src/share/vm/runtime/virtualspace.cpp

Thu, 05 Sep 2013 11:04:39 -0700

author
kvn
date
Thu, 05 Sep 2013 11:04:39 -0700
changeset 6462
e2722a66aba7
parent 6461
bdd155477289
parent 5578
4c84d351cca9
child 6472
2b8e28fdf503
permissions
-rw-r--r--

Merge

duke@435 1 /*
hseigel@4465 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "oops/markOop.hpp"
stefank@2314 27 #include "oops/oop.inline.hpp"
stefank@2314 28 #include "runtime/virtualspace.hpp"
zgu@3900 29 #include "services/memTracker.hpp"
stefank@2314 30 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 31 # include "os_linux.inline.hpp"
stefank@2314 32 #endif
stefank@2314 33 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 34 # include "os_solaris.inline.hpp"
stefank@2314 35 #endif
stefank@2314 36 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 37 # include "os_windows.inline.hpp"
stefank@2314 38 #endif
goetz@6461 39 #ifdef TARGET_OS_FAMILY_aix
goetz@6461 40 # include "os_aix.inline.hpp"
goetz@6461 41 #endif
never@3156 42 #ifdef TARGET_OS_FAMILY_bsd
never@3156 43 # include "os_bsd.inline.hpp"
never@3156 44 #endif
duke@435 45
duke@435 46
duke@435 47 // ReservedSpace
stefank@5578 48
stefank@5578 49 // Dummy constructor
stefank@5578 50 ReservedSpace::ReservedSpace() : _base(NULL), _size(0), _noaccess_prefix(0),
stefank@5578 51 _alignment(0), _special(false), _executable(false) {
stefank@5578 52 }
stefank@5578 53
duke@435 54 ReservedSpace::ReservedSpace(size_t size) {
stefank@5578 55 size_t page_size = os::page_size_for_region(size, size, 1);
stefank@5578 56 bool large_pages = page_size != (size_t)os::vm_page_size();
stefank@5578 57 // Don't force the alignment to be large page aligned,
stefank@5578 58 // since that will waste memory.
stefank@5578 59 size_t alignment = os::vm_allocation_granularity();
stefank@5578 60 initialize(size, alignment, large_pages, NULL, 0, false);
duke@435 61 }
duke@435 62
duke@435 63 ReservedSpace::ReservedSpace(size_t size, size_t alignment,
coleenp@672 64 bool large,
coleenp@672 65 char* requested_address,
coleenp@672 66 const size_t noaccess_prefix) {
coleenp@672 67 initialize(size+noaccess_prefix, alignment, large, requested_address,
coleenp@1091 68 noaccess_prefix, false);
coleenp@1091 69 }
coleenp@1091 70
coleenp@1091 71 ReservedSpace::ReservedSpace(size_t size, size_t alignment,
coleenp@1091 72 bool large,
coleenp@1091 73 bool executable) {
coleenp@1091 74 initialize(size, alignment, large, NULL, 0, executable);
duke@435 75 }
duke@435 76
kvn@1973 77 // Helper method.
kvn@1973 78 static bool failed_to_reserve_as_requested(char* base, char* requested_address,
kvn@1973 79 const size_t size, bool special)
kvn@1973 80 {
kvn@1973 81 if (base == requested_address || requested_address == NULL)
kvn@1973 82 return false; // did not fail
kvn@1973 83
kvn@1973 84 if (base != NULL) {
kvn@1973 85 // Different reserve address may be acceptable in other cases
kvn@1973 86 // but for compressed oops heap should be at requested address.
kvn@1973 87 assert(UseCompressedOops, "currently requested address used only for compressed oops");
kvn@1973 88 if (PrintCompressedOopsMode) {
kvn@1973 89 tty->cr();
johnc@3022 90 tty->print_cr("Reserved memory not at requested address: " PTR_FORMAT " vs " PTR_FORMAT, base, requested_address);
kvn@1973 91 }
kvn@1973 92 // OS ignored requested address. Try different address.
kvn@1973 93 if (special) {
kvn@1973 94 if (!os::release_memory_special(base, size)) {
kvn@1973 95 fatal("os::release_memory_special failed");
kvn@1973 96 }
kvn@1973 97 } else {
kvn@1973 98 if (!os::release_memory(base, size)) {
kvn@1973 99 fatal("os::release_memory failed");
kvn@1973 100 }
kvn@1973 101 }
kvn@1973 102 }
kvn@1973 103 return true;
kvn@1973 104 }
kvn@1973 105
duke@435 106 void ReservedSpace::initialize(size_t size, size_t alignment, bool large,
coleenp@672 107 char* requested_address,
coleenp@1091 108 const size_t noaccess_prefix,
coleenp@1091 109 bool executable) {
duke@435 110 const size_t granularity = os::vm_allocation_granularity();
johnc@3022 111 assert((size & (granularity - 1)) == 0,
duke@435 112 "size not aligned to os::vm_allocation_granularity()");
johnc@3022 113 assert((alignment & (granularity - 1)) == 0,
duke@435 114 "alignment not aligned to os::vm_allocation_granularity()");
duke@435 115 assert(alignment == 0 || is_power_of_2((intptr_t)alignment),
duke@435 116 "not a power of 2");
duke@435 117
johnc@3022 118 alignment = MAX2(alignment, (size_t)os::vm_page_size());
johnc@3022 119
johnc@3022 120 // Assert that if noaccess_prefix is used, it is the same as alignment.
johnc@3022 121 assert(noaccess_prefix == 0 ||
johnc@3022 122 noaccess_prefix == alignment, "noaccess prefix wrong");
johnc@3022 123
duke@435 124 _base = NULL;
duke@435 125 _size = 0;
duke@435 126 _special = false;
coleenp@1091 127 _executable = executable;
duke@435 128 _alignment = 0;
coleenp@672 129 _noaccess_prefix = 0;
duke@435 130 if (size == 0) {
duke@435 131 return;
duke@435 132 }
duke@435 133
duke@435 134 // If OS doesn't support demand paging for large page memory, we need
duke@435 135 // to use reserve_memory_special() to reserve and pin the entire region.
