src/share/vm/runtime/sharedRuntime.cpp

Fri, 20 Mar 2009 23:19:36 -0700

author
jrose
date
Fri, 20 Mar 2009 23:19:36 -0700
changeset 1100
c89f86385056
parent 1063
7bb995fbd3c0
child 1145
e5b0439ef4ae
permissions
-rw-r--r--

6814659: separable cleanups and subroutines for 6655638
Summary: preparatory but separable changes for method handles
Reviewed-by: kvn, never

duke@435 1 /*
xdono@1014 2 * Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_sharedRuntime.cpp.incl"
duke@435 27 #include <math.h>
duke@435 28
duke@435 29 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
duke@435 30 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
duke@435 31 char*, int, char*, int, char*, int);
duke@435 32 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
duke@435 33 char*, int, char*, int, char*, int);
duke@435 34
duke@435 35 // Implementation of SharedRuntime
duke@435 36
duke@435 37 #ifndef PRODUCT
duke@435 38 // For statistics
duke@435 39 int SharedRuntime::_ic_miss_ctr = 0;
duke@435 40 int SharedRuntime::_wrong_method_ctr = 0;
duke@435 41 int SharedRuntime::_resolve_static_ctr = 0;
duke@435 42 int SharedRuntime::_resolve_virtual_ctr = 0;
duke@435 43 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
duke@435 44 int SharedRuntime::_implicit_null_throws = 0;
duke@435 45 int SharedRuntime::_implicit_div0_throws = 0;
duke@435 46 int SharedRuntime::_throw_null_ctr = 0;
duke@435 47
duke@435 48 int SharedRuntime::_nof_normal_calls = 0;
duke@435 49 int SharedRuntime::_nof_optimized_calls = 0;
duke@435 50 int SharedRuntime::_nof_inlined_calls = 0;
duke@435 51 int SharedRuntime::_nof_megamorphic_calls = 0;
duke@435 52 int SharedRuntime::_nof_static_calls = 0;
duke@435 53 int SharedRuntime::_nof_inlined_static_calls = 0;
duke@435 54 int SharedRuntime::_nof_interface_calls = 0;
duke@435 55 int SharedRuntime::_nof_optimized_interface_calls = 0;
duke@435 56 int SharedRuntime::_nof_inlined_interface_calls = 0;
duke@435 57 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
duke@435 58 int SharedRuntime::_nof_removable_exceptions = 0;
duke@435 59
duke@435 60 int SharedRuntime::_new_instance_ctr=0;
duke@435 61 int SharedRuntime::_new_array_ctr=0;
duke@435 62 int SharedRuntime::_multi1_ctr=0;
duke@435 63 int SharedRuntime::_multi2_ctr=0;
duke@435 64 int SharedRuntime::_multi3_ctr=0;
duke@435 65 int SharedRuntime::_multi4_ctr=0;
duke@435 66 int SharedRuntime::_multi5_ctr=0;
duke@435 67 int SharedRuntime::_mon_enter_stub_ctr=0;
duke@435 68 int SharedRuntime::_mon_exit_stub_ctr=0;
duke@435 69 int SharedRuntime::_mon_enter_ctr=0;
duke@435 70 int SharedRuntime::_mon_exit_ctr=0;
duke@435 71 int SharedRuntime::_partial_subtype_ctr=0;
duke@435 72 int SharedRuntime::_jbyte_array_copy_ctr=0;
duke@435 73 int SharedRuntime::_jshort_array_copy_ctr=0;
duke@435 74 int SharedRuntime::_jint_array_copy_ctr=0;
duke@435 75 int SharedRuntime::_jlong_array_copy_ctr=0;
duke@435 76 int SharedRuntime::_oop_array_copy_ctr=0;
duke@435 77 int SharedRuntime::_checkcast_array_copy_ctr=0;
duke@435 78 int SharedRuntime::_unsafe_array_copy_ctr=0;
duke@435 79 int SharedRuntime::_generic_array_copy_ctr=0;
duke@435 80 int SharedRuntime::_slow_array_copy_ctr=0;
duke@435 81 int SharedRuntime::_find_handler_ctr=0;
duke@435 82 int SharedRuntime::_rethrow_ctr=0;
duke@435 83
duke@435 84 int SharedRuntime::_ICmiss_index = 0;
duke@435 85 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
duke@435 86 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
duke@435 87
duke@435 88 void SharedRuntime::trace_ic_miss(address at) {
duke@435 89 for (int i = 0; i < _ICmiss_index; i++) {
duke@435 90 if (_ICmiss_at[i] == at) {
duke@435 91 _ICmiss_count[i]++;
duke@435 92 return;
duke@435 93 }
duke@435 94 }
duke@435 95 int index = _ICmiss_index++;
duke@435 96 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
duke@435 97 _ICmiss_at[index] = at;
duke@435 98 _ICmiss_count[index] = 1;
duke@435 99 }
duke@435 100
duke@435 101 void SharedRuntime::print_ic_miss_histogram() {
duke@435 102 if (ICMissHistogram) {
duke@435 103 tty->print_cr ("IC Miss Histogram:");
duke@435 104 int tot_misses = 0;
duke@435 105 for (int i = 0; i < _ICmiss_index; i++) {
duke@435 106 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
duke@435 107 tot_misses += _ICmiss_count[i];
duke@435 108 }
duke@435 109 tty->print_cr ("Total IC misses: %7d", tot_misses);
duke@435 110 }
duke@435 111 }
duke@435 112 #endif // PRODUCT
duke@435 113
ysr@777 114 #ifndef SERIALGC
ysr@777 115
ysr@777 116 // G1 write-barrier pre: executed before a pointer store.
ysr@777 117 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
ysr@777 118 if (orig == NULL) {
ysr@777 119 assert(false, "should be optimized out");
ysr@777 120 return;
ysr@777 121 }
ysr@777 122 // store the original value that was in the field reference
ysr@777 123 thread->satb_mark_queue().enqueue(orig);
ysr@777 124 JRT_END
ysr@777 125
ysr@777 126 // G1 write-barrier post: executed after a pointer store.
ysr@777 127 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
ysr@777 128 thread->dirty_card_queue().enqueue(card_addr);
ysr@777 129 JRT_END
ysr@777 130
ysr@777 131 #endif // !SERIALGC
ysr@777 132
duke@435 133
duke@435 134 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
duke@435 135 return x * y;
duke@435 136 JRT_END
duke@435 137
duke@435 138
duke@435 139 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
duke@435 140 if (x == min_jlong && y == CONST64(-1)) {
duke@435 141 return x;
duke@435 142 } else {
duke@435 143 return x / y;
duke@435 144 }
duke@435 145 JRT_END
duke@435 146
duke@435 147
duke@435 148 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
duke@435 149 if (x == min_jlong && y == CONST64(-1)) {
duke@435 150 return 0;
duke@435 151 } else {
duke@435 152 return x % y;
duke@435 153 }
duke@435 154 JRT_END
duke@435 155
duke@435 156
duke@435 157 const juint float_sign_mask = 0x7FFFFFFF;
duke@435 158 const juint float_infinity = 0x7F800000;
duke@435 159 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
duke@435 160 const julong double_infinity = CONST64(0x7FF0000000000000);
duke@435 161
duke@435 162 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
duke@435 163 #ifdef _WIN64
duke@435 164 // 64-bit Windows on amd64 returns the wrong values for
duke@435 165 // infinity operands.
