src/cpu/sparc/vm/assembler_sparc.hpp

Mon, 25 Feb 2008 15:05:44 -0800

author
kvn
date
Mon, 25 Feb 2008 15:05:44 -0800
changeset 464
d5fc211aea19
parent 435
a61af66fc99e
child 548
ba764ed4b6f2
permissions
-rw-r--r--

6633953: type2aelembytes{T_ADDRESS} should be 8 bytes in 64 bit VM
Summary: T_ADDRESS size is defined as 'int' size (4 bytes) but C2 use it for raw pointers and as memory type for StoreP and LoadP nodes.
Reviewed-by: jrose

duke@435 1 /*
duke@435 2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 class BiasedLockingCounters;
duke@435 26
duke@435 27 // <sys/trap.h> promises that the system will not use traps 16-31
duke@435 28 #define ST_RESERVED_FOR_USER_0 0x10
duke@435 29
duke@435 30 /* Written: David Ungar 4/19/97 */
duke@435 31
duke@435 32 // Contains all the definitions needed for sparc assembly code generation.
duke@435 33
duke@435 34 // Register aliases for parts of the system:
duke@435 35
duke@435 36 // 64 bit values can be kept in g1-g5, o1-o5 and o7 and all 64 bits are safe
duke@435 37 // across context switches in V8+ ABI. Of course, there are no 64 bit regs
duke@435 38 // in V8 ABI. All 64 bits are preserved in V9 ABI for all registers.
duke@435 39
duke@435 40 // g2-g4 are scratch registers called "application globals". Their
duke@435 41 // meaning is reserved to the "compilation system"--which means us!
duke@435 42 // They are are not supposed to be touched by ordinary C code, although
duke@435 43 // highly-optimized C code might steal them for temps. They are safe
duke@435 44 // across thread switches, and the ABI requires that they be safe
duke@435 45 // across function calls.
duke@435 46 //
duke@435 47 // g1 and g3 are touched by more modules. V8 allows g1 to be clobbered
duke@435 48 // across func calls, and V8+ also allows g5 to be clobbered across
duke@435 49 // func calls. Also, g1 and g5 can get touched while doing shared
duke@435 50 // library loading.
duke@435 51 //
duke@435 52 // We must not touch g7 (it is the thread-self register) and g6 is
duke@435 53 // reserved for certain tools. g0, of course, is always zero.
duke@435 54 //
duke@435 55 // (Sources: SunSoft Compilers Group, thread library engineers.)
duke@435 56
duke@435 57 // %%%% The interpreter should be revisited to reduce global scratch regs.
duke@435 58
duke@435 59 // This global always holds the current JavaThread pointer:
duke@435 60
duke@435 61 REGISTER_DECLARATION(Register, G2_thread , G2);
duke@435 62
duke@435 63 // The following globals are part of the Java calling convention:
duke@435 64
duke@435 65 REGISTER_DECLARATION(Register, G5_method , G5);
duke@435 66 REGISTER_DECLARATION(Register, G5_megamorphic_method , G5_method);
duke@435 67 REGISTER_DECLARATION(Register, G5_inline_cache_reg , G5_method);
duke@435 68
duke@435 69 // The following globals are used for the new C1 & interpreter calling convention:
duke@435 70 REGISTER_DECLARATION(Register, Gargs , G4); // pointing to the last argument
duke@435 71
duke@435 72 // This local is used to preserve G2_thread in the interpreter and in stubs:
duke@435 73 REGISTER_DECLARATION(Register, L7_thread_cache , L7);
duke@435 74
duke@435 75 // These globals are used as scratch registers in the interpreter:
duke@435 76
duke@435 77 REGISTER_DECLARATION(Register, Gframe_size , G1); // SAME REG as G1_scratch
duke@435 78 REGISTER_DECLARATION(Register, G1_scratch , G1); // also SAME
duke@435 79 REGISTER_DECLARATION(Register, G3_scratch , G3);
duke@435 80 REGISTER_DECLARATION(Register, G4_scratch , G4);
duke@435 81
duke@435 82 // These globals are used as short-lived scratch registers in the compiler:
duke@435 83
duke@435 84 REGISTER_DECLARATION(Register, Gtemp , G5);
duke@435 85
duke@435 86 // The compiler requires that G5_megamorphic_method is G5_inline_cache_klass,
duke@435 87 // because a single patchable "set" instruction (NativeMovConstReg,
duke@435 88 // or NativeMovConstPatching for compiler1) instruction
duke@435 89 // serves to set up either quantity, depending on whether the compiled
duke@435 90 // call site is an inline cache or is megamorphic. See the function
duke@435 91 // CompiledIC::set_to_megamorphic.
duke@435 92 //
duke@435 93 // On the other hand, G5_inline_cache_klass must differ from G5_method,
duke@435 94 // because both registers are needed for an inline cache that calls
duke@435 95 // an interpreted method.
duke@435 96 //
duke@435 97 // Note that G5_method is only the method-self for the interpreter,
duke@435 98 // and is logically unrelated to G5_megamorphic_method.
duke@435 99 //
duke@435 100 // Invariants on G2_thread (the JavaThread pointer):
duke@435 101 // - it should not be used for any other purpose anywhere
duke@435 102 // - it must be re-initialized by StubRoutines::call_stub()
duke@435 103 // - it must be preserved around every use of call_VM
duke@435 104
duke@435 105 // We can consider using g2/g3/g4 to cache more values than the
duke@435 106 // JavaThread, such as the card-marking base or perhaps pointers into
duke@435 107 // Eden. It's something of a waste to use them as scratch temporaries,
duke@435 108 // since they are not supposed to be volatile. (Of course, if we find
duke@435 109 // that Java doesn't benefit from application globals, then we can just
duke@435 110 // use them as ordinary temporaries.)
duke@435 111 //
duke@435 112 // Since g1 and g5 (and/or g6) are the volatile (caller-save) registers,
duke@435 113 // it makes sense to use them routinely for procedure linkage,
duke@435 114 // whenever the On registers are not applicable. Examples: G5_method,
duke@435 115 // G5_inline_cache_klass, and a double handful of miscellaneous compiler
duke@435 116 // stubs. This means that compiler stubs, etc., should be kept to a
duke@435 117 // maximum of two or three G-register arguments.
duke@435 118
duke@435 119
duke@435 120 // stub frames
duke@435 121
duke@435 122 REGISTER_DECLARATION(Register, Lentry_args , L0); // pointer to args passed to callee (interpreter) not stub itself
duke@435 123
duke@435 124 // Interpreter frames
duke@435 125
duke@435 126 #ifdef CC_INTERP
duke@435 127 REGISTER_DECLARATION(Register, Lstate , L0); // interpreter state object pointer
duke@435 128 REGISTER_DECLARATION(Register, L1_scratch , L1); // scratch
duke@435 129 REGISTER_DECLARATION(Register, Lmirror , L1); // mirror (for native methods only)
duke@435 130 REGISTER_DECLARATION(Register, L2_scratch , L2);
duke@435 131 REGISTER_DECLARATION(Register, L3_scratch , L3);
duke@435 132 REGISTER_DECLARATION(Register, L4_scratch , L4);
duke@435 133 REGISTER_DECLARATION(Register, Lscratch , L5); // C1 uses
duke@435 134 REGISTER_DECLARATION(Register, Lscratch2 , L6); // C1 uses
duke@435 135 REGISTER_DECLARATION(Register, L7_scratch , L7); // constant pool cache
duke@435 136 REGISTER_DECLARATION(Register, O5_savedSP , O5);
duke@435 137 REGISTER_DECLARATION(Register, I5_savedSP , I5); // Saved SP before bumping for locals. This is simply
duke@435 138 // a copy SP, so in 64-bit it's a biased value. The bias
duke@435 139 // is added and removed as needed in the frame code.
duke@435 140 // Interface to signature handler
duke@435 141 REGISTER_DECLARATION(Register, Llocals , L7); // pointer to locals for signature handler
duke@435 142 REGISTER_DECLARATION(Register, Lmethod , L6); // methodOop when calling signature handler
duke@435 143
duke@435 144 #else
duke@435 145 REGISTER_DECLARATION(Register, Lesp , L0); // expression stack pointer
duke@435 146 REGISTER_DECLARATION(Register, Lbcp , L1); // pointer to next bytecode
duke@435 147 REGISTER_DECLARATION(Register, Lmethod , L2);
duke@435 148 REGISTER_DECLARATION(Register, Llocals , L3);
duke@435 149 REGISTER_DECLARATION(Register, Largs , L3); // pointer to locals for signature handler
duke@435 150 // must match Llocals in asm interpreter
duke@435 151 REGISTER_DECLARATION(Register, Lmonitors , L4);
duke@435 152 REGISTER_DECLARATION(Register, Lbyte_code , L5);
duke@435 153 // When calling out from the interpreter we record SP so that we can remove any extra stack
duke@435 154 // space allocated during adapter transitions. This register is only live from the point
duke@435 155 // of the call until we return.
duke@435 156 REGISTER_DECLARATION(Register, Llast_SP , L5);
duke@435 157 REGISTER_DECLARATION(Register, Lscratch , L5);
duke@435 158 REGISTER_DECLARATION(Register, Lscratch2 , L6);
duke@435 159 REGISTER_DECLARATION(Register, LcpoolCache , L6); // constant pool cache
duke@435 160
duke@435 161 REGISTER_DECLARATION(Register, O5_savedSP , O5);
duke@435 162 REGISTER_DECLARATION(Register, I5_savedSP , I5); // Saved SP before bumping for locals. This is simply
duke@435 163 // a copy SP, so in 64-bit it's a biased value. The bias
duke@435 164 // is added and removed as needed in the frame code.
duke@435 165 REGISTER_DECLARATION(Register, IdispatchTables , I4); // Base address of the bytecode dispatch tables
duke@435 166 REGISTER_DECLARATION(Register, IdispatchAddress , I3); // Register which saves the dispatch address for each bytecode
duke@435 167 REGISTER_DECLARATION(Register, ImethodDataPtr , I2); // Pointer to the current method data
duke@435 168 #endif /* CC_INTERP */
duke@435 169
duke@435 170 // NOTE: Lscratch2 and LcpoolCache point to the same registers in
duke@435 171 // the interpreter code. If Lscratch2 needs to be used for some
duke@435 172 // purpose than LcpoolCache should be restore after that for
duke@435 173 // the interpreter to work right
duke@435 174 // (These assignments must be compatible with L7_thread_cache; see above.)
duke@435 175
duke@435 176 // Since Lbcp points into the middle of the method object,
duke@435 177 // it is temporarily converted into a "bcx" during GC.
duke@435 178
duke@435 179 // Exception processing
duke@435 180 // These registers are passed into exception handlers.
duke@435 181 // All exception handlers require the exception object being thrown.
duke@435 182 // In addition, an nmethod's exception handler must be passed
duke@435 183 // the address of the call site within the nmethod, to allow
duke@435 184 // proper selection of the applicable catch block.
duke@435 185 // (Interpreter frames use their own bcp() for this purpose.)
duke@435 186 //
duke@435 187 // The Oissuing_pc value is not always needed. When jumping to a
duke@435 188 // handler that is known to be interpreted, the Oissuing_pc value can be
duke@435 189 // omitted. An actual catch block in compiled code receives (from its
duke@435 190 // nmethod's exception handler) the thrown exception in the Oexception,
duke@435 191 // but it doesn't need the Oissuing_pc.
duke@435 192 //
duke@435 193 // If an exception handler (either interpreted or compiled)
duke@435 194 // discovers there is no applicable catch block, it updates
duke@435 195 // the Oissuing_pc to the continuation PC of its own caller,
duke@435 196 // pops back to that caller's stack frame, and executes that
duke@435 197 // caller's exception handler. Obviously, this process will
duke@435 198 // iterate until the control stack is popped back to a method
duke@435 199 // containing an applicable catch block. A key invariant is
duke@435 200 // that the Oissuing_pc value is always a value local to
duke@435 201 // the method whose exception handler is currently executing.
duke@435 202 //
duke@435 203 // Note: The issuing PC value is __not__ a raw return address (I7 value).
duke@435 204 // It is a "return pc", the address __following__ the call.
duke@435 205 // Raw return addresses are converted to issuing PCs by frame::pc(),
duke@435 206 // or by stubs. Issuing PCs can be used directly with PC range tables.
