(Address(c_rarg0, 0), rax);
duke@435 318
duke@435 319 __ BIND(exit);
duke@435 320
duke@435 321 // pop parameters
duke@435 322 __ leaq(rsp, rsp_after_call);
duke@435 323
duke@435 324 #ifdef ASSERT
duke@435 325 // verify that threads correspond
duke@435 326 {
duke@435 327 Label L, S;
duke@435 328 __ cmpq(r15_thread, thread);
duke@435 329 __ jcc(Assembler::notEqual, S);
duke@435 330 __ get_thread(rbx);
duke@435 331 __ cmpq(r15_thread, rbx);
duke@435 332 __ jcc(Assembler::equal, L);
duke@435 333 __ bind(S);
duke@435 334 __ jcc(Assembler::equal, L);
duke@435 335 __ stop("StubRoutines::call_stub: threads must correspond");
duke@435 336 __ bind(L);
duke@435 337 }
duke@435 338 #endif
duke@435 339
duke@435 340 // restore regs belonging to calling function
duke@435 341 __ movq(r15, r15_save);
duke@435 342 __ movq(r14, r14_save);
duke@435 343 __ movq(r13, r13_save);
duke@435 344 __ movq(r12, r12_save);
duke@435 345 __ movq(rbx, rbx_save);
duke@435 346
duke@435 347 #ifdef _WIN64
duke@435 348 __ movq(rdi, rdi_save);
duke@435 349 __ movq(rsi, rsi_save);
duke@435 350 #else
duke@435 351 __ ldmxcsr(mxcsr_save);
duke@435 352 #endif
duke@435 353
duke@435 354 // restore rsp
duke@435 355 __ addq(rsp, -rsp_after_call_off * wordSize);
duke@435 356
duke@435 357 // return
duke@435 358 __ popq(rbp);
duke@435 359 __ ret(0);
duke@435 360
duke@435 361 // handle return types different from T_INT
duke@435 362 __ BIND(is_long);
duke@435 363 __ movq(Address(c_rarg0, 0), rax);
duke@435 364 __ jmp(exit);
duke@435 365
duke@435 366 __ BIND(is_float);
duke@435 367 __ movflt(Address(c_rarg0, 0), xmm0);
duke@435 368 __ jmp(exit);
duke@435 369
duke@435 370 __ BIND(is_double);
duke@435 371 __ movdbl(Address(c_rarg0, 0), xmm0);
duke@435 372 __ jmp(exit);
duke@435 373
duke@435 374 return start;
duke@435 375 }
duke@435 376
duke@435 377 // Return point for a Java call if there's an exception thrown in
duke@435 378 // Java code. The exception is caught and transformed into a
duke@435 379 // pending exception stored in JavaThread that can be tested from
duke@435 380 // within the VM.
duke@435 381 //
duke@435 382 // Note: Usually the parameters are removed by the callee. In case
duke@435 383 // of an exception crossing an activation frame boundary, that is
duke@435 384 // not the case if the callee is compiled code => need to setup the
duke@435 385 // rsp.
duke@435 386 //
duke@435 387 // rax: exception oop
duke@435 388
duke@435 389 address generate_catch_exception() {
duke@435 390 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 391 address start = __ pc();
duke@435 392
duke@435 393 // same as in generate_call_stub():
duke@435 394 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
duke@435 395 const Address thread (rbp, thread_off * wordSize);
duke@435 396
duke@435 397 #ifdef ASSERT
duke@435 398 // verify that threads correspond
duke@435 399 {
duke@435 400 Label L, S;
duke@435 401 __ cmpq(r15_thread, thread);
duke@435 402 __ jcc(Assembler::notEqual, S);
duke@435 403 __ get_thread(rbx);
duke@435 404 __ cmpq(r15_thread, rbx);
duke@435 405 __ jcc(Assembler::equal, L);
duke@435 406 __ bind(S);
duke@435 407 __ stop("StubRoutines::catch_exception: threads must correspond");
duke@435 408 __ bind(L);
duke@435 409 }
duke@435 410 #endif
duke@435 411
duke@435 412 // set pending exception
duke@435 413 __ verify_oop(rax);
duke@435 414
duke@435 415 __ movq(Address(r15_thread, Thread::pending_exception_offset()), rax);
duke@435 416 __ lea(rscratch1, ExternalAddress((address)__FILE__));
duke@435 417 __ movq(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
duke@435 418 __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__);
duke@435 419
duke@435 420 // complete return to VM
duke@435 421 assert(StubRoutines::_call_stub_return_address != NULL,
duke@435 422 "_call_stub_return_address must have been generated before");
duke@435 423 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
duke@435 424
duke@435 425 return start;
duke@435 426 }
duke@435 427
duke@435 428 // Continuation point for runtime calls returning with a pending
duke@435 429 // exception. The pending exception check happened in the runtime
duke@435 430 // or native call stub. The pending exception in Thread is
duke@435 431 // converted into a Java-level exception.
duke@435 432 //
duke@435 433 // Contract with Java-level exception handlers:
duke@435 434 // rax: exception
duke@435 435 // rdx: throwing pc
duke@435 436 //
duke@435 437 // NOTE: At entry of this stub, exception-pc must be on stack !!
duke@435 438
duke@435 439 address generate_forward_exception() {
duke@435 440 StubCodeMark mark(this, "StubRoutines", "forward exception");
duke@435 441 address start = __ pc();
duke@435 442
duke@435 443 // Upon entry, the sp points to the return address returning into
duke@435 444 // Java (interpreted or compiled) code; i.e., the return address
duke@435 445 // becomes the throwing pc.
duke@435 446 //
duke@435 447 // Arguments pushed before the runtime call are still on the stack
duke@435 448 // but the exception handler will reset the stack pointer ->
duke@435 449 // ignore them. A potential result in registers can be ignored as
duke@435 450 // well.
duke@435 451
duke@435 452 #ifdef ASSERT
duke@435 453 // make sure this code is only executed if there is a pending exception
duke@435 454 {
duke@435 455 Label L;
duke@435 456 __ cmpq(Address(r15_thread, Thread::pending_exception_offset()), (int) NULL);
duke@435 457 __ jcc(Assembler::notEqual, L);
duke@435 458 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 459 __ bind(L);
duke@435 460 }
duke@435 461 #endif
duke@435 462
duke@435 463 // compute exception handler into rbx
duke@435 464 __ movq(c_rarg0, Address(rsp, 0));
duke@435 465 BLOCK_COMMENT("call exception_handler_for_return_address");
duke@435 466 __ call_VM_leaf(CAST_FROM_FN_PTR(address,
duke@435 467 SharedRuntime::exception_handler_for_return_address),
duke@435 468 c_rarg0);
duke@435 469 __ movq(rbx, rax);
duke@435 470
duke@435 471 // setup rax & rdx, remove return address & clear pending exception
duke@435 472 __ popq(rdx);
duke@435 473 __ movq(rax, Address(r15_thread, Thread::pending_exception_offset()));
duke@435 474 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int)NULL_WORD);
duke@435 475
duke@435 476 #ifdef ASSERT
duke@435 477 // make sure exception is set
duke@435 478 {
duke@435 479 Label L;
duke@435 480 __ testq(rax, rax);
duke@435 481 __ jcc(Assembler::notEqual, L);
duke@435 482 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 483 __ bind(L);
duke@435 484 }
duke@435 485 #endif
duke@435 486
duke@435 487 // continue at exception handler (return address removed)
duke@435 488 // rax: exception
duke@435 489 // rbx: exception handler
duke@435 490 // rdx: throwing pc
duke@435 491 __ verify_oop(rax);
duke@435 492 __ jmp(rbx);
duke@435 493
duke@435 494 return start;
duke@435 495 }
duke@435 496
duke@435 497 // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
duke@435 498 //
duke@435 499 // Arguments :
duke@435 500 // c_rarg0: exchange_value
duke@435 501 // c_rarg0: dest
duke@435 502 //
duke@435 503 // Result:
duke@435 504 // *dest <- ex, return (orig *dest)
duke@435 505 address generate_atomic_xchg() {
duke@435 506 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 507 address start = __ pc();
duke@435 508
duke@435 509 __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
duke@435 510 __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
duke@435 511 __ ret(0);
duke@435 512
duke@435 513 return start;
duke@435 514 }
duke@435 515
duke@435 516 // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
duke@435 517 //
duke@435 518 // Arguments :
duke@435 519 // c_rarg0: exchange_value
duke@435 520 // c_rarg1: dest
duke@435 521 //
duke@435 522 // Result:
duke@435 523 // *dest <- ex, return (orig *dest)
duke@435 524 address generate_atomic_xchg_ptr() {
duke@435 525 StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
duke@435 526 address start = __ pc();
duke@435 527
duke@435 528 __ movq(rax, c_rarg0); // Copy to eax we need a return value anyhow
duke@435 529 __ xchgq(rax, Address(c_rarg1, 0)); // automatic LOCK
duke@435 530 __ ret(0);
duke@435 531
duke@435 532 return start;
duke@435 533 }
duke@435 534
duke@435 535 // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
duke@435 536 // jint compare_value)
duke@435 537 //
duke@435 538 // Arguments :
duke@435 539 // c_rarg0: exchange_value
duke@435 540 // c_rarg1: dest
duke@435 541 // c_rarg2: compare_value
duke@435 542 //
duke@435 543 // Result:
duke@435 544 // if ( compare_value == *dest ) {
duke@435 545 // *dest = exchange_value
duke@435 546 // return compare_value;
duke@435 547 // else
duke@435 548 // return *dest;
duke@435 549 address generate_atomic_cmpxchg() {
duke@435 550 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
duke@435 551 address start = __ pc();
duke@435 552
duke@435 553 __ movl(rax, c_rarg2);
duke@435 554 if ( os::is_MP() ) __ lock();
duke@435 555 __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
duke@435 556 __ ret(0);
duke@435 557
duke@435 558 return start;
duke@435 559 }
duke@435 560
duke@435 561 // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
duke@435 562 // volatile jlong* dest,
duke@435 563 // jlong compare_value)
duke@435 564 // Arguments :
duke@435 565 // c_rarg0: exchange_value
duke@435 566 // c_rarg1: dest
duke@435 567 // c_rarg2: compare_value
duke@435 568 //
duke@435 569 // Result:
duke@435 570 // if ( compare_value == *dest ) {
duke@435 571 // *dest = exchange_value
duke@435 572 // return compare_value;
duke@435 573 // else
duke@435 574 // return *dest;
duke@435 575 address generate_atomic_cmpxchg_long() {
duke@435 576 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
duke@435 577 address start = __ pc();
duke@435 578
duke@435 579 __ movq(rax, c_rarg2);
duke@435 580 if ( os::is_MP() ) __ lock();
duke@435 581 __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
duke@435 582 __ ret(0);
duke@435 583
duke@435 584 return start;
duke@435 585 }
duke@435 586
duke@435 587 // Support for jint atomic::add(jint add_value, volatile jint* dest)
duke@435 588 //
duke@435 589 // Arguments :
duke@435 590 // c_rarg0: add_value
duke@435 591 // c_rarg1: dest
duke@435 592 //
duke@435 593 // Result:
duke@435 594 // *dest += add_value
duke@435 595 // return *dest;
duke@435 596 address generate_atomic_add() {
duke@435 597 StubCodeMark mark(this, "StubRoutines", "atomic_add");
duke@435 598 address start = __ pc();
duke@435 599
duke@435 600 __ movl(rax, c_rarg0);
duke@435 601 if ( os::is_MP() ) __ lock();
duke@435 602 __ xaddl(Address(c_rarg1, 0), c_rarg0);
duke@435 603 __ addl(rax, c_rarg0);
duke@435 604 __ ret(0);
duke@435 605
duke@435 606 return start;
duke@435 607 }
duke@435 608
duke@435 609 // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
duke@435 610 //
duke@435 611 // Arguments :
duke@435 612 // c_rarg0: add_value
duke@435 613 // c_rarg1: dest
duke@435 614 //
duke@435 615 // Result:
duke@435 616 // *dest += add_value
duke@435 617 // return *dest;
duke@435 618 address generate_atomic_add_ptr() {
duke@435 619 StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
duke@435 620 address start = __ pc();
duke@435 621
duke@435 622 __ movq(rax, c_rarg0); // Copy to eax we need a return value anyhow
duke@435 623 if ( os::is_MP() ) __ lock();
duke@435 624 __ xaddl(Address(c_rarg1, 0), c_rarg0);
duke@435 625 __ addl(rax, c_rarg0);
duke@435 626 __ ret(0);
duke@435 627
duke@435 628 return start;
duke@435 629 }
duke@435 630
duke@435 631 // Support for intptr_t OrderAccess::fence()
duke@435 632 //
duke@435 633 // Arguments :
duke@435 634 //
duke@435 635 // Result:
duke@435 636 address generate_orderaccess_fence() {
duke@435 637 StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
duke@435 638 address start = __ pc();
duke@435 639 __ mfence();
duke@435 640 __ ret(0);
duke@435 641
duke@435 642 return start;
duke@435 643 }
duke@435 644
duke@435 645 // Support for intptr_t get_previous_fp()
duke@435 646 //
duke@435 647 // This routine is used to find the previous frame pointer for the
duke@435 648 // caller (current_frame_guess). This is used as part of debugging
duke@435 649 // ps() is seemingly lost trying to find frames.
duke@435 650 // This code assumes that caller current_frame_guess) has a frame.
duke@435 651 address generate_get_previous_fp() {
duke@435 652 StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
duke@435 653 const Address old_fp(rbp, 0);
duke@435 654 const Address older_fp(rax, 0);
duke@435 655 address start = __ pc();
duke@435 656
duke@435 657 __ enter();
duke@435 658 __ movq(rax, old_fp); // callers fp
duke@435 659 __ movq(rax, older_fp); // the frame for ps()
duke@435 660 __ popq(rbp);
duke@435 661 __ ret(0);
duke@435 662
duke@435 663 return start;
duke@435 664 }
duke@435 665
duke@435 666 //----------------------------------------------------------------------------------------------------
duke@435 667 // Support for void verify_mxcsr()
duke@435 668 //
duke@435 669 // This routine is used with -Xcheck:jni to verify that native
duke@435 670 // JNI code does not return to Java code without restoring the
duke@435 671 // MXCSR register to our expected state.
