src/share/vm/gc_implementation/shared/adaptiveSizePolicy.hpp

Wed, 23 Jan 2013 13:02:39 -0500

author
jprovino
date
Wed, 23 Jan 2013 13:02:39 -0500
changeset 4542
db9981fd3124
parent 4153
b9a9ed0f8eeb
child 6876
710a3c8b516e
permissions
-rw-r--r--

8005915: Unify SERIALGC and INCLUDE_ALTERNATE_GCS
Summary: Rename INCLUDE_ALTERNATE_GCS to INCLUDE_ALL_GCS and replace SERIALGC with INCLUDE_ALL_GCS.
Reviewed-by: coleenp, stefank

duke@435 1 /*
mikael@4153 2 * Copyright (c) 2004, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_SHARED_ADAPTIVESIZEPOLICY_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_SHARED_ADAPTIVESIZEPOLICY_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/shared/gcUtil.hpp"
stefank@2314 29 #include "gc_interface/collectedHeap.hpp"
stefank@2314 30 #include "gc_interface/gcCause.hpp"
stefank@2314 31 #include "memory/allocation.hpp"
stefank@2314 32 #include "memory/universe.hpp"
stefank@2314 33
duke@435 34 // This class keeps statistical information and computes the
duke@435 35 // size of the heap.
duke@435 36
duke@435 37 // Forward decls
duke@435 38 class elapsedTimer;
jmasa@1822 39 class CollectorPolicy;
duke@435 40
zgu@3900 41 class AdaptiveSizePolicy : public CHeapObj<mtGC> {
duke@435 42 friend class GCAdaptivePolicyCounters;
duke@435 43 friend class PSGCAdaptivePolicyCounters;
duke@435 44 friend class CMSGCAdaptivePolicyCounters;
duke@435 45 protected:
duke@435 46
duke@435 47 enum GCPolicyKind {
duke@435 48 _gc_adaptive_size_policy,
duke@435 49 _gc_ps_adaptive_size_policy,
duke@435 50 _gc_cms_adaptive_size_policy
duke@435 51 };
duke@435 52 virtual GCPolicyKind kind() const { return _gc_adaptive_size_policy; }
duke@435 53
duke@435 54 enum SizePolicyTrueValues {
duke@435 55 decrease_old_gen_for_throughput_true = -7,
duke@435 56 decrease_young_gen_for_througput_true = -6,
duke@435 57
duke@435 58 increase_old_gen_for_min_pauses_true = -5,
duke@435 59 decrease_old_gen_for_min_pauses_true = -4,
duke@435 60 decrease_young_gen_for_maj_pauses_true = -3,
duke@435 61 increase_young_gen_for_min_pauses_true = -2,
duke@435 62 increase_old_gen_for_maj_pauses_true = -1,
duke@435 63
duke@435 64 decrease_young_gen_for_min_pauses_true = 1,
duke@435 65 decrease_old_gen_for_maj_pauses_true = 2,
duke@435 66 increase_young_gen_for_maj_pauses_true = 3,
duke@435 67
duke@435 68 increase_old_gen_for_throughput_true = 4,
duke@435 69 increase_young_gen_for_througput_true = 5,
duke@435 70
duke@435 71 decrease_young_gen_for_footprint_true = 6,
duke@435 72 decrease_old_gen_for_footprint_true = 7,
duke@435 73 decide_at_full_gc_true = 8
duke@435 74 };
duke@435 75
duke@435 76 // Goal for the fraction of the total time during which application
duke@435 77 // threads run.
duke@435 78 const double _throughput_goal;
duke@435 79
duke@435 80 // Last calculated sizes, in bytes, and aligned
duke@435 81 size_t _eden_size; // calculated eden free space in bytes
duke@435 82 size_t _promo_size; // calculated cms gen free space in bytes
duke@435 83
duke@435 84 size_t _survivor_size; // calculated survivor size in bytes
duke@435 85
duke@435 86 // This is a hint for the heap: we've detected that gc times
duke@435 87 // are taking longer than GCTimeLimit allows.
