src/share/vm/c1/c1_IR.cpp

Tue, 24 Feb 2015 15:04:52 -0500

author
dlong
date
Tue, 24 Feb 2015 15:04:52 -0500
changeset 7598
ddce0b7cee93
parent 6723
0bf37f737702
child 6876
710a3c8b516e
permissions
-rw-r--r--

8072383: resolve conflicts between open and closed ports
Summary: refactor close to remove references to closed ports
Reviewed-by: kvn, simonis, sgehwolf, dholmes

duke@435 1 /*
mikael@6198 2 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "c1/c1_Compilation.hpp"
stefank@2314 27 #include "c1/c1_FrameMap.hpp"
stefank@2314 28 #include "c1/c1_GraphBuilder.hpp"
stefank@2314 29 #include "c1/c1_IR.hpp"
stefank@2314 30 #include "c1/c1_InstructionPrinter.hpp"
stefank@2314 31 #include "c1/c1_Optimizer.hpp"
stefank@2314 32 #include "utilities/bitMap.inline.hpp"
duke@435 33
duke@435 34
duke@435 35 // Implementation of XHandlers
duke@435 36 //
duke@435 37 // Note: This code could eventually go away if we are
duke@435 38 // just using the ciExceptionHandlerStream.
duke@435 39
duke@435 40 XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) {
duke@435 41 ciExceptionHandlerStream s(method);
duke@435 42 while (!s.is_done()) {
duke@435 43 _list.append(new XHandler(s.handler()));
duke@435 44 s.next();
duke@435 45 }
duke@435 46 assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent");
duke@435 47 }
duke@435 48
duke@435 49 // deep copy of all XHandler contained in list
duke@435 50 XHandlers::XHandlers(XHandlers* other) :
duke@435 51 _list(other->length())
duke@435 52 {
duke@435 53 for (int i = 0; i < other->length(); i++) {
duke@435 54 _list.append(new XHandler(other->handler_at(i)));
duke@435 55 }
duke@435 56 }
duke@435 57
duke@435 58 // Returns whether a particular exception type can be caught. Also
duke@435 59 // returns true if klass is unloaded or any exception handler
duke@435 60 // classes are unloaded. type_is_exact indicates whether the throw
duke@435 61 // is known to be exactly that class or it might throw a subtype.
duke@435 62 bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const {
duke@435 63 // the type is unknown so be conservative
duke@435 64 if (!klass->is_loaded()) {
duke@435 65 return true;
duke@435 66 }
duke@435 67
duke@435 68 for (int i = 0; i < length(); i++) {
duke@435 69 XHandler* handler = handler_at(i);
duke@435 70 if (handler->is_catch_all()) {
duke@435 71 // catch of ANY
duke@435 72 return true;
duke@435 73 }
duke@435 74 ciInstanceKlass* handler_klass = handler->catch_klass();
duke@435 75 // if it's unknown it might be catchable
duke@435 76 if (!handler_klass->is_loaded()) {
duke@435 77 return true;
duke@435 78 }
duke@435 79 // if the throw type is definitely a subtype of the catch type
duke@435 80 // then it can be caught.
duke@435 81 if (klass->is_subtype_of(handler_klass)) {
duke@435 82 return true;
duke@435 83 }
duke@435 84 if (!type_is_exact) {
duke@435 85 // If the type isn't exactly known then it can also be caught by
duke@435 86 // catch statements where the inexact type is a subtype of the
duke@435 87 // catch type.
duke@435 88 // given: foo extends bar extends Exception
duke@435 89 // throw bar can be caught by catch foo, catch bar, and catch
duke@435 90 // Exception, however it can't be caught by any handlers without
duke@435 91 // bar in its type hierarchy.
duke@435 92 if (handler_klass->is_subtype_of(klass)) {
duke@435 93 return true;
duke@435 94 }
duke@435 95 }
duke@435 96 }
duke@435 97
duke@435 98 return false;
duke@435 99 }
duke@435 100
duke@435 101
duke@435 102 bool XHandlers::equals(XHandlers* others) const {
duke@435 103 if (others == NULL) return false;
duke@435 104 if (length() != others->length()) return false;
duke@435 105
duke@435 106 for (int i = 0; i < length(); i++) {
duke@435 107 if (!handler_at(i)->equals(others->handler_at(i))) return false;
duke@435 108 }
duke@435 109 return true;
duke@435 110 }
duke@435 111
duke@435 112 bool XHandler::equals(XHandler* other) const {
duke@435 113 assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco");
duke@435 114
duke@435 115 if (entry_pco() != other->entry_pco()) return false;
duke@435 116 if (scope_count() != other->scope_count()) return false;
duke@435 117 if (_desc != other->_desc) return false;
duke@435 118
duke@435 119 assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal");
duke@435 120 return true;
duke@435 121 }
duke@435 122
duke@435 123
duke@435 124 // Implementation of IRScope
duke@435 125 BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) {
duke@435 126 GraphBuilder gm(compilation, this);
duke@435 127 NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats());
duke@435 128 if (compilation->bailed_out()) return NULL;
duke@435 129 return gm.start();
duke@435 130 }
duke@435 131
duke@435 132
duke@435 133 IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph)
duke@435 134 : _callees(2)
duke@435 135 , _compilation(compilation)
duke@435 136 , _requires_phi_function(method->max_locals())
duke@435 137 {
duke@435 138 _caller = caller;
duke@435 139 _level = caller == NULL ? 0 : caller->level() + 1;
duke@435 140 _method = method;
duke@435 141 _xhandlers = new XHandlers(method);
duke@435 142 _number_of_locks = 0;
duke@435 143 _monitor_pairing_ok = method->has_balanced_monitors();
jiangli@3592 144 _wrote_final = false;
duke@435 145 _start = NULL;
duke@435 146
duke@435 147 if (osr_bci == -1) {
duke@435 148 _requires_phi_function.clear();
duke@435 149 } else {
duke@435 150 // selective creation of phi functions is not possibel in osr-methods
duke@435 151 _requires_phi_function.set_range(0, method->max_locals());
duke@435 152 }
duke@435 153
duke@435 154 assert(method->holder()->is_loaded() , "method holder must be loaded");
duke@435 155
duke@435 156 // build graph if monitor pairing is ok
duke@435 157 if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci);
duke@435 158 }
duke@435 159
duke@435 160
duke@435 161 int IRScope::max_stack() const {
duke@435 162 int my_max = method()->max_stack();
duke@435 163 int callee_max = 0;
duke@435 164 for (int i = 0; i < number_of_callees(); i++) {
duke@435 165 callee_max = MAX2(callee_max, callee_no(i)->max_stack());
duke@435 166 }
duke@435 167 return my_max + callee_max;
duke@435 168 }
duke@435 169
duke@435 170
cfang@1335 171 bool IRScopeDebugInfo::should_reexecute() {
cfang@1335 172 ciMethod* cur_method = scope()->method();
cfang@1335 173 int cur_bci = bci();
cfang@1335 174 if (cur_method != NULL && cur_bci != SynchronizationEntryBCI) {
cfang@1335 175 Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
cfang@1335 176 return Interpreter::bytecode_should_reexecute(code);
cfang@1335 177 } else
cfang@1335 178 return false;
cfang@1335 179 }
duke@435 180
duke@435 181
duke@435 182 // Implementation of CodeEmitInfo
duke@435 183
duke@435 184 // Stack must be NON-null
roland@4860 185 CodeEmitInfo::CodeEmitInfo(ValueStack* stack, XHandlers* exception_handlers, bool deoptimize_on_exception)
duke@435 186 : _scope(stack->scope())
duke@435 187 , _scope_debug_info(NULL)
duke@435 188 , _oop_map(NULL)
duke@435 189 , _stack(stack)
duke@435 190 , _exception_handlers(exception_handlers)
roland@4860 191 , _is_method_handle_invoke(false)
roland@4860 192 , _deoptimize_on_exception(deoptimize_on_exception) {
duke@435 193 assert(_stack != NULL, "must be non null");
duke@435 194 }
duke@435 195
duke@435 196
roland@2174 197 CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, ValueStack* stack)
duke@435 198 : _scope(info->_scope)
duke@435 199 , _exception_handlers(NULL)
duke@435 200 , _scope_debug_info(NULL)
twisti@1919 201 , _oop_map(NULL)
roland@2174 202 , _stack(stack == NULL ? info->_stack : stack)
roland@4860 203 , _is_method_handle_invoke(info->_is_method_handle_invoke)
roland@4860 204 , _deoptimize_on_exception(info->_deoptimize_on_exception) {
duke@435 205
duke@435 206 // deep copy of exception handlers
duke@435 207 if (info->_exception_handlers != NULL) {
duke@435 208 _exception_handlers = new XHandlers(info->_exception_handlers);
duke@435 209 }
duke@435 210 }
duke@435 211
duke@435 212
twisti@1919 213 void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
duke@435 214 // record the safepoint before recording the debug info for enclosing scopes
duke@435 215 recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
twisti@1919 216 _scope_debug_info->record_debug_info(recorder, pc_offset, true/*topmost*/, _is_method_handle_invoke);
duke@435 217 recorder->end_safepoint(pc_offset);
duke@435 218 }
duke@435 219
duke@435 220
duke@435 221 void CodeEmitInfo::add_register_oop(LIR_Opr opr) {
duke@435 222 assert(_oop_map != NULL, "oop map must already exist");
duke@435 223 assert(opr->is_single_cpu(), "should not call otherwise");
duke@435 224
duke@435 225 VMReg name = frame_map()->regname(opr);
duke@435 226 _oop_map->set_oop(name);
duke@435 227 }
duke@435 228
roland@6723 229 // Mirror the stack size calculation in the deopt code
roland@6723 230 // How much stack space would we need at this point in the program in
roland@6723 231 // case of deoptimization?