duke@435 207 //
duke@435 208 REGISTER_DECLARATION(Register, Oexception , O0); // exception being thrown
duke@435 209 REGISTER_DECLARATION(Register, Oissuing_pc , O1); // where the exception is coming from
duke@435 210
duke@435 211
duke@435 212 // These must occur after the declarations above
duke@435 213 #ifndef DONT_USE_REGISTER_DEFINES
duke@435 214
duke@435 215 #define Gthread AS_REGISTER(Register, Gthread)
duke@435 216 #define Gmethod AS_REGISTER(Register, Gmethod)
duke@435 217 #define Gmegamorphic_method AS_REGISTER(Register, Gmegamorphic_method)
duke@435 218 #define Ginline_cache_reg AS_REGISTER(Register, Ginline_cache_reg)
duke@435 219 #define Gargs AS_REGISTER(Register, Gargs)
duke@435 220 #define Lthread_cache AS_REGISTER(Register, Lthread_cache)
duke@435 221 #define Gframe_size AS_REGISTER(Register, Gframe_size)
duke@435 222 #define Gtemp AS_REGISTER(Register, Gtemp)
duke@435 223
duke@435 224 #ifdef CC_INTERP
duke@435 225 #define Lstate AS_REGISTER(Register, Lstate)
duke@435 226 #define Lesp AS_REGISTER(Register, Lesp)
duke@435 227 #define L1_scratch AS_REGISTER(Register, L1_scratch)
duke@435 228 #define Lmirror AS_REGISTER(Register, Lmirror)
duke@435 229 #define L2_scratch AS_REGISTER(Register, L2_scratch)
duke@435 230 #define L3_scratch AS_REGISTER(Register, L3_scratch)
duke@435 231 #define L4_scratch AS_REGISTER(Register, L4_scratch)
duke@435 232 #define Lscratch AS_REGISTER(Register, Lscratch)
duke@435 233 #define Lscratch2 AS_REGISTER(Register, Lscratch2)
duke@435 234 #define L7_scratch AS_REGISTER(Register, L7_scratch)
duke@435 235 #define Ostate AS_REGISTER(Register, Ostate)
duke@435 236 #else
duke@435 237 #define Lesp AS_REGISTER(Register, Lesp)
duke@435 238 #define Lbcp AS_REGISTER(Register, Lbcp)
duke@435 239 #define Lmethod AS_REGISTER(Register, Lmethod)
duke@435 240 #define Llocals AS_REGISTER(Register, Llocals)
duke@435 241 #define Lmonitors AS_REGISTER(Register, Lmonitors)
duke@435 242 #define Lbyte_code AS_REGISTER(Register, Lbyte_code)
duke@435 243 #define Lscratch AS_REGISTER(Register, Lscratch)
duke@435 244 #define Lscratch2 AS_REGISTER(Register, Lscratch2)
duke@435 245 #define LcpoolCache AS_REGISTER(Register, LcpoolCache)
duke@435 246 #endif /* ! CC_INTERP */
duke@435 247
duke@435 248 #define Lentry_args AS_REGISTER(Register, Lentry_args)
duke@435 249 #define I5_savedSP AS_REGISTER(Register, I5_savedSP)
duke@435 250 #define O5_savedSP AS_REGISTER(Register, O5_savedSP)
duke@435 251 #define IdispatchAddress AS_REGISTER(Register, IdispatchAddress)
duke@435 252 #define ImethodDataPtr AS_REGISTER(Register, ImethodDataPtr)
duke@435 253 #define IdispatchTables AS_REGISTER(Register, IdispatchTables)
duke@435 254
duke@435 255 #define Oexception AS_REGISTER(Register, Oexception)
duke@435 256 #define Oissuing_pc AS_REGISTER(Register, Oissuing_pc)
duke@435 257
duke@435 258
duke@435 259 #endif
duke@435 260
duke@435 261 // Address is an abstraction used to represent a memory location.
duke@435 262 //
duke@435 263 // Note: A register location is represented via a Register, not
duke@435 264 // via an address for efficiency & simplicity reasons.
duke@435 265
duke@435 266 class Address VALUE_OBJ_CLASS_SPEC {
duke@435 267 private:
duke@435 268 Register _base;
duke@435 269 #ifdef _LP64
duke@435 270 int _hi32; // bits 63::32
duke@435 271 int _low32; // bits 31::0
duke@435 272 #endif
duke@435 273 int _hi;
duke@435 274 int _disp;
duke@435 275 RelocationHolder _rspec;
duke@435 276
duke@435 277 RelocationHolder rspec_from_rtype(relocInfo::relocType rt, address a = NULL) {
duke@435 278 switch (rt) {
duke@435 279 case relocInfo::external_word_type:
duke@435 280 return external_word_Relocation::spec(a);
duke@435 281 case relocInfo::internal_word_type:
duke@435 282 return internal_word_Relocation::spec(a);
duke@435 283 #ifdef _LP64
duke@435 284 case relocInfo::opt_virtual_call_type:
duke@435 285 return opt_virtual_call_Relocation::spec();
duke@435 286 case relocInfo::static_call_type:
duke@435 287 return static_call_Relocation::spec();
duke@435 288 case relocInfo::runtime_call_type:
duke@435 289 return runtime_call_Relocation::spec();
duke@435 290 #endif
duke@435 291 case relocInfo::none:
duke@435 292 return RelocationHolder();
duke@435 293 default:
duke@435 294 ShouldNotReachHere();
duke@435 295 return RelocationHolder();
duke@435 296 }
duke@435 297 }
duke@435 298
duke@435 299 public:
duke@435 300 Address(Register b, address a, relocInfo::relocType rt = relocInfo::none)
duke@435 301 : _rspec(rspec_from_rtype(rt, a))
duke@435 302 {
duke@435 303 _base = b;
duke@435 304 #ifdef _LP64
duke@435 305 _hi32 = (intptr_t)a >> 32; // top 32 bits in 64 bit word
duke@435 306 _low32 = (intptr_t)a & ~0; // low 32 bits in 64 bit word
duke@435 307 #endif
duke@435 308 _hi = (intptr_t)a & ~0x3ff; // top 22 bits in low word
duke@435 309 _disp = (intptr_t)a & 0x3ff; // bottom 10 bits
duke@435 310 }
duke@435 311
duke@435 312 Address(Register b, address a, RelocationHolder const& rspec)
duke@435 313 : _rspec(rspec)
duke@435 314 {
duke@435 315 _base = b;
duke@435 316 #ifdef _LP64
duke@435 317 _hi32 = (intptr_t)a >> 32; // top 32 bits in 64 bit word
duke@435 318 _low32 = (intptr_t)a & ~0; // low 32 bits in 64 bit word
duke@435 319 #endif
duke@435 320 _hi = (intptr_t)a & ~0x3ff; // top 22 bits
duke@435 321 _disp = (intptr_t)a & 0x3ff; // bottom 10 bits
duke@435 322 }
duke@435 323
duke@435 324 Address(Register b, intptr_t h, intptr_t d, RelocationHolder const& rspec = RelocationHolder())
duke@435 325 : _rspec(rspec)
duke@435 326 {
duke@435 327 _base = b;
duke@435 328 #ifdef _LP64
duke@435 329 // [RGV] Put in Assert to force me to check usage of this constructor
duke@435 330 assert( h == 0, "Check usage of this constructor" );
duke@435 331 _hi32 = h;
duke@435 332 _low32 = d;
duke@435 333 _hi = h;
duke@435 334 _disp = d;
duke@435 335 #else
duke@435 336 _hi = h;
duke@435 337 _disp = d;
duke@435 338 #endif
duke@435 339 }
duke@435 340
duke@435 341 Address()
duke@435 342 : _rspec(RelocationHolder())
duke@435 343 {
duke@435 344 _base = G0;
duke@435 345 #ifdef _LP64
duke@435 346 _hi32 = 0;
duke@435 347 _low32 = 0;
duke@435 348 #endif
duke@435 349 _hi = 0;
duke@435 350 _disp = 0;
duke@435 351 }
duke@435 352
duke@435 353 // fancier constructors
duke@435 354
duke@435 355 enum addr_type {
duke@435 356 extra_in_argument, // in the In registers
duke@435 357 extra_out_argument // in the Outs
duke@435 358 };
duke@435 359
duke@435 360 Address( addr_type, int );
duke@435 361
duke@435 362 // accessors
duke@435 363
duke@435 364 Register base() const { return _base; }
duke@435 365 #ifdef _LP64
duke@435 366 int hi32() const { return _hi32; }
duke@435 367 int low32() const { return _low32; }
duke@435 368 #endif
duke@435 369 int hi() const { return _hi; }
duke@435 370 int disp() const { return _disp; }
duke@435 371 #ifdef _LP64
duke@435 372 intptr_t value() const { return ((intptr_t)_hi32 << 32) |
duke@435 373 (intptr_t)(uint32_t)_low32; }
duke@435 374 #else
duke@435 375 int value() const { return _hi | _disp; }
duke@435 376 #endif
duke@435 377 const relocInfo::relocType rtype() { return _rspec.type(); }
duke@435 378 const RelocationHolder& rspec() { return _rspec; }
duke@435 379
duke@435 380 RelocationHolder rspec(int offset) const {
duke@435 381 return offset == 0 ? _rspec : _rspec.plus(offset);
duke@435 382 }
duke@435 383
duke@435 384 inline bool is_simm13(int offset = 0); // check disp+offset for overflow
duke@435 385
duke@435 386 Address split_disp() const { // deal with disp overflow
duke@435 387 Address a = (*this);
duke@435 388 int hi_disp = _disp & ~0x3ff;
duke@435 389 if (hi_disp != 0) {
duke@435 390 a._disp -= hi_disp;
duke@435 391 a._hi += hi_disp;
duke@435 392 }
duke@435 393 return a;
duke@435 394 }
duke@435 395
duke@435 396 Address after_save() const {
duke@435 397 Address a = (*this);
duke@435 398 a._base = a._base->after_save();
duke@435 399 return a;
duke@435 400 }
duke@435 401
duke@435 402 Address after_restore() const {
duke@435 403 Address a = (*this);
duke@435 404 a._base = a._base->after_restore();
duke@435 405 return a;
duke@435 406 }
duke@435 407
duke@435 408 friend class Assembler;
duke@435 409 };
duke@435 410
duke@435 411
duke@435 412 inline Address RegisterImpl::address_in_saved_window() const {
duke@435 413 return (Address(SP, 0, (sp_offset_in_saved_window() * wordSize) + STACK_BIAS));
duke@435 414 }
duke@435 415
duke@435 416
duke@435 417
duke@435 418 // Argument is an abstraction used to represent an outgoing
duke@435 419 // actual argument or an incoming formal parameter, whether
duke@435 420 // it resides in memory or in a register, in a manner consistent
duke@435 421 // with the SPARC Application Binary Interface, or ABI. This is
duke@435 422 // often referred to as the native or C calling convention.
duke@435 423
duke@435 424 class Argument VALUE_OBJ_CLASS_SPEC {
duke@435 425 private:
duke@435 426 int _number;
duke@435 427 bool _is_in;
duke@435 428
duke@435 429 public:
duke@435 430 #ifdef _LP64
duke@435 431 enum {
duke@435 432 n_register_parameters = 6, // only 6 registers may contain integer parameters
duke@435 433 n_float_register_parameters = 16 // Can have up to 16 floating registers
duke@435 434 };
duke@435 435 #else
duke@435 436 enum {
duke@435 437 n_register_parameters = 6 // only 6 registers may contain integer parameters
duke@435 438 };
duke@435 439 #endif
duke@435 440
duke@435 441 // creation
duke@435 442 Argument(int number, bool is_in) : _number(number), _is_in(is_in) {}
duke@435 443
duke@435 444 int number() const { return _number; }
duke@435 445 bool is_in() const { return _is_in; }
duke@435 446 bool is_out() const { return !is_in(); }
duke@435 447
duke@435 448 Argument successor() const { return Argument(number() + 1, is_in()); }
duke@435 449 Argument as_in() const { return Argument(number(), true ); }
duke@435 450 Argument as_out() const { return Argument(number(), false); }
duke@435 451
duke@435 452 // locating register-based arguments:
duke@435 453 bool is_register() const { return _number < n_register_parameters; }
duke@435 454
duke@435 455 #ifdef _LP64
duke@435 456 // locating Floating Point register-based arguments:
duke@435 457 bool is_float_register() const { return _number < n_float_register_parameters; }
duke@435 458
duke@435 459 FloatRegister as_float_register() const {
duke@435 460 assert(is_float_register(), "must be a register argument");
duke@435 461 return as_FloatRegister(( number() *2 ) + 1);
duke@435 462 }
duke@435 463 FloatRegister as_double_register() const {
duke@435 464 assert(is_float_register(), "must be a register argument");
duke@435 465 return as_FloatRegister(( number() *2 ));
duke@435 466 }
duke@435 467 #endif
duke@435 468
duke@435 469 Register as_register() const {
duke@435 470 assert(is_register(), "must be a register argument");
duke@435 471 return is_in() ? as_iRegister(number()) : as_oRegister(number());
duke@435 472 }
duke@435 473
duke@435 474 // locating memory-based arguments
duke@435 475 Address as_address() const {
duke@435 476 assert(!is_register(), "must be a memory argument");
duke@435 477 return address_in_frame();
duke@435 478 }
duke@435 479
duke@435 480 // When applied to a register-based argument, give the corresponding address
duke@435 481 // into the 6-word area "into which callee may store register arguments"
duke@435 482 // (This is a different place than the corresponding register-save area location.)
duke@435 483 Address address_in_frame() const {
duke@435 484 return Address( is_in() ? Address::extra_in_argument
duke@435 485 : Address::extra_out_argument,
duke@435 486 _number );
duke@435 487 }
duke@435 488
duke@435 489 // debugging
duke@435 490 const char* name() const;
duke@435 491
duke@435 492 friend class Assembler;
duke@435 493 };
duke@435 494
duke@435 495
duke@435 496 // The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
duke@435 497 // level; i.e., what you write
duke@435 498 // is what you get. The Assembler is generating code into a CodeBuffer.
