src/share/vm/opto/block.cpp

Thu, 04 Apr 2013 10:01:26 -0700

author
mikael
date
Thu, 04 Apr 2013 10:01:26 -0700
changeset 4889
cc32ccaaf47f
parent 4153
b9a9ed0f8eeb
child 5509
d1034bd8cefc
permissions
-rw-r--r--

8003310: Enable -Wunused-function when compiling with gcc
Summary: Add the -Wunused-function flag and remove a number of unused functions.
Reviewed-by: dholmes, coleenp, kvn

duke@435 1 /*
mikael@4153 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "libadt/vectset.hpp"
stefank@2314 27 #include "memory/allocation.inline.hpp"
stefank@2314 28 #include "opto/block.hpp"
stefank@2314 29 #include "opto/cfgnode.hpp"
stefank@2314 30 #include "opto/chaitin.hpp"
stefank@2314 31 #include "opto/loopnode.hpp"
stefank@2314 32 #include "opto/machnode.hpp"
stefank@2314 33 #include "opto/matcher.hpp"
stefank@2314 34 #include "opto/opcodes.hpp"
stefank@2314 35 #include "opto/rootnode.hpp"
stefank@2314 36 #include "utilities/copy.hpp"
stefank@2314 37
duke@435 38 // Optimization - Graph Style
duke@435 39
duke@435 40
duke@435 41 //-----------------------------------------------------------------------------
duke@435 42 void Block_Array::grow( uint i ) {
duke@435 43 assert(i >= Max(), "must be an overflow");
duke@435 44 debug_only(_limit = i+1);
duke@435 45 if( i < _size ) return;
duke@435 46 if( !_size ) {
duke@435 47 _size = 1;
duke@435 48 _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
duke@435 49 _blocks[0] = NULL;
duke@435 50 }
duke@435 51 uint old = _size;
duke@435 52 while( i >= _size ) _size <<= 1; // Double to fit
duke@435 53 _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
duke@435 54 Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
duke@435 55 }
duke@435 56
duke@435 57 //=============================================================================
duke@435 58 void Block_List::remove(uint i) {
duke@435 59 assert(i < _cnt, "index out of bounds");
duke@435 60 Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
duke@435 61 pop(); // shrink list by one block
duke@435 62 }
duke@435 63
duke@435 64 void Block_List::insert(uint i, Block *b) {
duke@435 65 push(b); // grow list by one block
duke@435 66 Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
duke@435 67 _blocks[i] = b;
duke@435 68 }
duke@435 69
rasbold@853 70 #ifndef PRODUCT
rasbold@853 71 void Block_List::print() {
rasbold@853 72 for (uint i=0; i < size(); i++) {
rasbold@853 73 tty->print("B%d ", _blocks[i]->_pre_order);
rasbold@853 74 }
rasbold@853 75 tty->print("size = %d\n", size());
rasbold@853 76 }
rasbold@853 77 #endif
duke@435 78
duke@435 79 //=============================================================================
duke@435 80
duke@435 81 uint Block::code_alignment() {
duke@435 82 // Check for Root block
kvn@3049 83 if (_pre_order == 0) return CodeEntryAlignment;
duke@435 84 // Check for Start block
kvn@3049 85 if (_pre_order == 1) return InteriorEntryAlignment;
duke@435 86 // Check for loop alignment
kvn@3049 87 if (has_loop_alignment()) return loop_alignment();
rasbold@853 88
kvn@3049 89 return relocInfo::addr_unit(); // no particular alignment
rasbold@853 90 }
rasbold@853 91
rasbold@853 92 uint Block::compute_loop_alignment() {
duke@435 93 Node *h = head();
kvn@3049 94 int unit_sz = relocInfo::addr_unit();
kvn@3049 95 if (h->is_Loop() && h->as_Loop()->is_inner_loop()) {
duke@435 96 // Pre- and post-loops have low trip count so do not bother with
duke@435 97 // NOPs for align loop head. The constants are hidden from tuning
duke@435 98 // but only because my "divide by 4" heuristic surely gets nearly
duke@435 99 // all possible gain (a "do not align at all" heuristic has a
duke@435 100 // chance of getting a really tiny gain).
kvn@3049 101 if (h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
kvn@3049 102 h->as_CountedLoop()->is_post_loop())) {
kvn@3049 103 return (OptoLoopAlignment > 4*unit_sz) ? (OptoLoopAlignment>>2) : unit_sz;
kvn@3049 104 }
duke@435 105 // Loops with low backedge frequency should not be aligned.
duke@435 106 Node *n = h->in(LoopNode::LoopBackControl)->in(0);
kvn@3049 107 if (n->is_MachIf() && n->as_MachIf()->_prob < 0.01) {
kvn@3049 108 return unit_sz; // Loop does not loop, more often than not!
duke@435 109 }
duke@435 110 return OptoLoopAlignment; // Otherwise align loop head
duke@435 111 }
rasbold@853 112
kvn@3049 113 return unit_sz; // no particular alignment
duke@435 114 }
duke@435 115
duke@435 116 //-----------------------------------------------------------------------------
duke@435 117 // Compute the size of first 'inst_cnt' instructions in this block.
duke@435 118 // Return the number of instructions left to compute if the block has
rasbold@853 119 // less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
rasbold@853 120 // exceeds OptoLoopAlignment.
duke@435 121 uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
duke@435 122 PhaseRegAlloc* ra) {
duke@435 123 uint last_inst = _nodes.size();
duke@435 124 for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
duke@435 125 uint inst_size = _nodes[j]->size(ra);
duke@435 126 if( inst_size > 0 ) {
duke@435 127 inst_cnt--;
duke@435 128 uint sz = sum_size + inst_size;
duke@435 129 if( sz <= (uint)OptoLoopAlignment ) {
duke@435 130 // Compute size of instructions which fit into fetch buffer only
duke@435 131 // since all inst_cnt instructions will not fit even if we align them.
duke@435 132 sum_size = sz;
duke@435 133 } else {
duke@435 134 return 0;
duke@435 135 }
duke@435 136 }
duke@435 137 }
duke@435 138 return inst_cnt;
duke@435 139 }
duke@435 140
duke@435 141 //-----------------------------------------------------------------------------
duke@435 142 uint Block::find_node( const Node *n ) const {
duke@435 143 for( uint i = 0; i < _nodes.size(); i++ ) {
duke@435 144 if( _nodes[i] == n )
duke@435 145 return i;
duke@435 146 }
duke@435 147 ShouldNotReachHere();
duke@435 148 return 0;
duke@435 149 }
duke@435 150
duke@435 151 // Find and remove n from block list
duke@435 152 void Block::find_remove( const Node *n ) {
duke@435 153 _nodes.remove(find_node(n));
duke@435 154 }
duke@435 155
duke@435 156 //------------------------------is_Empty---------------------------------------
duke@435 157 // Return empty status of a block. Empty blocks contain only the head, other
duke@435 158 // ideal nodes, and an optional trailing goto.
duke@435 159 int Block::is_Empty() const {
duke@435 160
duke@435 161 // Root or start block is not considered empty
duke@435 162 if (head()->is_Root() || head()->is_Start()) {
duke@435 163 return not_empty;
duke@435 164 }
duke@435 165
duke@435 166 int success_result = completely_empty;
duke@435 167 int end_idx = _nodes.size()-1;
duke@435 168
duke@435 169 // Check for ending goto
kvn@3040 170 if ((end_idx > 0) && (_nodes[end_idx]->is_MachGoto())) {
duke@435 171 success_result = empty_with_goto;
duke@435 172 end_idx--;
duke@435 173 }
duke@435 174
duke@435 175 // Unreachable blocks are considered empty
duke@435 176 if (num_preds() <= 1) {
duke@435 177 return success_result;
duke@435 178 }
duke@435 179
duke@435 180 // Ideal nodes are allowable in empty blocks: skip them Only MachNodes
duke@435 181 // turn directly into code, because only MachNodes have non-trivial
duke@435 182 // emit() functions.
duke@435 183 while ((end_idx > 0) && !_nodes[end_idx]->is_Mach()) {
duke@435 184 end_idx--;
duke@435 185 }
duke@435 186
duke@435 187 // No room for any interesting instructions?
duke@435 188 if (end_idx == 0) {
duke@435 189 return success_result;
duke@435 190 }
duke@435 191
duke@435 192 return not_empty;
duke@435 193 }
duke@435 194
duke@435 195 //------------------------------has_uncommon_code------------------------------
twisti@1040 196 // Return true if the block's code implies that it is likely to be
duke@435 197 // executed infrequently. Check to see if the block ends in a Halt or
duke@435 198 // a low probability call.
duke@435 199 bool Block::has_uncommon_code() const {
duke@435 200 Node* en = end();
duke@435 201
kvn@3040 202 if (en->is_MachGoto())
duke@435 203 en = en->in(0);
duke@435 204 if (en->is_Catch())
duke@435 205 en = en->in(0);
kvn@3040 206 if (en->is_MachProj() && en->in(0)->is_MachCall()) {
duke@435 207 MachCallNode* call = en->in(0)->as_MachCall();
duke@435 208 if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
duke@435 209 // This is true for slow-path stubs like new_{instance,array},
duke@435 210 // slow_arraycopy, complete_monitor_locking, uncommon_trap.
duke@435 211 // The magic number corresponds to the probability of an uncommon_trap,
duke@435 212 // even though it is a count not a probability.