duke@435 672
duke@435 673 address generate_verify_mxcsr() {
duke@435 674 StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
duke@435 675 address start = __ pc();
duke@435 676
duke@435 677 const Address mxcsr_save(rsp, 0);
duke@435 678
duke@435 679 if (CheckJNICalls) {
duke@435 680 Label ok_ret;
duke@435 681 __ pushq(rax);
duke@435 682 __ subq(rsp, wordSize); // allocate a temp location
duke@435 683 __ stmxcsr(mxcsr_save);
duke@435 684 __ movl(rax, mxcsr_save);
duke@435 685 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
duke@435 686 __ cmpl(rax, *(int *)(StubRoutines::amd64::mxcsr_std()));
duke@435 687 __ jcc(Assembler::equal, ok_ret);
duke@435 688
duke@435 689 __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
duke@435 690
duke@435 691 __ ldmxcsr(ExternalAddress(StubRoutines::amd64::mxcsr_std()));
duke@435 692
duke@435 693 __ bind(ok_ret);
duke@435 694 __ addq(rsp, wordSize);
duke@435 695 __ popq(rax);
duke@435 696 }
duke@435 697
duke@435 698 __ ret(0);
duke@435 699
duke@435 700 return start;
duke@435 701 }
duke@435 702
duke@435 703 address generate_f2i_fixup() {
duke@435 704 StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
duke@435 705 Address inout(rsp, 5 * wordSize); // return address + 4 saves
duke@435 706
duke@435 707 address start = __ pc();
duke@435 708
duke@435 709 Label L;
duke@435 710
duke@435 711 __ pushq(rax);
duke@435 712 __ pushq(c_rarg3);
duke@435 713 __ pushq(c_rarg2);
duke@435 714 __ pushq(c_rarg1);
duke@435 715
duke@435 716 __ movl(rax, 0x7f800000);
duke@435 717 __ xorl(c_rarg3, c_rarg3);
duke@435 718 __ movl(c_rarg2, inout);
duke@435 719 __ movl(c_rarg1, c_rarg2);
duke@435 720 __ andl(c_rarg1, 0x7fffffff);
duke@435 721 __ cmpl(rax, c_rarg1); // NaN? -> 0
duke@435 722 __ jcc(Assembler::negative, L);
duke@435 723 __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
duke@435 724 __ movl(c_rarg3, 0x80000000);
duke@435 725 __ movl(rax, 0x7fffffff);
duke@435 726 __ cmovl(Assembler::positive, c_rarg3, rax);
duke@435 727
duke@435 728 __ bind(L);
duke@435 729 __ movq(inout, c_rarg3);
duke@435 730
duke@435 731 __ popq(c_rarg1);
duke@435 732 __ popq(c_rarg2);
duke@435 733 __ popq(c_rarg3);
duke@435 734 __ popq(rax);
duke@435 735
duke@435 736 __ ret(0);
duke@435 737
duke@435 738 return start;
duke@435 739 }
duke@435 740
duke@435 741 address generate_f2l_fixup() {
duke@435 742 StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
duke@435 743 Address inout(rsp, 5 * wordSize); // return address + 4 saves
duke@435 744 address start = __ pc();
duke@435 745
duke@435 746 Label L;
duke@435 747
duke@435 748 __ pushq(rax);
duke@435 749 __ pushq(c_rarg3);
duke@435 750 __ pushq(c_rarg2);
duke@435 751 __ pushq(c_rarg1);
duke@435 752
duke@435 753 __ movl(rax, 0x7f800000);
duke@435 754 __ xorl(c_rarg3, c_rarg3);
duke@435 755 __ movl(c_rarg2, inout);
duke@435 756 __ movl(c_rarg1, c_rarg2);
duke@435 757 __ andl(c_rarg1, 0x7fffffff);
duke@435 758 __ cmpl(rax, c_rarg1); // NaN? -> 0
duke@435 759 __ jcc(Assembler::negative, L);
duke@435 760 __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
duke@435 761 __ mov64(c_rarg3, 0x8000000000000000);
duke@435 762 __ mov64(rax, 0x7fffffffffffffff);
duke@435 763 __ cmovq(Assembler::positive, c_rarg3, rax);
duke@435 764
duke@435 765 __ bind(L);
duke@435 766 __ movq(inout, c_rarg3);
duke@435 767
duke@435 768 __ popq(c_rarg1);
duke@435 769 __ popq(c_rarg2);
duke@435 770 __ popq(c_rarg3);
duke@435 771 __ popq(rax);
duke@435 772
duke@435 773 __ ret(0);
duke@435 774
duke@435 775 return start;
duke@435 776 }
duke@435 777
duke@435 778 address generate_d2i_fixup() {
duke@435 779 StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
duke@435 780 Address inout(rsp, 6 * wordSize); // return address + 5 saves
duke@435 781
duke@435 782 address start = __ pc();
duke@435 783
duke@435 784 Label L;
duke@435 785
duke@435 786 __ pushq(rax);
duke@435 787 __ pushq(c_rarg3);
duke@435 788 __ pushq(c_rarg2);
duke@435 789 __ pushq(c_rarg1);
duke@435 790 __ pushq(c_rarg0);
duke@435 791
duke@435 792 __ movl(rax, 0x7ff00000);
duke@435 793 __ movq(c_rarg2, inout);
duke@435 794 __ movl(c_rarg3, c_rarg2);
duke@435 795 __ movq(c_rarg1, c_rarg2);
duke@435 796 __ movq(c_rarg0, c_rarg2);
duke@435 797 __ negl(c_rarg3);
duke@435 798 __ shrq(c_rarg1, 0x20);
duke@435 799 __ orl(c_rarg3, c_rarg2);
duke@435 800 __ andl(c_rarg1, 0x7fffffff);
duke@435 801 __ xorl(c_rarg2, c_rarg2);
duke@435 802 __ shrl(c_rarg3, 0x1f);
duke@435 803 __ orl(c_rarg1, c_rarg3);
duke@435 804 __ cmpl(rax, c_rarg1);
duke@435 805 __ jcc(Assembler::negative, L); // NaN -> 0
duke@435 806 __ testq(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
duke@435 807 __ movl(c_rarg2, 0x80000000);
duke@435 808 __ movl(rax, 0x7fffffff);
duke@435 809 __ cmovl(Assembler::positive, c_rarg2, rax);
duke@435 810
duke@435 811 __ bind(L);
duke@435 812 __ movq(inout, c_rarg2);
duke@435 813
duke@435 814 __ popq(c_rarg0);
duke@435 815 __ popq(c_rarg1);
duke@435 816 __ popq(c_rarg2);
duke@435 817 __ popq(c_rarg3);
duke@435 818 __ popq(rax);
duke@435 819
duke@435 820 __ ret(0);
duke@435 821
duke@435 822 return start;
duke@435 823 }
duke@435 824
duke@435 825 address generate_d2l_fixup() {
duke@435 826 StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
duke@435 827 Address inout(rsp, 6 * wordSize); // return address + 5 saves
duke@435 828
duke@435 829 address start = __ pc();
duke@435 830
duke@435 831 Label L;
duke@435 832
duke@435 833 __ pushq(rax);
duke@435 834 __ pushq(c_rarg3);
duke@435 835 __ pushq(c_rarg2);
duke@435 836 __ pushq(c_rarg1);
duke@435 837 __ pushq(c_rarg0);
duke@435 838
duke@435 839 __ movl(rax, 0x7ff00000);
duke@435 840 __ movq(c_rarg2, inout);
duke@435 841 __ movl(c_rarg3, c_rarg2);
duke@435 842 __ movq(c_rarg1, c_rarg2);
duke@435 843 __ movq(c_rarg0, c_rarg2);
duke@435 844 __ negl(c_rarg3);
duke@435 845 __ shrq(c_rarg1, 0x20);
duke@435 846 __ orl(c_rarg3, c_rarg2);
duke@435 847 __ andl(c_rarg1, 0x7fffffff);
duke@435 848 __ xorl(c_rarg2, c_rarg2);
duke@435 849 __ shrl(c_rarg3, 0x1f);
duke@435 850 __ orl(c_rarg1, c_rarg3);
duke@435 851 __ cmpl(rax, c_rarg1);
duke@435 852 __ jcc(Assembler::negative, L); // NaN -> 0
duke@435 853 __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
duke@435 854 __ mov64(c_rarg2, 0x8000000000000000);
duke@435 855 __ mov64(rax, 0x7fffffffffffffff);
duke@435 856 __ cmovq(Assembler::positive, c_rarg2, rax);
duke@435 857
duke@435 858 __ bind(L);
duke@435 859 __ movq(inout, c_rarg2);
duke@435 860
duke@435 861 __ popq(c_rarg0);
duke@435 862 __ popq(c_rarg1);
duke@435 863 __ popq(c_rarg2);
duke@435 864 __ popq(c_rarg3);
duke@435 865 __ popq(rax);
duke@435 866
duke@435 867 __ ret(0);
duke@435 868
duke@435 869 return start;
duke@435 870 }
duke@435 871
duke@435 872 address generate_fp_mask(const char *stub_name, int64_t mask) {
duke@435 873 StubCodeMark mark(this, "StubRoutines", stub_name);
duke@435 874
duke@435 875 __ align(16);
duke@435 876 address start = __ pc();
duke@435 877
duke@435 878 __ emit_data64( mask, relocInfo::none );
duke@435 879 __ emit_data64( mask, relocInfo::none );
duke@435 880
duke@435 881 return start;
duke@435 882 }
duke@435 883
duke@435 884 // The following routine generates a subroutine to throw an
duke@435 885 // asynchronous UnknownError when an unsafe access gets a fault that
duke@435 886 // could not be reasonably prevented by the programmer. (Example:
duke@435 887 // SIGBUS/OBJERR.)
duke@435 888 address generate_handler_for_unsafe_access() {
duke@435 889 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 890 address start = __ pc();
duke@435 891
duke@435 892 __ pushq(0); // hole for return address-to-be
duke@435 893 __ pushaq(); // push registers
duke@435 894 Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
duke@435 895
duke@435 896 __ subq(rsp, frame::arg_reg_save_area_bytes);
duke@435 897 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 898 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
duke@435 899 __ addq(rsp, frame::arg_reg_save_area_bytes);
duke@435 900
duke@435 901 __ movq(next_pc, rax); // stuff next address
duke@435 902 __ popaq();
duke@435 903 __ ret(0); // jump to next address
duke@435 904
duke@435 905 return start;
duke@435 906 }
duke@435 907
duke@435 908 // Non-destructive plausibility checks for oops
duke@435 909 //
duke@435 910 // Arguments:
duke@435 911 // all args on stack!
duke@435 912 //
duke@435 913 // Stack after saving c_rarg3:
duke@435 914 // [tos + 0]: saved c_rarg3
duke@435 915 // [tos + 1]: saved c_rarg2
kvn@559 916 // [tos + 2]: saved r12 (several TemplateTable methods use it)
kvn@559 917 // [tos + 3]: saved flags
kvn@559 918 // [tos + 4]: return address
kvn@559 919 // * [tos + 5]: error message (char*)
kvn@559 920 // * [tos + 6]: object to verify (oop)
kvn@559 921 // * [tos + 7]: saved rax - saved by caller and bashed
duke@435 922 // * = popped on exit
duke@435 923 address generate_verify_oop() {
duke@435 924 StubCodeMark mark(this, "StubRoutines", "verify_oop");
duke@435 925 address start = __ pc();
duke@435 926
duke@435 927 Label exit, error;
duke@435 928
duke@435 929 __ pushfq();
duke@435 930 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
duke@435 931
kvn@559 932 __ pushq(r12);
kvn@559 933
duke@435 934 // save c_rarg2 and c_rarg3
duke@435 935 __ pushq(c_rarg2);
duke@435 936 __ pushq(c_rarg3);
duke@435 937
kvn@559 938 enum {
kvn@559 939 // After previous pushes.
kvn@559 940 oop_to_verify = 6 * wordSize,
kvn@559 941 saved_rax = 7 * wordSize,
kvn@559 942
kvn@559 943 // Before the call to MacroAssembler::debug(), see below.
kvn@559 944 return_addr = 16 * wordSize,
kvn@559 945 error_msg = 17 * wordSize
kvn@559 946 };
kvn@559 947
duke@435 948 // get object
kvn@559 949 __ movq(rax, Address(rsp, oop_to_verify));
duke@435 950
duke@435 951 // make sure object is 'reasonable'
duke@435 952 __ testq(rax, rax);
duke@435 953 __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
duke@435 954 // Check if the oop is in the right area of memory
duke@435 955 __ movq(c_rarg2, rax);
duke@435 956 __ movptr(c_rarg3, (int64_t) Universe::verify_oop_mask());
duke@435 957 __ andq(c_rarg2, c_rarg3);
duke@435 958 __ movptr(c_rarg3, (int64_t) Universe::verify_oop_bits());
duke@435 959 __ cmpq(c_rarg2, c_rarg3);
duke@435 960 __ jcc(Assembler::notZero, error);
duke@435 961
kvn@559 962 // set r12 to heapbase for load_klass()
kvn@559 963 __ reinit_heapbase();
kvn@559 964
duke@435 965 // make sure klass is 'reasonable'
coleenp@548 966 __ load_klass(rax, rax); // get klass
duke@435 967 __ testq(rax, rax);
duke@435 968 __ jcc(Assembler::zero, error); // if klass is NULL it is broken
duke@435 969 // Check if the klass is in the right area of memory
duke@435 970 __ movq(c_rarg2, rax);
duke@435 971 __ movptr(c_rarg3, (int64_t) Universe::verify_klass_mask());
duke@435 972 __ andq(c_rarg2, c_rarg3);
duke@435 973 __ movptr(c_rarg3, (int64_t) Universe::verify_klass_bits());
duke@435 974 __ cmpq(c_rarg2, c_rarg3);
duke@435 975 __ jcc(Assembler::notZero, error);
duke@435 976
duke@435 977 // make sure klass' klass is 'reasonable'
coleenp@548 978 __ load_klass(rax, rax);
duke@435 979 __ testq(rax, rax);
duke@435 980 __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
duke@435 981 // Check if the klass' klass is in the right area of memory
duke@435 982 __ movptr(c_rarg3, (int64_t) Universe::verify_klass_mask());
duke@435 983 __ andq(rax, c_rarg3);
duke@435 984 __ movptr(c_rarg3, (int64_t) Universe::verify_klass_bits());
duke@435 985 __ cmpq(rax, c_rarg3);
duke@435 986 __ jcc(Assembler::notZero, error);
duke@435 987
duke@435 988 // return if everything seems ok
duke@435 989 __ bind(exit);
kvn@559 990 __ movq(rax, Address(rsp, saved_rax)); // get saved rax back
kvn@559 991 __ popq(c_rarg3); // restore c_rarg3
kvn@559 992 __ popq(c_rarg2); // restore c_rarg2
kvn@559 993 __ popq(r12); // restore r12
duke@435 994 __ popfq(); // restore flags
duke@435 995 __ ret(3 * wordSize); // pop caller saved stuff
duke@435 996
duke@435 997 // handle errors
duke@435 998 __ bind(error);
kvn@559 999 __ movq(rax, Address(rsp, saved_rax)); // get saved rax back
kvn@559 1000 __ popq(c_rarg3); // get saved c_rarg3 back
kvn@559 1001 __ popq(c_rarg2); // get saved c_rarg2 back
kvn@559 1002 __ popq(r12); // get saved r12 back
duke@435 1003 __ popfq(); // get saved flags off stack --
duke@435 1004 // will be ignored
duke@435 1005
duke@435 1006 __ pushaq(); // push registers
duke@435 1007 // (rip is already
duke@435 1008 // already pushed)
kvn@559 1009 // debug(char* msg, int64_t pc, int64_t regs[])
duke@435 1010 // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
duke@435 1011 // pushed all the registers, so now the stack looks like:
duke@435 1012 // [tos + 0] 16 saved registers
duke@435 1013 // [tos + 16] return address
kvn@559 1014 // * [tos + 17] error message (char*)
kvn@559 1015 // * [tos + 18] object to verify (oop)
kvn@559 1016 // * [tos + 19] saved rax - saved by caller and bashed
kvn@559 1017 // * = popped on exit
kvn@559 1018
kvn@559 1019 __ movq(c_rarg0, Address(rsp, error_msg)); // pass address of error message
kvn@559 1020 __ movq(c_rarg1, Address(rsp, return_addr)); // pass return address
kvn@559 1021 __ movq(c_rarg2, rsp); // pass address of regs on stack
duke@435 1022 __ movq(r12, rsp); // remember rsp
duke@435 1023 __ subq(rsp, frame::arg_reg_save_area_bytes);// windows
duke@435 1024 __ andq(rsp, -16); // align stack as required by ABI
duke@435 1025 BLOCK_COMMENT("call MacroAssembler::debug");
duke@435 1026 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug)));
duke@435 1027 __ movq(rsp, r12); // restore rsp
kvn@559 1028 __ popaq(); // pop registers (includes r12)
duke@435 1029 __ ret(3 * wordSize); // pop caller saved stuff
duke@435 1030
duke@435 1031 return start;
duke@435 1032 }
duke@435 1033
duke@435 1034 static address disjoint_byte_copy_entry;
duke@435 1035 static address disjoint_short_copy_entry;
duke@435 1036 static address disjoint_int_copy_entry;
duke@435 1037 static address disjoint_long_copy_entry;
duke@435 1038 static address disjoint_oop_copy_entry;
duke@435 1039
duke@435 1040 static address byte_copy_entry;
duke@435 1041 static address short_copy_entry;
duke@435 1042 static address int_copy_entry;
duke@435 1043 static address long_copy_entry;
duke@435 1044 static address oop_copy_entry;
duke@435 1045
duke@435 1046 static address checkcast_copy_entry;
duke@435 1047
duke@435 1048 //
duke@435 1049 // Verify that a register contains clean 32-bits positive value
duke@435 1050 // (high 32-bits are 0) so it could be used in 64-bits shifts.
