src/share/vm/opto/regmask.cpp

Thu, 21 Nov 2013 12:30:35 -0800

author
kvn
date
Thu, 21 Nov 2013 12:30:35 -0800
changeset 6485
da862781b584
parent 6441
d2907f74462e
child 6680
78bbf4d43a14
permissions
-rw-r--r--

Merge

duke@435 1 /*
drchase@4585 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "opto/compile.hpp"
stefank@2314 27 #include "opto/regmask.hpp"
stefank@2314 28 #ifdef TARGET_ARCH_MODEL_x86_32
stefank@2314 29 # include "adfiles/ad_x86_32.hpp"
stefank@2314 30 #endif
stefank@2314 31 #ifdef TARGET_ARCH_MODEL_x86_64
stefank@2314 32 # include "adfiles/ad_x86_64.hpp"
stefank@2314 33 #endif
stefank@2314 34 #ifdef TARGET_ARCH_MODEL_sparc
stefank@2314 35 # include "adfiles/ad_sparc.hpp"
stefank@2314 36 #endif
stefank@2314 37 #ifdef TARGET_ARCH_MODEL_zero
stefank@2314 38 # include "adfiles/ad_zero.hpp"
stefank@2314 39 #endif
bobv@2508 40 #ifdef TARGET_ARCH_MODEL_arm
bobv@2508 41 # include "adfiles/ad_arm.hpp"
bobv@2508 42 #endif
goetz@6441 43 #ifdef TARGET_ARCH_MODEL_ppc_32
goetz@6441 44 # include "adfiles/ad_ppc_32.hpp"
goetz@6441 45 #endif
goetz@6441 46 #ifdef TARGET_ARCH_MODEL_ppc_64
goetz@6441 47 # include "adfiles/ad_ppc_64.hpp"
bobv@2508 48 #endif
duke@435 49
duke@435 50 #define RM_SIZE _RM_SIZE /* a constant private to the class RegMask */
duke@435 51
duke@435 52 //-------------Non-zero bit search methods used by RegMask---------------------
duke@435 53 // Find lowest 1, or return 32 if empty
duke@435 54 int find_lowest_bit( uint32 mask ) {
duke@435 55 int n = 0;
duke@435 56 if( (mask & 0xffff) == 0 ) {
duke@435 57 mask >>= 16;
duke@435 58 n += 16;
duke@435 59 }
duke@435 60 if( (mask & 0xff) == 0 ) {
duke@435 61 mask >>= 8;
duke@435 62 n += 8;
duke@435 63 }
duke@435 64 if( (mask & 0xf) == 0 ) {
duke@435 65 mask >>= 4;
duke@435 66 n += 4;
duke@435 67 }
duke@435 68 if( (mask & 0x3) == 0 ) {
duke@435 69 mask >>= 2;
duke@435 70 n += 2;
duke@435 71 }
duke@435 72 if( (mask & 0x1) == 0 ) {
duke@435 73 mask >>= 1;
duke@435 74 n += 1;
duke@435 75 }
duke@435 76 if( mask == 0 ) {
duke@435 77 n = 32;
duke@435 78 }
duke@435 79 return n;
duke@435 80 }
duke@435 81
duke@435 82 // Find highest 1, or return 32 if empty
duke@435 83 int find_hihghest_bit( uint32 mask ) {
duke@435 84 int n = 0;
duke@435 85 if( mask > 0xffff ) {
duke@435 86 mask >>= 16;
duke@435 87 n += 16;
duke@435 88 }
duke@435 89 if( mask > 0xff ) {
duke@435 90 mask >>= 8;
duke@435 91 n += 8;
duke@435 92 }
duke@435 93 if( mask > 0xf ) {
duke@435 94 mask >>= 4;
duke@435 95 n += 4;
duke@435 96 }
duke@435 97 if( mask > 0x3 ) {
duke@435 98 mask >>= 2;
duke@435 99 n += 2;
duke@435 100 }
duke@435 101 if( mask > 0x1 ) {
duke@435 102 mask >>= 1;
duke@435 103 n += 1;
duke@435 104 }
duke@435 105 if( mask == 0 ) {
duke@435 106 n = 32;
duke@435 107 }
duke@435 108 return n;
duke@435 109 }
duke@435 110
duke@435 111 //------------------------------dump-------------------------------------------
duke@435 112
duke@435 113 #ifndef PRODUCT
kvn@4478 114 void OptoReg::dump(int r, outputStream *st) {
kvn@4478 115 switch (r) {
kvn@4478 116 case Special: st->print("r---"); break;
kvn@4478 117 case Bad: st->print("rBAD"); break;
duke@435 118 default:
