src/share/vm/memory/cardTableModRefBS.cpp

Wed, 18 Jan 2012 09:50:16 -0800

author
johnc
date
Wed, 18 Jan 2012 09:50:16 -0800
changeset 3538
d903bf750e9f
parent 3297
ea640b5e949a
child 3687
fd09f2d8283e
permissions
-rw-r--r--

7129514: time warp warnings after 7117303
Summary: Replace calls to os::javaTimeMillis() that are used to update the milliseconds since the last GC to an equivalent that uses a monotonically non-decreasing time source.
Reviewed-by: ysr, jmasa

duke@435 1 /*
ysr@2788 2 * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "memory/allocation.inline.hpp"
stefank@2314 27 #include "memory/cardTableModRefBS.hpp"
stefank@2314 28 #include "memory/cardTableRS.hpp"
stefank@2314 29 #include "memory/sharedHeap.hpp"
stefank@2314 30 #include "memory/space.hpp"
stefank@2314 31 #include "memory/space.inline.hpp"
stefank@2314 32 #include "memory/universe.hpp"
stefank@2314 33 #include "runtime/java.hpp"
stefank@2314 34 #include "runtime/mutexLocker.hpp"
stefank@2314 35 #include "runtime/virtualspace.hpp"
stefank@2314 36 #ifdef COMPILER1
stefank@2314 37 #include "c1/c1_LIR.hpp"
stefank@2314 38 #include "c1/c1_LIRGenerator.hpp"
stefank@2314 39 #endif
stefank@2314 40
duke@435 41 // This kind of "BarrierSet" allows a "CollectedHeap" to detect and
duke@435 42 // enumerate ref fields that have been modified (since the last
duke@435 43 // enumeration.)
duke@435 44
duke@435 45 size_t CardTableModRefBS::cards_required(size_t covered_words)
duke@435 46 {
duke@435 47 // Add one for a guard card, used to detect errors.
duke@435 48 const size_t words = align_size_up(covered_words, card_size_in_words);
duke@435 49 return words / card_size_in_words + 1;
duke@435 50 }
duke@435 51
duke@435 52 size_t CardTableModRefBS::compute_byte_map_size()
duke@435 53 {
duke@435 54 assert(_guard_index == cards_required(_whole_heap.word_size()) - 1,
duke@435 55 "unitialized, check declaration order");
duke@435 56 assert(_page_size != 0, "unitialized, check declaration order");
duke@435 57 const size_t granularity = os::vm_allocation_granularity();
duke@435 58 return align_size_up(_guard_index + 1, MAX2(_page_size, granularity));
duke@435 59 }
duke@435 60
duke@435 61 CardTableModRefBS::CardTableModRefBS(MemRegion whole_heap,
duke@435 62 int max_covered_regions):
duke@435 63 ModRefBarrierSet(max_covered_regions),
duke@435 64 _whole_heap(whole_heap),
duke@435 65 _guard_index(cards_required(whole_heap.word_size()) - 1),
duke@435 66 _last_valid_index(_guard_index - 1),
jcoomes@456 67 _page_size(os::vm_page_size()),
duke@435 68 _byte_map_size(compute_byte_map_size())
duke@435 69 {
duke@435 70 _kind = BarrierSet::CardTableModRef;
duke@435 71
duke@435 72 HeapWord* low_bound = _whole_heap.start();
duke@435 73 HeapWord* high_bound = _whole_heap.end();
duke@435 74 assert((uintptr_t(low_bound) & (card_size - 1)) == 0, "heap must start at card boundary");
duke@435 75 assert((uintptr_t(high_bound) & (card_size - 1)) == 0, "heap must end at card boundary");
duke@435 76
duke@435 77 assert(card_size <= 512, "card_size must be less than 512"); // why?
duke@435 78
duke@435 79 _covered = new MemRegion[max_covered_regions];
duke@435 80 _committed = new MemRegion[max_covered_regions];
duke@435 81 if (_covered == NULL || _committed == NULL)
duke@435 82 vm_exit_during_initialization("couldn't alloc card table covered region set.");
duke@435 83 int i;
duke@435 84 for (i = 0; i < max_covered_regions; i++) {
duke@435 85 _covered[i].set_word_size(0);
duke@435 86 _committed[i].set_word_size(0);
duke@435 87 }
duke@435 88 _cur_covered_regions = 0;
duke@435 89
duke@435 90 const size_t rs_align = _page_size == (size_t) os::vm_page_size() ? 0 :
duke@435 91 MAX2(_page_size, (size_t) os::vm_allocation_granularity());
duke@435 92 ReservedSpace heap_rs(_byte_map_size, rs_align, false);
duke@435 93 os::trace_page_sizes("card table", _guard_index + 1, _guard_index + 1,
duke@435 94 _page_size, heap_rs.base(), heap_rs.size());
duke@435 95 if (!heap_rs.is_reserved()) {
duke@435 96 vm_exit_during_initialization("Could not reserve enough space for the "
duke@435 97 "card marking array");
duke@435 98 }
duke@435 99
duke@435 100 // The assember store_check code will do an unsigned shift of the oop,
duke@435 101 // then add it to byte_map_base, i.e.