duke@435 136 bool special = large && !os::can_commit_large_page_memory();
duke@435 137 char* base = NULL;
duke@435 138
kvn@1973 139 if (requested_address != 0) {
kvn@1973 140 requested_address -= noaccess_prefix; // adjust requested address
kvn@1973 141 assert(requested_address != NULL, "huge noaccess prefix?");
kvn@1973 142 }
kvn@1973 143
duke@435 144 if (special) {
duke@435 145
stefank@5578 146 base = os::reserve_memory_special(size, alignment, requested_address, executable);
duke@435 147
duke@435 148 if (base != NULL) {
kvn@1973 149 if (failed_to_reserve_as_requested(base, requested_address, size, true)) {
kvn@1973 150 // OS ignored requested address. Try different address.
kvn@1973 151 return;
kvn@1973 152 }
stefank@5578 153 // Check alignment constraints.
johnc@3022 154 assert((uintptr_t) base % alignment == 0,
stefank@5578 155 err_msg("Large pages returned a non-aligned address, base: "
stefank@5578 156 PTR_FORMAT " alignment: " PTR_FORMAT,
stefank@5578 157 base, (void*)(uintptr_t)alignment));
duke@435 158 _special = true;
duke@435 159 } else {
duke@435 160 // failed; try to reserve regular memory below
kvn@1973 161 if (UseLargePages && (!FLAG_IS_DEFAULT(UseLargePages) ||
kvn@1973 162 !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {
kvn@1973 163 if (PrintCompressedOopsMode) {
kvn@1973 164 tty->cr();
kvn@1973 165 tty->print_cr("Reserve regular memory without large pages.");
kvn@1973 166 }
kvn@1973 167 }
duke@435 168 }
duke@435 169 }
duke@435 170
duke@435 171 if (base == NULL) {
duke@435 172 // Optimistically assume that the OSes returns an aligned base pointer.
duke@435 173 // When reserving a large address range, most OSes seem to align to at
duke@435 174 // least 64K.
duke@435 175
duke@435 176 // If the memory was requested at a particular address, use
duke@435 177 // os::attempt_reserve_memory_at() to avoid over mapping something
duke@435 178 // important. If available space is not detected, return NULL.
duke@435 179
duke@435 180 if (requested_address != 0) {
kvn@1973 181 base = os::attempt_reserve_memory_at(size, requested_address);
kvn@1973 182 if (failed_to_reserve_as_requested(base, requested_address, size, false)) {
kvn@1973 183 // OS ignored requested address. Try different address.
kvn@1973 184 base = NULL;
kvn@1973 185 }
duke@435 186 } else {
duke@435 187 base = os::reserve_memory(size, NULL, alignment);
duke@435 188 }
duke@435 189
duke@435 190 if (base == NULL) return;
duke@435 191
duke@435 192 // Check alignment constraints
johnc@3022 193 if ((((size_t)base + noaccess_prefix) & (alignment - 1)) != 0) {
duke@435 194 // Base not aligned, retry
duke@435 195 if (!os::release_memory(base, size)) fatal("os::release_memory failed");
brutisso@4369 196 // Make sure that size is aligned
duke@435 197 size = align_size_up(size, alignment);
brutisso@4369 198 base = os::reserve_memory_aligned(size, alignment);
johnc@3022 199
johnc@3022 200 if (requested_address != 0 &&
johnc@3022 201 failed_to_reserve_as_requested(base, requested_address, size, false)) {
johnc@3022 202 // As a result of the alignment constraints, the allocated base differs
johnc@3022 203 // from the requested address. Return back to the caller who can
johnc@3022 204 // take remedial action (like try again without a requested address).
johnc@3022 205 assert(_base == NULL, "should be");
johnc@3022 206 return;
johnc@3022 207 }
duke@435 208 }
duke@435 209 }
duke@435 210 // Done
duke@435 211 _base = base;
duke@435 212 _size = size;
johnc@3022 213 _alignment = alignment;
coleenp@672 214 _noaccess_prefix = noaccess_prefix;
coleenp@672 215
coleenp@672 216 // Assert that if noaccess_prefix is used, it is the same as alignment.