jmasa@1822 88 bool _gc_overhead_limit_exceeded;
jmasa@1822 89 // Use for diagnostics only. If UseGCOverheadLimit is false,
duke@435 90 // this variable is still set.
jmasa@1822 91 bool _print_gc_overhead_limit_would_be_exceeded;
duke@435 92 // Count of consecutive GC that have exceeded the
duke@435 93 // GC time limit criterion.
jmasa@1822 94 uint _gc_overhead_limit_count;
jmasa@1822 95 // This flag signals that GCTimeLimit is being exceeded
jmasa@1822 96 // but may not have done so for the required number of consequetive
jmasa@1822 97 // collections.
duke@435 98
duke@435 99 // Minor collection timers used to determine both
duke@435 100 // pause and interval times for collections.
duke@435 101 static elapsedTimer _minor_timer;
duke@435 102
duke@435 103 // Major collection timers, used to determine both
duke@435 104 // pause and interval times for collections
duke@435 105 static elapsedTimer _major_timer;
duke@435 106
duke@435 107 // Time statistics
duke@435 108 AdaptivePaddedAverage* _avg_minor_pause;
duke@435 109 AdaptiveWeightedAverage* _avg_minor_interval;
duke@435 110 AdaptiveWeightedAverage* _avg_minor_gc_cost;
duke@435 111
duke@435 112 AdaptiveWeightedAverage* _avg_major_interval;
duke@435 113 AdaptiveWeightedAverage* _avg_major_gc_cost;
duke@435 114
duke@435 115 // Footprint statistics
duke@435 116 AdaptiveWeightedAverage* _avg_young_live;
duke@435 117 AdaptiveWeightedAverage* _avg_eden_live;
duke@435 118 AdaptiveWeightedAverage* _avg_old_live;
duke@435 119
duke@435 120 // Statistics for survivor space calculation for young generation
duke@435 121 AdaptivePaddedAverage* _avg_survived;
duke@435 122
duke@435 123 // Objects that have been directly allocated in the old generation.
duke@435 124 AdaptivePaddedNoZeroDevAverage* _avg_pretenured;
duke@435 125
duke@435 126 // Variable for estimating the major and minor pause times.
duke@435 127 // These variables represent linear least-squares fits of
duke@435 128 // the data.
duke@435 129 // minor pause time vs. old gen size
duke@435 130 LinearLeastSquareFit* _minor_pause_old_estimator;
duke@435 131 // minor pause time vs. young gen size
duke@435 132 LinearLeastSquareFit* _minor_pause_young_estimator;
duke@435 133
duke@435 134 // Variables for estimating the major and minor collection costs
duke@435 135 // minor collection time vs. young gen size
duke@435 136 LinearLeastSquareFit* _minor_collection_estimator;
duke@435 137 // major collection time vs. cms gen size
duke@435 138 LinearLeastSquareFit* _major_collection_estimator;
duke@435 139
duke@435 140 // These record the most recent collection times. They
duke@435 141 // are available as an alternative to using the averages
duke@435 142 // for making ergonomic decisions.
duke@435 143 double _latest_minor_mutator_interval_seconds;
duke@435 144
duke@435 145 // Allowed difference between major and minor gc times, used
duke@435 146 // for computing tenuring_threshold.
duke@435 147 const double _threshold_tolerance_percent;
duke@435 148
duke@435 149 const double _gc_pause_goal_sec; // goal for maximum gc pause
duke@435 150
duke@435 151 // Flag indicating that the adaptive policy is ready to use
duke@435 152 bool _young_gen_policy_is_ready;
duke@435 153
duke@435 154 // decrease/increase the young generation for minor pause time
duke@435 155 int _change_young_gen_for_min_pauses;
duke@435 156
duke@435 157 // decrease/increase the old generation for major pause time
duke@435 158 int _change_old_gen_for_maj_pauses;
duke@435 159
duke@435 160 // change old geneneration for throughput
duke@435 161 int _change_old_gen_for_throughput;
duke@435 162
duke@435 163 // change young generation for throughput
duke@435 164 int _change_young_gen_for_throughput;
duke@435 165
duke@435 166 // Flag indicating that the policy would
duke@435 167 // increase the tenuring threshold because of the total major gc cost
duke@435 168 // is greater than the total minor gc cost
duke@435 169 bool _increment_tenuring_threshold_for_gc_cost;
duke@435 170 // decrease the tenuring threshold because of the the total minor gc
duke@435 171 // cost is greater than the total major gc cost
duke@435 172 bool _decrement_tenuring_threshold_for_gc_cost;
duke@435 173 // decrease due to survivor size limit
duke@435 174 bool _decrement_tenuring_threshold_for_survivor_limit;
duke@435 175
duke@435 176 // decrease generation sizes for footprint
duke@435 177 int _decrease_for_footprint;
duke@435 178
duke@435 179 // Set if the ergonomic decisions were made at a full GC.