duke@435 102 //
duke@435 103 // _byte_map = byte_map_base + (uintptr_t(low_bound) >> card_shift)
duke@435 104 _byte_map = (jbyte*) heap_rs.base();
duke@435 105 byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
duke@435 106 assert(byte_for(low_bound) == &_byte_map[0], "Checking start of map");
duke@435 107 assert(byte_for(high_bound-1) <= &_byte_map[_last_valid_index], "Checking end of map");
duke@435 108
duke@435 109 jbyte* guard_card = &_byte_map[_guard_index];
duke@435 110 uintptr_t guard_page = align_size_down((uintptr_t)guard_card, _page_size);
duke@435 111 _guard_region = MemRegion((HeapWord*)guard_page, _page_size);
duke@435 112 if (!os::commit_memory((char*)guard_page, _page_size, _page_size)) {
duke@435 113 // Do better than this for Merlin
duke@435 114 vm_exit_out_of_memory(_page_size, "card table last card");
duke@435 115 }
duke@435 116 *guard_card = last_card;
duke@435 117
duke@435 118 _lowest_non_clean =
duke@435 119 NEW_C_HEAP_ARRAY(CardArr, max_covered_regions);
duke@435 120 _lowest_non_clean_chunk_size =
duke@435 121 NEW_C_HEAP_ARRAY(size_t, max_covered_regions);
duke@435 122 _lowest_non_clean_base_chunk_index =
duke@435 123 NEW_C_HEAP_ARRAY(uintptr_t, max_covered_regions);
duke@435 124 _last_LNC_resizing_collection =
duke@435 125 NEW_C_HEAP_ARRAY(int, max_covered_regions);
duke@435 126 if (_lowest_non_clean == NULL
duke@435 127 || _lowest_non_clean_chunk_size == NULL
duke@435 128 || _lowest_non_clean_base_chunk_index == NULL
duke@435 129 || _last_LNC_resizing_collection == NULL)
duke@435 130 vm_exit_during_initialization("couldn't allocate an LNC array.");
duke@435 131 for (i = 0; i < max_covered_regions; i++) {
duke@435 132 _lowest_non_clean[i] = NULL;
duke@435 133 _lowest_non_clean_chunk_size[i] = 0;
duke@435 134 _last_LNC_resizing_collection[i] = -1;
duke@435 135 }
duke@435 136
duke@435 137 if (TraceCardTableModRefBS) {
duke@435 138 gclog_or_tty->print_cr("CardTableModRefBS::CardTableModRefBS: ");
duke@435 139 gclog_or_tty->print_cr(" "
duke@435 140 " &_byte_map[0]: " INTPTR_FORMAT
duke@435 141 " &_byte_map[_last_valid_index]: " INTPTR_FORMAT,
duke@435 142 &_byte_map[0],
duke@435 143 &_byte_map[_last_valid_index]);
duke@435 144 gclog_or_tty->print_cr(" "
duke@435 145 " byte_map_base: " INTPTR_FORMAT,
duke@435 146 byte_map_base);
duke@435 147 }
duke@435 148 }
duke@435 149
duke@435 150 int CardTableModRefBS::find_covering_region_by_base(HeapWord* base) {
duke@435 151 int i;
duke@435 152 for (i = 0; i < _cur_covered_regions; i++) {
duke@435 153 if (_covered[i].start() == base) return i;
duke@435 154 if (_covered[i].start() > base) break;
duke@435 155 }
duke@435 156 // If we didn't find it, create a new one.
duke@435 157 assert(_cur_covered_regions < _max_covered_regions,
duke@435 158 "too many covered regions");
duke@435 159 // Move the ones above up, to maintain sorted order.
duke@435 160 for (int j = _cur_covered_regions; j > i; j--) {
duke@435 161 _covered[j] = _covered[j-1];
duke@435 162 _committed[j] = _committed[j-1];
duke@435 163 }
duke@435 164 int res = i;
duke@435 165 _cur_covered_regions++;
duke@435 166 _covered[res].set_start(base);
duke@435 167 _covered[res].set_word_size(0);
duke@435 168 jbyte* ct_start = byte_for(base);
duke@435 169 uintptr_t ct_start_aligned = align_size_down((uintptr_t)ct_start, _page_size);
duke@435 170 _committed[res].set_start((HeapWord*)ct_start_aligned);
duke@435 171 _committed[res].set_word_size(0);
duke@435 172 return res;
duke@435 173 }
duke@435 174
duke@435 175 int CardTableModRefBS::find_covering_region_containing(HeapWord* addr) {
duke@435 176 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 177 if (_covered[i].contains(addr)) {
duke@435 178 return i;
duke@435 179 }
duke@435 180 }
duke@435 181 assert(0, "address outside of heap?");
duke@435 182 return -1;
duke@435 183 }
duke@435 184
duke@435 185 HeapWord* CardTableModRefBS::largest_prev_committed_end(int ind) const {
duke@435 186 HeapWord* max_end = NULL;
duke@435 187 for (int j = 0; j < ind; j++) {
duke@435 188 HeapWord* this_end = _committed[j].end();
duke@435 189 if (this_end > max_end) max_end = this_end;
duke@435 190 }
duke@435 191 return max_end;
duke@435 192 }
duke@435 193
duke@435 194 MemRegion CardTableModRefBS::committed_unique_to_self(int self,
duke@435 195 MemRegion mr) const {
duke@435 196 MemRegion result = mr;
duke@435 197 for (int r = 0; r < _cur_covered_regions; r += 1) {
duke@435 198 if (r != self) {
duke@435 199 result = result.minus(_committed[r]);
duke@435 200 }
duke@435 201 }
duke@435 202 // Never include the guard page.