roland@6723 232 int CodeEmitInfo::interpreter_frame_size() const {
roland@6723 233 ValueStack* state = _stack;
roland@6723 234 int size = 0;
roland@6723 235 int callee_parameters = 0;
roland@6723 236 int callee_locals = 0;
roland@6723 237 int extra_args = state->scope()->method()->max_stack() - state->stack_size();
duke@435 238
roland@6723 239 while (state != NULL) {
roland@6723 240 int locks = state->locks_size();
roland@6723 241 int temps = state->stack_size();
roland@6723 242 bool is_top_frame = (state == _stack);
roland@6723 243 ciMethod* method = state->scope()->method();
duke@435 244
roland@6723 245 int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(),
roland@6723 246 temps + callee_parameters,
roland@6723 247 extra_args,
roland@6723 248 locks,
roland@6723 249 callee_parameters,
roland@6723 250 callee_locals,
roland@6723 251 is_top_frame);
roland@6723 252 size += frame_size;
roland@6723 253
roland@6723 254 callee_parameters = method->size_of_parameters();
roland@6723 255 callee_locals = method->max_locals();
roland@6723 256 extra_args = 0;
roland@6723 257 state = state->caller_state();
roland@6723 258 }
roland@6723 259 return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord;
roland@6723 260 }
duke@435 261
duke@435 262 // Implementation of IR
duke@435 263
duke@435 264 IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
duke@435 265 _locals_size(in_WordSize(-1))
duke@435 266 , _num_loops(0) {
duke@435 267 // setup IR fields
duke@435 268 _compilation = compilation;
duke@435 269 _top_scope = new IRScope(compilation, NULL, -1, method, osr_bci, true);
duke@435 270 _code = NULL;
duke@435 271 }
duke@435 272
duke@435 273
roland@4860 274 void IR::optimize_blocks() {
duke@435 275 Optimizer opt(this);
iveresov@2138 276 if (!compilation()->profile_branches()) {
iveresov@2138 277 if (DoCEE) {
iveresov@2138 278 opt.eliminate_conditional_expressions();
duke@435 279 #ifndef PRODUCT
iveresov@2138 280 if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); }
iveresov@2138 281 if (PrintIR || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); }
duke@435 282 #endif
iveresov@2138 283 }
iveresov@2138 284 if (EliminateBlocks) {
iveresov@2138 285 opt.eliminate_blocks();
duke@435 286 #ifndef PRODUCT
iveresov@2138 287 if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); }
iveresov@2138 288 if (PrintIR || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); }
duke@435 289 #endif
iveresov@2138 290 }
duke@435 291 }
roland@4860 292 }
roland@4860 293
roland@4860 294 void IR::eliminate_null_checks() {
roland@4860 295 Optimizer opt(this);
duke@435 296 if (EliminateNullChecks) {
duke@435 297 opt.eliminate_null_checks();
duke@435 298 #ifndef PRODUCT
duke@435 299 if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); }
duke@435 300 if (PrintIR || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); }
duke@435 301 #endif
duke@435 302 }
duke@435 303 }
duke@435 304
duke@435 305
duke@435 306 static int sort_pairs(BlockPair** a, BlockPair** b) {
duke@435 307 if ((*a)->from() == (*b)->from()) {
duke@435 308 return (*a)->to()->block_id() - (*b)->to()->block_id();
duke@435 309 } else {
duke@435 310 return (*a)->from()->block_id() - (*b)->from()->block_id();
duke@435 311 }
duke@435 312 }
duke@435 313
duke@435 314
duke@435 315 class CriticalEdgeFinder: public BlockClosure {
duke@435 316 BlockPairList blocks;
duke@435 317 IR* _ir;
duke@435 318
duke@435 319 public:
duke@435 320 CriticalEdgeFinder(IR* ir): _ir(ir) {}
duke@435 321 void block_do(BlockBegin* bb) {
duke@435 322 BlockEnd* be = bb->end();
duke@435 323 int nos = be->number_of_sux();
duke@435 324 if (nos >= 2) {
duke@435 325 for (int i = 0; i < nos; i++) {
duke@435 326 BlockBegin* sux = be->sux_at(i);
duke@435 327 if (sux->number_of_preds() >= 2) {
duke@435 328 blocks.append(new BlockPair(bb, sux));
duke@435 329 }
duke@435 330 }
duke@435 331 }
duke@435 332 }
duke@435 333
duke@435 334 void split_edges() {
duke@435 335 BlockPair* last_pair = NULL;
duke@435 336 blocks.sort(sort_pairs);
duke@435 337 for (int i = 0; i < blocks.length(); i++) {
duke@435 338 BlockPair* pair = blocks.at(i);
duke@435 339 if (last_pair != NULL && pair->is_same(last_pair)) continue;
duke@435 340 BlockBegin* from = pair->from();
duke@435 341 BlockBegin* to = pair->to();
duke@435 342 BlockBegin* split = from->insert_block_between(to);
duke@435 343 #ifndef PRODUCT
duke@435 344 if ((PrintIR || PrintIR1) && Verbose) {
duke@435 345 tty->print_cr("Split critical edge B%d -> B%d (new block B%d)",
duke@435 346 from->block_id(), to->block_id(), split->block_id());
duke@435 347 }
duke@435 348 #endif
duke@435 349 last_pair = pair;
duke@435 350 }
duke@435 351 }
duke@435 352 };
duke@435 353
duke@435 354 void IR::split_critical_edges() {
duke@435 355 CriticalEdgeFinder cef(this);
duke@435 356
duke@435 357 iterate_preorder(&cef);
duke@435 358 cef.split_edges();
duke@435 359 }
duke@435 360
duke@435 361
iveresov@1939 362 class UseCountComputer: public ValueVisitor, BlockClosure {
duke@435 363 private:
iveresov@1939 364 void visit(Value* n) {
duke@435 365 // Local instructions and Phis for expression stack values at the
duke@435 366 // start of basic blocks are not added to the instruction list
roland@2254 367 if (!(*n)->is_linked() && (*n)->can_be_linked()) {
duke@435 368 assert(false, "a node was not appended to the graph");
iveresov@1939 369 Compilation::current()->bailout("a node was not appended to the graph");
duke@435 370 }
duke@435 371 // use n's input if not visited before
duke@435 372 if (!(*n)->is_pinned() && !(*n)->has_uses()) {
duke@435 373 // note: a) if the instruction is pinned, it will be handled by compute_use_count
duke@435 374 // b) if the instruction has uses, it was touched before
duke@435 375 // => in both cases we don't need to update n's values
duke@435 376 uses_do(n);
duke@435 377 }
duke@435 378 // use n
duke@435 379 (*n)->_use_count++;
duke@435 380 }
duke@435 381
iveresov@1939 382 Values* worklist;
iveresov@1939 383 int depth;
duke@435 384 enum {
duke@435 385 max_recurse_depth = 20
duke@435 386 };
duke@435 387
iveresov@1939 388 void uses_do(Value* n) {
duke@435 389 depth++;
duke@435 390 if (depth > max_recurse_depth) {
duke@435 391 // don't allow the traversal to recurse too deeply
duke@435 392 worklist->push(*n);
duke@435 393 } else {
iveresov@1939 394 (*n)->input_values_do(this);
duke@435 395 // special handling for some instructions
duke@435 396 if ((*n)->as_BlockEnd() != NULL) {
duke@435 397 // note on BlockEnd:
duke@435 398 // must 'use' the stack only if the method doesn't
duke@435 399 // terminate, however, in those cases stack is empty
iveresov@1939 400 (*n)->state_values_do(this);
duke@435 401 }
duke@435 402 }
duke@435 403 depth--;
duke@435 404 }
duke@435 405
iveresov@1939 406 void block_do(BlockBegin* b) {
duke@435 407 depth = 0;
duke@435 408 // process all pinned nodes as the roots of expression trees
duke@435 409 for (Instruction* n = b; n != NULL; n = n->next()) {
duke@435 410 if (n->is_pinned()) uses_do(&n);
duke@435 411 }
duke@435 412 assert(depth == 0, "should have counted back down");
duke@435 413
duke@435 414 // now process any unpinned nodes which recursed too deeply
duke@435 415 while (worklist->length() > 0) {
duke@435 416 Value t = worklist->pop();
duke@435 417 if (!t->is_pinned()) {
duke@435 418 // compute the use count
duke@435 419 uses_do(&t);
duke@435 420
duke@435 421 // pin the instruction so that LIRGenerator doesn't recurse
duke@435 422 // too deeply during it's evaluation.