duke@435 499
duke@435 500 class Assembler : public AbstractAssembler {
duke@435 501 protected:
duke@435 502
duke@435 503 static void print_instruction(int inst);
duke@435 504 static int patched_branch(int dest_pos, int inst, int inst_pos);
duke@435 505 static int branch_destination(int inst, int pos);
duke@435 506
duke@435 507
duke@435 508 friend class AbstractAssembler;
duke@435 509
duke@435 510 // code patchers need various routines like inv_wdisp()
duke@435 511 friend class NativeInstruction;
duke@435 512 friend class NativeGeneralJump;
duke@435 513 friend class Relocation;
duke@435 514 friend class Label;
duke@435 515
duke@435 516 public:
duke@435 517 // op carries format info; see page 62 & 267
duke@435 518
duke@435 519 enum ops {
duke@435 520 call_op = 1, // fmt 1
duke@435 521 branch_op = 0, // also sethi (fmt2)
duke@435 522 arith_op = 2, // fmt 3, arith & misc
duke@435 523 ldst_op = 3 // fmt 3, load/store
duke@435 524 };
duke@435 525
duke@435 526 enum op2s {
duke@435 527 bpr_op2 = 3,
duke@435 528 fb_op2 = 6,
duke@435 529 fbp_op2 = 5,
duke@435 530 br_op2 = 2,
duke@435 531 bp_op2 = 1,
duke@435 532 cb_op2 = 7, // V8
duke@435 533 sethi_op2 = 4
duke@435 534 };
duke@435 535
duke@435 536 enum op3s {
duke@435 537 // selected op3s
duke@435 538 add_op3 = 0x00,
duke@435 539 and_op3 = 0x01,
duke@435 540 or_op3 = 0x02,
duke@435 541 xor_op3 = 0x03,
duke@435 542 sub_op3 = 0x04,
duke@435 543 andn_op3 = 0x05,
duke@435 544 orn_op3 = 0x06,
duke@435 545 xnor_op3 = 0x07,
duke@435 546 addc_op3 = 0x08,
duke@435 547 mulx_op3 = 0x09,
duke@435 548 umul_op3 = 0x0a,
duke@435 549 smul_op3 = 0x0b,
duke@435 550 subc_op3 = 0x0c,
duke@435 551 udivx_op3 = 0x0d,
duke@435 552 udiv_op3 = 0x0e,
duke@435 553 sdiv_op3 = 0x0f,
duke@435 554
duke@435 555 addcc_op3 = 0x10,
duke@435 556 andcc_op3 = 0x11,
duke@435 557 orcc_op3 = 0x12,
duke@435 558 xorcc_op3 = 0x13,
duke@435 559 subcc_op3 = 0x14,
duke@435 560 andncc_op3 = 0x15,
duke@435 561 orncc_op3 = 0x16,
duke@435 562 xnorcc_op3 = 0x17,
duke@435 563 addccc_op3 = 0x18,
duke@435 564 umulcc_op3 = 0x1a,
duke@435 565 smulcc_op3 = 0x1b,
duke@435 566 subccc_op3 = 0x1c,
duke@435 567 udivcc_op3 = 0x1e,
duke@435 568 sdivcc_op3 = 0x1f,
duke@435 569
duke@435 570 taddcc_op3 = 0x20,
duke@435 571 tsubcc_op3 = 0x21,
duke@435 572 taddcctv_op3 = 0x22,
duke@435 573 tsubcctv_op3 = 0x23,
duke@435 574 mulscc_op3 = 0x24,
duke@435 575 sll_op3 = 0x25,
duke@435 576 sllx_op3 = 0x25,
duke@435 577 srl_op3 = 0x26,
duke@435 578 srlx_op3 = 0x26,
duke@435 579 sra_op3 = 0x27,
duke@435 580 srax_op3 = 0x27,
duke@435 581 rdreg_op3 = 0x28,
duke@435 582 membar_op3 = 0x28,
duke@435 583
duke@435 584 flushw_op3 = 0x2b,
duke@435 585 movcc_op3 = 0x2c,
duke@435 586 sdivx_op3 = 0x2d,
duke@435 587 popc_op3 = 0x2e,
duke@435 588 movr_op3 = 0x2f,
duke@435 589
duke@435 590 sir_op3 = 0x30,
duke@435 591 wrreg_op3 = 0x30,
duke@435 592 saved_op3 = 0x31,
duke@435 593
duke@435 594 fpop1_op3 = 0x34,
duke@435 595 fpop2_op3 = 0x35,
duke@435 596 impdep1_op3 = 0x36,
duke@435 597 impdep2_op3 = 0x37,
duke@435 598 jmpl_op3 = 0x38,
duke@435 599 rett_op3 = 0x39,
duke@435 600 trap_op3 = 0x3a,
duke@435 601 flush_op3 = 0x3b,
duke@435 602 save_op3 = 0x3c,
duke@435 603 restore_op3 = 0x3d,
duke@435 604 done_op3 = 0x3e,
duke@435 605 retry_op3 = 0x3e,
duke@435 606
duke@435 607 lduw_op3 = 0x00,
duke@435 608 ldub_op3 = 0x01,
duke@435 609 lduh_op3 = 0x02,
duke@435 610 ldd_op3 = 0x03,
duke@435 611 stw_op3 = 0x04,
duke@435 612 stb_op3 = 0x05,
duke@435 613 sth_op3 = 0x06,
duke@435 614 std_op3 = 0x07,
duke@435 615 ldsw_op3 = 0x08,
duke@435 616 ldsb_op3 = 0x09,
duke@435 617 ldsh_op3 = 0x0a,
duke@435 618 ldx_op3 = 0x0b,
duke@435 619
duke@435 620 ldstub_op3 = 0x0d,
duke@435 621 stx_op3 = 0x0e,
duke@435 622 swap_op3 = 0x0f,
duke@435 623
duke@435 624 lduwa_op3 = 0x10,
duke@435 625 ldxa_op3 = 0x1b,
duke@435 626
duke@435 627 stwa_op3 = 0x14,
duke@435 628 stxa_op3 = 0x1e,
duke@435 629
duke@435 630 ldf_op3 = 0x20,
duke@435 631 ldfsr_op3 = 0x21,
duke@435 632 ldqf_op3 = 0x22,
duke@435 633 lddf_op3 = 0x23,
duke@435 634 stf_op3 = 0x24,
duke@435 635 stfsr_op3 = 0x25,
duke@435 636 stqf_op3 = 0x26,
duke@435 637 stdf_op3 = 0x27,
duke@435 638
duke@435 639 prefetch_op3 = 0x2d,
duke@435 640
duke@435 641
duke@435 642 ldc_op3 = 0x30,
duke@435 643 ldcsr_op3 = 0x31,
duke@435 644 lddc_op3 = 0x33,
duke@435 645 stc_op3 = 0x34,
duke@435 646 stcsr_op3 = 0x35,
duke@435 647 stdcq_op3 = 0x36,
duke@435 648 stdc_op3 = 0x37,
duke@435 649
duke@435 650 casa_op3 = 0x3c,
duke@435 651 casxa_op3 = 0x3e,
duke@435 652
duke@435 653 alt_bit_op3 = 0x10,
duke@435 654 cc_bit_op3 = 0x10
duke@435 655 };
duke@435 656
duke@435 657 enum opfs {
duke@435 658 // selected opfs
duke@435 659 fmovs_opf = 0x01,
duke@435 660 fmovd_opf = 0x02,
duke@435 661
duke@435 662 fnegs_opf = 0x05,
duke@435 663 fnegd_opf = 0x06,
duke@435 664
duke@435 665 fadds_opf = 0x41,
duke@435 666 faddd_opf = 0x42,
duke@435 667 fsubs_opf = 0x45,
duke@435 668 fsubd_opf = 0x46,
duke@435 669
duke@435 670 fmuls_opf = 0x49,
duke@435 671 fmuld_opf = 0x4a,
duke@435 672 fdivs_opf = 0x4d,
duke@435 673 fdivd_opf = 0x4e,
duke@435 674
duke@435 675 fcmps_opf = 0x51,
duke@435 676 fcmpd_opf = 0x52,
duke@435 677
duke@435 678 fstox_opf = 0x81,
duke@435 679 fdtox_opf = 0x82,
duke@435 680 fxtos_opf = 0x84,
duke@435 681 fxtod_opf = 0x88,
duke@435 682 fitos_opf = 0xc4,
duke@435 683 fdtos_opf = 0xc6,
duke@435 684 fitod_opf = 0xc8,
duke@435 685 fstod_opf = 0xc9,
duke@435 686 fstoi_opf = 0xd1,
duke@435 687 fdtoi_opf = 0xd2
duke@435 688 };
duke@435 689
duke@435 690 enum RCondition { rc_z = 1, rc_lez = 2, rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7 };
duke@435 691
duke@435 692 enum Condition {
duke@435 693 // for FBfcc & FBPfcc instruction
duke@435 694 f_never = 0,
duke@435 695 f_notEqual = 1,
duke@435 696 f_notZero = 1,
duke@435 697 f_lessOrGreater = 2,
duke@435 698 f_unorderedOrLess = 3,
duke@435 699 f_less = 4,
duke@435 700 f_unorderedOrGreater = 5,
duke@435 701 f_greater = 6,
duke@435 702 f_unordered = 7,
duke@435 703 f_always = 8,
duke@435 704 f_equal = 9,
duke@435 705 f_zero = 9,
duke@435 706 f_unorderedOrEqual = 10,
duke@435 707 f_greaterOrEqual = 11,
duke@435 708 f_unorderedOrGreaterOrEqual = 12,
duke@435 709 f_lessOrEqual = 13,
duke@435 710 f_unorderedOrLessOrEqual = 14,
duke@435 711 f_ordered = 15,
duke@435 712
duke@435 713 // V8 coproc, pp 123 v8 manual
duke@435 714
duke@435 715 cp_always = 8,
duke@435 716 cp_never = 0,
duke@435 717 cp_3 = 7,
duke@435 718 cp_2 = 6,
duke@435 719 cp_2or3 = 5,
duke@435 720 cp_1 = 4,
duke@435 721 cp_1or3 = 3,
duke@435 722 cp_1or2 = 2,
duke@435 723 cp_1or2or3 = 1,
duke@435 724 cp_0 = 9,
duke@435 725 cp_0or3 = 10,
duke@435 726 cp_0or2 = 11,
duke@435 727 cp_0or2or3 = 12,
duke@435 728 cp_0or1 = 13,
duke@435 729 cp_0or1or3 = 14,
duke@435 730 cp_0or1or2 = 15,
duke@435 731
duke@435 732
duke@435 733 // for integers
duke@435 734
duke@435 735 never = 0,
duke@435 736 equal = 1,
duke@435 737 zero = 1,
duke@435 738 lessEqual = 2,
duke@435 739 less = 3,
duke@435 740 lessEqualUnsigned = 4,
duke@435 741 lessUnsigned = 5,
duke@435 742 carrySet = 5,
duke@435 743 negative = 6,
duke@435 744 overflowSet = 7,
duke@435 745 always = 8,
duke@435 746 notEqual = 9,
duke@435 747 notZero = 9,
duke@435 748 greater = 10,
duke@435 749 greaterEqual = 11,
duke@435 750 greaterUnsigned = 12,
duke@435 751 greaterEqualUnsigned = 13,
duke@435 752 carryClear = 13,
duke@435 753 positive = 14,
duke@435 754 overflowClear = 15
duke@435 755 };
duke@435 756
duke@435 757 enum CC {
duke@435 758 icc = 0, xcc = 2,
duke@435 759 // ptr_cc is the correct condition code for a pointer or intptr_t:
duke@435 760 ptr_cc = NOT_LP64(icc) LP64_ONLY(xcc),
duke@435 761 fcc0 = 0, fcc1 = 1, fcc2 = 2, fcc3 = 3
duke@435 762 };
duke@435 763
duke@435 764 enum PrefetchFcn {
duke@435 765 severalReads = 0, oneRead = 1, severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4
duke@435 766 };
duke@435 767
duke@435 768 public:
duke@435 769 // Helper functions for groups of instructions
duke@435 770
duke@435 771 enum Predict { pt = 1, pn = 0 }; // pt = predict taken
duke@435 772
duke@435 773 enum Membar_mask_bits { // page 184, v9
duke@435 774 StoreStore = 1 << 3,
duke@435 775 LoadStore = 1 << 2,
duke@435 776 StoreLoad = 1 << 1,
duke@435 777 LoadLoad = 1 << 0,
duke@435 778
duke@435 779 Sync = 1 << 6,
duke@435 780 MemIssue = 1 << 5,
duke@435 781 Lookaside = 1 << 4
duke@435 782 };
duke@435 783
duke@435 784 // test if x is within signed immediate range for nbits
duke@435 785 static bool is_simm(int x, int nbits) { return -( 1 << nbits-1 ) <= x && x < ( 1 << nbits-1 ); }
duke@435 786
duke@435 787 // test if -4096 <= x <= 4095
duke@435 788 static bool is_simm13(int x) { return is_simm(x, 13); }
duke@435 789
duke@435 790 enum ASIs { // page 72, v9
duke@435 791 ASI_PRIMARY = 0x80,
duke@435 792 ASI_PRIMARY_LITTLE = 0x88
duke@435 793 // add more from book as needed
duke@435 794 };
duke@435 795
duke@435 796 protected:
duke@435 797 // helpers
duke@435 798
duke@435 799 // x is supposed to fit in a field "nbits" wide
duke@435 800 // and be sign-extended. Check the range.