duke@435 203 result = result.minus(_guard_region);
duke@435 204 return result;
duke@435 205 }
duke@435 206
duke@435 207 void CardTableModRefBS::resize_covered_region(MemRegion new_region) {
duke@435 208 // We don't change the start of a region, only the end.
duke@435 209 assert(_whole_heap.contains(new_region),
duke@435 210 "attempt to cover area not in reserved area");
duke@435 211 debug_only(verify_guard();)
jmasa@643 212 // collided is true if the expansion would push into another committed region
jmasa@643 213 debug_only(bool collided = false;)
jmasa@441 214 int const ind = find_covering_region_by_base(new_region.start());
jmasa@441 215 MemRegion const old_region = _covered[ind];
duke@435 216 assert(old_region.start() == new_region.start(), "just checking");
duke@435 217 if (new_region.word_size() != old_region.word_size()) {
duke@435 218 // Commit new or uncommit old pages, if necessary.
duke@435 219 MemRegion cur_committed = _committed[ind];
duke@435 220 // Extend the end of this _commited region
duke@435 221 // to cover the end of any lower _committed regions.
duke@435 222 // This forms overlapping regions, but never interior regions.
jmasa@441 223 HeapWord* const max_prev_end = largest_prev_committed_end(ind);
duke@435 224 if (max_prev_end > cur_committed.end()) {
duke@435 225 cur_committed.set_end(max_prev_end);
duke@435 226 }
duke@435 227 // Align the end up to a page size (starts are already aligned).
jmasa@441 228 jbyte* const new_end = byte_after(new_region.last());
jmasa@643 229 HeapWord* new_end_aligned =
jmasa@441 230 (HeapWord*) align_size_up((uintptr_t)new_end, _page_size);
duke@435 231 assert(new_end_aligned >= (HeapWord*) new_end,
duke@435 232 "align up, but less");
jmasa@1016 233 // Check the other regions (excludes "ind") to ensure that
jmasa@1016 234 // the new_end_aligned does not intrude onto the committed
jmasa@1016 235 // space of another region.
jmasa@643 236 int ri = 0;
jmasa@643 237 for (ri = 0; ri < _cur_covered_regions; ri++) {
jmasa@643 238 if (ri != ind) {
jmasa@643 239 if (_committed[ri].contains(new_end_aligned)) {
jmasa@1016 240 // The prior check included in the assert
jmasa@1016 241 // (new_end_aligned >= _committed[ri].start())
jmasa@1016 242 // is redundant with the "contains" test.
jmasa@1016 243 // Any region containing the new end
jmasa@1016 244 // should start at or beyond the region found (ind)
jmasa@1016 245 // for the new end (committed regions are not expected to
jmasa@1016 246 // be proper subsets of other committed regions).
jmasa@1016 247 assert(_committed[ri].start() >= _committed[ind].start(),
jmasa@643 248 "New end of committed region is inconsistent");
jmasa@643 249 new_end_aligned = _committed[ri].start();
jmasa@1016 250 // new_end_aligned can be equal to the start of its
jmasa@1016 251 // committed region (i.e., of "ind") if a second
jmasa@1016 252 // region following "ind" also start at the same location
jmasa@1016 253 // as "ind".
jmasa@1016 254 assert(new_end_aligned >= _committed[ind].start(),
jmasa@643 255 "New end of committed region is before start");
jmasa@643 256 debug_only(collided = true;)
jmasa@643 257 // Should only collide with 1 region
jmasa@643 258 break;
jmasa@643 259 }
jmasa@643 260 }
jmasa@643 261 }
jmasa@643 262 #ifdef ASSERT
jmasa@643 263 for (++ri; ri < _cur_covered_regions; ri++) {
jmasa@643 264 assert(!_committed[ri].contains(new_end_aligned),
jmasa@643 265 "New end of committed region is in a second committed region");
jmasa@643 266 }
jmasa@643 267 #endif
duke@435 268 // The guard page is always committed and should not be committed over.
jmasa@1322 269 // "guarded" is used for assertion checking below and recalls the fact
jmasa@1322 270 // that the would-be end of the new committed region would have
jmasa@1322 271 // penetrated the guard page.
jmasa@1322 272 HeapWord* new_end_for_commit = new_end_aligned;
jmasa@1322 273
jmasa@1322 274 DEBUG_ONLY(bool guarded = false;)
jmasa@1322 275 if (new_end_for_commit > _guard_region.start()) {
jmasa@1322 276 new_end_for_commit = _guard_region.start();
jmasa@1322 277 DEBUG_ONLY(guarded = true;)
jmasa@1322 278 }
jmasa@643 279
duke@435 280 if (new_end_for_commit > cur_committed.end()) {
duke@435 281 // Must commit new pages.