kvn@4478 119 if (r < _last_Mach_Reg) st->print(Matcher::regName[r]);
kvn@4478 120 else st->print("rS%d",r);
duke@435 121 break;
duke@435 122 }
duke@435 123 }
duke@435 124 #endif
duke@435 125
duke@435 126
duke@435 127 //=============================================================================
duke@435 128 const RegMask RegMask::Empty(
duke@435 129 # define BODY(I) 0,
duke@435 130 FORALL_BODY
duke@435 131 # undef BODY
duke@435 132 0
duke@435 133 );
duke@435 134
kvn@3882 135 //=============================================================================
kvn@3882 136 bool RegMask::is_vector(uint ireg) {
kvn@3882 137 return (ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY);
kvn@3882 138 }
kvn@3882 139
kvn@3882 140 int RegMask::num_registers(uint ireg) {
kvn@3882 141 switch(ireg) {
kvn@3882 142 case Op_VecY:
kvn@3882 143 return 8;
kvn@3882 144 case Op_VecX:
kvn@3882 145 return 4;
kvn@3882 146 case Op_VecD:
kvn@3882 147 case Op_RegD:
kvn@3882 148 case Op_RegL:
kvn@3882 149 #ifdef _LP64
kvn@3882 150 case Op_RegP:
kvn@3882 151 #endif
kvn@3882 152 return 2;
kvn@3882 153 }
kvn@3882 154 // Op_VecS and the rest ideal registers.
kvn@3882 155 return 1;
kvn@3882 156 }
kvn@3882 157
duke@435 158 //------------------------------find_first_pair--------------------------------
duke@435 159 // Find the lowest-numbered register pair in the mask. Return the
duke@435 160 // HIGHEST register number in the pair, or BAD if no pairs.
duke@435 161 OptoReg::Name RegMask::find_first_pair() const {
kvn@3882 162 verify_pairs();
duke@435 163 for( int i = 0; i < RM_SIZE; i++ ) {
duke@435 164 if( _A[i] ) { // Found some bits
duke@435 165 int bit = _A[i] & -_A[i]; // Extract low bit
duke@435 166 // Convert to bit number, return hi bit in pair
duke@435 167 return OptoReg::Name((i<<_LogWordBits)+find_lowest_bit(bit)+1);
duke@435 168 }
duke@435 169 }
duke@435 170 return OptoReg::Bad;
duke@435 171 }
duke@435 172
duke@435 173 //------------------------------ClearToPairs-----------------------------------
duke@435 174 // Clear out partial bits; leave only bit pairs
kvn@3882 175 void RegMask::clear_to_pairs() {
duke@435 176 for( int i = 0; i < RM_SIZE; i++ ) {
duke@435 177 int bits = _A[i];
duke@435 178 bits &= ((bits & 0x55555555)<<1); // 1 hi-bit set for each pair
duke@435 179 bits |= (bits>>1); // Smear 1 hi-bit into a pair
duke@435 180 _A[i] = bits;
duke@435 181 }
kvn@3882 182 verify_pairs();
duke@435 183 }
duke@435 184
duke@435 185 //------------------------------SmearToPairs-----------------------------------
duke@435 186 // Smear out partial bits; leave only bit pairs
kvn@3882 187 void RegMask::smear_to_pairs() {
duke@435 188 for( int i = 0; i < RM_SIZE; i++ ) {
duke@435 189 int bits = _A[i];
duke@435 190 bits |= ((bits & 0x55555555)<<1); // Smear lo bit hi per pair
duke@435 191 bits |= ((bits & 0xAAAAAAAA)>>1); // Smear hi bit lo per pair
duke@435 192 _A[i] = bits;
duke@435 193 }
kvn@3882 194 verify_pairs();
duke@435 195 }
duke@435 196
duke@435 197 //------------------------------is_aligned_pairs-------------------------------
kvn@3882 198 bool RegMask::is_aligned_pairs() const {
duke@435 199 // Assert that the register mask contains only bit pairs.
