src/share/vm/memory/cardTableModRefBS.cpp

Sun, 11 Oct 2009 16:19:25 -0700

author
jcoomes
date
Sun, 11 Oct 2009 16:19:25 -0700
changeset 1844
cff162798819
parent 1526
6aa7255741f3
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6888953: some calls to function-like macros are missing semicolons
Reviewed-by: pbk, kvn

duke@435 1 /*
xdono@1014 2 * Copyright 2000-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // This kind of "BarrierSet" allows a "CollectedHeap" to detect and
duke@435 26 // enumerate ref fields that have been modified (since the last
duke@435 27 // enumeration.)
duke@435 28
duke@435 29 # include "incls/_precompiled.incl"
duke@435 30 # include "incls/_cardTableModRefBS.cpp.incl"
duke@435 31
duke@435 32 size_t CardTableModRefBS::cards_required(size_t covered_words)
duke@435 33 {
duke@435 34 // Add one for a guard card, used to detect errors.
duke@435 35 const size_t words = align_size_up(covered_words, card_size_in_words);
duke@435 36 return words / card_size_in_words + 1;
duke@435 37 }
duke@435 38
duke@435 39 size_t CardTableModRefBS::compute_byte_map_size()
duke@435 40 {
duke@435 41 assert(_guard_index == cards_required(_whole_heap.word_size()) - 1,
duke@435 42 "unitialized, check declaration order");
duke@435 43 assert(_page_size != 0, "unitialized, check declaration order");
duke@435 44 const size_t granularity = os::vm_allocation_granularity();
duke@435 45 return align_size_up(_guard_index + 1, MAX2(_page_size, granularity));
duke@435 46 }
duke@435 47
duke@435 48 CardTableModRefBS::CardTableModRefBS(MemRegion whole_heap,
duke@435 49 int max_covered_regions):
duke@435 50 ModRefBarrierSet(max_covered_regions),
duke@435 51 _whole_heap(whole_heap),
duke@435 52 _guard_index(cards_required(whole_heap.word_size()) - 1),
duke@435 53 _last_valid_index(_guard_index - 1),
jcoomes@456 54 _page_size(os::vm_page_size()),
duke@435 55 _byte_map_size(compute_byte_map_size())
duke@435 56 {
duke@435 57 _kind = BarrierSet::CardTableModRef;
duke@435 58
duke@435 59 HeapWord* low_bound = _whole_heap.start();
duke@435 60 HeapWord* high_bound = _whole_heap.end();
duke@435 61 assert((uintptr_t(low_bound) & (card_size - 1)) == 0, "heap must start at card boundary");
duke@435 62 assert((uintptr_t(high_bound) & (card_size - 1)) == 0, "heap must end at card boundary");
duke@435 63
duke@435 64 assert(card_size <= 512, "card_size must be less than 512"); // why?
duke@435 65
duke@435 66 _covered = new MemRegion[max_covered_regions];
duke@435 67 _committed = new MemRegion[max_covered_regions];
duke@435 68 if (_covered == NULL || _committed == NULL)
duke@435 69 vm_exit_during_initialization("couldn't alloc card table covered region set.");
duke@435 70 int i;
duke@435 71 for (i = 0; i < max_covered_regions; i++) {
duke@435 72 _covered[i].set_word_size(0);
duke@435 73 _committed[i].set_word_size(0);
duke@435 74 }
duke@435 75 _cur_covered_regions = 0;
duke@435 76
duke@435 77 const size_t rs_align = _page_size == (size_t) os::vm_page_size() ? 0 :
duke@435 78 MAX2(_page_size, (size_t) os::vm_allocation_granularity());
duke@435 79 ReservedSpace heap_rs(_byte_map_size, rs_align, false);
duke@435 80 os::trace_page_sizes("card table", _guard_index + 1, _guard_index + 1,
duke@435 81 _page_size, heap_rs.base(), heap_rs.size());
duke@435 82 if (!heap_rs.is_reserved()) {
duke@435 83 vm_exit_during_initialization("Could not reserve enough space for the "
duke@435 84 "card marking array");
duke@435 85 }
duke@435 86
duke@435 87 // The assember store_check code will do an unsigned shift of the oop,
duke@435 88 // then add it to byte_map_base, i.e.