duke@435 180 int _decide_at_full_gc;
duke@435 181
duke@435 182 // Changing the generation sizing depends on the data that is
duke@435 183 // gathered about the effects of changes on the pause times and
duke@435 184 // throughput. These variable count the number of data points
duke@435 185 // gathered. The policy may use these counters as a threshhold
duke@435 186 // for reliable data.
duke@435 187 julong _young_gen_change_for_minor_throughput;
duke@435 188 julong _old_gen_change_for_major_throughput;
duke@435 189
jmasa@3294 190 static const uint GCWorkersPerJavaThread = 2;
jmasa@3294 191
duke@435 192 // Accessors
duke@435 193
duke@435 194 double gc_pause_goal_sec() const { return _gc_pause_goal_sec; }
duke@435 195 // The value returned is unitless: it's the proportion of time
duke@435 196 // spent in a particular collection type.
duke@435 197 // An interval time will be 0.0 if a collection type hasn't occurred yet.
duke@435 198 // The 1.4.2 implementation put a floor on the values of major_gc_cost
duke@435 199 // and minor_gc_cost. This was useful because of the way major_gc_cost
duke@435 200 // and minor_gc_cost was used in calculating the sizes of the generations.
duke@435 201 // Do not use a floor in this implementation because any finite value
duke@435 202 // will put a limit on the throughput that can be achieved and any
duke@435 203 // throughput goal above that limit will drive the generations sizes
duke@435 204 // to extremes.
duke@435 205 double major_gc_cost() const {
duke@435 206 return MAX2(0.0F, _avg_major_gc_cost->average());
duke@435 207 }
duke@435 208
duke@435 209 // The value returned is unitless: it's the proportion of time
duke@435 210 // spent in a particular collection type.
duke@435 211 // An interval time will be 0.0 if a collection type hasn't occurred yet.
duke@435 212 // The 1.4.2 implementation put a floor on the values of major_gc_cost
duke@435 213 // and minor_gc_cost. This was useful because of the way major_gc_cost
duke@435 214 // and minor_gc_cost was used in calculating the sizes of the generations.
duke@435 215 // Do not use a floor in this implementation because any finite value
duke@435 216 // will put a limit on the throughput that can be achieved and any
duke@435 217 // throughput goal above that limit will drive the generations sizes
duke@435 218 // to extremes.
duke@435 219
duke@435 220 double minor_gc_cost() const {
duke@435 221 return MAX2(0.0F, _avg_minor_gc_cost->average());
duke@435 222 }
duke@435 223
duke@435 224 // Because we're dealing with averages, gc_cost() can be
duke@435 225 // larger than 1.0 if just the sum of the minor cost the
duke@435 226 // the major cost is used. Worse than that is the
duke@435 227 // fact that the minor cost and the major cost each
duke@435 228 // tend toward 1.0 in the extreme of high gc costs.
duke@435 229 // Limit the value of gc_cost to 1.0 so that the mutator
duke@435 230 // cost stays non-negative.
duke@435 231 virtual double gc_cost() const {
duke@435 232 double result = MIN2(1.0, minor_gc_cost() + major_gc_cost());
duke@435 233 assert(result >= 0.0, "Both minor and major costs are non-negative");
duke@435 234 return result;
duke@435 235 }
duke@435 236
duke@435 237 // Elapsed time since the last major collection.