duke@435 200 for( int i = 0; i < RM_SIZE; i++ ) {
duke@435 201 int bits = _A[i];
duke@435 202 while( bits ) { // Check bits for pairing
duke@435 203 int bit = bits & -bits; // Extract low bit
duke@435 204 // Low bit is not odd means its mis-aligned.
duke@435 205 if( (bit & 0x55555555) == 0 ) return false;
duke@435 206 bits -= bit; // Remove bit from mask
duke@435 207 // Check for aligned adjacent bit
duke@435 208 if( (bits & (bit<<1)) == 0 ) return false;
duke@435 209 bits -= (bit<<1); // Remove other halve of pair
duke@435 210 }
duke@435 211 }
duke@435 212 return true;
duke@435 213 }
duke@435 214
duke@435 215 //------------------------------is_bound1--------------------------------------
duke@435 216 // Return TRUE if the mask contains a single bit
duke@435 217 int RegMask::is_bound1() const {
duke@435 218 if( is_AllStack() ) return false;
duke@435 219 int bit = -1; // Set to hold the one bit allowed
duke@435 220 for( int i = 0; i < RM_SIZE; i++ ) {
duke@435 221 if( _A[i] ) { // Found some bits
duke@435 222 if( bit != -1 ) return false; // Already had bits, so fail
duke@435 223 bit = _A[i] & -_A[i]; // Extract 1 bit from mask
duke@435 224 if( bit != _A[i] ) return false; // Found many bits, so fail
duke@435 225 }
duke@435 226 }
duke@435 227 // True for both the empty mask and for a single bit
duke@435 228 return true;
duke@435 229 }
duke@435 230
duke@435 231 //------------------------------is_bound2--------------------------------------
duke@435 232 // Return TRUE if the mask contains an adjacent pair of bits and no other bits.
kvn@3882 233 int RegMask::is_bound_pair() const {
duke@435 234 if( is_AllStack() ) return false;
duke@435 235
duke@435 236 int bit = -1; // Set to hold the one bit allowed
duke@435 237 for( int i = 0; i < RM_SIZE; i++ ) {
duke@435 238 if( _A[i] ) { // Found some bits
duke@435 239 if( bit != -1 ) return false; // Already had bits, so fail
duke@435 240 bit = _A[i] & -(_A[i]); // Extract 1 bit from mask
duke@435 241 if( (bit << 1) != 0 ) { // Bit pair stays in same word?
duke@435 242 if( (bit | (bit<<1)) != _A[i] )
duke@435 243 return false; // Require adjacent bit pair and no more bits
duke@435 244 } else { // Else its a split-pair case
duke@435 245 if( bit != _A[i] ) return false; // Found many bits, so fail
duke@435 246 i++; // Skip iteration forward
drchase@4585 247 if( i >= RM_SIZE || _A[i] != 1 )
drchase@4585 248 return false; // Require 1 lo bit in next word
duke@435 249 }
duke@435 250 }
duke@435 251 }
duke@435 252 // True for both the empty mask and for a bit pair
duke@435 253 return true;
duke@435 254 }
duke@435 255
kvn@3882 256 static int low_bits[3] = { 0x55555555, 0x11111111, 0x01010101 };
kvn@3882 257 //------------------------------find_first_set---------------------------------
kvn@3882 258 // Find the lowest-numbered register set in the mask. Return the
kvn@3882 259 // HIGHEST register number in the set, or BAD if no sets.