duke@435 801
duke@435 802 static void assert_signed_range(intptr_t x, int nbits) {
duke@435 803 assert( nbits == 32
duke@435 804 || -(1 << nbits-1) <= x && x < ( 1 << nbits-1),
duke@435 805 "value out of range");
duke@435 806 }
duke@435 807
duke@435 808 static void assert_signed_word_disp_range(intptr_t x, int nbits) {
duke@435 809 assert( (x & 3) == 0, "not word aligned");
duke@435 810 assert_signed_range(x, nbits + 2);
duke@435 811 }
duke@435 812
duke@435 813 static void assert_unsigned_const(int x, int nbits) {
duke@435 814 assert( juint(x) < juint(1 << nbits), "unsigned constant out of range");
duke@435 815 }
duke@435 816
duke@435 817 // fields: note bits numbered from LSB = 0,
duke@435 818 // fields known by inclusive bit range
duke@435 819
duke@435 820 static int fmask(juint hi_bit, juint lo_bit) {
duke@435 821 assert( hi_bit >= lo_bit && 0 <= lo_bit && hi_bit < 32, "bad bits");
duke@435 822 return (1 << ( hi_bit-lo_bit + 1 )) - 1;
duke@435 823 }
duke@435 824
duke@435 825 // inverse of u_field
duke@435 826
duke@435 827 static int inv_u_field(int x, int hi_bit, int lo_bit) {
duke@435 828 juint r = juint(x) >> lo_bit;
duke@435 829 r &= fmask( hi_bit, lo_bit);
duke@435 830 return int(r);
duke@435 831 }
duke@435 832
duke@435 833
duke@435 834 // signed version: extract from field and sign-extend
duke@435 835
duke@435 836 static int inv_s_field(int x, int hi_bit, int lo_bit) {
duke@435 837 int sign_shift = 31 - hi_bit;
duke@435 838 return inv_u_field( ((x << sign_shift) >> sign_shift), hi_bit, lo_bit);
duke@435 839 }
duke@435 840
duke@435 841 // given a field that ranges from hi_bit to lo_bit (inclusive,
duke@435 842 // LSB = 0), and an unsigned value for the field,
duke@435 843 // shift it into the field
duke@435 844
duke@435 845 #ifdef ASSERT
duke@435 846 static int u_field(int x, int hi_bit, int lo_bit) {
duke@435 847 assert( ( x & ~fmask(hi_bit, lo_bit)) == 0,
duke@435 848 "value out of range");
duke@435 849 int r = x << lo_bit;
duke@435 850 assert( inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
duke@435 851 return r;
duke@435 852 }
duke@435 853 #else
duke@435 854 // make sure this is inlined as it will reduce code size significantly
duke@435 855 #define u_field(x, hi_bit, lo_bit) ((x) << (lo_bit))
duke@435 856 #endif
duke@435 857
duke@435 858 static int inv_op( int x ) { return inv_u_field(x, 31, 30); }
duke@435 859 static int inv_op2( int x ) { return inv_u_field(x, 24, 22); }
duke@435 860 static int inv_op3( int x ) { return inv_u_field(x, 24, 19); }
duke@435 861 static int inv_cond( int x ){ return inv_u_field(x, 28, 25); }
duke@435 862
duke@435 863 static bool inv_immed( int x ) { return (x & Assembler::immed(true)) != 0; }
duke@435 864
duke@435 865 static Register inv_rd( int x ) { return as_Register(inv_u_field(x, 29, 25)); }
duke@435 866 static Register inv_rs1( int x ) { return as_Register(inv_u_field(x, 18, 14)); }
duke@435 867 static Register inv_rs2( int x ) { return as_Register(inv_u_field(x, 4, 0)); }
duke@435 868
duke@435 869 static int op( int x) { return u_field(x, 31, 30); }
duke@435 870 static int rd( Register r) { return u_field(r->encoding(), 29, 25); }
duke@435 871 static int fcn( int x) { return u_field(x, 29, 25); }
duke@435 872 static int op3( int x) { return u_field(x, 24, 19); }
duke@435 873 static int rs1( Register r) { return u_field(r->encoding(), 18, 14); }
duke@435 874 static int rs2( Register r) { return u_field(r->encoding(), 4, 0); }
duke@435 875 static int annul( bool a) { return u_field(a ? 1 : 0, 29, 29); }
duke@435 876 static int cond( int x) { return u_field(x, 28, 25); }
duke@435 877 static int cond_mov( int x) { return u_field(x, 17, 14); }
duke@435 878 static int rcond( RCondition x) { return u_field(x, 12, 10); }
duke@435 879 static int op2( int x) { return u_field(x, 24, 22); }
duke@435 880 static int predict( bool p) { return u_field(p ? 1 : 0, 19, 19); }
duke@435 881 static int branchcc( CC fcca) { return u_field(fcca, 21, 20); }
duke@435 882 static int cmpcc( CC fcca) { return u_field(fcca, 26, 25); }
duke@435 883 static int imm_asi( int x) { return u_field(x, 12, 5); }
duke@435 884 static int immed( bool i) { return u_field(i ? 1 : 0, 13, 13); }
duke@435 885 static int opf_low6( int w) { return u_field(w, 10, 5); }
duke@435 886 static int opf_low5( int w) { return u_field(w, 9, 5); }
duke@435 887 static int trapcc( CC cc) { return u_field(cc, 12, 11); }
duke@435 888 static int sx( int i) { return u_field(i, 12, 12); } // shift x=1 means 64-bit
duke@435 889 static int opf( int x) { return u_field(x, 13, 5); }
duke@435 890
duke@435 891 static int opf_cc( CC c, bool useFloat ) { return u_field((useFloat ? 0 : 4) + c, 13, 11); }
duke@435 892 static int mov_cc( CC c, bool useFloat ) { return u_field(useFloat ? 0 : 1, 18, 18) | u_field(c, 12, 11); }
duke@435 893
duke@435 894 static int fd( FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); };
duke@435 895 static int fs1(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); };
duke@435 896 static int fs2(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 4, 0); };
duke@435 897
duke@435 898 // some float instructions use this encoding on the op3 field
duke@435 899 static int alt_op3(int op, FloatRegisterImpl::Width w) {
duke@435 900 int r;
duke@435 901 switch(w) {
duke@435 902 case FloatRegisterImpl::S: r = op + 0; break;
duke@435 903 case FloatRegisterImpl::D: r = op + 3; break;
duke@435 904 case FloatRegisterImpl::Q: r = op + 2; break;
duke@435 905 default: ShouldNotReachHere(); break;
duke@435 906 }
duke@435 907 return op3(r);
duke@435 908 }
duke@435 909
duke@435 910
duke@435 911 // compute inverse of simm
duke@435 912 static int inv_simm(int x, int nbits) {
duke@435 913 return (int)(x << (32 - nbits)) >> (32 - nbits);
duke@435 914 }
duke@435 915
duke@435 916 static int inv_simm13( int x ) { return inv_simm(x, 13); }
duke@435 917
duke@435 918 // signed immediate, in low bits, nbits long
duke@435 919 static int simm(int x, int nbits) {
duke@435 920 assert_signed_range(x, nbits);
duke@435 921 return x & (( 1 << nbits ) - 1);
duke@435 922 }
duke@435 923
duke@435 924 // compute inverse of wdisp16
duke@435 925 static intptr_t inv_wdisp16(int x, intptr_t pos) {
duke@435 926 int lo = x & (( 1 << 14 ) - 1);
duke@435 927 int hi = (x >> 20) & 3;
duke@435 928 if (hi >= 2) hi |= ~1;
duke@435 929 return (((hi << 14) | lo) << 2) + pos;
duke@435 930 }
duke@435 931
duke@435 932 // word offset, 14 bits at LSend, 2 bits at B21, B20
duke@435 933 static int wdisp16(intptr_t x, intptr_t off) {
duke@435 934 intptr_t xx = x - off;
duke@435 935 assert_signed_word_disp_range(xx, 16);
duke@435 936 int r = (xx >> 2) & ((1 << 14) - 1)
duke@435 937 | ( ( (xx>>(2+14)) & 3 ) << 20 );
duke@435 938 assert( inv_wdisp16(r, off) == x, "inverse is not inverse");
duke@435 939 return r;
duke@435 940 }
duke@435 941
duke@435 942
duke@435 943 // word displacement in low-order nbits bits
duke@435 944
duke@435 945 static intptr_t inv_wdisp( int x, intptr_t pos, int nbits ) {
duke@435 946 int pre_sign_extend = x & (( 1 << nbits ) - 1);
duke@435 947 int r = pre_sign_extend >= ( 1 << (nbits-1) )
duke@435 948 ? pre_sign_extend | ~(( 1 << nbits ) - 1)
duke@435 949 : pre_sign_extend;
duke@435 950 return (r << 2) + pos;
duke@435 951 }
duke@435 952
duke@435 953 static int wdisp( intptr_t x, intptr_t off, int nbits ) {
duke@435 954 intptr_t xx = x - off;
duke@435 955 assert_signed_word_disp_range(xx, nbits);
duke@435 956 int r = (xx >> 2) & (( 1 << nbits ) - 1);
duke@435 957 assert( inv_wdisp( r, off, nbits ) == x, "inverse not inverse");
duke@435 958 return r;
duke@435 959 }
duke@435 960
duke@435 961
duke@435 962 // Extract the top 32 bits in a 64 bit word
duke@435 963 static int32_t hi32( int64_t x ) {
duke@435 964 int32_t r = int32_t( (uint64_t)x >> 32 );
duke@435 965 return r;
duke@435 966 }
duke@435 967
duke@435 968 // given a sethi instruction, extract the constant, left-justified
duke@435 969 static int inv_hi22( int x ) {
duke@435 970 return x << 10;
duke@435 971 }
duke@435 972
duke@435 973 // create an imm22 field, given a 32-bit left-justified constant
duke@435 974 static int hi22( int x ) {
duke@435 975 int r = int( juint(x) >> 10 );
duke@435 976 assert( (r & ~((1 << 22) - 1)) == 0, "just checkin'");
duke@435 977 return r;
duke@435 978 }
duke@435 979
duke@435 980 // create a low10 __value__ (not a field) for a given a 32-bit constant
duke@435 981 static int low10( int x ) {
duke@435 982 return x & ((1 << 10) - 1);
duke@435 983 }
duke@435 984
duke@435 985 // instruction only in v9
duke@435 986 static void v9_only() { assert( VM_Version::v9_instructions_work(), "This instruction only works on SPARC V9"); }
duke@435 987
duke@435 988 // instruction only in v8
duke@435 989 static void v8_only() { assert( VM_Version::v8_instructions_work(), "This instruction only works on SPARC V8"); }
duke@435 990
duke@435 991 // instruction deprecated in v9
duke@435 992 static void v9_dep() { } // do nothing for now
duke@435 993
duke@435 994 // some float instructions only exist for single prec. on v8
duke@435 995 static void v8_s_only(FloatRegisterImpl::Width w) { if (w != FloatRegisterImpl::S) v9_only(); }
duke@435 996
duke@435 997 // v8 has no CC field
duke@435 998 static void v8_no_cc(CC cc) { if (cc) v9_only(); }
duke@435 999
duke@435 1000 protected:
duke@435 1001 // Simple delay-slot scheme:
duke@435 1002 // In order to check the programmer, the assembler keeps track of deley slots.
duke@435 1003 // It forbids CTIs in delay slots (conservative, but should be OK).
duke@435 1004 // Also, when putting an instruction into a delay slot, you must say
duke@435 1005 // asm->delayed()->add(...), in order to check that you don't omit
duke@435 1006 // delay-slot instructions.
duke@435 1007 // To implement this, we use a simple FSA
duke@435 1008
duke@435 1009 #ifdef ASSERT
duke@435 1010 #define CHECK_DELAY
duke@435 1011 #endif
duke@435 1012 #ifdef CHECK_DELAY
duke@435 1013 enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state;
duke@435 1014 #endif
duke@435 1015
duke@435 1016 public:
duke@435 1017 // Tells assembler next instruction must NOT be in delay slot.
duke@435 1018 // Use at start of multinstruction macros.
duke@435 1019 void assert_not_delayed() {
duke@435 1020 // This is a separate overloading to avoid creation of string constants
duke@435 1021 // in non-asserted code--with some compilers this pollutes the object code.
duke@435 1022 #ifdef CHECK_DELAY
duke@435 1023 assert_not_delayed("next instruction should not be a delay slot");
duke@435 1024 #endif
duke@435 1025 }
duke@435 1026 void assert_not_delayed(const char* msg) {
duke@435 1027 #ifdef CHECK_DELAY
duke@435 1028 assert_msg ( delay_state == no_delay, msg);
duke@435 1029 #endif
duke@435 1030 }
duke@435 1031
duke@435 1032 protected:
duke@435 1033 // Delay slot helpers
duke@435 1034 // cti is called when emitting control-transfer instruction,
duke@435 1035 // BEFORE doing the emitting.
duke@435 1036 // Only effective when assertion-checking is enabled.
duke@435 1037 void cti() {
duke@435 1038 #ifdef CHECK_DELAY
duke@435 1039 assert_not_delayed("cti should not be in delay slot");
duke@435 1040 #endif
duke@435 1041 }
duke@435 1042
duke@435 1043 // called when emitting cti with a delay slot, AFTER emitting
duke@435 1044 void has_delay_slot() {
duke@435 1045 #ifdef CHECK_DELAY
duke@435 1046 assert_not_delayed("just checking");
duke@435 1047 delay_state = at_delay_slot;
duke@435 1048 #endif
duke@435 1049 }
duke@435 1050
duke@435 1051 public:
duke@435 1052 // Tells assembler you know that next instruction is delayed
duke@435 1053 Assembler* delayed() {
duke@435 1054 #ifdef CHECK_DELAY
duke@435 1055 assert ( delay_state == at_delay_slot, "delayed instruction is not in delay slot");
duke@435 1056 delay_state = filling_delay_slot;
duke@435 1057 #endif
duke@435 1058 return this;
duke@435 1059 }
duke@435 1060
duke@435 1061 void flush() {
duke@435 1062 #ifdef CHECK_DELAY
duke@435 1063 assert ( delay_state == no_delay, "ending code with a delay slot");
duke@435 1064 #endif
duke@435 1065 AbstractAssembler::flush();
duke@435 1066 }
duke@435 1067
duke@435 1068 inline void emit_long(int); // shadows AbstractAssembler::emit_long
duke@435 1069 inline void emit_data(int x) { emit_long(x); }
duke@435 1070 inline void emit_data(int, RelocationHolder const&);
duke@435 1071 inline void emit_data(int, relocInfo::relocType rtype);
duke@435 1072 // helper for above fcns
duke@435 1073 inline void check_delay();
duke@435 1074
duke@435 1075
duke@435 1076 public:
duke@435 1077 // instructions, refer to page numbers in the SPARC Architecture Manual, V9
duke@435 1078
duke@435 1079 // pp 135 (addc was addx in v8)
duke@435 1080
duke@435 1081 inline void add( Register s1, Register s2, Register d );
duke@435 1082 inline void add( Register s1, int simm13a, Register d, relocInfo::relocType rtype = relocInfo::none);
duke@435 1083 inline void add( Register s1, int simm13a, Register d, RelocationHolder const& rspec);
duke@435 1084 inline void add( const Address& a, Register d, int offset = 0);
duke@435 1085
duke@435 1086 void addcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1087 void addcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1088 void addc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1089 void addc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1090 void addccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1091 void addccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1092
duke@435 1093 // pp 136
duke@435 1094
duke@435 1095 inline void bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1096 inline void bpr( RCondition c, bool a, Predict p, Register s1, Label& L);
duke@435 1097
duke@435 1098 protected: // use MacroAssembler::br instead
duke@435 1099
duke@435 1100 // pp 138
duke@435 1101
duke@435 1102 inline void fb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1103 inline void fb( Condition c, bool a, Label& L );
duke@435 1104
duke@435 1105 // pp 141
duke@435 1106
duke@435 1107 inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1108 inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
duke@435 1109
duke@435 1110 public:
duke@435 1111
duke@435 1112 // pp 144
duke@435 1113
duke@435 1114 inline void br( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1115 inline void br( Condition c, bool a, Label& L );
duke@435 1116
duke@435 1117 // pp 146
duke@435 1118
duke@435 1119 inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1120 inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
duke@435 1121
duke@435 1122 // pp 121 (V8)
duke@435 1123
duke@435 1124 inline void cb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1125 inline void cb( Condition c, bool a, Label& L );
duke@435 1126
duke@435 1127 // pp 149
duke@435 1128
duke@435 1129 inline void call( address d, relocInfo::relocType rt = relocInfo::runtime_call_type );
duke@435 1130 inline void call( Label& L, relocInfo::relocType rt = relocInfo::runtime_call_type );
duke@435 1131
duke@435 1132 // pp 150
duke@435 1133
duke@435 1134 // These instructions compare the contents of s2 with the contents of
duke@435 1135 // memory at address in s1. If the values are equal, the contents of memory
duke@435 1136 // at address s1 is swapped with the data in d. If the values are not equal,
duke@435 1137 // the the contents of memory at s1 is loaded into d, without the swap.