jmasa@441 282 MemRegion const new_committed =
duke@435 283 MemRegion(cur_committed.end(), new_end_for_commit);
duke@435 284
duke@435 285 assert(!new_committed.is_empty(), "Region should not be empty here");
duke@435 286 if (!os::commit_memory((char*)new_committed.start(),
duke@435 287 new_committed.byte_size(), _page_size)) {
duke@435 288 // Do better than this for Merlin
duke@435 289 vm_exit_out_of_memory(new_committed.byte_size(),
duke@435 290 "card table expansion");
duke@435 291 }
duke@435 292 // Use new_end_aligned (as opposed to new_end_for_commit) because
duke@435 293 // the cur_committed region may include the guard region.
duke@435 294 } else if (new_end_aligned < cur_committed.end()) {
duke@435 295 // Must uncommit pages.
jmasa@441 296 MemRegion const uncommit_region =
duke@435 297 committed_unique_to_self(ind, MemRegion(new_end_aligned,
duke@435 298 cur_committed.end()));
duke@435 299 if (!uncommit_region.is_empty()) {
jmasa@1967 300 // It is not safe to uncommit cards if the boundary between
jmasa@1967 301 // the generations is moving. A shrink can uncommit cards
jmasa@1967 302 // owned by generation A but being used by generation B.
jmasa@1967 303 if (!UseAdaptiveGCBoundary) {
jmasa@1967 304 if (!os::uncommit_memory((char*)uncommit_region.start(),
jmasa@1967 305 uncommit_region.byte_size())) {
jmasa@1967 306 assert(false, "Card table contraction failed");
jmasa@1967 307 // The call failed so don't change the end of the
jmasa@1967 308 // committed region. This is better than taking the
jmasa@1967 309 // VM down.
jmasa@1967 310 new_end_aligned = _committed[ind].end();
jmasa@1967 311 }
jmasa@1967 312 } else {
jmasa@643 313 new_end_aligned = _committed[ind].end();
duke@435 314 }
duke@435 315 }
duke@435 316 }
duke@435 317 // In any case, we can reset the end of the current committed entry.
duke@435 318 _committed[ind].set_end(new_end_aligned);
duke@435 319
jmasa@1967 320 #ifdef ASSERT
jmasa@1967 321 // Check that the last card in the new region is committed according
jmasa@1967 322 // to the tables.
jmasa@1967 323 bool covered = false;
jmasa@1967 324 for (int cr = 0; cr < _cur_covered_regions; cr++) {
jmasa@1967 325 if (_committed[cr].contains(new_end - 1)) {
jmasa@1967 326 covered = true;
jmasa@1967 327 break;
jmasa@1967 328 }
jmasa@1967 329 }
jmasa@1967 330 assert(covered, "Card for end of new region not committed");
jmasa@1967 331 #endif
jmasa@1967 332
duke@435 333 // The default of 0 is not necessarily clean cards.
duke@435 334 jbyte* entry;
duke@435 335 if (old_region.last() < _whole_heap.start()) {
duke@435 336 entry = byte_for(_whole_heap.start());
duke@435 337 } else {
duke@435 338 entry = byte_after(old_region.last());
duke@435 339 }
swamyv@924 340 assert(index_for(new_region.last()) < _guard_index,
duke@435 341 "The guard card will be overwritten");
jmasa@643 342 // This line commented out cleans the newly expanded region and
jmasa@643 343 // not the aligned up expanded region.
jmasa@643 344 // jbyte* const end = byte_after(new_region.last());
jmasa@643 345 jbyte* const end = (jbyte*) new_end_for_commit;
jmasa@1322 346 assert((end >= byte_after(new_region.last())) || collided || guarded,
jmasa@643 347 "Expect to be beyond new region unless impacting another region");
duke@435 348 // do nothing if we resized downward.
jmasa@643 349 #ifdef ASSERT
jmasa@643 350 for (int ri = 0; ri < _cur_covered_regions; ri++) {
jmasa@643 351 if (ri != ind) {
jmasa@643 352 // The end of the new committed region should not
jmasa@643 353 // be in any existing region unless it matches
jmasa@643 354 // the start of the next region.
jmasa@643 355 assert(!_committed[ri].contains(end) ||
jmasa@643 356 (_committed[ri].start() == (HeapWord*) end),
jmasa@643 357 "Overlapping committed regions");
jmasa@643 358 }
jmasa@643 359 }
jmasa@643 360 #endif
duke@435 361 if (entry < end) {
duke@435 362 memset(entry, clean_card, pointer_delta(end, entry, sizeof(jbyte)));
duke@435 363 }
duke@435 364 }
duke@435 365 // In any case, the covered size changes.