duke@435 423 t->pin();
duke@435 424 }
duke@435 425 }
duke@435 426 assert(depth == 0, "should have counted back down");
duke@435 427 }
duke@435 428
iveresov@1939 429 UseCountComputer() {
iveresov@1939 430 worklist = new Values();
iveresov@1939 431 depth = 0;
iveresov@1939 432 }
iveresov@1939 433
duke@435 434 public:
duke@435 435 static void compute(BlockList* blocks) {
iveresov@1939 436 UseCountComputer ucc;
iveresov@1939 437 blocks->iterate_backward(&ucc);
duke@435 438 }
duke@435 439 };
duke@435 440
duke@435 441
duke@435 442 // helper macro for short definition of trace-output inside code
duke@435 443 #ifndef PRODUCT
duke@435 444 #define TRACE_LINEAR_SCAN(level, code) \
duke@435 445 if (TraceLinearScanLevel >= level) { \
duke@435 446 code; \
duke@435 447 }
duke@435 448 #else
duke@435 449 #define TRACE_LINEAR_SCAN(level, code)
duke@435 450 #endif
duke@435 451
duke@435 452 class ComputeLinearScanOrder : public StackObj {
duke@435 453 private:
duke@435 454 int _max_block_id; // the highest block_id of a block
duke@435 455 int _num_blocks; // total number of blocks (smaller than _max_block_id)
duke@435 456 int _num_loops; // total number of loops
duke@435 457 bool _iterative_dominators;// method requires iterative computation of dominatiors
duke@435 458
duke@435 459 BlockList* _linear_scan_order; // the resulting list of blocks in correct order
duke@435 460
duke@435 461 BitMap _visited_blocks; // used for recursive processing of blocks
duke@435 462 BitMap _active_blocks; // used for recursive processing of blocks
duke@435 463 BitMap _dominator_blocks; // temproary BitMap used for computation of dominator
duke@435 464 intArray _forward_branches; // number of incoming forward branches for each block
duke@435 465 BlockList _loop_end_blocks; // list of all loop end blocks collected during count_edges
duke@435 466 BitMap2D _loop_map; // two-dimensional bit set: a bit is set if a block is contained in a loop
duke@435 467 BlockList _work_list; // temporary list (used in mark_loops and compute_order)
roland@4860 468 BlockList _loop_headers;
duke@435 469
iveresov@2138 470 Compilation* _compilation;
iveresov@2138 471
duke@435 472 // accessors for _visited_blocks and _active_blocks
duke@435 473 void init_visited() { _active_blocks.clear(); _visited_blocks.clear(); }
duke@435 474 bool is_visited(BlockBegin* b) const { return _visited_blocks.at(b->block_id()); }
duke@435 475 bool is_active(BlockBegin* b) const { return _active_blocks.at(b->block_id()); }
duke@435 476 void set_visited(BlockBegin* b) { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); }
duke@435 477 void set_active(BlockBegin* b) { assert(!is_active(b), "already set"); _active_blocks.set_bit(b->block_id()); }
duke@435 478 void clear_active(BlockBegin* b) { assert(is_active(b), "not already"); _active_blocks.clear_bit(b->block_id()); }
duke@435 479
duke@435 480 // accessors for _forward_branches
duke@435 481 void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); }
duke@435 482 int dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); }
duke@435 483
duke@435 484 // accessors for _loop_map
duke@435 485 bool is_block_in_loop (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); }
duke@435 486 void set_block_in_loop (int loop_idx, BlockBegin* b) { _loop_map.set_bit(loop_idx, b->block_id()); }
duke@435 487 void clear_block_in_loop(int loop_idx, int block_id) { _loop_map.clear_bit(loop_idx, block_id); }
duke@435 488
duke@435 489 // count edges between blocks
duke@435 490 void count_edges(BlockBegin* cur, BlockBegin* parent);
duke@435 491
duke@435 492 // loop detection
duke@435 493 void mark_loops();
duke@435 494 void clear_non_natural_loops(BlockBegin* start_block);
duke@435 495 void assign_loop_depth(BlockBegin* start_block);
duke@435 496
duke@435 497 // computation of final block order
duke@435 498 BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b);
duke@435 499 void compute_dominator(BlockBegin* cur, BlockBegin* parent);
duke@435 500 int compute_weight(BlockBegin* cur);
duke@435 501 bool ready_for_processing(BlockBegin* cur);
duke@435 502 void sort_into_work_list(BlockBegin* b);
duke@435 503 void append_block(BlockBegin* cur);
duke@435 504 void compute_order(BlockBegin* start_block);
duke@435 505
duke@435 506 // fixup of dominators for non-natural loops
duke@435 507 bool compute_dominators_iter();
duke@435 508 void compute_dominators();
duke@435 509
duke@435 510 // debug functions
duke@435 511 NOT_PRODUCT(void print_blocks();)
duke@435 512 DEBUG_ONLY(void verify();)
duke@435 513
iveresov@2138 514 Compilation* compilation() const { return _compilation; }
duke@435 515 public:
iveresov@2138 516 ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block);
duke@435 517
duke@435 518 // accessors for final result
duke@435 519 BlockList* linear_scan_order() const { return _linear_scan_order; }
duke@435 520 int num_loops() const { return _num_loops; }
duke@435 521 };
duke@435 522
duke@435 523
iveresov@2138 524 ComputeLinearScanOrder::ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block) :
duke@435 525 _max_block_id(BlockBegin::number_of_blocks()),
duke@435 526 _num_blocks(0),
duke@435 527 _num_loops(0),
duke@435 528 _iterative_dominators(false),
duke@435 529 _visited_blocks(_max_block_id),
duke@435 530 _active_blocks(_max_block_id),
duke@435 531 _dominator_blocks(_max_block_id),
duke@435 532 _forward_branches(_max_block_id, 0),
duke@435 533 _loop_end_blocks(8),
duke@435 534 _work_list(8),
duke@435 535 _linear_scan_order(NULL), // initialized later with correct size
iveresov@2138 536 _loop_map(0, 0), // initialized later with correct size
iveresov@2138 537 _compilation(c)
duke@435 538 {
ccheung@5259 539 TRACE_LINEAR_SCAN(2, tty->print_cr("***** computing linear-scan block order"));
duke@435 540
duke@435 541 init_visited();
duke@435 542 count_edges(start_block, NULL);
duke@435 543
iveresov@2138 544 if (compilation()->is_profiling()) {
iveresov@2349 545 ciMethod *method = compilation()->method();
iveresov@2349 546 if (!method->is_accessor()) {
iveresov@2349 547 ciMethodData* md = method->method_data_or_null();
iveresov@2349 548 assert(md != NULL, "Sanity");
iveresov@2349 549 md->set_compilation_stats(_num_loops, _num_blocks);