duke@435 1138
duke@435 1139 void casa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(casa_op3 ) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); }
duke@435 1140 void casxa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(casxa_op3) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); }
duke@435 1141
duke@435 1142 // pp 152
duke@435 1143
duke@435 1144 void udiv( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | rs2(s2)); }
duke@435 1145 void udiv( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1146 void sdiv( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | rs2(s2)); }
duke@435 1147 void sdiv( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1148 void udivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
duke@435 1149 void udivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1150 void sdivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
duke@435 1151 void sdivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1152
duke@435 1153 // pp 155
duke@435 1154
duke@435 1155 void done() { v9_only(); cti(); emit_long( op(arith_op) | fcn(0) | op3(done_op3) ); }
duke@435 1156 void retry() { v9_only(); cti(); emit_long( op(arith_op) | fcn(1) | op3(retry_op3) ); }
duke@435 1157
duke@435 1158 // pp 156
duke@435 1159
duke@435 1160 void fadd( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x40 + w) | fs2(s2, w)); }
duke@435 1161 void fsub( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x44 + w) | fs2(s2, w)); }
duke@435 1162
duke@435 1163 // pp 157
duke@435 1164
duke@435 1165 void fcmp( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc); emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x50 + w) | fs2(s2, w)); }
duke@435 1166 void fcmpe( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc); emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x54 + w) | fs2(s2, w)); }
duke@435 1167
duke@435 1168 // pp 159
duke@435 1169
duke@435 1170 void ftox( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w) | fs2(s, w)); }
duke@435 1171 void ftoi( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xd0 + w) | fs2(s, w)); }
duke@435 1172
duke@435 1173 // pp 160
duke@435 1174
duke@435 1175 void ftof( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | opf(0xc0 + sw + dw*4) | fs2(s, sw)); }
duke@435 1176
duke@435 1177 // pp 161
duke@435 1178
duke@435 1179 void fxtof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w*4) | fs2(s, w)); }
duke@435 1180 void fitof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xc0 + w*4) | fs2(s, w)); }
duke@435 1181
duke@435 1182 // pp 162
duke@435 1183
duke@435 1184 void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x00 + w) | fs2(s, w)); }
duke@435 1185
duke@435 1186 void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(s, w)); }
duke@435 1187
duke@435 1188 // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fnegs is the only instruction available
duke@435 1189 // on v8 to do negation of single, double and quad precision floats.
duke@435 1190
duke@435 1191 void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x05) | fs2(sd, w)); }
duke@435 1192
duke@435 1193 void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(s, w)); }
duke@435 1194
duke@435 1195 // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fabss is the only instruction available
duke@435 1196 // on v8 to do abs operation on single/double/quad precision floats.
duke@435 1197
duke@435 1198 void fabs( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x09) | fs2(sd, w)); }
duke@435 1199
duke@435 1200 // pp 163
duke@435 1201
duke@435 1202 void fmul( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x48 + w) | fs2(s2, w)); }
duke@435 1203 void fmul( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | fs1(s1, sw) | opf(0x60 + sw + dw*4) | fs2(s2, sw)); }
duke@435 1204 void fdiv( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x4c + w) | fs2(s2, w)); }
duke@435 1205
duke@435 1206 // pp 164
duke@435 1207
duke@435 1208 void fsqrt( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x28 + w) | fs2(s, w)); }
duke@435 1209
duke@435 1210 // pp 165
duke@435 1211
duke@435 1212 inline void flush( Register s1, Register s2 );
duke@435 1213 inline void flush( Register s1, int simm13a);
duke@435 1214
duke@435 1215 // pp 167
duke@435 1216
duke@435 1217 void flushw() { v9_only(); emit_long( op(arith_op) | op3(flushw_op3) ); }
duke@435 1218
duke@435 1219 // pp 168
duke@435 1220
duke@435 1221 void illtrap( int const22a) { if (const22a != 0) v9_only(); emit_long( op(branch_op) | u_field(const22a, 21, 0) ); }
duke@435 1222 // v8 unimp == illtrap(0)
duke@435 1223
duke@435 1224 // pp 169
duke@435 1225
duke@435 1226 void impdep1( int id1, int const19a ) { v9_only(); emit_long( op(arith_op) | fcn(id1) | op3(impdep1_op3) | u_field(const19a, 18, 0)); }
duke@435 1227 void impdep2( int id1, int const19a ) { v9_only(); emit_long( op(arith_op) | fcn(id1) | op3(impdep2_op3) | u_field(const19a, 18, 0)); }
duke@435 1228
duke@435 1229 // pp 149 (v8)
duke@435 1230
duke@435 1231 void cpop1( int opc, int cr1, int cr2, int crd ) { v8_only(); emit_long( op(arith_op) | fcn(crd) | op3(impdep1_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
duke@435 1232 void cpop2( int opc, int cr1, int cr2, int crd ) { v8_only(); emit_long( op(arith_op) | fcn(crd) | op3(impdep2_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
duke@435 1233
duke@435 1234 // pp 170
duke@435 1235
duke@435 1236 void jmpl( Register s1, Register s2, Register d );
duke@435 1237 void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() );
duke@435 1238
duke@435 1239 inline void jmpl( Address& a, Register d, int offset = 0);
duke@435 1240
duke@435 1241 // 171
duke@435 1242
duke@435 1243 inline void ldf( FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d );
duke@435 1244 inline void ldf( FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d );
duke@435 1245
duke@435 1246 inline void ldf( FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset = 0);
duke@435 1247
duke@435 1248
duke@435 1249 inline void ldfsr( Register s1, Register s2 );
duke@435 1250 inline void ldfsr( Register s1, int simm13a);
duke@435 1251 inline void ldxfsr( Register s1, Register s2 );
duke@435 1252 inline void ldxfsr( Register s1, int simm13a);
duke@435 1253
duke@435 1254 // pp 94 (v8)
duke@435 1255
duke@435 1256 inline void ldc( Register s1, Register s2, int crd );
duke@435 1257 inline void ldc( Register s1, int simm13a, int crd);
duke@435 1258 inline void lddc( Register s1, Register s2, int crd );
duke@435 1259 inline void lddc( Register s1, int simm13a, int crd);
duke@435 1260 inline void ldcsr( Register s1, Register s2, int crd );
duke@435 1261 inline void ldcsr( Register s1, int simm13a, int crd);
duke@435 1262
duke@435 1263
duke@435 1264 // 173
duke@435 1265
duke@435 1266 void ldfa( FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1267 void ldfa( FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1268
duke@435 1269 // pp 175, lduw is ld on v8
duke@435 1270
duke@435 1271 inline void ldsb( Register s1, Register s2, Register d );
duke@435 1272 inline void ldsb( Register s1, int simm13a, Register d);
duke@435 1273 inline void ldsh( Register s1, Register s2, Register d );
duke@435 1274 inline void ldsh( Register s1, int simm13a, Register d);
duke@435 1275 inline void ldsw( Register s1, Register s2, Register d );
duke@435 1276 inline void ldsw( Register s1, int simm13a, Register d);
duke@435 1277 inline void ldub( Register s1, Register s2, Register d );
duke@435 1278 inline void ldub( Register s1, int simm13a, Register d);
duke@435 1279 inline void lduh( Register s1, Register s2, Register d );
duke@435 1280 inline void lduh( Register s1, int simm13a, Register d);
duke@435 1281 inline void lduw( Register s1, Register s2, Register d );
duke@435 1282 inline void lduw( Register s1, int simm13a, Register d);
duke@435 1283 inline void ldx( Register s1, Register s2, Register d );
duke@435 1284 inline void ldx( Register s1, int simm13a, Register d);
duke@435 1285 inline void ld( Register s1, Register s2, Register d );
duke@435 1286 inline void ld( Register s1, int simm13a, Register d);
duke@435 1287 inline void ldd( Register s1, Register s2, Register d );
duke@435 1288 inline void ldd( Register s1, int simm13a, Register d);
duke@435 1289
duke@435 1290 inline void ldsb( const Address& a, Register d, int offset = 0 );
duke@435 1291 inline void ldsh( const Address& a, Register d, int offset = 0 );
duke@435 1292 inline void ldsw( const Address& a, Register d, int offset = 0 );
duke@435 1293 inline void ldub( const Address& a, Register d, int offset = 0 );
duke@435 1294 inline void lduh( const Address& a, Register d, int offset = 0 );
duke@435 1295 inline void lduw( const Address& a, Register d, int offset = 0 );
duke@435 1296 inline void ldx( const Address& a, Register d, int offset = 0 );
duke@435 1297 inline void ld( const Address& a, Register d, int offset = 0 );
duke@435 1298 inline void ldd( const Address& a, Register d, int offset = 0 );
duke@435 1299
duke@435 1300 // pp 177
duke@435 1301
duke@435 1302 void ldsba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1303 void ldsba( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1304 void ldsha( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1305 void ldsha( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1306 void ldswa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1307 void ldswa( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1308 void lduba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1309 void lduba( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1310 void lduha( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1311 void lduha( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1312 void lduwa( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1313 void lduwa( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1314 void ldxa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1315 void ldxa( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1316 void ldda( Register s1, Register s2, int ia, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1317 void ldda( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1318
duke@435 1319 // pp 179
duke@435 1320
duke@435 1321 inline void ldstub( Register s1, Register s2, Register d );
duke@435 1322 inline void ldstub( Register s1, int simm13a, Register d);
duke@435 1323
duke@435 1324 // pp 180
duke@435 1325
duke@435 1326 void ldstuba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1327 void ldstuba( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1328
duke@435 1329 // pp 181
duke@435 1330
duke@435 1331 void and3( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1332 void and3( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1333 void andcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1334 void andcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1335 void andn( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1336 void andn( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1337 void andncc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1338 void andncc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1339 void or3( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1340 void or3( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1341 void orcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1342 void orcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1343 void orn( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1344 void orn( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1345 void orncc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1346 void orncc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1347 void xor3( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1348 void xor3( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1349 void xorcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1350 void xorcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1351 void xnor( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1352 void xnor( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1353 void xnorcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1354 void xnorcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1355
duke@435 1356 // pp 183
duke@435 1357
duke@435 1358 void membar( Membar_mask_bits const7a ) { v9_only(); emit_long( op(arith_op) | op3(membar_op3) | rs1(O7) | immed(true) | u_field( int(const7a), 6, 0)); }
duke@435 1359
duke@435 1360 // pp 185
duke@435 1361
duke@435 1362 void fmov( FloatRegisterImpl::Width w, Condition c, bool floatCC, CC cca, FloatRegister s2, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | cond_mov(c) | opf_cc(cca, floatCC) | opf_low6(w) | fs2(s2, w)); }
duke@435 1363
duke@435 1364 // pp 189
duke@435 1365
duke@435 1366 void fmov( FloatRegisterImpl::Width w, RCondition c, Register s1, FloatRegister s2, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | rs1(s1) | rcond(c) | opf_low5(4 + w) | fs2(s2, w)); }
duke@435 1367
duke@435 1368 // pp 191
duke@435 1369
duke@435 1370 void movcc( Condition c, bool floatCC, CC cca, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | rs2(s2) ); }
duke@435 1371 void movcc( Condition c, bool floatCC, CC cca, int simm11a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | immed(true) | simm(simm11a, 11) ); }
duke@435 1372
duke@435 1373 // pp 195
duke@435 1374
duke@435 1375 void movr( RCondition c, Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | rs2(s2) ); }
duke@435 1376 void movr( RCondition c, Register s1, int simm10a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | immed(true) | simm(simm10a, 10) ); }
duke@435 1377
duke@435 1378 // pp 196
duke@435 1379
duke@435 1380 void mulx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1381 void mulx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1382 void sdivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1383 void sdivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1384 void udivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1385 void udivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1386
duke@435 1387 // pp 197
duke@435 1388
duke@435 1389 void umul( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1390 void umul( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1391 void smul( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1392 void smul( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1393 void umulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1394 void umulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1395 void smulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1396 void smulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1397
duke@435 1398 // pp 199
duke@435 1399
duke@435 1400 void mulscc( Register s1, Register s2, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1401 void mulscc( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1402
duke@435 1403 // pp 201
duke@435 1404
duke@435 1405 void nop() { emit_long( op(branch_op) | op2(sethi_op2) ); }
duke@435 1406
duke@435 1407
duke@435 1408 // pp 202
duke@435 1409
duke@435 1410 void popc( Register s, Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); }
duke@435 1411 void popc( int simm13a, Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); }
duke@435 1412
duke@435 1413 // pp 203
duke@435 1414
duke@435 1415 void prefetch( Register s1, Register s2, PrefetchFcn f);
duke@435 1416 void prefetch( Register s1, int simm13a, PrefetchFcn f);
duke@435 1417 void prefetcha( Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only(); emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1418 void prefetcha( Register s1, int simm13a, PrefetchFcn f ) { v9_only(); emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1419
duke@435 1420 inline void prefetch(const Address& a, PrefetchFcn F, int offset = 0);
duke@435 1421
duke@435 1422 // pp 208
duke@435 1423
duke@435 1424 // not implementing read privileged register
duke@435 1425
duke@435 1426 inline void rdy( Register d) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(0, 18, 14)); }
duke@435 1427 inline void rdccr( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(2, 18, 14)); }
duke@435 1428 inline void rdasi( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(3, 18, 14)); }
duke@435 1429 inline void rdtick( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(4, 18, 14)); } // Spoon!