duke@435 166 union { jfloat f; juint i; } xbits, ybits;
duke@435 167 xbits.f = x;
duke@435 168 ybits.f = y;
duke@435 169 // x Mod Infinity == x unless x is infinity
duke@435 170 if ( ((xbits.i & float_sign_mask) != float_infinity) &&
duke@435 171 ((ybits.i & float_sign_mask) == float_infinity) ) {
duke@435 172 return x;
duke@435 173 }
duke@435 174 #endif
duke@435 175 return ((jfloat)fmod((double)x,(double)y));
duke@435 176 JRT_END
duke@435 177
duke@435 178
duke@435 179 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
duke@435 180 #ifdef _WIN64
duke@435 181 union { jdouble d; julong l; } xbits, ybits;
duke@435 182 xbits.d = x;
duke@435 183 ybits.d = y;
duke@435 184 // x Mod Infinity == x unless x is infinity
duke@435 185 if ( ((xbits.l & double_sign_mask) != double_infinity) &&
duke@435 186 ((ybits.l & double_sign_mask) == double_infinity) ) {
duke@435 187 return x;
duke@435 188 }
duke@435 189 #endif
duke@435 190 return ((jdouble)fmod((double)x,(double)y));
duke@435 191 JRT_END
duke@435 192
duke@435 193
duke@435 194 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x))
kvn@943 195 if (g_isnan(x))
kvn@943 196 return 0;
kvn@943 197 if (x >= (jfloat) max_jint)
kvn@943 198 return max_jint;
kvn@943 199 if (x <= (jfloat) min_jint)
kvn@943 200 return min_jint;
kvn@943 201 return (jint) x;
duke@435 202 JRT_END
duke@435 203
duke@435 204
duke@435 205 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x))
kvn@943 206 if (g_isnan(x))
kvn@943 207 return 0;
kvn@943 208 if (x >= (jfloat) max_jlong)
kvn@943 209 return max_jlong;
kvn@943 210 if (x <= (jfloat) min_jlong)
kvn@943 211 return min_jlong;
kvn@943 212 return (jlong) x;
duke@435 213 JRT_END
duke@435 214
duke@435 215
duke@435 216 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
kvn@943 217 if (g_isnan(x))
kvn@943 218 return 0;
kvn@943 219 if (x >= (jdouble) max_jint)
kvn@943 220 return max_jint;
kvn@943 221 if (x <= (jdouble) min_jint)
kvn@943 222 return min_jint;
kvn@943 223 return (jint) x;
duke@435 224 JRT_END
duke@435 225
duke@435 226
duke@435 227 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
kvn@943 228 if (g_isnan(x))
kvn@943 229 return 0;
kvn@943 230 if (x >= (jdouble) max_jlong)
kvn@943 231 return max_jlong;
kvn@943 232 if (x <= (jdouble) min_jlong)
kvn@943 233 return min_jlong;
kvn@943 234 return (jlong) x;
duke@435 235 JRT_END
duke@435 236
duke@435 237
duke@435 238 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
duke@435 239 return (jfloat)x;
duke@435 240 JRT_END
duke@435 241
duke@435 242
duke@435 243 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
duke@435 244 return (jfloat)x;
duke@435 245 JRT_END
duke@435 246
duke@435 247
duke@435 248 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
duke@435 249 return (jdouble)x;
duke@435 250 JRT_END
duke@435 251
duke@435 252 // Exception handling accross interpreter/compiler boundaries
duke@435 253 //
duke@435 254 // exception_handler_for_return_address(...) returns the continuation address.
duke@435 255 // The continuation address is the entry point of the exception handler of the
duke@435 256 // previous frame depending on the return address.
duke@435 257
duke@435 258 address SharedRuntime::raw_exception_handler_for_return_address(address return_address) {
duke@435 259 assert(frame::verify_return_pc(return_address), "must be a return pc");
duke@435 260
duke@435 261 // the fastest case first
duke@435 262 CodeBlob* blob = CodeCache::find_blob(return_address);
duke@435 263 if (blob != NULL && blob->is_nmethod()) {
duke@435 264 nmethod* code = (nmethod*)blob;
duke@435 265 assert(code != NULL, "nmethod must be present");
duke@435 266 // native nmethods don't have exception handlers
duke@435 267 assert(!code->is_native_method(), "no exception handler");
duke@435 268 assert(code->header_begin() != code->exception_begin(), "no exception handler");
duke@435 269 if (code->is_deopt_pc(return_address)) {
duke@435 270 return SharedRuntime::deopt_blob()->unpack_with_exception();
duke@435 271 } else {
duke@435 272 return code->exception_begin();
duke@435 273 }
duke@435 274 }
duke@435 275
duke@435 276 // Entry code
duke@435 277 if (StubRoutines::returns_to_call_stub(return_address)) {
duke@435 278 return StubRoutines::catch_exception_entry();
duke@435 279 }
duke@435 280 // Interpreted code
duke@435 281 if (Interpreter::contains(return_address)) {
duke@435 282 return Interpreter::rethrow_exception_entry();
duke@435 283 }
duke@435 284
duke@435 285 // Compiled code
duke@435 286 if (CodeCache::contains(return_address)) {
duke@435 287 CodeBlob* blob = CodeCache::find_blob(return_address);
duke@435 288 if (blob->is_nmethod()) {
duke@435 289 nmethod* code = (nmethod*)blob;
duke@435 290 assert(code != NULL, "nmethod must be present");
duke@435 291 assert(code->header_begin() != code->exception_begin(), "no exception handler");
duke@435 292 return code->exception_begin();
duke@435 293 }
duke@435 294 if (blob->is_runtime_stub()) {
duke@435 295 ShouldNotReachHere(); // callers are responsible for skipping runtime stub frames
duke@435 296 }
duke@435 297 }
duke@435 298 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
duke@435 299 #ifndef PRODUCT
duke@435 300 { ResourceMark rm;
duke@435 301 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
duke@435 302 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
duke@435 303 tty->print_cr("b) other problem");
duke@435 304 }
duke@435 305 #endif // PRODUCT
duke@435 306 ShouldNotReachHere();
duke@435 307 return NULL;
duke@435 308 }
duke@435 309
duke@435 310
duke@435 311 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(address return_address))
duke@435 312 return raw_exception_handler_for_return_address(return_address);
duke@435 313 JRT_END
duke@435 314
duke@435 315 address SharedRuntime::get_poll_stub(address pc) {
duke@435 316 address stub;
duke@435 317 // Look up the code blob
duke@435 318 CodeBlob *cb = CodeCache::find_blob(pc);
duke@435 319
duke@435 320 // Should be an nmethod
duke@435 321 assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
duke@435 322
duke@435 323 // Look up the relocation information
duke@435 324 assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
duke@435 325 "safepoint polling: type must be poll" );
duke@435 326
duke@435 327 assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
duke@435 328 "Only polling locations are used for safepoint");
duke@435 329
duke@435 330 bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
duke@435 331 if (at_poll_return) {
duke@435 332 assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
duke@435 333 "polling page return stub not created yet");
duke@435 334 stub = SharedRuntime::polling_page_return_handler_blob()->instructions_begin();
duke@435 335 } else {
duke@435 336 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
duke@435 337 "polling page safepoint stub not created yet");
duke@435 338 stub = SharedRuntime::polling_page_safepoint_handler_blob()->instructions_begin();
duke@435 339 }
duke@435 340 #ifndef PRODUCT
duke@435 341 if( TraceSafepoint ) {
duke@435 342 char buf[256];
duke@435 343 jio_snprintf(buf, sizeof(buf),
duke@435 344 "... found polling page %s exception at pc = "
duke@435 345 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
duke@435 346 at_poll_return ? "return" : "loop",
duke@435 347 (intptr_t)pc, (intptr_t)stub);
duke@435 348 tty->print_raw_cr(buf);
duke@435 349 }
duke@435 350 #endif // PRODUCT
duke@435 351 return stub;
duke@435 352 }
duke@435 353
duke@435 354
duke@435 355 oop SharedRuntime::retrieve_receiver( symbolHandle sig, frame caller ) {
duke@435 356 assert(caller.is_interpreted_frame(), "");
duke@435 357 int args_size = ArgumentSizeComputer(sig).size() + 1;
duke@435 358 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
duke@435 359 oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
duke@435 360 assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
duke@435 361 return result;
duke@435 362 }
duke@435 363
duke@435 364
duke@435 365 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
duke@435 366 if (JvmtiExport::can_post_exceptions()) {
duke@435 367 vframeStream vfst(thread, true);
duke@435 368 methodHandle method = methodHandle(thread, vfst.method());
duke@435 369 address bcp = method()->bcp_from(vfst.bci());
duke@435 370 JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
duke@435 371 }
duke@435 372 Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
duke@435 373 }
duke@435 374
duke@435 375 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, symbolOop name, const char *message) {
duke@435 376 Handle h_exception = Exceptions::new_exception(thread, name, message);
duke@435 377 throw_and_post_jvmti_exception(thread, h_exception);
duke@435 378 }
duke@435 379
dcubed@1045 380 // The interpreter code to call this tracing function is only
dcubed@1045 381 // called/generated when TraceRedefineClasses has the right bits
dcubed@1045 382 // set. Since obsolete methods are never compiled, we don't have
dcubed@1045 383 // to modify the compilers to generate calls to this function.
