src/share/vm/gc_implementation/shared/allocationStats.hpp

Thu, 17 Jul 2008 10:26:33 -0700

author
iveresov
date
Thu, 17 Jul 2008 10:26:33 -0700
changeset 703
d6340ab4105b
parent 447
6432c3bb6240
child 631
d1605aabd0a1
permissions
-rw-r--r--

6723228: NUMA allocator: assert(lgrp_id != -1, "No lgrp_id set")
6723229: NUMA allocator: assert(lgrp_num > 0, "There should be at least one locality group")
Summary: The fix takes care of the assertion triggered during TLAB resizing after reconfiguration. Also it now handles a defect in the topology graph, in which a single leaf node doesn't have memory.
Reviewed-by: jmasa

duke@435 1 /*
duke@435 2 * Copyright 2001-2005 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 class AllocationStats VALUE_OBJ_CLASS_SPEC {
duke@435 26 // A duration threshold (in ms) used to filter
duke@435 27 // possibly unreliable samples.
duke@435 28 static float _threshold;
duke@435 29
duke@435 30 // We measure the demand between the end of the previous sweep and
duke@435 31 // beginning of this sweep:
duke@435 32 // Count(end_last_sweep) - Count(start_this_sweep)
duke@435 33 // + splitBirths(between) - splitDeaths(between)
duke@435 34 // The above number divided by the time since the start [END???] of the
duke@435 35 // previous sweep gives us a time rate of demand for blocks
duke@435 36 // of this size. We compute a padded average of this rate as
duke@435 37 // our current estimate for the time rate of demand for blocks
duke@435 38 // of this size. Similarly, we keep a padded average for the time
duke@435 39 // between sweeps. Our current estimate for demand for blocks of
duke@435 40 // this size is then simply computed as the product of these two
duke@435 41 // estimates.
duke@435 42 AdaptivePaddedAverage _demand_rate_estimate;
duke@435 43
duke@435 44 ssize_t _desired; // Estimate computed as described above
duke@435 45 ssize_t _coalDesired; // desired +/- small-percent for tuning coalescing
duke@435 46
duke@435 47 ssize_t _surplus; // count - (desired +/- small-percent),
duke@435 48 // used to tune splitting in best fit
duke@435 49 ssize_t _bfrSurp; // surplus at start of current sweep
duke@435 50 ssize_t _prevSweep; // count from end of previous sweep
duke@435 51 ssize_t _beforeSweep; // count from before current sweep
duke@435 52 ssize_t _coalBirths; // additional chunks from coalescing
duke@435 53 ssize_t _coalDeaths; // loss from coalescing
duke@435 54 ssize_t _splitBirths; // additional chunks from splitting
duke@435 55 ssize_t _splitDeaths; // loss from splitting
duke@435 56 size_t _returnedBytes; // number of bytes returned to list.
duke@435 57 public:
duke@435 58 void initialize() {
duke@435 59 AdaptivePaddedAverage* dummy =
duke@435 60 new (&_demand_rate_estimate) AdaptivePaddedAverage(CMS_FLSWeight,
duke@435 61 CMS_FLSPadding);
duke@435 62 _desired = 0;
duke@435 63 _coalDesired = 0;
duke@435 64 _surplus = 0;
duke@435 65 _bfrSurp = 0;
duke@435 66 _prevSweep = 0;
duke@435 67 _beforeSweep = 0;
duke@435 68 _coalBirths = 0;
duke@435 69 _coalDeaths = 0;
duke@435 70 _splitBirths = 0;
duke@435 71 _splitDeaths = 0;
duke@435 72 _returnedBytes = 0;
duke@435 73 }
duke@435 74
duke@435 75 AllocationStats() {
duke@435 76 initialize();
duke@435 77 }
duke@435 78 // The rate estimate is in blocks per second.
duke@435 79 void compute_desired(size_t count,
duke@435 80 float inter_sweep_current,
duke@435 81 float inter_sweep_estimate) {
duke@435 82 // If the latest inter-sweep time is below our granularity
duke@435 83 // of measurement, we may call in here with
duke@435 84 // inter_sweep_current == 0. However, even for suitably small
duke@435 85 // but non-zero inter-sweep durations, we may not trust the accuracy
duke@435 86 // of accumulated data, since it has not been "integrated"
duke@435 87 // (read "low-pass-filtered") long enough, and would be
duke@435 88 // vulnerable to noisy glitches. In such cases, we
duke@435 89 // ignore the current sample and use currently available
duke@435 90 // historical estimates.
duke@435 91 if (inter_sweep_current > _threshold) {
duke@435 92 ssize_t demand = prevSweep() - count + splitBirths() - splitDeaths();
duke@435 93 float rate = ((float)demand)/inter_sweep_current;
duke@435 94 _demand_rate_estimate.sample(rate);
duke@435 95 _desired = (ssize_t)(_demand_rate_estimate.padded_average()
duke@435 96 *inter_sweep_estimate);
duke@435 97 }
duke@435 98 }
duke@435 99
duke@435 100 ssize_t desired() const { return _desired; }
ysr@447 101 void set_desired(ssize_t v) { _desired = v; }
ysr@447 102
duke@435 103 ssize_t coalDesired() const { return _coalDesired; }
duke@435 104 void set_coalDesired(ssize_t v) { _coalDesired = v; }
duke@435 105
duke@435 106 ssize_t surplus() const { return _surplus; }
duke@435 107 void set_surplus(ssize_t v) { _surplus = v; }
duke@435 108 void increment_surplus() { _surplus++; }
duke@435 109 void decrement_surplus() { _surplus--; }
duke@435 110
duke@435 111 ssize_t bfrSurp() const { return _bfrSurp; }
duke@435 112 void set_bfrSurp(ssize_t v) { _bfrSurp = v; }
duke@435 113 ssize_t prevSweep() const { return _prevSweep; }
duke@435 114 void set_prevSweep(ssize_t v) { _prevSweep = v; }
duke@435 115 ssize_t beforeSweep() const { return _beforeSweep; }
duke@435 116 void set_beforeSweep(ssize_t v) { _beforeSweep = v; }
duke@435 117
duke@435 118 ssize_t coalBirths() const { return _coalBirths; }
duke@435 119 void set_coalBirths(ssize_t v) { _coalBirths = v; }
duke@435 120 void increment_coalBirths() { _coalBirths++; }
duke@435 121
duke@435 122 ssize_t coalDeaths() const { return _coalDeaths; }
duke@435 123 void set_coalDeaths(ssize_t v) { _coalDeaths = v; }
duke@435 124 void increment_coalDeaths() { _coalDeaths++; }
duke@435 125
duke@435 126 ssize_t splitBirths() const { return _splitBirths; }
duke@435 127 void set_splitBirths(ssize_t v) { _splitBirths = v; }
duke@435 128 void increment_splitBirths() { _splitBirths++; }
duke@435 129
duke@435 130 ssize_t splitDeaths() const { return _splitDeaths; }
duke@435 131 void set_splitDeaths(ssize_t v) { _splitDeaths = v; }
duke@435 132 void increment_splitDeaths() { _splitDeaths++; }
duke@435 133
duke@435 134 NOT_PRODUCT(
duke@435 135 size_t returnedBytes() const { return _returnedBytes; }
duke@435 136 void set_returnedBytes(size_t v) { _returnedBytes = v; }
duke@435 137 )
duke@435 138 };

mercurial