coleenp@672 217 assert(noaccess_prefix == 0 ||
coleenp@672 218 noaccess_prefix == _alignment, "noaccess prefix wrong");
duke@435 219
duke@435 220 assert(markOopDesc::encode_pointer_as_mark(_base)->decode_pointer() == _base,
duke@435 221 "area must be distinguisable from marks for mark-sweep");
duke@435 222 assert(markOopDesc::encode_pointer_as_mark(&_base[size])->decode_pointer() == &_base[size],
duke@435 223 "area must be distinguisable from marks for mark-sweep");
duke@435 224 }
duke@435 225
duke@435 226
duke@435 227 ReservedSpace::ReservedSpace(char* base, size_t size, size_t alignment,
coleenp@1091 228 bool special, bool executable) {
duke@435 229 assert((size % os::vm_allocation_granularity()) == 0,
duke@435 230 "size not allocation aligned");
duke@435 231 _base = base;
duke@435 232 _size = size;
duke@435 233 _alignment = alignment;
coleenp@672 234 _noaccess_prefix = 0;
duke@435 235 _special = special;
coleenp@1091 236 _executable = executable;
duke@435 237 }
duke@435 238
duke@435 239
duke@435 240 ReservedSpace ReservedSpace::first_part(size_t partition_size, size_t alignment,
duke@435 241 bool split, bool realloc) {
duke@435 242 assert(partition_size <= size(), "partition failed");
duke@435 243 if (split) {
coleenp@1091 244 os::split_reserved_memory(base(), size(), partition_size, realloc);
duke@435 245 }
coleenp@1091 246 ReservedSpace result(base(), partition_size, alignment, special(),
coleenp@1091 247 executable());
duke@435 248 return result;
duke@435 249 }
duke@435 250
duke@435 251
duke@435 252 ReservedSpace
duke@435 253 ReservedSpace::last_part(size_t partition_size, size_t alignment) {
duke@435 254 assert(partition_size <= size(), "partition failed");
duke@435 255 ReservedSpace result(base() + partition_size, size() - partition_size,
coleenp@1091 256 alignment, special(), executable());
duke@435 257 return result;
duke@435 258 }
duke@435 259
duke@435 260
duke@435 261 size_t ReservedSpace::page_align_size_up(size_t size) {
duke@435 262 return align_size_up(size, os::vm_page_size());
duke@435 263 }
duke@435 264
duke@435 265
duke@435 266 size_t ReservedSpace::page_align_size_down(size_t size) {
duke@435 267 return align_size_down(size, os::vm_page_size());
duke@435 268 }
duke@435 269
duke@435 270
duke@435 271 size_t ReservedSpace::allocation_align_size_up(size_t size) {
duke@435 272 return align_size_up(size, os::vm_allocation_granularity());
duke@435 273 }
duke@435 274
duke@435 275
duke@435 276 size_t ReservedSpace::allocation_align_size_down(size_t size) {
duke@435 277 return align_size_down(size, os::vm_allocation_granularity());
duke@435 278 }
duke@435 279
duke@435 280
duke@435 281 void ReservedSpace::release() {
duke@435 282 if (is_reserved()) {
coleenp@672 283 char *real_base = _base - _noaccess_prefix;
coleenp@672 284 const size_t real_size = _size + _noaccess_prefix;
duke@435 285 if (special()) {
coleenp@672 286 os::release_memory_special(real_base, real_size);
duke@435 287 } else{
coleenp@672 288 os::release_memory(real_base, real_size);
duke@435 289 }
duke@435 290 _base = NULL;
duke@435 291 _size = 0;
coleenp@672 292 _noaccess_prefix = 0;
duke@435 293 _special = false;
coleenp@1091 294 _executable = false;
duke@435 295 }
duke@435 296 }
duke@435 297
coleenp@672 298 void ReservedSpace::protect_noaccess_prefix(const size_t size) {
kvn@1973 299 assert( (_noaccess_prefix != 0) == (UseCompressedOops && _base != NULL &&
coleenp@3561 300 (Universe::narrow_oop_base() != NULL) &&
kvn@1973 301 Universe::narrow_oop_use_implicit_null_checks()),
kvn@1973 302 "noaccess_prefix should be used only with non zero based compressed oops");
kvn@1973 303
kvn@1973 304 // If there is no noaccess prefix, return.
coleenp@672 305 if (_noaccess_prefix == 0) return;
coleenp@672 306
coleenp@672 307 assert(_noaccess_prefix >= (size_t)os::vm_page_size(),
coleenp@672 308 "must be at least page size big");
coleenp@672 309
coleenp@672 310 // Protect memory at the base of the allocated region.
coleenp@672 311 // If special, the page was committed (only matters on windows)
coleenp@672 312 if (!os::protect_memory(_base, _noaccess_prefix, os::MEM_PROT_NONE,
coleenp@672 313 _special)) {
coleenp@672 314 fatal("cannot protect protection page");
coleenp@672 315 }
kvn@1973 316 if (PrintCompressedOopsMode) {
kvn@1973 317 tty->cr();
kvn@1973 318 tty->print_cr("Protected page at the reserved heap base: " PTR_FORMAT " / " INTX_FORMAT " bytes", _base, _noaccess_prefix);
kvn@1973 319 }
coleenp@672 320
coleenp@672 321 _base += _noaccess_prefix;
coleenp@672 322 _size -= _noaccess_prefix;
coleenp@672 323 assert((size == _size) && ((uintptr_t)_base % _alignment == 0),
coleenp@672 324 "must be exactly of required size and alignment");
coleenp@672 325 }
coleenp@672 326
coleenp@672 327 ReservedHeapSpace::ReservedHeapSpace(size_t size, size_t alignment,
coleenp@672 328 bool large, char* requested_address) :
coleenp@672 329 ReservedSpace(size, alignment, large,
coleenp@672 330 requested_address,
kvn@1077 331 (UseCompressedOops && (Universe::narrow_oop_base() != NULL) &&
kvn@1077 332 Universe::narrow_oop_use_implicit_null_checks()) ?
coleenp@760 333 lcm(os::vm_page_size(), alignment) : 0) {
zgu@3900 334 if (base() > 0) {
zgu@3900 335 MemTracker::record_virtual_memory_type((address)base(), mtJavaHeap);
zgu@3900 336 }
zgu@3900 337
coleenp@672 338 // Only reserved space for the java heap should have a noaccess_prefix
coleenp@672 339 // if using compressed oops.
coleenp@672 340 protect_noaccess_prefix(size);
coleenp@672 341 }
coleenp@672 342
coleenp@1091 343 // Reserve space for code segment. Same as Java heap only we mark this as
coleenp@1091 344 // executable.
coleenp@1091 345 ReservedCodeSpace::ReservedCodeSpace(size_t r_size,
coleenp@1091 346 size_t rs_align,
coleenp@1091 347 bool large) :
coleenp@1091 348 ReservedSpace(r_size, rs_align, large, /*executable*/ true) {
zgu@3900 349 MemTracker::record_virtual_memory_type((address)base(), mtCode);
coleenp@1091 350 }
coleenp@1091 351
duke@435 352 // VirtualSpace
duke@435 353
duke@435 354 VirtualSpace::VirtualSpace() {
duke@435 355 _low_boundary = NULL;
duke@435 356 _high_boundary = NULL;
duke@435 357 _low = NULL;
duke@435 358 _high = NULL;
duke@435 359 _lower_high = NULL;
duke@435 360 _middle_high = NULL;
duke@435 361 _upper_high = NULL;
duke@435 362 _lower_high_boundary = NULL;
duke@435 363 _middle_high_boundary = NULL;
duke@435 364 _upper_high_boundary = NULL;
duke@435 365 _lower_alignment = 0;
duke@435 366 _middle_alignment = 0;
duke@435 367 _upper_alignment = 0;
coleenp@672 368 _special = false;
coleenp@1091 369 _executable = false;
duke@435 370 }
duke@435 371
duke@435 372
duke@435 373 bool VirtualSpace::initialize(ReservedSpace rs, size_t committed_size) {
duke@435 374 if(!rs.is_reserved()) return false; // allocation failed.