dcubed@1045 384 //
dcubed@1045 385 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
dcubed@1045 386 JavaThread* thread, methodOopDesc* method))
dcubed@1045 387 assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
dcubed@1045 388
dcubed@1045 389 if (method->is_obsolete()) {
dcubed@1045 390 // We are calling an obsolete method, but this is not necessarily
dcubed@1045 391 // an error. Our method could have been redefined just after we
dcubed@1045 392 // fetched the methodOop from the constant pool.
dcubed@1045 393
dcubed@1045 394 // RC_TRACE macro has an embedded ResourceMark
dcubed@1045 395 RC_TRACE_WITH_THREAD(0x00001000, thread,
dcubed@1045 396 ("calling obsolete method '%s'",
dcubed@1045 397 method->name_and_sig_as_C_string()));
dcubed@1045 398 if (RC_TRACE_ENABLED(0x00002000)) {
dcubed@1045 399 // this option is provided to debug calls to obsolete methods
dcubed@1045 400 guarantee(false, "faulting at call to an obsolete method.");
dcubed@1045 401 }
dcubed@1045 402 }
dcubed@1045 403 return 0;
dcubed@1045 404 JRT_END
dcubed@1045 405
duke@435 406 // ret_pc points into caller; we are returning caller's exception handler
duke@435 407 // for given exception
duke@435 408 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
duke@435 409 bool force_unwind, bool top_frame_only) {
duke@435 410 assert(nm != NULL, "must exist");
duke@435 411 ResourceMark rm;
duke@435 412
duke@435 413 ScopeDesc* sd = nm->scope_desc_at(ret_pc);
duke@435 414 // determine handler bci, if any
duke@435 415 EXCEPTION_MARK;
duke@435 416
duke@435 417 int handler_bci = -1;
duke@435 418 int scope_depth = 0;
duke@435 419 if (!force_unwind) {
duke@435 420 int bci = sd->bci();
duke@435 421 do {
duke@435 422 bool skip_scope_increment = false;
duke@435 423 // exception handler lookup
duke@435 424 KlassHandle ek (THREAD, exception->klass());
duke@435 425 handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
duke@435 426 if (HAS_PENDING_EXCEPTION) {
duke@435 427 // We threw an exception while trying to find the exception handler.
duke@435 428 // Transfer the new exception to the exception handle which will
duke@435 429 // be set into thread local storage, and do another lookup for an
duke@435 430 // exception handler for this exception, this time starting at the
duke@435 431 // BCI of the exception handler which caused the exception to be
duke@435 432 // thrown (bugs 4307310 and 4546590). Set "exception" reference
duke@435 433 // argument to ensure that the correct exception is thrown (4870175).
duke@435 434 exception = Handle(THREAD, PENDING_EXCEPTION);
duke@435 435 CLEAR_PENDING_EXCEPTION;
duke@435 436 if (handler_bci >= 0) {
duke@435 437 bci = handler_bci;
duke@435 438 handler_bci = -1;
duke@435 439 skip_scope_increment = true;
duke@435 440 }
duke@435 441 }
duke@435 442 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
duke@435 443 sd = sd->sender();
duke@435 444 if (sd != NULL) {
duke@435 445 bci = sd->bci();
duke@435 446 }
duke@435 447 ++scope_depth;
duke@435 448 }
duke@435 449 } while (!top_frame_only && handler_bci < 0 && sd != NULL);
duke@435 450 }
duke@435 451
duke@435 452 // found handling method => lookup exception handler
duke@435 453 int catch_pco = ret_pc - nm->instructions_begin();
duke@435 454
duke@435 455 ExceptionHandlerTable table(nm);
duke@435 456 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
duke@435 457 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
duke@435 458 // Allow abbreviated catch tables. The idea is to allow a method
duke@435 459 // to materialize its exceptions without committing to the exact
duke@435 460 // routing of exceptions. In particular this is needed for adding
duke@435 461 // a synthethic handler to unlock monitors when inlining
duke@435 462 // synchonized methods since the unlock path isn't represented in
duke@435 463 // the bytecodes.
duke@435 464 t = table.entry_for(catch_pco, -1, 0);
duke@435 465 }
duke@435 466
duke@435 467 #ifdef COMPILER1
duke@435 468 if (nm->is_compiled_by_c1() && t == NULL && handler_bci == -1) {
duke@435 469 // Exception is not handled by this frame so unwind. Note that
duke@435 470 // this is not the same as how C2 does this. C2 emits a table
duke@435 471 // entry that dispatches to the unwind code in the nmethod.