duke@435 366 _covered[ind].set_word_size(new_region.word_size());
duke@435 367 if (TraceCardTableModRefBS) {
duke@435 368 gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
duke@435 369 gclog_or_tty->print_cr(" "
duke@435 370 " _covered[%d].start(): " INTPTR_FORMAT
duke@435 371 " _covered[%d].last(): " INTPTR_FORMAT,
duke@435 372 ind, _covered[ind].start(),
duke@435 373 ind, _covered[ind].last());
duke@435 374 gclog_or_tty->print_cr(" "
duke@435 375 " _committed[%d].start(): " INTPTR_FORMAT
duke@435 376 " _committed[%d].last(): " INTPTR_FORMAT,
duke@435 377 ind, _committed[ind].start(),
duke@435 378 ind, _committed[ind].last());
duke@435 379 gclog_or_tty->print_cr(" "
duke@435 380 " byte_for(start): " INTPTR_FORMAT
duke@435 381 " byte_for(last): " INTPTR_FORMAT,
duke@435 382 byte_for(_covered[ind].start()),
duke@435 383 byte_for(_covered[ind].last()));
duke@435 384 gclog_or_tty->print_cr(" "
duke@435 385 " addr_for(start): " INTPTR_FORMAT
duke@435 386 " addr_for(last): " INTPTR_FORMAT,
duke@435 387 addr_for((jbyte*) _committed[ind].start()),
duke@435 388 addr_for((jbyte*) _committed[ind].last()));
duke@435 389 }
jmasa@1967 390 // Touch the last card of the covered region to show that it
jmasa@1967 391 // is committed (or SEGV).
jmasa@1967 392 debug_only(*byte_for(_covered[ind].last());)
duke@435 393 debug_only(verify_guard();)
duke@435 394 }
duke@435 395
duke@435 396 // Note that these versions are precise! The scanning code has to handle the
duke@435 397 // fact that the write barrier may be either precise or imprecise.
duke@435 398
coleenp@548 399 void CardTableModRefBS::write_ref_field_work(void* field, oop newVal) {
duke@435 400 inline_write_ref_field(field, newVal);
duke@435 401 }
duke@435 402
iveresov@1051 403 /*
iveresov@1051 404 Claimed and deferred bits are used together in G1 during the evacuation
iveresov@1051 405 pause. These bits can have the following state transitions:
iveresov@1051 406 1. The claimed bit can be put over any other card state. Except that
iveresov@1051 407 the "dirty -> dirty and claimed" transition is checked for in
iveresov@1051 408 G1 code and is not used.
iveresov@1051 409 2. Deferred bit can be set only if the previous state of the card
iveresov@1051 410 was either clean or claimed. mark_card_deferred() is wait-free.
iveresov@1051 411 We do not care if the operation is be successful because if
iveresov@1051 412 it does not it will only result in duplicate entry in the update
iveresov@1051 413 buffer because of the "cache-miss". So it's not worth spinning.
iveresov@1051 414 */
iveresov@1051 415
duke@435 416
ysr@777 417 bool CardTableModRefBS::claim_card(size_t card_index) {
ysr@777 418 jbyte val = _byte_map[card_index];
iveresov@1051 419 assert(val != dirty_card_val(), "Shouldn't claim a dirty card");
iveresov@1051 420 while (val == clean_card_val() ||
iveresov@1051 421 (val & (clean_card_mask_val() | claimed_card_val())) != claimed_card_val()) {
iveresov@1051 422 jbyte new_val = val;
iveresov@1051 423 if (val == clean_card_val()) {
iveresov@1051 424 new_val = (jbyte)claimed_card_val();
iveresov@1051 425 } else {
iveresov@1051 426 new_val = val | (jbyte)claimed_card_val();
iveresov@1051 427 }
iveresov@1051 428 jbyte res = Atomic::cmpxchg(new_val, &_byte_map[card_index], val);
iveresov@1051 429 if (res == val) {
ysr@777 430 return true;
iveresov@1051 431 }
iveresov@1051 432 val = res;
ysr@777 433 }
ysr@777 434 return false;
ysr@777 435 }
ysr@777 436
iveresov@1051 437 bool CardTableModRefBS::mark_card_deferred(size_t card_index) {
iveresov@1051 438 jbyte val = _byte_map[card_index];
iveresov@1051 439 // It's already processed
iveresov@1051 440 if ((val & (clean_card_mask_val() | deferred_card_val())) == deferred_card_val()) {
iveresov@1051 441 return false;
iveresov@1051 442 }
iveresov@1051 443 // Cached bit can be installed either on a clean card or on a claimed card.
