src/cpu/sparc/vm/stubGenerator_sparc.cpp

Mon, 25 Feb 2008 15:05:44 -0800

author
kvn
date
Mon, 25 Feb 2008 15:05:44 -0800
changeset 464
d5fc211aea19
parent 451
f8236e79048a
child 548
ba764ed4b6f2
permissions
-rw-r--r--

6633953: type2aelembytes{T_ADDRESS} should be 8 bytes in 64 bit VM
Summary: T_ADDRESS size is defined as 'int' size (4 bytes) but C2 use it for raw pointers and as memory type for StoreP and LoadP nodes.
Reviewed-by: jrose

duke@435 1 /*
duke@435 2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_stubGenerator_sparc.cpp.incl"
duke@435 27
duke@435 28 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 29 // For a more detailed description of the stub routine structure
duke@435 30 // see the comment in stubRoutines.hpp.
duke@435 31
duke@435 32 #define __ _masm->
duke@435 33
duke@435 34 #ifdef PRODUCT
duke@435 35 #define BLOCK_COMMENT(str) /* nothing */
duke@435 36 #else
duke@435 37 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 38 #endif
duke@435 39
duke@435 40 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 41
duke@435 42 // Note: The register L7 is used as L7_thread_cache, and may not be used
duke@435 43 // any other way within this module.
duke@435 44
duke@435 45
duke@435 46 static const Register& Lstub_temp = L2;
duke@435 47
duke@435 48 // -------------------------------------------------------------------------------------------------------------------------
duke@435 49 // Stub Code definitions
duke@435 50
duke@435 51 static address handle_unsafe_access() {
duke@435 52 JavaThread* thread = JavaThread::current();
duke@435 53 address pc = thread->saved_exception_pc();
duke@435 54 address npc = thread->saved_exception_npc();
duke@435 55 // pc is the instruction which we must emulate
duke@435 56 // doing a no-op is fine: return garbage from the load
duke@435 57
duke@435 58 // request an async exception
duke@435 59 thread->set_pending_unsafe_access_error();
duke@435 60
duke@435 61 // return address of next instruction to execute
duke@435 62 return npc;
duke@435 63 }
duke@435 64
duke@435 65 class StubGenerator: public StubCodeGenerator {
duke@435 66 private:
duke@435 67
duke@435 68 #ifdef PRODUCT
duke@435 69 #define inc_counter_np(a,b,c) (0)
duke@435 70 #else
duke@435 71 void inc_counter_np_(int& counter, Register t1, Register t2) {
duke@435 72 Address counter_addr(t2, (address) &counter);
duke@435 73 __ sethi(counter_addr);
duke@435 74 __ ld(counter_addr, t1);
duke@435 75 __ inc(t1);
duke@435 76 __ st(t1, counter_addr);
duke@435 77 }
duke@435 78 #define inc_counter_np(counter, t1, t2) \
duke@435 79 BLOCK_COMMENT("inc_counter " #counter); \
duke@435 80 inc_counter_np_(counter, t1, t2);
duke@435 81 #endif
duke@435 82
duke@435 83 //----------------------------------------------------------------------------------------------------
duke@435 84 // Call stubs are used to call Java from C
duke@435 85
duke@435 86 address generate_call_stub(address& return_pc) {
duke@435 87 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 88 address start = __ pc();
duke@435 89
duke@435 90 // Incoming arguments:
duke@435 91 //
duke@435 92 // o0 : call wrapper address
duke@435 93 // o1 : result (address)
duke@435 94 // o2 : result type
duke@435 95 // o3 : method
duke@435 96 // o4 : (interpreter) entry point
duke@435 97 // o5 : parameters (address)
duke@435 98 // [sp + 0x5c]: parameter size (in words)
duke@435 99 // [sp + 0x60]: thread
duke@435 100 //
duke@435 101 // +---------------+ <--- sp + 0
duke@435 102 // | |
duke@435 103 // . reg save area .
duke@435 104 // | |
duke@435 105 // +---------------+ <--- sp + 0x40
duke@435 106 // | |
duke@435 107 // . extra 7 slots .
duke@435 108 // | |
duke@435 109 // +---------------+ <--- sp + 0x5c
duke@435 110 // | param. size |
duke@435 111 // +---------------+ <--- sp + 0x60
duke@435 112 // | thread |
duke@435 113 // +---------------+
duke@435 114 // | |
duke@435 115
duke@435 116 // note: if the link argument position changes, adjust
duke@435 117 // the code in frame::entry_frame_call_wrapper()
duke@435 118
duke@435 119 const Argument link = Argument(0, false); // used only for GC
duke@435 120 const Argument result = Argument(1, false);
duke@435 121 const Argument result_type = Argument(2, false);
duke@435 122 const Argument method = Argument(3, false);
duke@435 123 const Argument entry_point = Argument(4, false);
duke@435 124 const Argument parameters = Argument(5, false);
duke@435 125 const Argument parameter_size = Argument(6, false);
duke@435 126 const Argument thread = Argument(7, false);
duke@435 127
duke@435 128 // setup thread register
duke@435 129 __ ld_ptr(thread.as_address(), G2_thread);
duke@435 130
duke@435 131 #ifdef ASSERT
duke@435 132 // make sure we have no pending exceptions
duke@435 133 { const Register t = G3_scratch;
duke@435 134 Label L;
duke@435 135 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), t);
duke@435 136 __ br_null(t, false, Assembler::pt, L);
duke@435 137 __ delayed()->nop();
duke@435 138 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 139 __ bind(L);
duke@435 140 }
duke@435 141 #endif
duke@435 142
duke@435 143 // create activation frame & allocate space for parameters
duke@435 144 { const Register t = G3_scratch;
duke@435 145 __ ld_ptr(parameter_size.as_address(), t); // get parameter size (in words)
duke@435 146 __ add(t, frame::memory_parameter_word_sp_offset, t); // add space for save area (in words)
duke@435 147 __ round_to(t, WordsPerLong); // make sure it is multiple of 2 (in words)
duke@435 148 __ sll(t, Interpreter::logStackElementSize(), t); // compute number of bytes
duke@435 149 __ neg(t); // negate so it can be used with save
duke@435 150 __ save(SP, t, SP); // setup new frame
duke@435 151 }
duke@435 152
duke@435 153 // +---------------+ <--- sp + 0
duke@435 154 // | |
duke@435 155 // . reg save area .
duke@435 156 // | |
duke@435 157 // +---------------+ <--- sp + 0x40
duke@435 158 // | |
duke@435 159 // . extra 7 slots .
duke@435 160 // | |
duke@435 161 // +---------------+ <--- sp + 0x5c
duke@435 162 // | empty slot | (only if parameter size is even)
duke@435 163 // +---------------+
duke@435 164 // | |
duke@435 165 // . parameters .
duke@435 166 // | |
duke@435 167 // +---------------+ <--- fp + 0
duke@435 168 // | |
duke@435 169 // . reg save area .
duke@435 170 // | |
duke@435 171 // +---------------+ <--- fp + 0x40
duke@435 172 // | |
duke@435 173 // . extra 7 slots .
duke@435 174 // | |
duke@435 175 // +---------------+ <--- fp + 0x5c
duke@435 176 // | param. size |
duke@435 177 // +---------------+ <--- fp + 0x60
duke@435 178 // | thread |
duke@435 179 // +---------------+
duke@435 180 // | |
duke@435 181
duke@435 182 // pass parameters if any
duke@435 183 BLOCK_COMMENT("pass parameters if any");
duke@435 184 { const Register src = parameters.as_in().as_register();
duke@435 185 const Register dst = Lentry_args;
duke@435 186 const Register tmp = G3_scratch;
duke@435 187 const Register cnt = G4_scratch;
duke@435 188
duke@435 189 // test if any parameters & setup of Lentry_args
duke@435 190 Label exit;
duke@435 191 __ ld_ptr(parameter_size.as_in().as_address(), cnt); // parameter counter
duke@435 192 __ add( FP, STACK_BIAS, dst );
duke@435 193 __ tst(cnt);
duke@435 194 __ br(Assembler::zero, false, Assembler::pn, exit);
duke@435 195 __ delayed()->sub(dst, BytesPerWord, dst); // setup Lentry_args
duke@435 196
duke@435 197 // copy parameters if any
duke@435 198 Label loop;
duke@435 199 __ BIND(loop);
duke@435 200 // Store tag first.
duke@435 201 if (TaggedStackInterpreter) {
duke@435 202 __ ld_ptr(src, 0, tmp);
duke@435 203 __ add(src, BytesPerWord, src); // get next
duke@435 204 __ st_ptr(tmp, dst, Interpreter::tag_offset_in_bytes());
duke@435 205 }
duke@435 206 // Store parameter value
duke@435 207 __ ld_ptr(src, 0, tmp);
duke@435 208 __ add(src, BytesPerWord, src);
duke@435 209 __ st_ptr(tmp, dst, Interpreter::value_offset_in_bytes());
duke@435 210 __ deccc(cnt);
duke@435 211 __ br(Assembler::greater, false, Assembler::pt, loop);
duke@435 212 __ delayed()->sub(dst, Interpreter::stackElementSize(), dst);
duke@435 213
duke@435 214 // done
duke@435 215 __ BIND(exit);
duke@435 216 }
duke@435 217
duke@435 218 // setup parameters, method & call Java function
duke@435 219 #ifdef ASSERT
duke@435 220 // layout_activation_impl checks it's notion of saved SP against
duke@435 221 // this register, so if this changes update it as well.
duke@435 222 const Register saved_SP = Lscratch;
duke@435 223 __ mov(SP, saved_SP); // keep track of SP before call
duke@435 224 #endif
duke@435 225
duke@435 226 // setup parameters
duke@435 227 const Register t = G3_scratch;
duke@435 228 __ ld_ptr(parameter_size.as_in().as_address(), t); // get parameter size (in words)
duke@435 229 __ sll(t, Interpreter::logStackElementSize(), t); // compute number of bytes
duke@435 230 __ sub(FP, t, Gargs); // setup parameter pointer
duke@435 231 #ifdef _LP64
duke@435 232 __ add( Gargs, STACK_BIAS, Gargs ); // Account for LP64 stack bias
duke@435 233 #endif
duke@435 234 __ mov(SP, O5_savedSP);
duke@435 235
duke@435 236
duke@435 237 // do the call
duke@435 238 //
duke@435 239 // the following register must be setup:
duke@435 240 //
duke@435 241 // G2_thread
duke@435 242 // G5_method
duke@435 243 // Gargs
duke@435 244 BLOCK_COMMENT("call Java function");
duke@435 245 __ jmpl(entry_point.as_in().as_register(), G0, O7);
duke@435 246 __ delayed()->mov(method.as_in().as_register(), G5_method); // setup method
duke@435 247
duke@435 248 BLOCK_COMMENT("call_stub_return_address:");
duke@435 249 return_pc = __ pc();
duke@435 250
duke@435 251 // The callee, if it wasn't interpreted, can return with SP changed so
duke@435 252 // we can no longer assert of change of SP.
duke@435 253
duke@435 254 // store result depending on type
duke@435 255 // (everything that is not T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE
duke@435 256 // is treated as T_INT)
duke@435 257 { const Register addr = result .as_in().as_register();
duke@435 258 const Register type = result_type.as_in().as_register();
duke@435 259 Label is_long, is_float, is_double, is_object, exit;
duke@435 260 __ cmp(type, T_OBJECT); __ br(Assembler::equal, false, Assembler::pn, is_object);
duke@435 261 __ delayed()->cmp(type, T_FLOAT); __ br(Assembler::equal, false, Assembler::pn, is_float);
duke@435 262 __ delayed()->cmp(type, T_DOUBLE); __ br(Assembler::equal, false, Assembler::pn, is_double);
duke@435 263 __ delayed()->cmp(type, T_LONG); __ br(Assembler::equal, false, Assembler::pn, is_long);
duke@435 264 __ delayed()->nop();
duke@435 265
duke@435 266 // store int result
duke@435 267 __ st(O0, addr, G0);
duke@435 268
duke@435 269 __ BIND(exit);
duke@435 270 __ ret();
duke@435 271 __ delayed()->restore();
duke@435 272
duke@435 273 __ BIND(is_object);
duke@435 274 __ ba(false, exit);
duke@435 275 __ delayed()->st_ptr(O0, addr, G0);
duke@435 276
duke@435 277 __ BIND(is_float);
duke@435 278 __ ba(false, exit);
duke@435 279 __ delayed()->stf(FloatRegisterImpl::S, F0, addr, G0);
duke@435 280
duke@435 281 __ BIND(is_double);
duke@435 282 __ ba(false, exit);
duke@435 283 __ delayed()->stf(FloatRegisterImpl::D, F0, addr, G0);
duke@435 284
duke@435 285 __ BIND(is_long);
duke@435 286 #ifdef _LP64
duke@435 287 __ ba(false, exit);
duke@435 288 __ delayed()->st_long(O0, addr, G0); // store entire long
duke@435 289 #else
duke@435 290 #if defined(COMPILER2)
duke@435 291 // All return values are where we want them, except for Longs. C2 returns
duke@435 292 // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
duke@435 293 // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
duke@435 294 // build we simply always use G1.
duke@435 295 // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
duke@435 296 // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
duke@435 297 // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
duke@435 298
duke@435 299 __ ba(false, exit);
duke@435 300 __ delayed()->stx(G1, addr, G0); // store entire long
duke@435 301 #else
duke@435 302 __ st(O1, addr, BytesPerInt);
duke@435 303 __ ba(false, exit);
duke@435 304 __ delayed()->st(O0, addr, G0);
duke@435 305 #endif /* COMPILER2 */
duke@435 306 #endif /* _LP64 */
duke@435 307 }
duke@435 308 return start;
duke@435 309 }
duke@435 310
duke@435 311
duke@435 312 //----------------------------------------------------------------------------------------------------
duke@435 313 // Return point for a Java call if there's an exception thrown in Java code.
duke@435 314 // The exception is caught and transformed into a pending exception stored in
duke@435 315 // JavaThread that can be tested from within the VM.
duke@435 316 //
duke@435 317 // Oexception: exception oop
duke@435 318
duke@435 319 address generate_catch_exception() {
duke@435 320 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 321
duke@435 322 address start = __ pc();
duke@435 323 // verify that thread corresponds
duke@435 324 __ verify_thread();
duke@435 325
duke@435 326 const Register& temp_reg = Gtemp;
duke@435 327 Address pending_exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
duke@435 328 Address exception_file_offset_addr(G2_thread, 0, in_bytes(Thread::exception_file_offset ()));
duke@435 329 Address exception_line_offset_addr(G2_thread, 0, in_bytes(Thread::exception_line_offset ()));
duke@435 330
duke@435 331 // set pending exception
duke@435 332 __ verify_oop(Oexception);
duke@435 333 __ st_ptr(Oexception, pending_exception_addr);
duke@435 334 __ set((intptr_t)__FILE__, temp_reg);
duke@435 335 __ st_ptr(temp_reg, exception_file_offset_addr);
duke@435 336 __ set((intptr_t)__LINE__, temp_reg);
duke@435 337 __ st(temp_reg, exception_line_offset_addr);
duke@435 338
duke@435 339 // complete return to VM
duke@435 340 assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");
duke@435 341
duke@435 342 Address stub_ret(temp_reg, StubRoutines::_call_stub_return_address);
duke@435 343 __ jump_to(stub_ret);
duke@435 344 __ delayed()->nop();
duke@435 345
duke@435 346 return start;
duke@435 347 }
duke@435 348
duke@435 349
duke@435 350 //----------------------------------------------------------------------------------------------------
duke@435 351 // Continuation point for runtime calls returning with a pending exception
duke@435 352 // The pending exception check happened in the runtime or native call stub
duke@435 353 // The pending exception in Thread is converted into a Java-level exception
duke@435 354 //
duke@435 355 // Contract with Java-level exception handler: O0 = exception
duke@435 356 // O1 = throwing pc
duke@435 357
duke@435 358 address generate_forward_exception() {
duke@435 359 StubCodeMark mark(this, "StubRoutines", "forward_exception");
duke@435 360 address start = __ pc();
duke@435 361
duke@435 362 // Upon entry, O7 has the return address returning into Java
duke@435 363 // (interpreted or compiled) code; i.e. the return address
duke@435 364 // becomes the throwing pc.
duke@435 365
duke@435 366 const Register& handler_reg = Gtemp;
duke@435 367
duke@435 368 Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
duke@435 369
duke@435 370 #ifdef ASSERT
duke@435 371 // make sure that this code is only executed if there is a pending exception
duke@435 372 { Label L;
duke@435 373 __ ld_ptr(exception_addr, Gtemp);
duke@435 374 __ br_notnull(Gtemp, false, Assembler::pt, L);
duke@435 375 __ delayed()->nop();
duke@435 376 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 377 __ bind(L);
duke@435 378 }
duke@435 379 #endif
duke@435 380
duke@435 381 // compute exception handler into handler_reg
duke@435 382 __ get_thread();
duke@435 383 __ ld_ptr(exception_addr, Oexception);
duke@435 384 __ verify_oop(Oexception);
duke@435 385 __ save_frame(0); // compensates for compiler weakness
duke@435 386 __ add(O7->after_save(), frame::pc_return_offset, Lscratch); // save the issuing PC
duke@435 387 BLOCK_COMMENT("call exception_handler_for_return_address");
duke@435 388 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), Lscratch);
duke@435 389 __ mov(O0, handler_reg);
duke@435 390 __ restore(); // compensates for compiler weakness
duke@435 391
duke@435 392 __ ld_ptr(exception_addr, Oexception);
duke@435 393 __ add(O7, frame::pc_return_offset, Oissuing_pc); // save the issuing PC
duke@435 394
duke@435 395 #ifdef ASSERT
duke@435 396 // make sure exception is set
duke@435 397 { Label L;
duke@435 398 __ br_notnull(Oexception, false, Assembler::pt, L);
duke@435 399 __ delayed()->nop();
duke@435 400 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 401 __ bind(L);
duke@435 402 }
duke@435 403 #endif
duke@435 404 // jump to exception handler
duke@435 405 __ jmp(handler_reg, 0);
duke@435 406 // clear pending exception
duke@435 407 __ delayed()->st_ptr(G0, exception_addr);
duke@435 408
duke@435 409 return start;
duke@435 410 }
duke@435 411
duke@435 412
duke@435 413 //------------------------------------------------------------------------------------------------------------------------
duke@435 414 // Continuation point for throwing of implicit exceptions that are not handled in
duke@435 415 // the current activation. Fabricates an exception oop and initiates normal
duke@435 416 // exception dispatching in this frame. Only callee-saved registers are preserved
duke@435 417 // (through the normal register window / RegisterMap handling).