kvn@3882 260 // Works also for size 1.
drchase@4585 261 OptoReg::Name RegMask::find_first_set(const int size) const {
kvn@3882 262 verify_sets(size);
kvn@3882 263 for (int i = 0; i < RM_SIZE; i++) {
kvn@3882 264 if (_A[i]) { // Found some bits
kvn@3882 265 int bit = _A[i] & -_A[i]; // Extract low bit
kvn@3882 266 // Convert to bit number, return hi bit in pair
kvn@3882 267 return OptoReg::Name((i<<_LogWordBits)+find_lowest_bit(bit)+(size-1));
kvn@3882 268 }
kvn@3882 269 }
kvn@3882 270 return OptoReg::Bad;
kvn@3882 271 }
kvn@3882 272
kvn@3882 273 //------------------------------clear_to_sets----------------------------------
kvn@3882 274 // Clear out partial bits; leave only aligned adjacent bit pairs
drchase@4585 275 void RegMask::clear_to_sets(const int size) {
kvn@3882 276 if (size == 1) return;
kvn@3882 277 assert(2 <= size && size <= 8, "update low bits table");
kvn@3882 278 assert(is_power_of_2(size), "sanity");
kvn@3882 279 int low_bits_mask = low_bits[size>>2];
kvn@3882 280 for (int i = 0; i < RM_SIZE; i++) {
kvn@3882 281 int bits = _A[i];
kvn@3882 282 int sets = (bits & low_bits_mask);
kvn@3882 283 for (int j = 1; j < size; j++) {
kvn@3882 284 sets = (bits & (sets<<1)); // filter bits which produce whole sets
kvn@3882 285 }
kvn@3882 286 sets |= (sets>>1); // Smear 1 hi-bit into a set
kvn@3882 287 if (size > 2) {
kvn@3882 288 sets |= (sets>>2); // Smear 2 hi-bits into a set
kvn@3882 289 if (size > 4) {
kvn@3882 290 sets |= (sets>>4); // Smear 4 hi-bits into a set
kvn@3882 291 }
kvn@3882 292 }
kvn@3882 293 _A[i] = sets;
kvn@3882 294 }
kvn@3882 295 verify_sets(size);
kvn@3882 296 }
kvn@3882 297
kvn@3882 298 //------------------------------smear_to_sets----------------------------------
kvn@3882 299 // Smear out partial bits to aligned adjacent bit sets
drchase@4585 300 void RegMask::smear_to_sets(const int size) {
kvn@3882 301 if (size == 1) return;
kvn@3882 302 assert(2 <= size && size <= 8, "update low bits table");
kvn@3882 303 assert(is_power_of_2(size), "sanity");
kvn@3882 304 int low_bits_mask = low_bits[size>>2];
kvn@3882 305 for (int i = 0; i < RM_SIZE; i++) {
kvn@3882 306 int bits = _A[i];
kvn@3882 307 int sets = 0;
kvn@3882 308 for (int j = 0; j < size; j++) {
kvn@3882 309 sets |= (bits & low_bits_mask); // collect partial bits
kvn@3882 310 bits = bits>>1;
kvn@3882 311 }
kvn@3882 312 sets |= (sets<<1); // Smear 1 lo-bit into a set
kvn@3882 313 if (size > 2) {
kvn@3882 314 sets |= (sets<<2); // Smear 2 lo-bits into a set
kvn@3882 315 if (size > 4) {
kvn@3882 316 sets |= (sets<<4); // Smear 4 lo-bits into a set
kvn@3882 317 }
kvn@3882 318 }
kvn@3882 319 _A[i] = sets;
kvn@3882 320 }
kvn@3882 321 verify_sets(size);
kvn@3882 322 }
kvn@3882 323
kvn@3882 324 //------------------------------is_aligned_set--------------------------------
drchase@4585 325 bool RegMask::is_aligned_sets(const int size) const {
kvn@3882 326 if (size == 1) return true;
kvn@3882 327 assert(2 <= size && size <= 8, "update low bits table");
kvn@3882 328 assert(is_power_of_2(size), "sanity");
kvn@3882 329 int low_bits_mask = low_bits[size>>2];
kvn@3882 330 // Assert that the register mask contains only bit sets.