duke@435 375 assert(_low_boundary == NULL, "VirtualSpace already initialized");
duke@435 376 _low_boundary = rs.base();
duke@435 377 _high_boundary = low_boundary() + rs.size();
duke@435 378
duke@435 379 _low = low_boundary();
duke@435 380 _high = low();
duke@435 381
duke@435 382 _special = rs.special();
coleenp@1091 383 _executable = rs.executable();
duke@435 384
duke@435 385 // When a VirtualSpace begins life at a large size, make all future expansion
duke@435 386 // and shrinking occur aligned to a granularity of large pages. This avoids
duke@435 387 // fragmentation of physical addresses that inhibits the use of large pages
duke@435 388 // by the OS virtual memory system. Empirically, we see that with a 4MB
duke@435 389 // page size, the only spaces that get handled this way are codecache and
duke@435 390 // the heap itself, both of which provide a substantial performance
duke@435 391 // boost in many benchmarks when covered by large pages.
duke@435 392 //
duke@435 393 // No attempt is made to force large page alignment at the very top and
duke@435 394 // bottom of the space if they are not aligned so already.
duke@435 395 _lower_alignment = os::vm_page_size();
duke@435 396 _middle_alignment = os::page_size_for_region(rs.size(), rs.size(), 1);
duke@435 397 _upper_alignment = os::vm_page_size();
duke@435 398
duke@435 399 // End of each region
duke@435 400 _lower_high_boundary = (char*) round_to((intptr_t) low_boundary(), middle_alignment());
duke@435 401 _middle_high_boundary = (char*) round_down((intptr_t) high_boundary(), middle_alignment());
duke@435 402 _upper_high_boundary = high_boundary();
duke@435 403
duke@435 404 // High address of each region
duke@435 405 _lower_high = low_boundary();
duke@435 406 _middle_high = lower_high_boundary();
duke@435 407 _upper_high = middle_high_boundary();
duke@435 408
duke@435 409 // commit to initial size
duke@435 410 if (committed_size > 0) {
duke@435 411 if (!expand_by(committed_size)) {
duke@435 412 return false;
duke@435 413 }
duke@435 414 }
duke@435 415 return true;
duke@435 416 }
duke@435 417
duke@435 418
duke@435 419 VirtualSpace::~VirtualSpace() {
duke@435 420 release();
duke@435 421 }
duke@435 422
duke@435 423
duke@435 424 void VirtualSpace::release() {
coleenp@672 425 // This does not release memory it never reserved.
coleenp@672 426 // Caller must release via rs.release();
duke@435 427 _low_boundary = NULL;
duke@435 428 _high_boundary = NULL;
duke@435 429 _low = NULL;
duke@435 430 _high = NULL;
duke@435 431 _lower_high = NULL;
duke@435 432 _middle_high = NULL;
duke@435 433 _upper_high = NULL;
duke@435 434 _lower_high_boundary = NULL;
duke@435 435 _middle_high_boundary = NULL;
duke@435 436 _upper_high_boundary = NULL;
duke@435 437 _lower_alignment = 0;
duke@435 438 _middle_alignment = 0;
duke@435 439 _upper_alignment = 0;
duke@435 440 _special = false;
coleenp@1091 441 _executable = false;
duke@435 442 }
duke@435 443
duke@435 444
duke@435 445 size_t VirtualSpace::committed_size() const {
duke@435 446 return pointer_delta(high(), low(), sizeof(char));
duke@435 447 }
duke@435 448
duke@435 449
duke@435 450 size_t VirtualSpace::reserved_size() const {
duke@435 451 return pointer_delta(high_boundary(), low_boundary(), sizeof(char));
duke@435 452 }
duke@435 453
duke@435 454
duke@435 455 size_t VirtualSpace::uncommitted_size() const {
duke@435 456 return reserved_size() - committed_size();
duke@435 457 }
duke@435 458
duke@435 459
duke@435 460 bool VirtualSpace::contains(const void* p) const {
duke@435 461 return low() <= (const char*) p && (const char*) p < high();
duke@435 462 }
duke@435 463
duke@435 464 /*
duke@435 465 First we need to determine if a particular virtual space is using large
duke@435 466 pages. This is done at the initialize function and only virtual spaces
duke@435 467 that are larger than LargePageSizeInBytes use large pages. Once we
duke@435 468 have determined this, all expand_by and shrink_by calls must grow and
duke@435 469 shrink by large page size chunks. If a particular request
duke@435 470 is within the current large page, the call to commit and uncommit memory
duke@435 471 can be ignored. In the case that the low and high boundaries of this
duke@435 472 space is not large page aligned, the pages leading to the first large
duke@435 473 page address and the pages after the last large page address must be
duke@435 474 allocated with default pages.
duke@435 475 */
duke@435 476 bool VirtualSpace::expand_by(size_t bytes, bool pre_touch) {
duke@435 477 if (uncommitted_size() < bytes) return false;
duke@435 478
duke@435 479 if (special()) {
duke@435 480 // don't commit memory if the entire space is pinned in memory
duke@435 481 _high += bytes;
duke@435 482 return true;
duke@435 483 }
duke@435 484
duke@435 485 char* previous_high = high();
duke@435 486 char* unaligned_new_high = high() + bytes;
duke@435 487 assert(unaligned_new_high <= high_boundary(),
duke@435 488 "cannot expand by more than upper boundary");
duke@435 489
duke@435 490 // Calculate where the new high for each of the regions should be. If
duke@435 491 // the low_boundary() and high_boundary() are LargePageSizeInBytes aligned
duke@435 492 // then the unaligned lower and upper new highs would be the
duke@435 493 // lower_high() and upper_high() respectively.