duke@435 89 //
duke@435 90 // _byte_map = byte_map_base + (uintptr_t(low_bound) >> card_shift)
duke@435 91 _byte_map = (jbyte*) heap_rs.base();
duke@435 92 byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
duke@435 93 assert(byte_for(low_bound) == &_byte_map[0], "Checking start of map");
duke@435 94 assert(byte_for(high_bound-1) <= &_byte_map[_last_valid_index], "Checking end of map");
duke@435 95
duke@435 96 jbyte* guard_card = &_byte_map[_guard_index];
duke@435 97 uintptr_t guard_page = align_size_down((uintptr_t)guard_card, _page_size);
duke@435 98 _guard_region = MemRegion((HeapWord*)guard_page, _page_size);
duke@435 99 if (!os::commit_memory((char*)guard_page, _page_size, _page_size)) {
duke@435 100 // Do better than this for Merlin
duke@435 101 vm_exit_out_of_memory(_page_size, "card table last card");
duke@435 102 }
duke@435 103 *guard_card = last_card;
duke@435 104
duke@435 105 _lowest_non_clean =
duke@435 106 NEW_C_HEAP_ARRAY(CardArr, max_covered_regions);
duke@435 107 _lowest_non_clean_chunk_size =
duke@435 108 NEW_C_HEAP_ARRAY(size_t, max_covered_regions);
duke@435 109 _lowest_non_clean_base_chunk_index =
duke@435 110 NEW_C_HEAP_ARRAY(uintptr_t, max_covered_regions);
duke@435 111 _last_LNC_resizing_collection =
duke@435 112 NEW_C_HEAP_ARRAY(int, max_covered_regions);
duke@435 113 if (_lowest_non_clean == NULL
duke@435 114 || _lowest_non_clean_chunk_size == NULL
duke@435 115 || _lowest_non_clean_base_chunk_index == NULL
duke@435 116 || _last_LNC_resizing_collection == NULL)
duke@435 117 vm_exit_during_initialization("couldn't allocate an LNC array.");
duke@435 118 for (i = 0; i < max_covered_regions; i++) {
duke@435 119 _lowest_non_clean[i] = NULL;
duke@435 120 _lowest_non_clean_chunk_size[i] = 0;
duke@435 121 _last_LNC_resizing_collection[i] = -1;
duke@435 122 }
duke@435 123
duke@435 124 if (TraceCardTableModRefBS) {
duke@435 125 gclog_or_tty->print_cr("CardTableModRefBS::CardTableModRefBS: ");
duke@435 126 gclog_or_tty->print_cr(" "
duke@435 127 " &_byte_map[0]: " INTPTR_FORMAT
duke@435 128 " &_byte_map[_last_valid_index]: " INTPTR_FORMAT,
duke@435 129 &_byte_map[0],
duke@435 130 &_byte_map[_last_valid_index]);
duke@435 131 gclog_or_tty->print_cr(" "
duke@435 132 " byte_map_base: " INTPTR_FORMAT,
duke@435 133 byte_map_base);
duke@435 134 }
duke@435 135 }
duke@435 136
duke@435 137 int CardTableModRefBS::find_covering_region_by_base(HeapWord* base) {
duke@435 138 int i;
duke@435 139 for (i = 0; i < _cur_covered_regions; i++) {
duke@435 140 if (_covered[i].start() == base) return i;
duke@435 141 if (_covered[i].start() > base) break;
duke@435 142 }
duke@435 143 // If we didn't find it, create a new one.
duke@435 144 assert(_cur_covered_regions < _max_covered_regions,
duke@435 145 "too many covered regions");
duke@435 146 // Move the ones above up, to maintain sorted order.
duke@435 147 for (int j = _cur_covered_regions; j > i; j--) {
duke@435 148 _covered[j] = _covered[j-1];
duke@435 149 _committed[j] = _committed[j-1];
duke@435 150 }
duke@435 151 int res = i;
duke@435 152 _cur_covered_regions++;
duke@435 153 _covered[res].set_start(base);
duke@435 154 _covered[res].set_word_size(0);
duke@435 155 jbyte* ct_start = byte_for(base);
duke@435 156 uintptr_t ct_start_aligned = align_size_down((uintptr_t)ct_start, _page_size);
duke@435 157 _committed[res].set_start((HeapWord*)ct_start_aligned);
duke@435 158 _committed[res].set_word_size(0);
duke@435 159 return res;
duke@435 160 }
duke@435 161
duke@435 162 int CardTableModRefBS::find_covering_region_containing(HeapWord* addr) {
duke@435 163 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 164 if (_covered[i].contains(addr)) {
duke@435 165 return i;
duke@435 166 }
duke@435 167 }
duke@435 168 assert(0, "address outside of heap?");
duke@435 169 return -1;
duke@435 170 }
duke@435 171
duke@435 172 HeapWord* CardTableModRefBS::largest_prev_committed_end(int ind) const {
duke@435 173 HeapWord* max_end = NULL;
duke@435 174 for (int j = 0; j < ind; j++) {
duke@435 175 HeapWord* this_end = _committed[j].end();
duke@435 176 if (this_end > max_end) max_end = this_end;
duke@435 177 }
duke@435 178 return max_end;
duke@435 179 }
duke@435 180
duke@435 181 MemRegion CardTableModRefBS::committed_unique_to_self(int self,
duke@435 182 MemRegion mr) const {
duke@435 183 MemRegion result = mr;
duke@435 184 for (int r = 0; r < _cur_covered_regions; r += 1) {
duke@435 185 if (r != self) {
duke@435 186 result = result.minus(_committed[r]);
duke@435 187 }
duke@435 188 }
duke@435 189 // Never include the guard page.