kvn@3882 331 for (int i = 0; i < RM_SIZE; i++) {
kvn@3882 332 int bits = _A[i];
kvn@3882 333 while (bits) { // Check bits for pairing
kvn@3882 334 int bit = bits & -bits; // Extract low bit
kvn@3882 335 // Low bit is not odd means its mis-aligned.
kvn@3882 336 if ((bit & low_bits_mask) == 0) return false;
kvn@3882 337 // Do extra work since (bit << size) may overflow.
kvn@3882 338 int hi_bit = bit << (size-1); // high bit
kvn@3882 339 int set = hi_bit + ((hi_bit-1) & ~(bit-1));
kvn@3882 340 // Check for aligned adjacent bits in this set
kvn@3882 341 if ((bits & set) != set) return false;
kvn@3882 342 bits -= set; // Remove this set
kvn@3882 343 }
kvn@3882 344 }
kvn@3882 345 return true;
kvn@3882 346 }
kvn@3882 347
kvn@3882 348 //------------------------------is_bound_set-----------------------------------
kvn@3882 349 // Return TRUE if the mask contains one adjacent set of bits and no other bits.
kvn@3882 350 // Works also for size 1.
drchase@4585 351 int RegMask::is_bound_set(const int size) const {
kvn@3882 352 if( is_AllStack() ) return false;
kvn@3882 353 assert(1 <= size && size <= 8, "update low bits table");
kvn@3882 354 int bit = -1; // Set to hold the one bit allowed
kvn@3882 355 for (int i = 0; i < RM_SIZE; i++) {
kvn@3882 356 if (_A[i] ) { // Found some bits
kvn@3882 357 if (bit != -1)
kvn@3882 358 return false; // Already had bits, so fail
drchase@4585 359 bit = _A[i] & -_A[i]; // Extract low bit from mask
kvn@3882 360 int hi_bit = bit << (size-1); // high bit
kvn@3882 361 if (hi_bit != 0) { // Bit set stays in same word?
kvn@3882 362 int set = hi_bit + ((hi_bit-1) & ~(bit-1));
kvn@3882 363 if (set != _A[i])
kvn@3882 364 return false; // Require adjacent bit set and no more bits
kvn@3882 365 } else { // Else its a split-set case
kvn@3882 366 if (((-1) & ~(bit-1)) != _A[i])
kvn@3882 367 return false; // Found many bits, so fail
kvn@3882 368 i++; // Skip iteration forward and check high part
kvn@3882 369 // The lower 24 bits should be 0 since it is split case and size <= 8.
kvn@3882 370 int set = bit>>24;
kvn@3882 371 set = set & -set; // Remove sign extension.