duke@435 213 return true;
duke@435 214 }
duke@435 215 }
duke@435 216
duke@435 217 int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
duke@435 218 return op == Op_Halt;
duke@435 219 }
duke@435 220
duke@435 221 //------------------------------is_uncommon------------------------------------
duke@435 222 // True if block is low enough frequency or guarded by a test which
duke@435 223 // mostly does not go here.
duke@435 224 bool Block::is_uncommon( Block_Array &bbs ) const {
duke@435 225 // Initial blocks must never be moved, so are never uncommon.
duke@435 226 if (head()->is_Root() || head()->is_Start()) return false;
duke@435 227
duke@435 228 // Check for way-low freq
duke@435 229 if( _freq < BLOCK_FREQUENCY(0.00001f) ) return true;
duke@435 230
duke@435 231 // Look for code shape indicating uncommon_trap or slow path
duke@435 232 if (has_uncommon_code()) return true;
duke@435 233
duke@435 234 const float epsilon = 0.05f;
duke@435 235 const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
duke@435 236 uint uncommon_preds = 0;
duke@435 237 uint freq_preds = 0;
duke@435 238 uint uncommon_for_freq_preds = 0;
duke@435 239
duke@435 240 for( uint i=1; i<num_preds(); i++ ) {
duke@435 241 Block* guard = bbs[pred(i)->_idx];
duke@435 242 // Check to see if this block follows its guard 1 time out of 10000
duke@435 243 // or less.
duke@435 244 //
duke@435 245 // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
duke@435 246 // we intend to be "uncommon", such as slow-path TLE allocation,
duke@435 247 // predicted call failure, and uncommon trap triggers.
duke@435 248 //
duke@435 249 // Use an epsilon value of 5% to allow for variability in frequency
duke@435 250 // predictions and floating point calculations. The net effect is
duke@435 251 // that guard_factor is set to 9500.
duke@435 252 //
duke@435 253 // Ignore low-frequency blocks.
duke@435 254 // The next check is (guard->_freq < 1.e-5 * 9500.).
duke@435 255 if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
duke@435 256 uncommon_preds++;
duke@435 257 } else {
duke@435 258 freq_preds++;
duke@435 259 if( _freq < guard->_freq * guard_factor ) {
duke@435 260 uncommon_for_freq_preds++;
duke@435 261 }
duke@435 262 }
duke@435 263 }
duke@435 264 if( num_preds() > 1 &&
duke@435 265 // The block is uncommon if all preds are uncommon or
duke@435 266 (uncommon_preds == (num_preds()-1) ||
duke@435 267 // it is uncommon for all frequent preds.
duke@435 268 uncommon_for_freq_preds == freq_preds) ) {
duke@435 269 return true;
duke@435 270 }
duke@435 271 return false;
duke@435 272 }
duke@435 273
duke@435 274 //------------------------------dump-------------------------------------------
duke@435 275 #ifndef PRODUCT
kvn@3049 276 void Block::dump_bidx(const Block* orig, outputStream* st) const {
kvn@3049 277 if (_pre_order) st->print("B%d",_pre_order);
kvn@3049 278 else st->print("N%d", head()->_idx);
duke@435 279
duke@435 280 if (Verbose && orig != this) {
duke@435 281 // Dump the original block's idx
kvn@3049 282 st->print(" (");
kvn@3049 283 orig->dump_bidx(orig, st);
kvn@3049 284 st->print(")");
duke@435 285 }
duke@435 286 }
duke@435 287
kvn@3049 288 void Block::dump_pred(const Block_Array *bbs, Block* orig, outputStream* st) const {
duke@435 289 if (is_connector()) {
duke@435 290 for (uint i=1; i<num_preds(); i++) {
duke@435 291 Block *p = ((*bbs)[pred(i)->_idx]);
kvn@3049 292 p->dump_pred(bbs, orig, st);
duke@435 293 }
duke@435 294 } else {
kvn@3049 295 dump_bidx(orig, st);
kvn@3049 296 st->print(" ");
duke@435 297 }
duke@435 298 }
duke@435 299
kvn@3049 300 void Block::dump_head( const Block_Array *bbs, outputStream* st ) const {
duke@435 301 // Print the basic block
kvn@3049 302 dump_bidx(this, st);
kvn@3049 303 st->print(": #\t");
duke@435 304
duke@435 305 // Print the incoming CFG edges and the outgoing CFG edges
duke@435 306 for( uint i=0; i<_num_succs; i++ ) {
kvn@3049 307 non_connector_successor(i)->dump_bidx(_succs[i], st);
kvn@3049 308 st->print(" ");
duke@435 309 }
kvn@3049 310 st->print("<- ");
duke@435 311 if( head()->is_block_start() ) {
duke@435 312 for (uint i=1; i<num_preds(); i++) {
duke@435 313 Node *s = pred(i);
duke@435 314 if (bbs) {
duke@435 315 Block *p = (*bbs)[s->_idx];
kvn@3049 316 p->dump_pred(bbs, p, st);
duke@435 317 } else {
duke@435 318 while (!s->is_block_start())
duke@435 319 s = s->in(0);
kvn@3049 320 st->print("N%d ", s->_idx );
duke@435 321 }
duke@435 322 }
duke@435 323 } else
kvn@3049 324 st->print("BLOCK HEAD IS JUNK ");
duke@435 325
duke@435 326 // Print loop, if any
duke@435 327 const Block *bhead = this; // Head of self-loop
duke@435 328 Node *bh = bhead->head();
duke@435 329 if( bbs && bh->is_Loop() && !head()->is_Root() ) {
duke@435 330 LoopNode *loop = bh->as_Loop();
duke@435 331 const Block *bx = (*bbs)[loop->in(LoopNode::LoopBackControl)->_idx];
duke@435 332 while (bx->is_connector()) {
duke@435 333 bx = (*bbs)[bx->pred(1)->_idx];
duke@435 334 }
kvn@3049 335 st->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
duke@435 336 // Dump any loop-specific bits, especially for CountedLoops.
kvn@3049 337 loop->dump_spec(st);
rasbold@853 338 } else if (has_loop_alignment()) {
kvn@3049 339 st->print(" top-of-loop");
duke@435 340 }
kvn@3049 341 st->print(" Freq: %g",_freq);
duke@435 342 if( Verbose || WizardMode ) {
kvn@3049 343 st->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
kvn@3049 344 st->print(" RegPressure: %d",_reg_pressure);
kvn@3049 345 st->print(" IHRP Index: %d",_ihrp_index);
kvn@3049 346 st->print(" FRegPressure: %d",_freg_pressure);
kvn@3049 347 st->print(" FHRP Index: %d",_fhrp_index);
duke@435 348 }
kvn@3049 349 st->print_cr("");
duke@435 350 }
duke@435 351
kvn@3049 352 void Block::dump() const { dump(NULL); }
duke@435 353
duke@435 354 void Block::dump( const Block_Array *bbs ) const {
duke@435 355 dump_head(bbs);
duke@435 356 uint cnt = _nodes.size();
duke@435 357 for( uint i=0; i<cnt; i++ )
duke@435 358 _nodes[i]->dump();
duke@435 359 tty->print("\n");
duke@435 360 }
duke@435 361 #endif
duke@435 362
duke@435 363 //=============================================================================
duke@435 364 //------------------------------PhaseCFG---------------------------------------
duke@435 365 PhaseCFG::PhaseCFG( Arena *a, RootNode *r, Matcher &m ) :
duke@435 366 Phase(CFG),
duke@435 367 _bbs(a),
kvn@2040 368 _root(r),
kvn@2040 369 _node_latency(NULL)
duke@435 370 #ifndef PRODUCT
duke@435 371 , _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
duke@435 372 #endif
kvn@1268 373 #ifdef ASSERT
kvn@1268 374 , _raw_oops(a)
kvn@1268 375 #endif
duke@435 376 {
duke@435 377 ResourceMark rm;
duke@435 378 // I'll need a few machine-specific GotoNodes. Make an Ideal GotoNode,
duke@435 379 // then Match it into a machine-specific Node. Then clone the machine
duke@435 380 // Node on demand.
kvn@4115 381 Node *x = new (C) GotoNode(NULL);
duke@435 382 x->init_req(0, x);
duke@435 383 _goto = m.match_tree(x);
duke@435 384 assert(_goto != NULL, "");
duke@435 385 _goto->set_req(0,_goto);
duke@435 386
duke@435 387 // Build the CFG in Reverse Post Order
duke@435 388 _num_blocks = build_cfg();
duke@435 389 _broot = _bbs[_root->_idx];
duke@435 390 }
duke@435 391
duke@435 392 //------------------------------build_cfg--------------------------------------
duke@435 393 // Build a proper looking CFG. Make every block begin with either a StartNode
duke@435 394 // or a RegionNode. Make every block end with either a Goto, If or Return.
duke@435 395 // The RootNode both starts and ends it's own block. Do this with a recursive
duke@435 396 // backwards walk over the control edges.
duke@435 397 uint PhaseCFG::build_cfg() {
duke@435 398 Arena *a = Thread::current()->resource_area();
duke@435 399 VectorSet visited(a);
duke@435 400
duke@435 401 // Allocate stack with enough space to avoid frequent realloc
duke@435 402 Node_Stack nstack(a, C->unique() >> 1);
duke@435 403 nstack.push(_root, 0);
duke@435 404 uint sum = 0; // Counter for blocks
duke@435 405
duke@435 406 while (nstack.is_nonempty()) {
duke@435 407 // node and in's index from stack's top
duke@435 408 // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
duke@435 409 // only nodes which point to the start of basic block (see below).