duke@435 190 result = result.minus(_guard_region);
duke@435 191 return result;
duke@435 192 }
duke@435 193
duke@435 194 void CardTableModRefBS::resize_covered_region(MemRegion new_region) {
duke@435 195 // We don't change the start of a region, only the end.
duke@435 196 assert(_whole_heap.contains(new_region),
duke@435 197 "attempt to cover area not in reserved area");
duke@435 198 debug_only(verify_guard();)
jmasa@643 199 // collided is true if the expansion would push into another committed region
jmasa@643 200 debug_only(bool collided = false;)
jmasa@441 201 int const ind = find_covering_region_by_base(new_region.start());
jmasa@441 202 MemRegion const old_region = _covered[ind];
duke@435 203 assert(old_region.start() == new_region.start(), "just checking");
duke@435 204 if (new_region.word_size() != old_region.word_size()) {
duke@435 205 // Commit new or uncommit old pages, if necessary.
duke@435 206 MemRegion cur_committed = _committed[ind];
duke@435 207 // Extend the end of this _commited region
duke@435 208 // to cover the end of any lower _committed regions.
duke@435 209 // This forms overlapping regions, but never interior regions.
jmasa@441 210 HeapWord* const max_prev_end = largest_prev_committed_end(ind);
duke@435 211 if (max_prev_end > cur_committed.end()) {
duke@435 212 cur_committed.set_end(max_prev_end);
duke@435 213 }
duke@435 214 // Align the end up to a page size (starts are already aligned).
jmasa@441 215 jbyte* const new_end = byte_after(new_region.last());
jmasa@643 216 HeapWord* new_end_aligned =
jmasa@441 217 (HeapWord*) align_size_up((uintptr_t)new_end, _page_size);
duke@435 218 assert(new_end_aligned >= (HeapWord*) new_end,
duke@435 219 "align up, but less");
jmasa@1016 220 // Check the other regions (excludes "ind") to ensure that
jmasa@1016 221 // the new_end_aligned does not intrude onto the committed
jmasa@1016 222 // space of another region.
jmasa@643 223 int ri = 0;
jmasa@643 224 for (ri = 0; ri < _cur_covered_regions; ri++) {
jmasa@643 225 if (ri != ind) {
jmasa@643 226 if (_committed[ri].contains(new_end_aligned)) {
jmasa@1016 227 // The prior check included in the assert
jmasa@1016 228 // (new_end_aligned >= _committed[ri].start())
jmasa@1016 229 // is redundant with the "contains" test.
jmasa@1016 230 // Any region containing the new end
jmasa@1016 231 // should start at or beyond the region found (ind)
jmasa@1016 232 // for the new end (committed regions are not expected to
jmasa@1016 233 // be proper subsets of other committed regions).
jmasa@1016 234 assert(_committed[ri].start() >= _committed[ind].start(),
jmasa@643 235 "New end of committed region is inconsistent");
jmasa@643 236 new_end_aligned = _committed[ri].start();
jmasa@1016 237 // new_end_aligned can be equal to the start of its
jmasa@1016 238 // committed region (i.e., of "ind") if a second
jmasa@1016 239 // region following "ind" also start at the same location
jmasa@1016 240 // as "ind".
jmasa@1016 241 assert(new_end_aligned >= _committed[ind].start(),
jmasa@643 242 "New end of committed region is before start");
jmasa@643 243 debug_only(collided = true;)
jmasa@643 244 // Should only collide with 1 region
jmasa@643 245 break;
jmasa@643 246 }
jmasa@643 247 }
jmasa@643 248 }
jmasa@643 249 #ifdef ASSERT
jmasa@643 250 for (++ri; ri < _cur_covered_regions; ri++) {
jmasa@643 251 assert(!_committed[ri].contains(new_end_aligned),
jmasa@643 252 "New end of committed region is in a second committed region");
jmasa@643 253 }
jmasa@643 254 #endif
duke@435 255 // The guard page is always committed and should not be committed over.
jmasa@1322 256 // "guarded" is used for assertion checking below and recalls the fact
jmasa@1322 257 // that the would-be end of the new committed region would have
jmasa@1322 258 // penetrated the guard page.