duke@435 494 char* unaligned_lower_new_high =
duke@435 495 MIN2(unaligned_new_high, lower_high_boundary());
duke@435 496 char* unaligned_middle_new_high =
duke@435 497 MIN2(unaligned_new_high, middle_high_boundary());
duke@435 498 char* unaligned_upper_new_high =
duke@435 499 MIN2(unaligned_new_high, upper_high_boundary());
duke@435 500
duke@435 501 // Align the new highs based on the regions alignment. lower and upper
duke@435 502 // alignment will always be default page size. middle alignment will be
duke@435 503 // LargePageSizeInBytes if the actual size of the virtual space is in
duke@435 504 // fact larger than LargePageSizeInBytes.
duke@435 505 char* aligned_lower_new_high =
duke@435 506 (char*) round_to((intptr_t) unaligned_lower_new_high, lower_alignment());
duke@435 507 char* aligned_middle_new_high =
duke@435 508 (char*) round_to((intptr_t) unaligned_middle_new_high, middle_alignment());
duke@435 509 char* aligned_upper_new_high =
duke@435 510 (char*) round_to((intptr_t) unaligned_upper_new_high, upper_alignment());
duke@435 511
duke@435 512 // Determine which regions need to grow in this expand_by call.
duke@435 513 // If you are growing in the lower region, high() must be in that
duke@435 514 // region so calcuate the size based on high(). For the middle and
duke@435 515 // upper regions, determine the starting point of growth based on the
duke@435 516 // location of high(). By getting the MAX of the region's low address
duke@435 517 // (or the prevoius region's high address) and high(), we can tell if it
duke@435 518 // is an intra or inter region growth.
duke@435 519 size_t lower_needs = 0;
duke@435 520 if (aligned_lower_new_high > lower_high()) {
duke@435 521 lower_needs =
duke@435 522 pointer_delta(aligned_lower_new_high, lower_high(), sizeof(char));
duke@435 523 }
duke@435 524 size_t middle_needs = 0;
duke@435 525 if (aligned_middle_new_high > middle_high()) {
duke@435 526 middle_needs =
duke@435 527 pointer_delta(aligned_middle_new_high, middle_high(), sizeof(char));
duke@435 528 }
duke@435 529 size_t upper_needs = 0;
duke@435 530 if (aligned_upper_new_high > upper_high()) {
duke@435 531 upper_needs =
duke@435 532 pointer_delta(aligned_upper_new_high, upper_high(), sizeof(char));
duke@435 533 }
duke@435 534
duke@435 535 // Check contiguity.
duke@435 536 assert(low_boundary() <= lower_high() &&
duke@435 537 lower_high() <= lower_high_boundary(),
duke@435 538 "high address must be contained within the region");
duke@435 539 assert(lower_high_boundary() <= middle_high() &&
duke@435 540 middle_high() <= middle_high_boundary(),
duke@435 541 "high address must be contained within the region");
duke@435 542 assert(middle_high_boundary() <= upper_high() &&
duke@435 543 upper_high() <= upper_high_boundary(),
duke@435 544 "high address must be contained within the region");
duke@435 545
duke@435 546 // Commit regions
duke@435 547 if (lower_needs > 0) {
duke@435 548 assert(low_boundary() <= lower_high() &&
duke@435 549 lower_high() + lower_needs <= lower_high_boundary(),
duke@435 550 "must not expand beyond region");
coleenp@1091 551 if (!os::commit_memory(lower_high(), lower_needs, _executable)) {
dcubed@5255 552 debug_only(warning("INFO: os::commit_memory(" PTR_FORMAT
dcubed@5255 553 ", lower_needs=" SIZE_FORMAT ", %d) failed",
dcubed@5255 554 lower_high(), lower_needs, _executable);)
duke@435 555 return false;
duke@435 556 } else {
duke@435 557 _lower_high += lower_needs;
dcubed@5255 558 }
duke@435 559 }
duke@435 560 if (middle_needs > 0) {
duke@435 561 assert(lower_high_boundary() <= middle_high() &&
duke@435 562 middle_high() + middle_needs <= middle_high_boundary(),
duke@435 563 "must not expand beyond region");
coleenp@1091 564 if (!os::commit_memory(middle_high(), middle_needs, middle_alignment(),
coleenp@1091 565 _executable)) {
dcubed@5255 566 debug_only(warning("INFO: os::commit_memory(" PTR_FORMAT
dcubed@5255 567 ", middle_needs=" SIZE_FORMAT ", " SIZE_FORMAT
dcubed@5255 568 ", %d) failed", middle_high(), middle_needs,
dcubed@5255 569 middle_alignment(), _executable);)
duke@435 570 return false;
duke@435 571 }
duke@435 572 _middle_high += middle_needs;
duke@435 573 }
duke@435 574 if (upper_needs > 0) {
duke@435 575 assert(middle_high_boundary() <= upper_high() &&
duke@435 576 upper_high() + upper_needs <= upper_high_boundary(),
duke@435 577 "must not expand beyond region");
coleenp@1091 578 if (!os::commit_memory(upper_high(), upper_needs, _executable)) {
dcubed@5255 579 debug_only(warning("INFO: os::commit_memory(" PTR_FORMAT
dcubed@5255 580 ", upper_needs=" SIZE_FORMAT ", %d) failed",
dcubed@5255 581 upper_high(), upper_needs, _executable);)
duke@435 582 return false;
duke@435 583 } else {
duke@435 584 _upper_high += upper_needs;
duke@435 585 }
duke@435 586 }
duke@435 587
duke@435 588 if (pre_touch || AlwaysPreTouch) {
duke@435 589 int vm_ps = os::vm_page_size();
duke@435 590 for (char* curr = previous_high;
duke@435 591 curr < unaligned_new_high;
duke@435 592 curr += vm_ps) {
duke@435 593 // Note the use of a write here; originally we tried just a read, but
duke@435 594 // since the value read was unused, the optimizer removed the read.