iveresov@1051 444 jbyte new_val = val;
iveresov@1051 445 if (val == clean_card_val()) {
iveresov@1051 446 new_val = (jbyte)deferred_card_val();
iveresov@1051 447 } else {
iveresov@1051 448 if (val & claimed_card_val()) {
iveresov@1051 449 new_val = val | (jbyte)deferred_card_val();
iveresov@1051 450 }
iveresov@1051 451 }
iveresov@1051 452 if (new_val != val) {
iveresov@1051 453 Atomic::cmpxchg(new_val, &_byte_map[card_index], val);
iveresov@1051 454 }
iveresov@1051 455 return true;
iveresov@1051 456 }
iveresov@1051 457
ysr@2819 458 void CardTableModRefBS::non_clean_card_iterate_possibly_parallel(Space* sp,
ysr@2819 459 MemRegion mr,
ysr@2889 460 OopsInGenClosure* cl,
ysr@2889 461 CardTableRS* ct) {
duke@435 462 if (!mr.is_empty()) {
jmasa@3294 463 // Caller (process_strong_roots()) claims that all GC threads
jmasa@3294 464 // execute this call. With UseDynamicNumberOfGCThreads now all
jmasa@3294 465 // active GC threads execute this call. The number of active GC
jmasa@3294 466 // threads needs to be passed to par_non_clean_card_iterate_work()
jmasa@3294 467 // to get proper partitioning and termination.
jmasa@3294 468 //
jmasa@3294 469 // This is an example of where n_par_threads() is used instead
jmasa@3294 470 // of workers()->active_workers(). n_par_threads can be set to 0 to
jmasa@3294 471 // turn off parallelism. For example when this code is called as
jmasa@3294 472 // part of verification and SharedHeap::process_strong_roots() is being
jmasa@3294 473 // used, then n_par_threads() may have been set to 0. active_workers
jmasa@3294 474 // is not overloaded with the meaning that it is a switch to disable
jmasa@3294 475 // parallelism and so keeps the meaning of the number of
jmasa@3294 476 // active gc workers. If parallelism has not been shut off by
jmasa@3294 477 // setting n_par_threads to 0, then n_par_threads should be
jmasa@3294 478 // equal to active_workers. When a different mechanism for shutting
jmasa@3294 479 // off parallelism is used, then active_workers can be used in
jmasa@3294 480 // place of n_par_threads.
jmasa@3294 481 // This is an example of a path where n_par_threads is
jmasa@3294 482 // set to 0 to turn off parallism.
jmasa@3294 483 // [7] CardTableModRefBS::non_clean_card_iterate()
jmasa@3294 484 // [8] CardTableRS::younger_refs_in_space_iterate()
jmasa@3294 485 // [9] Generation::younger_refs_in_space_iterate()
jmasa@3294 486 // [10] OneContigSpaceCardGeneration::younger_refs_iterate()
jmasa@3294 487 // [11] CompactingPermGenGen::younger_refs_iterate()
jmasa@3294 488 // [12] CardTableRS::younger_refs_iterate()
jmasa@3294 489 // [13] SharedHeap::process_strong_roots()
jmasa@3294 490 // [14] G1CollectedHeap::verify()
jmasa@3294 491 // [15] Universe::verify()
jmasa@3294 492 // [16] G1CollectedHeap::do_collection_pause_at_safepoint()
jmasa@3294 493 //
jmasa@3294 494 int n_threads = SharedHeap::heap()->n_par_threads();
jmasa@3294 495 bool is_par = n_threads > 0;
jmasa@3294 496 if (is_par) {
duke@435 497 #ifndef SERIALGC
jmasa@3294 498 assert(SharedHeap::heap()->n_par_threads() ==
jmasa@3294 499 SharedHeap::heap()->workers()->active_workers(), "Mismatch");
ysr@2889 500 non_clean_card_iterate_parallel_work(sp, mr, cl, ct, n_threads);
duke@435 501 #else // SERIALGC
duke@435 502 fatal("Parallel gc not supported here.");
duke@435 503 #endif // SERIALGC
duke@435 504 } else {
ysr@2819 505 // We do not call the non_clean_card_iterate_serial() version below because
ysr@2819 506 // we want to clear the cards (which non_clean_card_iterate_serial() does not
ysr@2889 507 // do for us): clear_cl here does the work of finding contiguous dirty ranges
ysr@2889 508 // of cards to process and clear.
ysr@2889 509
ysr@2889 510 DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision(),
ysr@2889 511 cl->gen_boundary());
ysr@2889 512 ClearNoncleanCardWrapper clear_cl(dcto_cl, ct);
ysr@2889 513
ysr@2889 514 clear_cl.do_MemRegion(mr);
duke@435 515 }
duke@435 516 }
duke@435 517 }
duke@435 518
ysr@2819 519 // The iterator itself is not MT-aware, but
ysr@2819 520 // MT-aware callers and closures can use this to
ysr@2819 521 // accomplish dirty card iteration in parallel. The
ysr@2819 522 // iterator itself does not clear the dirty cards, or
ysr@2819 523 // change their values in any manner.
ysr@2819 524 void CardTableModRefBS::non_clean_card_iterate_serial(MemRegion mr,
ysr@2819 525 MemRegionClosure* cl) {
jmasa@3294 526 bool is_par = (SharedHeap::heap()->n_par_threads() > 0);
jmasa@3294 527 assert(!is_par ||
jmasa@3294 528 (SharedHeap::heap()->n_par_threads() ==
jmasa@3294 529 SharedHeap::heap()->workers()->active_workers()), "Mismatch");
duke@435 530 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 531 MemRegion mri = mr.intersection(_covered[i]);
duke@435 532 if (mri.word_size() > 0) {
duke@435 533 jbyte* cur_entry = byte_for(mri.last());
duke@435 534 jbyte* limit = byte_for(mri.start());
duke@435 535 while (cur_entry >= limit) {
duke@435 536 jbyte* next_entry = cur_entry - 1;
duke@435 537 if (*cur_entry != clean_card) {
duke@435 538 size_t non_clean_cards = 1;
duke@435 539 // Should the next card be included in this range of dirty cards.