duke@435 410 Node *np = nstack.node();
duke@435 411 // idx > 0, except for the first node (_root) pushed on stack
duke@435 412 // at the beginning when idx == 0.
duke@435 413 // We will use the condition (idx == 0) later to end the build.
duke@435 414 uint idx = nstack.index();
duke@435 415 Node *proj = np->in(idx);
duke@435 416 const Node *x = proj->is_block_proj();
duke@435 417 // Does the block end with a proper block-ending Node? One of Return,
duke@435 418 // If or Goto? (This check should be done for visited nodes also).
duke@435 419 if (x == NULL) { // Does not end right...
duke@435 420 Node *g = _goto->clone(); // Force it to end in a Goto
duke@435 421 g->set_req(0, proj);
duke@435 422 np->set_req(idx, g);
duke@435 423 x = proj = g;
duke@435 424 }
duke@435 425 if (!visited.test_set(x->_idx)) { // Visit this block once
duke@435 426 // Skip any control-pinned middle'in stuff
duke@435 427 Node *p = proj;
duke@435 428 do {
duke@435 429 proj = p; // Update pointer to last Control
duke@435 430 p = p->in(0); // Move control forward
duke@435 431 } while( !p->is_block_proj() &&
duke@435 432 !p->is_block_start() );
duke@435 433 // Make the block begin with one of Region or StartNode.
duke@435 434 if( !p->is_block_start() ) {
kvn@4115 435 RegionNode *r = new (C) RegionNode( 2 );
duke@435 436 r->init_req(1, p); // Insert RegionNode in the way
duke@435 437 proj->set_req(0, r); // Insert RegionNode in the way
duke@435 438 p = r;
duke@435 439 }
duke@435 440 // 'p' now points to the start of this basic block
duke@435 441
duke@435 442 // Put self in array of basic blocks
duke@435 443 Block *bb = new (_bbs._arena) Block(_bbs._arena,p);
duke@435 444 _bbs.map(p->_idx,bb);
duke@435 445 _bbs.map(x->_idx,bb);
kvn@3049 446 if( x != p ) { // Only for root is x == p
duke@435 447 bb->_nodes.push((Node*)x);
kvn@3049 448 }
duke@435 449 // Now handle predecessors
duke@435 450 ++sum; // Count 1 for self block
duke@435 451 uint cnt = bb->num_preds();
duke@435 452 for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
duke@435 453 Node *prevproj = p->in(i); // Get prior input
duke@435 454 assert( !prevproj->is_Con(), "dead input not removed" );
duke@435 455 // Check to see if p->in(i) is a "control-dependent" CFG edge -
duke@435 456 // i.e., it splits at the source (via an IF or SWITCH) and merges
duke@435 457 // at the destination (via a many-input Region).
duke@435 458 // This breaks critical edges. The RegionNode to start the block
duke@435 459 // will be added when <p,i> is pulled off the node stack
duke@435 460 if ( cnt > 2 ) { // Merging many things?
duke@435 461 assert( prevproj== bb->pred(i),"");
duke@435 462 if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
duke@435 463 // Force a block on the control-dependent edge
duke@435 464 Node *g = _goto->clone(); // Force it to end in a Goto
duke@435 465 g->set_req(0,prevproj);
duke@435 466 p->set_req(i,g);
duke@435 467 }
duke@435 468 }
duke@435 469 nstack.push(p, i); // 'p' is RegionNode or StartNode
duke@435 470 }
duke@435 471 } else { // Post-processing visited nodes
duke@435 472 nstack.pop(); // remove node from stack
duke@435 473 // Check if it the fist node pushed on stack at the beginning.
duke@435 474 if (idx == 0) break; // end of the build
duke@435 475 // Find predecessor basic block
duke@435 476 Block *pb = _bbs[x->_idx];
duke@435 477 // Insert into nodes array, if not already there
duke@435 478 if( !_bbs.lookup(proj->_idx) ) {
duke@435 479 assert( x != proj, "" );
duke@435 480 // Map basic block of projection
duke@435 481 _bbs.map(proj->_idx,pb);
duke@435 482 pb->_nodes.push(proj);
duke@435 483 }
duke@435 484 // Insert self as a child of my predecessor block
duke@435 485 pb->_succs.map(pb->_num_succs++, _bbs[np->_idx]);
duke@435 486 assert( pb->_nodes[ pb->_nodes.size() - pb->_num_succs ]->is_block_proj(),
duke@435 487 "too many control users, not a CFG?" );
duke@435 488 }
duke@435 489 }
duke@435 490 // Return number of basic blocks for all children and self
duke@435 491 return sum;
duke@435 492 }
duke@435 493
duke@435 494 //------------------------------insert_goto_at---------------------------------
duke@435 495 // Inserts a goto & corresponding basic block between
duke@435 496 // block[block_no] and its succ_no'th successor block
duke@435 497 void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
duke@435 498 // get block with block_no
duke@435 499 assert(block_no < _num_blocks, "illegal block number");
duke@435 500 Block* in = _blocks[block_no];
duke@435 501 // get successor block succ_no
duke@435 502 assert(succ_no < in->_num_succs, "illegal successor number");
duke@435 503 Block* out = in->_succs[succ_no];
rasbold@743 504 // Compute frequency of the new block. Do this before inserting
rasbold@743 505 // new block in case succ_prob() needs to infer the probability from
rasbold@743 506 // surrounding blocks.
rasbold@743 507 float freq = in->_freq * in->succ_prob(succ_no);
duke@435 508 // get ProjNode corresponding to the succ_no'th successor of the in block
duke@435 509 ProjNode* proj = in->_nodes[in->_nodes.size() - in->_num_succs + succ_no]->as_Proj();
duke@435 510 // create region for basic block
kvn@4115 511 RegionNode* region = new (C) RegionNode(2);
duke@435 512 region->init_req(1, proj);
duke@435 513 // setup corresponding basic block
duke@435 514 Block* block = new (_bbs._arena) Block(_bbs._arena, region);
duke@435 515 _bbs.map(region->_idx, block);
duke@435 516 C->regalloc()->set_bad(region->_idx);
duke@435 517 // add a goto node
duke@435 518 Node* gto = _goto->clone(); // get a new goto node
duke@435 519 gto->set_req(0, region);
duke@435 520 // add it to the basic block
duke@435 521 block->_nodes.push(gto);
duke@435 522 _bbs.map(gto->_idx, block);
duke@435 523 C->regalloc()->set_bad(gto->_idx);
duke@435 524 // hook up successor block
duke@435 525 block->_succs.map(block->_num_succs++, out);
duke@435 526 // remap successor's predecessors if necessary
duke@435 527 for (uint i = 1; i < out->num_preds(); i++) {
duke@435 528 if (out->pred(i) == proj) out->head()->set_req(i, gto);
duke@435 529 }
duke@435 530 // remap predecessor's successor to new block
duke@435 531 in->_succs.map(succ_no, block);
rasbold@743 532 // Set the frequency of the new block
rasbold@743 533 block->_freq = freq;
duke@435 534 // add new basic block to basic block list
duke@435 535 _blocks.insert(block_no + 1, block);
duke@435 536 _num_blocks++;
duke@435 537 }
duke@435 538
duke@435 539 //------------------------------no_flip_branch---------------------------------
duke@435 540 // Does this block end in a multiway branch that cannot have the default case
duke@435 541 // flipped for another case?
duke@435 542 static bool no_flip_branch( Block *b ) {
duke@435 543 int branch_idx = b->_nodes.size() - b->_num_succs-1;
duke@435 544 if( branch_idx < 1 ) return false;
duke@435 545 Node *bra = b->_nodes[branch_idx];
rasbold@853 546 if( bra->is_Catch() )
rasbold@853 547 return true;
duke@435 548 if( bra->is_Mach() ) {
rasbold@853 549 if( bra->is_MachNullCheck() )
rasbold@853 550 return true;
duke@435 551 int iop = bra->as_Mach()->ideal_Opcode();
duke@435 552 if( iop == Op_FastLock || iop == Op_FastUnlock )
duke@435 553 return true;
duke@435 554 }
duke@435 555 return false;
duke@435 556 }
duke@435 557
duke@435 558 //------------------------------convert_NeverBranch_to_Goto--------------------
duke@435 559 // Check for NeverBranch at block end. This needs to become a GOTO to the
duke@435 560 // true target. NeverBranch are treated as a conditional branch that always
duke@435 561 // goes the same direction for most of the optimizer and are used to give a
duke@435 562 // fake exit path to infinite loops. At this late stage they need to turn
duke@435 563 // into Goto's so that when you enter the infinite loop you indeed hang.
duke@435 564 void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
duke@435 565 // Find true target
duke@435 566 int end_idx = b->end_idx();
duke@435 567 int idx = b->_nodes[end_idx+1]->as_Proj()->_con;
duke@435 568 Block *succ = b->_succs[idx];
duke@435 569 Node* gto = _goto->clone(); // get a new goto node
duke@435 570 gto->set_req(0, b->head());
duke@435 571 Node *bp = b->_nodes[end_idx];
duke@435 572 b->_nodes.map(end_idx,gto); // Slam over NeverBranch
duke@435 573 _bbs.map(gto->_idx, b);
duke@435 574 C->regalloc()->set_bad(gto->_idx);
duke@435 575 b->_nodes.pop(); // Yank projections
duke@435 576 b->_nodes.pop(); // Yank projections
duke@435 577 b->_succs.map(0,succ); // Map only successor
duke@435 578 b->_num_succs = 1;
duke@435 579 // remap successor's predecessors if necessary
duke@435 580 uint j;
duke@435 581 for( j = 1; j < succ->num_preds(); j++)
duke@435 582 if( succ->pred(j)->in(0) == bp )
duke@435 583 succ->head()->set_req(j, gto);
duke@435 584 // Kill alternate exit path
duke@435 585 Block *dead = b->_succs[1-idx];
duke@435 586 for( j = 1; j < dead->num_preds(); j++)
duke@435 587 if( dead->pred(j)->in(0) == bp )
duke@435 588 break;
duke@435 589 // Scan through block, yanking dead path from
duke@435 590 // all regions and phis.