duke@435 418 // If the compiler needs all registers to be preserved between the fault
duke@435 419 // point and the exception handler then it must assume responsibility for that in
duke@435 420 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 421 // continuation_for_implicit_division_by_zero_exception. All other implicit
duke@435 422 // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
duke@435 423 // either at call sites or otherwise assume that stack unwinding will be initiated,
duke@435 424 // so caller saved registers were assumed volatile in the compiler.
duke@435 425
duke@435 426 // Note that we generate only this stub into a RuntimeStub, because it needs to be
duke@435 427 // properly traversed and ignored during GC, so we change the meaning of the "__"
duke@435 428 // macro within this method.
duke@435 429 #undef __
duke@435 430 #define __ masm->
duke@435 431
duke@435 432 address generate_throw_exception(const char* name, address runtime_entry, bool restore_saved_exception_pc) {
duke@435 433 #ifdef ASSERT
duke@435 434 int insts_size = VerifyThread ? 1 * K : 600;
duke@435 435 #else
duke@435 436 int insts_size = VerifyThread ? 1 * K : 256;
duke@435 437 #endif /* ASSERT */
duke@435 438 int locs_size = 32;
duke@435 439
duke@435 440 CodeBuffer code(name, insts_size, locs_size);
duke@435 441 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 442
duke@435 443 __ verify_thread();
duke@435 444
duke@435 445 // This is an inlined and slightly modified version of call_VM
duke@435 446 // which has the ability to fetch the return PC out of thread-local storage
duke@435 447 __ assert_not_delayed();
duke@435 448
duke@435 449 // Note that we always push a frame because on the SPARC
duke@435 450 // architecture, for all of our implicit exception kinds at call
duke@435 451 // sites, the implicit exception is taken before the callee frame
duke@435 452 // is pushed.
duke@435 453 __ save_frame(0);
duke@435 454
duke@435 455 int frame_complete = __ offset();
duke@435 456
duke@435 457 if (restore_saved_exception_pc) {
duke@435 458 Address saved_exception_pc(G2_thread, 0, in_bytes(JavaThread::saved_exception_pc_offset()));
duke@435 459 __ ld_ptr(saved_exception_pc, I7);
duke@435 460 __ sub(I7, frame::pc_return_offset, I7);
duke@435 461 }
duke@435 462
duke@435 463 // Note that we always have a runtime stub frame on the top of stack by this point
duke@435 464 Register last_java_sp = SP;
duke@435 465 // 64-bit last_java_sp is biased!
duke@435 466 __ set_last_Java_frame(last_java_sp, G0);
duke@435 467 if (VerifyThread) __ mov(G2_thread, O0); // about to be smashed; pass early
duke@435 468 __ save_thread(noreg);
duke@435 469 // do the call
duke@435 470 BLOCK_COMMENT("call runtime_entry");
duke@435 471 __ call(runtime_entry, relocInfo::runtime_call_type);
duke@435 472 if (!VerifyThread)
duke@435 473 __ delayed()->mov(G2_thread, O0); // pass thread as first argument
duke@435 474 else
duke@435 475 __ delayed()->nop(); // (thread already passed)
duke@435 476 __ restore_thread(noreg);
duke@435 477 __ reset_last_Java_frame();
duke@435 478
duke@435 479 // check for pending exceptions. use Gtemp as scratch register.
duke@435 480 #ifdef ASSERT
duke@435 481 Label L;
duke@435 482
duke@435 483 Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
duke@435 484 Register scratch_reg = Gtemp;
duke@435 485 __ ld_ptr(exception_addr, scratch_reg);
duke@435 486 __ br_notnull(scratch_reg, false, Assembler::pt, L);
duke@435 487 __ delayed()->nop();
duke@435 488 __ should_not_reach_here();
duke@435 489 __ bind(L);
duke@435 490 #endif // ASSERT
duke@435 491 BLOCK_COMMENT("call forward_exception_entry");
duke@435 492 __ call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
duke@435 493 // we use O7 linkage so that forward_exception_entry has the issuing PC
duke@435 494 __ delayed()->restore();
duke@435 495
duke@435 496 RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, masm->total_frame_size_in_bytes(0), NULL, false);
duke@435 497 return stub->entry_point();
duke@435 498 }
duke@435 499
duke@435 500 #undef __
duke@435 501 #define __ _masm->
duke@435 502
duke@435 503
duke@435 504 // Generate a routine that sets all the registers so we
duke@435 505 // can tell if the stop routine prints them correctly.
duke@435 506 address generate_test_stop() {
duke@435 507 StubCodeMark mark(this, "StubRoutines", "test_stop");
duke@435 508 address start = __ pc();
duke@435 509
duke@435 510 int i;
duke@435 511
duke@435 512 __ save_frame(0);
duke@435 513
duke@435 514 static jfloat zero = 0.0, one = 1.0;
duke@435 515
duke@435 516 // put addr in L0, then load through L0 to F0
duke@435 517 __ set((intptr_t)&zero, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F0);
duke@435 518 __ set((intptr_t)&one, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F1); // 1.0 to F1
duke@435 519
duke@435 520 // use add to put 2..18 in F2..F18
duke@435 521 for ( i = 2; i <= 18; ++i ) {
duke@435 522 __ fadd( FloatRegisterImpl::S, F1, as_FloatRegister(i-1), as_FloatRegister(i));
duke@435 523 }
duke@435 524
duke@435 525 // Now put double 2 in F16, double 18 in F18
duke@435 526 __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F2, F16 );
duke@435 527 __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F18, F18 );
duke@435 528
duke@435 529 // use add to put 20..32 in F20..F32
duke@435 530 for (i = 20; i < 32; i += 2) {
duke@435 531 __ fadd( FloatRegisterImpl::D, F16, as_FloatRegister(i-2), as_FloatRegister(i));
duke@435 532 }
duke@435 533
duke@435 534 // put 0..7 in i's, 8..15 in l's, 16..23 in o's, 24..31 in g's
duke@435 535 for ( i = 0; i < 8; ++i ) {
duke@435 536 if (i < 6) {
duke@435 537 __ set( i, as_iRegister(i));
duke@435 538 __ set(16 + i, as_oRegister(i));
duke@435 539 __ set(24 + i, as_gRegister(i));
duke@435 540 }
duke@435 541 __ set( 8 + i, as_lRegister(i));
duke@435 542 }
duke@435 543
duke@435 544 __ stop("testing stop");
duke@435 545
duke@435 546
duke@435 547 __ ret();
duke@435 548 __ delayed()->restore();
duke@435 549
duke@435 550 return start;
duke@435 551 }
duke@435 552
duke@435 553
duke@435 554 address generate_stop_subroutine() {
duke@435 555 StubCodeMark mark(this, "StubRoutines", "stop_subroutine");
duke@435 556 address start = __ pc();
duke@435 557
duke@435 558 __ stop_subroutine();
duke@435 559
duke@435 560 return start;
duke@435 561 }
duke@435 562
duke@435 563 address generate_flush_callers_register_windows() {
duke@435 564 StubCodeMark mark(this, "StubRoutines", "flush_callers_register_windows");
duke@435 565 address start = __ pc();
duke@435 566
duke@435 567 __ flush_windows();
duke@435 568 __ retl(false);
duke@435 569 __ delayed()->add( FP, STACK_BIAS, O0 );
duke@435 570 // The returned value must be a stack pointer whose register save area
duke@435 571 // is flushed, and will stay flushed while the caller executes.
duke@435 572
duke@435 573 return start;
duke@435 574 }
duke@435 575
duke@435 576 // Helper functions for v8 atomic operations.
duke@435 577 //
duke@435 578 void get_v8_oop_lock_ptr(Register lock_ptr_reg, Register mark_oop_reg, Register scratch_reg) {
duke@435 579 if (mark_oop_reg == noreg) {
duke@435 580 address lock_ptr = (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr();
duke@435 581 __ set((intptr_t)lock_ptr, lock_ptr_reg);
duke@435 582 } else {
duke@435 583 assert(scratch_reg != noreg, "just checking");
duke@435 584 address lock_ptr = (address)StubRoutines::Sparc::_v8_oop_lock_cache;
duke@435 585 __ set((intptr_t)lock_ptr, lock_ptr_reg);
duke@435 586 __ and3(mark_oop_reg, StubRoutines::Sparc::v8_oop_lock_mask_in_place, scratch_reg);
duke@435 587 __ add(lock_ptr_reg, scratch_reg, lock_ptr_reg);
duke@435 588 }
duke@435 589 }
duke@435 590
duke@435 591 void generate_v8_lock_prologue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
duke@435 592
duke@435 593 get_v8_oop_lock_ptr(lock_ptr_reg, mark_oop_reg, scratch_reg);
duke@435 594 __ set(StubRoutines::Sparc::locked, lock_reg);
duke@435 595 // Initialize yield counter
duke@435 596 __ mov(G0,yield_reg);
duke@435 597
duke@435 598 __ BIND(retry);
duke@435 599 __ cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
duke@435 600 __ br(Assembler::less, false, Assembler::pt, dontyield);
duke@435 601 __ delayed()->nop();
duke@435 602
duke@435 603 // This code can only be called from inside the VM, this
duke@435 604 // stub is only invoked from Atomic::add(). We do not
duke@435 605 // want to use call_VM, because _last_java_sp and such
duke@435 606 // must already be set.
duke@435 607 //
duke@435 608 // Save the regs and make space for a C call
duke@435 609 __ save(SP, -96, SP);
duke@435 610 __ save_all_globals_into_locals();
duke@435 611 BLOCK_COMMENT("call os::naked_sleep");
duke@435 612 __ call(CAST_FROM_FN_PTR(address, os::naked_sleep));
duke@435 613 __ delayed()->nop();
duke@435 614 __ restore_globals_from_locals();
duke@435 615 __ restore();
duke@435 616 // reset the counter
duke@435 617 __ mov(G0,yield_reg);
duke@435 618
duke@435 619 __ BIND(dontyield);
duke@435 620
duke@435 621 // try to get lock
duke@435 622 __ swap(lock_ptr_reg, 0, lock_reg);
duke@435 623
duke@435 624 // did we get the lock?
duke@435 625 __ cmp(lock_reg, StubRoutines::Sparc::unlocked);
duke@435 626 __ br(Assembler::notEqual, true, Assembler::pn, retry);
duke@435 627 __ delayed()->add(yield_reg,1,yield_reg);
duke@435 628
duke@435 629 // yes, got lock. do the operation here.
duke@435 630 }
duke@435 631
duke@435 632 void generate_v8_lock_epilogue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
duke@435 633 __ st(lock_reg, lock_ptr_reg, 0); // unlock
duke@435 634 }
duke@435 635
duke@435 636 // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest).
duke@435 637 //
duke@435 638 // Arguments :
duke@435 639 //
duke@435 640 // exchange_value: O0
duke@435 641 // dest: O1
duke@435 642 //
duke@435 643 // Results:
duke@435 644 //
duke@435 645 // O0: the value previously stored in dest
duke@435 646 //
duke@435 647 address generate_atomic_xchg() {
duke@435 648 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 649 address start = __ pc();
duke@435 650
duke@435 651 if (UseCASForSwap) {
duke@435 652 // Use CAS instead of swap, just in case the MP hardware
duke@435 653 // prefers to work with just one kind of synch. instruction.
duke@435 654 Label retry;
duke@435 655 __ BIND(retry);
duke@435 656 __ mov(O0, O3); // scratch copy of exchange value
duke@435 657 __ ld(O1, 0, O2); // observe the previous value
duke@435 658 // try to replace O2 with O3
duke@435 659 __ cas_under_lock(O1, O2, O3,
duke@435 660 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
duke@435 661 __ cmp(O2, O3);
duke@435 662 __ br(Assembler::notEqual, false, Assembler::pn, retry);
duke@435 663 __ delayed()->nop();
duke@435 664
duke@435 665 __ retl(false);
duke@435 666 __ delayed()->mov(O2, O0); // report previous value to caller
duke@435 667
duke@435 668 } else {
duke@435 669 if (VM_Version::v9_instructions_work()) {
duke@435 670 __ retl(false);
duke@435 671 __ delayed()->swap(O1, 0, O0);
duke@435 672 } else {
duke@435 673 const Register& lock_reg = O2;
duke@435 674 const Register& lock_ptr_reg = O3;
duke@435 675 const Register& yield_reg = O4;
duke@435 676
duke@435 677 Label retry;
duke@435 678 Label dontyield;
duke@435 679
duke@435 680 generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 681 // got the lock, do the swap
duke@435 682 __ swap(O1, 0, O0);
duke@435 683
duke@435 684 generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 685 __ retl(false);
duke@435 686 __ delayed()->nop();
duke@435 687 }
duke@435 688 }
duke@435 689
duke@435 690 return start;
duke@435 691 }
duke@435 692
duke@435 693
duke@435 694 // Support for jint Atomic::cmpxchg(jint exchange_value, volatile jint* dest, jint compare_value)
duke@435 695 //
duke@435 696 // Arguments :
duke@435 697 //
duke@435 698 // exchange_value: O0
duke@435 699 // dest: O1
duke@435 700 // compare_value: O2
duke@435 701 //
duke@435 702 // Results:
duke@435 703 //
duke@435 704 // O0: the value previously stored in dest
duke@435 705 //
duke@435 706 // Overwrites (v8): O3,O4,O5
duke@435 707 //
duke@435 708 address generate_atomic_cmpxchg() {
duke@435 709 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
duke@435 710 address start = __ pc();
duke@435 711
duke@435 712 // cmpxchg(dest, compare_value, exchange_value)
duke@435 713 __ cas_under_lock(O1, O2, O0,
duke@435 714 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
duke@435 715 __ retl(false);
duke@435 716 __ delayed()->nop();
duke@435 717
duke@435 718 return start;
duke@435 719 }
duke@435 720
duke@435 721 // Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value)
duke@435 722 //
duke@435 723 // Arguments :
duke@435 724 //
duke@435 725 // exchange_value: O1:O0
duke@435 726 // dest: O2
duke@435 727 // compare_value: O4:O3
duke@435 728 //
duke@435 729 // Results:
duke@435 730 //
duke@435 731 // O1:O0: the value previously stored in dest
duke@435 732 //
duke@435 733 // This only works on V9, on V8 we don't generate any
duke@435 734 // code and just return NULL.
duke@435 735 //
duke@435 736 // Overwrites: G1,G2,G3
duke@435 737 //
duke@435 738 address generate_atomic_cmpxchg_long() {
duke@435 739 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
duke@435 740 address start = __ pc();
duke@435 741
duke@435 742 if (!VM_Version::supports_cx8())
duke@435 743 return NULL;;
duke@435 744 __ sllx(O0, 32, O0);
duke@435 745 __ srl(O1, 0, O1);
duke@435 746 __ or3(O0,O1,O0); // O0 holds 64-bit value from compare_value
duke@435 747 __ sllx(O3, 32, O3);
duke@435 748 __ srl(O4, 0, O4);
duke@435 749 __ or3(O3,O4,O3); // O3 holds 64-bit value from exchange_value
duke@435 750 __ casx(O2, O3, O0);
duke@435 751 __ srl(O0, 0, O1); // unpacked return value in O1:O0
duke@435 752 __ retl(false);
duke@435 753 __ delayed()->srlx(O0, 32, O0);
duke@435 754
duke@435 755 return start;
duke@435 756 }
duke@435 757
duke@435 758
duke@435 759 // Support for jint Atomic::add(jint add_value, volatile jint* dest).
duke@435 760 //
duke@435 761 // Arguments :
duke@435 762 //
duke@435 763 // add_value: O0 (e.g., +1 or -1)
duke@435 764 // dest: O1
duke@435 765 //
duke@435 766 // Results:
duke@435 767 //
duke@435 768 // O0: the new value stored in dest
duke@435 769 //
duke@435 770 // Overwrites (v9): O3
duke@435 771 // Overwrites (v8): O3,O4,O5
duke@435 772 //
duke@435 773 address generate_atomic_add() {
duke@435 774 StubCodeMark mark(this, "StubRoutines", "atomic_add");
duke@435 775 address start = __ pc();
duke@435 776 __ BIND(_atomic_add_stub);
duke@435 777
duke@435 778 if (VM_Version::v9_instructions_work()) {
duke@435 779 Label(retry);
duke@435 780 __ BIND(retry);
duke@435 781
duke@435 782 __ lduw(O1, 0, O2);
duke@435 783 __ add(O0, O2, O3);
duke@435 784 __ cas(O1, O2, O3);
duke@435 785 __ cmp( O2, O3);
duke@435 786 __ br(Assembler::notEqual, false, Assembler::pn, retry);
duke@435 787 __ delayed()->nop();
duke@435 788 __ retl(false);
duke@435 789 __ delayed()->add(O0, O2, O0); // note that cas made O2==O3
duke@435 790 } else {
duke@435 791 const Register& lock_reg = O2;
duke@435 792 const Register& lock_ptr_reg = O3;
duke@435 793 const Register& value_reg = O4;
duke@435 794 const Register& yield_reg = O5;
duke@435 795
duke@435 796 Label(retry);
duke@435 797 Label(dontyield);
duke@435 798
duke@435 799 generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 800 // got lock, do the increment
duke@435 801 __ ld(O1, 0, value_reg);
duke@435 802 __ add(O0, value_reg, value_reg);
duke@435 803 __ st(value_reg, O1, 0);
duke@435 804
duke@435 805 // %%% only for RMO and PSO
duke@435 806 __ membar(Assembler::StoreStore);
duke@435 807
duke@435 808 generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 809
duke@435 810 __ retl(false);
duke@435 811 __ delayed()->mov(value_reg, O0);
duke@435 812 }
duke@435 813
duke@435 814 return start;
duke@435 815 }
duke@435 816 Label _atomic_add_stub; // called from other stubs
duke@435 817
duke@435 818
duke@435 819 // Support for void OrderAccess::fence().