jmasa@1322 259 HeapWord* new_end_for_commit = new_end_aligned;
jmasa@1322 260
jmasa@1322 261 DEBUG_ONLY(bool guarded = false;)
jmasa@1322 262 if (new_end_for_commit > _guard_region.start()) {
jmasa@1322 263 new_end_for_commit = _guard_region.start();
jmasa@1322 264 DEBUG_ONLY(guarded = true;)
jmasa@1322 265 }
jmasa@643 266
duke@435 267 if (new_end_for_commit > cur_committed.end()) {
duke@435 268 // Must commit new pages.
jmasa@441 269 MemRegion const new_committed =
duke@435 270 MemRegion(cur_committed.end(), new_end_for_commit);
duke@435 271
duke@435 272 assert(!new_committed.is_empty(), "Region should not be empty here");
duke@435 273 if (!os::commit_memory((char*)new_committed.start(),
duke@435 274 new_committed.byte_size(), _page_size)) {
duke@435 275 // Do better than this for Merlin
duke@435 276 vm_exit_out_of_memory(new_committed.byte_size(),
duke@435 277 "card table expansion");
duke@435 278 }
duke@435 279 // Use new_end_aligned (as opposed to new_end_for_commit) because
duke@435 280 // the cur_committed region may include the guard region.
duke@435 281 } else if (new_end_aligned < cur_committed.end()) {
duke@435 282 // Must uncommit pages.
jmasa@441 283 MemRegion const uncommit_region =
duke@435 284 committed_unique_to_self(ind, MemRegion(new_end_aligned,
duke@435 285 cur_committed.end()));
duke@435 286 if (!uncommit_region.is_empty()) {
duke@435 287 if (!os::uncommit_memory((char*)uncommit_region.start(),
duke@435 288 uncommit_region.byte_size())) {
jmasa@643 289 assert(false, "Card table contraction failed");
jmasa@643 290 // The call failed so don't change the end of the
jmasa@643 291 // committed region. This is better than taking the
jmasa@643 292 // VM down.
jmasa@643 293 new_end_aligned = _committed[ind].end();
duke@435 294 }
duke@435 295 }
duke@435 296 }
duke@435 297 // In any case, we can reset the end of the current committed entry.
duke@435 298 _committed[ind].set_end(new_end_aligned);
duke@435 299
duke@435 300 // The default of 0 is not necessarily clean cards.
duke@435 301 jbyte* entry;
duke@435 302 if (old_region.last() < _whole_heap.start()) {
duke@435 303 entry = byte_for(_whole_heap.start());
duke@435 304 } else {
duke@435 305 entry = byte_after(old_region.last());
duke@435 306 }
swamyv@924 307 assert(index_for(new_region.last()) < _guard_index,
duke@435 308 "The guard card will be overwritten");
jmasa@643 309 // This line commented out cleans the newly expanded region and
jmasa@643 310 // not the aligned up expanded region.
jmasa@643 311 // jbyte* const end = byte_after(new_region.last());
jmasa@643 312 jbyte* const end = (jbyte*) new_end_for_commit;
jmasa@1322 313 assert((end >= byte_after(new_region.last())) || collided || guarded,
jmasa@643 314 "Expect to be beyond new region unless impacting another region");
duke@435 315 // do nothing if we resized downward.
jmasa@643 316 #ifdef ASSERT
jmasa@643 317 for (int ri = 0; ri < _cur_covered_regions; ri++) {
jmasa@643 318 if (ri != ind) {
jmasa@643 319 // The end of the new committed region should not
jmasa@643 320 // be in any existing region unless it matches
jmasa@643 321 // the start of the next region.
jmasa@643 322 assert(!_committed[ri].contains(end) ||
jmasa@643 323 (_committed[ri].start() == (HeapWord*) end),
jmasa@643 324 "Overlapping committed regions");
jmasa@643 325 }
jmasa@643 326 }
jmasa@643 327 #endif
duke@435 328 if (entry < end) {
duke@435 329 memset(entry, clean_card, pointer_delta(end, entry, sizeof(jbyte)));
duke@435 330 }
duke@435 331 }
duke@435 332 // In any case, the covered size changes.
duke@435 333 _covered[ind].set_word_size(new_region.word_size());
duke@435 334 if (TraceCardTableModRefBS) {
duke@435 335 gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
duke@435 336 gclog_or_tty->print_cr(" "
duke@435 337 " _covered[%d].start(): " INTPTR_FORMAT
duke@435 338 " _covered[%d].last(): " INTPTR_FORMAT,
duke@435 339 ind, _covered[ind].start(),
duke@435 340 ind, _covered[ind].last());
duke@435 341 gclog_or_tty->print_cr(" "
duke@435 342 " _committed[%d].start(): " INTPTR_FORMAT
duke@435 343 " _committed[%d].last(): " INTPTR_FORMAT,
duke@435 344 ind, _committed[ind].start(),
duke@435 345 ind, _committed[ind].last());
duke@435 346 gclog_or_tty->print_cr(" "
duke@435 347 " byte_for(start): " INTPTR_FORMAT
duke@435 348 " byte_for(last): " INTPTR_FORMAT,
duke@435 349 byte_for(_covered[ind].start()),
duke@435 350 byte_for(_covered[ind].last()));
duke@435 351 gclog_or_tty->print_cr(" "
duke@435 352 " addr_for(start): " INTPTR_FORMAT
duke@435 353 " addr_for(last): " INTPTR_FORMAT,
duke@435 354 addr_for((jbyte*) _committed[ind].start()),
duke@435 355 addr_for((jbyte*) _committed[ind].last()));
duke@435 356 }
duke@435 357 debug_only(verify_guard();)
duke@435 358 }
duke@435 359
duke@435 360 // Note that these versions are precise! The scanning code has to handle the
duke@435 361 // fact that the write barrier may be either precise or imprecise.