duke@435 1051 //
duke@435 1052 // Input:
duke@435 1053 // Rint - 32-bits value
duke@435 1054 // Rtmp - scratch
duke@435 1055 //
duke@435 1056 void assert_clean_int(Register Rint, Register Rtmp) {
duke@435 1057 #ifdef ASSERT
duke@435 1058 Label L;
duke@435 1059 assert_different_registers(Rtmp, Rint);
duke@435 1060 __ movslq(Rtmp, Rint);
duke@435 1061 __ cmpq(Rtmp, Rint);
kvn@559 1062 __ jcc(Assembler::equal, L);
duke@435 1063 __ stop("high 32-bits of int value are not 0");
duke@435 1064 __ bind(L);
duke@435 1065 #endif
duke@435 1066 }
duke@435 1067
duke@435 1068 // Generate overlap test for array copy stubs
duke@435 1069 //
duke@435 1070 // Input:
duke@435 1071 // c_rarg0 - from
duke@435 1072 // c_rarg1 - to
duke@435 1073 // c_rarg2 - element count
duke@435 1074 //
duke@435 1075 // Output:
duke@435 1076 // rax - &from[element count - 1]
duke@435 1077 //
duke@435 1078 void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
duke@435 1079 assert(no_overlap_target != NULL, "must be generated");
duke@435 1080 array_overlap_test(no_overlap_target, NULL, sf);
duke@435 1081 }
duke@435 1082 void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
duke@435 1083 array_overlap_test(NULL, &L_no_overlap, sf);
duke@435 1084 }
duke@435 1085 void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
duke@435 1086 const Register from = c_rarg0;
duke@435 1087 const Register to = c_rarg1;
duke@435 1088 const Register count = c_rarg2;
duke@435 1089 const Register end_from = rax;
duke@435 1090
duke@435 1091 __ cmpq(to, from);
duke@435 1092 __ leaq(end_from, Address(from, count, sf, 0));
duke@435 1093 if (NOLp == NULL) {
duke@435 1094 ExternalAddress no_overlap(no_overlap_target);
duke@435 1095 __ jump_cc(Assembler::belowEqual, no_overlap);
duke@435 1096 __ cmpq(to, end_from);
duke@435 1097 __ jump_cc(Assembler::aboveEqual, no_overlap);
duke@435 1098 } else {
duke@435 1099 __ jcc(Assembler::belowEqual, (*NOLp));
duke@435 1100 __ cmpq(to, end_from);
duke@435 1101 __ jcc(Assembler::aboveEqual, (*NOLp));
duke@435 1102 }
duke@435 1103 }
duke@435 1104
duke@435 1105 // Shuffle first three arg regs on Windows into Linux/Solaris locations.
duke@435 1106 //
duke@435 1107 // Outputs:
duke@435 1108 // rdi - rcx
duke@435 1109 // rsi - rdx
duke@435 1110 // rdx - r8
duke@435 1111 // rcx - r9
duke@435 1112 //
duke@435 1113 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
duke@435 1114 // are non-volatile. r9 and r10 should not be used by the caller.
duke@435 1115 //
duke@435 1116 void setup_arg_regs(int nargs = 3) {
duke@435 1117 const Register saved_rdi = r9;
duke@435 1118 const Register saved_rsi = r10;
duke@435 1119 assert(nargs == 3 || nargs == 4, "else fix");
duke@435 1120 #ifdef _WIN64
duke@435 1121 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
duke@435 1122 "unexpected argument registers");
duke@435 1123 if (nargs >= 4)
duke@435 1124 __ movq(rax, r9); // r9 is also saved_rdi
duke@435 1125 __ movq(saved_rdi, rdi);
duke@435 1126 __ movq(saved_rsi, rsi);
duke@435 1127 __ movq(rdi, rcx); // c_rarg0
duke@435 1128 __ movq(rsi, rdx); // c_rarg1
duke@435 1129 __ movq(rdx, r8); // c_rarg2
duke@435 1130 if (nargs >= 4)
duke@435 1131 __ movq(rcx, rax); // c_rarg3 (via rax)
duke@435 1132 #else
duke@435 1133 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
duke@435 1134 "unexpected argument registers");
duke@435 1135 #endif
duke@435 1136 }
duke@435 1137
duke@435 1138 void restore_arg_regs() {
duke@435 1139 const Register saved_rdi = r9;
duke@435 1140 const Register saved_rsi = r10;
duke@435 1141 #ifdef _WIN64
duke@435 1142 __ movq(rdi, saved_rdi);
duke@435 1143 __ movq(rsi, saved_rsi);
duke@435 1144 #endif
duke@435 1145 }
duke@435 1146
duke@435 1147 // Generate code for an array write pre barrier
duke@435 1148 //
duke@435 1149 // addr - starting address
duke@435 1150 // count - element count
duke@435 1151 //
duke@435 1152 // Destroy no registers!
duke@435 1153 //
duke@435 1154 void gen_write_ref_array_pre_barrier(Register addr, Register count) {
duke@435 1155 #if 0 // G1 - only
duke@435 1156 assert_different_registers(addr, c_rarg1);
duke@435 1157 assert_different_registers(count, c_rarg0);
duke@435 1158 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1159 switch (bs->kind()) {
duke@435 1160 case BarrierSet::G1SATBCT:
duke@435 1161 case BarrierSet::G1SATBCTLogging:
duke@435 1162 {
duke@435 1163 __ pushaq(); // push registers
duke@435 1164 __ movq(c_rarg0, addr);
duke@435 1165 __ movq(c_rarg1, count);
duke@435 1166 __ call(RuntimeAddress(BarrierSet::static_write_ref_array_pre));
duke@435 1167 __ popaq();
duke@435 1168 }
duke@435 1169 break;
duke@435 1170 case BarrierSet::CardTableModRef:
duke@435 1171 case BarrierSet::CardTableExtension:
duke@435 1172 case BarrierSet::ModRef:
duke@435 1173 break;
duke@435 1174 default :
duke@435 1175 ShouldNotReachHere();
duke@435 1176
duke@435 1177 }
duke@435 1178 #endif // 0 G1 - only
duke@435 1179 }
duke@435 1180
duke@435 1181 //
duke@435 1182 // Generate code for an array write post barrier
duke@435 1183 //
duke@435 1184 // Input:
duke@435 1185 // start - register containing starting address of destination array
duke@435 1186 // end - register containing ending address of destination array
duke@435 1187 // scratch - scratch register
duke@435 1188 //
duke@435 1189 // The input registers are overwritten.
duke@435 1190 // The ending address is inclusive.
duke@435 1191 void gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
duke@435 1192 assert_different_registers(start, end, scratch);
duke@435 1193 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1194 switch (bs->kind()) {
duke@435 1195 #if 0 // G1 - only
duke@435 1196 case BarrierSet::G1SATBCT:
duke@435 1197 case BarrierSet::G1SATBCTLogging:
duke@435 1198
duke@435 1199 {
duke@435 1200 __ pushaq(); // push registers (overkill)
duke@435 1201 // must compute element count unless barrier set interface is changed (other platforms supply count)
duke@435 1202 assert_different_registers(start, end, scratch);
duke@435 1203 __ leaq(scratch, Address(end, wordSize));
duke@435 1204 __ subq(scratch, start);
duke@435 1205 __ shrq(scratch, LogBytesPerWord);
duke@435 1206 __ movq(c_rarg0, start);
duke@435 1207 __ movq(c_rarg1, scratch);
duke@435 1208 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
duke@435 1209 __ popaq();
duke@435 1210 }
duke@435 1211 break;
duke@435 1212 #endif // 0 G1 - only
duke@435 1213 case BarrierSet::CardTableModRef:
duke@435 1214 case BarrierSet::CardTableExtension:
duke@435 1215 {
duke@435 1216 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 1217 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 1218
duke@435 1219 Label L_loop;
duke@435 1220
duke@435 1221 __ shrq(start, CardTableModRefBS::card_shift);
duke@435 1222 __ shrq(end, CardTableModRefBS::card_shift);
duke@435 1223 __ subq(end, start); // number of bytes to copy
duke@435 1224
duke@435 1225 const Register count = end; // 'end' register contains bytes count now
duke@435 1226 __ lea(scratch, ExternalAddress((address)ct->byte_map_base));
duke@435 1227 __ addq(start, scratch);
duke@435 1228 __ BIND(L_loop);
duke@435 1229 __ movb(Address(start, count, Address::times_1), 0);
duke@435 1230 __ decrementq(count);
duke@435 1231 __ jcc(Assembler::greaterEqual, L_loop);
duke@435 1232 }
duke@435 1233 }
duke@435 1234 }
duke@435 1235
duke@435 1236 // Copy big chunks forward
duke@435 1237 //
duke@435 1238 // Inputs:
duke@435 1239 // end_from - source arrays end address
duke@435 1240 // end_to - destination array end address
duke@435 1241 // qword_count - 64-bits element count, negative
duke@435 1242 // to - scratch
duke@435 1243 // L_copy_32_bytes - entry label
duke@435 1244 // L_copy_8_bytes - exit label
duke@435 1245 //
duke@435 1246 void copy_32_bytes_forward(Register end_from, Register end_to,
duke@435 1247 Register qword_count, Register to,
duke@435 1248 Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
duke@435 1249 DEBUG_ONLY(__ stop("enter at entry label, not here"));
duke@435 1250 Label L_loop;
duke@435 1251 __ align(16);
duke@435 1252 __ BIND(L_loop);
duke@435 1253 __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
duke@435 1254 __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
duke@435 1255 __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
duke@435 1256 __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
duke@435 1257 __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
duke@435 1258 __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
duke@435 1259 __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
duke@435 1260 __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
duke@435 1261 __ BIND(L_copy_32_bytes);
duke@435 1262 __ addq(qword_count, 4);
duke@435 1263 __ jcc(Assembler::lessEqual, L_loop);
duke@435 1264 __ subq(qword_count, 4);
duke@435 1265 __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
duke@435 1266 }
duke@435 1267
duke@435 1268
duke@435 1269 // Copy big chunks backward
duke@435 1270 //
duke@435 1271 // Inputs:
duke@435 1272 // from - source arrays address
duke@435 1273 // dest - destination array address
duke@435 1274 // qword_count - 64-bits element count
duke@435 1275 // to - scratch
duke@435 1276 // L_copy_32_bytes - entry label
duke@435 1277 // L_copy_8_bytes - exit label
duke@435 1278 //
duke@435 1279 void copy_32_bytes_backward(Register from, Register dest,
duke@435 1280 Register qword_count, Register to,
duke@435 1281 Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
duke@435 1282 DEBUG_ONLY(__ stop("enter at entry label, not here"));
duke@435 1283 Label L_loop;
duke@435 1284 __ align(16);
duke@435 1285 __ BIND(L_loop);
duke@435 1286 __ movq(to, Address(from, qword_count, Address::times_8, 24));
duke@435 1287 __ movq(Address(dest, qword_count, Address::times_8, 24), to);
duke@435 1288 __ movq(to, Address(from, qword_count, Address::times_8, 16));
duke@435 1289 __ movq(Address(dest, qword_count, Address::times_8, 16), to);
duke@435 1290 __ movq(to, Address(from, qword_count, Address::times_8, 8));
duke@435 1291 __ movq(Address(dest, qword_count, Address::times_8, 8), to);
duke@435 1292 __ movq(to, Address(from, qword_count, Address::times_8, 0));
duke@435 1293 __ movq(Address(dest, qword_count, Address::times_8, 0), to);
duke@435 1294 __ BIND(L_copy_32_bytes);
duke@435 1295 __ subq(qword_count, 4);
duke@435 1296 __ jcc(Assembler::greaterEqual, L_loop);
duke@435 1297 __ addq(qword_count, 4);
duke@435 1298 __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
duke@435 1299 }
duke@435 1300
duke@435 1301
duke@435 1302 // Arguments:
duke@435 1303 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1304 // ignored
duke@435 1305 // name - stub name string
duke@435 1306 //
duke@435 1307 // Inputs:
duke@435 1308 // c_rarg0 - source array address
duke@435 1309 // c_rarg1 - destination array address
duke@435 1310 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1311 //
duke@435 1312 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
duke@435 1313 // we let the hardware handle it. The one to eight bytes within words,
duke@435 1314 // dwords or qwords that span cache line boundaries will still be loaded
duke@435 1315 // and stored atomically.
duke@435 1316 //
duke@435 1317 // Side Effects:
duke@435 1318 // disjoint_byte_copy_entry is set to the no-overlap entry point
duke@435 1319 // used by generate_conjoint_byte_copy().
duke@435 1320 //
duke@435 1321 address generate_disjoint_byte_copy(bool aligned, const char *name) {
duke@435 1322 __ align(CodeEntryAlignment);
duke@435 1323 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1324 address start = __ pc();
duke@435 1325
duke@435 1326 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
duke@435 1327 Label L_copy_byte, L_exit;
duke@435 1328 const Register from = rdi; // source array address
duke@435 1329 const Register to = rsi; // destination array address
duke@435 1330 const Register count = rdx; // elements count
duke@435 1331 const Register byte_count = rcx;
duke@435 1332 const Register qword_count = count;
duke@435 1333 const Register end_from = from; // source array end address
duke@435 1334 const Register end_to = to; // destination array end address
duke@435 1335 // End pointers are inclusive, and if count is not zero they point
duke@435 1336 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1337
duke@435 1338 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1339 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1340
duke@435 1341 disjoint_byte_copy_entry = __ pc();
duke@435 1342 BLOCK_COMMENT("Entry:");
duke@435 1343 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1344
duke@435 1345 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1346 // r9 and r10 may be used to save non-volatile registers
duke@435 1347
duke@435 1348 // 'from', 'to' and 'count' are now valid
duke@435 1349 __ movq(byte_count, count);
duke@435 1350 __ shrq(count, 3); // count => qword_count
duke@435 1351
duke@435 1352 // Copy from low to high addresses. Use 'to' as scratch.