duke@435 820 //
duke@435 821 address generate_fence() {
duke@435 822 StubCodeMark mark(this, "StubRoutines", "fence");
duke@435 823 address start = __ pc();
duke@435 824
duke@435 825 __ membar(Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore |
duke@435 826 Assembler::StoreLoad | Assembler::StoreStore));
duke@435 827 __ retl(false);
duke@435 828 __ delayed()->nop();
duke@435 829
duke@435 830 return start;
duke@435 831 }
duke@435 832
duke@435 833
duke@435 834 //------------------------------------------------------------------------------------------------------------------------
duke@435 835 // The following routine generates a subroutine to throw an asynchronous
duke@435 836 // UnknownError when an unsafe access gets a fault that could not be
duke@435 837 // reasonably prevented by the programmer. (Example: SIGBUS/OBJERR.)
duke@435 838 //
duke@435 839 // Arguments :
duke@435 840 //
duke@435 841 // trapping PC: O7
duke@435 842 //
duke@435 843 // Results:
duke@435 844 // posts an asynchronous exception, skips the trapping instruction
duke@435 845 //
duke@435 846
duke@435 847 address generate_handler_for_unsafe_access() {
duke@435 848 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 849 address start = __ pc();
duke@435 850
duke@435 851 const int preserve_register_words = (64 * 2);
duke@435 852 Address preserve_addr(FP, 0, (-preserve_register_words * wordSize) + STACK_BIAS);
duke@435 853
duke@435 854 Register Lthread = L7_thread_cache;
duke@435 855 int i;
duke@435 856
duke@435 857 __ save_frame(0);
duke@435 858 __ mov(G1, L1);
duke@435 859 __ mov(G2, L2);
duke@435 860 __ mov(G3, L3);
duke@435 861 __ mov(G4, L4);
duke@435 862 __ mov(G5, L5);
duke@435 863 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
duke@435 864 __ stf(FloatRegisterImpl::D, as_FloatRegister(i), preserve_addr, i * wordSize);
duke@435 865 }
duke@435 866
duke@435 867 address entry_point = CAST_FROM_FN_PTR(address, handle_unsafe_access);
duke@435 868 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 869 __ call(entry_point, relocInfo::runtime_call_type);
duke@435 870 __ delayed()->nop();
duke@435 871
duke@435 872 __ mov(L1, G1);
duke@435 873 __ mov(L2, G2);
duke@435 874 __ mov(L3, G3);
duke@435 875 __ mov(L4, G4);
duke@435 876 __ mov(L5, G5);
duke@435 877 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
duke@435 878 __ ldf(FloatRegisterImpl::D, preserve_addr, as_FloatRegister(i), i * wordSize);
duke@435 879 }
duke@435 880
duke@435 881 __ verify_thread();
duke@435 882
duke@435 883 __ jmp(O0, 0);
duke@435 884 __ delayed()->restore();
duke@435 885
duke@435 886 return start;
duke@435 887 }
duke@435 888
duke@435 889
duke@435 890 // Support for uint StubRoutine::Sparc::partial_subtype_check( Klass sub, Klass super );
duke@435 891 // Arguments :
duke@435 892 //
duke@435 893 // ret : O0, returned
duke@435 894 // icc/xcc: set as O0 (depending on wordSize)
duke@435 895 // sub : O1, argument, not changed
duke@435 896 // super: O2, argument, not changed
duke@435 897 // raddr: O7, blown by call
duke@435 898 address generate_partial_subtype_check() {
duke@435 899 StubCodeMark mark(this, "StubRoutines", "partial_subtype_check");
duke@435 900 address start = __ pc();
duke@435 901 Label loop, miss;
duke@435 902
duke@435 903 // Compare super with sub directly, since super is not in its own SSA.
duke@435 904 // The compiler used to emit this test, but we fold it in here,
duke@435 905 // to increase overall code density, with no real loss of speed.
duke@435 906 { Label L;
duke@435 907 __ cmp(O1, O2);
duke@435 908 __ brx(Assembler::notEqual, false, Assembler::pt, L);
duke@435 909 __ delayed()->nop();
duke@435 910 __ retl();
duke@435 911 __ delayed()->addcc(G0,0,O0); // set Z flags, zero result
duke@435 912 __ bind(L);
duke@435 913 }
duke@435 914
duke@435 915 #if defined(COMPILER2) && !defined(_LP64)
duke@435 916 // Do not use a 'save' because it blows the 64-bit O registers.
duke@435 917 __ add(SP,-4*wordSize,SP); // Make space for 4 temps
duke@435 918 __ st_ptr(L0,SP,(frame::register_save_words+0)*wordSize);
duke@435 919 __ st_ptr(L1,SP,(frame::register_save_words+1)*wordSize);
duke@435 920 __ st_ptr(L2,SP,(frame::register_save_words+2)*wordSize);
duke@435 921 __ st_ptr(L3,SP,(frame::register_save_words+3)*wordSize);
duke@435 922 Register Rret = O0;
duke@435 923 Register Rsub = O1;
duke@435 924 Register Rsuper = O2;
duke@435 925 #else
duke@435 926 __ save_frame(0);
duke@435 927 Register Rret = I0;
duke@435 928 Register Rsub = I1;
duke@435 929 Register Rsuper = I2;
duke@435 930 #endif
duke@435 931
duke@435 932 Register L0_ary_len = L0;
duke@435 933 Register L1_ary_ptr = L1;
duke@435 934 Register L2_super = L2;
duke@435 935 Register L3_index = L3;
duke@435 936
duke@435 937 inc_counter_np(SharedRuntime::_partial_subtype_ctr, L0, L1);
duke@435 938
duke@435 939 __ ld_ptr( Rsub, sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes(), L3 );
duke@435 940 __ lduw(L3,arrayOopDesc::length_offset_in_bytes(),L0_ary_len);
duke@435 941 __ add(L3,arrayOopDesc::base_offset_in_bytes(T_OBJECT),L1_ary_ptr);
duke@435 942 __ clr(L3_index); // zero index
duke@435 943 // Load a little early; will load 1 off the end of the array.
duke@435 944 // Ok for now; revisit if we have other uses of this routine.
duke@435 945 __ ld_ptr(L1_ary_ptr,0,L2_super);// Will load a little early
duke@435 946 __ align(CodeEntryAlignment);
duke@435 947
duke@435 948 // The scan loop
duke@435 949 __ BIND(loop);
duke@435 950 __ add(L1_ary_ptr,wordSize,L1_ary_ptr); // Bump by OOP size
duke@435 951 __ cmp(L3_index,L0_ary_len);
duke@435 952 __ br(Assembler::equal,false,Assembler::pn,miss);
duke@435 953 __ delayed()->inc(L3_index); // Bump index
duke@435 954 __ subcc(L2_super,Rsuper,Rret); // Check for match; zero in Rret for a hit
duke@435 955 __ brx( Assembler::notEqual, false, Assembler::pt, loop );
duke@435 956 __ delayed()->ld_ptr(L1_ary_ptr,0,L2_super); // Will load a little early
duke@435 957
duke@435 958 // Got a hit; report success; set cache. Cache load doesn't
duke@435 959 // happen here; for speed it is directly emitted by the compiler.
duke@435 960 __ st_ptr( Rsuper, Rsub, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() );
duke@435 961
duke@435 962 #if defined(COMPILER2) && !defined(_LP64)
duke@435 963 __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
duke@435 964 __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
duke@435 965 __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
duke@435 966 __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
duke@435 967 __ retl(); // Result in Rret is zero; flags set to Z
duke@435 968 __ delayed()->add(SP,4*wordSize,SP);
duke@435 969 #else
duke@435 970 __ ret(); // Result in Rret is zero; flags set to Z
duke@435 971 __ delayed()->restore();
duke@435 972 #endif
duke@435 973
duke@435 974 // Hit or miss falls through here
duke@435 975 __ BIND(miss);
duke@435 976 __ addcc(G0,1,Rret); // set NZ flags, NZ result
duke@435 977
duke@435 978 #if defined(COMPILER2) && !defined(_LP64)
duke@435 979 __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
duke@435 980 __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
duke@435 981 __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
duke@435 982 __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
duke@435 983 __ retl(); // Result in Rret is != 0; flags set to NZ
duke@435 984 __ delayed()->add(SP,4*wordSize,SP);
duke@435 985 #else
duke@435 986 __ ret(); // Result in Rret is != 0; flags set to NZ
duke@435 987 __ delayed()->restore();
duke@435 988 #endif
duke@435 989
duke@435 990 return start;
duke@435 991 }
duke@435 992
duke@435 993
duke@435 994 // Called from MacroAssembler::verify_oop
duke@435 995 //
duke@435 996 address generate_verify_oop_subroutine() {
duke@435 997 StubCodeMark mark(this, "StubRoutines", "verify_oop_stub");
duke@435 998
duke@435 999 address start = __ pc();
duke@435 1000
duke@435 1001 __ verify_oop_subroutine();
duke@435 1002
duke@435 1003 return start;
duke@435 1004 }
duke@435 1005
duke@435 1006 static address disjoint_byte_copy_entry;
duke@435 1007 static address disjoint_short_copy_entry;
duke@435 1008 static address disjoint_int_copy_entry;
duke@435 1009 static address disjoint_long_copy_entry;
duke@435 1010 static address disjoint_oop_copy_entry;
duke@435 1011
duke@435 1012 static address byte_copy_entry;
duke@435 1013 static address short_copy_entry;
duke@435 1014 static address int_copy_entry;
duke@435 1015 static address long_copy_entry;
duke@435 1016 static address oop_copy_entry;
duke@435 1017
duke@435 1018 static address checkcast_copy_entry;
duke@435 1019
duke@435 1020 //
duke@435 1021 // Verify that a register contains clean 32-bits positive value
duke@435 1022 // (high 32-bits are 0) so it could be used in 64-bits shifts (sllx, srax).
duke@435 1023 //
duke@435 1024 // Input:
duke@435 1025 // Rint - 32-bits value
duke@435 1026 // Rtmp - scratch
duke@435 1027 //
duke@435 1028 void assert_clean_int(Register Rint, Register Rtmp) {
duke@435 1029 #if defined(ASSERT) && defined(_LP64)
duke@435 1030 __ signx(Rint, Rtmp);
duke@435 1031 __ cmp(Rint, Rtmp);
duke@435 1032 __ breakpoint_trap(Assembler::notEqual, Assembler::xcc);
duke@435 1033 #endif
duke@435 1034 }
duke@435 1035
duke@435 1036 //
duke@435 1037 // Generate overlap test for array copy stubs
duke@435 1038 //
duke@435 1039 // Input:
duke@435 1040 // O0 - array1
duke@435 1041 // O1 - array2
duke@435 1042 // O2 - element count
duke@435 1043 //
duke@435 1044 // Kills temps: O3, O4
duke@435 1045 //
duke@435 1046 void array_overlap_test(address no_overlap_target, int log2_elem_size) {
duke@435 1047 assert(no_overlap_target != NULL, "must be generated");
duke@435 1048 array_overlap_test(no_overlap_target, NULL, log2_elem_size);
duke@435 1049 }
duke@435 1050 void array_overlap_test(Label& L_no_overlap, int log2_elem_size) {
duke@435 1051 array_overlap_test(NULL, &L_no_overlap, log2_elem_size);
duke@435 1052 }
duke@435 1053 void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size) {
duke@435 1054 const Register from = O0;
duke@435 1055 const Register to = O1;
duke@435 1056 const Register count = O2;
duke@435 1057 const Register to_from = O3; // to - from
duke@435 1058 const Register byte_count = O4; // count << log2_elem_size
duke@435 1059
duke@435 1060 __ subcc(to, from, to_from);
duke@435 1061 __ sll_ptr(count, log2_elem_size, byte_count);
duke@435 1062 if (NOLp == NULL)
duke@435 1063 __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, no_overlap_target);
duke@435 1064 else
duke@435 1065 __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, (*NOLp));
duke@435 1066 __ delayed()->cmp(to_from, byte_count);
duke@435 1067 if (NOLp == NULL)
duke@435 1068 __ brx(Assembler::greaterEqual, false, Assembler::pt, no_overlap_target);
duke@435 1069 else
duke@435 1070 __ brx(Assembler::greaterEqual, false, Assembler::pt, (*NOLp));
duke@435 1071 __ delayed()->nop();
duke@435 1072 }
duke@435 1073
duke@435 1074 //
duke@435 1075 // Generate pre-write barrier for array.
duke@435 1076 //
duke@435 1077 // Input:
duke@435 1078 // addr - register containing starting address
duke@435 1079 // count - register containing element count
duke@435 1080 // tmp - scratch register
duke@435 1081 //
duke@435 1082 // The input registers are overwritten.
duke@435 1083 //
duke@435 1084 void gen_write_ref_array_pre_barrier(Register addr, Register count) {
duke@435 1085 #if 0 // G1 only
duke@435 1086 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1087 if (bs->has_write_ref_pre_barrier()) {
duke@435 1088 assert(bs->has_write_ref_array_pre_opt(),
duke@435 1089 "Else unsupported barrier set.");
duke@435 1090
duke@435 1091 assert(addr->is_global() && count->is_global(),
duke@435 1092 "If not, then we have to fix this code to handle more "
duke@435 1093 "general cases.");
duke@435 1094 // Get some new fresh output registers.
duke@435 1095 __ save_frame(0);
duke@435 1096 // Save the necessary global regs... will be used after.
duke@435 1097 __ mov(addr, L0);
duke@435 1098 __ mov(count, L1);
duke@435 1099
duke@435 1100 __ mov(addr, O0);
duke@435 1101 // Get the count into O1
duke@435 1102 __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre));
duke@435 1103 __ delayed()->mov(count, O1);
duke@435 1104 __ mov(L0, addr);
duke@435 1105 __ mov(L1, count);
duke@435 1106 __ restore();
duke@435 1107 }
duke@435 1108 #endif // 0
duke@435 1109 }
duke@435 1110
duke@435 1111 //
duke@435 1112 // Generate post-write barrier for array.
duke@435 1113 //
duke@435 1114 // Input:
duke@435 1115 // addr - register containing starting address
duke@435 1116 // count - register containing element count
duke@435 1117 // tmp - scratch register
duke@435 1118 //
duke@435 1119 // The input registers are overwritten.
duke@435 1120 //
duke@435 1121 void gen_write_ref_array_post_barrier(Register addr, Register count,
duke@435 1122 Register tmp) {
duke@435 1123 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1124
duke@435 1125 switch (bs->kind()) {
duke@435 1126 #if 0 // G1 - only
duke@435 1127 case BarrierSet::G1SATBCT:
duke@435 1128 case BarrierSet::G1SATBCTLogging:
duke@435 1129 {
duke@435 1130 assert(addr->is_global() && count->is_global(),
duke@435 1131 "If not, then we have to fix this code to handle more "
duke@435 1132 "general cases.");
duke@435 1133 // Get some new fresh output registers.
duke@435 1134 __ save_frame(0);
duke@435 1135 __ mov(addr, O0);
duke@435 1136 __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
duke@435 1137 __ delayed()->mov(count, O1);
duke@435 1138 __ restore();
duke@435 1139 }
duke@435 1140 break;
duke@435 1141 #endif // 0 G1 - only
duke@435 1142 case BarrierSet::CardTableModRef:
duke@435 1143 case BarrierSet::CardTableExtension:
duke@435 1144 {
duke@435 1145 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 1146 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 1147 assert_different_registers(addr, count, tmp);
duke@435 1148
duke@435 1149 Label L_loop;
duke@435 1150
duke@435 1151 __ sll_ptr(count, LogBytesPerOop, count);
duke@435 1152 __ sub(count, BytesPerOop, count);
duke@435 1153 __ add(count, addr, count);
duke@435 1154 // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
duke@435 1155 __ srl_ptr(addr, CardTableModRefBS::card_shift, addr);
duke@435 1156 __ srl_ptr(count, CardTableModRefBS::card_shift, count);
duke@435 1157 __ sub(count, addr, count);
duke@435 1158 Address rs(tmp, (address)ct->byte_map_base);
duke@435 1159 __ load_address(rs);
duke@435 1160 __ BIND(L_loop);
duke@435 1161 __ stb(G0, rs.base(), addr);
duke@435 1162 __ subcc(count, 1, count);
duke@435 1163 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 1164 __ delayed()->add(addr, 1, addr);
duke@435 1165
duke@435 1166 }
duke@435 1167 break;
duke@435 1168 case BarrierSet::ModRef:
duke@435 1169 break;
duke@435 1170 default :
duke@435 1171 ShouldNotReachHere();
duke@435 1172
duke@435 1173 }
duke@435 1174
duke@435 1175 }
duke@435 1176
duke@435 1177
duke@435 1178 // Copy big chunks forward with shift
duke@435 1179 //
duke@435 1180 // Inputs:
duke@435 1181 // from - source arrays
duke@435 1182 // to - destination array aligned to 8-bytes
duke@435 1183 // count - elements count to copy >= the count equivalent to 16 bytes
duke@435 1184 // count_dec - elements count's decrement equivalent to 16 bytes
duke@435 1185 // L_copy_bytes - copy exit label
duke@435 1186 //
duke@435 1187 void copy_16_bytes_forward_with_shift(Register from, Register to,
duke@435 1188 Register count, int count_dec, Label& L_copy_bytes) {
duke@435 1189 Label L_loop, L_aligned_copy, L_copy_last_bytes;
duke@435 1190
duke@435 1191 // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
duke@435 1192 __ andcc(from, 7, G1); // misaligned bytes
duke@435 1193 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 1194 __ delayed()->nop();
duke@435 1195
duke@435 1196 const Register left_shift = G1; // left shift bit counter
duke@435 1197 const Register right_shift = G5; // right shift bit counter
duke@435 1198
duke@435 1199 __ sll(G1, LogBitsPerByte, left_shift);
duke@435 1200 __ mov(64, right_shift);
duke@435 1201 __ sub(right_shift, left_shift, right_shift);
duke@435 1202
duke@435 1203 //
duke@435 1204 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1205 // to form 2 aligned 8-bytes chunks to store.