duke@435 472 return NULL;
duke@435 473 }
duke@435 474 #endif /* COMPILER1 */
duke@435 475
duke@435 476
duke@435 477 if (t == NULL) {
duke@435 478 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
duke@435 479 tty->print_cr(" Exception:");
duke@435 480 exception->print();
duke@435 481 tty->cr();
duke@435 482 tty->print_cr(" Compiled exception table :");
duke@435 483 table.print();
duke@435 484 nm->print_code();
duke@435 485 guarantee(false, "missing exception handler");
duke@435 486 return NULL;
duke@435 487 }
duke@435 488
duke@435 489 return nm->instructions_begin() + t->pco();
duke@435 490 }
duke@435 491
duke@435 492 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
duke@435 493 // These errors occur only at call sites
duke@435 494 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
duke@435 495 JRT_END
duke@435 496
dcubed@451 497 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
dcubed@451 498 // These errors occur only at call sites
dcubed@451 499 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
dcubed@451 500 JRT_END
dcubed@451 501
duke@435 502 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
duke@435 503 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
duke@435 504 JRT_END
duke@435 505
duke@435 506 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
duke@435 507 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 508 JRT_END
duke@435 509
duke@435 510 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
duke@435 511 // This entry point is effectively only used for NullPointerExceptions which occur at inline
duke@435 512 // cache sites (when the callee activation is not yet set up) so we are at a call site
duke@435 513 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 514 JRT_END
duke@435 515
duke@435 516 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
duke@435 517 // We avoid using the normal exception construction in this case because
duke@435 518 // it performs an upcall to Java, and we're already out of stack space.
duke@435 519 klassOop k = SystemDictionary::StackOverflowError_klass();
duke@435 520 oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
duke@435 521 Handle exception (thread, exception_oop);
duke@435 522 if (StackTraceInThrowable) {
duke@435 523 java_lang_Throwable::fill_in_stack_trace(exception);
duke@435 524 }
duke@435 525 throw_and_post_jvmti_exception(thread, exception);
duke@435 526 JRT_END
duke@435 527
duke@435 528 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
duke@435 529 address pc,
duke@435 530 SharedRuntime::ImplicitExceptionKind exception_kind)
duke@435 531 {
duke@435 532 address target_pc = NULL;
duke@435 533
duke@435 534 if (Interpreter::contains(pc)) {
duke@435 535 #ifdef CC_INTERP
duke@435 536 // C++ interpreter doesn't throw implicit exceptions
duke@435 537 ShouldNotReachHere();
duke@435 538 #else
duke@435 539 switch (exception_kind) {
duke@435 540 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry();
duke@435 541 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
duke@435 542 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry();
duke@435 543 default: ShouldNotReachHere();
duke@435 544 }
duke@435 545 #endif // !CC_INTERP
duke@435 546 } else {
duke@435 547 switch (exception_kind) {
duke@435 548 case STACK_OVERFLOW: {
duke@435 549 // Stack overflow only occurs upon frame setup; the callee is
duke@435 550 // going to be unwound. Dispatch to a shared runtime stub
duke@435 551 // which will cause the StackOverflowError to be fabricated
duke@435 552 // and processed.
duke@435 553 // For stack overflow in deoptimization blob, cleanup thread.
duke@435 554 if (thread->deopt_mark() != NULL) {
duke@435 555 Deoptimization::cleanup_deopt_info(thread, NULL);
duke@435 556 }
duke@435 557 return StubRoutines::throw_StackOverflowError_entry();
duke@435 558 }
duke@435 559
duke@435 560 case IMPLICIT_NULL: {
duke@435 561 if (VtableStubs::contains(pc)) {
duke@435 562 // We haven't yet entered the callee frame. Fabricate an
duke@435 563 // exception and begin dispatching it in the caller. Since
duke@435 564 // the caller was at a call site, it's safe to destroy all
duke@435 565 // caller-saved registers, as these entry points do.
duke@435 566 VtableStub* vt_stub = VtableStubs::stub_containing(pc);
poonam@900 567
poonam@900 568 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
poonam@900 569 if (vt_stub == NULL) return NULL;
poonam@900 570
duke@435 571 if (vt_stub->is_abstract_method_error(pc)) {
duke@435 572 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
duke@435 573 return StubRoutines::throw_AbstractMethodError_entry();
duke@435 574 } else {
duke@435 575 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 576 }
duke@435 577 } else {
duke@435 578 CodeBlob* cb = CodeCache::find_blob(pc);
poonam@900 579
poonam@900 580 // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
poonam@900 581 if (cb == NULL) return NULL;
duke@435 582
duke@435 583 // Exception happened in CodeCache. Must be either:
duke@435 584 // 1. Inline-cache check in C2I handler blob,
duke@435 585 // 2. Inline-cache check in nmethod, or
duke@435 586 // 3. Implict null exception in nmethod
duke@435 587
duke@435 588 if (!cb->is_nmethod()) {
duke@435 589 guarantee(cb->is_adapter_blob(),
poonam@900 590 "exception happened outside interpreter, nmethods and vtable stubs (1)");
duke@435 591 // There is no handler here, so we will simply unwind.
duke@435 592 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 593 }
duke@435 594
duke@435 595 // Otherwise, it's an nmethod. Consult its exception handlers.
duke@435 596 nmethod* nm = (nmethod*)cb;
duke@435 597 if (nm->inlinecache_check_contains(pc)) {
duke@435 598 // exception happened inside inline-cache check code
duke@435 599 // => the nmethod is not yet active (i.e., the frame
duke@435 600 // is not set up yet) => use return address pushed by
duke@435 601 // caller => don't push another return address
duke@435 602 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 603 }
duke@435 604
duke@435 605 #ifndef PRODUCT
duke@435 606 _implicit_null_throws++;
duke@435 607 #endif
duke@435 608 target_pc = nm->continuation_for_implicit_exception(pc);
duke@435 609 guarantee(target_pc != 0, "must have a continuation point");
duke@435 610 }
duke@435 611
duke@435 612 break; // fall through
duke@435 613 }
duke@435 614
duke@435 615
duke@435 616 case IMPLICIT_DIVIDE_BY_ZERO: {
duke@435 617 nmethod* nm = CodeCache::find_nmethod(pc);
duke@435 618 guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
duke@435 619 #ifndef PRODUCT
duke@435 620 _implicit_div0_throws++;
duke@435 621 #endif
duke@435 622 target_pc = nm->continuation_for_implicit_exception(pc);
duke@435 623 guarantee(target_pc != 0, "must have a continuation point");
duke@435 624 break; // fall through
duke@435 625 }
duke@435 626
duke@435 627 default: ShouldNotReachHere();
duke@435 628 }
duke@435 629
duke@435 630 guarantee(target_pc != NULL, "must have computed destination PC for implicit exception");
duke@435 631 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
duke@435 632
duke@435 633 // for AbortVMOnException flag
duke@435 634 NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
duke@435 635 if (exception_kind == IMPLICIT_NULL) {
duke@435 636 Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@435 637 } else {
duke@435 638 Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@435 639 }
duke@435 640 return target_pc;
duke@435 641 }
duke@435 642
duke@435 643 ShouldNotReachHere();
duke@435 644 return NULL;
duke@435 645 }
duke@435 646
duke@435 647
duke@435 648 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
duke@435 649 {
duke@435 650 THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
duke@435 651 }
duke@435 652 JNI_END
duke@435 653
duke@435 654
duke@435 655 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
duke@435 656 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
duke@435 657 }
duke@435 658
duke@435 659
duke@435 660 #ifndef PRODUCT
duke@435 661 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
duke@435 662 const frame f = thread->last_frame();
duke@435 663 assert(f.is_interpreted_frame(), "must be an interpreted frame");
duke@435 664 #ifndef PRODUCT
duke@435 665 methodHandle mh(THREAD, f.interpreter_frame_method());
duke@435 666 BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
duke@435 667 #endif // !PRODUCT
duke@435 668 return preserve_this_value;
duke@435 669 JRT_END
duke@435 670 #endif // !PRODUCT
duke@435 671
duke@435 672
duke@435 673 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
duke@435 674 os::yield_all(attempts);
duke@435 675 JRT_END
duke@435 676
duke@435 677
duke@435 678 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
duke@435 679 assert(obj->is_oop(), "must be a valid oop");
duke@435 680 assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
duke@435 681 instanceKlass::register_finalizer(instanceOop(obj), CHECK);
duke@435 682 JRT_END
duke@435 683
duke@435 684
duke@435 685 jlong SharedRuntime::get_java_tid(Thread* thread) {
duke@435 686 if (thread != NULL) {
duke@435 687 if (thread->is_Java_thread()) {
duke@435 688 oop obj = ((JavaThread*)thread)->threadObj();
duke@435 689 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
duke@435 690 }
duke@435 691 }
duke@435 692 return 0;
duke@435 693 }
duke@435 694
duke@435 695 /**
duke@435 696 * This function ought to be a void function, but cannot be because
duke@435 697 * it gets turned into a tail-call on sparc, which runs into dtrace bug
duke@435 698 * 6254741. Once that is fixed we can remove the dummy return value.