duke@435 540 while (next_entry >= limit && *next_entry != clean_card) {
duke@435 541 non_clean_cards++;
duke@435 542 cur_entry = next_entry;
duke@435 543 next_entry--;
duke@435 544 }
duke@435 545 // The memory region may not be on a card boundary. So that
duke@435 546 // objects beyond the end of the region are not processed, make
duke@435 547 // cur_cards precise with regard to the end of the memory region.
duke@435 548 MemRegion cur_cards(addr_for(cur_entry),
duke@435 549 non_clean_cards * card_size_in_words);
duke@435 550 MemRegion dirty_region = cur_cards.intersection(mri);
duke@435 551 cl->do_MemRegion(dirty_region);
duke@435 552 }
duke@435 553 cur_entry = next_entry;
duke@435 554 }
duke@435 555 }
duke@435 556 }
duke@435 557 }
duke@435 558
duke@435 559 void CardTableModRefBS::dirty_MemRegion(MemRegion mr) {
ysr@1526 560 assert((HeapWord*)align_size_down((uintptr_t)mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
ysr@1526 561 assert((HeapWord*)align_size_up ((uintptr_t)mr.end(), HeapWordSize) == mr.end(), "Unaligned end" );
duke@435 562 jbyte* cur = byte_for(mr.start());
duke@435 563 jbyte* last = byte_after(mr.last());
duke@435 564 while (cur < last) {
duke@435 565 *cur = dirty_card;
duke@435 566 cur++;
duke@435 567 }
duke@435 568 }
duke@435 569
ysr@777 570 void CardTableModRefBS::invalidate(MemRegion mr, bool whole_heap) {
ysr@1526 571 assert((HeapWord*)align_size_down((uintptr_t)mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
ysr@1526 572 assert((HeapWord*)align_size_up ((uintptr_t)mr.end(), HeapWordSize) == mr.end(), "Unaligned end" );
duke@435 573 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 574 MemRegion mri = mr.intersection(_covered[i]);
duke@435 575 if (!mri.is_empty()) dirty_MemRegion(mri);
duke@435 576 }
duke@435 577 }
duke@435 578
duke@435 579 void CardTableModRefBS::clear_MemRegion(MemRegion mr) {
duke@435 580 // Be conservative: only clean cards entirely contained within the
duke@435 581 // region.
duke@435 582 jbyte* cur;
duke@435 583 if (mr.start() == _whole_heap.start()) {
duke@435 584 cur = byte_for(mr.start());
duke@435 585 } else {
duke@435 586 assert(mr.start() > _whole_heap.start(), "mr is not covered.");
duke@435 587 cur = byte_after(mr.start() - 1);
duke@435 588 }
duke@435 589 jbyte* last = byte_after(mr.last());
duke@435 590 memset(cur, clean_card, pointer_delta(last, cur, sizeof(jbyte)));
duke@435 591 }
duke@435 592
duke@435 593 void CardTableModRefBS::clear(MemRegion mr) {
duke@435 594 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 595 MemRegion mri = mr.intersection(_covered[i]);
duke@435 596 if (!mri.is_empty()) clear_MemRegion(mri);
duke@435 597 }
duke@435 598 }
duke@435 599
ysr@777 600 void CardTableModRefBS::dirty(MemRegion mr) {
ysr@777 601 jbyte* first = byte_for(mr.start());
ysr@777 602 jbyte* last = byte_after(mr.last());
ysr@777 603 memset(first, dirty_card, last-first);
ysr@777 604 }
ysr@777 605
ysr@2788 606 // Unlike several other card table methods, dirty_card_iterate()
ysr@2788 607 // iterates over dirty cards ranges in increasing address order.