duke@435 1353 __ leaq(end_from, Address(from, qword_count, Address::times_8, -8));
duke@435 1354 __ leaq(end_to, Address(to, qword_count, Address::times_8, -8));
duke@435 1355 __ negq(qword_count); // make the count negative
duke@435 1356 __ jmp(L_copy_32_bytes);
duke@435 1357
duke@435 1358 // Copy trailing qwords
duke@435 1359 __ BIND(L_copy_8_bytes);
duke@435 1360 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1361 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
duke@435 1362 __ incrementq(qword_count);
duke@435 1363 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1364
duke@435 1365 // Check for and copy trailing dword
duke@435 1366 __ BIND(L_copy_4_bytes);
duke@435 1367 __ testq(byte_count, 4);
duke@435 1368 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1369 __ movl(rax, Address(end_from, 8));
duke@435 1370 __ movl(Address(end_to, 8), rax);
duke@435 1371
duke@435 1372 __ addq(end_from, 4);
duke@435 1373 __ addq(end_to, 4);
duke@435 1374
duke@435 1375 // Check for and copy trailing word
duke@435 1376 __ BIND(L_copy_2_bytes);
duke@435 1377 __ testq(byte_count, 2);
duke@435 1378 __ jccb(Assembler::zero, L_copy_byte);
duke@435 1379 __ movw(rax, Address(end_from, 8));
duke@435 1380 __ movw(Address(end_to, 8), rax);
duke@435 1381
duke@435 1382 __ addq(end_from, 2);
duke@435 1383 __ addq(end_to, 2);
duke@435 1384
duke@435 1385 // Check for and copy trailing byte
duke@435 1386 __ BIND(L_copy_byte);
duke@435 1387 __ testq(byte_count, 1);
duke@435 1388 __ jccb(Assembler::zero, L_exit);
duke@435 1389 __ movb(rax, Address(end_from, 8));
duke@435 1390 __ movb(Address(end_to, 8), rax);
duke@435 1391
duke@435 1392 __ BIND(L_exit);
duke@435 1393 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
duke@435 1394 restore_arg_regs();
duke@435 1395 __ xorq(rax, rax); // return 0
duke@435 1396 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1397 __ ret(0);
duke@435 1398
duke@435 1399 // Copy in 32-bytes chunks
duke@435 1400 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1401 __ jmp(L_copy_4_bytes);
duke@435 1402
duke@435 1403 return start;
duke@435 1404 }
duke@435 1405
duke@435 1406 // Arguments:
duke@435 1407 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1408 // ignored
duke@435 1409 // name - stub name string
duke@435 1410 //
duke@435 1411 // Inputs:
duke@435 1412 // c_rarg0 - source array address
duke@435 1413 // c_rarg1 - destination array address
duke@435 1414 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1415 //
duke@435 1416 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
duke@435 1417 // we let the hardware handle it. The one to eight bytes within words,
duke@435 1418 // dwords or qwords that span cache line boundaries will still be loaded
duke@435 1419 // and stored atomically.
duke@435 1420 //
duke@435 1421 address generate_conjoint_byte_copy(bool aligned, const char *name) {
duke@435 1422 __ align(CodeEntryAlignment);
duke@435 1423 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1424 address start = __ pc();
duke@435 1425
duke@435 1426 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
duke@435 1427 const Register from = rdi; // source array address
duke@435 1428 const Register to = rsi; // destination array address
duke@435 1429 const Register count = rdx; // elements count
duke@435 1430 const Register byte_count = rcx;
duke@435 1431 const Register qword_count = count;
duke@435 1432
duke@435 1433 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1434 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1435
duke@435 1436 byte_copy_entry = __ pc();
duke@435 1437 BLOCK_COMMENT("Entry:");
duke@435 1438 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1439
duke@435 1440 array_overlap_test(disjoint_byte_copy_entry, Address::times_1);
duke@435 1441 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1442 // r9 and r10 may be used to save non-volatile registers
duke@435 1443
duke@435 1444 // 'from', 'to' and 'count' are now valid
duke@435 1445 __ movq(byte_count, count);
duke@435 1446 __ shrq(count, 3); // count => qword_count
duke@435 1447
duke@435 1448 // Copy from high to low addresses.
duke@435 1449
duke@435 1450 // Check for and copy trailing byte
duke@435 1451 __ testq(byte_count, 1);
duke@435 1452 __ jcc(Assembler::zero, L_copy_2_bytes);
duke@435 1453 __ movb(rax, Address(from, byte_count, Address::times_1, -1));
duke@435 1454 __ movb(Address(to, byte_count, Address::times_1, -1), rax);
duke@435 1455 __ decrementq(byte_count); // Adjust for possible trailing word
duke@435 1456
duke@435 1457 // Check for and copy trailing word
duke@435 1458 __ BIND(L_copy_2_bytes);
duke@435 1459 __ testq(byte_count, 2);
duke@435 1460 __ jcc(Assembler::zero, L_copy_4_bytes);
duke@435 1461 __ movw(rax, Address(from, byte_count, Address::times_1, -2));
duke@435 1462 __ movw(Address(to, byte_count, Address::times_1, -2), rax);
duke@435 1463
duke@435 1464 // Check for and copy trailing dword
duke@435 1465 __ BIND(L_copy_4_bytes);
duke@435 1466 __ testq(byte_count, 4);
duke@435 1467 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1468 __ movl(rax, Address(from, qword_count, Address::times_8));
duke@435 1469 __ movl(Address(to, qword_count, Address::times_8), rax);
duke@435 1470 __ jmp(L_copy_32_bytes);
duke@435 1471
duke@435 1472 // Copy trailing qwords
duke@435 1473 __ BIND(L_copy_8_bytes);
duke@435 1474 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1475 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
duke@435 1476 __ decrementq(qword_count);
duke@435 1477 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1478
duke@435 1479 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
duke@435 1480 restore_arg_regs();
duke@435 1481 __ xorq(rax, rax); // return 0
duke@435 1482 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1483 __ ret(0);
duke@435 1484
duke@435 1485 // Copy in 32-bytes chunks
duke@435 1486 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1487
duke@435 1488 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
duke@435 1489 restore_arg_regs();
duke@435 1490 __ xorq(rax, rax); // return 0
duke@435 1491 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1492 __ ret(0);
duke@435 1493
duke@435 1494 return start;
duke@435 1495 }
duke@435 1496
duke@435 1497 // Arguments:
duke@435 1498 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1499 // ignored
duke@435 1500 // name - stub name string
duke@435 1501 //
duke@435 1502 // Inputs:
duke@435 1503 // c_rarg0 - source array address
duke@435 1504 // c_rarg1 - destination array address
duke@435 1505 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1506 //
duke@435 1507 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
duke@435 1508 // let the hardware handle it. The two or four words within dwords
duke@435 1509 // or qwords that span cache line boundaries will still be loaded
duke@435 1510 // and stored atomically.
duke@435 1511 //
duke@435 1512 // Side Effects:
duke@435 1513 // disjoint_short_copy_entry is set to the no-overlap entry point
duke@435 1514 // used by generate_conjoint_short_copy().
duke@435 1515 //
duke@435 1516 address generate_disjoint_short_copy(bool aligned, const char *name) {
duke@435 1517 __ align(CodeEntryAlignment);
duke@435 1518 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1519 address start = __ pc();
duke@435 1520
duke@435 1521 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
duke@435 1522 const Register from = rdi; // source array address
duke@435 1523 const Register to = rsi; // destination array address
duke@435 1524 const Register count = rdx; // elements count
duke@435 1525 const Register word_count = rcx;
duke@435 1526 const Register qword_count = count;
duke@435 1527 const Register end_from = from; // source array end address
duke@435 1528 const Register end_to = to; // destination array end address
duke@435 1529 // End pointers are inclusive, and if count is not zero they point
duke@435 1530 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1531
duke@435 1532 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1533 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1534
duke@435 1535 disjoint_short_copy_entry = __ pc();
duke@435 1536 BLOCK_COMMENT("Entry:");
duke@435 1537 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1538
duke@435 1539 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1540 // r9 and r10 may be used to save non-volatile registers
duke@435 1541
duke@435 1542 // 'from', 'to' and 'count' are now valid
duke@435 1543 __ movq(word_count, count);
duke@435 1544 __ shrq(count, 2); // count => qword_count
duke@435 1545
duke@435 1546 // Copy from low to high addresses. Use 'to' as scratch.
duke@435 1547 __ leaq(end_from, Address(from, qword_count, Address::times_8, -8));
duke@435 1548 __ leaq(end_to, Address(to, qword_count, Address::times_8, -8));
duke@435 1549 __ negq(qword_count);
duke@435 1550 __ jmp(L_copy_32_bytes);
duke@435 1551
duke@435 1552 // Copy trailing qwords
duke@435 1553 __ BIND(L_copy_8_bytes);
duke@435 1554 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1555 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
duke@435 1556 __ incrementq(qword_count);
duke@435 1557 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1558
duke@435 1559 // Original 'dest' is trashed, so we can't use it as a
duke@435 1560 // base register for a possible trailing word copy
duke@435 1561
duke@435 1562 // Check for and copy trailing dword
duke@435 1563 __ BIND(L_copy_4_bytes);
duke@435 1564 __ testq(word_count, 2);
duke@435 1565 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1566 __ movl(rax, Address(end_from, 8));
duke@435 1567 __ movl(Address(end_to, 8), rax);
duke@435 1568
duke@435 1569 __ addq(end_from, 4);
duke@435 1570 __ addq(end_to, 4);
duke@435 1571
duke@435 1572 // Check for and copy trailing word
duke@435 1573 __ BIND(L_copy_2_bytes);
duke@435 1574 __ testq(word_count, 1);
duke@435 1575 __ jccb(Assembler::zero, L_exit);
duke@435 1576 __ movw(rax, Address(end_from, 8));
duke@435 1577 __ movw(Address(end_to, 8), rax);
duke@435 1578
duke@435 1579 __ BIND(L_exit);
duke@435 1580 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
duke@435 1581 restore_arg_regs();
duke@435 1582 __ xorq(rax, rax); // return 0
duke@435 1583 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1584 __ ret(0);
duke@435 1585
duke@435 1586 // Copy in 32-bytes chunks
duke@435 1587 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1588 __ jmp(L_copy_4_bytes);
duke@435 1589
duke@435 1590 return start;
duke@435 1591 }
duke@435 1592
duke@435 1593 // Arguments:
duke@435 1594 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1595 // ignored
duke@435 1596 // name - stub name string
duke@435 1597 //
duke@435 1598 // Inputs:
duke@435 1599 // c_rarg0 - source array address
duke@435 1600 // c_rarg1 - destination array address
duke@435 1601 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1602 //
duke@435 1603 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
duke@435 1604 // let the hardware handle it. The two or four words within dwords
duke@435 1605 // or qwords that span cache line boundaries will still be loaded
duke@435 1606 // and stored atomically.
duke@435 1607 //
duke@435 1608 address generate_conjoint_short_copy(bool aligned, const char *name) {
duke@435 1609 __ align(CodeEntryAlignment);
duke@435 1610 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1611 address start = __ pc();
duke@435 1612
duke@435 1613 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes;
duke@435 1614 const Register from = rdi; // source array address
duke@435 1615 const Register to = rsi; // destination array address
duke@435 1616 const Register count = rdx; // elements count
duke@435 1617 const Register word_count = rcx;
duke@435 1618 const Register qword_count = count;
duke@435 1619
duke@435 1620 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1621 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1622
duke@435 1623 short_copy_entry = __ pc();
duke@435 1624 BLOCK_COMMENT("Entry:");
duke@435 1625 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1626
duke@435 1627 array_overlap_test(disjoint_short_copy_entry, Address::times_2);
duke@435 1628 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1629 // r9 and r10 may be used to save non-volatile registers
duke@435 1630
duke@435 1631 // 'from', 'to' and 'count' are now valid
duke@435 1632 __ movq(word_count, count);
duke@435 1633 __ shrq(count, 2); // count => qword_count
duke@435 1634
duke@435 1635 // Copy from high to low addresses. Use 'to' as scratch.
duke@435 1636
duke@435 1637 // Check for and copy trailing word
duke@435 1638 __ testq(word_count, 1);
duke@435 1639 __ jccb(Assembler::zero, L_copy_4_bytes);
duke@435 1640 __ movw(rax, Address(from, word_count, Address::times_2, -2));
duke@435 1641 __ movw(Address(to, word_count, Address::times_2, -2), rax);
duke@435 1642
duke@435 1643 // Check for and copy trailing dword
duke@435 1644 __ BIND(L_copy_4_bytes);
duke@435 1645 __ testq(word_count, 2);
duke@435 1646 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1647 __ movl(rax, Address(from, qword_count, Address::times_8));
duke@435 1648 __ movl(Address(to, qword_count, Address::times_8), rax);
duke@435 1649 __ jmp(L_copy_32_bytes);
duke@435 1650
duke@435 1651 // Copy trailing qwords
duke@435 1652 __ BIND(L_copy_8_bytes);
duke@435 1653 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1654 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
duke@435 1655 __ decrementq(qword_count);
duke@435 1656 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1657
duke@435 1658 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
duke@435 1659 restore_arg_regs();
duke@435 1660 __ xorq(rax, rax); // return 0
duke@435 1661 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1662 __ ret(0);
duke@435 1663
duke@435 1664 // Copy in 32-bytes chunks
duke@435 1665 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1666
duke@435 1667 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
duke@435 1668 restore_arg_regs();
duke@435 1669 __ xorq(rax, rax); // return 0
duke@435 1670 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1671 __ ret(0);
duke@435 1672
duke@435 1673 return start;
duke@435 1674 }
duke@435 1675
duke@435 1676 // Arguments:
duke@435 1677 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1678 // ignored
coleenp@548 1679 // is_oop - true => oop array, so generate store check code
duke@435 1680 // name - stub name string
duke@435 1681 //
duke@435 1682 // Inputs:
duke@435 1683 // c_rarg0 - source array address
duke@435 1684 // c_rarg1 - destination array address
duke@435 1685 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1686 //
duke@435 1687 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
duke@435 1688 // the hardware handle it. The two dwords within qwords that span
duke@435 1689 // cache line boundaries will still be loaded and stored atomicly.
duke@435 1690 //
duke@435 1691 // Side Effects:
duke@435 1692 // disjoint_int_copy_entry is set to the no-overlap entry point
coleenp@548 1693 // used by generate_conjoint_int_oop_copy().