duke@435 238 virtual double time_since_major_gc() const;
duke@435 239
duke@435 240 // Average interval between major collections to be used
duke@435 241 // in calculating the decaying major gc cost. An overestimate
duke@435 242 // of this time would be a conservative estimate because
duke@435 243 // this time is used to decide if the major GC cost
duke@435 244 // should be decayed (i.e., if the time since the last
duke@435 245 // major gc is long compared to the time returned here,
duke@435 246 // then the major GC cost will be decayed). See the
duke@435 247 // implementations for the specifics.
duke@435 248 virtual double major_gc_interval_average_for_decay() const {
duke@435 249 return _avg_major_interval->average();
duke@435 250 }
duke@435 251
duke@435 252 // Return the cost of the GC where the major gc cost
duke@435 253 // has been decayed based on the time since the last
duke@435 254 // major collection.
duke@435 255 double decaying_gc_cost() const;
duke@435 256
duke@435 257 // Decay the major gc cost. Use this only for decisions on
duke@435 258 // whether to adjust, not to determine by how much to adjust.
duke@435 259 // This approximation is crude and may not be good enough for the
duke@435 260 // latter.
duke@435 261 double decaying_major_gc_cost() const;
duke@435 262
duke@435 263 // Return the mutator cost using the decayed
duke@435 264 // GC cost.
duke@435 265 double adjusted_mutator_cost() const {
duke@435 266 double result = 1.0 - decaying_gc_cost();
duke@435 267 assert(result >= 0.0, "adjusted mutator cost calculation is incorrect");
duke@435 268 return result;
duke@435 269 }
duke@435 270
duke@435 271 virtual double mutator_cost() const {
duke@435 272 double result = 1.0 - gc_cost();
duke@435 273 assert(result >= 0.0, "mutator cost calculation is incorrect");
duke@435 274 return result;
duke@435 275 }
duke@435 276
duke@435 277
duke@435 278 bool young_gen_policy_is_ready() { return _young_gen_policy_is_ready; }
duke@435 279
duke@435 280 void update_minor_pause_young_estimator(double minor_pause_in_ms);
duke@435 281 virtual void update_minor_pause_old_estimator(double minor_pause_in_ms) {
duke@435 282 // This is not meaningful for all policies but needs to be present
duke@435 283 // to use minor_collection_end() in its current form.
duke@435 284 }
duke@435 285
duke@435 286 virtual size_t eden_increment(size_t cur_eden);
duke@435 287 virtual size_t eden_increment(size_t cur_eden, uint percent_change);
duke@435 288 virtual size_t eden_decrement(size_t cur_eden);
duke@435 289 virtual size_t promo_increment(size_t cur_eden);
duke@435 290 virtual size_t promo_increment(size_t cur_eden, uint percent_change);
duke@435 291 virtual size_t promo_decrement(size_t cur_eden);
duke@435 292
duke@435 293 virtual void clear_generation_free_space_flags();
duke@435 294
duke@435 295 int change_old_gen_for_throughput() const {
duke@435 296 return _change_old_gen_for_throughput;
duke@435 297 }
duke@435 298 void set_change_old_gen_for_throughput(int v) {
duke@435 299 _change_old_gen_for_throughput = v;
duke@435 300 }
duke@435 301 int change_young_gen_for_throughput() const {
duke@435 302 return _change_young_gen_for_throughput;
duke@435 303 }
duke@435 304 void set_change_young_gen_for_throughput(int v) {
duke@435 305 _change_young_gen_for_throughput = v;
duke@435 306 }
duke@435 307
duke@435 308 int change_old_gen_for_maj_pauses() const {
duke@435 309 return _change_old_gen_for_maj_pauses;
duke@435 310 }
duke@435 311 void set_change_old_gen_for_maj_pauses(int v) {
duke@435 312 _change_old_gen_for_maj_pauses = v;
duke@435 313 }
duke@435 314
duke@435 315 bool decrement_tenuring_threshold_for_gc_cost() const {
duke@435 316 return _decrement_tenuring_threshold_for_gc_cost;
duke@435 317 }
duke@435 318 void set_decrement_tenuring_threshold_for_gc_cost(bool v) {
duke@435 319 _decrement_tenuring_threshold_for_gc_cost = v;
duke@435 320 }
duke@435 321 bool increment_tenuring_threshold_for_gc_cost() const {
duke@435 322 return _increment_tenuring_threshold_for_gc_cost;
duke@435 323 }
duke@435 324 void set_increment_tenuring_threshold_for_gc_cost(bool v) {
duke@435 325 _increment_tenuring_threshold_for_gc_cost = v;
duke@435 326 }
duke@435 327 bool decrement_tenuring_threshold_for_survivor_limit() const {
duke@435 328 return _decrement_tenuring_threshold_for_survivor_limit;
duke@435 329 }
duke@435 330 void set_decrement_tenuring_threshold_for_survivor_limit(bool v) {
duke@435 331 _decrement_tenuring_threshold_for_survivor_limit = v;
duke@435 332 }
duke@435 333 // Return true if the policy suggested a change.