duke@435 1430 inline void rdpc( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(5, 18, 14)); }
duke@435 1431 inline void rdfprs( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(6, 18, 14)); }
duke@435 1432
duke@435 1433 // pp 213
duke@435 1434
duke@435 1435 inline void rett( Register s1, Register s2);
duke@435 1436 inline void rett( Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none);
duke@435 1437
duke@435 1438 // pp 214
duke@435 1439
duke@435 1440 void save( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1441 void save( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1442
duke@435 1443 void restore( Register s1 = G0, Register s2 = G0, Register d = G0 ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1444 void restore( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1445
duke@435 1446 // pp 216
duke@435 1447
duke@435 1448 void saved() { v9_only(); emit_long( op(arith_op) | fcn(0) | op3(saved_op3)); }
duke@435 1449 void restored() { v9_only(); emit_long( op(arith_op) | fcn(1) | op3(saved_op3)); }
duke@435 1450
duke@435 1451 // pp 217
duke@435 1452
duke@435 1453 inline void sethi( int imm22a, Register d, RelocationHolder const& rspec = RelocationHolder() );
duke@435 1454 // pp 218
duke@435 1455
duke@435 1456 void sll( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
duke@435 1457 void sll( Register s1, int imm5a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
duke@435 1458 void srl( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
duke@435 1459 void srl( Register s1, int imm5a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
duke@435 1460 void sra( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
duke@435 1461 void sra( Register s1, int imm5a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
duke@435 1462
duke@435 1463 void sllx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
duke@435 1464 void sllx( Register s1, int imm6a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
duke@435 1465 void srlx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
duke@435 1466 void srlx( Register s1, int imm6a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
duke@435 1467 void srax( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
duke@435 1468 void srax( Register s1, int imm6a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
duke@435 1469
duke@435 1470 // pp 220
duke@435 1471
duke@435 1472 void sir( int simm13a ) { emit_long( op(arith_op) | fcn(15) | op3(sir_op3) | immed(true) | simm(simm13a, 13)); }
duke@435 1473
duke@435 1474 // pp 221
duke@435 1475
duke@435 1476 void stbar() { emit_long( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); }
duke@435 1477
duke@435 1478 // pp 222
duke@435 1479
duke@435 1480 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2 );
duke@435 1481 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
duke@435 1482 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset = 0);
duke@435 1483
duke@435 1484 inline void stfsr( Register s1, Register s2 );
duke@435 1485 inline void stfsr( Register s1, int simm13a);
duke@435 1486 inline void stxfsr( Register s1, Register s2 );
duke@435 1487 inline void stxfsr( Register s1, int simm13a);
duke@435 1488
duke@435 1489 // pp 224
duke@435 1490
duke@435 1491 void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1492 void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1493
duke@435 1494 // p 226
duke@435 1495
duke@435 1496 inline void stb( Register d, Register s1, Register s2 );
duke@435 1497 inline void stb( Register d, Register s1, int simm13a);
duke@435 1498 inline void sth( Register d, Register s1, Register s2 );
duke@435 1499 inline void sth( Register d, Register s1, int simm13a);
duke@435 1500 inline void stw( Register d, Register s1, Register s2 );
duke@435 1501 inline void stw( Register d, Register s1, int simm13a);
duke@435 1502 inline void st( Register d, Register s1, Register s2 );
duke@435 1503 inline void st( Register d, Register s1, int simm13a);
duke@435 1504 inline void stx( Register d, Register s1, Register s2 );
duke@435 1505 inline void stx( Register d, Register s1, int simm13a);
duke@435 1506 inline void std( Register d, Register s1, Register s2 );
duke@435 1507 inline void std( Register d, Register s1, int simm13a);
duke@435 1508
duke@435 1509 inline void stb( Register d, const Address& a, int offset = 0 );
duke@435 1510 inline void sth( Register d, const Address& a, int offset = 0 );
duke@435 1511 inline void stw( Register d, const Address& a, int offset = 0 );
duke@435 1512 inline void stx( Register d, const Address& a, int offset = 0 );
duke@435 1513 inline void st( Register d, const Address& a, int offset = 0 );
duke@435 1514 inline void std( Register d, const Address& a, int offset = 0 );
duke@435 1515
duke@435 1516 // pp 177
duke@435 1517
duke@435 1518 void stba( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1519 void stba( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1520 void stha( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1521 void stha( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1522 void stwa( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1523 void stwa( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1524 void stxa( Register d, Register s1, Register s2, int ia ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1525 void stxa( Register d, Register s1, int simm13a ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1526 void stda( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1527 void stda( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1528
duke@435 1529 // pp 97 (v8)
duke@435 1530
duke@435 1531 inline void stc( int crd, Register s1, Register s2 );
duke@435 1532 inline void stc( int crd, Register s1, int simm13a);
duke@435 1533 inline void stdc( int crd, Register s1, Register s2 );
duke@435 1534 inline void stdc( int crd, Register s1, int simm13a);
duke@435 1535 inline void stcsr( int crd, Register s1, Register s2 );
duke@435 1536 inline void stcsr( int crd, Register s1, int simm13a);
duke@435 1537 inline void stdcq( int crd, Register s1, Register s2 );
duke@435 1538 inline void stdcq( int crd, Register s1, int simm13a);
duke@435 1539
duke@435 1540 // pp 230
duke@435 1541
duke@435 1542 void sub( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1543 void sub( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1544 void subcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1545 void subcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1546 void subc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1547 void subc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1548 void subccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1549 void subccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1550
duke@435 1551 // pp 231
duke@435 1552
duke@435 1553 inline void swap( Register s1, Register s2, Register d );
duke@435 1554 inline void swap( Register s1, int simm13a, Register d);
duke@435 1555 inline void swap( Address& a, Register d, int offset = 0 );
duke@435 1556
duke@435 1557 // pp 232
duke@435 1558
duke@435 1559 void swapa( Register s1, Register s2, int ia, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1560 void swapa( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1561
duke@435 1562 // pp 234, note op in book is wrong, see pp 268
duke@435 1563
duke@435 1564 void taddcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1565 void taddcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1566 void taddcctv( Register s1, Register s2, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1567 void taddcctv( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1568
duke@435 1569 // pp 235
duke@435 1570
duke@435 1571 void tsubcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1572 void tsubcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1573 void tsubcctv( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1574 void tsubcctv( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1575
duke@435 1576 // pp 237
duke@435 1577
duke@435 1578 void trap( Condition c, CC cc, Register s1, Register s2 ) { v8_no_cc(cc); emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | rs2(s2)); }
duke@435 1579 void trap( Condition c, CC cc, Register s1, int trapa ) { v8_no_cc(cc); emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | immed(true) | u_field(trapa, 6, 0)); }
duke@435 1580 // simple uncond. trap
duke@435 1581 void trap( int trapa ) { trap( always, icc, G0, trapa ); }
duke@435 1582
duke@435 1583 // pp 239 omit write priv register for now
duke@435 1584
duke@435 1585 inline void wry( Register d) { v9_dep(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(0, 29, 25)); }
duke@435 1586 inline void wrccr(Register s) { v9_only(); emit_long( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25)); }
duke@435 1587 inline void wrccr(Register s, int simm13a) { v9_only(); emit_long( op(arith_op) |
duke@435 1588 rs1(s) |
duke@435 1589 op3(wrreg_op3) |
duke@435 1590 u_field(2, 29, 25) |
duke@435 1591 u_field(1, 13, 13) |
duke@435 1592 simm(simm13a, 13)); }
duke@435 1593 inline void wrasi( Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25)); }
duke@435 1594 inline void wrfprs( Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(6, 29, 25)); }
duke@435 1595
duke@435 1596
duke@435 1597 // Creation
duke@435 1598 Assembler(CodeBuffer* code) : AbstractAssembler(code) {
duke@435 1599 #ifdef CHECK_DELAY
duke@435 1600 delay_state = no_delay;
duke@435 1601 #endif
duke@435 1602 }
duke@435 1603
duke@435 1604 // Testing
duke@435 1605 #ifndef PRODUCT
duke@435 1606 void test_v9();
duke@435 1607 void test_v8_onlys();
duke@435 1608 #endif
duke@435 1609 };
duke@435 1610
duke@435 1611
duke@435 1612 class RegistersForDebugging : public StackObj {
duke@435 1613 public:
duke@435 1614 intptr_t i[8], l[8], o[8], g[8];
duke@435 1615 float f[32];
duke@435 1616 double d[32];
duke@435 1617
duke@435 1618 void print(outputStream* s);
duke@435 1619
duke@435 1620 static int i_offset(int j) { return offset_of(RegistersForDebugging, i[j]); }
duke@435 1621 static int l_offset(int j) { return offset_of(RegistersForDebugging, l[j]); }
duke@435 1622 static int o_offset(int j) { return offset_of(RegistersForDebugging, o[j]); }
duke@435 1623 static int g_offset(int j) { return offset_of(RegistersForDebugging, g[j]); }
duke@435 1624 static int f_offset(int j) { return offset_of(RegistersForDebugging, f[j]); }
duke@435 1625 static int d_offset(int j) { return offset_of(RegistersForDebugging, d[j / 2]); }
duke@435 1626
duke@435 1627 // gen asm code to save regs
duke@435 1628 static void save_registers(MacroAssembler* a);
duke@435 1629
duke@435 1630 // restore global registers in case C code disturbed them
duke@435 1631 static void restore_registers(MacroAssembler* a, Register r);
duke@435 1632 };
duke@435 1633
duke@435 1634
duke@435 1635 // MacroAssembler extends Assembler by a few frequently used macros.
duke@435 1636 //
duke@435 1637 // Most of the standard SPARC synthetic ops are defined here.
duke@435 1638 // Instructions for which a 'better' code sequence exists depending
duke@435 1639 // on arguments should also go in here.
duke@435 1640
duke@435 1641 #define JMP2(r1, r2) jmp(r1, r2, __FILE__, __LINE__)
duke@435 1642 #define JMP(r1, off) jmp(r1, off, __FILE__, __LINE__)
duke@435 1643 #define JUMP(a, off) jump(a, off, __FILE__, __LINE__)
duke@435 1644 #define JUMPL(a, d, off) jumpl(a, d, off, __FILE__, __LINE__)
duke@435 1645
duke@435 1646
duke@435 1647 class MacroAssembler: public Assembler {
duke@435 1648 protected:
duke@435 1649 // Support for VM calls
duke@435 1650 // This is the base routine called by the different versions of call_VM_leaf. The interpreter
duke@435 1651 // may customize this version by overriding it for its purposes (e.g., to save/restore
duke@435 1652 // additional registers when doing a VM call).
duke@435 1653 #ifdef CC_INTERP
duke@435 1654 #define VIRTUAL
duke@435 1655 #else
duke@435 1656 #define VIRTUAL virtual
duke@435 1657 #endif
duke@435 1658
duke@435 1659 VIRTUAL void call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments);
duke@435 1660
duke@435 1661 //
duke@435 1662 // It is imperative that all calls into the VM are handled via the call_VM macros.
duke@435 1663 // They make sure that the stack linkage is setup correctly. call_VM's correspond
duke@435 1664 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
duke@435 1665 //
duke@435 1666 // This is the base routine called by the different versions of call_VM. The interpreter
duke@435 1667 // may customize this version by overriding it for its purposes (e.g., to save/restore
duke@435 1668 // additional registers when doing a VM call).
duke@435 1669 //
duke@435 1670 // A non-volatile java_thread_cache register should be specified so
duke@435 1671 // that the G2_thread value can be preserved across the call.
duke@435 1672 // (If java_thread_cache is noreg, then a slow get_thread call
duke@435 1673 // will re-initialize the G2_thread.) call_VM_base returns the register that contains the
duke@435 1674 // thread.
duke@435 1675 //
duke@435 1676 // If no last_java_sp is specified (noreg) than SP will be used instead.
duke@435 1677
duke@435 1678 virtual void call_VM_base(
duke@435 1679 Register oop_result, // where an oop-result ends up if any; use noreg otherwise
duke@435 1680 Register java_thread_cache, // the thread if computed before ; use noreg otherwise
duke@435 1681 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
duke@435 1682 address entry_point, // the entry point
duke@435 1683 int number_of_arguments, // the number of arguments (w/o thread) to pop after call
duke@435 1684 bool check_exception=true // flag which indicates if exception should be checked
duke@435 1685 );
duke@435 1686
duke@435 1687 // This routine should emit JVMTI PopFrame and ForceEarlyReturn handling code.
duke@435 1688 // The implementation is only non-empty for the InterpreterMacroAssembler,
duke@435 1689 // as only the interpreter handles and ForceEarlyReturn PopFrame requests.
duke@435 1690 virtual void check_and_handle_popframe(Register scratch_reg);
duke@435 1691 virtual void check_and_handle_earlyret(Register scratch_reg);
duke@435 1692
duke@435 1693 public:
duke@435 1694 MacroAssembler(CodeBuffer* code) : Assembler(code) {}
duke@435 1695
duke@435 1696 // Support for NULL-checks
duke@435 1697 //
duke@435 1698 // Generates code that causes a NULL OS exception if the content of reg is NULL.
duke@435 1699 // If the accessed location is M[reg + offset] and the offset is known, provide the
duke@435 1700 // offset. No explicit code generation is needed if the offset is within a certain
duke@435 1701 // range (0 <= offset <= page_size).
duke@435 1702 //
duke@435 1703 // %%%%%% Currently not done for SPARC
duke@435 1704
duke@435 1705 void null_check(Register reg, int offset = -1);
duke@435 1706 static bool needs_explicit_null_check(intptr_t offset);
duke@435 1707
duke@435 1708 // support for delayed instructions
duke@435 1709 MacroAssembler* delayed() { Assembler::delayed(); return this; }
duke@435 1710
duke@435 1711 // branches that use right instruction for v8 vs. v9
duke@435 1712 inline void br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1713 inline void br( Condition c, bool a, Predict p, Label& L );
duke@435 1714 inline void fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1715 inline void fb( Condition c, bool a, Predict p, Label& L );
duke@435 1716
duke@435 1717 // compares register with zero and branches (V9 and V8 instructions)
duke@435 1718 void br_zero( Condition c, bool a, Predict p, Register s1, Label& L);
duke@435 1719 // Compares a pointer register with zero and branches on (not)null.