duke@435 1206 //
duke@435 1207 __ deccc(count, count_dec); // Pre-decrement 'count'
duke@435 1208 __ andn(from, 7, from); // Align address
duke@435 1209 __ ldx(from, 0, O3);
duke@435 1210 __ inc(from, 8);
duke@435 1211 __ align(16);
duke@435 1212 __ BIND(L_loop);
duke@435 1213 __ ldx(from, 0, O4);
duke@435 1214 __ deccc(count, count_dec); // Can we do next iteration after this one?
duke@435 1215 __ ldx(from, 8, G4);
duke@435 1216 __ inc(to, 16);
duke@435 1217 __ inc(from, 16);
duke@435 1218 __ sllx(O3, left_shift, O3);
duke@435 1219 __ srlx(O4, right_shift, G3);
duke@435 1220 __ bset(G3, O3);
duke@435 1221 __ stx(O3, to, -16);
duke@435 1222 __ sllx(O4, left_shift, O4);
duke@435 1223 __ srlx(G4, right_shift, G3);
duke@435 1224 __ bset(G3, O4);
duke@435 1225 __ stx(O4, to, -8);
duke@435 1226 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 1227 __ delayed()->mov(G4, O3);
duke@435 1228
duke@435 1229 __ inccc(count, count_dec>>1 ); // + 8 bytes
duke@435 1230 __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
duke@435 1231 __ delayed()->inc(count, count_dec>>1); // restore 'count'
duke@435 1232
duke@435 1233 // copy 8 bytes, part of them already loaded in O3
duke@435 1234 __ ldx(from, 0, O4);
duke@435 1235 __ inc(to, 8);
duke@435 1236 __ inc(from, 8);
duke@435 1237 __ sllx(O3, left_shift, O3);
duke@435 1238 __ srlx(O4, right_shift, G3);
duke@435 1239 __ bset(O3, G3);
duke@435 1240 __ stx(G3, to, -8);
duke@435 1241
duke@435 1242 __ BIND(L_copy_last_bytes);
duke@435 1243 __ srl(right_shift, LogBitsPerByte, right_shift); // misaligned bytes
duke@435 1244 __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
duke@435 1245 __ delayed()->sub(from, right_shift, from); // restore address
duke@435 1246
duke@435 1247 __ BIND(L_aligned_copy);
duke@435 1248 }
duke@435 1249
duke@435 1250 // Copy big chunks backward with shift
duke@435 1251 //
duke@435 1252 // Inputs:
duke@435 1253 // end_from - source arrays end address
duke@435 1254 // end_to - destination array end address aligned to 8-bytes
duke@435 1255 // count - elements count to copy >= the count equivalent to 16 bytes
duke@435 1256 // count_dec - elements count's decrement equivalent to 16 bytes
duke@435 1257 // L_aligned_copy - aligned copy exit label
duke@435 1258 // L_copy_bytes - copy exit label
duke@435 1259 //
duke@435 1260 void copy_16_bytes_backward_with_shift(Register end_from, Register end_to,
duke@435 1261 Register count, int count_dec,
duke@435 1262 Label& L_aligned_copy, Label& L_copy_bytes) {
duke@435 1263 Label L_loop, L_copy_last_bytes;
duke@435 1264
duke@435 1265 // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
duke@435 1266 __ andcc(end_from, 7, G1); // misaligned bytes
duke@435 1267 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 1268 __ delayed()->deccc(count, count_dec); // Pre-decrement 'count'
duke@435 1269
duke@435 1270 const Register left_shift = G1; // left shift bit counter
duke@435 1271 const Register right_shift = G5; // right shift bit counter
duke@435 1272
duke@435 1273 __ sll(G1, LogBitsPerByte, left_shift);
duke@435 1274 __ mov(64, right_shift);
duke@435 1275 __ sub(right_shift, left_shift, right_shift);
duke@435 1276
duke@435 1277 //
duke@435 1278 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1279 // to form 2 aligned 8-bytes chunks to store.
duke@435 1280 //
duke@435 1281 __ andn(end_from, 7, end_from); // Align address
duke@435 1282 __ ldx(end_from, 0, O3);
duke@435 1283 __ align(16);
duke@435 1284 __ BIND(L_loop);
duke@435 1285 __ ldx(end_from, -8, O4);
duke@435 1286 __ deccc(count, count_dec); // Can we do next iteration after this one?
duke@435 1287 __ ldx(end_from, -16, G4);
duke@435 1288 __ dec(end_to, 16);
duke@435 1289 __ dec(end_from, 16);
duke@435 1290 __ srlx(O3, right_shift, O3);
duke@435 1291 __ sllx(O4, left_shift, G3);
duke@435 1292 __ bset(G3, O3);
duke@435 1293 __ stx(O3, end_to, 8);
duke@435 1294 __ srlx(O4, right_shift, O4);
duke@435 1295 __ sllx(G4, left_shift, G3);
duke@435 1296 __ bset(G3, O4);
duke@435 1297 __ stx(O4, end_to, 0);
duke@435 1298 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 1299 __ delayed()->mov(G4, O3);
duke@435 1300
duke@435 1301 __ inccc(count, count_dec>>1 ); // + 8 bytes
duke@435 1302 __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
duke@435 1303 __ delayed()->inc(count, count_dec>>1); // restore 'count'
duke@435 1304
duke@435 1305 // copy 8 bytes, part of them already loaded in O3
duke@435 1306 __ ldx(end_from, -8, O4);
duke@435 1307 __ dec(end_to, 8);
duke@435 1308 __ dec(end_from, 8);
duke@435 1309 __ srlx(O3, right_shift, O3);
duke@435 1310 __ sllx(O4, left_shift, G3);
duke@435 1311 __ bset(O3, G3);
duke@435 1312 __ stx(G3, end_to, 0);
duke@435 1313
duke@435 1314 __ BIND(L_copy_last_bytes);
duke@435 1315 __ srl(left_shift, LogBitsPerByte, left_shift); // misaligned bytes
duke@435 1316 __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
duke@435 1317 __ delayed()->add(end_from, left_shift, end_from); // restore address
duke@435 1318 }
duke@435 1319
duke@435 1320 //
duke@435 1321 // Generate stub for disjoint byte copy. If "aligned" is true, the
duke@435 1322 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1323 //
duke@435 1324 // Arguments for generated stub:
duke@435 1325 // from: O0
duke@435 1326 // to: O1
duke@435 1327 // count: O2 treated as signed
duke@435 1328 //
duke@435 1329 address generate_disjoint_byte_copy(bool aligned, const char * name) {
duke@435 1330 __ align(CodeEntryAlignment);
duke@435 1331 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1332 address start = __ pc();
duke@435 1333
duke@435 1334 Label L_skip_alignment, L_align;
duke@435 1335 Label L_copy_byte, L_copy_byte_loop, L_exit;
duke@435 1336
duke@435 1337 const Register from = O0; // source array address
duke@435 1338 const Register to = O1; // destination array address
duke@435 1339 const Register count = O2; // elements count
duke@435 1340 const Register offset = O5; // offset from start of arrays
duke@435 1341 // O3, O4, G3, G4 are used as temp registers
duke@435 1342
duke@435 1343 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1344
duke@435 1345 if (!aligned) disjoint_byte_copy_entry = __ pc();
duke@435 1346 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1347 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 1348
duke@435 1349 // for short arrays, just do single element copy
duke@435 1350 __ cmp(count, 23); // 16 + 7
duke@435 1351 __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
duke@435 1352 __ delayed()->mov(G0, offset);
duke@435 1353
duke@435 1354 if (aligned) {
duke@435 1355 // 'aligned' == true when it is known statically during compilation
duke@435 1356 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1357 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1358 //
duke@435 1359 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1360 // and 8 bytes - in 64-bits VM. So we do it only for 32-bits VM
duke@435 1361 //
duke@435 1362 #ifndef _LP64
duke@435 1363 // copy a 4-bytes word if necessary to align 'to' to 8 bytes
duke@435 1364 __ andcc(to, 7, G0);
duke@435 1365 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment);
duke@435 1366 __ delayed()->ld(from, 0, O3);
duke@435 1367 __ inc(from, 4);
duke@435 1368 __ inc(to, 4);
duke@435 1369 __ dec(count, 4);
duke@435 1370 __ st(O3, to, -4);
duke@435 1371 __ BIND(L_skip_alignment);
duke@435 1372 #endif
duke@435 1373 } else {
duke@435 1374 // copy bytes to align 'to' on 8 byte boundary
duke@435 1375 __ andcc(to, 7, G1); // misaligned bytes
duke@435 1376 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1377 __ delayed()->neg(G1);
duke@435 1378 __ inc(G1, 8); // bytes need to copy to next 8-bytes alignment
duke@435 1379 __ sub(count, G1, count);
duke@435 1380 __ BIND(L_align);
duke@435 1381 __ ldub(from, 0, O3);
duke@435 1382 __ deccc(G1);
duke@435 1383 __ inc(from);
duke@435 1384 __ stb(O3, to, 0);
duke@435 1385 __ br(Assembler::notZero, false, Assembler::pt, L_align);
duke@435 1386 __ delayed()->inc(to);
duke@435 1387 __ BIND(L_skip_alignment);
duke@435 1388 }
duke@435 1389 #ifdef _LP64
duke@435 1390 if (!aligned)
duke@435 1391 #endif
duke@435 1392 {
duke@435 1393 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1394 // the same alignment mod 8, otherwise fall through to the next
duke@435 1395 // code for aligned copy.
duke@435 1396 // The compare above (count >= 23) guarantes 'count' >= 16 bytes.
duke@435 1397 // Also jump over aligned copy after the copy with shift completed.
duke@435 1398
duke@435 1399 copy_16_bytes_forward_with_shift(from, to, count, 16, L_copy_byte);
duke@435 1400 }
duke@435 1401
duke@435 1402 // Both array are 8 bytes aligned, copy 16 bytes at a time
duke@435 1403 __ and3(count, 7, G4); // Save count
duke@435 1404 __ srl(count, 3, count);
duke@435 1405 generate_disjoint_long_copy_core(aligned);
duke@435 1406 __ mov(G4, count); // Restore count
duke@435 1407
duke@435 1408 // copy tailing bytes
duke@435 1409 __ BIND(L_copy_byte);
duke@435 1410 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1411 __ delayed()->nop();
duke@435 1412 __ align(16);
duke@435 1413 __ BIND(L_copy_byte_loop);
duke@435 1414 __ ldub(from, offset, O3);
duke@435 1415 __ deccc(count);
duke@435 1416 __ stb(O3, to, offset);
duke@435 1417 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_byte_loop);
duke@435 1418 __ delayed()->inc(offset);
duke@435 1419
duke@435 1420 __ BIND(L_exit);
duke@435 1421 // O3, O4 are used as temp registers
duke@435 1422 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
duke@435 1423 __ retl();
duke@435 1424 __ delayed()->mov(G0, O0); // return 0
duke@435 1425 return start;
duke@435 1426 }
duke@435 1427
duke@435 1428 //
duke@435 1429 // Generate stub for conjoint byte copy. If "aligned" is true, the
duke@435 1430 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1431 //
duke@435 1432 // Arguments for generated stub:
duke@435 1433 // from: O0
duke@435 1434 // to: O1
duke@435 1435 // count: O2 treated as signed
duke@435 1436 //
duke@435 1437 address generate_conjoint_byte_copy(bool aligned, const char * name) {
duke@435 1438 // Do reverse copy.
duke@435 1439
duke@435 1440 __ align(CodeEntryAlignment);
duke@435 1441 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1442 address start = __ pc();
duke@435 1443 address nooverlap_target = aligned ?
duke@435 1444 StubRoutines::arrayof_jbyte_disjoint_arraycopy() :
duke@435 1445 disjoint_byte_copy_entry;
duke@435 1446
duke@435 1447 Label L_skip_alignment, L_align, L_aligned_copy;
duke@435 1448 Label L_copy_byte, L_copy_byte_loop, L_exit;
duke@435 1449
duke@435 1450 const Register from = O0; // source array address
duke@435 1451 const Register to = O1; // destination array address
duke@435 1452 const Register count = O2; // elements count
duke@435 1453 const Register end_from = from; // source array end address
duke@435 1454 const Register end_to = to; // destination array end address
duke@435 1455
duke@435 1456 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1457
duke@435 1458 if (!aligned) byte_copy_entry = __ pc();
duke@435 1459 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1460 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 1461
duke@435 1462 array_overlap_test(nooverlap_target, 0);
duke@435 1463
duke@435 1464 __ add(to, count, end_to); // offset after last copied element
duke@435 1465
duke@435 1466 // for short arrays, just do single element copy
duke@435 1467 __ cmp(count, 23); // 16 + 7
duke@435 1468 __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
duke@435 1469 __ delayed()->add(from, count, end_from);
duke@435 1470
duke@435 1471 {
duke@435 1472 // Align end of arrays since they could be not aligned even
duke@435 1473 // when arrays itself are aligned.
duke@435 1474
duke@435 1475 // copy bytes to align 'end_to' on 8 byte boundary
duke@435 1476 __ andcc(end_to, 7, G1); // misaligned bytes
duke@435 1477 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1478 __ delayed()->nop();
duke@435 1479 __ sub(count, G1, count);
duke@435 1480 __ BIND(L_align);
duke@435 1481 __ dec(end_from);
duke@435 1482 __ dec(end_to);
duke@435 1483 __ ldub(end_from, 0, O3);
duke@435 1484 __ deccc(G1);
duke@435 1485 __ brx(Assembler::notZero, false, Assembler::pt, L_align);
duke@435 1486 __ delayed()->stb(O3, end_to, 0);
duke@435 1487 __ BIND(L_skip_alignment);
duke@435 1488 }
duke@435 1489 #ifdef _LP64
duke@435 1490 if (aligned) {
duke@435 1491 // Both arrays are aligned to 8-bytes in 64-bits VM.
duke@435 1492 // The 'count' is decremented in copy_16_bytes_backward_with_shift()
duke@435 1493 // in unaligned case.
duke@435 1494 __ dec(count, 16);
duke@435 1495 } else
duke@435 1496 #endif
duke@435 1497 {
duke@435 1498 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1499 // the same alignment mod 8, otherwise jump to the next
duke@435 1500 // code for aligned copy (and substracting 16 from 'count' before jump).
duke@435 1501 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1502 // Also jump over aligned copy after the copy with shift completed.
duke@435 1503
duke@435 1504 copy_16_bytes_backward_with_shift(end_from, end_to, count, 16,
duke@435 1505 L_aligned_copy, L_copy_byte);
duke@435 1506 }
duke@435 1507 // copy 4 elements (16 bytes) at a time
duke@435 1508 __ align(16);
duke@435 1509 __ BIND(L_aligned_copy);
duke@435 1510 __ dec(end_from, 16);
duke@435 1511 __ ldx(end_from, 8, O3);
duke@435 1512 __ ldx(end_from, 0, O4);
duke@435 1513 __ dec(end_to, 16);
duke@435 1514 __ deccc(count, 16);
duke@435 1515 __ stx(O3, end_to, 8);
duke@435 1516 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 1517 __ delayed()->stx(O4, end_to, 0);
duke@435 1518 __ inc(count, 16);
duke@435 1519
duke@435 1520 // copy 1 element (2 bytes) at a time
duke@435 1521 __ BIND(L_copy_byte);
duke@435 1522 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1523 __ delayed()->nop();
duke@435 1524 __ align(16);
duke@435 1525 __ BIND(L_copy_byte_loop);
duke@435 1526 __ dec(end_from);
duke@435 1527 __ dec(end_to);
duke@435 1528 __ ldub(end_from, 0, O4);
duke@435 1529 __ deccc(count);
duke@435 1530 __ brx(Assembler::greater, false, Assembler::pt, L_copy_byte_loop);
duke@435 1531 __ delayed()->stb(O4, end_to, 0);
duke@435 1532
duke@435 1533 __ BIND(L_exit);
duke@435 1534 // O3, O4 are used as temp registers
duke@435 1535 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
duke@435 1536 __ retl();
duke@435 1537 __ delayed()->mov(G0, O0); // return 0
duke@435 1538 return start;
duke@435 1539 }
duke@435 1540
duke@435 1541 //
duke@435 1542 // Generate stub for disjoint short copy. If "aligned" is true, the
duke@435 1543 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1544 //
duke@435 1545 // Arguments for generated stub:
duke@435 1546 // from: O0
duke@435 1547 // to: O1
duke@435 1548 // count: O2 treated as signed
duke@435 1549 //
duke@435 1550 address generate_disjoint_short_copy(bool aligned, const char * name) {
duke@435 1551 __ align(CodeEntryAlignment);
duke@435 1552 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1553 address start = __ pc();
duke@435 1554
duke@435 1555 Label L_skip_alignment, L_skip_alignment2;
duke@435 1556 Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
duke@435 1557
duke@435 1558 const Register from = O0; // source array address
duke@435 1559 const Register to = O1; // destination array address
duke@435 1560 const Register count = O2; // elements count
duke@435 1561 const Register offset = O5; // offset from start of arrays
duke@435 1562 // O3, O4, G3, G4 are used as temp registers
duke@435 1563
duke@435 1564 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1565
duke@435 1566 if (!aligned) disjoint_short_copy_entry = __ pc();
duke@435 1567 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1568 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 1569
duke@435 1570 // for short arrays, just do single element copy
duke@435 1571 __ cmp(count, 11); // 8 + 3 (22 bytes)
duke@435 1572 __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
duke@435 1573 __ delayed()->mov(G0, offset);
duke@435 1574
duke@435 1575 if (aligned) {
duke@435 1576 // 'aligned' == true when it is known statically during compilation
duke@435 1577 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1578 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1579 //
duke@435 1580 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1581 // and 8 bytes - in 64-bits VM.