duke@435 591 dead->head()->del_req(j);
duke@435 592 for( int k = 1; dead->_nodes[k]->is_Phi(); k++ )
duke@435 593 dead->_nodes[k]->del_req(j);
duke@435 594 }
duke@435 595
rasbold@853 596 //------------------------------move_to_next-----------------------------------
duke@435 597 // Helper function to move block bx to the slot following b_index. Return
duke@435 598 // true if the move is successful, otherwise false
rasbold@853 599 bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
duke@435 600 if (bx == NULL) return false;
duke@435 601
duke@435 602 // Return false if bx is already scheduled.
duke@435 603 uint bx_index = bx->_pre_order;
duke@435 604 if ((bx_index <= b_index) && (_blocks[bx_index] == bx)) {
duke@435 605 return false;
duke@435 606 }
duke@435 607
duke@435 608 // Find the current index of block bx on the block list
duke@435 609 bx_index = b_index + 1;
duke@435 610 while( bx_index < _num_blocks && _blocks[bx_index] != bx ) bx_index++;
duke@435 611 assert(_blocks[bx_index] == bx, "block not found");
duke@435 612
duke@435 613 // If the previous block conditionally falls into bx, return false,
duke@435 614 // because moving bx will create an extra jump.
duke@435 615 for(uint k = 1; k < bx->num_preds(); k++ ) {
duke@435 616 Block* pred = _bbs[bx->pred(k)->_idx];
duke@435 617 if (pred == _blocks[bx_index-1]) {
duke@435 618 if (pred->_num_succs != 1) {
duke@435 619 return false;
duke@435 620 }
duke@435 621 }
duke@435 622 }
duke@435 623
duke@435 624 // Reinsert bx just past block 'b'
duke@435 625 _blocks.remove(bx_index);
duke@435 626 _blocks.insert(b_index + 1, bx);
duke@435 627 return true;
duke@435 628 }
duke@435 629
rasbold@853 630 //------------------------------move_to_end------------------------------------
duke@435 631 // Move empty and uncommon blocks to the end.
rasbold@853 632 void PhaseCFG::move_to_end(Block *b, uint i) {
duke@435 633 int e = b->is_Empty();
duke@435 634 if (e != Block::not_empty) {
duke@435 635 if (e == Block::empty_with_goto) {
duke@435 636 // Remove the goto, but leave the block.
duke@435 637 b->_nodes.pop();
duke@435 638 }
duke@435 639 // Mark this block as a connector block, which will cause it to be
duke@435 640 // ignored in certain functions such as non_connector_successor().
duke@435 641 b->set_connector();
duke@435 642 }
duke@435 643 // Move the empty block to the end, and don't recheck.
duke@435 644 _blocks.remove(i);
duke@435 645 _blocks.push(b);
duke@435 646 }
duke@435 647
rasbold@853 648 //---------------------------set_loop_alignment--------------------------------
rasbold@853 649 // Set loop alignment for every block
rasbold@853 650 void PhaseCFG::set_loop_alignment() {
rasbold@853 651 uint last = _num_blocks;
rasbold@853 652 assert( _blocks[0] == _broot, "" );
rasbold@853 653
rasbold@853 654 for (uint i = 1; i < last; i++ ) {
rasbold@853 655 Block *b = _blocks[i];
rasbold@853 656 if (b->head()->is_Loop()) {
rasbold@853 657 b->set_loop_alignment(b);
rasbold@853 658 }
rasbold@853 659 }
rasbold@853 660 }
rasbold@853 661
rasbold@853 662 //-----------------------------remove_empty------------------------------------
rasbold@853 663 // Make empty basic blocks to be "connector" blocks, Move uncommon blocks
rasbold@853 664 // to the end.
rasbold@853 665 void PhaseCFG::remove_empty() {
duke@435 666 // Move uncommon blocks to the end
duke@435 667 uint last = _num_blocks;
duke@435 668 assert( _blocks[0] == _broot, "" );
rasbold@853 669
rasbold@853 670 for (uint i = 1; i < last; i++) {
duke@435 671 Block *b = _blocks[i];
rasbold@853 672 if (b->is_connector()) break;
duke@435 673
duke@435 674 // Check for NeverBranch at block end. This needs to become a GOTO to the
duke@435 675 // true target. NeverBranch are treated as a conditional branch that
duke@435 676 // always goes the same direction for most of the optimizer and are used
duke@435 677 // to give a fake exit path to infinite loops. At this late stage they
duke@435 678 // need to turn into Goto's so that when you enter the infinite loop you
duke@435 679 // indeed hang.
duke@435 680 if( b->_nodes[b->end_idx()]->Opcode() == Op_NeverBranch )
duke@435 681 convert_NeverBranch_to_Goto(b);
duke@435 682
duke@435 683 // Look for uncommon blocks and move to end.
rasbold@853 684 if (!C->do_freq_based_layout()) {
rasbold@853 685 if( b->is_uncommon(_bbs) ) {
rasbold@853 686 move_to_end(b, i);
rasbold@853 687 last--; // No longer check for being uncommon!
rasbold@853 688 if( no_flip_branch(b) ) { // Fall-thru case must follow?
rasbold@853 689 b = _blocks[i]; // Find the fall-thru block
rasbold@853 690 move_to_end(b, i);
rasbold@853 691 last--;
rasbold@853 692 }
rasbold@853 693 i--; // backup block counter post-increment
duke@435 694 }
duke@435 695 }
duke@435 696 }
duke@435 697
rasbold@853 698 // Move empty blocks to the end
duke@435 699 last = _num_blocks;
rasbold@853 700 for (uint i = 1; i < last; i++) {
duke@435 701 Block *b = _blocks[i];
rasbold@853 702 if (b->is_Empty() != Block::not_empty) {
rasbold@853 703 move_to_end(b, i);
rasbold@853 704 last--;
rasbold@853 705 i--;
duke@435 706 }
duke@435 707 } // End of for all blocks
rasbold@853 708 }
duke@435 709
rasbold@853 710 //-----------------------------fixup_flow--------------------------------------
rasbold@853 711 // Fix up the final control flow for basic blocks.
rasbold@853 712 void PhaseCFG::fixup_flow() {
duke@435 713 // Fixup final control flow for the blocks. Remove jump-to-next
duke@435 714 // block. If neither arm of a IF follows the conditional branch, we
duke@435 715 // have to add a second jump after the conditional. We place the
duke@435 716 // TRUE branch target in succs[0] for both GOTOs and IFs.
rasbold@853 717 for (uint i=0; i < _num_blocks; i++) {
duke@435 718 Block *b = _blocks[i];
duke@435 719 b->_pre_order = i; // turn pre-order into block-index
duke@435 720
duke@435 721 // Connector blocks need no further processing.
duke@435 722 if (b->is_connector()) {
duke@435 723 assert((i+1) == _num_blocks || _blocks[i+1]->is_connector(),
duke@435 724 "All connector blocks should sink to the end");
duke@435 725 continue;
duke@435 726 }
duke@435 727 assert(b->is_Empty() != Block::completely_empty,
duke@435 728 "Empty blocks should be connectors");
duke@435 729
duke@435 730 Block *bnext = (i < _num_blocks-1) ? _blocks[i+1] : NULL;
duke@435 731 Block *bs0 = b->non_connector_successor(0);
duke@435 732
duke@435 733 // Check for multi-way branches where I cannot negate the test to
duke@435 734 // exchange the true and false targets.
duke@435 735 if( no_flip_branch( b ) ) {
duke@435 736 // Find fall through case - if must fall into its target
duke@435 737 int branch_idx = b->_nodes.size() - b->_num_succs;
duke@435 738 for (uint j2 = 0; j2 < b->_num_succs; j2++) {
duke@435 739 const ProjNode* p = b->_nodes[branch_idx + j2]->as_Proj();
duke@435 740 if (p->_con == 0) {
duke@435 741 // successor j2 is fall through case
duke@435 742 if (b->non_connector_successor(j2) != bnext) {
duke@435 743 // but it is not the next block => insert a goto
duke@435 744 insert_goto_at(i, j2);
duke@435 745 }
duke@435 746 // Put taken branch in slot 0
duke@435 747 if( j2 == 0 && b->_num_succs == 2) {
duke@435 748 // Flip targets in succs map
duke@435 749 Block *tbs0 = b->_succs[0];
duke@435 750 Block *tbs1 = b->_succs[1];
duke@435 751 b->_succs.map( 0, tbs1 );
duke@435 752 b->_succs.map( 1, tbs0 );
duke@435 753 }
duke@435 754 break;
duke@435 755 }
duke@435 756 }
duke@435 757 // Remove all CatchProjs
rasbold@853 758 for (uint j1 = 0; j1 < b->_num_succs; j1++) b->_nodes.pop();
duke@435 759
duke@435 760 } else if (b->_num_succs == 1) {
duke@435 761 // Block ends in a Goto?