duke@435 699 */
duke@435 700 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
duke@435 701 return dtrace_object_alloc_base(Thread::current(), o);
duke@435 702 }
duke@435 703
duke@435 704 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
duke@435 705 assert(DTraceAllocProbes, "wrong call");
duke@435 706 Klass* klass = o->blueprint();
duke@435 707 int size = o->size();
duke@435 708 symbolOop name = klass->name();
duke@435 709 HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
duke@435 710 name->bytes(), name->utf8_length(), size * HeapWordSize);
duke@435 711 return 0;
duke@435 712 }
duke@435 713
duke@435 714 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
duke@435 715 JavaThread* thread, methodOopDesc* method))
duke@435 716 assert(DTraceMethodProbes, "wrong call");
duke@435 717 symbolOop kname = method->klass_name();
duke@435 718 symbolOop name = method->name();
duke@435 719 symbolOop sig = method->signature();
duke@435 720 HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
duke@435 721 kname->bytes(), kname->utf8_length(),
duke@435 722 name->bytes(), name->utf8_length(),
duke@435 723 sig->bytes(), sig->utf8_length());
duke@435 724 return 0;
duke@435 725 JRT_END
duke@435 726
duke@435 727 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
duke@435 728 JavaThread* thread, methodOopDesc* method))
duke@435 729 assert(DTraceMethodProbes, "wrong call");
duke@435 730 symbolOop kname = method->klass_name();
duke@435 731 symbolOop name = method->name();
duke@435 732 symbolOop sig = method->signature();
duke@435 733 HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
duke@435 734 kname->bytes(), kname->utf8_length(),
duke@435 735 name->bytes(), name->utf8_length(),
duke@435 736 sig->bytes(), sig->utf8_length());
duke@435 737 return 0;
duke@435 738 JRT_END
duke@435 739
duke@435 740
duke@435 741 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
duke@435 742 // for a call current in progress, i.e., arguments has been pushed on stack
duke@435 743 // put callee has not been invoked yet. Used by: resolve virtual/static,
duke@435 744 // vtable updates, etc. Caller frame must be compiled.
duke@435 745 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
duke@435 746 ResourceMark rm(THREAD);
duke@435 747
duke@435 748 // last java frame on stack (which includes native call frames)
duke@435 749 vframeStream vfst(thread, true); // Do not skip and javaCalls
duke@435 750
duke@435 751 return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
duke@435 752 }
duke@435 753
duke@435 754
duke@435 755 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
duke@435 756 // for a call current in progress, i.e., arguments has been pushed on stack
duke@435 757 // but callee has not been invoked yet. Caller frame must be compiled.
duke@435 758 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
duke@435 759 vframeStream& vfst,
duke@435 760 Bytecodes::Code& bc,
duke@435 761 CallInfo& callinfo, TRAPS) {
duke@435 762 Handle receiver;
duke@435 763 Handle nullHandle; //create a handy null handle for exception returns
duke@435 764
duke@435 765 assert(!vfst.at_end(), "Java frame must exist");
duke@435 766
duke@435 767 // Find caller and bci from vframe
duke@435 768 methodHandle caller (THREAD, vfst.method());
duke@435 769 int bci = vfst.bci();
duke@435 770
duke@435 771 // Find bytecode
duke@435 772 Bytecode_invoke* bytecode = Bytecode_invoke_at(caller, bci);
duke@435 773 bc = bytecode->adjusted_invoke_code();
duke@435 774 int bytecode_index = bytecode->index();
duke@435 775
duke@435 776 // Find receiver for non-static call
duke@435 777 if (bc != Bytecodes::_invokestatic) {
duke@435 778 // This register map must be update since we need to find the receiver for
duke@435 779 // compiled frames. The receiver might be in a register.
duke@435 780 RegisterMap reg_map2(thread);
duke@435 781 frame stubFrame = thread->last_frame();
duke@435 782 // Caller-frame is a compiled frame
duke@435 783 frame callerFrame = stubFrame.sender(&reg_map2);
duke@435 784
duke@435 785 methodHandle callee = bytecode->static_target(CHECK_(nullHandle));
duke@435 786 if (callee.is_null()) {
duke@435 787 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
duke@435 788 }
duke@435 789 // Retrieve from a compiled argument list
duke@435 790 receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
duke@435 791
duke@435 792 if (receiver.is_null()) {
duke@435 793 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
duke@435 794 }
duke@435 795 }
duke@435 796
duke@435 797 // Resolve method. This is parameterized by bytecode.
duke@435 798 constantPoolHandle constants (THREAD, caller->constants());
duke@435 799 assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
duke@435 800 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
duke@435 801
duke@435 802 #ifdef ASSERT
duke@435 803 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
duke@435 804 if (bc != Bytecodes::_invokestatic) {
duke@435 805 assert(receiver.not_null(), "should have thrown exception");
duke@435 806 KlassHandle receiver_klass (THREAD, receiver->klass());
duke@435 807 klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
duke@435 808 // klass is already loaded
duke@435 809 KlassHandle static_receiver_klass (THREAD, rk);
duke@435 810 assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
duke@435 811 if (receiver_klass->oop_is_instance()) {
duke@435 812 if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
duke@435 813 tty->print_cr("ERROR: Klass not yet initialized!!");
duke@435 814 receiver_klass.print();
duke@435 815 }
duke@435 816 assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
duke@435 817 }
duke@435 818 }
duke@435 819 #endif
duke@435 820
duke@435 821 return receiver;
duke@435 822 }
duke@435 823
duke@435 824 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
duke@435 825 ResourceMark rm(THREAD);
duke@435 826 // We need first to check if any Java activations (compiled, interpreted)
duke@435 827 // exist on the stack since last JavaCall. If not, we need
duke@435 828 // to get the target method from the JavaCall wrapper.
duke@435 829 vframeStream vfst(thread, true); // Do not skip any javaCalls
duke@435 830 methodHandle callee_method;
duke@435 831 if (vfst.at_end()) {
duke@435 832 // No Java frames were found on stack since we did the JavaCall.
duke@435 833 // Hence the stack can only contain an entry_frame. We need to
duke@435 834 // find the target method from the stub frame.