kvn@3882 372 set = (((set << size) - 1) >> 8);
drchase@4585 373 if (i >= RM_SIZE || _A[i] != set)
drchase@4585 374 return false; // Require expected low bits in next word
kvn@3882 375 }
kvn@3882 376 }
kvn@3882 377 }
kvn@3882 378 // True for both the empty mask and for a bit set
kvn@3882 379 return true;
kvn@3882 380 }
kvn@3882 381
duke@435 382 //------------------------------is_UP------------------------------------------
duke@435 383 // UP means register only, Register plus stack, or stack only is DOWN
duke@435 384 bool RegMask::is_UP() const {
duke@435 385 // Quick common case check for DOWN (any stack slot is legal)
duke@435 386 if( is_AllStack() )
duke@435 387 return false;
duke@435 388 // Slower check for any stack bits set (also DOWN)
duke@435 389 if( overlap(Matcher::STACK_ONLY_mask) )
duke@435 390 return false;
duke@435 391 // Not DOWN, so must be UP
duke@435 392 return true;
duke@435 393 }
duke@435 394
duke@435 395 //------------------------------Size-------------------------------------------
duke@435 396 // Compute size of register mask in bits
duke@435 397 uint RegMask::Size() const {
duke@435 398 extern uint8 bitsInByte[256];
duke@435 399 uint sum = 0;
duke@435 400 for( int i = 0; i < RM_SIZE; i++ )
duke@435 401 sum +=
duke@435 402 bitsInByte[(_A[i]>>24) & 0xff] +
duke@435 403 bitsInByte[(_A[i]>>16) & 0xff] +
duke@435 404 bitsInByte[(_A[i]>> 8) & 0xff] +
duke@435 405 bitsInByte[ _A[i] & 0xff];
duke@435 406 return sum;
duke@435 407 }
duke@435 408
duke@435 409 #ifndef PRODUCT
duke@435 410 //------------------------------print------------------------------------------
kvn@4478 411 void RegMask::dump(outputStream *st) const {
kvn@4478 412 st->print("[");
duke@435 413 RegMask rm = *this; // Structure copy into local temp
duke@435 414
duke@435 415 OptoReg::Name start = rm.find_first_elem(); // Get a register
kvn@4478 416 if (OptoReg::is_valid(start)) { // Check for empty mask
duke@435 417 rm.Remove(start); // Yank from mask
kvn@4478 418 OptoReg::dump(start, st); // Print register
duke@435 419 OptoReg::Name last = start;
duke@435 420
duke@435 421 // Now I have printed an initial register.
duke@435 422 // Print adjacent registers as "rX-rZ" instead of "rX,rY,rZ".
duke@435 423 // Begin looping over the remaining registers.
kvn@4478 424 while (1) { //
duke@435 425 OptoReg::Name reg = rm.find_first_elem(); // Get a register
kvn@4478 426 if (!OptoReg::is_valid(reg))
duke@435 427 break; // Empty mask, end loop
duke@435 428 rm.Remove(reg); // Yank from mask
duke@435 429
kvn@4478 430 if (last+1 == reg) { // See if they are adjacent
duke@435 431 // Adjacent registers just collect into long runs, no printing.
duke@435 432 last = reg;
duke@435 433 } else { // Ending some kind of run
kvn@4478 434 if (start == last) { // 1-register run; no special printing
kvn@4478 435 } else if (start+1 == last) {
kvn@4478 436 st->print(","); // 2-register run; print as "rX,rY"
kvn@4478 437 OptoReg::dump(last, st);
duke@435 438 } else { // Multi-register run; print as "rX-rZ"
kvn@4478 439 st->print("-");
kvn@4478 440 OptoReg::dump(last, st);
duke@435 441 }
kvn@4478 442 st->print(","); // Seperate start of new run
duke@435 443 start = last = reg; // Start a new register run
kvn@4478 444 OptoReg::dump(start, st); // Print register
duke@435 445 } // End of if ending a register run or not
duke@435 446 } // End of while regmask not empty
duke@435 447
kvn@4478 448 if (start == last) { // 1-register run; no special printing
kvn@4478 449 } else if (start+1 == last) {
kvn@4478 450 st->print(","); // 2-register run; print as "rX,rY"
kvn@4478 451 OptoReg::dump(last, st);
duke@435 452 } else { // Multi-register run; print as "rX-rZ"
kvn@4478 453 st->print("-");
kvn@4478 454 OptoReg::dump(last, st);
duke@435 455 }
kvn@4478 456 if (rm.is_AllStack()) st->print("...");
duke@435 457 }
kvn@4478 458 st->print("]");
duke@435 459 }
duke@435 460 #endif

mercurial