iveresov@2349 550 }
iveresov@2138 551 }
iveresov@2138 552
duke@435 553 if (_num_loops > 0) {
duke@435 554 mark_loops();
duke@435 555 clear_non_natural_loops(start_block);
duke@435 556 assign_loop_depth(start_block);
duke@435 557 }
duke@435 558
duke@435 559 compute_order(start_block);
duke@435 560 compute_dominators();
duke@435 561
duke@435 562 NOT_PRODUCT(print_blocks());
duke@435 563 DEBUG_ONLY(verify());
duke@435 564 }
duke@435 565
duke@435 566
duke@435 567 // Traverse the CFG:
duke@435 568 // * count total number of blocks
duke@435 569 // * count all incoming edges and backward incoming edges
duke@435 570 // * number loop header blocks
duke@435 571 // * create a list with all loop end blocks
duke@435 572 void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
duke@435 573 TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != NULL ? parent->block_id() : -1));
duke@435 574 assert(cur->dominator() == NULL, "dominator already initialized");
duke@435 575
duke@435 576 if (is_active(cur)) {
duke@435 577 TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch"));
duke@435 578 assert(is_visited(cur), "block must be visisted when block is active");
duke@435 579 assert(parent != NULL, "must have parent");
duke@435 580
duke@435 581 cur->set(BlockBegin::linear_scan_loop_header_flag);
duke@435 582 cur->set(BlockBegin::backward_branch_target_flag);
duke@435 583
duke@435 584 parent->set(BlockBegin::linear_scan_loop_end_flag);
never@863 585
never@863 586 // When a loop header is also the start of an exception handler, then the backward branch is
never@863 587 // an exception edge. Because such edges are usually critical edges which cannot be split, the
never@863 588 // loop must be excluded here from processing.
never@863 589 if (cur->is_set(BlockBegin::exception_entry_flag)) {
never@863 590 // Make sure that dominators are correct in this weird situation
never@863 591 _iterative_dominators = true;
never@863 592 return;
never@863 593 }
never@863 594 assert(parent->number_of_sux() == 1 && parent->sux_at(0) == cur,
never@863 595 "loop end blocks must have one successor (critical edges are split)");
never@863 596
duke@435 597 _loop_end_blocks.append(parent);
duke@435 598 return;
duke@435 599 }
duke@435 600
duke@435 601 // increment number of incoming forward branches
duke@435 602 inc_forward_branches(cur);
duke@435 603
duke@435 604 if (is_visited(cur)) {
duke@435 605 TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited"));
duke@435 606 return;
duke@435 607 }
duke@435 608
duke@435 609 _num_blocks++;
duke@435 610 set_visited(cur);
duke@435 611 set_active(cur);
duke@435 612
duke@435 613 // recursive call for all successors
duke@435 614 int i;
duke@435 615 for (i = cur->number_of_sux() - 1; i >= 0; i--) {
duke@435 616 count_edges(cur->sux_at(i), cur);
duke@435 617 }
duke@435 618 for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
duke@435 619 count_edges(cur->exception_handler_at(i), cur);
duke@435 620 }
duke@435 621
duke@435 622 clear_active(cur);
duke@435 623
duke@435 624 // Each loop has a unique number.
duke@435 625 // When multiple loops are nested, assign_loop_depth assumes that the
duke@435 626 // innermost loop has the lowest number. This is guaranteed by setting
duke@435 627 // the loop number after the recursive calls for the successors above
duke@435 628 // have returned.
duke@435 629 if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
duke@435 630 assert(cur->loop_index() == -1, "cannot set loop-index twice");
duke@435 631 TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
duke@435 632
duke@435 633 cur->set_loop_index(_num_loops);
roland@4860 634 _loop_headers.append(cur);
duke@435 635 _num_loops++;
duke@435 636 }
duke@435 637
duke@435 638 TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id()));
duke@435 639 }
duke@435 640
duke@435 641
duke@435 642 void ComputeLinearScanOrder::mark_loops() {
duke@435 643 TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops"));
duke@435 644
duke@435 645 _loop_map = BitMap2D(_num_loops, _max_block_id);
duke@435 646 _loop_map.clear();
duke@435 647
duke@435 648 for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) {
duke@435 649 BlockBegin* loop_end = _loop_end_blocks.at(i);
duke@435 650 BlockBegin* loop_start = loop_end->sux_at(0);
duke@435 651 int loop_idx = loop_start->loop_index();
duke@435 652
duke@435 653 TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx));
duke@435 654 assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set");
duke@435 655 assert(loop_end->number_of_sux() == 1, "incorrect number of successors");
duke@435 656 assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set");
duke@435 657 assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set");
duke@435 658 assert(_work_list.is_empty(), "work list must be empty before processing");
duke@435 659
duke@435 660 // add the end-block of the loop to the working list
duke@435 661 _work_list.push(loop_end);
duke@435 662 set_block_in_loop(loop_idx, loop_end);
duke@435 663 do {
duke@435 664 BlockBegin* cur = _work_list.pop();
duke@435 665
duke@435 666 TRACE_LINEAR_SCAN(3, tty->print_cr(" processing B%d", cur->block_id()));
duke@435 667 assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list");
duke@435 668
duke@435 669 // recursive processing of all predecessors ends when start block of loop is reached
duke@435 670 if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) {
duke@435 671 for (int j = cur->number_of_preds() - 1; j >= 0; j--) {
duke@435 672 BlockBegin* pred = cur->pred_at(j);
duke@435 673
duke@435 674 if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) {
duke@435 675 // this predecessor has not been processed yet, so add it to work list
duke@435 676 TRACE_LINEAR_SCAN(3, tty->print_cr(" pushing B%d", pred->block_id()));
duke@435 677 _work_list.push(pred);
duke@435 678 set_block_in_loop(loop_idx, pred);
duke@435 679 }
duke@435 680 }
duke@435 681 }
duke@435 682 } while (!_work_list.is_empty());
duke@435 683 }
duke@435 684 }
duke@435 685
duke@435 686
duke@435 687 // check for non-natural loops (loops where the loop header does not dominate
duke@435 688 // all other loop blocks = loops with mulitple entries).