duke@435 835 RegisterMap reg_map(thread, false);
duke@435 836 frame fr = thread->last_frame();
duke@435 837 assert(fr.is_runtime_frame(), "must be a runtimeStub");
duke@435 838 fr = fr.sender(&reg_map);
duke@435 839 assert(fr.is_entry_frame(), "must be");
duke@435 840 // fr is now pointing to the entry frame.
duke@435 841 callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
duke@435 842 assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
duke@435 843 } else {
duke@435 844 Bytecodes::Code bc;
duke@435 845 CallInfo callinfo;
duke@435 846 find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
duke@435 847 callee_method = callinfo.selected_method();
duke@435 848 }
duke@435 849 assert(callee_method()->is_method(), "must be");
duke@435 850 return callee_method;
duke@435 851 }
duke@435 852
duke@435 853 // Resolves a call.
duke@435 854 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
duke@435 855 bool is_virtual,
duke@435 856 bool is_optimized, TRAPS) {
duke@435 857 methodHandle callee_method;
duke@435 858 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@435 859 if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
duke@435 860 int retry_count = 0;
duke@435 861 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
duke@435 862 callee_method->method_holder() != SystemDictionary::object_klass()) {
duke@435 863 // If has a pending exception then there is no need to re-try to
duke@435 864 // resolve this method.
duke@435 865 // If the method has been redefined, we need to try again.
duke@435 866 // Hack: we have no way to update the vtables of arrays, so don't
duke@435 867 // require that java.lang.Object has been updated.
duke@435 868
duke@435 869 // It is very unlikely that method is redefined more than 100 times
duke@435 870 // in the middle of resolve. If it is looping here more than 100 times
duke@435 871 // means then there could be a bug here.
duke@435 872 guarantee((retry_count++ < 100),
duke@435 873 "Could not resolve to latest version of redefined method");
duke@435 874 // method is redefined in the middle of resolve so re-try.
duke@435 875 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@435 876 }
duke@435 877 }
duke@435 878 return callee_method;
duke@435 879 }
duke@435 880
duke@435 881 // Resolves a call. The compilers generate code for calls that go here
duke@435 882 // and are patched with the real destination of the call.
duke@435 883 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
duke@435 884 bool is_virtual,
duke@435 885 bool is_optimized, TRAPS) {
duke@435 886
duke@435 887 ResourceMark rm(thread);
duke@435 888 RegisterMap cbl_map(thread, false);
duke@435 889 frame caller_frame = thread->last_frame().sender(&cbl_map);
duke@435 890
duke@435 891 CodeBlob* cb = caller_frame.cb();
duke@435 892 guarantee(cb != NULL && cb->is_nmethod(), "must be called from nmethod");
duke@435 893 // make sure caller is not getting deoptimized
duke@435 894 // and removed before we are done with it.
duke@435 895 // CLEANUP - with lazy deopt shouldn't need this lock
duke@435 896 nmethodLocker caller_lock((nmethod*)cb);
duke@435 897
duke@435 898
duke@435 899 // determine call info & receiver
duke@435 900 // note: a) receiver is NULL for static calls
duke@435 901 // b) an exception is thrown if receiver is NULL for non-static calls
duke@435 902 CallInfo call_info;
duke@435 903 Bytecodes::Code invoke_code = Bytecodes::_illegal;
duke@435 904 Handle receiver = find_callee_info(thread, invoke_code,
duke@435 905 call_info, CHECK_(methodHandle()));
duke@435 906 methodHandle callee_method = call_info.selected_method();
duke@435 907
duke@435 908 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
duke@435 909 ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
duke@435 910
duke@435 911 #ifndef PRODUCT
duke@435 912 // tracing/debugging/statistics
duke@435 913 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
duke@435 914 (is_virtual) ? (&_resolve_virtual_ctr) :
duke@435 915 (&_resolve_static_ctr);
duke@435 916 Atomic::inc(addr);
duke@435 917
duke@435 918 if (TraceCallFixup) {
duke@435 919 ResourceMark rm(thread);
duke@435 920 tty->print("resolving %s%s (%s) call to",
duke@435 921 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
duke@435 922 Bytecodes::name(invoke_code));
duke@435 923 callee_method->print_short_name(tty);
duke@435 924 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 925 }
duke@435 926 #endif
duke@435 927
duke@435 928 // Compute entry points. This might require generation of C2I converter
duke@435 929 // frames, so we cannot be holding any locks here. Furthermore, the
duke@435 930 // computation of the entry points is independent of patching the call. We
duke@435 931 // always return the entry-point, but we only patch the stub if the call has
duke@435 932 // not been deoptimized. Return values: For a virtual call this is an
duke@435 933 // (cached_oop, destination address) pair. For a static call/optimized
duke@435 934 // virtual this is just a destination address.
duke@435 935
duke@435 936 StaticCallInfo static_call_info;
duke@435 937 CompiledICInfo virtual_call_info;
duke@435 938
duke@435 939
duke@435 940 // Make sure the callee nmethod does not get deoptimized and removed before
duke@435 941 // we are done patching the code.
duke@435 942 nmethod* nm = callee_method->code();
duke@435 943 nmethodLocker nl_callee(nm);
duke@435 944 #ifdef ASSERT
duke@435 945 address dest_entry_point = nm == NULL ? 0 : nm->entry_point(); // used below
duke@435 946 #endif
duke@435 947
duke@435 948 if (is_virtual) {
duke@435 949 assert(receiver.not_null(), "sanity check");
duke@435 950 bool static_bound = call_info.resolved_method()->can_be_statically_bound();
duke@435 951 KlassHandle h_klass(THREAD, receiver->klass());
duke@435 952 CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
duke@435 953 is_optimized, static_bound, virtual_call_info,
duke@435 954 CHECK_(methodHandle()));
duke@435 955 } else {
duke@435 956 // static call
duke@435 957 CompiledStaticCall::compute_entry(callee_method, static_call_info);
duke@435 958 }
duke@435 959
duke@435 960 // grab lock, check for deoptimization and potentially patch caller
duke@435 961 {
duke@435 962 MutexLocker ml_patch(CompiledIC_lock);
duke@435 963
duke@435 964 // Now that we are ready to patch if the methodOop was redefined then
duke@435 965 // don't update call site and let the caller retry.
duke@435 966
duke@435 967 if (!callee_method->is_old()) {
duke@435 968 #ifdef ASSERT
duke@435 969 // We must not try to patch to jump to an already unloaded method.