duke@435 1720 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
duke@435 1721 void br_null ( Register s1, bool a, Predict p, Label& L );
duke@435 1722 void br_notnull( Register s1, bool a, Predict p, Label& L );
duke@435 1723
duke@435 1724 inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1725 inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
duke@435 1726
duke@435 1727 // Branch that tests xcc in LP64 and icc in !LP64
duke@435 1728 inline void brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1729 inline void brx( Condition c, bool a, Predict p, Label& L );
duke@435 1730
duke@435 1731 // unconditional short branch
duke@435 1732 inline void ba( bool a, Label& L );
duke@435 1733
duke@435 1734 // Branch that tests fp condition codes
duke@435 1735 inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1736 inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
duke@435 1737
duke@435 1738 // get PC the best way
duke@435 1739 inline int get_pc( Register d );
duke@435 1740
duke@435 1741 // Sparc shorthands(pp 85, V8 manual, pp 289 V9 manual)
duke@435 1742 inline void cmp( Register s1, Register s2 ) { subcc( s1, s2, G0 ); }
duke@435 1743 inline void cmp( Register s1, int simm13a ) { subcc( s1, simm13a, G0 ); }
duke@435 1744
duke@435 1745 inline void jmp( Register s1, Register s2 );
duke@435 1746 inline void jmp( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
duke@435 1747
duke@435 1748 inline void call( address d, relocInfo::relocType rt = relocInfo::runtime_call_type );
duke@435 1749 inline void call( Label& L, relocInfo::relocType rt = relocInfo::runtime_call_type );
duke@435 1750 inline void callr( Register s1, Register s2 );
duke@435 1751 inline void callr( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
duke@435 1752
duke@435 1753 // Emits nothing on V8
duke@435 1754 inline void iprefetch( address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1755 inline void iprefetch( Label& L);
duke@435 1756
duke@435 1757 inline void tst( Register s ) { orcc( G0, s, G0 ); }
duke@435 1758
duke@435 1759 #ifdef PRODUCT
duke@435 1760 inline void ret( bool trace = TraceJumps ) { if (trace) {
duke@435 1761 mov(I7, O7); // traceable register
duke@435 1762 JMP(O7, 2 * BytesPerInstWord);
duke@435 1763 } else {
duke@435 1764 jmpl( I7, 2 * BytesPerInstWord, G0 );
duke@435 1765 }
duke@435 1766 }
duke@435 1767
duke@435 1768 inline void retl( bool trace = TraceJumps ) { if (trace) JMP(O7, 2 * BytesPerInstWord);
duke@435 1769 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
duke@435 1770 #else
duke@435 1771 void ret( bool trace = TraceJumps );
duke@435 1772 void retl( bool trace = TraceJumps );
duke@435 1773 #endif /* PRODUCT */
duke@435 1774
duke@435 1775 // Required platform-specific helpers for Label::patch_instructions.
duke@435 1776 // They _shadow_ the declarations in AbstractAssembler, which are undefined.
duke@435 1777 void pd_patch_instruction(address branch, address target);
duke@435 1778 #ifndef PRODUCT
duke@435 1779 static void pd_print_patched_instruction(address branch);
duke@435 1780 #endif
duke@435 1781
duke@435 1782 // sethi Macro handles optimizations and relocations
duke@435 1783 void sethi( Address& a, bool ForceRelocatable = false );
duke@435 1784 void sethi( intptr_t imm22a, Register d, bool ForceRelocatable = false, RelocationHolder const& rspec = RelocationHolder());
duke@435 1785
duke@435 1786 // compute the size of a sethi/set
duke@435 1787 static int size_of_sethi( address a, bool worst_case = false );
duke@435 1788 static int worst_case_size_of_set();
duke@435 1789
duke@435 1790 // set may be either setsw or setuw (high 32 bits may be zero or sign)
duke@435 1791 void set( intptr_t value, Register d, RelocationHolder const& rspec = RelocationHolder() );
duke@435 1792 void setsw( int value, Register d, RelocationHolder const& rspec = RelocationHolder() );
duke@435 1793 void set64( jlong value, Register d, Register tmp);
duke@435 1794
duke@435 1795 // sign-extend 32 to 64
duke@435 1796 inline void signx( Register s, Register d ) { sra( s, G0, d); }
duke@435 1797 inline void signx( Register d ) { sra( d, G0, d); }
duke@435 1798
duke@435 1799 inline void not1( Register s, Register d ) { xnor( s, G0, d ); }
duke@435 1800 inline void not1( Register d ) { xnor( d, G0, d ); }
duke@435 1801
duke@435 1802 inline void neg( Register s, Register d ) { sub( G0, s, d ); }
duke@435 1803 inline void neg( Register d ) { sub( G0, d, d ); }
duke@435 1804
duke@435 1805 inline void cas( Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY); }
duke@435 1806 inline void casx( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY); }
duke@435 1807 // Functions for isolating 64 bit atomic swaps for LP64
duke@435 1808 // cas_ptr will perform cas for 32 bit VM's and casx for 64 bit VM's
duke@435 1809 inline void cas_ptr( Register s1, Register s2, Register d) {
duke@435 1810 #ifdef _LP64
duke@435 1811 casx( s1, s2, d );
duke@435 1812 #else
duke@435 1813 cas( s1, s2, d );
duke@435 1814 #endif
duke@435 1815 }
duke@435 1816
duke@435 1817 // Functions for isolating 64 bit shifts for LP64
duke@435 1818 inline void sll_ptr( Register s1, Register s2, Register d );
duke@435 1819 inline void sll_ptr( Register s1, int imm6a, Register d );
duke@435 1820 inline void srl_ptr( Register s1, Register s2, Register d );
duke@435 1821 inline void srl_ptr( Register s1, int imm6a, Register d );
duke@435 1822
duke@435 1823 // little-endian
duke@435 1824 inline void casl( Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY_LITTLE); }
duke@435 1825 inline void casxl( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY_LITTLE); }
duke@435 1826
duke@435 1827 inline void inc( Register d, int const13 = 1 ) { add( d, const13, d); }
duke@435 1828 inline void inccc( Register d, int const13 = 1 ) { addcc( d, const13, d); }
duke@435 1829
duke@435 1830 inline void dec( Register d, int const13 = 1 ) { sub( d, const13, d); }
duke@435 1831 inline void deccc( Register d, int const13 = 1 ) { subcc( d, const13, d); }
duke@435 1832
duke@435 1833 inline void btst( Register s1, Register s2 ) { andcc( s1, s2, G0 ); }
duke@435 1834 inline void btst( int simm13a, Register s ) { andcc( s, simm13a, G0 ); }
duke@435 1835
duke@435 1836 inline void bset( Register s1, Register s2 ) { or3( s1, s2, s2 ); }
duke@435 1837 inline void bset( int simm13a, Register s ) { or3( s, simm13a, s ); }
duke@435 1838
duke@435 1839 inline void bclr( Register s1, Register s2 ) { andn( s1, s2, s2 ); }
duke@435 1840 inline void bclr( int simm13a, Register s ) { andn( s, simm13a, s ); }
duke@435 1841
duke@435 1842 inline void btog( Register s1, Register s2 ) { xor3( s1, s2, s2 ); }
duke@435 1843 inline void btog( int simm13a, Register s ) { xor3( s, simm13a, s ); }
duke@435 1844
duke@435 1845 inline void clr( Register d ) { or3( G0, G0, d ); }
duke@435 1846
duke@435 1847 inline void clrb( Register s1, Register s2);
duke@435 1848 inline void clrh( Register s1, Register s2);
duke@435 1849 inline void clr( Register s1, Register s2);
duke@435 1850 inline void clrx( Register s1, Register s2);
duke@435 1851
duke@435 1852 inline void clrb( Register s1, int simm13a);
duke@435 1853 inline void clrh( Register s1, int simm13a);
duke@435 1854 inline void clr( Register s1, int simm13a);
duke@435 1855 inline void clrx( Register s1, int simm13a);
duke@435 1856
duke@435 1857 // copy & clear upper word
duke@435 1858 inline void clruw( Register s, Register d ) { srl( s, G0, d); }
duke@435 1859 // clear upper word
duke@435 1860 inline void clruwu( Register d ) { srl( d, G0, d); }
duke@435 1861
duke@435 1862 // membar psuedo instruction. takes into account target memory model.
duke@435 1863 inline void membar( Assembler::Membar_mask_bits const7a );
duke@435 1864
duke@435 1865 // returns if membar generates anything.
duke@435 1866 inline bool membar_has_effect( Assembler::Membar_mask_bits const7a );
duke@435 1867
duke@435 1868 // mov pseudo instructions
duke@435 1869 inline void mov( Register s, Register d) {
duke@435 1870 if ( s != d ) or3( G0, s, d);
duke@435 1871 else assert_not_delayed(); // Put something useful in the delay slot!
duke@435 1872 }
duke@435 1873
duke@435 1874 inline void mov_or_nop( Register s, Register d) {
duke@435 1875 if ( s != d ) or3( G0, s, d);
duke@435 1876 else nop();
duke@435 1877 }
duke@435 1878
duke@435 1879 inline void mov( int simm13a, Register d) { or3( G0, simm13a, d); }
duke@435 1880
duke@435 1881 // address pseudos: make these names unlike instruction names to avoid confusion
duke@435 1882 inline void split_disp( Address& a, Register temp );
duke@435 1883 inline intptr_t load_pc_address( Register reg, int bytes_to_skip );
duke@435 1884 inline void load_address( Address& a, int offset = 0 );
duke@435 1885 inline void load_contents( Address& a, Register d, int offset = 0 );
duke@435 1886 inline void load_ptr_contents( Address& a, Register d, int offset = 0 );
duke@435 1887 inline void store_contents( Register s, Address& a, int offset = 0 );
duke@435 1888 inline void store_ptr_contents( Register s, Address& a, int offset = 0 );
duke@435 1889 inline void jumpl_to( Address& a, Register d, int offset = 0 );
duke@435 1890 inline void jump_to( Address& a, int offset = 0 );
duke@435 1891
duke@435 1892 // ring buffer traceable jumps
duke@435 1893
duke@435 1894 void jmp2( Register r1, Register r2, const char* file, int line );
duke@435 1895 void jmp ( Register r1, int offset, const char* file, int line );
duke@435 1896
duke@435 1897 void jumpl( Address& a, Register d, int offset, const char* file, int line );
duke@435 1898 void jump ( Address& a, int offset, const char* file, int line );
duke@435 1899
duke@435 1900
duke@435 1901 // argument pseudos:
duke@435 1902
duke@435 1903 inline void load_argument( Argument& a, Register d );
duke@435 1904 inline void store_argument( Register s, Argument& a );
duke@435 1905 inline void store_ptr_argument( Register s, Argument& a );
duke@435 1906 inline void store_float_argument( FloatRegister s, Argument& a );
duke@435 1907 inline void store_double_argument( FloatRegister s, Argument& a );
duke@435 1908 inline void store_long_argument( Register s, Argument& a );
duke@435 1909
duke@435 1910 // handy macros:
duke@435 1911
duke@435 1912 inline void round_to( Register r, int modulus ) {
duke@435 1913 assert_not_delayed();
duke@435 1914 inc( r, modulus - 1 );
duke@435 1915 and3( r, -modulus, r );
duke@435 1916 }
duke@435 1917
duke@435 1918 // --------------------------------------------------
duke@435 1919
duke@435 1920 // Functions for isolating 64 bit loads for LP64
duke@435 1921 // ld_ptr will perform ld for 32 bit VM's and ldx for 64 bit VM's
duke@435 1922 // st_ptr will perform st for 32 bit VM's and stx for 64 bit VM's
duke@435 1923 inline void ld_ptr( Register s1, Register s2, Register d );
duke@435 1924 inline void ld_ptr( Register s1, int simm13a, Register d);
duke@435 1925 inline void ld_ptr( const Address& a, Register d, int offset = 0 );
duke@435 1926 inline void st_ptr( Register d, Register s1, Register s2 );
duke@435 1927 inline void st_ptr( Register d, Register s1, int simm13a);
duke@435 1928 inline void st_ptr( Register d, const Address& a, int offset = 0 );
duke@435 1929
duke@435 1930 // ld_long will perform ld for 32 bit VM's and ldx for 64 bit VM's
duke@435 1931 // st_long will perform st for 32 bit VM's and stx for 64 bit VM's
duke@435 1932 inline void ld_long( Register s1, Register s2, Register d );
duke@435 1933 inline void ld_long( Register s1, int simm13a, Register d );
duke@435 1934 inline void ld_long( const Address& a, Register d, int offset = 0 );
duke@435 1935 inline void st_long( Register d, Register s1, Register s2 );
duke@435 1936 inline void st_long( Register d, Register s1, int simm13a );
duke@435 1937 inline void st_long( Register d, const Address& a, int offset = 0 );
duke@435 1938
duke@435 1939 // --------------------------------------------------
duke@435 1940
duke@435 1941 public:
duke@435 1942 // traps as per trap.h (SPARC ABI?)
duke@435 1943
duke@435 1944 void breakpoint_trap();
duke@435 1945 void breakpoint_trap(Condition c, CC cc = icc);
duke@435 1946 void flush_windows_trap();
duke@435 1947 void clean_windows_trap();
duke@435 1948 void get_psr_trap();
duke@435 1949 void set_psr_trap();
duke@435 1950
duke@435 1951 // V8/V9 flush_windows
duke@435 1952 void flush_windows();
duke@435 1953
duke@435 1954 // Support for serializing memory accesses between threads
duke@435 1955 void serialize_memory(Register thread, Register tmp1, Register tmp2);
duke@435 1956
duke@435 1957 // Stack frame creation/removal
duke@435 1958 void enter();
duke@435 1959 void leave();
duke@435 1960
duke@435 1961 // V8/V9 integer multiply
duke@435 1962 void mult(Register s1, Register s2, Register d);
duke@435 1963 void mult(Register s1, int simm13a, Register d);
duke@435 1964
duke@435 1965 // V8/V9 read and write of condition codes.