duke@435 1694 //
coleenp@548 1695 address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
duke@435 1696 __ align(CodeEntryAlignment);
duke@435 1697 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1698 address start = __ pc();
duke@435 1699
duke@435 1700 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
duke@435 1701 const Register from = rdi; // source array address
duke@435 1702 const Register to = rsi; // destination array address
duke@435 1703 const Register count = rdx; // elements count
duke@435 1704 const Register dword_count = rcx;
duke@435 1705 const Register qword_count = count;
duke@435 1706 const Register end_from = from; // source array end address
duke@435 1707 const Register end_to = to; // destination array end address
coleenp@548 1708 const Register saved_to = r11; // saved destination array address
duke@435 1709 // End pointers are inclusive, and if count is not zero they point
duke@435 1710 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1711
duke@435 1712 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1713 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1714
coleenp@548 1715 (is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry) = __ pc();
coleenp@548 1716
coleenp@548 1717 if (is_oop) {
coleenp@548 1718 // no registers are destroyed by this call
coleenp@548 1719 gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
coleenp@548 1720 }
coleenp@548 1721
duke@435 1722 BLOCK_COMMENT("Entry:");
duke@435 1723 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1724
duke@435 1725 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1726 // r9 and r10 may be used to save non-volatile registers
duke@435 1727
coleenp@548 1728 if (is_oop) {
coleenp@548 1729 __ movq(saved_to, to);
coleenp@548 1730 }
coleenp@548 1731
duke@435 1732 // 'from', 'to' and 'count' are now valid
duke@435 1733 __ movq(dword_count, count);
duke@435 1734 __ shrq(count, 1); // count => qword_count
duke@435 1735
duke@435 1736 // Copy from low to high addresses. Use 'to' as scratch.
duke@435 1737 __ leaq(end_from, Address(from, qword_count, Address::times_8, -8));
duke@435 1738 __ leaq(end_to, Address(to, qword_count, Address::times_8, -8));
duke@435 1739 __ negq(qword_count);
duke@435 1740 __ jmp(L_copy_32_bytes);
duke@435 1741
duke@435 1742 // Copy trailing qwords
duke@435 1743 __ BIND(L_copy_8_bytes);
duke@435 1744 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1745 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
duke@435 1746 __ incrementq(qword_count);
duke@435 1747 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1748
duke@435 1749 // Check for and copy trailing dword
duke@435 1750 __ BIND(L_copy_4_bytes);
duke@435 1751 __ testq(dword_count, 1); // Only byte test since the value is 0 or 1
duke@435 1752 __ jccb(Assembler::zero, L_exit);
duke@435 1753 __ movl(rax, Address(end_from, 8));
duke@435 1754 __ movl(Address(end_to, 8), rax);
duke@435 1755
duke@435 1756 __ BIND(L_exit);
coleenp@548 1757 if (is_oop) {
coleenp@548 1758 __ leaq(end_to, Address(saved_to, dword_count, Address::times_4, -4));
coleenp@548 1759 gen_write_ref_array_post_barrier(saved_to, end_to, rax);
coleenp@548 1760 }
duke@435 1761 inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
duke@435 1762 restore_arg_regs();
duke@435 1763 __ xorq(rax, rax); // return 0
duke@435 1764 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1765 __ ret(0);
duke@435 1766
duke@435 1767 // Copy 32-bytes chunks
duke@435 1768 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1769 __ jmp(L_copy_4_bytes);
duke@435 1770
duke@435 1771 return start;
duke@435 1772 }
duke@435 1773
duke@435 1774 // Arguments:
duke@435 1775 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1776 // ignored
coleenp@548 1777 // is_oop - true => oop array, so generate store check code
duke@435 1778 // name - stub name string
duke@435 1779 //
duke@435 1780 // Inputs:
duke@435 1781 // c_rarg0 - source array address
duke@435 1782 // c_rarg1 - destination array address
duke@435 1783 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1784 //
duke@435 1785 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
duke@435 1786 // the hardware handle it. The two dwords within qwords that span
duke@435 1787 // cache line boundaries will still be loaded and stored atomicly.
duke@435 1788 //
coleenp@548 1789 address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
duke@435 1790 __ align(CodeEntryAlignment);
duke@435 1791 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1792 address start = __ pc();
duke@435 1793
coleenp@548 1794 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
duke@435 1795 const Register from = rdi; // source array address
duke@435 1796 const Register to = rsi; // destination array address
duke@435 1797 const Register count = rdx; // elements count
duke@435 1798 const Register dword_count = rcx;
duke@435 1799 const Register qword_count = count;
duke@435 1800
duke@435 1801 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1802 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1803
coleenp@548 1804 if (is_oop) {
coleenp@548 1805 // no registers are destroyed by this call
coleenp@548 1806 gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
coleenp@548 1807 }
coleenp@548 1808
coleenp@548 1809 (is_oop ? oop_copy_entry : int_copy_entry) = __ pc();
duke@435 1810 BLOCK_COMMENT("Entry:");
duke@435 1811 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1812
coleenp@548 1813 array_overlap_test(is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry,
coleenp@548 1814 Address::times_4);
duke@435 1815 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1816 // r9 and r10 may be used to save non-volatile registers
duke@435 1817
coleenp@548 1818 assert_clean_int(count, rax); // Make sure 'count' is clean int.
duke@435 1819 // 'from', 'to' and 'count' are now valid
duke@435 1820 __ movq(dword_count, count);
duke@435 1821 __ shrq(count, 1); // count => qword_count
duke@435 1822
duke@435 1823 // Copy from high to low addresses. Use 'to' as scratch.
duke@435 1824
duke@435 1825 // Check for and copy trailing dword
duke@435 1826 __ testq(dword_count, 1);
duke@435 1827 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1828 __ movl(rax, Address(from, dword_count, Address::times_4, -4));
duke@435 1829 __ movl(Address(to, dword_count, Address::times_4, -4), rax);
duke@435 1830 __ jmp(L_copy_32_bytes);
duke@435 1831
duke@435 1832 // Copy trailing qwords
duke@435 1833 __ BIND(L_copy_8_bytes);
duke@435 1834 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1835 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
duke@435 1836 __ decrementq(qword_count);
duke@435 1837 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1838
duke@435 1839 inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
coleenp@548 1840 if (is_oop) {
coleenp@548 1841 __ jmp(L_exit);
coleenp@548 1842 }
duke@435 1843 restore_arg_regs();
duke@435 1844 __ xorq(rax, rax); // return 0
duke@435 1845 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1846 __ ret(0);
duke@435 1847
duke@435 1848 // Copy in 32-bytes chunks
duke@435 1849 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1850
coleenp@548 1851 inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
coleenp@548 1852 __ bind(L_exit);
coleenp@548 1853 if (is_oop) {
coleenp@548 1854 Register end_to = rdx;
coleenp@548 1855 __ leaq(end_to, Address(to, dword_count, Address::times_4, -4));
coleenp@548 1856 gen_write_ref_array_post_barrier(to, end_to, rax);
coleenp@548 1857 }
duke@435 1858 restore_arg_regs();
duke@435 1859 __ xorq(rax, rax); // return 0
duke@435 1860 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1861 __ ret(0);
duke@435 1862
duke@435 1863 return start;
duke@435 1864 }
duke@435 1865
duke@435 1866 // Arguments:
duke@435 1867 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
duke@435 1868 // ignored
duke@435 1869 // is_oop - true => oop array, so generate store check code
duke@435 1870 // name - stub name string
duke@435 1871 //
duke@435 1872 // Inputs:
duke@435 1873 // c_rarg0 - source array address
duke@435 1874 // c_rarg1 - destination array address
duke@435 1875 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1876 //
coleenp@548 1877 // Side Effects:
duke@435 1878 // disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
duke@435 1879 // no-overlap entry point used by generate_conjoint_long_oop_copy().
duke@435 1880 //
duke@435 1881 address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
duke@435 1882 __ align(CodeEntryAlignment);
duke@435 1883 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1884 address start = __ pc();
duke@435 1885
duke@435 1886 Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
duke@435 1887 const Register from = rdi; // source array address
duke@435 1888 const Register to = rsi; // destination array address
duke@435 1889 const Register qword_count = rdx; // elements count
duke@435 1890 const Register end_from = from; // source array end address
duke@435 1891 const Register end_to = rcx; // destination array end address
duke@435 1892 const Register saved_to = to;
duke@435 1893 // End pointers are inclusive, and if count is not zero they point
duke@435 1894 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1895
duke@435 1896 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1897 // Save no-overlap entry point for generate_conjoint_long_oop_copy()
duke@435 1898 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1899
duke@435 1900 if (is_oop) {
duke@435 1901 disjoint_oop_copy_entry = __ pc();
duke@435 1902 // no registers are destroyed by this call
duke@435 1903 gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
duke@435 1904 } else {
duke@435 1905 disjoint_long_copy_entry = __ pc();
duke@435 1906 }
duke@435 1907 BLOCK_COMMENT("Entry:");
duke@435 1908 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1909
duke@435 1910 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1911 // r9 and r10 may be used to save non-volatile registers
duke@435 1912
duke@435 1913 // 'from', 'to' and 'qword_count' are now valid
duke@435 1914
duke@435 1915 // Copy from low to high addresses. Use 'to' as scratch.
duke@435 1916 __ leaq(end_from, Address(from, qword_count, Address::times_8, -8));
coleenp@548 1917 __ leaq(end_to, Address(to, qword_count, Address::times_8, -8));
duke@435 1918 __ negq(qword_count);
duke@435 1919 __ jmp(L_copy_32_bytes);
duke@435 1920
duke@435 1921 // Copy trailing qwords
duke@435 1922 __ BIND(L_copy_8_bytes);
duke@435 1923 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1924 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
duke@435 1925 __ incrementq(qword_count);
duke@435 1926 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1927
duke@435 1928 if (is_oop) {
duke@435 1929 __ jmp(L_exit);
duke@435 1930 } else {
duke@435 1931 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 1932 restore_arg_regs();
duke@435 1933 __ xorq(rax, rax); // return 0
duke@435 1934 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1935 __ ret(0);
duke@435 1936 }
duke@435 1937
duke@435 1938 // Copy 64-byte chunks
duke@435 1939 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1940
duke@435 1941 if (is_oop) {
duke@435 1942 __ BIND(L_exit);
duke@435 1943 gen_write_ref_array_post_barrier(saved_to, end_to, rax);
duke@435 1944 inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
duke@435 1945 } else {
duke@435 1946 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 1947 }
duke@435 1948 restore_arg_regs();
duke@435 1949 __ xorq(rax, rax); // return 0
duke@435 1950 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1951 __ ret(0);
duke@435 1952
duke@435 1953 return start;
duke@435 1954 }
duke@435 1955
duke@435 1956 // Arguments:
duke@435 1957 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
duke@435 1958 // ignored
duke@435 1959 // is_oop - true => oop array, so generate store check code
duke@435 1960 // name - stub name string
duke@435 1961 //
duke@435 1962 // Inputs:
duke@435 1963 // c_rarg0 - source array address
duke@435 1964 // c_rarg1 - destination array address
duke@435 1965 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1966 //
duke@435 1967 address generate_conjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
duke@435 1968 __ align(CodeEntryAlignment);
duke@435 1969 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1970 address start = __ pc();
duke@435 1971
duke@435 1972 Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
duke@435 1973 const Register from = rdi; // source array address
duke@435 1974 const Register to = rsi; // destination array address
duke@435 1975 const Register qword_count = rdx; // elements count
duke@435 1976 const Register saved_count = rcx;
duke@435 1977
duke@435 1978 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1979 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1980
duke@435 1981 address disjoint_copy_entry = NULL;
duke@435 1982 if (is_oop) {
coleenp@548 1983 assert(!UseCompressedOops, "shouldn't be called for compressed oops");
duke@435 1984 disjoint_copy_entry = disjoint_oop_copy_entry;
duke@435 1985 oop_copy_entry = __ pc();
coleenp@548 1986 array_overlap_test(disjoint_oop_copy_entry, Address::times_8);
duke@435 1987 } else {
duke@435 1988 disjoint_copy_entry = disjoint_long_copy_entry;
duke@435 1989 long_copy_entry = __ pc();
coleenp@548 1990 array_overlap_test(disjoint_long_copy_entry, Address::times_8);
duke@435 1991 }
duke@435 1992 BLOCK_COMMENT("Entry:");
duke@435 1993 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1994
duke@435 1995 array_overlap_test(disjoint_copy_entry, Address::times_8);
duke@435 1996 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1997 // r9 and r10 may be used to save non-volatile registers
duke@435 1998
duke@435 1999 // 'from', 'to' and 'qword_count' are now valid
duke@435 2000
duke@435 2001 if (is_oop) {
duke@435 2002 // Save to and count for store barrier
duke@435 2003 __ movq(saved_count, qword_count);
duke@435 2004 // No registers are destroyed by this call
duke@435 2005 gen_write_ref_array_pre_barrier(to, saved_count);
duke@435 2006 }
duke@435 2007
duke@435 2008 __ jmp(L_copy_32_bytes);
duke@435 2009
duke@435 2010 // Copy trailing qwords
duke@435 2011 __ BIND(L_copy_8_bytes);
duke@435 2012 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 2013 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
duke@435 2014 __ decrementq(qword_count);
duke@435 2015 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 2016
duke@435 2017 if (is_oop) {
duke@435 2018 __ jmp(L_exit);
duke@435 2019 } else {
duke@435 2020 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 2021 restore_arg_regs();
duke@435 2022 __ xorq(rax, rax); // return 0
duke@435 2023 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2024 __ ret(0);
duke@435 2025 }
duke@435 2026
duke@435 2027 // Copy in 32-bytes chunks
duke@435 2028 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 2029
duke@435 2030 if (is_oop) {
duke@435 2031 __ BIND(L_exit);
duke@435 2032 __ leaq(rcx, Address(to, saved_count, Address::times_8, -8));
duke@435 2033 gen_write_ref_array_post_barrier(to, rcx, rax);
duke@435 2034 inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
duke@435 2035 } else {
duke@435 2036 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 2037 }
duke@435 2038 restore_arg_regs();
duke@435 2039 __ xorq(rax, rax); // return 0
duke@435 2040 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2041 __ ret(0);
duke@435 2042
duke@435 2043 return start;
duke@435 2044 }
duke@435 2045
duke@435 2046
duke@435 2047 // Helper for generating a dynamic type check.
duke@435 2048 // Smashes no registers.
duke@435 2049 void generate_type_check(Register sub_klass,
duke@435 2050 Register super_check_offset,
duke@435 2051 Register super_klass,
duke@435 2052 Label& L_success) {
duke@435 2053 assert_different_registers(sub_klass, super_check_offset, super_klass);
duke@435 2054
duke@435 2055 BLOCK_COMMENT("type_check:");
duke@435 2056
duke@435 2057 Label L_miss;
duke@435 2058
duke@435 2059 // a couple of useful fields in sub_klass:
duke@435 2060 int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2061 Klass::secondary_supers_offset_in_bytes());
duke@435 2062 int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2063 Klass::secondary_super_cache_offset_in_bytes());
duke@435 2064 Address secondary_supers_addr(sub_klass, ss_offset);
duke@435 2065 Address super_cache_addr( sub_klass, sc_offset);
duke@435 2066
duke@435 2067 // if the pointers are equal, we are done (e.g., String[] elements)
duke@435 2068 __ cmpq(super_klass, sub_klass);
duke@435 2069 __ jcc(Assembler::equal, L_success);
duke@435 2070
duke@435 2071 // check the supertype display:
duke@435 2072 Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
duke@435 2073 __ cmpq(super_klass, super_check_addr); // test the super type
duke@435 2074 __ jcc(Assembler::equal, L_success);
duke@435 2075
duke@435 2076 // if it was a primary super, we can just fail immediately
duke@435 2077 __ cmpl(super_check_offset, sc_offset);
duke@435 2078 __ jcc(Assembler::notEqual, L_miss);
duke@435 2079
duke@435 2080 // Now do a linear scan of the secondary super-klass chain.
duke@435 2081 // The repne_scan instruction uses fixed registers, which we must spill.
duke@435 2082 // (We need a couple more temps in any case.)