duke@435 1582 //
duke@435 1583 #ifndef _LP64
duke@435 1584 // copy a 2-elements word if necessary to align 'to' to 8 bytes
duke@435 1585 __ andcc(to, 7, G0);
duke@435 1586 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1587 __ delayed()->ld(from, 0, O3);
duke@435 1588 __ inc(from, 4);
duke@435 1589 __ inc(to, 4);
duke@435 1590 __ dec(count, 2);
duke@435 1591 __ st(O3, to, -4);
duke@435 1592 __ BIND(L_skip_alignment);
duke@435 1593 #endif
duke@435 1594 } else {
duke@435 1595 // copy 1 element if necessary to align 'to' on an 4 bytes
duke@435 1596 __ andcc(to, 3, G0);
duke@435 1597 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1598 __ delayed()->lduh(from, 0, O3);
duke@435 1599 __ inc(from, 2);
duke@435 1600 __ inc(to, 2);
duke@435 1601 __ dec(count);
duke@435 1602 __ sth(O3, to, -2);
duke@435 1603 __ BIND(L_skip_alignment);
duke@435 1604
duke@435 1605 // copy 2 elements to align 'to' on an 8 byte boundary
duke@435 1606 __ andcc(to, 7, G0);
duke@435 1607 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
duke@435 1608 __ delayed()->lduh(from, 0, O3);
duke@435 1609 __ dec(count, 2);
duke@435 1610 __ lduh(from, 2, O4);
duke@435 1611 __ inc(from, 4);
duke@435 1612 __ inc(to, 4);
duke@435 1613 __ sth(O3, to, -4);
duke@435 1614 __ sth(O4, to, -2);
duke@435 1615 __ BIND(L_skip_alignment2);
duke@435 1616 }
duke@435 1617 #ifdef _LP64
duke@435 1618 if (!aligned)
duke@435 1619 #endif
duke@435 1620 {
duke@435 1621 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1622 // the same alignment mod 8, otherwise fall through to the next
duke@435 1623 // code for aligned copy.
duke@435 1624 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1625 // Also jump over aligned copy after the copy with shift completed.
duke@435 1626
duke@435 1627 copy_16_bytes_forward_with_shift(from, to, count, 8, L_copy_2_bytes);
duke@435 1628 }
duke@435 1629
duke@435 1630 // Both array are 8 bytes aligned, copy 16 bytes at a time
duke@435 1631 __ and3(count, 3, G4); // Save
duke@435 1632 __ srl(count, 2, count);
duke@435 1633 generate_disjoint_long_copy_core(aligned);
duke@435 1634 __ mov(G4, count); // restore
duke@435 1635
duke@435 1636 // copy 1 element at a time
duke@435 1637 __ BIND(L_copy_2_bytes);
duke@435 1638 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1639 __ delayed()->nop();
duke@435 1640 __ align(16);
duke@435 1641 __ BIND(L_copy_2_bytes_loop);
duke@435 1642 __ lduh(from, offset, O3);
duke@435 1643 __ deccc(count);
duke@435 1644 __ sth(O3, to, offset);
duke@435 1645 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_2_bytes_loop);
duke@435 1646 __ delayed()->inc(offset, 2);
duke@435 1647
duke@435 1648 __ BIND(L_exit);
duke@435 1649 // O3, O4 are used as temp registers
duke@435 1650 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
duke@435 1651 __ retl();
duke@435 1652 __ delayed()->mov(G0, O0); // return 0
duke@435 1653 return start;
duke@435 1654 }
duke@435 1655
duke@435 1656 //
duke@435 1657 // Generate stub for conjoint short copy. If "aligned" is true, the
duke@435 1658 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1659 //
duke@435 1660 // Arguments for generated stub:
duke@435 1661 // from: O0
duke@435 1662 // to: O1
duke@435 1663 // count: O2 treated as signed
duke@435 1664 //
duke@435 1665 address generate_conjoint_short_copy(bool aligned, const char * name) {
duke@435 1666 // Do reverse copy.
duke@435 1667
duke@435 1668 __ align(CodeEntryAlignment);
duke@435 1669 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1670 address start = __ pc();
duke@435 1671 address nooverlap_target = aligned ?
duke@435 1672 StubRoutines::arrayof_jshort_disjoint_arraycopy() :
duke@435 1673 disjoint_short_copy_entry;
duke@435 1674
duke@435 1675 Label L_skip_alignment, L_skip_alignment2, L_aligned_copy;
duke@435 1676 Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
duke@435 1677
duke@435 1678 const Register from = O0; // source array address
duke@435 1679 const Register to = O1; // destination array address
duke@435 1680 const Register count = O2; // elements count
duke@435 1681 const Register end_from = from; // source array end address
duke@435 1682 const Register end_to = to; // destination array end address
duke@435 1683
duke@435 1684 const Register byte_count = O3; // bytes count to copy
duke@435 1685
duke@435 1686 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1687
duke@435 1688 if (!aligned) short_copy_entry = __ pc();
duke@435 1689 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1690 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 1691
duke@435 1692 array_overlap_test(nooverlap_target, 1);
duke@435 1693
duke@435 1694 __ sllx(count, LogBytesPerShort, byte_count);
duke@435 1695 __ add(to, byte_count, end_to); // offset after last copied element
duke@435 1696
duke@435 1697 // for short arrays, just do single element copy
duke@435 1698 __ cmp(count, 11); // 8 + 3 (22 bytes)
duke@435 1699 __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
duke@435 1700 __ delayed()->add(from, byte_count, end_from);
duke@435 1701
duke@435 1702 {
duke@435 1703 // Align end of arrays since they could be not aligned even
duke@435 1704 // when arrays itself are aligned.
duke@435 1705
duke@435 1706 // copy 1 element if necessary to align 'end_to' on an 4 bytes
duke@435 1707 __ andcc(end_to, 3, G0);
duke@435 1708 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1709 __ delayed()->lduh(end_from, -2, O3);
duke@435 1710 __ dec(end_from, 2);
duke@435 1711 __ dec(end_to, 2);
duke@435 1712 __ dec(count);
duke@435 1713 __ sth(O3, end_to, 0);
duke@435 1714 __ BIND(L_skip_alignment);
duke@435 1715
duke@435 1716 // copy 2 elements to align 'end_to' on an 8 byte boundary
duke@435 1717 __ andcc(end_to, 7, G0);
duke@435 1718 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
duke@435 1719 __ delayed()->lduh(end_from, -2, O3);
duke@435 1720 __ dec(count, 2);
duke@435 1721 __ lduh(end_from, -4, O4);
duke@435 1722 __ dec(end_from, 4);
duke@435 1723 __ dec(end_to, 4);
duke@435 1724 __ sth(O3, end_to, 2);
duke@435 1725 __ sth(O4, end_to, 0);
duke@435 1726 __ BIND(L_skip_alignment2);
duke@435 1727 }
duke@435 1728 #ifdef _LP64
duke@435 1729 if (aligned) {
duke@435 1730 // Both arrays are aligned to 8-bytes in 64-bits VM.
duke@435 1731 // The 'count' is decremented in copy_16_bytes_backward_with_shift()
duke@435 1732 // in unaligned case.
duke@435 1733 __ dec(count, 8);
duke@435 1734 } else
duke@435 1735 #endif
duke@435 1736 {
duke@435 1737 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1738 // the same alignment mod 8, otherwise jump to the next
duke@435 1739 // code for aligned copy (and substracting 8 from 'count' before jump).
duke@435 1740 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1741 // Also jump over aligned copy after the copy with shift completed.
duke@435 1742
duke@435 1743 copy_16_bytes_backward_with_shift(end_from, end_to, count, 8,
duke@435 1744 L_aligned_copy, L_copy_2_bytes);
duke@435 1745 }
duke@435 1746 // copy 4 elements (16 bytes) at a time
duke@435 1747 __ align(16);
duke@435 1748 __ BIND(L_aligned_copy);
duke@435 1749 __ dec(end_from, 16);
duke@435 1750 __ ldx(end_from, 8, O3);
duke@435 1751 __ ldx(end_from, 0, O4);
duke@435 1752 __ dec(end_to, 16);
duke@435 1753 __ deccc(count, 8);
duke@435 1754 __ stx(O3, end_to, 8);
duke@435 1755 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 1756 __ delayed()->stx(O4, end_to, 0);
duke@435 1757 __ inc(count, 8);
duke@435 1758
duke@435 1759 // copy 1 element (2 bytes) at a time
duke@435 1760 __ BIND(L_copy_2_bytes);
duke@435 1761 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1762 __ delayed()->nop();
duke@435 1763 __ BIND(L_copy_2_bytes_loop);
duke@435 1764 __ dec(end_from, 2);
duke@435 1765 __ dec(end_to, 2);
duke@435 1766 __ lduh(end_from, 0, O4);
duke@435 1767 __ deccc(count);
duke@435 1768 __ brx(Assembler::greater, false, Assembler::pt, L_copy_2_bytes_loop);
duke@435 1769 __ delayed()->sth(O4, end_to, 0);
duke@435 1770
duke@435 1771 __ BIND(L_exit);
duke@435 1772 // O3, O4 are used as temp registers
duke@435 1773 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
duke@435 1774 __ retl();
duke@435 1775 __ delayed()->mov(G0, O0); // return 0
duke@435 1776 return start;
duke@435 1777 }
duke@435 1778
duke@435 1779 //
duke@435 1780 // Generate core code for disjoint int copy (and oop copy on 32-bit).
duke@435 1781 // If "aligned" is true, the "from" and "to" addresses are assumed
duke@435 1782 // to be heapword aligned.
duke@435 1783 //
duke@435 1784 // Arguments:
duke@435 1785 // from: O0
duke@435 1786 // to: O1
duke@435 1787 // count: O2 treated as signed
duke@435 1788 //
duke@435 1789 void generate_disjoint_int_copy_core(bool aligned) {
duke@435 1790
duke@435 1791 Label L_skip_alignment, L_aligned_copy;
duke@435 1792 Label L_copy_16_bytes, L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
duke@435 1793
duke@435 1794 const Register from = O0; // source array address
duke@435 1795 const Register to = O1; // destination array address
duke@435 1796 const Register count = O2; // elements count
duke@435 1797 const Register offset = O5; // offset from start of arrays
duke@435 1798 // O3, O4, G3, G4 are used as temp registers
duke@435 1799
duke@435 1800 // 'aligned' == true when it is known statically during compilation
duke@435 1801 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1802 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1803 //
duke@435 1804 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1805 // and 8 bytes - in 64-bits VM.
duke@435 1806 //
duke@435 1807 #ifdef _LP64
duke@435 1808 if (!aligned)
duke@435 1809 #endif
duke@435 1810 {
duke@435 1811 // The next check could be put under 'ifndef' since the code in
duke@435 1812 // generate_disjoint_long_copy_core() has own checks and set 'offset'.
duke@435 1813
duke@435 1814 // for short arrays, just do single element copy
duke@435 1815 __ cmp(count, 5); // 4 + 1 (20 bytes)
duke@435 1816 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
duke@435 1817 __ delayed()->mov(G0, offset);
duke@435 1818
duke@435 1819 // copy 1 element to align 'to' on an 8 byte boundary
duke@435 1820 __ andcc(to, 7, G0);
duke@435 1821 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1822 __ delayed()->ld(from, 0, O3);
duke@435 1823 __ inc(from, 4);
duke@435 1824 __ inc(to, 4);
duke@435 1825 __ dec(count);
duke@435 1826 __ st(O3, to, -4);
duke@435 1827 __ BIND(L_skip_alignment);
duke@435 1828
duke@435 1829 // if arrays have same alignment mod 8, do 4 elements copy
duke@435 1830 __ andcc(from, 7, G0);
duke@435 1831 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 1832 __ delayed()->ld(from, 0, O3);
duke@435 1833
duke@435 1834 //
duke@435 1835 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1836 // to form 2 aligned 8-bytes chunks to store.
duke@435 1837 //
duke@435 1838 // copy_16_bytes_forward_with_shift() is not used here since this
duke@435 1839 // code is more optimal.
duke@435 1840
duke@435 1841 // copy with shift 4 elements (16 bytes) at a time
duke@435 1842 __ dec(count, 4); // The cmp at the beginning guaranty count >= 4
duke@435 1843
duke@435 1844 __ align(16);
duke@435 1845 __ BIND(L_copy_16_bytes);
duke@435 1846 __ ldx(from, 4, O4);
duke@435 1847 __ deccc(count, 4); // Can we do next iteration after this one?
duke@435 1848 __ ldx(from, 12, G4);
duke@435 1849 __ inc(to, 16);
duke@435 1850 __ inc(from, 16);
duke@435 1851 __ sllx(O3, 32, O3);
duke@435 1852 __ srlx(O4, 32, G3);
duke@435 1853 __ bset(G3, O3);
duke@435 1854 __ stx(O3, to, -16);
duke@435 1855 __ sllx(O4, 32, O4);
duke@435 1856 __ srlx(G4, 32, G3);
duke@435 1857 __ bset(G3, O4);
duke@435 1858 __ stx(O4, to, -8);
duke@435 1859 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 1860 __ delayed()->mov(G4, O3);
duke@435 1861
duke@435 1862 __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
duke@435 1863 __ delayed()->inc(count, 4); // restore 'count'
duke@435 1864
duke@435 1865 __ BIND(L_aligned_copy);
duke@435 1866 }
duke@435 1867 // copy 4 elements (16 bytes) at a time
duke@435 1868 __ and3(count, 1, G4); // Save
duke@435 1869 __ srl(count, 1, count);
duke@435 1870 generate_disjoint_long_copy_core(aligned);
duke@435 1871 __ mov(G4, count); // Restore
duke@435 1872
duke@435 1873 // copy 1 element at a time
duke@435 1874 __ BIND(L_copy_4_bytes);
duke@435 1875 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1876 __ delayed()->nop();
duke@435 1877 __ BIND(L_copy_4_bytes_loop);
duke@435 1878 __ ld(from, offset, O3);
duke@435 1879 __ deccc(count);
duke@435 1880 __ st(O3, to, offset);
duke@435 1881 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_4_bytes_loop);
duke@435 1882 __ delayed()->inc(offset, 4);
duke@435 1883 __ BIND(L_exit);
duke@435 1884 }
duke@435 1885
duke@435 1886 //
duke@435 1887 // Generate stub for disjoint int copy. If "aligned" is true, the
duke@435 1888 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1889 //
duke@435 1890 // Arguments for generated stub:
duke@435 1891 // from: O0
duke@435 1892 // to: O1
duke@435 1893 // count: O2 treated as signed
duke@435 1894 //
duke@435 1895 address generate_disjoint_int_copy(bool aligned, const char * name) {
duke@435 1896 __ align(CodeEntryAlignment);
duke@435 1897 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1898 address start = __ pc();
duke@435 1899
duke@435 1900 const Register count = O2;
duke@435 1901 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1902
duke@435 1903 if (!aligned) disjoint_int_copy_entry = __ pc();
duke@435 1904 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1905 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 1906
duke@435 1907 generate_disjoint_int_copy_core(aligned);
duke@435 1908
duke@435 1909 // O3, O4 are used as temp registers
duke@435 1910 inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
duke@435 1911 __ retl();
duke@435 1912 __ delayed()->mov(G0, O0); // return 0
duke@435 1913 return start;
duke@435 1914 }
duke@435 1915
duke@435 1916 //
duke@435 1917 // Generate core code for conjoint int copy (and oop copy on 32-bit).
duke@435 1918 // If "aligned" is true, the "from" and "to" addresses are assumed
duke@435 1919 // to be heapword aligned.
duke@435 1920 //
duke@435 1921 // Arguments:
duke@435 1922 // from: O0
duke@435 1923 // to: O1
duke@435 1924 // count: O2 treated as signed
duke@435 1925 //
duke@435 1926 void generate_conjoint_int_copy_core(bool aligned) {
duke@435 1927 // Do reverse copy.