duke@435 762 if (bnext == bs0) {
duke@435 763 // We fall into next block; remove the Goto
duke@435 764 b->_nodes.pop();
duke@435 765 }
duke@435 766
duke@435 767 } else if( b->_num_succs == 2 ) { // Block ends in a If?
duke@435 768 // Get opcode of 1st projection (matches _succs[0])
duke@435 769 // Note: Since this basic block has 2 exits, the last 2 nodes must
duke@435 770 // be projections (in any order), the 3rd last node must be
duke@435 771 // the IfNode (we have excluded other 2-way exits such as
duke@435 772 // CatchNodes already).
duke@435 773 MachNode *iff = b->_nodes[b->_nodes.size()-3]->as_Mach();
duke@435 774 ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
duke@435 775 ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
duke@435 776
duke@435 777 // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
duke@435 778 assert(proj0->raw_out(0) == b->_succs[0]->head(), "Mismatch successor 0");
duke@435 779 assert(proj1->raw_out(0) == b->_succs[1]->head(), "Mismatch successor 1");
duke@435 780
duke@435 781 Block *bs1 = b->non_connector_successor(1);
duke@435 782
duke@435 783 // Check for neither successor block following the current
duke@435 784 // block ending in a conditional. If so, move one of the
duke@435 785 // successors after the current one, provided that the
duke@435 786 // successor was previously unscheduled, but moveable
duke@435 787 // (i.e., all paths to it involve a branch).
rasbold@853 788 if( !C->do_freq_based_layout() && bnext != bs0 && bnext != bs1 ) {
duke@435 789 // Choose the more common successor based on the probability
duke@435 790 // of the conditional branch.
duke@435 791 Block *bx = bs0;
duke@435 792 Block *by = bs1;
duke@435 793
duke@435 794 // _prob is the probability of taking the true path. Make
duke@435 795 // p the probability of taking successor #1.
duke@435 796 float p = iff->as_MachIf()->_prob;
duke@435 797 if( proj0->Opcode() == Op_IfTrue ) {
duke@435 798 p = 1.0 - p;
duke@435 799 }
duke@435 800
duke@435 801 // Prefer successor #1 if p > 0.5
duke@435 802 if (p > PROB_FAIR) {
duke@435 803 bx = bs1;
duke@435 804 by = bs0;
duke@435 805 }
duke@435 806
duke@435 807 // Attempt the more common successor first
rasbold@853 808 if (move_to_next(bx, i)) {
duke@435 809 bnext = bx;
rasbold@853 810 } else if (move_to_next(by, i)) {
duke@435 811 bnext = by;
duke@435 812 }
duke@435 813 }
duke@435 814
duke@435 815 // Check for conditional branching the wrong way. Negate
duke@435 816 // conditional, if needed, so it falls into the following block
duke@435 817 // and branches to the not-following block.
duke@435 818
duke@435 819 // Check for the next block being in succs[0]. We are going to branch
duke@435 820 // to succs[0], so we want the fall-thru case as the next block in
duke@435 821 // succs[1].
duke@435 822 if (bnext == bs0) {
duke@435 823 // Fall-thru case in succs[0], so flip targets in succs map
duke@435 824 Block *tbs0 = b->_succs[0];
duke@435 825 Block *tbs1 = b->_succs[1];
duke@435 826 b->_succs.map( 0, tbs1 );
duke@435 827 b->_succs.map( 1, tbs0 );
duke@435 828 // Flip projection for each target
duke@435 829 { ProjNode *tmp = proj0; proj0 = proj1; proj1 = tmp; }
duke@435 830
rasbold@853 831 } else if( bnext != bs1 ) {
rasbold@853 832 // Need a double-branch
duke@435 833 // The existing conditional branch need not change.
duke@435 834 // Add a unconditional branch to the false target.
duke@435 835 // Alas, it must appear in its own block and adding a
duke@435 836 // block this late in the game is complicated. Sigh.
duke@435 837 insert_goto_at(i, 1);
duke@435 838 }
duke@435 839
duke@435 840 // Make sure we TRUE branch to the target
rasbold@853 841 if( proj0->Opcode() == Op_IfFalse ) {
kvn@3051 842 iff->as_MachIf()->negate();
rasbold@853 843 }
duke@435 844
duke@435 845 b->_nodes.pop(); // Remove IfFalse & IfTrue projections
duke@435 846 b->_nodes.pop();
duke@435 847
duke@435 848 } else {
duke@435 849 // Multi-exit block, e.g. a switch statement
duke@435 850 // But we don't need to do anything here
duke@435 851 }
duke@435 852 } // End of for all blocks
duke@435 853 }
duke@435 854
duke@435 855
duke@435 856 //------------------------------dump-------------------------------------------
duke@435 857 #ifndef PRODUCT
duke@435 858 void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited ) const {
duke@435 859 const Node *x = end->is_block_proj();
duke@435 860 assert( x, "not a CFG" );
duke@435 861
duke@435 862 // Do not visit this block again
duke@435 863 if( visited.test_set(x->_idx) ) return;
duke@435 864
duke@435 865 // Skip through this block
duke@435 866 const Node *p = x;
duke@435 867 do {
duke@435 868 p = p->in(0); // Move control forward
duke@435 869 assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
duke@435 870 } while( !p->is_block_start() );
duke@435 871
duke@435 872 // Recursively visit
duke@435 873 for( uint i=1; i<p->req(); i++ )
duke@435 874 _dump_cfg(p->in(i),visited);
duke@435 875
duke@435 876 // Dump the block
duke@435 877 _bbs[p->_idx]->dump(&_bbs);
duke@435 878 }
duke@435 879
duke@435 880 void PhaseCFG::dump( ) const {
duke@435 881 tty->print("\n--- CFG --- %d BBs\n",_num_blocks);
duke@435 882 if( _blocks.size() ) { // Did we do basic-block layout?
duke@435 883 for( uint i=0; i<_num_blocks; i++ )
duke@435 884 _blocks[i]->dump(&_bbs);
duke@435 885 } else { // Else do it with a DFS
duke@435 886 VectorSet visited(_bbs._arena);
duke@435 887 _dump_cfg(_root,visited);
duke@435 888 }
duke@435 889 }
duke@435 890
duke@435 891 void PhaseCFG::dump_headers() {
duke@435 892 for( uint i = 0; i < _num_blocks; i++ ) {
duke@435 893 if( _blocks[i] == NULL ) continue;
duke@435 894 _blocks[i]->dump_head(&_bbs);
duke@435 895 }
duke@435 896 }
duke@435 897
duke@435 898 void PhaseCFG::verify( ) const {
kvn@1001 899 #ifdef ASSERT
duke@435 900 // Verify sane CFG
kvn@3311 901 for (uint i = 0; i < _num_blocks; i++) {
duke@435 902 Block *b = _blocks[i];
duke@435 903 uint cnt = b->_nodes.size();
duke@435 904 uint j;
kvn@3311 905 for (j = 0; j < cnt; j++) {
duke@435 906 Node *n = b->_nodes[j];
duke@435 907 assert( _bbs[n->_idx] == b, "" );
kvn@3311 908 if (j >= 1 && n->is_Mach() &&
kvn@3311 909 n->as_Mach()->ideal_Opcode() == Op_CreateEx) {
kvn@3311 910 assert(j == 1 || b->_nodes[j-1]->is_Phi(),
kvn@3311 911 "CreateEx must be first instruction in block");
duke@435 912 }
kvn@3311 913 for (uint k = 0; k < n->req(); k++) {
kvn@1001 914 Node *def = n->in(k);
kvn@3311 915 if (def && def != n) {
kvn@3311 916 assert(_bbs[def->_idx] || def->is_Con(),
kvn@3311 917 "must have block; constants for debug info ok");
kvn@1001 918 // Verify that instructions in the block is in correct order.
kvn@1001 919 // Uses must follow their definition if they are at the same block.
kvn@1001 920 // Mostly done to check that MachSpillCopy nodes are placed correctly
kvn@1001 921 // when CreateEx node is moved in build_ifg_physical().
kvn@3311 922 if (_bbs[def->_idx] == b &&
kvn@1001 923 !(b->head()->is_Loop() && n->is_Phi()) &&
kvn@1001 924 // See (+++) comment in reg_split.cpp
kvn@3311 925 !(n->jvms() != NULL && n->jvms()->is_monitor_use(k))) {
kvn@1328 926 bool is_loop = false;
kvn@1328 927 if (n->is_Phi()) {
kvn@3311 928 for (uint l = 1; l < def->req(); l++) {
kvn@1328 929 if (n == def->in(l)) {
kvn@1328 930 is_loop = true;
kvn@1328 931 break; // Some kind of loop
kvn@1328 932 }
kvn@1328 933 }
kvn@1328 934 }
kvn@3311 935 assert(is_loop || b->find_node(def) < j, "uses must follow definitions");
kvn@1036 936 }
duke@435 937 }
duke@435 938 }
duke@435 939 }
duke@435 940
duke@435 941 j = b->end_idx();
duke@435 942 Node *bp = (Node*)b->_nodes[b->_nodes.size()-1]->is_block_proj();
duke@435 943 assert( bp, "last instruction must be a block proj" );
duke@435 944 assert( bp == b->_nodes[j], "wrong number of successors for this block" );
kvn@3311 945 if (bp->is_Catch()) {
kvn@3311 946 while (b->_nodes[--j]->is_MachProj()) ;
kvn@3311 947 assert(b->_nodes[j]->is_MachCall(), "CatchProj must follow call");
kvn@3311 948 } else if (bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If) {
kvn@3311 949 assert(b->_num_succs == 2, "Conditional branch must have two targets");
duke@435 950 }
duke@435 951 }
kvn@1001 952 #endif
duke@435 953 }
duke@435 954 #endif
duke@435 955
duke@435 956 //=============================================================================
duke@435 957 //------------------------------UnionFind--------------------------------------
duke@435 958 UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
duke@435 959 Copy::zero_to_bytes( _indices, sizeof(uint)*max );
duke@435 960 }
duke@435 961
duke@435 962 void UnionFind::extend( uint from_idx, uint to_idx ) {
duke@435 963 _nesting.check();
duke@435 964 if( from_idx >= _max ) {
duke@435 965 uint size = 16;
duke@435 966 while( size <= from_idx ) size <<=1;
duke@435 967 _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
duke@435 968 _max = size;
duke@435 969 }
duke@435 970 while( _cnt <= from_idx ) _indices[_cnt++] = 0;
duke@435 971 _indices[from_idx] = to_idx;
duke@435 972 }
duke@435 973
duke@435 974 void UnionFind::reset( uint max ) {
duke@435 975 assert( max <= max_uint, "Must fit within uint" );
duke@435 976 // Force the Union-Find mapping to be at least this large
duke@435 977 extend(max,0);
duke@435 978 // Initialize to be the ID mapping.