duke@435 970 if (dest_entry_point != 0) {
duke@435 971 assert(CodeCache::find_blob(dest_entry_point) != NULL,
duke@435 972 "should not unload nmethod while locked");
duke@435 973 }
duke@435 974 #endif
duke@435 975 if (is_virtual) {
duke@435 976 CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
duke@435 977 if (inline_cache->is_clean()) {
duke@435 978 inline_cache->set_to_monomorphic(virtual_call_info);
duke@435 979 }
duke@435 980 } else {
duke@435 981 CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
duke@435 982 if (ssc->is_clean()) ssc->set(static_call_info);
duke@435 983 }
duke@435 984 }
duke@435 985
duke@435 986 } // unlock CompiledIC_lock
duke@435 987
duke@435 988 return callee_method;
duke@435 989 }
duke@435 990
duke@435 991
duke@435 992 // Inline caches exist only in compiled code
duke@435 993 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
duke@435 994 #ifdef ASSERT
duke@435 995 RegisterMap reg_map(thread, false);
duke@435 996 frame stub_frame = thread->last_frame();
duke@435 997 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@435 998 frame caller_frame = stub_frame.sender(&reg_map);
duke@435 999 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
duke@435 1000 #endif /* ASSERT */
duke@435 1001
duke@435 1002 methodHandle callee_method;
duke@435 1003 JRT_BLOCK
duke@435 1004 callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
duke@435 1005 // Return methodOop through TLS
duke@435 1006 thread->set_vm_result(callee_method());
duke@435 1007 JRT_BLOCK_END
duke@435 1008 // return compiled code entry point after potential safepoints
duke@435 1009 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1010 return callee_method->verified_code_entry();
duke@435 1011 JRT_END
duke@435 1012
duke@435 1013
duke@435 1014 // Handle call site that has been made non-entrant
duke@435 1015 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
duke@435 1016 // 6243940 We might end up in here if the callee is deoptimized
duke@435 1017 // as we race to call it. We don't want to take a safepoint if
duke@435 1018 // the caller was interpreted because the caller frame will look
duke@435 1019 // interpreted to the stack walkers and arguments are now
duke@435 1020 // "compiled" so it is much better to make this transition
duke@435 1021 // invisible to the stack walking code. The i2c path will
duke@435 1022 // place the callee method in the callee_target. It is stashed
duke@435 1023 // there because if we try and find the callee by normal means a
duke@435 1024 // safepoint is possible and have trouble gc'ing the compiled args.
duke@435 1025 RegisterMap reg_map(thread, false);
duke@435 1026 frame stub_frame = thread->last_frame();
duke@435 1027 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@435 1028 frame caller_frame = stub_frame.sender(&reg_map);
duke@435 1029 if (caller_frame.is_interpreted_frame() || caller_frame.is_entry_frame() ) {
duke@435 1030 methodOop callee = thread->callee_target();
duke@435 1031 guarantee(callee != NULL && callee->is_method(), "bad handshake");
duke@435 1032 thread->set_vm_result(callee);
duke@435 1033 thread->set_callee_target(NULL);
duke@435 1034 return callee->get_c2i_entry();
duke@435 1035 }
duke@435 1036
duke@435 1037 // Must be compiled to compiled path which is safe to stackwalk
duke@435 1038 methodHandle callee_method;
duke@435 1039 JRT_BLOCK
duke@435 1040 // Force resolving of caller (if we called from compiled frame)
duke@435 1041 callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
duke@435 1042 thread->set_vm_result(callee_method());
duke@435 1043 JRT_BLOCK_END
duke@435 1044 // return compiled code entry point after potential safepoints
duke@435 1045 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1046 return callee_method->verified_code_entry();
duke@435 1047 JRT_END
duke@435 1048
duke@435 1049
duke@435 1050 // resolve a static call and patch code
duke@435 1051 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
duke@435 1052 methodHandle callee_method;
duke@435 1053 JRT_BLOCK
duke@435 1054 callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
duke@435 1055 thread->set_vm_result(callee_method());
duke@435 1056 JRT_BLOCK_END
duke@435 1057 // return compiled code entry point after potential safepoints
duke@435 1058 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1059 return callee_method->verified_code_entry();
duke@435 1060 JRT_END
duke@435 1061
duke@435 1062
duke@435 1063 // resolve virtual call and update inline cache to monomorphic
duke@435 1064 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
duke@435 1065 methodHandle callee_method;
duke@435 1066 JRT_BLOCK
duke@435 1067 callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
duke@435 1068 thread->set_vm_result(callee_method());
duke@435 1069 JRT_BLOCK_END
duke@435 1070 // return compiled code entry point after potential safepoints
duke@435 1071 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1072 return callee_method->verified_code_entry();
duke@435 1073 JRT_END
duke@435 1074
duke@435 1075
duke@435 1076 // Resolve a virtual call that can be statically bound (e.g., always
duke@435 1077 // monomorphic, so it has no inline cache). Patch code to resolved target.
duke@435 1078 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
duke@435 1079 methodHandle callee_method;
duke@435 1080 JRT_BLOCK
duke@435 1081 callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
duke@435 1082 thread->set_vm_result(callee_method());
duke@435 1083 JRT_BLOCK_END
duke@435 1084 // return compiled code entry point after potential safepoints
duke@435 1085 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1086 return callee_method->verified_code_entry();
duke@435 1087 JRT_END
duke@435 1088
duke@435 1089
duke@435 1090
duke@435 1091
duke@435 1092
duke@435 1093 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
duke@435 1094 ResourceMark rm(thread);
duke@435 1095 CallInfo call_info;
duke@435 1096 Bytecodes::Code bc;
duke@435 1097
duke@435 1098 // receiver is NULL for static calls. An exception is thrown for NULL
duke@435 1099 // receivers for non-static calls
duke@435 1100 Handle receiver = find_callee_info(thread, bc, call_info,
duke@435 1101 CHECK_(methodHandle()));
duke@435 1102 // Compiler1 can produce virtual call sites that can actually be statically bound
duke@435 1103 // If we fell thru to below we would think that the site was going megamorphic
duke@435 1104 // when in fact the site can never miss. Worse because we'd think it was megamorphic
duke@435 1105 // we'd try and do a vtable dispatch however methods that can be statically bound
duke@435 1106 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
duke@435 1107 // reresolution of the call site (as if we did a handle_wrong_method and not an
duke@435 1108 // plain ic_miss) and the site will be converted to an optimized virtual call site
duke@435 1109 // never to miss again. I don't believe C2 will produce code like this but if it
duke@435 1110 // did this would still be the correct thing to do for it too, hence no ifdef.
duke@435 1111 //
duke@435 1112 if (call_info.resolved_method()->can_be_statically_bound()) {
duke@435 1113 methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
duke@435 1114 if (TraceCallFixup) {
duke@435 1115 RegisterMap reg_map(thread, false);
duke@435 1116 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@435 1117 ResourceMark rm(thread);
duke@435 1118 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
duke@435 1119 callee_method->print_short_name(tty);
duke@435 1120 tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
duke@435 1121 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1122 }
duke@435 1123 return callee_method;
duke@435 1124 }
duke@435 1125
duke@435 1126 methodHandle callee_method = call_info.selected_method();
duke@435 1127
duke@435 1128 bool should_be_mono = false;
duke@435 1129
duke@435 1130 #ifndef PRODUCT
duke@435 1131 Atomic::inc(&_ic_miss_ctr);
duke@435 1132
duke@435 1133 // Statistics & Tracing
duke@435 1134 if (TraceCallFixup) {
duke@435 1135 ResourceMark rm(thread);
duke@435 1136 tty->print("IC miss (%s) call to", Bytecodes::name(bc));
duke@435 1137 callee_method->print_short_name(tty);
duke@435 1138 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1139 }
duke@435 1140
duke@435 1141 if (ICMissHistogram) {
duke@435 1142 MutexLocker m(VMStatistic_lock);
duke@435 1143 RegisterMap reg_map(thread, false);
duke@435 1144 frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
duke@435 1145 // produce statistics under the lock
duke@435 1146 trace_ic_miss(f.pc());
duke@435 1147 }
duke@435 1148 #endif
duke@435 1149
duke@435 1150 // install an event collector so that when a vtable stub is created the
duke@435 1151 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
duke@435 1152 // event can't be posted when the stub is created as locks are held
duke@435 1153 // - instead the event will be deferred until the event collector goes
duke@435 1154 // out of scope.