duke@435 334 bool tenuring_threshold_change() const;
duke@435 335
jmasa@3294 336 static bool _debug_perturbation;
jmasa@3294 337
duke@435 338 public:
duke@435 339 AdaptiveSizePolicy(size_t init_eden_size,
duke@435 340 size_t init_promo_size,
duke@435 341 size_t init_survivor_size,
duke@435 342 double gc_pause_goal_sec,
duke@435 343 uint gc_cost_ratio);
duke@435 344
jmasa@3294 345 // Return number default GC threads to use in the next GC.
jmasa@3294 346 static int calc_default_active_workers(uintx total_workers,
jmasa@3294 347 const uintx min_workers,
jmasa@3294 348 uintx active_workers,
jmasa@3294 349 uintx application_workers);
jmasa@3294 350
jmasa@3294 351 // Return number of GC threads to use in the next GC.
jmasa@3294 352 // This is called sparingly so as not to change the
jmasa@3294 353 // number of GC workers gratuitously.
jmasa@3294 354 // For ParNew collections
jmasa@3294 355 // For PS scavenge and ParOld collections
jmasa@3294 356 // For G1 evacuation pauses (subject to update)
jmasa@3294 357 // Other collection phases inherit the number of
jmasa@3294 358 // GC workers from the calls above. For example,
jmasa@3294 359 // a CMS parallel remark uses the same number of GC
jmasa@3294 360 // workers as the most recent ParNew collection.
jmasa@3294 361 static int calc_active_workers(uintx total_workers,
jmasa@3294 362 uintx active_workers,
jmasa@3294 363 uintx application_workers);
jmasa@3294 364
jmasa@3294 365 // Return number of GC threads to use in the next concurrent GC phase.
jmasa@3294 366 static int calc_active_conc_workers(uintx total_workers,
jmasa@3294 367 uintx active_workers,
jmasa@3294 368 uintx application_workers);
jmasa@3294 369
duke@435 370 bool is_gc_cms_adaptive_size_policy() {
duke@435 371 return kind() == _gc_cms_adaptive_size_policy;
duke@435 372 }
duke@435 373 bool is_gc_ps_adaptive_size_policy() {
duke@435 374 return kind() == _gc_ps_adaptive_size_policy;
duke@435 375 }
duke@435 376
duke@435 377 AdaptivePaddedAverage* avg_minor_pause() const { return _avg_minor_pause; }
duke@435 378 AdaptiveWeightedAverage* avg_minor_interval() const {
duke@435 379 return _avg_minor_interval;
duke@435 380 }
duke@435 381 AdaptiveWeightedAverage* avg_minor_gc_cost() const {
duke@435 382 return _avg_minor_gc_cost;
duke@435 383 }
duke@435 384
duke@435 385 AdaptiveWeightedAverage* avg_major_gc_cost() const {
duke@435 386 return _avg_major_gc_cost;
duke@435 387 }
duke@435 388
duke@435 389 AdaptiveWeightedAverage* avg_young_live() const { return _avg_young_live; }
duke@435 390 AdaptiveWeightedAverage* avg_eden_live() const { return _avg_eden_live; }
duke@435 391 AdaptiveWeightedAverage* avg_old_live() const { return _avg_old_live; }
duke@435 392
duke@435 393 AdaptivePaddedAverage* avg_survived() const { return _avg_survived; }
duke@435 394 AdaptivePaddedNoZeroDevAverage* avg_pretenured() { return _avg_pretenured; }
duke@435 395
duke@435 396 // Methods indicating events of interest to the adaptive size policy,
duke@435 397 // called by GC algorithms. It is the responsibility of users of this
duke@435 398 // policy to call these methods at the correct times!