duke@435 1928
duke@435 1929 Label L_skip_alignment, L_aligned_copy;
duke@435 1930 Label L_copy_16_bytes, L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
duke@435 1931
duke@435 1932 const Register from = O0; // source array address
duke@435 1933 const Register to = O1; // destination array address
duke@435 1934 const Register count = O2; // elements count
duke@435 1935 const Register end_from = from; // source array end address
duke@435 1936 const Register end_to = to; // destination array end address
duke@435 1937 // O3, O4, O5, G3 are used as temp registers
duke@435 1938
duke@435 1939 const Register byte_count = O3; // bytes count to copy
duke@435 1940
duke@435 1941 __ sllx(count, LogBytesPerInt, byte_count);
duke@435 1942 __ add(to, byte_count, end_to); // offset after last copied element
duke@435 1943
duke@435 1944 __ cmp(count, 5); // for short arrays, just do single element copy
duke@435 1945 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
duke@435 1946 __ delayed()->add(from, byte_count, end_from);
duke@435 1947
duke@435 1948 // copy 1 element to align 'to' on an 8 byte boundary
duke@435 1949 __ andcc(end_to, 7, G0);
duke@435 1950 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1951 __ delayed()->nop();
duke@435 1952 __ dec(count);
duke@435 1953 __ dec(end_from, 4);
duke@435 1954 __ dec(end_to, 4);
duke@435 1955 __ ld(end_from, 0, O4);
duke@435 1956 __ st(O4, end_to, 0);
duke@435 1957 __ BIND(L_skip_alignment);
duke@435 1958
duke@435 1959 // Check if 'end_from' and 'end_to' has the same alignment.
duke@435 1960 __ andcc(end_from, 7, G0);
duke@435 1961 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 1962 __ delayed()->dec(count, 4); // The cmp at the start guaranty cnt >= 4
duke@435 1963
duke@435 1964 // copy with shift 4 elements (16 bytes) at a time
duke@435 1965 //
duke@435 1966 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1967 // to form 2 aligned 8-bytes chunks to store.
duke@435 1968 //
duke@435 1969 __ ldx(end_from, -4, O3);
duke@435 1970 __ align(16);
duke@435 1971 __ BIND(L_copy_16_bytes);
duke@435 1972 __ ldx(end_from, -12, O4);
duke@435 1973 __ deccc(count, 4);
duke@435 1974 __ ldx(end_from, -20, O5);
duke@435 1975 __ dec(end_to, 16);
duke@435 1976 __ dec(end_from, 16);
duke@435 1977 __ srlx(O3, 32, O3);
duke@435 1978 __ sllx(O4, 32, G3);
duke@435 1979 __ bset(G3, O3);
duke@435 1980 __ stx(O3, end_to, 8);
duke@435 1981 __ srlx(O4, 32, O4);
duke@435 1982 __ sllx(O5, 32, G3);
duke@435 1983 __ bset(O4, G3);
duke@435 1984 __ stx(G3, end_to, 0);
duke@435 1985 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 1986 __ delayed()->mov(O5, O3);
duke@435 1987
duke@435 1988 __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
duke@435 1989 __ delayed()->inc(count, 4);
duke@435 1990
duke@435 1991 // copy 4 elements (16 bytes) at a time
duke@435 1992 __ align(16);
duke@435 1993 __ BIND(L_aligned_copy);
duke@435 1994 __ dec(end_from, 16);
duke@435 1995 __ ldx(end_from, 8, O3);
duke@435 1996 __ ldx(end_from, 0, O4);
duke@435 1997 __ dec(end_to, 16);
duke@435 1998 __ deccc(count, 4);
duke@435 1999 __ stx(O3, end_to, 8);
duke@435 2000 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 2001 __ delayed()->stx(O4, end_to, 0);
duke@435 2002 __ inc(count, 4);
duke@435 2003
duke@435 2004 // copy 1 element (4 bytes) at a time
duke@435 2005 __ BIND(L_copy_4_bytes);
duke@435 2006 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 2007 __ delayed()->nop();
duke@435 2008 __ BIND(L_copy_4_bytes_loop);
duke@435 2009 __ dec(end_from, 4);
duke@435 2010 __ dec(end_to, 4);
duke@435 2011 __ ld(end_from, 0, O4);
duke@435 2012 __ deccc(count);
duke@435 2013 __ brx(Assembler::greater, false, Assembler::pt, L_copy_4_bytes_loop);
duke@435 2014 __ delayed()->st(O4, end_to, 0);
duke@435 2015 __ BIND(L_exit);
duke@435 2016 }
duke@435 2017
duke@435 2018 //
duke@435 2019 // Generate stub for conjoint int copy. If "aligned" is true, the
duke@435 2020 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2021 //
duke@435 2022 // Arguments for generated stub:
duke@435 2023 // from: O0
duke@435 2024 // to: O1
duke@435 2025 // count: O2 treated as signed
duke@435 2026 //
duke@435 2027 address generate_conjoint_int_copy(bool aligned, const char * name) {
duke@435 2028 __ align(CodeEntryAlignment);
duke@435 2029 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2030 address start = __ pc();
duke@435 2031
duke@435 2032 address nooverlap_target = aligned ?
duke@435 2033 StubRoutines::arrayof_jint_disjoint_arraycopy() :
duke@435 2034 disjoint_int_copy_entry;
duke@435 2035
duke@435 2036 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2037
duke@435 2038 if (!aligned) int_copy_entry = __ pc();
duke@435 2039 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 2040 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 2041
duke@435 2042 array_overlap_test(nooverlap_target, 2);
duke@435 2043
duke@435 2044 generate_conjoint_int_copy_core(aligned);
duke@435 2045
duke@435 2046 // O3, O4 are used as temp registers
duke@435 2047 inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
duke@435 2048 __ retl();
duke@435 2049 __ delayed()->mov(G0, O0); // return 0
duke@435 2050 return start;
duke@435 2051 }
duke@435 2052
duke@435 2053 //
duke@435 2054 // Generate core code for disjoint long copy (and oop copy on 64-bit).
duke@435 2055 // "aligned" is ignored, because we must make the stronger
duke@435 2056 // assumption that both addresses are always 64-bit aligned.
duke@435 2057 //
duke@435 2058 // Arguments:
duke@435 2059 // from: O0
duke@435 2060 // to: O1
duke@435 2061 // count: O2 treated as signed
duke@435 2062 //
duke@435 2063 void generate_disjoint_long_copy_core(bool aligned) {
duke@435 2064 Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
duke@435 2065 const Register from = O0; // source array address
duke@435 2066 const Register to = O1; // destination array address
duke@435 2067 const Register count = O2; // elements count
duke@435 2068 const Register offset0 = O4; // element offset
duke@435 2069 const Register offset8 = O5; // next element offset
duke@435 2070
duke@435 2071 __ deccc(count, 2);
duke@435 2072 __ mov(G0, offset0); // offset from start of arrays (0)
duke@435 2073 __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
duke@435 2074 __ delayed()->add(offset0, 8, offset8);
duke@435 2075 __ align(16);
duke@435 2076 __ BIND(L_copy_16_bytes);
duke@435 2077 __ ldx(from, offset0, O3);
duke@435 2078 __ ldx(from, offset8, G3);
duke@435 2079 __ deccc(count, 2);
duke@435 2080 __ stx(O3, to, offset0);
duke@435 2081 __ inc(offset0, 16);
duke@435 2082 __ stx(G3, to, offset8);
duke@435 2083 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 2084 __ delayed()->inc(offset8, 16);
duke@435 2085
duke@435 2086 __ BIND(L_copy_8_bytes);
duke@435 2087 __ inccc(count, 2);
duke@435 2088 __ brx(Assembler::zero, true, Assembler::pn, L_exit );
duke@435 2089 __ delayed()->mov(offset0, offset8); // Set O5 used by other stubs
duke@435 2090 __ ldx(from, offset0, O3);
duke@435 2091 __ stx(O3, to, offset0);
duke@435 2092 __ BIND(L_exit);
duke@435 2093 }
duke@435 2094
duke@435 2095 //
duke@435 2096 // Generate stub for disjoint long copy.
duke@435 2097 // "aligned" is ignored, because we must make the stronger
duke@435 2098 // assumption that both addresses are always 64-bit aligned.
duke@435 2099 //
duke@435 2100 // Arguments for generated stub:
duke@435 2101 // from: O0
duke@435 2102 // to: O1
duke@435 2103 // count: O2 treated as signed
duke@435 2104 //
duke@435 2105 address generate_disjoint_long_copy(bool aligned, const char * name) {
duke@435 2106 __ align(CodeEntryAlignment);
duke@435 2107 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2108 address start = __ pc();
duke@435 2109
duke@435 2110 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2111
duke@435 2112 if (!aligned) disjoint_long_copy_entry = __ pc();
duke@435 2113 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 2114 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 2115
duke@435 2116 generate_disjoint_long_copy_core(aligned);
duke@435 2117
duke@435 2118 // O3, O4 are used as temp registers
duke@435 2119 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
duke@435 2120 __ retl();
duke@435 2121 __ delayed()->mov(G0, O0); // return 0
duke@435 2122 return start;
duke@435 2123 }
duke@435 2124
duke@435 2125 //
duke@435 2126 // Generate core code for conjoint long copy (and oop copy on 64-bit).
duke@435 2127 // "aligned" is ignored, because we must make the stronger
duke@435 2128 // assumption that both addresses are always 64-bit aligned.
duke@435 2129 //
duke@435 2130 // Arguments:
duke@435 2131 // from: O0
duke@435 2132 // to: O1
duke@435 2133 // count: O2 treated as signed
duke@435 2134 //
duke@435 2135 void generate_conjoint_long_copy_core(bool aligned) {
duke@435 2136 // Do reverse copy.
duke@435 2137 Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
duke@435 2138 const Register from = O0; // source array address
duke@435 2139 const Register to = O1; // destination array address
duke@435 2140 const Register count = O2; // elements count
duke@435 2141 const Register offset8 = O4; // element offset
duke@435 2142 const Register offset0 = O5; // previous element offset
duke@435 2143
duke@435 2144 __ subcc(count, 1, count);
duke@435 2145 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_8_bytes );
duke@435 2146 __ delayed()->sllx(count, LogBytesPerLong, offset8);
duke@435 2147 __ sub(offset8, 8, offset0);
duke@435 2148 __ align(16);
duke@435 2149 __ BIND(L_copy_16_bytes);
duke@435 2150 __ ldx(from, offset8, O2);
duke@435 2151 __ ldx(from, offset0, O3);
duke@435 2152 __ stx(O2, to, offset8);
duke@435 2153 __ deccc(offset8, 16); // use offset8 as counter
duke@435 2154 __ stx(O3, to, offset0);
duke@435 2155 __ brx(Assembler::greater, false, Assembler::pt, L_copy_16_bytes);
duke@435 2156 __ delayed()->dec(offset0, 16);
duke@435 2157
duke@435 2158 __ BIND(L_copy_8_bytes);
duke@435 2159 __ brx(Assembler::negative, false, Assembler::pn, L_exit );
duke@435 2160 __ delayed()->nop();
duke@435 2161 __ ldx(from, 0, O3);
duke@435 2162 __ stx(O3, to, 0);
duke@435 2163 __ BIND(L_exit);
duke@435 2164 }
duke@435 2165
duke@435 2166 // Generate stub for conjoint long copy.
duke@435 2167 // "aligned" is ignored, because we must make the stronger
duke@435 2168 // assumption that both addresses are always 64-bit aligned.
duke@435 2169 //
duke@435 2170 // Arguments for generated stub:
duke@435 2171 // from: O0
duke@435 2172 // to: O1
duke@435 2173 // count: O2 treated as signed
duke@435 2174 //
duke@435 2175 address generate_conjoint_long_copy(bool aligned, const char * name) {
duke@435 2176 __ align(CodeEntryAlignment);
duke@435 2177 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2178 address start = __ pc();
duke@435 2179
duke@435 2180 assert(!aligned, "usage");
duke@435 2181 address nooverlap_target = disjoint_long_copy_entry;
duke@435 2182
duke@435 2183 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2184
duke@435 2185 if (!aligned) long_copy_entry = __ pc();
duke@435 2186 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 2187 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 2188
duke@435 2189 array_overlap_test(nooverlap_target, 3);
duke@435 2190
duke@435 2191 generate_conjoint_long_copy_core(aligned);
duke@435 2192
duke@435 2193 // O3, O4 are used as temp registers
duke@435 2194 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
duke@435 2195 __ retl();
duke@435 2196 __ delayed()->mov(G0, O0); // return 0
duke@435 2197 return start;
duke@435 2198 }
duke@435 2199
duke@435 2200 // Generate stub for disjoint oop copy. If "aligned" is true, the
duke@435 2201 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2202 //
duke@435 2203 // Arguments for generated stub:
duke@435 2204 // from: O0
duke@435 2205 // to: O1
duke@435 2206 // count: O2 treated as signed
duke@435 2207 //
duke@435 2208 address generate_disjoint_oop_copy(bool aligned, const char * name) {
duke@435 2209
duke@435 2210 const Register from = O0; // source array address
duke@435 2211 const Register to = O1; // destination array address
duke@435 2212 const Register count = O2; // elements count
duke@435 2213
duke@435 2214 __ align(CodeEntryAlignment);
duke@435 2215 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2216 address start = __ pc();
duke@435 2217
duke@435 2218 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2219
duke@435 2220 if (!aligned) disjoint_oop_copy_entry = __ pc();
duke@435 2221 // caller can pass a 64-bit byte count here
duke@435 2222 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 2223
duke@435 2224 // save arguments for barrier generation
duke@435 2225 __ mov(to, G1);
duke@435 2226 __ mov(count, G5);
duke@435 2227 gen_write_ref_array_pre_barrier(G1, G5);
duke@435 2228 #ifdef _LP64
duke@435 2229 generate_disjoint_long_copy_core(aligned);
duke@435 2230 #else
duke@435 2231 generate_disjoint_int_copy_core(aligned);
duke@435 2232 #endif
duke@435 2233 // O0 is used as temp register
duke@435 2234 gen_write_ref_array_post_barrier(G1, G5, O0);
duke@435 2235
duke@435 2236 // O3, O4 are used as temp registers
duke@435 2237 inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
duke@435 2238 __ retl();
duke@435 2239 __ delayed()->mov(G0, O0); // return 0
duke@435 2240 return start;
duke@435 2241 }
duke@435 2242
duke@435 2243 // Generate stub for conjoint oop copy. If "aligned" is true, the
duke@435 2244 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2245 //
duke@435 2246 // Arguments for generated stub:
duke@435 2247 // from: O0
duke@435 2248 // to: O1
duke@435 2249 // count: O2 treated as signed
duke@435 2250 //
duke@435 2251 address generate_conjoint_oop_copy(bool aligned, const char * name) {
duke@435 2252
duke@435 2253 const Register from = O0; // source array address
duke@435 2254 const Register to = O1; // destination array address
duke@435 2255 const Register count = O2; // elements count
duke@435 2256
duke@435 2257 __ align(CodeEntryAlignment);
duke@435 2258 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2259 address start = __ pc();
duke@435 2260
duke@435 2261 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2262
duke@435 2263 if (!aligned) oop_copy_entry = __ pc();
duke@435 2264 // caller can pass a 64-bit byte count here
duke@435 2265 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 2266
duke@435 2267 // save arguments for barrier generation
duke@435 2268 __ mov(to, G1);
duke@435 2269 __ mov(count, G5);
duke@435 2270
duke@435 2271 gen_write_ref_array_pre_barrier(G1, G5);
duke@435 2272
duke@435 2273 address nooverlap_target = aligned ?
duke@435 2274 StubRoutines::arrayof_oop_disjoint_arraycopy() :
duke@435 2275 disjoint_oop_copy_entry;
duke@435 2276
duke@435 2277 array_overlap_test(nooverlap_target, LogBytesPerWord);
duke@435 2278
duke@435 2279 #ifdef _LP64
duke@435 2280 generate_conjoint_long_copy_core(aligned);
duke@435 2281 #else
duke@435 2282 generate_conjoint_int_copy_core(aligned);
duke@435 2283 #endif
duke@435 2284
duke@435 2285 // O0 is used as temp register
duke@435 2286 gen_write_ref_array_post_barrier(G1, G5, O0);
duke@435 2287
duke@435 2288 // O3, O4 are used as temp registers
duke@435 2289 inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
duke@435 2290 __ retl();
duke@435 2291 __ delayed()->mov(G0, O0); // return 0
duke@435 2292 return start;
duke@435 2293 }
duke@435 2294
duke@435 2295
duke@435 2296 // Helper for generating a dynamic type check.
duke@435 2297 // Smashes only the given temp registers.
duke@435 2298 void generate_type_check(Register sub_klass,
duke@435 2299 Register super_check_offset,
duke@435 2300 Register super_klass,
duke@435 2301 Register temp,
duke@435 2302 Label& L_success,
duke@435 2303 Register deccc_hack = noreg) {
duke@435 2304 assert_different_registers(sub_klass, super_check_offset, super_klass, temp);
duke@435 2305
duke@435 2306 BLOCK_COMMENT("type_check:");
duke@435 2307
duke@435 2308 Label L_miss;
duke@435 2309
duke@435 2310 assert_clean_int(super_check_offset, temp);
duke@435 2311
duke@435 2312 // maybe decrement caller's trip count:
duke@435 2313 #define DELAY_SLOT delayed(); \
duke@435 2314 { if (deccc_hack == noreg) __ nop(); else __ deccc(deccc_hack); }
duke@435 2315
duke@435 2316 // if the pointers are equal, we are done (e.g., String[] elements)
duke@435 2317 __ cmp(sub_klass, super_klass);
duke@435 2318 __ brx(Assembler::equal, true, Assembler::pt, L_success);
duke@435 2319 __ DELAY_SLOT;
duke@435 2320
duke@435 2321 // check the supertype display:
duke@435 2322 __ ld_ptr(sub_klass, super_check_offset, temp); // query the super type
duke@435 2323 __ cmp(super_klass, temp); // test the super type
duke@435 2324 __ brx(Assembler::equal, true, Assembler::pt, L_success);
duke@435 2325 __ DELAY_SLOT;
duke@435 2326
duke@435 2327 int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2328 Klass::secondary_super_cache_offset_in_bytes());
duke@435 2329 __ cmp(super_klass, sc_offset);
duke@435 2330 __ brx(Assembler::notEqual, true, Assembler::pt, L_miss);
duke@435 2331 __ delayed()->nop();
duke@435 2332
duke@435 2333 __ save_frame(0);
duke@435 2334 __ mov(sub_klass->after_save(), O1);
duke@435 2335 // mov(super_klass->after_save(), O2); //fill delay slot
duke@435 2336 assert(StubRoutines::Sparc::_partial_subtype_check != NULL, "order of generation");
duke@435 2337 __ call(StubRoutines::Sparc::_partial_subtype_check);
duke@435 2338 __ delayed()->mov(super_klass->after_save(), O2);
duke@435 2339 __ restore();
duke@435 2340
duke@435 2341 // Upon return, the condition codes are already set.