duke@435 1966 void read_ccr(Register d);
duke@435 1967 void write_ccr(Register s);
duke@435 1968
duke@435 1969 // Manipulation of C++ bools
duke@435 1970 // These are idioms to flag the need for care with accessing bools but on
duke@435 1971 // this platform we assume byte size
duke@435 1972
duke@435 1973 inline void stbool( Register d, const Address& a, int offset = 0 ) { stb(d, a, offset); }
duke@435 1974 inline void ldbool( const Address& a, Register d, int offset = 0 ) { ldsb( a, d, offset ); }
duke@435 1975 inline void tstbool( Register s ) { tst(s); }
duke@435 1976 inline void movbool( bool boolconst, Register d) { mov( (int) boolconst, d); }
duke@435 1977
duke@435 1978 // Support for managing the JavaThread pointer (i.e.; the reference to
duke@435 1979 // thread-local information).
duke@435 1980 void get_thread(); // load G2_thread
duke@435 1981 void verify_thread(); // verify G2_thread contents
duke@435 1982 void save_thread (const Register threache); // save to cache
duke@435 1983 void restore_thread(const Register thread_cache); // restore from cache
duke@435 1984
duke@435 1985 // Support for last Java frame (but use call_VM instead where possible)
duke@435 1986 void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
duke@435 1987 void reset_last_Java_frame(void);
duke@435 1988
duke@435 1989 // Call into the VM.
duke@435 1990 // Passes the thread pointer (in O0) as a prepended argument.
duke@435 1991 // Makes sure oop return values are visible to the GC.
duke@435 1992 void call_VM(Register oop_result, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
duke@435 1993 void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
duke@435 1994 void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
duke@435 1995 void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
duke@435 1996
duke@435 1997 // these overloadings are not presently used on SPARC:
duke@435 1998 void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
duke@435 1999 void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
duke@435 2000 void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
duke@435 2001 void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
duke@435 2002
duke@435 2003 void call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments = 0);
duke@435 2004 void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1);
duke@435 2005 void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2);
duke@435 2006 void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3);
duke@435 2007
duke@435 2008 void get_vm_result (Register oop_result);
duke@435 2009 void get_vm_result_2(Register oop_result);
duke@435 2010
duke@435 2011 // vm result is currently getting hijacked to for oop preservation
duke@435 2012 void set_vm_result(Register oop_result);
duke@435 2013
duke@435 2014 // if call_VM_base was called with check_exceptions=false, then call
duke@435 2015 // check_and_forward_exception to handle exceptions when it is safe
duke@435 2016 void check_and_forward_exception(Register scratch_reg);
duke@435 2017
duke@435 2018 private:
duke@435 2019 // For V8
duke@435 2020 void read_ccr_trap(Register ccr_save);
duke@435 2021 void write_ccr_trap(Register ccr_save1, Register scratch1, Register scratch2);
duke@435 2022
duke@435 2023 #ifdef ASSERT
duke@435 2024 // For V8 debugging. Uses V8 instruction sequence and checks
duke@435 2025 // result with V9 insturctions rdccr and wrccr.
duke@435 2026 // Uses Gscatch and Gscatch2
duke@435 2027 void read_ccr_v8_assert(Register ccr_save);
duke@435 2028 void write_ccr_v8_assert(Register ccr_save);
duke@435 2029 #endif // ASSERT
duke@435 2030
duke@435 2031 public:
duke@435 2032 // Stores
duke@435 2033 void store_check(Register tmp, Register obj); // store check for obj - register is destroyed afterwards
duke@435 2034 void store_check(Register tmp, Register obj, Register offset); // store check for obj - register is destroyed afterwards
duke@435 2035
duke@435 2036 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
duke@435 2037 void push_fTOS();
duke@435 2038
duke@435 2039 // pops double TOS element from CPU stack and pushes on FPU stack
duke@435 2040 void pop_fTOS();
duke@435 2041
duke@435 2042 void empty_FPU_stack();
duke@435 2043
duke@435 2044 void push_IU_state();
duke@435 2045 void pop_IU_state();
duke@435 2046
duke@435 2047 void push_FPU_state();
duke@435 2048 void pop_FPU_state();
duke@435 2049
duke@435 2050 void push_CPU_state();
duke@435 2051 void pop_CPU_state();
duke@435 2052
duke@435 2053 // Debugging
duke@435 2054 void _verify_oop(Register reg, const char * msg, const char * file, int line);
duke@435 2055 void _verify_oop_addr(Address addr, const char * msg, const char * file, int line);
duke@435 2056
duke@435 2057 #define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__)
duke@435 2058 #define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop addr ", __FILE__, __LINE__)
duke@435 2059
duke@435 2060 // only if +VerifyOops
duke@435 2061 void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
duke@435 2062 // only if +VerifyFPU
duke@435 2063 void stop(const char* msg); // prints msg, dumps registers and stops execution
duke@435 2064 void warn(const char* msg); // prints msg, but don't stop
duke@435 2065 void untested(const char* what = "");
duke@435 2066 void unimplemented(const char* what = "") { char* b = new char[1024]; sprintf(b, "unimplemented: %s", what); stop(b); }
duke@435 2067 void should_not_reach_here() { stop("should not reach here"); }
duke@435 2068 void print_CPU_state();
duke@435 2069
duke@435 2070 // oops in code
duke@435 2071 Address allocate_oop_address( jobject obj, Register d ); // allocate_index
duke@435 2072 Address constant_oop_address( jobject obj, Register d ); // find_index
duke@435 2073 inline void set_oop ( jobject obj, Register d ); // uses allocate_oop_address
duke@435 2074 inline void set_oop_constant( jobject obj, Register d ); // uses constant_oop_address
duke@435 2075 inline void set_oop ( Address obj_addr ); // same as load_address
duke@435 2076
duke@435 2077 // nop padding
duke@435 2078 void align(int modulus);
duke@435 2079
duke@435 2080 // declare a safepoint
duke@435 2081 void safepoint();
duke@435 2082
duke@435 2083 // factor out part of stop into subroutine to save space
duke@435 2084 void stop_subroutine();
duke@435 2085 // factor out part of verify_oop into subroutine to save space
duke@435 2086 void verify_oop_subroutine();
duke@435 2087
duke@435 2088 // side-door communication with signalHandler in os_solaris.cpp
duke@435 2089 static address _verify_oop_implicit_branch[3];
duke@435 2090
duke@435 2091 #ifndef PRODUCT
duke@435 2092 static void test();
duke@435 2093 #endif
duke@435 2094
duke@435 2095 // convert an incoming arglist to varargs format; put the pointer in d
duke@435 2096 void set_varargs( Argument a, Register d );
duke@435 2097
duke@435 2098 int total_frame_size_in_bytes(int extraWords);
duke@435 2099
duke@435 2100 // used when extraWords known statically
duke@435 2101 void save_frame(int extraWords);
duke@435 2102 void save_frame_c1(int size_in_bytes);
duke@435 2103 // make a frame, and simultaneously pass up one or two register value
duke@435 2104 // into the new register window
duke@435 2105 void save_frame_and_mov(int extraWords, Register s1, Register d1, Register s2 = Register(), Register d2 = Register());
duke@435 2106
duke@435 2107 // give no. (outgoing) params, calc # of words will need on frame
duke@435 2108 void calc_mem_param_words(Register Rparam_words, Register Rresult);
duke@435 2109
duke@435 2110 // used to calculate frame size dynamically
duke@435 2111 // result is in bytes and must be negated for save inst
duke@435 2112 void calc_frame_size(Register extraWords, Register resultReg);
duke@435 2113
duke@435 2114 // calc and also save
duke@435 2115 void calc_frame_size_and_save(Register extraWords, Register resultReg);
duke@435 2116
duke@435 2117 static void debug(char* msg, RegistersForDebugging* outWindow);
duke@435 2118
duke@435 2119 // implementations of bytecodes used by both interpreter and compiler
duke@435 2120
duke@435 2121 void lcmp( Register Ra_hi, Register Ra_low,
duke@435 2122 Register Rb_hi, Register Rb_low,
duke@435 2123 Register Rresult);
duke@435 2124
duke@435 2125 void lneg( Register Rhi, Register Rlow );
duke@435 2126
duke@435 2127 void lshl( Register Rin_high, Register Rin_low, Register Rcount,
duke@435 2128 Register Rout_high, Register Rout_low, Register Rtemp );
duke@435 2129
duke@435 2130 void lshr( Register Rin_high, Register Rin_low, Register Rcount,
duke@435 2131 Register Rout_high, Register Rout_low, Register Rtemp );
duke@435 2132
duke@435 2133 void lushr( Register Rin_high, Register Rin_low, Register Rcount,
duke@435 2134 Register Rout_high, Register Rout_low, Register Rtemp );
duke@435 2135
duke@435 2136 #ifdef _LP64
duke@435 2137 void lcmp( Register Ra, Register Rb, Register Rresult);
duke@435 2138 #endif
duke@435 2139
duke@435 2140 void float_cmp( bool is_float, int unordered_result,
duke@435 2141 FloatRegister Fa, FloatRegister Fb,
duke@435 2142 Register Rresult);
duke@435 2143
duke@435 2144 void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
duke@435 2145 void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { Assembler::fneg(w, sd); }
duke@435 2146 void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
duke@435 2147 void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
duke@435 2148
duke@435 2149 void save_all_globals_into_locals();
duke@435 2150 void restore_globals_from_locals();
duke@435 2151
duke@435 2152 void casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
duke@435 2153 address lock_addr=0, bool use_call_vm=false);
duke@435 2154 void cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
duke@435 2155 address lock_addr=0, bool use_call_vm=false);
duke@435 2156 void casn (Register addr_reg, Register cmp_reg, Register set_reg) ;
duke@435 2157
duke@435 2158 // These set the icc condition code to equal if the lock succeeded
duke@435 2159 // and notEqual if it failed and requires a slow case
duke@435 2160 void compiler_lock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch,
duke@435 2161 BiasedLockingCounters* counters = NULL);
duke@435 2162 void compiler_unlock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch);
duke@435 2163
duke@435 2164 // Biased locking support
duke@435 2165 // Upon entry, lock_reg must point to the lock record on the stack,
duke@435 2166 // obj_reg must contain the target object, and mark_reg must contain
duke@435 2167 // the target object's header.
duke@435 2168 // Destroys mark_reg if an attempt is made to bias an anonymously
duke@435 2169 // biased lock. In this case a failure will go either to the slow
duke@435 2170 // case or fall through with the notEqual condition code set with
duke@435 2171 // the expectation that the slow case in the runtime will be called.
duke@435 2172 // In the fall-through case where the CAS-based lock is done,
duke@435 2173 // mark_reg is not destroyed.
duke@435 2174 void biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
duke@435 2175 Label& done, Label* slow_case = NULL,
duke@435 2176 BiasedLockingCounters* counters = NULL);
duke@435 2177 // Upon entry, the base register of mark_addr must contain the oop.
duke@435 2178 // Destroys temp_reg.
duke@435 2179
duke@435 2180 // If allow_delay_slot_filling is set to true, the next instruction
duke@435 2181 // emitted after this one will go in an annulled delay slot if the
duke@435 2182 // biased locking exit case failed.
duke@435 2183 void biased_locking_exit(Address mark_addr, Register temp_reg, Label& done, bool allow_delay_slot_filling = false);
duke@435 2184
duke@435 2185 // allocation
duke@435 2186 void eden_allocate(
duke@435 2187 Register obj, // result: pointer to object after successful allocation
duke@435 2188 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 2189 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 2190 Register t1, // temp register
duke@435 2191 Register t2, // temp register
duke@435 2192 Label& slow_case // continuation point if fast allocation fails
duke@435 2193 );
duke@435 2194 void tlab_allocate(
duke@435 2195 Register obj, // result: pointer to object after successful allocation
duke@435 2196 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 2197 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 2198 Register t1, // temp register
duke@435 2199 Label& slow_case // continuation point if fast allocation fails
duke@435 2200 );
duke@435 2201 void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
duke@435 2202
duke@435 2203 // Stack overflow checking
duke@435 2204
duke@435 2205 // Note: this clobbers G3_scratch
duke@435 2206 void bang_stack_with_offset(int offset) {
duke@435 2207 // stack grows down, caller passes positive offset
duke@435 2208 assert(offset > 0, "must bang with negative offset");
duke@435 2209 set((-offset)+STACK_BIAS, G3_scratch);
duke@435 2210 st(G0, SP, G3_scratch);
duke@435 2211 }
duke@435 2212
duke@435 2213 // Writes to stack successive pages until offset reached to check for
duke@435 2214 // stack overflow + shadow pages. Clobbers tsp and scratch registers.
duke@435 2215 void bang_stack_size(Register Rsize, Register Rtsp, Register Rscratch);
duke@435 2216
duke@435 2217 void verify_tlab();
duke@435 2218
duke@435 2219 Condition negate_condition(Condition cond);
duke@435 2220
duke@435 2221 // Helper functions for statistics gathering.
duke@435 2222 // Conditionally (non-atomically) increments passed counter address, preserving condition codes.
duke@435 2223 void cond_inc(Condition cond, address counter_addr, Register Rtemp1, Register Rtemp2);
duke@435 2224 // Unconditional increment.
duke@435 2225 void inc_counter(address counter_addr, Register Rtemp1, Register Rtemp2);
duke@435 2226
duke@435 2227 #undef VIRTUAL
duke@435 2228
duke@435 2229 };
duke@435 2230
duke@435 2231 /**
duke@435 2232 * class SkipIfEqual:
duke@435 2233 *
duke@435 2234 * Instantiating this class will result in assembly code being output that will
duke@435 2235 * jump around any code emitted between the creation of the instance and it's
duke@435 2236 * automatic destruction at the end of a scope block, depending on the value of
duke@435 2237 * the flag passed to the constructor, which will be checked at run-time.
duke@435 2238 */
duke@435 2239 class SkipIfEqual : public StackObj {
duke@435 2240 private:
duke@435 2241 MacroAssembler* _masm;
duke@435 2242 Label _label;
duke@435 2243
duke@435 2244 public:
duke@435 2245 // 'temp' is a temp register that this object can use (and trash)
duke@435 2246 SkipIfEqual(MacroAssembler*, Register temp,
duke@435 2247 const bool* flag_addr, Assembler::Condition condition);
duke@435 2248 ~SkipIfEqual();
duke@435 2249 };
duke@435 2250
duke@435 2251 #ifdef ASSERT
duke@435 2252 // On RISC, there's no benefit to verifying instruction boundaries.
duke@435 2253 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
duke@435 2254 #endif

mercurial