duke@435 399 virtual void minor_collection_begin();
duke@435 400 virtual void minor_collection_end(GCCause::Cause gc_cause);
duke@435 401 virtual LinearLeastSquareFit* minor_pause_old_estimator() const {
duke@435 402 return _minor_pause_old_estimator;
duke@435 403 }
duke@435 404
duke@435 405 LinearLeastSquareFit* minor_pause_young_estimator() {
duke@435 406 return _minor_pause_young_estimator;
duke@435 407 }
duke@435 408 LinearLeastSquareFit* minor_collection_estimator() {
duke@435 409 return _minor_collection_estimator;
duke@435 410 }
duke@435 411
duke@435 412 LinearLeastSquareFit* major_collection_estimator() {
duke@435 413 return _major_collection_estimator;
duke@435 414 }
duke@435 415
duke@435 416 float minor_pause_young_slope() {
duke@435 417 return _minor_pause_young_estimator->slope();
duke@435 418 }
duke@435 419
duke@435 420 float minor_collection_slope() { return _minor_collection_estimator->slope();}
duke@435 421 float major_collection_slope() { return _major_collection_estimator->slope();}
duke@435 422
duke@435 423 float minor_pause_old_slope() {
duke@435 424 return _minor_pause_old_estimator->slope();
duke@435 425 }
duke@435 426
duke@435 427 void set_eden_size(size_t new_size) {
duke@435 428 _eden_size = new_size;
duke@435 429 }
duke@435 430 void set_survivor_size(size_t new_size) {
duke@435 431 _survivor_size = new_size;
duke@435 432 }
duke@435 433
duke@435 434 size_t calculated_eden_size_in_bytes() const {
duke@435 435 return _eden_size;
duke@435 436 }
duke@435 437
duke@435 438 size_t calculated_promo_size_in_bytes() const {
duke@435 439 return _promo_size;
duke@435 440 }
duke@435 441
duke@435 442 size_t calculated_survivor_size_in_bytes() const {
duke@435 443 return _survivor_size;
duke@435 444 }
duke@435 445
duke@435 446 // This is a hint for the heap: we've detected that gc times
duke@435 447 // are taking longer than GCTimeLimit allows.
duke@435 448 // Most heaps will choose to throw an OutOfMemoryError when
duke@435 449 // this occurs but it is up to the heap to request this information
duke@435 450 // of the policy
jmasa@1822 451 bool gc_overhead_limit_exceeded() {
jmasa@1822 452 return _gc_overhead_limit_exceeded;
duke@435 453 }
jmasa@1822 454 void set_gc_overhead_limit_exceeded(bool v) {
jmasa@1822 455 _gc_overhead_limit_exceeded = v;
duke@435 456 }
duke@435 457
jmasa@1822 458 // Tests conditions indicate the GC overhead limit is being approached.
jmasa@1822 459 bool gc_overhead_limit_near() {
jmasa@1822 460 return gc_overhead_limit_count() >=
jmasa@1822 461 (AdaptiveSizePolicyGCTimeLimitThreshold - 1);
jmasa@1822 462 }
jmasa@1822 463 uint gc_overhead_limit_count() { return _gc_overhead_limit_count; }
jmasa@1822 464 void reset_gc_overhead_limit_count() { _gc_overhead_limit_count = 0; }
jmasa@1822 465 void inc_gc_overhead_limit_count() { _gc_overhead_limit_count++; }
duke@435 466 // accessors for flags recording the decisions to resize the
duke@435 467 // generations to meet the pause goal.