duke@435 595 // If we ever have a concurrent touchahead thread, we'll want to use
duke@435 596 // a read, to avoid the potential of overwriting data (if a mutator
duke@435 597 // thread beats the touchahead thread to a page). There are various
duke@435 598 // ways of making sure this read is not optimized away: for example,
duke@435 599 // generating the code for a read procedure at runtime.
duke@435 600 *curr = 0;
duke@435 601 }
duke@435 602 }
duke@435 603
duke@435 604 _high += bytes;
duke@435 605 return true;
duke@435 606 }
duke@435 607
duke@435 608 // A page is uncommitted if the contents of the entire page is deemed unusable.
duke@435 609 // Continue to decrement the high() pointer until it reaches a page boundary
duke@435 610 // in which case that particular page can now be uncommitted.
duke@435 611 void VirtualSpace::shrink_by(size_t size) {
duke@435 612 if (committed_size() < size)
duke@435 613 fatal("Cannot shrink virtual space to negative size");
duke@435 614
duke@435 615 if (special()) {
duke@435 616 // don't uncommit if the entire space is pinned in memory
duke@435 617 _high -= size;
duke@435 618 return;
duke@435 619 }
duke@435 620
duke@435 621 char* unaligned_new_high = high() - size;
duke@435 622 assert(unaligned_new_high >= low_boundary(), "cannot shrink past lower boundary");
duke@435 623
duke@435 624 // Calculate new unaligned address
duke@435 625 char* unaligned_upper_new_high =
duke@435 626 MAX2(unaligned_new_high, middle_high_boundary());
duke@435 627 char* unaligned_middle_new_high =
duke@435 628 MAX2(unaligned_new_high, lower_high_boundary());
duke@435 629 char* unaligned_lower_new_high =
duke@435 630 MAX2(unaligned_new_high, low_boundary());
duke@435 631
duke@435 632 // Align address to region's alignment
duke@435 633 char* aligned_upper_new_high =
duke@435 634 (char*) round_to((intptr_t) unaligned_upper_new_high, upper_alignment());
duke@435 635 char* aligned_middle_new_high =
duke@435 636 (char*) round_to((intptr_t) unaligned_middle_new_high, middle_alignment());
duke@435 637 char* aligned_lower_new_high =
duke@435 638 (char*) round_to((intptr_t) unaligned_lower_new_high, lower_alignment());
duke@435 639
duke@435 640 // Determine which regions need to shrink
duke@435 641 size_t upper_needs = 0;
duke@435 642 if (aligned_upper_new_high < upper_high()) {
duke@435 643 upper_needs =
duke@435 644 pointer_delta(upper_high(), aligned_upper_new_high, sizeof(char));
duke@435 645 }
duke@435 646 size_t middle_needs = 0;
duke@435 647 if (aligned_middle_new_high < middle_high()) {
duke@435 648 middle_needs =
duke@435 649 pointer_delta(middle_high(), aligned_middle_new_high, sizeof(char));
duke@435 650 }
duke@435 651 size_t lower_needs = 0;
duke@435 652 if (aligned_lower_new_high < lower_high()) {
duke@435 653 lower_needs =
duke@435 654 pointer_delta(lower_high(), aligned_lower_new_high, sizeof(char));
duke@435 655 }
duke@435 656
duke@435 657 // Check contiguity.
duke@435 658 assert(middle_high_boundary() <= upper_high() &&
duke@435 659 upper_high() <= upper_high_boundary(),
duke@435 660 "high address must be contained within the region");
duke@435 661 assert(lower_high_boundary() <= middle_high() &&
duke@435 662 middle_high() <= middle_high_boundary(),
duke@435 663 "high address must be contained within the region");
duke@435 664 assert(low_boundary() <= lower_high() &&
duke@435 665 lower_high() <= lower_high_boundary(),
duke@435 666 "high address must be contained within the region");
duke@435 667
duke@435 668 // Uncommit
duke@435 669 if (upper_needs > 0) {
duke@435 670 assert(middle_high_boundary() <= aligned_upper_new_high &&
duke@435 671 aligned_upper_new_high + upper_needs <= upper_high_boundary(),
duke@435 672 "must not shrink beyond region");
duke@435 673 if (!os::uncommit_memory(aligned_upper_new_high, upper_needs)) {
duke@435 674 debug_only(warning("os::uncommit_memory failed"));
duke@435 675 return;
duke@435 676 } else {
duke@435 677 _upper_high -= upper_needs;
duke@435 678 }
duke@435 679 }
duke@435 680 if (middle_needs > 0) {
duke@435 681 assert(lower_high_boundary() <= aligned_middle_new_high &&
duke@435 682 aligned_middle_new_high + middle_needs <= middle_high_boundary(),
duke@435 683 "must not shrink beyond region");
duke@435 684 if (!os::uncommit_memory(aligned_middle_new_high, middle_needs)) {
duke@435 685 debug_only(warning("os::uncommit_memory failed"));
duke@435 686 return;
duke@435 687 } else {
duke@435 688 _middle_high -= middle_needs;
duke@435 689 }
duke@435 690 }
duke@435 691 if (lower_needs > 0) {
duke@435 692 assert(low_boundary() <= aligned_lower_new_high &&
duke@435 693 aligned_lower_new_high + lower_needs <= lower_high_boundary(),
duke@435 694 "must not shrink beyond region");
duke@435 695 if (!os::uncommit_memory(aligned_lower_new_high, lower_needs)) {
duke@435 696 debug_only(warning("os::uncommit_memory failed"));
duke@435 697 return;
duke@435 698 } else {
duke@435 699 _lower_high -= lower_needs;
duke@435 700 }
duke@435 701 }
duke@435 702
duke@435 703 _high -= size;
duke@435 704 }
duke@435 705
duke@435 706 #ifndef PRODUCT
duke@435 707 void VirtualSpace::check_for_contiguity() {
duke@435 708 // Check contiguity.