duke@435 2083 // This code is rarely used, so simplicity is a virtue here.
duke@435 2084 inc_counter_np(SharedRuntime::_partial_subtype_ctr);
duke@435 2085 {
duke@435 2086 __ pushq(rax);
duke@435 2087 __ pushq(rcx);
duke@435 2088 __ pushq(rdi);
duke@435 2089 assert_different_registers(sub_klass, super_klass, rax, rcx, rdi);
duke@435 2090
duke@435 2091 __ movq(rdi, secondary_supers_addr);
duke@435 2092 // Load the array length.
duke@435 2093 __ movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
duke@435 2094 // Skip to start of data.
duke@435 2095 __ addq(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
duke@435 2096 // Scan rcx words at [rdi] for occurance of rax
duke@435 2097 // Set NZ/Z based on last compare
duke@435 2098 __ movq(rax, super_klass);
coleenp@548 2099 if (UseCompressedOops) {
coleenp@548 2100 // Compare against compressed form. Don't need to uncompress because
coleenp@548 2101 // looks like orig rax is restored in popq below.
coleenp@548 2102 __ encode_heap_oop(rax);
coleenp@548 2103 __ repne_scanl();
coleenp@548 2104 } else {
coleenp@548 2105 __ repne_scanq();
coleenp@548 2106 }
duke@435 2107
duke@435 2108 // Unspill the temp. registers:
duke@435 2109 __ popq(rdi);
duke@435 2110 __ popq(rcx);
duke@435 2111 __ popq(rax);
duke@435 2112
duke@435 2113 __ jcc(Assembler::notEqual, L_miss);
duke@435 2114 }
duke@435 2115
duke@435 2116 // Success. Cache the super we found and proceed in triumph.
duke@435 2117 __ movq(super_cache_addr, super_klass); // note: rax is dead
duke@435 2118 __ jmp(L_success);
duke@435 2119
duke@435 2120 // Fall through on failure!
duke@435 2121 __ BIND(L_miss);
duke@435 2122 }
duke@435 2123
duke@435 2124 //
duke@435 2125 // Generate checkcasting array copy stub
duke@435 2126 //
duke@435 2127 // Input:
duke@435 2128 // c_rarg0 - source array address
duke@435 2129 // c_rarg1 - destination array address
duke@435 2130 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 2131 // c_rarg3 - size_t ckoff (super_check_offset)
duke@435 2132 // not Win64
duke@435 2133 // c_rarg4 - oop ckval (super_klass)
duke@435 2134 // Win64
duke@435 2135 // rsp+40 - oop ckval (super_klass)
duke@435 2136 //
duke@435 2137 // Output:
duke@435 2138 // rax == 0 - success
duke@435 2139 // rax == -1^K - failure, where K is partial transfer count
duke@435 2140 //
duke@435 2141 address generate_checkcast_copy(const char *name) {
duke@435 2142
duke@435 2143 Label L_load_element, L_store_element, L_do_card_marks, L_done;
duke@435 2144
duke@435 2145 // Input registers (after setup_arg_regs)
duke@435 2146 const Register from = rdi; // source array address
duke@435 2147 const Register to = rsi; // destination array address
duke@435 2148 const Register length = rdx; // elements count
duke@435 2149 const Register ckoff = rcx; // super_check_offset
duke@435 2150 const Register ckval = r8; // super_klass
duke@435 2151
duke@435 2152 // Registers used as temps (r13, r14 are save-on-entry)
duke@435 2153 const Register end_from = from; // source array end address
duke@435 2154 const Register end_to = r13; // destination array end address
duke@435 2155 const Register count = rdx; // -(count_remaining)
duke@435 2156 const Register r14_length = r14; // saved copy of length
duke@435 2157 // End pointers are inclusive, and if length is not zero they point
duke@435 2158 // to the last unit copied: end_to[0] := end_from[0]
duke@435 2159
duke@435 2160 const Register rax_oop = rax; // actual oop copied
duke@435 2161 const Register r11_klass = r11; // oop._klass
duke@435 2162
duke@435 2163 //---------------------------------------------------------------
duke@435 2164 // Assembler stub will be used for this call to arraycopy
duke@435 2165 // if the two arrays are subtypes of Object[] but the
duke@435 2166 // destination array type is not equal to or a supertype
duke@435 2167 // of the source type. Each element must be separately
duke@435 2168 // checked.
duke@435 2169
duke@435 2170 __ align(CodeEntryAlignment);
duke@435 2171 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2172 address start = __ pc();
duke@435 2173
duke@435 2174 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2175
duke@435 2176 checkcast_copy_entry = __ pc();
duke@435 2177 BLOCK_COMMENT("Entry:");
duke@435 2178
duke@435 2179 #ifdef ASSERT
duke@435 2180 // caller guarantees that the arrays really are different
duke@435 2181 // otherwise, we would have to make conjoint checks
duke@435 2182 { Label L;
coleenp@548 2183 array_overlap_test(L, TIMES_OOP);
duke@435 2184 __ stop("checkcast_copy within a single array");
duke@435 2185 __ bind(L);
duke@435 2186 }
duke@435 2187 #endif //ASSERT
duke@435 2188
duke@435 2189 // allocate spill slots for r13, r14
duke@435 2190 enum {
duke@435 2191 saved_r13_offset,
duke@435 2192 saved_r14_offset,
duke@435 2193 saved_rbp_offset,
duke@435 2194 saved_rip_offset,
duke@435 2195 saved_rarg0_offset
duke@435 2196 };
duke@435 2197 __ subq(rsp, saved_rbp_offset * wordSize);
duke@435 2198 __ movq(Address(rsp, saved_r13_offset * wordSize), r13);
duke@435 2199 __ movq(Address(rsp, saved_r14_offset * wordSize), r14);
duke@435 2200 setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
duke@435 2201 // ckoff => rcx, ckval => r8
duke@435 2202 // r9 and r10 may be used to save non-volatile registers
duke@435 2203 #ifdef _WIN64
duke@435 2204 // last argument (#4) is on stack on Win64
duke@435 2205 const int ckval_offset = saved_rarg0_offset + 4;
duke@435 2206 __ movq(ckval, Address(rsp, ckval_offset * wordSize));
duke@435 2207 #endif
duke@435 2208
duke@435 2209 // check that int operands are properly extended to size_t
duke@435 2210 assert_clean_int(length, rax);
duke@435 2211 assert_clean_int(ckoff, rax);
duke@435 2212
duke@435 2213 #ifdef ASSERT
duke@435 2214 BLOCK_COMMENT("assert consistent ckoff/ckval");
duke@435 2215 // The ckoff and ckval must be mutually consistent,
duke@435 2216 // even though caller generates both.
duke@435 2217 { Label L;
duke@435 2218 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2219 Klass::super_check_offset_offset_in_bytes());
duke@435 2220 __ cmpl(ckoff, Address(ckval, sco_offset));
duke@435 2221 __ jcc(Assembler::equal, L);
duke@435 2222 __ stop("super_check_offset inconsistent");
duke@435 2223 __ bind(L);
duke@435 2224 }
duke@435 2225 #endif //ASSERT
duke@435 2226
duke@435 2227 // Loop-invariant addresses. They are exclusive end pointers.
coleenp@548 2228 Address end_from_addr(from, length, TIMES_OOP, 0);
coleenp@548 2229 Address end_to_addr(to, length, TIMES_OOP, 0);
duke@435 2230 // Loop-variant addresses. They assume post-incremented count < 0.
coleenp@548 2231 Address from_element_addr(end_from, count, TIMES_OOP, 0);
coleenp@548 2232 Address to_element_addr(end_to, count, TIMES_OOP, 0);
duke@435 2233
duke@435 2234 gen_write_ref_array_pre_barrier(to, count);
duke@435 2235
duke@435 2236 // Copy from low to high addresses, indexed from the end of each array.
duke@435 2237 __ leaq(end_from, end_from_addr);
duke@435 2238 __ leaq(end_to, end_to_addr);
duke@435 2239 __ movq(r14_length, length); // save a copy of the length
duke@435 2240 assert(length == count, ""); // else fix next line:
duke@435 2241 __ negq(count); // negate and test the length
duke@435 2242 __ jcc(Assembler::notZero, L_load_element);
duke@435 2243
duke@435 2244 // Empty array: Nothing to do.
duke@435 2245 __ xorq(rax, rax); // return 0 on (trivial) success
duke@435 2246 __ jmp(L_done);
duke@435 2247
duke@435 2248 // ======== begin loop ========
duke@435 2249 // (Loop is rotated; its entry is L_load_element.)
duke@435 2250 // Loop control:
duke@435 2251 // for (count = -count; count != 0; count++)
duke@435 2252 // Base pointers src, dst are biased by 8*(count-1),to last element.
duke@435 2253 __ align(16);
duke@435 2254
duke@435 2255 __ BIND(L_store_element);
coleenp@548 2256 __ store_heap_oop(to_element_addr, rax_oop); // store the oop
duke@435 2257 __ incrementq(count); // increment the count toward zero
duke@435 2258 __ jcc(Assembler::zero, L_do_card_marks);
duke@435 2259
duke@435 2260 // ======== loop entry is here ========
duke@435 2261 __ BIND(L_load_element);
coleenp@548 2262 __ load_heap_oop(rax_oop, from_element_addr); // load the oop
duke@435 2263 __ testq(rax_oop, rax_oop);
duke@435 2264 __ jcc(Assembler::zero, L_store_element);
duke@435 2265
coleenp@548 2266 __ load_klass(r11_klass, rax_oop);// query the object klass
duke@435 2267 generate_type_check(r11_klass, ckoff, ckval, L_store_element);
duke@435 2268 // ======== end loop ========
duke@435 2269
duke@435 2270 // It was a real error; we must depend on the caller to finish the job.
duke@435 2271 // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
duke@435 2272 // Emit GC store barriers for the oops we have copied (r14 + rdx),
duke@435 2273 // and report their number to the caller.
duke@435 2274 assert_different_registers(rax, r14_length, count, to, end_to, rcx);
duke@435 2275 __ leaq(end_to, to_element_addr);
duke@435 2276 gen_write_ref_array_post_barrier(to, end_to, rcx);
duke@435 2277 __ movq(rax, r14_length); // original oops
duke@435 2278 __ addq(rax, count); // K = (original - remaining) oops
duke@435 2279 __ notq(rax); // report (-1^K) to caller
duke@435 2280 __ jmp(L_done);
duke@435 2281
duke@435 2282 // Come here on success only.
duke@435 2283 __ BIND(L_do_card_marks);
duke@435 2284 __ addq(end_to, -wordSize); // make an inclusive end pointer
duke@435 2285 gen_write_ref_array_post_barrier(to, end_to, rcx);
duke@435 2286 __ xorq(rax, rax); // return 0 on success
duke@435 2287
duke@435 2288 // Common exit point (success or failure).
duke@435 2289 __ BIND(L_done);
duke@435 2290 __ movq(r13, Address(rsp, saved_r13_offset * wordSize));
duke@435 2291 __ movq(r14, Address(rsp, saved_r14_offset * wordSize));
duke@435 2292 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
duke@435 2293 restore_arg_regs();
duke@435 2294 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2295 __ ret(0);
duke@435 2296
duke@435 2297 return start;
duke@435 2298 }
duke@435 2299
duke@435 2300 //
duke@435 2301 // Generate 'unsafe' array copy stub
duke@435 2302 // Though just as safe as the other stubs, it takes an unscaled
duke@435 2303 // size_t argument instead of an element count.
duke@435 2304 //
duke@435 2305 // Input:
duke@435 2306 // c_rarg0 - source array address
duke@435 2307 // c_rarg1 - destination array address
duke@435 2308 // c_rarg2 - byte count, treated as ssize_t, can be zero
duke@435 2309 //
duke@435 2310 // Examines the alignment of the operands and dispatches
duke@435 2311 // to a long, int, short, or byte copy loop.
duke@435 2312 //
duke@435 2313 address generate_unsafe_copy(const char *name) {
duke@435 2314
duke@435 2315 Label L_long_aligned, L_int_aligned, L_short_aligned;
duke@435 2316
duke@435 2317 // Input registers (before setup_arg_regs)
duke@435 2318 const Register from = c_rarg0; // source array address
duke@435 2319 const Register to = c_rarg1; // destination array address
duke@435 2320 const Register size = c_rarg2; // byte count (size_t)
duke@435 2321
duke@435 2322 // Register used as a temp
duke@435 2323 const Register bits = rax; // test copy of low bits
duke@435 2324
duke@435 2325 __ align(CodeEntryAlignment);
duke@435 2326 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2327 address start = __ pc();
duke@435 2328
duke@435 2329 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2330
duke@435 2331 // bump this on entry, not on exit:
duke@435 2332 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
duke@435 2333
duke@435 2334 __ movq(bits, from);
duke@435 2335 __ orq(bits, to);
duke@435 2336 __ orq(bits, size);
duke@435 2337
duke@435 2338 __ testb(bits, BytesPerLong-1);
duke@435 2339 __ jccb(Assembler::zero, L_long_aligned);
duke@435 2340
duke@435 2341 __ testb(bits, BytesPerInt-1);
duke@435 2342 __ jccb(Assembler::zero, L_int_aligned);
duke@435 2343
duke@435 2344 __ testb(bits, BytesPerShort-1);
duke@435 2345 __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
duke@435 2346
duke@435 2347 __ BIND(L_short_aligned);
duke@435 2348 __ shrq(size, LogBytesPerShort); // size => short_count
duke@435 2349 __ jump(RuntimeAddress(short_copy_entry));
duke@435 2350
duke@435 2351 __ BIND(L_int_aligned);
duke@435 2352 __ shrq(size, LogBytesPerInt); // size => int_count
duke@435 2353 __ jump(RuntimeAddress(int_copy_entry));
duke@435 2354
duke@435 2355 __ BIND(L_long_aligned);
duke@435 2356 __ shrq(size, LogBytesPerLong); // size => qword_count
duke@435 2357 __ jump(RuntimeAddress(long_copy_entry));
duke@435 2358
duke@435 2359 return start;
duke@435 2360 }
duke@435 2361
duke@435 2362 // Perform range checks on the proposed arraycopy.
duke@435 2363 // Kills temp, but nothing else.
duke@435 2364 // Also, clean the sign bits of src_pos and dst_pos.
duke@435 2365 void arraycopy_range_checks(Register src, // source array oop (c_rarg0)
duke@435 2366 Register src_pos, // source position (c_rarg1)
duke@435 2367 Register dst, // destination array oo (c_rarg2)
duke@435 2368 Register dst_pos, // destination position (c_rarg3)
duke@435 2369 Register length,
duke@435 2370 Register temp,
duke@435 2371 Label& L_failed) {
duke@435 2372 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 2373
duke@435 2374 // if (src_pos + length > arrayOop(src)->length()) FAIL;
duke@435 2375 __ movl(temp, length);
duke@435 2376 __ addl(temp, src_pos); // src_pos + length
duke@435 2377 __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
duke@435 2378 __ jcc(Assembler::above, L_failed);
duke@435 2379
duke@435 2380 // if (dst_pos + length > arrayOop(dst)->length()) FAIL;
duke@435 2381 __ movl(temp, length);
duke@435 2382 __ addl(temp, dst_pos); // dst_pos + length
duke@435 2383 __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
duke@435 2384 __ jcc(Assembler::above, L_failed);
duke@435 2385
duke@435 2386 // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
duke@435 2387 // Move with sign extension can be used since they are positive.