rasbold@853 979 for( uint i=0; i<max; i++ ) map(i,i);
duke@435 980 }
duke@435 981
duke@435 982 //------------------------------Find_compress----------------------------------
duke@435 983 // Straight out of Tarjan's union-find algorithm
duke@435 984 uint UnionFind::Find_compress( uint idx ) {
duke@435 985 uint cur = idx;
duke@435 986 uint next = lookup(cur);
duke@435 987 while( next != cur ) { // Scan chain of equivalences
duke@435 988 assert( next < cur, "always union smaller" );
duke@435 989 cur = next; // until find a fixed-point
duke@435 990 next = lookup(cur);
duke@435 991 }
duke@435 992 // Core of union-find algorithm: update chain of
duke@435 993 // equivalences to be equal to the root.
duke@435 994 while( idx != next ) {
duke@435 995 uint tmp = lookup(idx);
duke@435 996 map(idx, next);
duke@435 997 idx = tmp;
duke@435 998 }
duke@435 999 return idx;
duke@435 1000 }
duke@435 1001
duke@435 1002 //------------------------------Find_const-------------------------------------
duke@435 1003 // Like Find above, but no path compress, so bad asymptotic behavior
duke@435 1004 uint UnionFind::Find_const( uint idx ) const {
duke@435 1005 if( idx == 0 ) return idx; // Ignore the zero idx
duke@435 1006 // Off the end? This can happen during debugging dumps
duke@435 1007 // when data structures have not finished being updated.
duke@435 1008 if( idx >= _max ) return idx;
duke@435 1009 uint next = lookup(idx);
duke@435 1010 while( next != idx ) { // Scan chain of equivalences
duke@435 1011 idx = next; // until find a fixed-point
duke@435 1012 next = lookup(idx);
duke@435 1013 }
duke@435 1014 return next;
duke@435 1015 }
duke@435 1016
duke@435 1017 //------------------------------Union------------------------------------------
duke@435 1018 // union 2 sets together.
duke@435 1019 void UnionFind::Union( uint idx1, uint idx2 ) {
duke@435 1020 uint src = Find(idx1);
duke@435 1021 uint dst = Find(idx2);
duke@435 1022 assert( src, "" );
duke@435 1023 assert( dst, "" );
duke@435 1024 assert( src < _max, "oob" );
duke@435 1025 assert( dst < _max, "oob" );
duke@435 1026 assert( src < dst, "always union smaller" );
duke@435 1027 map(dst,src);
duke@435 1028 }
rasbold@853 1029
rasbold@853 1030 #ifndef PRODUCT
rasbold@853 1031 void Trace::dump( ) const {
rasbold@853 1032 tty->print_cr("Trace (freq %f)", first_block()->_freq);
rasbold@853 1033 for (Block *b = first_block(); b != NULL; b = next(b)) {
rasbold@853 1034 tty->print(" B%d", b->_pre_order);
rasbold@853 1035 if (b->head()->is_Loop()) {
rasbold@853 1036 tty->print(" (L%d)", b->compute_loop_alignment());
rasbold@853 1037 }
rasbold@853 1038 if (b->has_loop_alignment()) {
rasbold@853 1039 tty->print(" (T%d)", b->code_alignment());
rasbold@853 1040 }
rasbold@853 1041 }
rasbold@853 1042 tty->cr();
rasbold@853 1043 }
rasbold@853 1044
rasbold@853 1045 void CFGEdge::dump( ) const {
rasbold@853 1046 tty->print(" B%d --> B%d Freq: %f out:%3d%% in:%3d%% State: ",
rasbold@853 1047 from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
rasbold@853 1048 switch(state()) {
rasbold@853 1049 case connected:
rasbold@853 1050 tty->print("connected");
rasbold@853 1051 break;
rasbold@853 1052 case open:
rasbold@853 1053 tty->print("open");
rasbold@853 1054 break;
rasbold@853 1055 case interior:
rasbold@853 1056 tty->print("interior");
rasbold@853 1057 break;
rasbold@853 1058 }
rasbold@853 1059 if (infrequent()) {
rasbold@853 1060 tty->print(" infrequent");
rasbold@853 1061 }
rasbold@853 1062 tty->cr();
rasbold@853 1063 }
rasbold@853 1064 #endif
rasbold@853 1065
rasbold@853 1066 //=============================================================================
rasbold@853 1067
rasbold@853 1068 //------------------------------edge_order-------------------------------------
rasbold@853 1069 // Comparison function for edges
rasbold@853 1070 static int edge_order(CFGEdge **e0, CFGEdge **e1) {
rasbold@853 1071 float freq0 = (*e0)->freq();
rasbold@853 1072 float freq1 = (*e1)->freq();
rasbold@853 1073 if (freq0 != freq1) {
rasbold@853 1074 return freq0 > freq1 ? -1 : 1;
rasbold@853 1075 }
rasbold@853 1076
rasbold@853 1077 int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
rasbold@853 1078 int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
rasbold@853 1079
rasbold@853 1080 return dist1 - dist0;
rasbold@853 1081 }
rasbold@853 1082
rasbold@853 1083 //------------------------------trace_frequency_order--------------------------
rasbold@853 1084 // Comparison function for edges
kvn@3128 1085 extern "C" int trace_frequency_order(const void *p0, const void *p1) {
rasbold@853 1086 Trace *tr0 = *(Trace **) p0;
rasbold@853 1087 Trace *tr1 = *(Trace **) p1;
rasbold@853 1088 Block *b0 = tr0->first_block();
rasbold@853 1089 Block *b1 = tr1->first_block();
rasbold@853 1090
rasbold@853 1091 // The trace of connector blocks goes at the end;
rasbold@853 1092 // we only expect one such trace
rasbold@853 1093 if (b0->is_connector() != b1->is_connector()) {
rasbold@853 1094 return b1->is_connector() ? -1 : 1;
rasbold@853 1095 }
rasbold@853 1096
rasbold@853 1097 // Pull more frequently executed blocks to the beginning
rasbold@853 1098 float freq0 = b0->_freq;
rasbold@853 1099 float freq1 = b1->_freq;
rasbold@853 1100 if (freq0 != freq1) {
rasbold@853 1101 return freq0 > freq1 ? -1 : 1;
rasbold@853 1102 }
rasbold@853 1103
rasbold@853 1104 int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
rasbold@853 1105
rasbold@853 1106 return diff;
rasbold@853 1107 }
rasbold@853 1108
rasbold@853 1109 //------------------------------find_edges-------------------------------------
rasbold@853 1110 // Find edges of interest, i.e, those which can fall through. Presumes that
rasbold@853 1111 // edges which don't fall through are of low frequency and can be generally
rasbold@853 1112 // ignored. Initialize the list of traces.
rasbold@853 1113 void PhaseBlockLayout::find_edges()
rasbold@853 1114 {
rasbold@853 1115 // Walk the blocks, creating edges and Traces
rasbold@853 1116 uint i;
rasbold@853 1117 Trace *tr = NULL;
rasbold@853 1118 for (i = 0; i < _cfg._num_blocks; i++) {
rasbold@853 1119 Block *b = _cfg._blocks[i];
rasbold@853 1120 tr = new Trace(b, next, prev);
rasbold@853 1121 traces[tr->id()] = tr;
rasbold@853 1122
rasbold@853 1123 // All connector blocks should be at the end of the list
rasbold@853 1124 if (b->is_connector()) break;
rasbold@853 1125
rasbold@853 1126 // If this block and the next one have a one-to-one successor
rasbold@853 1127 // predecessor relationship, simply append the next block
rasbold@853 1128 int nfallthru = b->num_fall_throughs();
rasbold@853 1129 while (nfallthru == 1 &&
rasbold@853 1130 b->succ_fall_through(0)) {
rasbold@853 1131 Block *n = b->_succs[0];
rasbold@853 1132
rasbold@853 1133 // Skip over single-entry connector blocks, we don't want to
rasbold@853 1134 // add them to the trace.