duke@435 689 // such loops are ignored
duke@435 690 void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
duke@435 691 for (int i = _num_loops - 1; i >= 0; i--) {
duke@435 692 if (is_block_in_loop(i, start_block)) {
duke@435 693 // loop i contains the entry block of the method
duke@435 694 // -> this is not a natural loop, so ignore it
duke@435 695 TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
duke@435 696
roland@4860 697 BlockBegin *loop_header = _loop_headers.at(i);
roland@4860 698 assert(loop_header->is_set(BlockBegin::linear_scan_loop_header_flag), "Must be loop header");
roland@4860 699
roland@4860 700 for (int j = 0; j < loop_header->number_of_preds(); j++) {
roland@4860 701 BlockBegin *pred = loop_header->pred_at(j);
roland@4860 702 pred->clear(BlockBegin::linear_scan_loop_end_flag);
roland@4860 703 }
roland@4860 704
roland@4860 705 loop_header->clear(BlockBegin::linear_scan_loop_header_flag);
roland@4860 706
duke@435 707 for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
duke@435 708 clear_block_in_loop(i, block_id);
duke@435 709 }
duke@435 710 _iterative_dominators = true;
duke@435 711 }
duke@435 712 }
duke@435 713 }
duke@435 714
duke@435 715 void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) {
ccheung@5259 716 TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing loop-depth and weight"));
duke@435 717 init_visited();
duke@435 718
duke@435 719 assert(_work_list.is_empty(), "work list must be empty before processing");
duke@435 720 _work_list.append(start_block);
duke@435 721
duke@435 722 do {
duke@435 723 BlockBegin* cur = _work_list.pop();
duke@435 724
duke@435 725 if (!is_visited(cur)) {
duke@435 726 set_visited(cur);
duke@435 727 TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id()));
duke@435 728
duke@435 729 // compute loop-depth and loop-index for the block
duke@435 730 assert(cur->loop_depth() == 0, "cannot set loop-depth twice");
duke@435 731 int i;
duke@435 732 int loop_depth = 0;
duke@435 733 int min_loop_idx = -1;
duke@435 734 for (i = _num_loops - 1; i >= 0; i--) {
duke@435 735 if (is_block_in_loop(i, cur)) {
duke@435 736 loop_depth++;
duke@435 737 min_loop_idx = i;
duke@435 738 }
duke@435 739 }
duke@435 740 cur->set_loop_depth(loop_depth);
duke@435 741 cur->set_loop_index(min_loop_idx);
duke@435 742
duke@435 743 // append all unvisited successors to work list
duke@435 744 for (i = cur->number_of_sux() - 1; i >= 0; i--) {
duke@435 745 _work_list.append(cur->sux_at(i));
duke@435 746 }
duke@435 747 for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
duke@435 748 _work_list.append(cur->exception_handler_at(i));
duke@435 749 }
duke@435 750 }
duke@435 751 } while (!_work_list.is_empty());
duke@435 752 }
duke@435 753
duke@435 754
duke@435 755 BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) {
duke@435 756 assert(a != NULL && b != NULL, "must have input blocks");
duke@435 757
duke@435 758 _dominator_blocks.clear();
duke@435 759 while (a != NULL) {
duke@435 760 _dominator_blocks.set_bit(a->block_id());
duke@435 761 assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized");
duke@435 762 a = a->dominator();
duke@435 763 }
duke@435 764 while (b != NULL && !_dominator_blocks.at(b->block_id())) {
duke@435 765 assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized");
duke@435 766 b = b->dominator();
duke@435 767 }
duke@435 768
duke@435 769 assert(b != NULL, "could not find dominator");
duke@435 770 return b;
duke@435 771 }
duke@435 772
duke@435 773 void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) {
duke@435 774 if (cur->dominator() == NULL) {
duke@435 775 TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id()));
duke@435 776 cur->set_dominator(parent);
duke@435 777
duke@435 778 } else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
duke@435 779 TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
roland@4860 780 // Does not hold for exception blocks
roland@4860 781 assert(cur->number_of_preds() > 1 || cur->is_set(BlockBegin::exception_entry_flag), "");
duke@435 782 cur->set_dominator(common_dominator(cur->dominator(), parent));
duke@435 783 }
roland@4860 784
roland@4860 785 // Additional edge to xhandler of all our successors
roland@4860 786 // range check elimination needs that the state at the end of a
roland@4860 787 // block be valid in every block it dominates so cur must dominate
roland@4860 788 // the exception handlers of its successors.
roland@4860 789 int num_cur_xhandler = cur->number_of_exception_handlers();
roland@4860 790 for (int j = 0; j < num_cur_xhandler; j++) {
roland@4860 791 BlockBegin* xhandler = cur->exception_handler_at(j);
roland@4860 792 compute_dominator(xhandler, parent);
roland@4860 793 }
duke@435 794 }
duke@435 795
duke@435 796
duke@435 797 int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) {
duke@435 798 BlockBegin* single_sux = NULL;
duke@435 799 if (cur->number_of_sux() == 1) {
duke@435 800 single_sux = cur->sux_at(0);
duke@435 801 }
duke@435 802
duke@435 803 // limit loop-depth to 15 bit (only for security reason, it will never be so big)
duke@435 804 int weight = (cur->loop_depth() & 0x7FFF) << 16;
duke@435 805
duke@435 806 // general macro for short definition of weight flags
duke@435 807 // the first instance of INC_WEIGHT_IF has the highest priority
duke@435 808 int cur_bit = 15;
duke@435 809 #define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--;
duke@435 810
duke@435 811 // this is necessery for the (very rare) case that two successing blocks have
duke@435 812 // the same loop depth, but a different loop index (can happen for endless loops
duke@435 813 // with exception handlers)
duke@435 814 INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag));
duke@435 815
duke@435 816 // loop end blocks (blocks that end with a backward branch) are added
duke@435 817 // after all other blocks of the loop.
duke@435 818 INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag));
duke@435 819
duke@435 820 // critical edge split blocks are prefered because than they have a bigger
duke@435 821 // proability to be completely empty
duke@435 822 INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag));
duke@435 823
duke@435 824 // exceptions should not be thrown in normal control flow, so these blocks
duke@435 825 // are added as late as possible
duke@435 826 INC_WEIGHT_IF(cur->end()->as_Throw() == NULL && (single_sux == NULL || single_sux->end()->as_Throw() == NULL));
duke@435 827 INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL));
duke@435 828
duke@435 829 // exceptions handlers are added as late as possible
duke@435 830 INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag));
duke@435 831
duke@435 832 // guarantee that weight is > 0
duke@435 833 weight |= 1;
duke@435 834
duke@435 835 #undef INC_WEIGHT_IF
duke@435 836 assert(cur_bit >= 0, "too many flags");
duke@435 837 assert(weight > 0, "weight cannot become negative");
duke@435 838
duke@435 839 return weight;
duke@435 840 }
duke@435 841
duke@435 842 bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) {
duke@435 843 // Discount the edge just traveled.
duke@435 844 // When the number drops to zero, all forward branches were processed
duke@435 845 if (dec_forward_branches(cur) != 0) {
duke@435 846 return false;
duke@435 847 }
duke@435 848
duke@435 849 assert(_linear_scan_order->index_of(cur) == -1, "block already processed (block can be ready only once)");
duke@435 850 assert(_work_list.index_of(cur) == -1, "block already in work-list (block can be ready only once)");
duke@435 851 return true;
duke@435 852 }
duke@435 853
duke@435 854 void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) {
duke@435 855 assert(_work_list.index_of(cur) == -1, "block already in work list");
duke@435 856
duke@435 857 int cur_weight = compute_weight(cur);
duke@435 858
duke@435 859 // the linear_scan_number is used to cache the weight of a block
duke@435 860 cur->set_linear_scan_number(cur_weight);
duke@435 861
duke@435 862 #ifndef PRODUCT
duke@435 863 if (StressLinearScan) {
duke@435 864 _work_list.insert_before(0, cur);
duke@435 865 return;
duke@435 866 }
duke@435 867 #endif
duke@435 868
duke@435 869 _work_list.append(NULL); // provide space for new element
duke@435 870
duke@435 871 int insert_idx = _work_list.length() - 1;
duke@435 872 while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) {
duke@435 873 _work_list.at_put(insert_idx, _work_list.at(insert_idx - 1));
duke@435 874 insert_idx--;
duke@435 875 }
duke@435 876 _work_list.at_put(insert_idx, cur);
duke@435 877
duke@435 878 TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id()));
duke@435 879 TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number()));
duke@435 880
duke@435 881 #ifdef ASSERT
duke@435 882 for (int i = 0; i < _work_list.length(); i++) {
duke@435 883 assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set");
duke@435 884 assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist");
duke@435 885 }
duke@435 886 #endif
duke@435 887 }
duke@435 888
duke@435 889 void ComputeLinearScanOrder::append_block(BlockBegin* cur) {
duke@435 890 TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number()));
duke@435 891 assert(_linear_scan_order->index_of(cur) == -1, "cannot add the same block twice");
duke@435 892
duke@435 893 // currently, the linear scan order and code emit order are equal.