duke@435 2388 __ movslq(src_pos, src_pos);
duke@435 2389 __ movslq(dst_pos, dst_pos);
duke@435 2390
duke@435 2391 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 2392 }
duke@435 2393
duke@435 2394 //
duke@435 2395 // Generate generic array copy stubs
duke@435 2396 //
duke@435 2397 // Input:
duke@435 2398 // c_rarg0 - src oop
duke@435 2399 // c_rarg1 - src_pos (32-bits)
duke@435 2400 // c_rarg2 - dst oop
duke@435 2401 // c_rarg3 - dst_pos (32-bits)
duke@435 2402 // not Win64
duke@435 2403 // c_rarg4 - element count (32-bits)
duke@435 2404 // Win64
duke@435 2405 // rsp+40 - element count (32-bits)
duke@435 2406 //
duke@435 2407 // Output:
duke@435 2408 // rax == 0 - success
duke@435 2409 // rax == -1^K - failure, where K is partial transfer count
duke@435 2410 //
duke@435 2411 address generate_generic_copy(const char *name) {
duke@435 2412
duke@435 2413 Label L_failed, L_failed_0, L_objArray;
duke@435 2414 Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
duke@435 2415
duke@435 2416 // Input registers
duke@435 2417 const Register src = c_rarg0; // source array oop
duke@435 2418 const Register src_pos = c_rarg1; // source position
duke@435 2419 const Register dst = c_rarg2; // destination array oop
duke@435 2420 const Register dst_pos = c_rarg3; // destination position
duke@435 2421 // elements count is on stack on Win64
duke@435 2422 #ifdef _WIN64
duke@435 2423 #define C_RARG4 Address(rsp, 6 * wordSize)
duke@435 2424 #else
duke@435 2425 #define C_RARG4 c_rarg4
duke@435 2426 #endif
duke@435 2427
duke@435 2428 { int modulus = CodeEntryAlignment;
duke@435 2429 int target = modulus - 5; // 5 = sizeof jmp(L_failed)
duke@435 2430 int advance = target - (__ offset() % modulus);
duke@435 2431 if (advance < 0) advance += modulus;
duke@435 2432 if (advance > 0) __ nop(advance);
duke@435 2433 }
duke@435 2434 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2435
duke@435 2436 // Short-hop target to L_failed. Makes for denser prologue code.
duke@435 2437 __ BIND(L_failed_0);
duke@435 2438 __ jmp(L_failed);
duke@435 2439 assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
duke@435 2440
duke@435 2441 __ align(CodeEntryAlignment);
duke@435 2442 address start = __ pc();
duke@435 2443
duke@435 2444 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2445
duke@435 2446 // bump this on entry, not on exit:
duke@435 2447 inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
duke@435 2448
duke@435 2449 //-----------------------------------------------------------------------
duke@435 2450 // Assembler stub will be used for this call to arraycopy
duke@435 2451 // if the following conditions are met:
duke@435 2452 //
duke@435 2453 // (1) src and dst must not be null.
duke@435 2454 // (2) src_pos must not be negative.
duke@435 2455 // (3) dst_pos must not be negative.
duke@435 2456 // (4) length must not be negative.
duke@435 2457 // (5) src klass and dst klass should be the same and not NULL.
duke@435 2458 // (6) src and dst should be arrays.
duke@435 2459 // (7) src_pos + length must not exceed length of src.
duke@435 2460 // (8) dst_pos + length must not exceed length of dst.
duke@435 2461 //
duke@435 2462
duke@435 2463 // if (src == NULL) return -1;
duke@435 2464 __ testq(src, src); // src oop
duke@435 2465 size_t j1off = __ offset();
duke@435 2466 __ jccb(Assembler::zero, L_failed_0);
duke@435 2467
duke@435 2468 // if (src_pos < 0) return -1;
duke@435 2469 __ testl(src_pos, src_pos); // src_pos (32-bits)
duke@435 2470 __ jccb(Assembler::negative, L_failed_0);
duke@435 2471
duke@435 2472 // if (dst == NULL) return -1;
duke@435 2473 __ testq(dst, dst); // dst oop
duke@435 2474 __ jccb(Assembler::zero, L_failed_0);
duke@435 2475
duke@435 2476 // if (dst_pos < 0) return -1;
duke@435 2477 __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
duke@435 2478 size_t j4off = __ offset();
duke@435 2479 __ jccb(Assembler::negative, L_failed_0);
duke@435 2480
duke@435 2481 // The first four tests are very dense code,
duke@435 2482 // but not quite dense enough to put four
duke@435 2483 // jumps in a 16-byte instruction fetch buffer.
duke@435 2484 // That's good, because some branch predicters
duke@435 2485 // do not like jumps so close together.
duke@435 2486 // Make sure of this.
duke@435 2487 guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
duke@435 2488
duke@435 2489 // registers used as temp
duke@435 2490 const Register r11_length = r11; // elements count to copy
duke@435 2491 const Register r10_src_klass = r10; // array klass
coleenp@548 2492 const Register r9_dst_klass = r9; // dest array klass
duke@435 2493
duke@435 2494 // if (length < 0) return -1;
duke@435 2495 __ movl(r11_length, C_RARG4); // length (elements count, 32-bits value)
duke@435 2496 __ testl(r11_length, r11_length);
duke@435 2497 __ jccb(Assembler::negative, L_failed_0);
duke@435 2498
coleenp@548 2499 __ load_klass(r10_src_klass, src);
duke@435 2500 #ifdef ASSERT
duke@435 2501 // assert(src->klass() != NULL);
duke@435 2502 BLOCK_COMMENT("assert klasses not null");
duke@435 2503 { Label L1, L2;
duke@435 2504 __ testq(r10_src_klass, r10_src_klass);
duke@435 2505 __ jcc(Assembler::notZero, L2); // it is broken if klass is NULL
duke@435 2506 __ bind(L1);
duke@435 2507 __ stop("broken null klass");
duke@435 2508 __ bind(L2);
coleenp@548 2509 __ load_klass(r9_dst_klass, dst);
coleenp@548 2510 __ cmpq(r9_dst_klass, 0);
duke@435 2511 __ jcc(Assembler::equal, L1); // this would be broken also
duke@435 2512 BLOCK_COMMENT("assert done");
duke@435 2513 }
duke@435 2514 #endif
duke@435 2515
duke@435 2516 // Load layout helper (32-bits)
duke@435 2517 //
duke@435 2518 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 2519 // 32 30 24 16 8 2 0
duke@435 2520 //
duke@435 2521 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 2522 //
duke@435 2523
duke@435 2524 int lh_offset = klassOopDesc::header_size() * HeapWordSize +
duke@435 2525 Klass::layout_helper_offset_in_bytes();
duke@435 2526
duke@435 2527 const Register rax_lh = rax; // layout helper
duke@435 2528
duke@435 2529 __ movl(rax_lh, Address(r10_src_klass, lh_offset));
duke@435 2530
duke@435 2531 // Handle objArrays completely differently...
duke@435 2532 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
duke@435 2533 __ cmpl(rax_lh, objArray_lh);
duke@435 2534 __ jcc(Assembler::equal, L_objArray);
duke@435 2535
duke@435 2536 // if (src->klass() != dst->klass()) return -1;
coleenp@548 2537 __ load_klass(r9_dst_klass, dst);
coleenp@548 2538 __ cmpq(r10_src_klass, r9_dst_klass);
duke@435 2539 __ jcc(Assembler::notEqual, L_failed);
duke@435 2540
duke@435 2541 // if (!src->is_Array()) return -1;
duke@435 2542 __ cmpl(rax_lh, Klass::_lh_neutral_value);
duke@435 2543 __ jcc(Assembler::greaterEqual, L_failed);
duke@435 2544
duke@435 2545 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 2546 #ifdef ASSERT
duke@435 2547 { Label L;
duke@435 2548 __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
duke@435 2549 __ jcc(Assembler::greaterEqual, L);
duke@435 2550 __ stop("must be a primitive array");
duke@435 2551 __ bind(L);
duke@435 2552 }
duke@435 2553 #endif
duke@435 2554
duke@435 2555 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2556 r10, L_failed);
duke@435 2557
duke@435 2558 // typeArrayKlass
duke@435 2559 //
duke@435 2560 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 2561 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 2562 //
duke@435 2563
duke@435 2564 const Register r10_offset = r10; // array offset
duke@435 2565 const Register rax_elsize = rax_lh; // element size
duke@435 2566
duke@435 2567 __ movl(r10_offset, rax_lh);
duke@435 2568 __ shrl(r10_offset, Klass::_lh_header_size_shift);
duke@435 2569 __ andq(r10_offset, Klass::_lh_header_size_mask); // array_offset
duke@435 2570 __ addq(src, r10_offset); // src array offset
duke@435 2571 __ addq(dst, r10_offset); // dst array offset
duke@435 2572 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 2573 __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
duke@435 2574
duke@435 2575 // next registers should be set before the jump to corresponding stub
duke@435 2576 const Register from = c_rarg0; // source array address
duke@435 2577 const Register to = c_rarg1; // destination array address
duke@435 2578 const Register count = c_rarg2; // elements count
duke@435 2579
duke@435 2580 // 'from', 'to', 'count' registers should be set in such order
duke@435 2581 // since they are the same as 'src', 'src_pos', 'dst'.
duke@435 2582
duke@435 2583 __ BIND(L_copy_bytes);
duke@435 2584 __ cmpl(rax_elsize, 0);
duke@435 2585 __ jccb(Assembler::notEqual, L_copy_shorts);
duke@435 2586 __ leaq(from, Address(src, src_pos, Address::times_1, 0));// src_addr
duke@435 2587 __ leaq(to, Address(dst, dst_pos, Address::times_1, 0));// dst_addr
duke@435 2588 __ movslq(count, r11_length); // length
duke@435 2589 __ jump(RuntimeAddress(byte_copy_entry));
duke@435 2590
duke@435 2591 __ BIND(L_copy_shorts);
duke@435 2592 __ cmpl(rax_elsize, LogBytesPerShort);
duke@435 2593 __ jccb(Assembler::notEqual, L_copy_ints);
duke@435 2594 __ leaq(from, Address(src, src_pos, Address::times_2, 0));// src_addr
duke@435 2595 __ leaq(to, Address(dst, dst_pos, Address::times_2, 0));// dst_addr
duke@435 2596 __ movslq(count, r11_length); // length
duke@435 2597 __ jump(RuntimeAddress(short_copy_entry));
duke@435 2598
duke@435 2599 __ BIND(L_copy_ints);
duke@435 2600 __ cmpl(rax_elsize, LogBytesPerInt);
duke@435 2601 __ jccb(Assembler::notEqual, L_copy_longs);
duke@435 2602 __ leaq(from, Address(src, src_pos, Address::times_4, 0));// src_addr
duke@435 2603 __ leaq(to, Address(dst, dst_pos, Address::times_4, 0));// dst_addr
duke@435 2604 __ movslq(count, r11_length); // length
duke@435 2605 __ jump(RuntimeAddress(int_copy_entry));
duke@435 2606
duke@435 2607 __ BIND(L_copy_longs);
duke@435 2608 #ifdef ASSERT
duke@435 2609 { Label L;
duke@435 2610 __ cmpl(rax_elsize, LogBytesPerLong);
duke@435 2611 __ jcc(Assembler::equal, L);
duke@435 2612 __ stop("must be long copy, but elsize is wrong");
duke@435 2613 __ bind(L);
duke@435 2614 }
duke@435 2615 #endif
duke@435 2616 __ leaq(from, Address(src, src_pos, Address::times_8, 0));// src_addr
duke@435 2617 __ leaq(to, Address(dst, dst_pos, Address::times_8, 0));// dst_addr
duke@435 2618 __ movslq(count, r11_length); // length
duke@435 2619 __ jump(RuntimeAddress(long_copy_entry));
duke@435 2620
duke@435 2621 // objArrayKlass
duke@435 2622 __ BIND(L_objArray);
duke@435 2623 // live at this point: r10_src_klass, src[_pos], dst[_pos]
duke@435 2624
duke@435 2625 Label L_plain_copy, L_checkcast_copy;
duke@435 2626 // test array classes for subtyping
coleenp@548 2627 __ load_klass(r9_dst_klass, dst);
coleenp@548 2628 __ cmpq(r10_src_klass, r9_dst_klass); // usual case is exact equality
duke@435 2629 __ jcc(Assembler::notEqual, L_checkcast_copy);
duke@435 2630
duke@435 2631 // Identically typed arrays can be copied without element-wise checks.
duke@435 2632 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2633 r10, L_failed);
duke@435 2634
coleenp@548 2635 __ leaq(from, Address(src, src_pos, TIMES_OOP,
duke@435 2636 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
coleenp@548 2637 __ leaq(to, Address(dst, dst_pos, TIMES_OOP,
coleenp@548 2638 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
duke@435 2639 __ movslq(count, r11_length); // length
duke@435 2640 __ BIND(L_plain_copy);
duke@435 2641 __ jump(RuntimeAddress(oop_copy_entry));
duke@435 2642
duke@435 2643 __ BIND(L_checkcast_copy);
duke@435 2644 // live at this point: r10_src_klass, !r11_length
duke@435 2645 {
duke@435 2646 // assert(r11_length == C_RARG4); // will reload from here
duke@435 2647 Register r11_dst_klass = r11;
coleenp@548 2648 __ load_klass(r11_dst_klass, dst);
duke@435 2649
duke@435 2650 // Before looking at dst.length, make sure dst is also an objArray.
duke@435 2651 __ cmpl(Address(r11_dst_klass, lh_offset), objArray_lh);
duke@435 2652 __ jcc(Assembler::notEqual, L_failed);
duke@435 2653
duke@435 2654 // It is safe to examine both src.length and dst.length.
duke@435 2655 #ifndef _WIN64
duke@435 2656 arraycopy_range_checks(src, src_pos, dst, dst_pos, C_RARG4,
duke@435 2657 rax, L_failed);
duke@435 2658 #else
duke@435 2659 __ movl(r11_length, C_RARG4); // reload
duke@435 2660 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2661 rax, L_failed);
coleenp@548 2662 __ load_klass(r11_dst_klass, dst); // reload
duke@435 2663 #endif
duke@435 2664
duke@435 2665 // Marshal the base address arguments now, freeing registers.
coleenp@548 2666 __ leaq(from, Address(src, src_pos, TIMES_OOP,
duke@435 2667 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
coleenp@548 2668 __ leaq(to, Address(dst, dst_pos, TIMES_OOP,
duke@435 2669 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
duke@435 2670 __ movl(count, C_RARG4); // length (reloaded)
duke@435 2671 Register sco_temp = c_rarg3; // this register is free now
duke@435 2672 assert_different_registers(from, to, count, sco_temp,
duke@435 2673 r11_dst_klass, r10_src_klass);
duke@435 2674 assert_clean_int(count, sco_temp);
duke@435 2675
duke@435 2676 // Generate the type check.
duke@435 2677 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2678 Klass::super_check_offset_offset_in_bytes());
duke@435 2679 __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
duke@435 2680 assert_clean_int(sco_temp, rax);
duke@435 2681 generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
duke@435 2682
duke@435 2683 // Fetch destination element klass from the objArrayKlass header.