duke@435 362
coleenp@548 363 void CardTableModRefBS::write_ref_field_work(void* field, oop newVal) {
duke@435 364 inline_write_ref_field(field, newVal);
duke@435 365 }
duke@435 366
iveresov@1051 367 /*
iveresov@1051 368 Claimed and deferred bits are used together in G1 during the evacuation
iveresov@1051 369 pause. These bits can have the following state transitions:
iveresov@1051 370 1. The claimed bit can be put over any other card state. Except that
iveresov@1051 371 the "dirty -> dirty and claimed" transition is checked for in
iveresov@1051 372 G1 code and is not used.
iveresov@1051 373 2. Deferred bit can be set only if the previous state of the card
iveresov@1051 374 was either clean or claimed. mark_card_deferred() is wait-free.
iveresov@1051 375 We do not care if the operation is be successful because if
iveresov@1051 376 it does not it will only result in duplicate entry in the update
iveresov@1051 377 buffer because of the "cache-miss". So it's not worth spinning.
iveresov@1051 378 */
iveresov@1051 379
duke@435 380
ysr@777 381 bool CardTableModRefBS::claim_card(size_t card_index) {
ysr@777 382 jbyte val = _byte_map[card_index];
iveresov@1051 383 assert(val != dirty_card_val(), "Shouldn't claim a dirty card");
iveresov@1051 384 while (val == clean_card_val() ||
iveresov@1051 385 (val & (clean_card_mask_val() | claimed_card_val())) != claimed_card_val()) {
iveresov@1051 386 jbyte new_val = val;
iveresov@1051 387 if (val == clean_card_val()) {
iveresov@1051 388 new_val = (jbyte)claimed_card_val();
iveresov@1051 389 } else {
iveresov@1051 390 new_val = val | (jbyte)claimed_card_val();
iveresov@1051 391 }
iveresov@1051 392 jbyte res = Atomic::cmpxchg(new_val, &_byte_map[card_index], val);
iveresov@1051 393 if (res == val) {
ysr@777 394 return true;
iveresov@1051 395 }
iveresov@1051 396 val = res;
ysr@777 397 }
ysr@777 398 return false;
ysr@777 399 }
ysr@777 400
iveresov@1051 401 bool CardTableModRefBS::mark_card_deferred(size_t card_index) {
iveresov@1051 402 jbyte val = _byte_map[card_index];
iveresov@1051 403 // It's already processed
iveresov@1051 404 if ((val & (clean_card_mask_val() | deferred_card_val())) == deferred_card_val()) {
iveresov@1051 405 return false;
iveresov@1051 406 }
iveresov@1051 407 // Cached bit can be installed either on a clean card or on a claimed card.
iveresov@1051 408 jbyte new_val = val;
iveresov@1051 409 if (val == clean_card_val()) {
iveresov@1051 410 new_val = (jbyte)deferred_card_val();
iveresov@1051 411 } else {
iveresov@1051 412 if (val & claimed_card_val()) {
iveresov@1051 413 new_val = val | (jbyte)deferred_card_val();
iveresov@1051 414 }
iveresov@1051 415 }
iveresov@1051 416 if (new_val != val) {
iveresov@1051 417 Atomic::cmpxchg(new_val, &_byte_map[card_index], val);
iveresov@1051 418 }
iveresov@1051 419 return true;
iveresov@1051 420 }
iveresov@1051 421
iveresov@1051 422
duke@435 423 void CardTableModRefBS::non_clean_card_iterate(Space* sp,
duke@435 424 MemRegion mr,
duke@435 425 DirtyCardToOopClosure* dcto_cl,
duke@435 426 MemRegionClosure* cl,
duke@435 427 bool clear) {
duke@435 428 if (!mr.is_empty()) {
duke@435 429 int n_threads = SharedHeap::heap()->n_par_threads();
duke@435 430 if (n_threads > 0) {
duke@435 431 #ifndef SERIALGC
duke@435 432 par_non_clean_card_iterate_work(sp, mr, dcto_cl, cl, clear, n_threads);
duke@435 433 #else // SERIALGC
duke@435 434 fatal("Parallel gc not supported here.");
duke@435 435 #endif // SERIALGC
duke@435 436 } else {
duke@435 437 non_clean_card_iterate_work(mr, cl, clear);
duke@435 438 }
duke@435 439 }
duke@435 440 }
duke@435 441
duke@435 442 // NOTE: For this to work correctly, it is important that
duke@435 443 // we look for non-clean cards below (so as to catch those
duke@435 444 // marked precleaned), rather than look explicitly for dirty
duke@435 445 // cards (and miss those marked precleaned). In that sense,
duke@435 446 // the name precleaned is currently somewhat of a misnomer.