duke@435 894 // therefore the linear_scan_number and the weight of a block must also
duke@435 895 // be equal.
duke@435 896 cur->set_linear_scan_number(_linear_scan_order->length());
duke@435 897 _linear_scan_order->append(cur);
duke@435 898 }
duke@435 899
duke@435 900 void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
ccheung@5259 901 TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing final block order"));
duke@435 902
duke@435 903 // the start block is always the first block in the linear scan order
duke@435 904 _linear_scan_order = new BlockList(_num_blocks);
duke@435 905 append_block(start_block);
duke@435 906
duke@435 907 assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction");
duke@435 908 BlockBegin* std_entry = ((Base*)start_block->end())->std_entry();
duke@435 909 BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry();
duke@435 910
duke@435 911 BlockBegin* sux_of_osr_entry = NULL;
duke@435 912 if (osr_entry != NULL) {
duke@435 913 // special handling for osr entry:
duke@435 914 // ignore the edge between the osr entry and its successor for processing
duke@435 915 // the osr entry block is added manually below
duke@435 916 assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor");
duke@435 917 assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow");
duke@435 918
duke@435 919 sux_of_osr_entry = osr_entry->sux_at(0);
duke@435 920 dec_forward_branches(sux_of_osr_entry);
duke@435 921
duke@435 922 compute_dominator(osr_entry, start_block);
duke@435 923 _iterative_dominators = true;
duke@435 924 }
duke@435 925 compute_dominator(std_entry, start_block);
duke@435 926
duke@435 927 // start processing with standard entry block
duke@435 928 assert(_work_list.is_empty(), "list must be empty before processing");
duke@435 929
duke@435 930 if (ready_for_processing(std_entry)) {
duke@435 931 sort_into_work_list(std_entry);
duke@435 932 } else {
duke@435 933 assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)");
duke@435 934 }
duke@435 935
duke@435 936 do {
duke@435 937 BlockBegin* cur = _work_list.pop();
duke@435 938
duke@435 939 if (cur == sux_of_osr_entry) {
duke@435 940 // the osr entry block is ignored in normal processing, it is never added to the
duke@435 941 // work list. Instead, it is added as late as possible manually here.
duke@435 942 append_block(osr_entry);
duke@435 943 compute_dominator(cur, osr_entry);
duke@435 944 }
duke@435 945 append_block(cur);
duke@435 946
duke@435 947 int i;
duke@435 948 int num_sux = cur->number_of_sux();
duke@435 949 // changed loop order to get "intuitive" order of if- and else-blocks
duke@435 950 for (i = 0; i < num_sux; i++) {
duke@435 951 BlockBegin* sux = cur->sux_at(i);
duke@435 952 compute_dominator(sux, cur);
duke@435 953 if (ready_for_processing(sux)) {
duke@435 954 sort_into_work_list(sux);
duke@435 955 }
duke@435 956 }
duke@435 957 num_sux = cur->number_of_exception_handlers();
duke@435 958 for (i = 0; i < num_sux; i++) {
duke@435 959 BlockBegin* sux = cur->exception_handler_at(i);
duke@435 960 if (ready_for_processing(sux)) {
duke@435 961 sort_into_work_list(sux);
duke@435 962 }
duke@435 963 }
duke@435 964 } while (_work_list.length() > 0);
duke@435 965 }
duke@435 966
duke@435 967
duke@435 968 bool ComputeLinearScanOrder::compute_dominators_iter() {
duke@435 969 bool changed = false;
duke@435 970 int num_blocks = _linear_scan_order->length();
duke@435 971
duke@435 972 assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator");
duke@435 973 assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors");
duke@435 974 for (int i = 1; i < num_blocks; i++) {
duke@435 975 BlockBegin* block = _linear_scan_order->at(i);
duke@435 976
duke@435 977 BlockBegin* dominator = block->pred_at(0);
duke@435 978 int num_preds = block->number_of_preds();
roland@4860 979
roland@4860 980 TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: Processing B%d", block->block_id()));
roland@4860 981
roland@4860 982 for (int j = 0; j < num_preds; j++) {
roland@4860 983
roland@4860 984 BlockBegin *pred = block->pred_at(j);
roland@4860 985 TRACE_LINEAR_SCAN(4, tty->print_cr(" DOM: Subrocessing B%d", pred->block_id()));
roland@4860 986
roland@4860 987 if (block->is_set(BlockBegin::exception_entry_flag)) {
roland@4860 988 dominator = common_dominator(dominator, pred);
roland@4860 989 int num_pred_preds = pred->number_of_preds();
roland@4860 990 for (int k = 0; k < num_pred_preds; k++) {
roland@4860 991 dominator = common_dominator(dominator, pred->pred_at(k));
roland@4860 992 }
roland@4860 993 } else {
roland@4860 994 dominator = common_dominator(dominator, pred);
roland@4860 995 }
duke@435 996 }
duke@435 997
duke@435 998 if (dominator != block->dominator()) {
duke@435 999 TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id()));
duke@435 1000
duke@435 1001 block->set_dominator(dominator);
duke@435 1002 changed = true;
duke@435 1003 }
duke@435 1004 }
duke@435 1005 return changed;
duke@435 1006 }
duke@435 1007
duke@435 1008 void ComputeLinearScanOrder::compute_dominators() {
duke@435 1009 TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators));
duke@435 1010
duke@435 1011 // iterative computation of dominators is only required for methods with non-natural loops
duke@435 1012 // and OSR-methods. For all other methods, the dominators computed when generating the
duke@435 1013 // linear scan block order are correct.