duke@435 608 void CardTableModRefBS::dirty_card_iterate(MemRegion mr,
duke@435 609 MemRegionClosure* cl) {
duke@435 610 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 611 MemRegion mri = mr.intersection(_covered[i]);
duke@435 612 if (!mri.is_empty()) {
duke@435 613 jbyte *cur_entry, *next_entry, *limit;
duke@435 614 for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
duke@435 615 cur_entry <= limit;
duke@435 616 cur_entry = next_entry) {
duke@435 617 next_entry = cur_entry + 1;
duke@435 618 if (*cur_entry == dirty_card) {
duke@435 619 size_t dirty_cards;
duke@435 620 // Accumulate maximal dirty card range, starting at cur_entry
duke@435 621 for (dirty_cards = 1;
duke@435 622 next_entry <= limit && *next_entry == dirty_card;
duke@435 623 dirty_cards++, next_entry++);
duke@435 624 MemRegion cur_cards(addr_for(cur_entry),
duke@435 625 dirty_cards*card_size_in_words);
duke@435 626 cl->do_MemRegion(cur_cards);
duke@435 627 }
duke@435 628 }
duke@435 629 }
duke@435 630 }
duke@435 631 }
duke@435 632
ysr@777 633 MemRegion CardTableModRefBS::dirty_card_range_after_reset(MemRegion mr,
ysr@777 634 bool reset,
ysr@777 635 int reset_val) {
duke@435 636 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 637 MemRegion mri = mr.intersection(_covered[i]);
duke@435 638 if (!mri.is_empty()) {
duke@435 639 jbyte* cur_entry, *next_entry, *limit;
duke@435 640 for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
duke@435 641 cur_entry <= limit;
duke@435 642 cur_entry = next_entry) {
duke@435 643 next_entry = cur_entry + 1;
duke@435 644 if (*cur_entry == dirty_card) {
duke@435 645 size_t dirty_cards;
duke@435 646 // Accumulate maximal dirty card range, starting at cur_entry
duke@435 647 for (dirty_cards = 1;
duke@435 648 next_entry <= limit && *next_entry == dirty_card;
duke@435 649 dirty_cards++, next_entry++);
duke@435 650 MemRegion cur_cards(addr_for(cur_entry),
duke@435 651 dirty_cards*card_size_in_words);
ysr@777 652 if (reset) {
ysr@777 653 for (size_t i = 0; i < dirty_cards; i++) {
ysr@777 654 cur_entry[i] = reset_val;
ysr@777 655 }
duke@435 656 }
duke@435 657 return cur_cards;
duke@435 658 }
duke@435 659 }
duke@435 660 }
duke@435 661 }
duke@435 662 return MemRegion(mr.end(), mr.end());
duke@435 663 }
duke@435 664
duke@435 665 uintx CardTableModRefBS::ct_max_alignment_constraint() {
duke@435 666 return card_size * os::vm_page_size();
duke@435 667 }
duke@435 668
duke@435 669 void CardTableModRefBS::verify_guard() {
duke@435 670 // For product build verification
duke@435 671 guarantee(_byte_map[_guard_index] == last_card,
duke@435 672 "card table guard has been modified");
duke@435 673 }
duke@435 674
duke@435 675 void CardTableModRefBS::verify() {
duke@435 676 verify_guard();
duke@435 677 }
duke@435 678
duke@435 679 #ifndef PRODUCT
tonyp@2849 680 void CardTableModRefBS::verify_region(MemRegion mr,
tonyp@2849 681 jbyte val, bool val_equals) {
tonyp@2849 682 jbyte* start = byte_for(mr.start());
tonyp@2849 683 jbyte* end = byte_for(mr.last());
tonyp@2849 684 bool failures = false;
tonyp@2849 685 for (jbyte* curr = start; curr <= end; ++curr) {
tonyp@2849 686 jbyte curr_val = *curr;
tonyp@2849 687 bool failed = (val_equals) ? (curr_val != val) : (curr_val == val);
tonyp@2849 688 if (failed) {
tonyp@2849 689 if (!failures) {
tonyp@2849 690 tty->cr();
tonyp@2849 691 tty->print_cr("== CT verification failed: ["PTR_FORMAT","PTR_FORMAT"]");
tonyp@2849 692 tty->print_cr("== %sexpecting value: %d",
tonyp@2849 693 (val_equals) ? "" : "not ", val);
tonyp@2849 694 failures = true;
tonyp@2849 695 }
tonyp@2849 696 tty->print_cr("== card "PTR_FORMAT" ["PTR_FORMAT","PTR_FORMAT"], "
tonyp@2849 697 "val: %d", curr, addr_for(curr),
tonyp@2849 698 (HeapWord*) (((size_t) addr_for(curr)) + card_size),
tonyp@2849 699 (int) curr_val);
tonyp@2849 700 }
duke@435 701 }
tonyp@2849 702 guarantee(!failures, "there should not have been any failures");
duke@435 703 }
apetrusenko@1375 704
tonyp@2849 705 void CardTableModRefBS::verify_not_dirty_region(MemRegion mr) {
tonyp@2849 706 verify_region(mr, dirty_card, false /* val_equals */);
tonyp@2849 707 }
apetrusenko@1375 708
apetrusenko@1375 709 void CardTableModRefBS::verify_dirty_region(MemRegion mr) {
tonyp@2849 710 verify_region(mr, dirty_card, true /* val_equals */);
apetrusenko@1375 711 }
duke@435 712 #endif
duke@435 713
duke@435 714 bool CardTableModRefBSForCTRS::card_will_be_scanned(jbyte cv) {
duke@435 715 return
duke@435 716 CardTableModRefBS::card_will_be_scanned(cv) ||
duke@435 717 _rs->is_prev_nonclean_card_val(cv);
duke@435 718 };
duke@435 719
duke@435 720 bool CardTableModRefBSForCTRS::card_may_have_been_dirty(jbyte cv) {
duke@435 721 return
duke@435 722 cv != clean_card &&
duke@435 723 (CardTableModRefBS::card_may_have_been_dirty(cv) ||
duke@435 724 CardTableRS::youngergen_may_have_been_dirty(cv));
duke@435 725 };

mercurial