rasbold@853 1135 while (n->is_connector() && n->num_preds() == 1) {
rasbold@853 1136 n = n->_succs[0];
rasbold@853 1137 }
rasbold@853 1138
rasbold@853 1139 // We see a merge point, so stop search for the next block
rasbold@853 1140 if (n->num_preds() != 1) break;
rasbold@853 1141
rasbold@853 1142 i++;
rasbold@853 1143 assert(n = _cfg._blocks[i], "expecting next block");
rasbold@853 1144 tr->append(n);
rasbold@853 1145 uf->map(n->_pre_order, tr->id());
rasbold@853 1146 traces[n->_pre_order] = NULL;
rasbold@853 1147 nfallthru = b->num_fall_throughs();
rasbold@853 1148 b = n;
rasbold@853 1149 }
rasbold@853 1150
rasbold@853 1151 if (nfallthru > 0) {
rasbold@853 1152 // Create a CFGEdge for each outgoing
rasbold@853 1153 // edge that could be a fall-through.
rasbold@853 1154 for (uint j = 0; j < b->_num_succs; j++ ) {
rasbold@853 1155 if (b->succ_fall_through(j)) {
rasbold@853 1156 Block *target = b->non_connector_successor(j);
rasbold@853 1157 float freq = b->_freq * b->succ_prob(j);
rasbold@853 1158 int from_pct = (int) ((100 * freq) / b->_freq);
rasbold@853 1159 int to_pct = (int) ((100 * freq) / target->_freq);
rasbold@853 1160 edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
rasbold@853 1161 }
rasbold@853 1162 }
rasbold@853 1163 }
rasbold@853 1164 }
rasbold@853 1165
rasbold@853 1166 // Group connector blocks into one trace
rasbold@853 1167 for (i++; i < _cfg._num_blocks; i++) {
rasbold@853 1168 Block *b = _cfg._blocks[i];
rasbold@853 1169 assert(b->is_connector(), "connector blocks at the end");
rasbold@853 1170 tr->append(b);
rasbold@853 1171 uf->map(b->_pre_order, tr->id());
rasbold@853 1172 traces[b->_pre_order] = NULL;
rasbold@853 1173 }
rasbold@853 1174 }
rasbold@853 1175
rasbold@853 1176 //------------------------------union_traces----------------------------------
rasbold@853 1177 // Union two traces together in uf, and null out the trace in the list
rasbold@853 1178 void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace)
rasbold@853 1179 {
rasbold@853 1180 uint old_id = old_trace->id();
rasbold@853 1181 uint updated_id = updated_trace->id();
rasbold@853 1182
rasbold@853 1183 uint lo_id = updated_id;
rasbold@853 1184 uint hi_id = old_id;
rasbold@853 1185
rasbold@853 1186 // If from is greater than to, swap values to meet
rasbold@853 1187 // UnionFind guarantee.
rasbold@853 1188 if (updated_id > old_id) {
rasbold@853 1189 lo_id = old_id;
rasbold@853 1190 hi_id = updated_id;
rasbold@853 1191
rasbold@853 1192 // Fix up the trace ids
rasbold@853 1193 traces[lo_id] = traces[updated_id];
rasbold@853 1194 updated_trace->set_id(lo_id);
rasbold@853 1195 }
rasbold@853 1196
rasbold@853 1197 // Union the lower with the higher and remove the pointer
rasbold@853 1198 // to the higher.
rasbold@853 1199 uf->Union(lo_id, hi_id);
rasbold@853 1200 traces[hi_id] = NULL;
rasbold@853 1201 }
rasbold@853 1202
rasbold@853 1203 //------------------------------grow_traces-------------------------------------
rasbold@853 1204 // Append traces together via the most frequently executed edges
rasbold@853 1205 void PhaseBlockLayout::grow_traces()
rasbold@853 1206 {
rasbold@853 1207 // Order the edges, and drive the growth of Traces via the most
rasbold@853 1208 // frequently executed edges.
rasbold@853 1209 edges->sort(edge_order);
rasbold@853 1210 for (int i = 0; i < edges->length(); i++) {
rasbold@853 1211 CFGEdge *e = edges->at(i);
rasbold@853 1212
rasbold@853 1213 if (e->state() != CFGEdge::open) continue;
rasbold@853 1214
rasbold@853 1215 Block *src_block = e->from();
rasbold@853 1216 Block *targ_block = e->to();
rasbold@853 1217
rasbold@853 1218 // Don't grow traces along backedges?
rasbold@853 1219 if (!BlockLayoutRotateLoops) {
rasbold@853 1220 if (targ_block->_rpo <= src_block->_rpo) {
rasbold@853 1221 targ_block->set_loop_alignment(targ_block);
rasbold@853 1222 continue;
rasbold@853 1223 }
rasbold@853 1224 }
rasbold@853 1225
rasbold@853 1226 Trace *src_trace = trace(src_block);
rasbold@853 1227 Trace *targ_trace = trace(targ_block);
rasbold@853 1228
rasbold@853 1229 // If the edge in question can join two traces at their ends,
rasbold@853 1230 // append one trace to the other.
rasbold@853 1231 if (src_trace->last_block() == src_block) {
rasbold@853 1232 if (src_trace == targ_trace) {
rasbold@853 1233 e->set_state(CFGEdge::interior);
rasbold@853 1234 if (targ_trace->backedge(e)) {
rasbold@853 1235 // Reset i to catch any newly eligible edge
rasbold@853 1236 // (Or we could remember the first "open" edge, and reset there)
rasbold@853 1237 i = 0;
rasbold@853 1238 }
rasbold@853 1239 } else if (targ_trace->first_block() == targ_block) {
rasbold@853 1240 e->set_state(CFGEdge::connected);
rasbold@853 1241 src_trace->append(targ_trace);
rasbold@853 1242 union_traces(src_trace, targ_trace);
rasbold@853 1243 }
rasbold@853 1244 }
rasbold@853 1245 }
rasbold@853 1246 }
rasbold@853 1247
rasbold@853 1248 //------------------------------merge_traces-----------------------------------
rasbold@853 1249 // Embed one trace into another, if the fork or join points are sufficiently
rasbold@853 1250 // balanced.
rasbold@853 1251 void PhaseBlockLayout::merge_traces(bool fall_thru_only)
rasbold@853 1252 {
rasbold@853 1253 // Walk the edge list a another time, looking at unprocessed edges.
rasbold@853 1254 // Fold in diamonds
rasbold@853 1255 for (int i = 0; i < edges->length(); i++) {
rasbold@853 1256 CFGEdge *e = edges->at(i);
rasbold@853 1257
rasbold@853 1258 if (e->state() != CFGEdge::open) continue;
rasbold@853 1259 if (fall_thru_only) {
rasbold@853 1260 if (e->infrequent()) continue;
rasbold@853 1261 }
rasbold@853 1262
rasbold@853 1263 Block *src_block = e->from();
rasbold@853 1264 Trace *src_trace = trace(src_block);
rasbold@853 1265 bool src_at_tail = src_trace->last_block() == src_block;
rasbold@853 1266
rasbold@853 1267 Block *targ_block = e->to();
rasbold@853 1268 Trace *targ_trace = trace(targ_block);
rasbold@853 1269 bool targ_at_start = targ_trace->first_block() == targ_block;
rasbold@853 1270
rasbold@853 1271 if (src_trace == targ_trace) {
rasbold@853 1272 // This may be a loop, but we can't do much about it.
rasbold@853 1273 e->set_state(CFGEdge::interior);
rasbold@853 1274 continue;
rasbold@853 1275 }
rasbold@853 1276
rasbold@853 1277 if (fall_thru_only) {
rasbold@853 1278 // If the edge links the middle of two traces, we can't do anything.
rasbold@853 1279 // Mark the edge and continue.
rasbold@853 1280 if (!src_at_tail & !targ_at_start) {
rasbold@853 1281 continue;
rasbold@853 1282 }
rasbold@853 1283
rasbold@853 1284 // Don't grow traces along backedges?
rasbold@853 1285 if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
rasbold@853 1286 continue;
rasbold@853 1287 }
rasbold@853 1288
rasbold@853 1289 // If both ends of the edge are available, why didn't we handle it earlier?
rasbold@853 1290 assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
rasbold@853 1291
rasbold@853 1292 if (targ_at_start) {
rasbold@853 1293 // Insert the "targ" trace in the "src" trace if the insertion point
rasbold@853 1294 // is a two way branch.
rasbold@853 1295 // Better profitability check possible, but may not be worth it.
rasbold@853 1296 // Someday, see if the this "fork" has an associated "join";
rasbold@853 1297 // then make a policy on merging this trace at the fork or join.
rasbold@853 1298 // For example, other things being equal, it may be better to place this
rasbold@853 1299 // trace at the join point if the "src" trace ends in a two-way, but
rasbold@853 1300 // the insertion point is one-way.
rasbold@853 1301 assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
rasbold@853 1302 e->set_state(CFGEdge::connected);
rasbold@853 1303 src_trace->insert_after(src_block, targ_trace);
rasbold@853 1304 union_traces(src_trace, targ_trace);
rasbold@853 1305 } else if (src_at_tail) {
rasbold@853 1306 if (src_trace != trace(_cfg._broot)) {
rasbold@853 1307 e->set_state(CFGEdge::connected);
rasbold@853 1308 targ_trace->insert_before(targ_block, src_trace);
rasbold@853 1309 union_traces(targ_trace, src_trace);
rasbold@853 1310 }
rasbold@853 1311 }
rasbold@853 1312 } else if (e->state() == CFGEdge::open) {
rasbold@853 1313 // Append traces, even without a fall-thru connection.
twisti@1040 1314 // But leave root entry at the beginning of the block list.