duke@435 1014 if (_iterative_dominators) {
duke@435 1015 do {
duke@435 1016 TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation"));
duke@435 1017 } while (compute_dominators_iter());
duke@435 1018 }
duke@435 1019
duke@435 1020 // check that dominators are correct
duke@435 1021 assert(!compute_dominators_iter(), "fix point not reached");
roland@4860 1022
roland@4860 1023 // Add Blocks to dominates-Array
roland@4860 1024 int num_blocks = _linear_scan_order->length();
roland@4860 1025 for (int i = 0; i < num_blocks; i++) {
roland@4860 1026 BlockBegin* block = _linear_scan_order->at(i);
roland@4860 1027
roland@4860 1028 BlockBegin *dom = block->dominator();
roland@4860 1029 if (dom) {
roland@4860 1030 assert(dom->dominator_depth() != -1, "Dominator must have been visited before");
roland@4860 1031 dom->dominates()->append(block);
roland@4860 1032 block->set_dominator_depth(dom->dominator_depth() + 1);
roland@4860 1033 } else {
roland@4860 1034 block->set_dominator_depth(0);
roland@4860 1035 }
roland@4860 1036 }
duke@435 1037 }
duke@435 1038
duke@435 1039
duke@435 1040 #ifndef PRODUCT
duke@435 1041 void ComputeLinearScanOrder::print_blocks() {
duke@435 1042 if (TraceLinearScanLevel >= 2) {
duke@435 1043 tty->print_cr("----- loop information:");
duke@435 1044 for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
duke@435 1045 BlockBegin* cur = _linear_scan_order->at(block_idx);
duke@435 1046
duke@435 1047 tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id());
duke@435 1048 for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
duke@435 1049 tty->print ("%d ", is_block_in_loop(loop_idx, cur));
duke@435 1050 }
duke@435 1051 tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth());
duke@435 1052 }
duke@435 1053 }
duke@435 1054
duke@435 1055 if (TraceLinearScanLevel >= 1) {
duke@435 1056 tty->print_cr("----- linear-scan block order:");
duke@435 1057 for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
duke@435 1058 BlockBegin* cur = _linear_scan_order->at(block_idx);
duke@435 1059 tty->print("%4d: B%2d loop: %2d depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth());
duke@435 1060
duke@435 1061 tty->print(cur->is_set(BlockBegin::exception_entry_flag) ? " ex" : " ");
duke@435 1062 tty->print(cur->is_set(BlockBegin::critical_edge_split_flag) ? " ce" : " ");
duke@435 1063 tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : " ");
duke@435 1064 tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag) ? " le" : " ");
duke@435 1065
duke@435 1066 if (cur->dominator() != NULL) {
duke@435 1067 tty->print(" dom: B%d ", cur->dominator()->block_id());
duke@435 1068 } else {
duke@435 1069 tty->print(" dom: NULL ");
duke@435 1070 }
duke@435 1071
duke@435 1072 if (cur->number_of_preds() > 0) {
duke@435 1073 tty->print(" preds: ");
duke@435 1074 for (int j = 0; j < cur->number_of_preds(); j++) {
duke@435 1075 BlockBegin* pred = cur->pred_at(j);
duke@435 1076 tty->print("B%d ", pred->block_id());
duke@435 1077 }
duke@435 1078 }
duke@435 1079 if (cur->number_of_sux() > 0) {
duke@435 1080 tty->print(" sux: ");
duke@435 1081 for (int j = 0; j < cur->number_of_sux(); j++) {
duke@435 1082 BlockBegin* sux = cur->sux_at(j);
duke@435 1083 tty->print("B%d ", sux->block_id());
duke@435 1084 }
duke@435 1085 }
duke@435 1086 if (cur->number_of_exception_handlers() > 0) {
duke@435 1087 tty->print(" ex: ");
duke@435 1088 for (int j = 0; j < cur->number_of_exception_handlers(); j++) {
duke@435 1089 BlockBegin* ex = cur->exception_handler_at(j);
duke@435 1090 tty->print("B%d ", ex->block_id());
duke@435 1091 }
duke@435 1092 }
duke@435 1093 tty->cr();
duke@435 1094 }
duke@435 1095 }
duke@435 1096 }
duke@435 1097 #endif
duke@435 1098
duke@435 1099 #ifdef ASSERT
duke@435 1100 void ComputeLinearScanOrder::verify() {
duke@435 1101 assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list");
duke@435 1102
duke@435 1103 if (StressLinearScan) {
duke@435 1104 // blocks are scrambled when StressLinearScan is used
duke@435 1105 return;
duke@435 1106 }
duke@435 1107
duke@435 1108 // check that all successors of a block have a higher linear-scan-number
duke@435 1109 // and that all predecessors of a block have a lower linear-scan-number
duke@435 1110 // (only backward branches of loops are ignored)
duke@435 1111 int i;
duke@435 1112 for (i = 0; i < _linear_scan_order->length(); i++) {
duke@435 1113 BlockBegin* cur = _linear_scan_order->at(i);
duke@435 1114
duke@435 1115 assert(cur->linear_scan_number() == i, "incorrect linear_scan_number");
duke@435 1116 assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->index_of(cur), "incorrect linear_scan_number");
duke@435 1117
duke@435 1118 int j;
duke@435 1119 for (j = cur->number_of_sux() - 1; j >= 0; j--) {
duke@435 1120 BlockBegin* sux = cur->sux_at(j);
duke@435 1121
duke@435 1122 assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->index_of(sux), "incorrect linear_scan_number");
roland@4860 1123 if (!sux->is_set(BlockBegin::backward_branch_target_flag)) {
duke@435 1124 assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
duke@435 1125 }
duke@435 1126 if (cur->loop_depth() == sux->loop_depth()) {
duke@435 1127 assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
duke@435 1128 }
duke@435 1129 }
duke@435 1130
duke@435 1131 for (j = cur->number_of_preds() - 1; j >= 0; j--) {
duke@435 1132 BlockBegin* pred = cur->pred_at(j);
duke@435 1133
duke@435 1134 assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->index_of(pred), "incorrect linear_scan_number");
roland@4860 1135 if (!cur->is_set(BlockBegin::backward_branch_target_flag)) {
duke@435 1136 assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
duke@435 1137 }
duke@435 1138 if (cur->loop_depth() == pred->loop_depth()) {
duke@435 1139 assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
duke@435 1140 }
duke@435 1141
duke@435 1142 assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors");
duke@435 1143 }
duke@435 1144
duke@435 1145 // check dominator
duke@435 1146 if (i == 0) {
duke@435 1147 assert(cur->dominator() == NULL, "first block has no dominator");
duke@435 1148 } else {
duke@435 1149 assert(cur->dominator() != NULL, "all but first block must have dominator");
duke@435 1150 }
roland@4860 1151 // Assertion does not hold for exception handlers
roland@4860 1152 assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0) || cur->is_set(BlockBegin::exception_entry_flag), "Single predecessor must also be dominator");
duke@435 1153 }
duke@435 1154
duke@435 1155 // check that all loops are continuous
duke@435 1156 for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
duke@435 1157 int block_idx = 0;
duke@435 1158 assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop");
duke@435 1159
duke@435 1160 // skip blocks before the loop
duke@435 1161 while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
duke@435 1162 block_idx++;
duke@435 1163 }
duke@435 1164 // skip blocks of loop
duke@435 1165 while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
duke@435 1166 block_idx++;
duke@435 1167 }
duke@435 1168 // after the first non-loop block, there must not be another loop-block
duke@435 1169 while (block_idx < _num_blocks) {
duke@435 1170 assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order");
duke@435 1171 block_idx++;
duke@435 1172 }
duke@435 1173 }
duke@435 1174 }
duke@435 1175 #endif
duke@435 1176
duke@435 1177
duke@435 1178 void IR::compute_code() {
duke@435 1179 assert(is_valid(), "IR must be valid");
duke@435 1180
iveresov@2138 1181 ComputeLinearScanOrder compute_order(compilation(), start());
duke@435 1182 _num_loops = compute_order.num_loops();
duke@435 1183 _code = compute_order.linear_scan_order();
duke@435 1184 }
duke@435 1185
duke@435 1186
duke@435 1187 void IR::compute_use_counts() {
duke@435 1188 // make sure all values coming out of this block get evaluated.