duke@435 709 assert(low_boundary() <= lower_high() &&
duke@435 710 lower_high() <= lower_high_boundary(),
duke@435 711 "high address must be contained within the region");
duke@435 712 assert(lower_high_boundary() <= middle_high() &&
duke@435 713 middle_high() <= middle_high_boundary(),
duke@435 714 "high address must be contained within the region");
duke@435 715 assert(middle_high_boundary() <= upper_high() &&
duke@435 716 upper_high() <= upper_high_boundary(),
duke@435 717 "high address must be contained within the region");
duke@435 718 assert(low() >= low_boundary(), "low");
duke@435 719 assert(low_boundary() <= lower_high_boundary(), "lower high boundary");
duke@435 720 assert(upper_high_boundary() <= high_boundary(), "upper high boundary");
duke@435 721 assert(high() <= upper_high(), "upper high");
duke@435 722 }
duke@435 723
duke@435 724 void VirtualSpace::print() {
duke@435 725 tty->print ("Virtual space:");
duke@435 726 if (special()) tty->print(" (pinned in memory)");
duke@435 727 tty->cr();
hseigel@4465 728 tty->print_cr(" - committed: " SIZE_FORMAT, committed_size());
hseigel@4465 729 tty->print_cr(" - reserved: " SIZE_FORMAT, reserved_size());
duke@435 730 tty->print_cr(" - [low, high]: [" INTPTR_FORMAT ", " INTPTR_FORMAT "]", low(), high());
duke@435 731 tty->print_cr(" - [low_b, high_b]: [" INTPTR_FORMAT ", " INTPTR_FORMAT "]", low_boundary(), high_boundary());
duke@435 732 }
duke@435 733
stefank@5578 734
stefank@5578 735 /////////////// Unit tests ///////////////
stefank@5578 736
stefank@5578 737 #ifndef PRODUCT
stefank@5578 738
stefank@5578 739 #define test_log(...) \
stefank@5578 740 do {\
stefank@5578 741 if (VerboseInternalVMTests) { \
stefank@5578 742 tty->print_cr(__VA_ARGS__); \
stefank@5578 743 tty->flush(); \
stefank@5578 744 }\
stefank@5578 745 } while (false)
stefank@5578 746
stefank@5578 747 class TestReservedSpace : AllStatic {
stefank@5578 748 public:
stefank@5578 749 static void small_page_write(void* addr, size_t size) {
stefank@5578 750 size_t page_size = os::vm_page_size();
stefank@5578 751
stefank@5578 752 char* end = (char*)addr + size;
stefank@5578 753 for (char* p = (char*)addr; p < end; p += page_size) {
stefank@5578 754 *p = 1;
stefank@5578 755 }
stefank@5578 756 }
stefank@5578 757
stefank@5578 758 static void release_memory_for_test(ReservedSpace rs) {
stefank@5578 759 if (rs.special()) {
stefank@5578 760 guarantee(os::release_memory_special(rs.base(), rs.size()), "Shouldn't fail");
stefank@5578 761 } else {
stefank@5578 762 guarantee(os::release_memory(rs.base(), rs.size()), "Shouldn't fail");
stefank@5578 763 }
stefank@5578 764 }
stefank@5578 765
stefank@5578 766 static void test_reserved_space1(size_t size, size_t alignment) {
stefank@5578 767 test_log("test_reserved_space1(%p)", (void*) (uintptr_t) size);
stefank@5578 768
stefank@5578 769 assert(is_size_aligned(size, alignment), "Incorrect input parameters");
stefank@5578 770
stefank@5578 771 ReservedSpace rs(size, // size
stefank@5578 772 alignment, // alignment
stefank@5578 773 UseLargePages, // large
stefank@5578 774 NULL, // requested_address
stefank@5578 775 0); // noacces_prefix
stefank@5578 776
stefank@5578 777 test_log(" rs.special() == %d", rs.special());
stefank@5578 778
stefank@5578 779 assert(rs.base() != NULL, "Must be");
stefank@5578 780 assert(rs.size() == size, "Must be");
stefank@5578 781
stefank@5578 782 assert(is_ptr_aligned(rs.base(), alignment), "aligned sizes should always give aligned addresses");
stefank@5578 783 assert(is_size_aligned(rs.size(), alignment), "aligned sizes should always give aligned addresses");
stefank@5578 784
stefank@5578 785 if (rs.special()) {
stefank@5578 786 small_page_write(rs.base(), size);
stefank@5578 787 }
stefank@5578 788
stefank@5578 789 release_memory_for_test(rs);
stefank@5578 790 }
stefank@5578 791
stefank@5578 792 static void test_reserved_space2(size_t size) {
stefank@5578 793 test_log("test_reserved_space2(%p)", (void*)(uintptr_t)size);
stefank@5578 794
stefank@5578 795 assert(is_size_aligned(size, os::vm_allocation_granularity()), "Must be at least AG aligned");
stefank@5578 796
stefank@5578 797 ReservedSpace rs(size);
stefank@5578 798
stefank@5578 799 test_log(" rs.special() == %d", rs.special());
stefank@5578 800
stefank@5578 801 assert(rs.base() != NULL, "Must be");
stefank@5578 802 assert(rs.size() == size, "Must be");
stefank@5578 803
stefank@5578 804 if (rs.special()) {
stefank@5578 805 small_page_write(rs.base(), size);
stefank@5578 806 }
stefank@5578 807
stefank@5578 808 release_memory_for_test(rs);
stefank@5578 809 }
stefank@5578 810
stefank@5578 811 static void test_reserved_space3(size_t size, size_t alignment, bool maybe_large) {
stefank@5578 812 test_log("test_reserved_space3(%p, %p, %d)",