rasbold@853 1315 if (targ_trace != trace(_cfg._broot)) {
rasbold@853 1316 e->set_state(CFGEdge::connected);
rasbold@853 1317 src_trace->append(targ_trace);
rasbold@853 1318 union_traces(src_trace, targ_trace);
rasbold@853 1319 }
rasbold@853 1320 }
rasbold@853 1321 }
rasbold@853 1322 }
rasbold@853 1323
rasbold@853 1324 //----------------------------reorder_traces-----------------------------------
rasbold@853 1325 // Order the sequence of the traces in some desirable way, and fixup the
rasbold@853 1326 // jumps at the end of each block.
rasbold@853 1327 void PhaseBlockLayout::reorder_traces(int count)
rasbold@853 1328 {
rasbold@853 1329 ResourceArea *area = Thread::current()->resource_area();
rasbold@853 1330 Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
rasbold@853 1331 Block_List worklist;
rasbold@853 1332 int new_count = 0;
rasbold@853 1333
rasbold@853 1334 // Compact the traces.
rasbold@853 1335 for (int i = 0; i < count; i++) {
rasbold@853 1336 Trace *tr = traces[i];
rasbold@853 1337 if (tr != NULL) {
rasbold@853 1338 new_traces[new_count++] = tr;
rasbold@853 1339 }
rasbold@853 1340 }
rasbold@853 1341
rasbold@853 1342 // The entry block should be first on the new trace list.
rasbold@853 1343 Trace *tr = trace(_cfg._broot);
rasbold@853 1344 assert(tr == new_traces[0], "entry trace misplaced");
rasbold@853 1345
rasbold@853 1346 // Sort the new trace list by frequency
rasbold@853 1347 qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
rasbold@853 1348
rasbold@853 1349 // Patch up the successor blocks
rasbold@853 1350 _cfg._blocks.reset();
rasbold@853 1351 _cfg._num_blocks = 0;
rasbold@853 1352 for (int i = 0; i < new_count; i++) {
rasbold@853 1353 Trace *tr = new_traces[i];
rasbold@853 1354 if (tr != NULL) {
rasbold@853 1355 tr->fixup_blocks(_cfg);
rasbold@853 1356 }
rasbold@853 1357 }
rasbold@853 1358 }
rasbold@853 1359
rasbold@853 1360 //------------------------------PhaseBlockLayout-------------------------------
rasbold@853 1361 // Order basic blocks based on frequency
rasbold@853 1362 PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg) :
rasbold@853 1363 Phase(BlockLayout),
rasbold@853 1364 _cfg(cfg)
rasbold@853 1365 {
rasbold@853 1366 ResourceMark rm;
rasbold@853 1367 ResourceArea *area = Thread::current()->resource_area();
rasbold@853 1368
rasbold@853 1369 // List of traces
rasbold@853 1370 int size = _cfg._num_blocks + 1;
rasbold@853 1371 traces = NEW_ARENA_ARRAY(area, Trace *, size);
rasbold@853 1372 memset(traces, 0, size*sizeof(Trace*));
rasbold@853 1373 next = NEW_ARENA_ARRAY(area, Block *, size);
rasbold@853 1374 memset(next, 0, size*sizeof(Block *));
rasbold@853 1375 prev = NEW_ARENA_ARRAY(area, Block *, size);
rasbold@853 1376 memset(prev , 0, size*sizeof(Block *));
rasbold@853 1377
rasbold@853 1378 // List of edges
rasbold@853 1379 edges = new GrowableArray<CFGEdge*>;
rasbold@853 1380
rasbold@853 1381 // Mapping block index --> block_trace
rasbold@853 1382 uf = new UnionFind(size);
rasbold@853 1383 uf->reset(size);
rasbold@853 1384
rasbold@853 1385 // Find edges and create traces.
rasbold@853 1386 find_edges();
rasbold@853 1387
rasbold@853 1388 // Grow traces at their ends via most frequent edges.
rasbold@853 1389 grow_traces();
rasbold@853 1390
rasbold@853 1391 // Merge one trace into another, but only at fall-through points.
rasbold@853 1392 // This may make diamonds and other related shapes in a trace.
rasbold@853 1393 merge_traces(true);
rasbold@853 1394
rasbold@853 1395 // Run merge again, allowing two traces to be catenated, even if
rasbold@853 1396 // one does not fall through into the other. This appends loosely
rasbold@853 1397 // related traces to be near each other.
rasbold@853 1398 merge_traces(false);
rasbold@853 1399
rasbold@853 1400 // Re-order all the remaining traces by frequency
rasbold@853 1401 reorder_traces(size);
rasbold@853 1402
rasbold@853 1403 assert(_cfg._num_blocks >= (uint) (size - 1), "number of blocks can not shrink");
rasbold@853 1404 }
rasbold@853 1405
rasbold@853 1406
rasbold@853 1407 //------------------------------backedge---------------------------------------
rasbold@853 1408 // Edge e completes a loop in a trace. If the target block is head of the
rasbold@853 1409 // loop, rotate the loop block so that the loop ends in a conditional branch.
rasbold@853 1410 bool Trace::backedge(CFGEdge *e) {
rasbold@853 1411 bool loop_rotated = false;
rasbold@853 1412 Block *src_block = e->from();
rasbold@853 1413 Block *targ_block = e->to();
rasbold@853 1414
rasbold@853 1415 assert(last_block() == src_block, "loop discovery at back branch");
rasbold@853 1416 if (first_block() == targ_block) {
rasbold@853 1417 if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
rasbold@853 1418 // Find the last block in the trace that has a conditional
rasbold@853 1419 // branch.
rasbold@853 1420 Block *b;
rasbold@853 1421 for (b = last_block(); b != NULL; b = prev(b)) {
rasbold@853 1422 if (b->num_fall_throughs() == 2) {
rasbold@853 1423 break;
rasbold@853 1424 }
rasbold@853 1425 }
rasbold@853 1426
rasbold@853 1427 if (b != last_block() && b != NULL) {
rasbold@853 1428 loop_rotated = true;
rasbold@853 1429
rasbold@853 1430 // Rotate the loop by doing two-part linked-list surgery.
rasbold@853 1431 append(first_block());
rasbold@853 1432 break_loop_after(b);
rasbold@853 1433 }
rasbold@853 1434 }
rasbold@853 1435
rasbold@853 1436 // Backbranch to the top of a trace
twisti@1040 1437 // Scroll forward through the trace from the targ_block. If we find
rasbold@853 1438 // a loop head before another loop top, use the the loop head alignment.
rasbold@853 1439 for (Block *b = targ_block; b != NULL; b = next(b)) {
rasbold@853 1440 if (b->has_loop_alignment()) {
rasbold@853 1441 break;
rasbold@853 1442 }
rasbold@853 1443 if (b->head()->is_Loop()) {
rasbold@853 1444 targ_block = b;
rasbold@853 1445 break;
rasbold@853 1446 }
rasbold@853 1447 }
rasbold@853 1448
rasbold@853 1449 first_block()->set_loop_alignment(targ_block);
rasbold@853 1450
rasbold@853 1451 } else {
rasbold@853 1452 // Backbranch into the middle of a trace
rasbold@853 1453 targ_block->set_loop_alignment(targ_block);
rasbold@853 1454 }
rasbold@853 1455
rasbold@853 1456 return loop_rotated;
rasbold@853 1457 }
rasbold@853 1458
rasbold@853 1459 //------------------------------fixup_blocks-----------------------------------
rasbold@853 1460 // push blocks onto the CFG list
rasbold@853 1461 // ensure that blocks have the correct two-way branch sense
rasbold@853 1462 void Trace::fixup_blocks(PhaseCFG &cfg) {
rasbold@853 1463 Block *last = last_block();
rasbold@853 1464 for (Block *b = first_block(); b != NULL; b = next(b)) {
rasbold@853 1465 cfg._blocks.push(b);
rasbold@853 1466 cfg._num_blocks++;
rasbold@853 1467 if (!b->is_connector()) {
rasbold@853 1468 int nfallthru = b->num_fall_throughs();
rasbold@853 1469 if (b != last) {
rasbold@853 1470 if (nfallthru == 2) {
rasbold@853 1471 // Ensure that the sense of the branch is correct
rasbold@853 1472 Block *bnext = next(b);
rasbold@853 1473 Block *bs0 = b->non_connector_successor(0);
rasbold@853 1474
rasbold@853 1475 MachNode *iff = b->_nodes[b->_nodes.size()-3]->as_Mach();
rasbold@853 1476 ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
rasbold@853 1477 ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
rasbold@853 1478
rasbold@853 1479 if (bnext == bs0) {
rasbold@853 1480 // Fall-thru case in succs[0], should be in succs[1]
rasbold@853 1481
rasbold@853 1482 // Flip targets in _succs map
rasbold@853 1483 Block *tbs0 = b->_succs[0];
rasbold@853 1484 Block *tbs1 = b->_succs[1];
rasbold@853 1485 b->_succs.map( 0, tbs1 );
rasbold@853 1486 b->_succs.map( 1, tbs0 );
rasbold@853 1487
rasbold@853 1488 // Flip projections to match targets
rasbold@853 1489 b->_nodes.map(b->_nodes.size()-2, proj1);
rasbold@853 1490 b->_nodes.map(b->_nodes.size()-1, proj0);
rasbold@853 1491 }
rasbold@853 1492 }
rasbold@853 1493 }
rasbold@853 1494 }
rasbold@853 1495 }
rasbold@853 1496 }

mercurial