duke@435 2684 int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2685 objArrayKlass::element_klass_offset_in_bytes());
duke@435 2686 __ movq(r11_dst_klass, Address(r11_dst_klass, ek_offset));
duke@435 2687 __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
duke@435 2688 assert_clean_int(sco_temp, rax);
duke@435 2689
duke@435 2690 // the checkcast_copy loop needs two extra arguments:
duke@435 2691 assert(c_rarg3 == sco_temp, "#3 already in place");
duke@435 2692 __ movq(C_RARG4, r11_dst_klass); // dst.klass.element_klass
duke@435 2693 __ jump(RuntimeAddress(checkcast_copy_entry));
duke@435 2694 }
duke@435 2695
duke@435 2696 __ BIND(L_failed);
duke@435 2697 __ xorq(rax, rax);
duke@435 2698 __ notq(rax); // return -1
duke@435 2699 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2700 __ ret(0);
duke@435 2701
duke@435 2702 return start;
duke@435 2703 }
duke@435 2704
duke@435 2705 #undef length_arg
duke@435 2706
duke@435 2707 void generate_arraycopy_stubs() {
duke@435 2708 // Call the conjoint generation methods immediately after
duke@435 2709 // the disjoint ones so that short branches from the former
duke@435 2710 // to the latter can be generated.
duke@435 2711 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
duke@435 2712 StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
duke@435 2713
duke@435 2714 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
duke@435 2715 StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, "jshort_arraycopy");
duke@435 2716
coleenp@548 2717 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, false, "jint_disjoint_arraycopy");
coleenp@548 2718 StubRoutines::_jint_arraycopy = generate_conjoint_int_oop_copy(false, false, "jint_arraycopy");
duke@435 2719
duke@435 2720 StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, false, "jlong_disjoint_arraycopy");
duke@435 2721 StubRoutines::_jlong_arraycopy = generate_conjoint_long_oop_copy(false, false, "jlong_arraycopy");
duke@435 2722
coleenp@548 2723
coleenp@548 2724 if (UseCompressedOops) {
coleenp@548 2725 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, true, "oop_disjoint_arraycopy");
coleenp@548 2726 StubRoutines::_oop_arraycopy = generate_conjoint_int_oop_copy(false, true, "oop_arraycopy");
coleenp@548 2727 } else {
coleenp@548 2728 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, true, "oop_disjoint_arraycopy");
coleenp@548 2729 StubRoutines::_oop_arraycopy = generate_conjoint_long_oop_copy(false, true, "oop_arraycopy");
coleenp@548 2730 }
duke@435 2731
duke@435 2732 StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
duke@435 2733 StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy");
duke@435 2734 StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy");
duke@435 2735
duke@435 2736 // We don't generate specialized code for HeapWord-aligned source
duke@435 2737 // arrays, so just use the code we've already generated
duke@435 2738 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = StubRoutines::_jbyte_disjoint_arraycopy;
duke@435 2739 StubRoutines::_arrayof_jbyte_arraycopy = StubRoutines::_jbyte_arraycopy;
duke@435 2740
duke@435 2741 StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
duke@435 2742 StubRoutines::_arrayof_jshort_arraycopy = StubRoutines::_jshort_arraycopy;
duke@435 2743
duke@435 2744 StubRoutines::_arrayof_jint_disjoint_arraycopy = StubRoutines::_jint_disjoint_arraycopy;
duke@435 2745 StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
duke@435 2746
duke@435 2747 StubRoutines::_arrayof_jlong_disjoint_arraycopy = StubRoutines::_jlong_disjoint_arraycopy;
duke@435 2748 StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
duke@435 2749
duke@435 2750 StubRoutines::_arrayof_oop_disjoint_arraycopy = StubRoutines::_oop_disjoint_arraycopy;
duke@435 2751 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
duke@435 2752 }
duke@435 2753
duke@435 2754 #undef __
duke@435 2755 #define __ masm->
duke@435 2756
duke@435 2757 // Continuation point for throwing of implicit exceptions that are
duke@435 2758 // not handled in the current activation. Fabricates an exception
duke@435 2759 // oop and initiates normal exception dispatching in this
duke@435 2760 // frame. Since we need to preserve callee-saved values (currently
duke@435 2761 // only for C2, but done for C1 as well) we need a callee-saved oop
duke@435 2762 // map and therefore have to make these stubs into RuntimeStubs
duke@435 2763 // rather than BufferBlobs. If the compiler needs all registers to
duke@435 2764 // be preserved between the fault point and the exception handler
duke@435 2765 // then it must assume responsibility for that in
duke@435 2766 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 2767 // continuation_for_implicit_division_by_zero_exception. All other
duke@435 2768 // implicit exceptions (e.g., NullPointerException or
duke@435 2769 // AbstractMethodError on entry) are either at call sites or
duke@435 2770 // otherwise assume that stack unwinding will be initiated, so
duke@435 2771 // caller saved registers were assumed volatile in the compiler.
duke@435 2772 address generate_throw_exception(const char* name,
duke@435 2773 address runtime_entry,
duke@435 2774 bool restore_saved_exception_pc) {
duke@435 2775 // Information about frame layout at time of blocking runtime call.
duke@435 2776 // Note that we only have to preserve callee-saved registers since
duke@435 2777 // the compilers are responsible for supplying a continuation point
duke@435 2778 // if they expect all registers to be preserved.
duke@435 2779 enum layout {
duke@435 2780 rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
duke@435 2781 rbp_off2,
duke@435 2782 return_off,
duke@435 2783 return_off2,
duke@435 2784 framesize // inclusive of return address
duke@435 2785 };
duke@435 2786
duke@435 2787 int insts_size = 512;
duke@435 2788 int locs_size = 64;
duke@435 2789
duke@435 2790 CodeBuffer code(name, insts_size, locs_size);
duke@435 2791 OopMapSet* oop_maps = new OopMapSet();
duke@435 2792 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 2793
duke@435 2794 address start = __ pc();
duke@435 2795
duke@435 2796 // This is an inlined and slightly modified version of call_VM
duke@435 2797 // which has the ability to fetch the return PC out of
duke@435 2798 // thread-local storage and also sets up last_Java_sp slightly
duke@435 2799 // differently than the real call_VM
duke@435 2800 if (restore_saved_exception_pc) {
duke@435 2801 __ movq(rax,
duke@435 2802 Address(r15_thread,
duke@435 2803 in_bytes(JavaThread::saved_exception_pc_offset())));
duke@435 2804 __ pushq(rax);
duke@435 2805 }
duke@435 2806
duke@435 2807 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2808
duke@435 2809 assert(is_even(framesize/2), "sp not 16-byte aligned");
duke@435 2810
duke@435 2811 // return address and rbp are already in place
duke@435 2812 __ subq(rsp, (framesize-4) << LogBytesPerInt); // prolog
duke@435 2813
duke@435 2814 int frame_complete = __ pc() - start;
duke@435 2815
duke@435 2816 // Set up last_Java_sp and last_Java_fp
duke@435 2817 __ set_last_Java_frame(rsp, rbp, NULL);
duke@435 2818
duke@435 2819 // Call runtime
duke@435 2820 __ movq(c_rarg0, r15_thread);
duke@435 2821 BLOCK_COMMENT("call runtime_entry");
duke@435 2822 __ call(RuntimeAddress(runtime_entry));
duke@435 2823
duke@435 2824 // Generate oop map
duke@435 2825 OopMap* map = new OopMap(framesize, 0);
duke@435 2826
duke@435 2827 oop_maps->add_gc_map(__ pc() - start, map);
duke@435 2828
duke@435 2829 __ reset_last_Java_frame(true, false);
duke@435 2830
duke@435 2831 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2832
duke@435 2833 // check for pending exceptions
duke@435 2834 #ifdef ASSERT
duke@435 2835 Label L;
duke@435 2836 __ cmpq(Address(r15_thread, Thread::pending_exception_offset()),
duke@435 2837 (int) NULL);
duke@435 2838 __ jcc(Assembler::notEqual, L);
duke@435 2839 __ should_not_reach_here();
duke@435 2840 __ bind(L);
duke@435 2841 #endif // ASSERT
duke@435 2842 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 2843
duke@435 2844
duke@435 2845 // codeBlob framesize is in words (not VMRegImpl::slot_size)
duke@435 2846 RuntimeStub* stub =
duke@435 2847 RuntimeStub::new_runtime_stub(name,
duke@435 2848 &code,
duke@435 2849 frame_complete,
duke@435 2850 (framesize >> (LogBytesPerWord - LogBytesPerInt)),
duke@435 2851 oop_maps, false);
duke@435 2852 return stub->entry_point();
duke@435 2853 }
duke@435 2854
duke@435 2855 // Initialization
duke@435 2856 void generate_initial() {
duke@435 2857 // Generates all stubs and initializes the entry points
duke@435 2858
duke@435 2859 // This platform-specific stub is needed by generate_call_stub()
duke@435 2860 StubRoutines::amd64::_mxcsr_std = generate_fp_mask("mxcsr_std", 0x0000000000001F80);
duke@435 2861
duke@435 2862 // entry points that exist in all platforms Note: This is code
duke@435 2863 // that could be shared among different platforms - however the
duke@435 2864 // benefit seems to be smaller than the disadvantage of having a
duke@435 2865 // much more complicated generator structure. See also comment in
duke@435 2866 // stubRoutines.hpp.
duke@435 2867
duke@435 2868 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 2869
duke@435 2870 StubRoutines::_call_stub_entry =
duke@435 2871 generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 2872
duke@435 2873 // is referenced by megamorphic call
duke@435 2874 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 2875
duke@435 2876 // atomic calls
duke@435 2877 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 2878 StubRoutines::_atomic_xchg_ptr_entry = generate_atomic_xchg_ptr();
duke@435 2879 StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
duke@435 2880 StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
duke@435 2881 StubRoutines::_atomic_add_entry = generate_atomic_add();
duke@435 2882 StubRoutines::_atomic_add_ptr_entry = generate_atomic_add_ptr();
duke@435 2883 StubRoutines::_fence_entry = generate_orderaccess_fence();
duke@435 2884
duke@435 2885 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 2886 generate_handler_for_unsafe_access();
duke@435 2887
duke@435 2888 // platform dependent
duke@435 2889 StubRoutines::amd64::_get_previous_fp_entry = generate_get_previous_fp();
duke@435 2890
duke@435 2891 StubRoutines::amd64::_verify_mxcsr_entry = generate_verify_mxcsr();
duke@435 2892 }
duke@435 2893
duke@435 2894 void generate_all() {
duke@435 2895 // Generates all stubs and initializes the entry points
duke@435 2896
duke@435 2897 // These entry points require SharedInfo::stack0 to be set up in
duke@435 2898 // non-core builds and need to be relocatable, so they each
duke@435 2899 // fabricate a RuntimeStub internally.
duke@435 2900 StubRoutines::_throw_AbstractMethodError_entry =
duke@435 2901 generate_throw_exception("AbstractMethodError throw_exception",
duke@435 2902 CAST_FROM_FN_PTR(address,
duke@435 2903 SharedRuntime::
duke@435 2904 throw_AbstractMethodError),
duke@435 2905 false);
duke@435 2906
dcubed@451 2907 StubRoutines::_throw_IncompatibleClassChangeError_entry =
dcubed@451 2908 generate_throw_exception("IncompatibleClassChangeError throw_exception",
dcubed@451 2909 CAST_FROM_FN_PTR(address,
dcubed@451 2910 SharedRuntime::
dcubed@451 2911 throw_IncompatibleClassChangeError),
dcubed@451 2912 false);
dcubed@451 2913
duke@435 2914 StubRoutines::_throw_ArithmeticException_entry =
duke@435 2915 generate_throw_exception("ArithmeticException throw_exception",
duke@435 2916 CAST_FROM_FN_PTR(address,
duke@435 2917 SharedRuntime::
duke@435 2918 throw_ArithmeticException),
duke@435 2919 true);
duke@435 2920
duke@435 2921 StubRoutines::_throw_NullPointerException_entry =
duke@435 2922 generate_throw_exception("NullPointerException throw_exception",
duke@435 2923 CAST_FROM_FN_PTR(address,
duke@435 2924 SharedRuntime::
duke@435 2925 throw_NullPointerException),
duke@435 2926 true);
duke@435 2927
duke@435 2928 StubRoutines::_throw_NullPointerException_at_call_entry =
duke@435 2929 generate_throw_exception("NullPointerException at call throw_exception",
duke@435 2930 CAST_FROM_FN_PTR(address,
duke@435 2931 SharedRuntime::
duke@435 2932 throw_NullPointerException_at_call),
duke@435 2933 false);
duke@435 2934
duke@435 2935 StubRoutines::_throw_StackOverflowError_entry =
duke@435 2936 generate_throw_exception("StackOverflowError throw_exception",
duke@435 2937 CAST_FROM_FN_PTR(address,
duke@435 2938 SharedRuntime::
duke@435 2939 throw_StackOverflowError),
duke@435 2940 false);
duke@435 2941
duke@435 2942 // entry points that are platform specific
duke@435 2943 StubRoutines::amd64::_f2i_fixup = generate_f2i_fixup();
duke@435 2944 StubRoutines::amd64::_f2l_fixup = generate_f2l_fixup();
duke@435 2945 StubRoutines::amd64::_d2i_fixup = generate_d2i_fixup();
duke@435 2946 StubRoutines::amd64::_d2l_fixup = generate_d2l_fixup();
duke@435 2947
duke@435 2948 StubRoutines::amd64::_float_sign_mask = generate_fp_mask("float_sign_mask", 0x7FFFFFFF7FFFFFFF);
duke@435 2949 StubRoutines::amd64::_float_sign_flip = generate_fp_mask("float_sign_flip", 0x8000000080000000);
duke@435 2950 StubRoutines::amd64::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
duke@435 2951 StubRoutines::amd64::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
duke@435 2952
duke@435 2953 // support for verify_oop (must happen after universe_init)
duke@435 2954 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
duke@435 2955
duke@435 2956 // arraycopy stubs used by compilers
duke@435 2957 generate_arraycopy_stubs();
duke@435 2958 }
duke@435 2959
duke@435 2960 public:
duke@435 2961 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 2962 if (all) {
duke@435 2963 generate_all();
duke@435 2964 } else {
duke@435 2965 generate_initial();
duke@435 2966 }
duke@435 2967 }
duke@435 2968 }; // end class declaration
duke@435 2969
duke@435 2970 address StubGenerator::disjoint_byte_copy_entry = NULL;
duke@435 2971 address StubGenerator::disjoint_short_copy_entry = NULL;
duke@435 2972 address StubGenerator::disjoint_int_copy_entry = NULL;
duke@435 2973 address StubGenerator::disjoint_long_copy_entry = NULL;
duke@435 2974 address StubGenerator::disjoint_oop_copy_entry = NULL;
duke@435 2975
duke@435 2976 address StubGenerator::byte_copy_entry = NULL;
duke@435 2977 address StubGenerator::short_copy_entry = NULL;
duke@435 2978 address StubGenerator::int_copy_entry = NULL;
duke@435 2979 address StubGenerator::long_copy_entry = NULL;
duke@435 2980 address StubGenerator::oop_copy_entry = NULL;
duke@435 2981
duke@435 2982 address StubGenerator::checkcast_copy_entry = NULL;
duke@435 2983
duke@435 2984 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 2985 StubGenerator g(code, all);
duke@435 2986 }

mercurial