duke@435 447 void CardTableModRefBS::non_clean_card_iterate_work(MemRegion mr,
duke@435 448 MemRegionClosure* cl,
duke@435 449 bool clear) {
duke@435 450 // Figure out whether we have to worry about parallelism.
duke@435 451 bool is_par = (SharedHeap::heap()->n_par_threads() > 1);
duke@435 452 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 453 MemRegion mri = mr.intersection(_covered[i]);
duke@435 454 if (mri.word_size() > 0) {
duke@435 455 jbyte* cur_entry = byte_for(mri.last());
duke@435 456 jbyte* limit = byte_for(mri.start());
duke@435 457 while (cur_entry >= limit) {
duke@435 458 jbyte* next_entry = cur_entry - 1;
duke@435 459 if (*cur_entry != clean_card) {
duke@435 460 size_t non_clean_cards = 1;
duke@435 461 // Should the next card be included in this range of dirty cards.
duke@435 462 while (next_entry >= limit && *next_entry != clean_card) {
duke@435 463 non_clean_cards++;
duke@435 464 cur_entry = next_entry;
duke@435 465 next_entry--;
duke@435 466 }
duke@435 467 // The memory region may not be on a card boundary. So that
duke@435 468 // objects beyond the end of the region are not processed, make
duke@435 469 // cur_cards precise with regard to the end of the memory region.
duke@435 470 MemRegion cur_cards(addr_for(cur_entry),
duke@435 471 non_clean_cards * card_size_in_words);
duke@435 472 MemRegion dirty_region = cur_cards.intersection(mri);
duke@435 473 if (clear) {
duke@435 474 for (size_t i = 0; i < non_clean_cards; i++) {
duke@435 475 // Clean the dirty cards (but leave the other non-clean
duke@435 476 // alone.) If parallel, do the cleaning atomically.
duke@435 477 jbyte cur_entry_val = cur_entry[i];
duke@435 478 if (card_is_dirty_wrt_gen_iter(cur_entry_val)) {
duke@435 479 if (is_par) {
duke@435 480 jbyte res = Atomic::cmpxchg(clean_card, &cur_entry[i], cur_entry_val);
duke@435 481 assert(res != clean_card,
duke@435 482 "Dirty card mysteriously cleaned");
duke@435 483 } else {
duke@435 484 cur_entry[i] = clean_card;
duke@435 485 }
duke@435 486 }
duke@435 487 }
duke@435 488 }
duke@435 489 cl->do_MemRegion(dirty_region);
duke@435 490 }
duke@435 491 cur_entry = next_entry;
duke@435 492 }
duke@435 493 }
duke@435 494 }
duke@435 495 }
duke@435 496
duke@435 497 void CardTableModRefBS::mod_oop_in_space_iterate(Space* sp,
duke@435 498 OopClosure* cl,
duke@435 499 bool clear,
duke@435 500 bool before_save_marks) {
duke@435 501 // Note that dcto_cl is resource-allocated, so there is no
duke@435 502 // corresponding "delete".
duke@435 503 DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision());
duke@435 504 MemRegion used_mr;
duke@435 505 if (before_save_marks) {
duke@435 506 used_mr = sp->used_region_at_save_marks();
duke@435 507 } else {
duke@435 508 used_mr = sp->used_region();
duke@435 509 }
duke@435 510 non_clean_card_iterate(sp, used_mr, dcto_cl, dcto_cl, clear);
duke@435 511 }
duke@435 512
duke@435 513 void CardTableModRefBS::dirty_MemRegion(MemRegion mr) {
ysr@1526 514 assert((HeapWord*)align_size_down((uintptr_t)mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
ysr@1526 515 assert((HeapWord*)align_size_up ((uintptr_t)mr.end(), HeapWordSize) == mr.end(), "Unaligned end" );
duke@435 516 jbyte* cur = byte_for(mr.start());
duke@435 517 jbyte* last = byte_after(mr.last());
duke@435 518 while (cur < last) {
duke@435 519 *cur = dirty_card;
duke@435 520 cur++;
duke@435 521 }
duke@435 522 }
duke@435 523
ysr@777 524 void CardTableModRefBS::invalidate(MemRegion mr, bool whole_heap) {
ysr@1526 525 assert((HeapWord*)align_size_down((uintptr_t)mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
ysr@1526 526 assert((HeapWord*)align_size_up ((uintptr_t)mr.end(), HeapWordSize) == mr.end(), "Unaligned end" );
duke@435 527 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 528 MemRegion mri = mr.intersection(_covered[i]);
duke@435 529 if (!mri.is_empty()) dirty_MemRegion(mri);
duke@435 530 }
duke@435 531 }
duke@435 532
duke@435 533 void CardTableModRefBS::clear_MemRegion(MemRegion mr) {
duke@435 534 // Be conservative: only clean cards entirely contained within the
duke@435 535 // region.