duke@435 1189 int num_blocks = _code->length();
duke@435 1190 for (int i = 0; i < num_blocks; i++) {
duke@435 1191 _code->at(i)->end()->state()->pin_stack_for_linear_scan();
duke@435 1192 }
duke@435 1193
duke@435 1194 // compute use counts
duke@435 1195 UseCountComputer::compute(_code);
duke@435 1196 }
duke@435 1197
duke@435 1198
duke@435 1199 void IR::iterate_preorder(BlockClosure* closure) {
duke@435 1200 assert(is_valid(), "IR must be valid");
duke@435 1201 start()->iterate_preorder(closure);
duke@435 1202 }
duke@435 1203
duke@435 1204
duke@435 1205 void IR::iterate_postorder(BlockClosure* closure) {
duke@435 1206 assert(is_valid(), "IR must be valid");
duke@435 1207 start()->iterate_postorder(closure);
duke@435 1208 }
duke@435 1209
duke@435 1210 void IR::iterate_linear_scan_order(BlockClosure* closure) {
duke@435 1211 linear_scan_order()->iterate_forward(closure);
duke@435 1212 }
duke@435 1213
duke@435 1214
duke@435 1215 #ifndef PRODUCT
duke@435 1216 class BlockPrinter: public BlockClosure {
duke@435 1217 private:
duke@435 1218 InstructionPrinter* _ip;
duke@435 1219 bool _cfg_only;
duke@435 1220 bool _live_only;
duke@435 1221
duke@435 1222 public:
duke@435 1223 BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) {
duke@435 1224 _ip = ip;
duke@435 1225 _cfg_only = cfg_only;
duke@435 1226 _live_only = live_only;
duke@435 1227 }
duke@435 1228
duke@435 1229 virtual void block_do(BlockBegin* block) {
duke@435 1230 if (_cfg_only) {
duke@435 1231 _ip->print_instr(block); tty->cr();
duke@435 1232 } else {
duke@435 1233 block->print_block(*_ip, _live_only);
duke@435 1234 }
duke@435 1235 }
duke@435 1236 };
duke@435 1237
duke@435 1238
duke@435 1239 void IR::print(BlockBegin* start, bool cfg_only, bool live_only) {
duke@435 1240 ttyLocker ttyl;
duke@435 1241 InstructionPrinter ip(!cfg_only);
duke@435 1242 BlockPrinter bp(&ip, cfg_only, live_only);
duke@435 1243 start->iterate_preorder(&bp);
duke@435 1244 tty->cr();
duke@435 1245 }
duke@435 1246
duke@435 1247 void IR::print(bool cfg_only, bool live_only) {
duke@435 1248 if (is_valid()) {
duke@435 1249 print(start(), cfg_only, live_only);
duke@435 1250 } else {
duke@435 1251 tty->print_cr("invalid IR");
duke@435 1252 }
duke@435 1253 }
duke@435 1254
duke@435 1255
duke@435 1256 define_array(BlockListArray, BlockList*)
duke@435 1257 define_stack(BlockListList, BlockListArray)
duke@435 1258
duke@435 1259 class PredecessorValidator : public BlockClosure {
duke@435 1260 private:
duke@435 1261 BlockListList* _predecessors;
duke@435 1262 BlockList* _blocks;
duke@435 1263
duke@435 1264 static int cmp(BlockBegin** a, BlockBegin** b) {
duke@435 1265 return (*a)->block_id() - (*b)->block_id();
duke@435 1266 }
duke@435 1267
duke@435 1268 public:
duke@435 1269 PredecessorValidator(IR* hir) {
duke@435 1270 ResourceMark rm;
duke@435 1271 _predecessors = new BlockListList(BlockBegin::number_of_blocks(), NULL);
duke@435 1272 _blocks = new BlockList();
duke@435 1273
duke@435 1274 int i;
duke@435 1275 hir->start()->iterate_preorder(this);
duke@435 1276 if (hir->code() != NULL) {
duke@435 1277 assert(hir->code()->length() == _blocks->length(), "must match");
duke@435 1278 for (i = 0; i < _blocks->length(); i++) {
duke@435 1279 assert(hir->code()->contains(_blocks->at(i)), "should be in both lists");
duke@435 1280 }
duke@435 1281 }
duke@435 1282
duke@435 1283 for (i = 0; i < _blocks->length(); i++) {
duke@435 1284 BlockBegin* block = _blocks->at(i);
duke@435 1285 BlockList* preds = _predecessors->at(block->block_id());
duke@435 1286 if (preds == NULL) {
duke@435 1287 assert(block->number_of_preds() == 0, "should be the same");
duke@435 1288 continue;
duke@435 1289 }
duke@435 1290
duke@435 1291 // clone the pred list so we can mutate it
duke@435 1292 BlockList* pred_copy = new BlockList();
duke@435 1293 int j;
duke@435 1294 for (j = 0; j < block->number_of_preds(); j++) {
duke@435 1295 pred_copy->append(block->pred_at(j));
duke@435 1296 }
duke@435 1297 // sort them in the same order
duke@435 1298 preds->sort(cmp);
duke@435 1299 pred_copy->sort(cmp);
duke@435 1300 int length = MIN2(preds->length(), block->number_of_preds());
duke@435 1301 for (j = 0; j < block->number_of_preds(); j++) {
duke@435 1302 assert(preds->at(j) == pred_copy->at(j), "must match");
duke@435 1303 }
duke@435 1304
duke@435 1305 assert(preds->length() == block->number_of_preds(), "should be the same");
duke@435 1306 }
duke@435 1307 }
duke@435 1308
duke@435 1309 virtual void block_do(BlockBegin* block) {
duke@435 1310 _blocks->append(block);
duke@435 1311 BlockEnd* be = block->end();
duke@435 1312 int n = be->number_of_sux();
duke@435 1313 int i;
duke@435 1314 for (i = 0; i < n; i++) {
duke@435 1315 BlockBegin* sux = be->sux_at(i);
duke@435 1316 assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler");
duke@435 1317
duke@435 1318 BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
duke@435 1319 if (preds == NULL) {
duke@435 1320 preds = new BlockList();
duke@435 1321 _predecessors->at_put(sux->block_id(), preds);
duke@435 1322 }
duke@435 1323 preds->append(block);
duke@435 1324 }
duke@435 1325
duke@435 1326 n = block->number_of_exception_handlers();
duke@435 1327 for (i = 0; i < n; i++) {
duke@435 1328 BlockBegin* sux = block->exception_handler_at(i);
duke@435 1329 assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler");
duke@435 1330
duke@435 1331 BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
duke@435 1332 if (preds == NULL) {
duke@435 1333 preds = new BlockList();
duke@435 1334 _predecessors->at_put(sux->block_id(), preds);
duke@435 1335 }
duke@435 1336 preds->append(block);
duke@435 1337 }
duke@435 1338 }
duke@435 1339 };
duke@435 1340
roland@4860 1341 class VerifyBlockBeginField : public BlockClosure {
roland@4860 1342
roland@4860 1343 public:
roland@4860 1344
roland@4860 1345 virtual void block_do(BlockBegin *block) {
roland@4860 1346 for ( Instruction *cur = block; cur != NULL; cur = cur->next()) {
roland@4860 1347 assert(cur->block() == block, "Block begin is not correct");
roland@4860 1348 }
roland@4860 1349 }
roland@4860 1350 };
roland@4860 1351
duke@435 1352 void IR::verify() {
duke@435 1353 #ifdef ASSERT
duke@435 1354 PredecessorValidator pv(this);
roland@4860 1355 VerifyBlockBeginField verifier;
roland@4860 1356 this->iterate_postorder(&verifier);
duke@435 1357 #endif
duke@435 1358 }
duke@435 1359
duke@435 1360 #endif // PRODUCT
duke@435 1361
iveresov@1939 1362 void SubstitutionResolver::visit(Value* v) {
duke@435 1363 Value v0 = *v;
duke@435 1364 if (v0) {
duke@435 1365 Value vs = v0->subst();
duke@435 1366 if (vs != v0) {
duke@435 1367 *v = v0->subst();
duke@435 1368 }
duke@435 1369 }
duke@435 1370 }
duke@435 1371
duke@435 1372 #ifdef ASSERT
iveresov@1939 1373 class SubstitutionChecker: public ValueVisitor {
iveresov@1939 1374 void visit(Value* v) {
iveresov@1939 1375 Value v0 = *v;
iveresov@1939 1376 if (v0) {
iveresov@1939 1377 Value vs = v0->subst();
iveresov@1939 1378 assert(vs == v0, "missed substitution");
iveresov@1939 1379 }
duke@435 1380 }
iveresov@1939 1381 };
duke@435 1382 #endif
duke@435 1383
duke@435 1384
duke@435 1385 void SubstitutionResolver::block_do(BlockBegin* block) {
duke@435 1386 Instruction* last = NULL;
duke@435 1387 for (Instruction* n = block; n != NULL;) {
iveresov@1939 1388 n->values_do(this);
duke@435 1389 // need to remove this instruction from the instruction stream
duke@435 1390 if (n->subst() != n) {
duke@435 1391 assert(last != NULL, "must have last");
roland@2174 1392 last->set_next(n->next());
duke@435 1393 } else {
duke@435 1394 last = n;
duke@435 1395 }
duke@435 1396 n = last->next();
duke@435 1397 }
duke@435 1398
duke@435 1399 #ifdef ASSERT
iveresov@1939 1400 SubstitutionChecker check_substitute;
iveresov@1939 1401 if (block->state()) block->state()->values_do(&check_substitute);
iveresov@1939 1402 block->block_values_do(&check_substitute);
iveresov@1939 1403 if (block->end() && block->end()->state()) block->end()->state()->values_do(&check_substitute);
duke@435 1404 #endif
duke@435 1405 }

mercurial