duke@435 2342 __ brx(Assembler::equal, true, Assembler::pt, L_success);
duke@435 2343 __ DELAY_SLOT;
duke@435 2344
duke@435 2345 #undef DELAY_SLOT
duke@435 2346
duke@435 2347 // Fall through on failure!
duke@435 2348 __ BIND(L_miss);
duke@435 2349 }
duke@435 2350
duke@435 2351
duke@435 2352 // Generate stub for checked oop copy.
duke@435 2353 //
duke@435 2354 // Arguments for generated stub:
duke@435 2355 // from: O0
duke@435 2356 // to: O1
duke@435 2357 // count: O2 treated as signed
duke@435 2358 // ckoff: O3 (super_check_offset)
duke@435 2359 // ckval: O4 (super_klass)
duke@435 2360 // ret: O0 zero for success; (-1^K) where K is partial transfer count
duke@435 2361 //
duke@435 2362 address generate_checkcast_copy(const char* name) {
duke@435 2363
duke@435 2364 const Register O0_from = O0; // source array address
duke@435 2365 const Register O1_to = O1; // destination array address
duke@435 2366 const Register O2_count = O2; // elements count
duke@435 2367 const Register O3_ckoff = O3; // super_check_offset
duke@435 2368 const Register O4_ckval = O4; // super_klass
duke@435 2369
duke@435 2370 const Register O5_offset = O5; // loop var, with stride wordSize
duke@435 2371 const Register G1_remain = G1; // loop var, with stride -1
duke@435 2372 const Register G3_oop = G3; // actual oop copied
duke@435 2373 const Register G4_klass = G4; // oop._klass
duke@435 2374 const Register G5_super = G5; // oop._klass._primary_supers[ckval]
duke@435 2375
duke@435 2376 __ align(CodeEntryAlignment);
duke@435 2377 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2378 address start = __ pc();
duke@435 2379
duke@435 2380 int klass_off = oopDesc::klass_offset_in_bytes();
duke@435 2381
duke@435 2382 gen_write_ref_array_pre_barrier(G1, G5);
duke@435 2383
duke@435 2384
duke@435 2385 #ifdef ASSERT
duke@435 2386 // We sometimes save a frame (see partial_subtype_check below).
duke@435 2387 // If this will cause trouble, let's fail now instead of later.
duke@435 2388 __ save_frame(0);
duke@435 2389 __ restore();
duke@435 2390 #endif
duke@435 2391
duke@435 2392 #ifdef ASSERT
duke@435 2393 // caller guarantees that the arrays really are different
duke@435 2394 // otherwise, we would have to make conjoint checks
duke@435 2395 { Label L;
duke@435 2396 __ mov(O3, G1); // spill: overlap test smashes O3
duke@435 2397 __ mov(O4, G4); // spill: overlap test smashes O4
duke@435 2398 array_overlap_test(L, LogBytesPerWord);
duke@435 2399 __ stop("checkcast_copy within a single array");
duke@435 2400 __ bind(L);
duke@435 2401 __ mov(G1, O3);
duke@435 2402 __ mov(G4, O4);
duke@435 2403 }
duke@435 2404 #endif //ASSERT
duke@435 2405
duke@435 2406 assert_clean_int(O2_count, G1); // Make sure 'count' is clean int.
duke@435 2407
duke@435 2408 checkcast_copy_entry = __ pc();
duke@435 2409 // caller can pass a 64-bit byte count here (from generic stub)
duke@435 2410 BLOCK_COMMENT("Entry:");
duke@435 2411
duke@435 2412 Label load_element, store_element, do_card_marks, fail, done;
duke@435 2413 __ addcc(O2_count, 0, G1_remain); // initialize loop index, and test it
duke@435 2414 __ brx(Assembler::notZero, false, Assembler::pt, load_element);
duke@435 2415 __ delayed()->mov(G0, O5_offset); // offset from start of arrays
duke@435 2416
duke@435 2417 // Empty array: Nothing to do.
duke@435 2418 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
duke@435 2419 __ retl();
duke@435 2420 __ delayed()->set(0, O0); // return 0 on (trivial) success
duke@435 2421
duke@435 2422 // ======== begin loop ========
duke@435 2423 // (Loop is rotated; its entry is load_element.)
duke@435 2424 // Loop variables:
duke@435 2425 // (O5 = 0; ; O5 += wordSize) --- offset from src, dest arrays
duke@435 2426 // (O2 = len; O2 != 0; O2--) --- number of oops *remaining*
duke@435 2427 // G3, G4, G5 --- current oop, oop.klass, oop.klass.super
duke@435 2428 __ align(16);
duke@435 2429
duke@435 2430 __ bind(store_element);
duke@435 2431 // deccc(G1_remain); // decrement the count (hoisted)
duke@435 2432 __ st_ptr(G3_oop, O1_to, O5_offset); // store the oop
duke@435 2433 __ inc(O5_offset, wordSize); // step to next offset
duke@435 2434 __ brx(Assembler::zero, true, Assembler::pt, do_card_marks);
duke@435 2435 __ delayed()->set(0, O0); // return -1 on success
duke@435 2436
duke@435 2437 // ======== loop entry is here ========
duke@435 2438 __ bind(load_element);
duke@435 2439 __ ld_ptr(O0_from, O5_offset, G3_oop); // load the oop
duke@435 2440 __ br_null(G3_oop, true, Assembler::pt, store_element);
duke@435 2441 __ delayed()->deccc(G1_remain); // decrement the count
duke@435 2442
duke@435 2443 __ ld_ptr(G3_oop, klass_off, G4_klass); // query the object klass
duke@435 2444
duke@435 2445 generate_type_check(G4_klass, O3_ckoff, O4_ckval, G5_super,
duke@435 2446 // branch to this on success:
duke@435 2447 store_element,
duke@435 2448 // decrement this on success:
duke@435 2449 G1_remain);
duke@435 2450 // ======== end loop ========
duke@435 2451
duke@435 2452 // It was a real error; we must depend on the caller to finish the job.
duke@435 2453 // Register G1 has number of *remaining* oops, O2 number of *total* oops.
duke@435 2454 // Emit GC store barriers for the oops we have copied (O2 minus G1),
duke@435 2455 // and report their number to the caller.
duke@435 2456 __ bind(fail);
duke@435 2457 __ subcc(O2_count, G1_remain, O2_count);
duke@435 2458 __ brx(Assembler::zero, false, Assembler::pt, done);
duke@435 2459 __ delayed()->not1(O2_count, O0); // report (-1^K) to caller
duke@435 2460
duke@435 2461 __ bind(do_card_marks);
duke@435 2462 gen_write_ref_array_post_barrier(O1_to, O2_count, O3); // store check on O1[0..O2]
duke@435 2463
duke@435 2464 __ bind(done);
duke@435 2465 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
duke@435 2466 __ retl();
duke@435 2467 __ delayed()->nop(); // return value in 00
duke@435 2468
duke@435 2469 return start;
duke@435 2470 }
duke@435 2471
duke@435 2472
duke@435 2473 // Generate 'unsafe' array copy stub
duke@435 2474 // Though just as safe as the other stubs, it takes an unscaled
duke@435 2475 // size_t argument instead of an element count.
duke@435 2476 //
duke@435 2477 // Arguments for generated stub:
duke@435 2478 // from: O0
duke@435 2479 // to: O1
duke@435 2480 // count: O2 byte count, treated as ssize_t, can be zero
duke@435 2481 //
duke@435 2482 // Examines the alignment of the operands and dispatches
duke@435 2483 // to a long, int, short, or byte copy loop.
duke@435 2484 //
duke@435 2485 address generate_unsafe_copy(const char* name) {
duke@435 2486
duke@435 2487 const Register O0_from = O0; // source array address
duke@435 2488 const Register O1_to = O1; // destination array address
duke@435 2489 const Register O2_count = O2; // elements count
duke@435 2490
duke@435 2491 const Register G1_bits = G1; // test copy of low bits
duke@435 2492
duke@435 2493 __ align(CodeEntryAlignment);
duke@435 2494 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2495 address start = __ pc();
duke@435 2496
duke@435 2497 // bump this on entry, not on exit:
duke@435 2498 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, G1, G3);
duke@435 2499
duke@435 2500 __ or3(O0_from, O1_to, G1_bits);
duke@435 2501 __ or3(O2_count, G1_bits, G1_bits);
duke@435 2502
duke@435 2503 __ btst(BytesPerLong-1, G1_bits);
duke@435 2504 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2505 long_copy_entry, relocInfo::runtime_call_type);
duke@435 2506 // scale the count on the way out:
duke@435 2507 __ delayed()->srax(O2_count, LogBytesPerLong, O2_count);
duke@435 2508
duke@435 2509 __ btst(BytesPerInt-1, G1_bits);
duke@435 2510 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2511 int_copy_entry, relocInfo::runtime_call_type);
duke@435 2512 // scale the count on the way out:
duke@435 2513 __ delayed()->srax(O2_count, LogBytesPerInt, O2_count);
duke@435 2514
duke@435 2515 __ btst(BytesPerShort-1, G1_bits);
duke@435 2516 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2517 short_copy_entry, relocInfo::runtime_call_type);
duke@435 2518 // scale the count on the way out:
duke@435 2519 __ delayed()->srax(O2_count, LogBytesPerShort, O2_count);
duke@435 2520
duke@435 2521 __ br(Assembler::always, false, Assembler::pt,
duke@435 2522 byte_copy_entry, relocInfo::runtime_call_type);
duke@435 2523 __ delayed()->nop();
duke@435 2524
duke@435 2525 return start;
duke@435 2526 }
duke@435 2527
duke@435 2528
duke@435 2529 // Perform range checks on the proposed arraycopy.
duke@435 2530 // Kills the two temps, but nothing else.
duke@435 2531 // Also, clean the sign bits of src_pos and dst_pos.
duke@435 2532 void arraycopy_range_checks(Register src, // source array oop (O0)
duke@435 2533 Register src_pos, // source position (O1)
duke@435 2534 Register dst, // destination array oo (O2)
duke@435 2535 Register dst_pos, // destination position (O3)
duke@435 2536 Register length, // length of copy (O4)
duke@435 2537 Register temp1, Register temp2,
duke@435 2538 Label& L_failed) {
duke@435 2539 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 2540
duke@435 2541 // if (src_pos + length > arrayOop(src)->length() ) FAIL;
duke@435 2542
duke@435 2543 const Register array_length = temp1; // scratch
duke@435 2544 const Register end_pos = temp2; // scratch
duke@435 2545
duke@435 2546 // Note: This next instruction may be in the delay slot of a branch:
duke@435 2547 __ add(length, src_pos, end_pos); // src_pos + length
duke@435 2548 __ lduw(src, arrayOopDesc::length_offset_in_bytes(), array_length);
duke@435 2549 __ cmp(end_pos, array_length);
duke@435 2550 __ br(Assembler::greater, false, Assembler::pn, L_failed);
duke@435 2551
duke@435 2552 // if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
duke@435 2553 __ delayed()->add(length, dst_pos, end_pos); // dst_pos + length
duke@435 2554 __ lduw(dst, arrayOopDesc::length_offset_in_bytes(), array_length);
duke@435 2555 __ cmp(end_pos, array_length);
duke@435 2556 __ br(Assembler::greater, false, Assembler::pn, L_failed);
duke@435 2557
duke@435 2558 // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
duke@435 2559 // Move with sign extension can be used since they are positive.
duke@435 2560 __ delayed()->signx(src_pos, src_pos);
duke@435 2561 __ signx(dst_pos, dst_pos);
duke@435 2562
duke@435 2563 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 2564 }
duke@435 2565
duke@435 2566
duke@435 2567 //
duke@435 2568 // Generate generic array copy stubs
duke@435 2569 //
duke@435 2570 // Input:
duke@435 2571 // O0 - src oop
duke@435 2572 // O1 - src_pos
duke@435 2573 // O2 - dst oop
duke@435 2574 // O3 - dst_pos
duke@435 2575 // O4 - element count
duke@435 2576 //
duke@435 2577 // Output:
duke@435 2578 // O0 == 0 - success
duke@435 2579 // O0 == -1 - need to call System.arraycopy
duke@435 2580 //
duke@435 2581 address generate_generic_copy(const char *name) {
duke@435 2582
duke@435 2583 Label L_failed, L_objArray;
duke@435 2584
duke@435 2585 // Input registers
duke@435 2586 const Register src = O0; // source array oop
duke@435 2587 const Register src_pos = O1; // source position
duke@435 2588 const Register dst = O2; // destination array oop
duke@435 2589 const Register dst_pos = O3; // destination position
duke@435 2590 const Register length = O4; // elements count
duke@435 2591
duke@435 2592 // registers used as temp
duke@435 2593 const Register G3_src_klass = G3; // source array klass
duke@435 2594 const Register G4_dst_klass = G4; // destination array klass
duke@435 2595 const Register G5_lh = G5; // layout handler
duke@435 2596 const Register O5_temp = O5;
duke@435 2597
duke@435 2598 __ align(CodeEntryAlignment);
duke@435 2599 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2600 address start = __ pc();
duke@435 2601
duke@435 2602 // bump this on entry, not on exit:
duke@435 2603 inc_counter_np(SharedRuntime::_generic_array_copy_ctr, G1, G3);
duke@435 2604
duke@435 2605 // In principle, the int arguments could be dirty.
duke@435 2606 //assert_clean_int(src_pos, G1);
duke@435 2607 //assert_clean_int(dst_pos, G1);
duke@435 2608 //assert_clean_int(length, G1);
duke@435 2609
duke@435 2610 //-----------------------------------------------------------------------
duke@435 2611 // Assembler stubs will be used for this call to arraycopy
duke@435 2612 // if the following conditions are met:
duke@435 2613 //
duke@435 2614 // (1) src and dst must not be null.
duke@435 2615 // (2) src_pos must not be negative.
duke@435 2616 // (3) dst_pos must not be negative.
duke@435 2617 // (4) length must not be negative.
duke@435 2618 // (5) src klass and dst klass should be the same and not NULL.
duke@435 2619 // (6) src and dst should be arrays.
duke@435 2620 // (7) src_pos + length must not exceed length of src.
duke@435 2621 // (8) dst_pos + length must not exceed length of dst.
duke@435 2622 BLOCK_COMMENT("arraycopy initial argument checks");
duke@435 2623
duke@435 2624 // if (src == NULL) return -1;
duke@435 2625 __ br_null(src, false, Assembler::pn, L_failed);
duke@435 2626
duke@435 2627 // if (src_pos < 0) return -1;
duke@435 2628 __ delayed()->tst(src_pos);
duke@435 2629 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 2630 __ delayed()->nop();
duke@435 2631
duke@435 2632 // if (dst == NULL) return -1;
duke@435 2633 __ br_null(dst, false, Assembler::pn, L_failed);
duke@435 2634
duke@435 2635 // if (dst_pos < 0) return -1;
duke@435 2636 __ delayed()->tst(dst_pos);
duke@435 2637 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 2638
duke@435 2639 // if (length < 0) return -1;
duke@435 2640 __ delayed()->tst(length);
duke@435 2641 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 2642
duke@435 2643 BLOCK_COMMENT("arraycopy argument klass checks");
duke@435 2644 // get src->klass()
duke@435 2645 __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), G3_src_klass);
duke@435 2646
duke@435 2647 #ifdef ASSERT
duke@435 2648 // assert(src->klass() != NULL);
duke@435 2649 BLOCK_COMMENT("assert klasses not null");
duke@435 2650 { Label L_a, L_b;
duke@435 2651 __ br_notnull(G3_src_klass, false, Assembler::pt, L_b); // it is broken if klass is NULL
duke@435 2652 __ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass);
duke@435 2653 __ bind(L_a);
duke@435 2654 __ stop("broken null klass");
duke@435 2655 __ bind(L_b);
duke@435 2656 __ br_null(G4_dst_klass, false, Assembler::pn, L_a); // this would be broken also
duke@435 2657 __ delayed()->mov(G0, G4_dst_klass); // scribble the temp
duke@435 2658 BLOCK_COMMENT("assert done");
duke@435 2659 }
duke@435 2660 #endif
duke@435 2661
duke@435 2662 // Load layout helper
duke@435 2663 //
duke@435 2664 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 2665 // 32 30 24 16 8 2 0
duke@435 2666 //
duke@435 2667 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 2668 //
duke@435 2669
duke@435 2670 int lh_offset = klassOopDesc::header_size() * HeapWordSize +
duke@435 2671 Klass::layout_helper_offset_in_bytes();
duke@435 2672
duke@435 2673 // Load 32-bits signed value. Use br() instruction with it to check icc.