duke@435 468
duke@435 469 int change_young_gen_for_min_pauses() const {
duke@435 470 return _change_young_gen_for_min_pauses;
duke@435 471 }
duke@435 472 void set_change_young_gen_for_min_pauses(int v) {
duke@435 473 _change_young_gen_for_min_pauses = v;
duke@435 474 }
duke@435 475 void set_decrease_for_footprint(int v) { _decrease_for_footprint = v; }
duke@435 476 int decrease_for_footprint() const { return _decrease_for_footprint; }
duke@435 477 int decide_at_full_gc() { return _decide_at_full_gc; }
duke@435 478 void set_decide_at_full_gc(int v) { _decide_at_full_gc = v; }
duke@435 479
jmasa@1822 480 // Check the conditions for an out-of-memory due to excessive GC time.
jmasa@1822 481 // Set _gc_overhead_limit_exceeded if all the conditions have been met.
jmasa@1822 482 void check_gc_overhead_limit(size_t young_live,
jmasa@1822 483 size_t eden_live,
jmasa@1822 484 size_t max_old_gen_size,
jmasa@1822 485 size_t max_eden_size,
jmasa@1822 486 bool is_full_gc,
jmasa@1822 487 GCCause::Cause gc_cause,
jmasa@1822 488 CollectorPolicy* collector_policy);
jmasa@1822 489
duke@435 490 // Printing support
duke@435 491 virtual bool print_adaptive_size_policy_on(outputStream* st) const;
jwilhelm@4129 492 bool print_adaptive_size_policy_on(outputStream* st,
jwilhelm@4129 493 uint tenuring_threshold) const;
duke@435 494 };
duke@435 495
duke@435 496 // Class that can be used to print information about the
duke@435 497 // adaptive size policy at intervals specified by
duke@435 498 // AdaptiveSizePolicyOutputInterval. Only print information
duke@435 499 // if an adaptive size policy is in use.
duke@435 500 class AdaptiveSizePolicyOutput : StackObj {
duke@435 501 AdaptiveSizePolicy* _size_policy;
duke@435 502 bool _do_print;
duke@435 503 bool print_test(uint count) {
duke@435 504 // A count of zero is a special value that indicates that the
duke@435 505 // interval test should be ignored. An interval is of zero is
duke@435 506 // a special value that indicates that the interval test should
duke@435 507 // always fail (never do the print based on the interval test).
duke@435 508 return PrintGCDetails &&
duke@435 509 UseAdaptiveSizePolicy &&
duke@435 510 (UseParallelGC || UseConcMarkSweepGC) &&
duke@435 511 (AdaptiveSizePolicyOutputInterval > 0) &&
duke@435 512 ((count == 0) ||
duke@435 513 ((count % AdaptiveSizePolicyOutputInterval) == 0));
duke@435 514 }
duke@435 515 public:
duke@435 516 // The special value of a zero count can be used to ignore
duke@435 517 // the count test.
duke@435 518 AdaptiveSizePolicyOutput(uint count) {
duke@435 519 if (UseAdaptiveSizePolicy && (AdaptiveSizePolicyOutputInterval > 0)) {
duke@435 520 CollectedHeap* heap = Universe::heap();
duke@435 521 _size_policy = heap->size_policy();
duke@435 522 _do_print = print_test(count);
duke@435 523 } else {
duke@435 524 _size_policy = NULL;
duke@435 525 _do_print = false;
duke@435 526 }
duke@435 527 }
duke@435 528 AdaptiveSizePolicyOutput(AdaptiveSizePolicy* size_policy,
duke@435 529 uint count) :
duke@435 530 _size_policy(size_policy) {
duke@435 531 if (UseAdaptiveSizePolicy && (AdaptiveSizePolicyOutputInterval > 0)) {
duke@435 532 _do_print = print_test(count);
duke@435 533 } else {
duke@435 534 _do_print = false;
duke@435 535 }
duke@435 536 }
duke@435 537 ~AdaptiveSizePolicyOutput() {
duke@435 538 if (_do_print) {
duke@435 539 assert(UseAdaptiveSizePolicy, "Should not be in use");
duke@435 540 _size_policy->print_adaptive_size_policy_on(gclog_or_tty);
duke@435 541 }
duke@435 542 }
duke@435 543 };
stefank@2314 544
stefank@2314 545 #endif // SHARE_VM_GC_IMPLEMENTATION_SHARED_ADAPTIVESIZEPOLICY_HPP

mercurial