stefank@5578 813 (void*)(uintptr_t)size, (void*)(uintptr_t)alignment, maybe_large);
stefank@5578 814
stefank@5578 815 assert(is_size_aligned(size, os::vm_allocation_granularity()), "Must be at least AG aligned");
stefank@5578 816 assert(is_size_aligned(size, alignment), "Must be at least aligned against alignment");
stefank@5578 817
stefank@5578 818 bool large = maybe_large && UseLargePages && size >= os::large_page_size();
stefank@5578 819
stefank@5578 820 ReservedSpace rs(size, alignment, large, false);
stefank@5578 821
stefank@5578 822 test_log(" rs.special() == %d", rs.special());
stefank@5578 823
stefank@5578 824 assert(rs.base() != NULL, "Must be");
stefank@5578 825 assert(rs.size() == size, "Must be");
stefank@5578 826
stefank@5578 827 if (rs.special()) {
stefank@5578 828 small_page_write(rs.base(), size);
stefank@5578 829 }
stefank@5578 830
stefank@5578 831 release_memory_for_test(rs);
stefank@5578 832 }
stefank@5578 833
stefank@5578 834
stefank@5578 835 static void test_reserved_space1() {
stefank@5578 836 size_t size = 2 * 1024 * 1024;
stefank@5578 837 size_t ag = os::vm_allocation_granularity();
stefank@5578 838
stefank@5578 839 test_reserved_space1(size, ag);
stefank@5578 840 test_reserved_space1(size * 2, ag);
stefank@5578 841 test_reserved_space1(size * 10, ag);
stefank@5578 842 }
stefank@5578 843
stefank@5578 844 static void test_reserved_space2() {
stefank@5578 845 size_t size = 2 * 1024 * 1024;
stefank@5578 846 size_t ag = os::vm_allocation_granularity();
stefank@5578 847
stefank@5578 848 test_reserved_space2(size * 1);
stefank@5578 849 test_reserved_space2(size * 2);
stefank@5578 850 test_reserved_space2(size * 10);
stefank@5578 851 test_reserved_space2(ag);
stefank@5578 852 test_reserved_space2(size - ag);
stefank@5578 853 test_reserved_space2(size);
stefank@5578 854 test_reserved_space2(size + ag);
stefank@5578 855 test_reserved_space2(size * 2);
stefank@5578 856 test_reserved_space2(size * 2 - ag);
stefank@5578 857 test_reserved_space2(size * 2 + ag);
stefank@5578 858 test_reserved_space2(size * 3);
stefank@5578 859 test_reserved_space2(size * 3 - ag);
stefank@5578 860 test_reserved_space2(size * 3 + ag);
stefank@5578 861 test_reserved_space2(size * 10);
stefank@5578 862 test_reserved_space2(size * 10 + size / 2);
stefank@5578 863 }
stefank@5578 864
stefank@5578 865 static void test_reserved_space3() {
stefank@5578 866 size_t ag = os::vm_allocation_granularity();
stefank@5578 867
stefank@5578 868 test_reserved_space3(ag, ag , false);
stefank@5578 869 test_reserved_space3(ag * 2, ag , false);
stefank@5578 870 test_reserved_space3(ag * 3, ag , false);
stefank@5578 871 test_reserved_space3(ag * 2, ag * 2, false);
stefank@5578 872 test_reserved_space3(ag * 4, ag * 2, false);
stefank@5578 873 test_reserved_space3(ag * 8, ag * 2, false);
stefank@5578 874 test_reserved_space3(ag * 4, ag * 4, false);
stefank@5578 875 test_reserved_space3(ag * 8, ag * 4, false);
stefank@5578 876 test_reserved_space3(ag * 16, ag * 4, false);
stefank@5578 877
stefank@5578 878 if (UseLargePages) {
stefank@5578 879 size_t lp = os::large_page_size();
stefank@5578 880
stefank@5578 881 // Without large pages
stefank@5578 882 test_reserved_space3(lp, ag * 4, false);
stefank@5578 883 test_reserved_space3(lp * 2, ag * 4, false);
stefank@5578 884 test_reserved_space3(lp * 4, ag * 4, false);
stefank@5578 885 test_reserved_space3(lp, lp , false);
stefank@5578 886 test_reserved_space3(lp * 2, lp , false);
stefank@5578 887 test_reserved_space3(lp * 3, lp , false);
stefank@5578 888 test_reserved_space3(lp * 2, lp * 2, false);
stefank@5578 889 test_reserved_space3(lp * 4, lp * 2, false);
stefank@5578 890 test_reserved_space3(lp * 8, lp * 2, false);
stefank@5578 891
stefank@5578 892 // With large pages
stefank@5578 893 test_reserved_space3(lp, ag * 4 , true);
stefank@5578 894 test_reserved_space3(lp * 2, ag * 4, true);
stefank@5578 895 test_reserved_space3(lp * 4, ag * 4, true);
stefank@5578 896 test_reserved_space3(lp, lp , true);
stefank@5578 897 test_reserved_space3(lp * 2, lp , true);
stefank@5578 898 test_reserved_space3(lp * 3, lp , true);
stefank@5578 899 test_reserved_space3(lp * 2, lp * 2, true);
stefank@5578 900 test_reserved_space3(lp * 4, lp * 2, true);
stefank@5578 901 test_reserved_space3(lp * 8, lp * 2, true);
stefank@5578 902 }
stefank@5578 903 }
stefank@5578 904
stefank@5578 905 static void test_reserved_space() {
stefank@5578 906 test_reserved_space1();
stefank@5578 907 test_reserved_space2();
stefank@5578 908 test_reserved_space3();
stefank@5578 909 }
stefank@5578 910 };
stefank@5578 911
stefank@5578 912 void TestReservedSpace_test() {
stefank@5578 913 TestReservedSpace::test_reserved_space();
stefank@5578 914 }
stefank@5578 915
stefank@5578 916 #endif // PRODUCT
stefank@5578 917
duke@435 918 #endif

mercurial