duke@435 2674 __ lduw(G3_src_klass, lh_offset, G5_lh);
duke@435 2675
duke@435 2676 // Handle objArrays completely differently...
duke@435 2677 juint objArray_lh = Klass::array_layout_helper(T_OBJECT);
duke@435 2678 __ set(objArray_lh, O5_temp);
duke@435 2679 __ cmp(G5_lh, O5_temp);
duke@435 2680 __ br(Assembler::equal, false, Assembler::pt, L_objArray);
duke@435 2681 __ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass);
duke@435 2682
duke@435 2683 // if (src->klass() != dst->klass()) return -1;
duke@435 2684 __ cmp(G3_src_klass, G4_dst_klass);
duke@435 2685 __ brx(Assembler::notEqual, false, Assembler::pn, L_failed);
duke@435 2686 __ delayed()->nop();
duke@435 2687
duke@435 2688 // if (!src->is_Array()) return -1;
duke@435 2689 __ cmp(G5_lh, Klass::_lh_neutral_value); // < 0
duke@435 2690 __ br(Assembler::greaterEqual, false, Assembler::pn, L_failed);
duke@435 2691
duke@435 2692 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 2693 #ifdef ASSERT
duke@435 2694 __ delayed()->nop();
duke@435 2695 { Label L;
duke@435 2696 jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift);
duke@435 2697 __ set(lh_prim_tag_in_place, O5_temp);
duke@435 2698 __ cmp(G5_lh, O5_temp);
duke@435 2699 __ br(Assembler::greaterEqual, false, Assembler::pt, L);
duke@435 2700 __ delayed()->nop();
duke@435 2701 __ stop("must be a primitive array");
duke@435 2702 __ bind(L);
duke@435 2703 }
duke@435 2704 #else
duke@435 2705 __ delayed(); // match next insn to prev branch
duke@435 2706 #endif
duke@435 2707
duke@435 2708 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 2709 O5_temp, G4_dst_klass, L_failed);
duke@435 2710
duke@435 2711 // typeArrayKlass
duke@435 2712 //
duke@435 2713 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 2714 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 2715 //
duke@435 2716
duke@435 2717 const Register G4_offset = G4_dst_klass; // array offset
duke@435 2718 const Register G3_elsize = G3_src_klass; // log2 element size
duke@435 2719
duke@435 2720 __ srl(G5_lh, Klass::_lh_header_size_shift, G4_offset);
duke@435 2721 __ and3(G4_offset, Klass::_lh_header_size_mask, G4_offset); // array_offset
duke@435 2722 __ add(src, G4_offset, src); // src array offset
duke@435 2723 __ add(dst, G4_offset, dst); // dst array offset
duke@435 2724 __ and3(G5_lh, Klass::_lh_log2_element_size_mask, G3_elsize); // log2 element size
duke@435 2725
duke@435 2726 // next registers should be set before the jump to corresponding stub
duke@435 2727 const Register from = O0; // source array address
duke@435 2728 const Register to = O1; // destination array address
duke@435 2729 const Register count = O2; // elements count
duke@435 2730
duke@435 2731 // 'from', 'to', 'count' registers should be set in this order
duke@435 2732 // since they are the same as 'src', 'src_pos', 'dst'.
duke@435 2733
duke@435 2734 BLOCK_COMMENT("scale indexes to element size");
duke@435 2735 __ sll_ptr(src_pos, G3_elsize, src_pos);
duke@435 2736 __ sll_ptr(dst_pos, G3_elsize, dst_pos);
duke@435 2737 __ add(src, src_pos, from); // src_addr
duke@435 2738 __ add(dst, dst_pos, to); // dst_addr
duke@435 2739
duke@435 2740 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 2741 __ cmp(G3_elsize, 0);
duke@435 2742 __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jbyte_arraycopy);
duke@435 2743 __ delayed()->signx(length, count); // length
duke@435 2744
duke@435 2745 __ cmp(G3_elsize, LogBytesPerShort);
duke@435 2746 __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jshort_arraycopy);
duke@435 2747 __ delayed()->signx(length, count); // length
duke@435 2748
duke@435 2749 __ cmp(G3_elsize, LogBytesPerInt);
duke@435 2750 __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jint_arraycopy);
duke@435 2751 __ delayed()->signx(length, count); // length
duke@435 2752 #ifdef ASSERT
duke@435 2753 { Label L;
duke@435 2754 __ cmp(G3_elsize, LogBytesPerLong);
duke@435 2755 __ br(Assembler::equal, false, Assembler::pt, L);
duke@435 2756 __ delayed()->nop();
duke@435 2757 __ stop("must be long copy, but elsize is wrong");
duke@435 2758 __ bind(L);
duke@435 2759 }
duke@435 2760 #endif
duke@435 2761 __ br(Assembler::always,false,Assembler::pt,StubRoutines::_jlong_arraycopy);
duke@435 2762 __ delayed()->signx(length, count); // length
duke@435 2763
duke@435 2764 // objArrayKlass
duke@435 2765 __ BIND(L_objArray);
duke@435 2766 // live at this point: G3_src_klass, G4_dst_klass, src[_pos], dst[_pos], length
duke@435 2767
duke@435 2768 Label L_plain_copy, L_checkcast_copy;
duke@435 2769 // test array classes for subtyping
duke@435 2770 __ cmp(G3_src_klass, G4_dst_klass); // usual case is exact equality
duke@435 2771 __ brx(Assembler::notEqual, true, Assembler::pn, L_checkcast_copy);
duke@435 2772 __ delayed()->lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted from below
duke@435 2773
duke@435 2774 // Identically typed arrays can be copied without element-wise checks.
duke@435 2775 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 2776 O5_temp, G5_lh, L_failed);
duke@435 2777
duke@435 2778 __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
duke@435 2779 __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
duke@435 2780 __ sll_ptr(src_pos, LogBytesPerOop, src_pos);
duke@435 2781 __ sll_ptr(dst_pos, LogBytesPerOop, dst_pos);
duke@435 2782 __ add(src, src_pos, from); // src_addr
duke@435 2783 __ add(dst, dst_pos, to); // dst_addr
duke@435 2784 __ BIND(L_plain_copy);
duke@435 2785 __ br(Assembler::always, false, Assembler::pt,StubRoutines::_oop_arraycopy);
duke@435 2786 __ delayed()->signx(length, count); // length
duke@435 2787
duke@435 2788 __ BIND(L_checkcast_copy);
duke@435 2789 // live at this point: G3_src_klass, G4_dst_klass
duke@435 2790 {
duke@435 2791 // Before looking at dst.length, make sure dst is also an objArray.
duke@435 2792 // lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted to delay slot
duke@435 2793 __ cmp(G5_lh, O5_temp);
duke@435 2794 __ br(Assembler::notEqual, false, Assembler::pn, L_failed);
duke@435 2795
duke@435 2796 // It is safe to examine both src.length and dst.length.
duke@435 2797 __ delayed(); // match next insn to prev branch
duke@435 2798 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 2799 O5_temp, G5_lh, L_failed);
duke@435 2800
duke@435 2801 // Marshal the base address arguments now, freeing registers.
duke@435 2802 __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
duke@435 2803 __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
duke@435 2804 __ sll_ptr(src_pos, LogBytesPerOop, src_pos);
duke@435 2805 __ sll_ptr(dst_pos, LogBytesPerOop, dst_pos);
duke@435 2806 __ add(src, src_pos, from); // src_addr
duke@435 2807 __ add(dst, dst_pos, to); // dst_addr
duke@435 2808 __ signx(length, count); // length (reloaded)
duke@435 2809
duke@435 2810 Register sco_temp = O3; // this register is free now
duke@435 2811 assert_different_registers(from, to, count, sco_temp,
duke@435 2812 G4_dst_klass, G3_src_klass);
duke@435 2813
duke@435 2814 // Generate the type check.
duke@435 2815 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2816 Klass::super_check_offset_offset_in_bytes());
duke@435 2817 __ lduw(G4_dst_klass, sco_offset, sco_temp);
duke@435 2818 generate_type_check(G3_src_klass, sco_temp, G4_dst_klass,
duke@435 2819 O5_temp, L_plain_copy);
duke@435 2820
duke@435 2821 // Fetch destination element klass from the objArrayKlass header.
duke@435 2822 int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2823 objArrayKlass::element_klass_offset_in_bytes());
duke@435 2824
duke@435 2825 // the checkcast_copy loop needs two extra arguments:
duke@435 2826 __ ld_ptr(G4_dst_klass, ek_offset, O4); // dest elem klass
duke@435 2827 // lduw(O4, sco_offset, O3); // sco of elem klass
duke@435 2828
duke@435 2829 __ br(Assembler::always, false, Assembler::pt, checkcast_copy_entry);
duke@435 2830 __ delayed()->lduw(O4, sco_offset, O3);
duke@435 2831 }
duke@435 2832
duke@435 2833 __ BIND(L_failed);
duke@435 2834 __ retl();
duke@435 2835 __ delayed()->sub(G0, 1, O0); // return -1
duke@435 2836 return start;
duke@435 2837 }
duke@435 2838
duke@435 2839 void generate_arraycopy_stubs() {
duke@435 2840
duke@435 2841 // Note: the disjoint stubs must be generated first, some of
duke@435 2842 // the conjoint stubs use them.
duke@435 2843 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
duke@435 2844 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
duke@435 2845 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_copy(false, "jint_disjoint_arraycopy");
duke@435 2846 StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_copy(false, "jlong_disjoint_arraycopy");
duke@435 2847 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_oop_copy(false, "oop_disjoint_arraycopy");
duke@435 2848 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, "arrayof_jbyte_disjoint_arraycopy");
duke@435 2849 StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, "arrayof_jshort_disjoint_arraycopy");
duke@435 2850 StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy(true, "arrayof_jint_disjoint_arraycopy");
duke@435 2851 StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, "arrayof_jlong_disjoint_arraycopy");
duke@435 2852 StubRoutines::_arrayof_oop_disjoint_arraycopy = generate_disjoint_oop_copy(true, "arrayof_oop_disjoint_arraycopy");
duke@435 2853
duke@435 2854 StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
duke@435 2855 StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, "jshort_arraycopy");
duke@435 2856 StubRoutines::_jint_arraycopy = generate_conjoint_int_copy(false, "jint_arraycopy");
duke@435 2857 StubRoutines::_jlong_arraycopy = generate_conjoint_long_copy(false, "jlong_arraycopy");
duke@435 2858 StubRoutines::_oop_arraycopy = generate_conjoint_oop_copy(false, "oop_arraycopy");
duke@435 2859 StubRoutines::_arrayof_jbyte_arraycopy = generate_conjoint_byte_copy(true, "arrayof_jbyte_arraycopy");
duke@435 2860 StubRoutines::_arrayof_jshort_arraycopy = generate_conjoint_short_copy(true, "arrayof_jshort_arraycopy");
duke@435 2861 #ifdef _LP64
duke@435 2862 // since sizeof(jint) < sizeof(HeapWord), there's a different flavor:
duke@435 2863 StubRoutines::_arrayof_jint_arraycopy = generate_conjoint_int_copy(true, "arrayof_jint_arraycopy");
duke@435 2864 #else
duke@435 2865 StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
duke@435 2866 #endif
duke@435 2867 StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
duke@435 2868 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
duke@435 2869
duke@435 2870 StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
duke@435 2871 StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy");
duke@435 2872 StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy");
duke@435 2873 }
duke@435 2874
duke@435 2875 void generate_initial() {
duke@435 2876 // Generates all stubs and initializes the entry points
duke@435 2877
duke@435 2878 //------------------------------------------------------------------------------------------------------------------------
duke@435 2879 // entry points that exist in all platforms
duke@435 2880 // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
duke@435 2881 // the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
duke@435 2882 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 2883
duke@435 2884 StubRoutines::_call_stub_entry = generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 2885 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 2886
duke@435 2887 //------------------------------------------------------------------------------------------------------------------------
duke@435 2888 // entry points that are platform specific
duke@435 2889 StubRoutines::Sparc::_test_stop_entry = generate_test_stop();
duke@435 2890
duke@435 2891 StubRoutines::Sparc::_stop_subroutine_entry = generate_stop_subroutine();
duke@435 2892 StubRoutines::Sparc::_flush_callers_register_windows_entry = generate_flush_callers_register_windows();
duke@435 2893
duke@435 2894 #if !defined(COMPILER2) && !defined(_LP64)
duke@435 2895 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 2896 StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
duke@435 2897 StubRoutines::_atomic_add_entry = generate_atomic_add();
duke@435 2898 StubRoutines::_atomic_xchg_ptr_entry = StubRoutines::_atomic_xchg_entry;
duke@435 2899 StubRoutines::_atomic_cmpxchg_ptr_entry = StubRoutines::_atomic_cmpxchg_entry;
duke@435 2900 StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
duke@435 2901 StubRoutines::_atomic_add_ptr_entry = StubRoutines::_atomic_add_entry;
duke@435 2902 StubRoutines::_fence_entry = generate_fence();
duke@435 2903 #endif // COMPILER2 !=> _LP64
duke@435 2904
duke@435 2905 StubRoutines::Sparc::_partial_subtype_check = generate_partial_subtype_check();
duke@435 2906 }
duke@435 2907
duke@435 2908
duke@435 2909 void generate_all() {
duke@435 2910 // Generates all stubs and initializes the entry points
duke@435 2911
duke@435 2912 // These entry points require SharedInfo::stack0 to be set up in non-core builds
duke@435 2913 StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError), false);
dcubed@451 2914 StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError), false);
duke@435 2915 StubRoutines::_throw_ArithmeticException_entry = generate_throw_exception("ArithmeticException throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException), true);
duke@435 2916 StubRoutines::_throw_NullPointerException_entry = generate_throw_exception("NullPointerException throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
duke@435 2917 StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
duke@435 2918 StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError), false);
duke@435 2919
duke@435 2920 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 2921 generate_handler_for_unsafe_access();
duke@435 2922
duke@435 2923 // support for verify_oop (must happen after universe_init)
duke@435 2924 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop_subroutine();
duke@435 2925
duke@435 2926 // arraycopy stubs used by compilers
duke@435 2927 generate_arraycopy_stubs();
duke@435 2928 }
duke@435 2929
duke@435 2930
duke@435 2931 public:
duke@435 2932 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 2933 // replace the standard masm with a special one:
duke@435 2934 _masm = new MacroAssembler(code);
duke@435 2935
duke@435 2936 _stub_count = !all ? 0x100 : 0x200;
duke@435 2937 if (all) {
duke@435 2938 generate_all();
duke@435 2939 } else {
duke@435 2940 generate_initial();
duke@435 2941 }
duke@435 2942
duke@435 2943 // make sure this stub is available for all local calls
duke@435 2944 if (_atomic_add_stub.is_unbound()) {
duke@435 2945 // generate a second time, if necessary
duke@435 2946 (void) generate_atomic_add();
duke@435 2947 }
duke@435 2948 }
duke@435 2949
duke@435 2950
duke@435 2951 private:
duke@435 2952 int _stub_count;
duke@435 2953 void stub_prolog(StubCodeDesc* cdesc) {
duke@435 2954 # ifdef ASSERT
duke@435 2955 // put extra information in the stub code, to make it more readable
duke@435 2956 #ifdef _LP64
duke@435 2957 // Write the high part of the address
duke@435 2958 // [RGV] Check if there is a dependency on the size of this prolog
duke@435 2959 __ emit_data((intptr_t)cdesc >> 32, relocInfo::none);
duke@435 2960 #endif
duke@435 2961 __ emit_data((intptr_t)cdesc, relocInfo::none);
duke@435 2962 __ emit_data(++_stub_count, relocInfo::none);
duke@435 2963 # endif
duke@435 2964 align(true);
duke@435 2965 }
duke@435 2966
duke@435 2967 void align(bool at_header = false) {
duke@435 2968 // %%%%% move this constant somewhere else
duke@435 2969 // UltraSPARC cache line size is 8 instructions:
duke@435 2970 const unsigned int icache_line_size = 32;
duke@435 2971 const unsigned int icache_half_line_size = 16;
duke@435 2972
duke@435 2973 if (at_header) {
duke@435 2974 while ((intptr_t)(__ pc()) % icache_line_size != 0) {
duke@435 2975 __ emit_data(0, relocInfo::none);
duke@435 2976 }
duke@435 2977 } else {
duke@435 2978 while ((intptr_t)(__ pc()) % icache_half_line_size != 0) {
duke@435 2979 __ nop();
duke@435 2980 }
duke@435 2981 }
duke@435 2982 }
duke@435 2983
duke@435 2984 }; // end class declaration
duke@435 2985
duke@435 2986
duke@435 2987 address StubGenerator::disjoint_byte_copy_entry = NULL;
duke@435 2988 address StubGenerator::disjoint_short_copy_entry = NULL;
duke@435 2989 address StubGenerator::disjoint_int_copy_entry = NULL;
duke@435 2990 address StubGenerator::disjoint_long_copy_entry = NULL;
duke@435 2991 address StubGenerator::disjoint_oop_copy_entry = NULL;
duke@435 2992
duke@435 2993 address StubGenerator::byte_copy_entry = NULL;
duke@435 2994 address StubGenerator::short_copy_entry = NULL;
duke@435 2995 address StubGenerator::int_copy_entry = NULL;
duke@435 2996 address StubGenerator::long_copy_entry = NULL;
duke@435 2997 address StubGenerator::oop_copy_entry = NULL;
duke@435 2998
duke@435 2999 address StubGenerator::checkcast_copy_entry = NULL;
duke@435 3000
duke@435 3001 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 3002 StubGenerator g(code, all);
duke@435 3003 }

mercurial