duke@435 536 jbyte* cur;
duke@435 537 if (mr.start() == _whole_heap.start()) {
duke@435 538 cur = byte_for(mr.start());
duke@435 539 } else {
duke@435 540 assert(mr.start() > _whole_heap.start(), "mr is not covered.");
duke@435 541 cur = byte_after(mr.start() - 1);
duke@435 542 }
duke@435 543 jbyte* last = byte_after(mr.last());
duke@435 544 memset(cur, clean_card, pointer_delta(last, cur, sizeof(jbyte)));
duke@435 545 }
duke@435 546
duke@435 547 void CardTableModRefBS::clear(MemRegion mr) {
duke@435 548 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 549 MemRegion mri = mr.intersection(_covered[i]);
duke@435 550 if (!mri.is_empty()) clear_MemRegion(mri);
duke@435 551 }
duke@435 552 }
duke@435 553
ysr@777 554 void CardTableModRefBS::dirty(MemRegion mr) {
ysr@777 555 jbyte* first = byte_for(mr.start());
ysr@777 556 jbyte* last = byte_after(mr.last());
ysr@777 557 memset(first, dirty_card, last-first);
ysr@777 558 }
ysr@777 559
duke@435 560 // NOTES:
duke@435 561 // (1) Unlike mod_oop_in_space_iterate() above, dirty_card_iterate()
duke@435 562 // iterates over dirty cards ranges in increasing address order.
duke@435 563 void CardTableModRefBS::dirty_card_iterate(MemRegion mr,
duke@435 564 MemRegionClosure* cl) {
duke@435 565 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 566 MemRegion mri = mr.intersection(_covered[i]);
duke@435 567 if (!mri.is_empty()) {
duke@435 568 jbyte *cur_entry, *next_entry, *limit;
duke@435 569 for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
duke@435 570 cur_entry <= limit;
duke@435 571 cur_entry = next_entry) {
duke@435 572 next_entry = cur_entry + 1;
duke@435 573 if (*cur_entry == dirty_card) {
duke@435 574 size_t dirty_cards;
duke@435 575 // Accumulate maximal dirty card range, starting at cur_entry
duke@435 576 for (dirty_cards = 1;
duke@435 577 next_entry <= limit && *next_entry == dirty_card;
duke@435 578 dirty_cards++, next_entry++);
duke@435 579 MemRegion cur_cards(addr_for(cur_entry),
duke@435 580 dirty_cards*card_size_in_words);
duke@435 581 cl->do_MemRegion(cur_cards);
duke@435 582 }
duke@435 583 }
duke@435 584 }
duke@435 585 }
duke@435 586 }
duke@435 587
ysr@777 588 MemRegion CardTableModRefBS::dirty_card_range_after_reset(MemRegion mr,
ysr@777 589 bool reset,
ysr@777 590 int reset_val) {
duke@435 591 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 592 MemRegion mri = mr.intersection(_covered[i]);
duke@435 593 if (!mri.is_empty()) {
duke@435 594 jbyte* cur_entry, *next_entry, *limit;
duke@435 595 for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
duke@435 596 cur_entry <= limit;
duke@435 597 cur_entry = next_entry) {
duke@435 598 next_entry = cur_entry + 1;
duke@435 599 if (*cur_entry == dirty_card) {
duke@435 600 size_t dirty_cards;
duke@435 601 // Accumulate maximal dirty card range, starting at cur_entry
duke@435 602 for (dirty_cards = 1;
duke@435 603 next_entry <= limit && *next_entry == dirty_card;
duke@435 604 dirty_cards++, next_entry++);
duke@435 605 MemRegion cur_cards(addr_for(cur_entry),
duke@435 606 dirty_cards*card_size_in_words);
ysr@777 607 if (reset) {
ysr@777 608 for (size_t i = 0; i < dirty_cards; i++) {
ysr@777 609 cur_entry[i] = reset_val;
ysr@777 610 }
duke@435 611 }
duke@435 612 return cur_cards;
duke@435 613 }
duke@435 614 }
duke@435 615 }
duke@435 616 }
duke@435 617 return MemRegion(mr.end(), mr.end());
duke@435 618 }
duke@435 619
duke@435 620 // Set all the dirty cards in the given region to "precleaned" state.
duke@435 621 void CardTableModRefBS::preclean_dirty_cards(MemRegion mr) {
duke@435 622 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 623 MemRegion mri = mr.intersection(_covered[i]);
duke@435 624 if (!mri.is_empty()) {
duke@435 625 jbyte *cur_entry, *limit;
duke@435 626 for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
duke@435 627 cur_entry <= limit;
duke@435 628 cur_entry++) {
duke@435 629 if (*cur_entry == dirty_card) {
duke@435 630 *cur_entry = precleaned_card;
duke@435 631 }
duke@435 632 }
duke@435 633 }
duke@435 634 }
duke@435 635 }
duke@435 636
duke@435 637 uintx CardTableModRefBS::ct_max_alignment_constraint() {
duke@435 638 return card_size * os::vm_page_size();
duke@435 639 }
duke@435 640
duke@435 641 void CardTableModRefBS::verify_guard() {
duke@435 642 // For product build verification
duke@435 643 guarantee(_byte_map[_guard_index] == last_card,
duke@435 644 "card table guard has been modified");
duke@435 645 }
duke@435 646
duke@435 647 void CardTableModRefBS::verify() {
duke@435 648 verify_guard();
duke@435 649 }
duke@435 650
duke@435 651 #ifndef PRODUCT
duke@435 652 class GuaranteeNotModClosure: public MemRegionClosure {
duke@435 653 CardTableModRefBS* _ct;
duke@435 654 public:
duke@435 655 GuaranteeNotModClosure(CardTableModRefBS* ct) : _ct(ct) {}
duke@435 656 void do_MemRegion(MemRegion mr) {
duke@435 657 jbyte* entry = _ct->byte_for(mr.start());
duke@435 658 guarantee(*entry != CardTableModRefBS::clean_card,
duke@435 659 "Dirty card in region that should be clean");
duke@435 660 }
duke@435 661 };
duke@435 662
duke@435 663 void CardTableModRefBS::verify_clean_region(MemRegion mr) {
duke@435 664 GuaranteeNotModClosure blk(this);
duke@435 665 non_clean_card_iterate_work(mr, &blk, false);
duke@435 666 }
apetrusenko@1375 667
apetrusenko@1375 668 // To verify a MemRegion is entirely dirty this closure is passed to
apetrusenko@1375 669 // dirty_card_iterate. If the region is dirty do_MemRegion will be
apetrusenko@1375 670 // invoked only once with a MemRegion equal to the one being
apetrusenko@1375 671 // verified.
apetrusenko@1375 672 class GuaranteeDirtyClosure: public MemRegionClosure {
apetrusenko@1375 673 CardTableModRefBS* _ct;
apetrusenko@1375 674 MemRegion _mr;
apetrusenko@1375 675 bool _result;
apetrusenko@1375 676 public:
apetrusenko@1375 677 GuaranteeDirtyClosure(CardTableModRefBS* ct, MemRegion mr)
apetrusenko@1375 678 : _ct(ct), _mr(mr), _result(false) {}
apetrusenko@1375 679 void do_MemRegion(MemRegion mr) {
apetrusenko@1375 680 _result = _mr.equals(mr);
apetrusenko@1375 681 }
apetrusenko@1375 682 bool result() const { return _result; }
apetrusenko@1375 683 };
apetrusenko@1375 684
apetrusenko@1375 685 void CardTableModRefBS::verify_dirty_region(MemRegion mr) {
apetrusenko@1375 686 GuaranteeDirtyClosure blk(this, mr);
apetrusenko@1375 687 dirty_card_iterate(mr, &blk);
apetrusenko@1375 688 guarantee(blk.result(), "Non-dirty cards in region that should be dirty");
apetrusenko@1375 689 }
duke@435 690 #endif
duke@435 691
duke@435 692 bool CardTableModRefBSForCTRS::card_will_be_scanned(jbyte cv) {
duke@435 693 return
duke@435 694 CardTableModRefBS::card_will_be_scanned(cv) ||
duke@435 695 _rs->is_prev_nonclean_card_val(cv);
duke@435 696 };
duke@435 697
duke@435 698 bool CardTableModRefBSForCTRS::card_may_have_been_dirty(jbyte cv) {
duke@435 699 return
duke@435 700 cv != clean_card &&
duke@435 701 (CardTableModRefBS::card_may_have_been_dirty(cv) ||
duke@435 702 CardTableRS::youngergen_may_have_been_dirty(cv));
duke@435 703 };

mercurial