duke@435 1155 JvmtiDynamicCodeEventCollector event_collector;
duke@435 1156
duke@435 1157 // Update inline cache to megamorphic. Skip update if caller has been
duke@435 1158 // made non-entrant or we are called from interpreted.
duke@435 1159 { MutexLocker ml_patch (CompiledIC_lock);
duke@435 1160 RegisterMap reg_map(thread, false);
duke@435 1161 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@435 1162 CodeBlob* cb = caller_frame.cb();
duke@435 1163 if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
duke@435 1164 // Not a non-entrant nmethod, so find inline_cache
duke@435 1165 CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
duke@435 1166 bool should_be_mono = false;
duke@435 1167 if (inline_cache->is_optimized()) {
duke@435 1168 if (TraceCallFixup) {
duke@435 1169 ResourceMark rm(thread);
duke@435 1170 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
duke@435 1171 callee_method->print_short_name(tty);
duke@435 1172 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1173 }
duke@435 1174 should_be_mono = true;
duke@435 1175 } else {
duke@435 1176 compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
duke@435 1177 if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
duke@435 1178
duke@435 1179 if (receiver()->klass() == ic_oop->holder_klass()) {
duke@435 1180 // This isn't a real miss. We must have seen that compiled code
duke@435 1181 // is now available and we want the call site converted to a
duke@435 1182 // monomorphic compiled call site.
duke@435 1183 // We can't assert for callee_method->code() != NULL because it
duke@435 1184 // could have been deoptimized in the meantime
duke@435 1185 if (TraceCallFixup) {
duke@435 1186 ResourceMark rm(thread);
duke@435 1187 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
duke@435 1188 callee_method->print_short_name(tty);
duke@435 1189 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1190 }
duke@435 1191 should_be_mono = true;
duke@435 1192 }
duke@435 1193 }
duke@435 1194 }
duke@435 1195
duke@435 1196 if (should_be_mono) {
duke@435 1197
duke@435 1198 // We have a path that was monomorphic but was going interpreted
duke@435 1199 // and now we have (or had) a compiled entry. We correct the IC
duke@435 1200 // by using a new icBuffer.
duke@435 1201 CompiledICInfo info;
duke@435 1202 KlassHandle receiver_klass(THREAD, receiver()->klass());
duke@435 1203 inline_cache->compute_monomorphic_entry(callee_method,
duke@435 1204 receiver_klass,
duke@435 1205 inline_cache->is_optimized(),
duke@435 1206 false,
duke@435 1207 info, CHECK_(methodHandle()));
duke@435 1208 inline_cache->set_to_monomorphic(info);
duke@435 1209 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
duke@435 1210 // Change to megamorphic
duke@435 1211 inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
duke@435 1212 } else {
duke@435 1213 // Either clean or megamorphic
duke@435 1214 }
duke@435 1215 }
duke@435 1216 } // Release CompiledIC_lock
duke@435 1217
duke@435 1218 return callee_method;
duke@435 1219 }
duke@435 1220
duke@435 1221 //
duke@435 1222 // Resets a call-site in compiled code so it will get resolved again.
duke@435 1223 // This routines handles both virtual call sites, optimized virtual call
duke@435 1224 // sites, and static call sites. Typically used to change a call sites
duke@435 1225 // destination from compiled to interpreted.
duke@435 1226 //
duke@435 1227 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
duke@435 1228 ResourceMark rm(thread);
duke@435 1229 RegisterMap reg_map(thread, false);
duke@435 1230 frame stub_frame = thread->last_frame();
duke@435 1231 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
duke@435 1232 frame caller = stub_frame.sender(&reg_map);
duke@435 1233
duke@435 1234 // Do nothing if the frame isn't a live compiled frame.
duke@435 1235 // nmethod could be deoptimized by the time we get here
duke@435 1236 // so no update to the caller is needed.
duke@435 1237
duke@435 1238 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
duke@435 1239
duke@435 1240 address pc = caller.pc();
duke@435 1241 Events::log("update call-site at pc " INTPTR_FORMAT, pc);
duke@435 1242
duke@435 1243 // Default call_addr is the location of the "basic" call.
duke@435 1244 // Determine the address of the call we a reresolving. With
duke@435 1245 // Inline Caches we will always find a recognizable call.
duke@435 1246 // With Inline Caches disabled we may or may not find a
duke@435 1247 // recognizable call. We will always find a call for static
duke@435 1248 // calls and for optimized virtual calls. For vanilla virtual
duke@435 1249 // calls it depends on the state of the UseInlineCaches switch.
duke@435 1250 //
duke@435 1251 // With Inline Caches disabled we can get here for a virtual call
duke@435 1252 // for two reasons:
duke@435 1253 // 1 - calling an abstract method. The vtable for abstract methods
duke@435 1254 // will run us thru handle_wrong_method and we will eventually
duke@435 1255 // end up in the interpreter to throw the ame.
duke@435 1256 // 2 - a racing deoptimization. We could be doing a vanilla vtable
duke@435 1257 // call and between the time we fetch the entry address and
duke@435 1258 // we jump to it the target gets deoptimized. Similar to 1
duke@435 1259 // we will wind up in the interprter (thru a c2i with c2).
duke@435 1260 //
duke@435 1261 address call_addr = NULL;
duke@435 1262 {
duke@435 1263 // Get call instruction under lock because another thread may be
duke@435 1264 // busy patching it.
duke@435 1265 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@435 1266 // Location of call instruction
duke@435 1267 if (NativeCall::is_call_before(pc)) {
duke@435 1268 NativeCall *ncall = nativeCall_before(pc);
duke@435 1269 call_addr = ncall->instruction_address();
duke@435 1270 }
duke@435 1271 }
duke@435 1272
duke@435 1273 // Check for static or virtual call
duke@435 1274 bool is_static_call = false;
duke@435 1275 nmethod* caller_nm = CodeCache::find_nmethod(pc);
duke@435 1276 // Make sure nmethod doesn't get deoptimized and removed until
duke@435 1277 // this is done with it.
duke@435 1278 // CLEANUP - with lazy deopt shouldn't need this lock
duke@435 1279 nmethodLocker nmlock(caller_nm);
duke@435 1280
duke@435 1281 if (call_addr != NULL) {
duke@435 1282 RelocIterator iter(caller_nm, call_addr, call_addr+1);
duke@435 1283 int ret = iter.next(); // Get item
duke@435 1284 if (ret) {
duke@435 1285 assert(iter.addr() == call_addr, "must find call");
duke@435 1286 if (iter.type() == relocInfo::static_call_type) {
duke@435 1287 is_static_call = true;
duke@435 1288 } else {
duke@435 1289 assert(iter.type() == relocInfo::virtual_call_type ||
duke@435 1290 iter.type() == relocInfo::opt_virtual_call_type
duke@435 1291 , "unexpected relocInfo. type");
duke@435 1292 }
duke@435 1293 } else {
duke@435 1294 assert(!UseInlineCaches, "relocation info. must exist for this address");
duke@435 1295 }
duke@435 1296
duke@435 1297 // Cleaning the inline cache will force a new resolve. This is more robust
duke@435 1298 // than directly setting it to the new destination, since resolving of calls
duke@435 1299 // is always done through the same code path. (experience shows that it
duke@435 1300 // leads to very hard to track down bugs, if an inline cache gets updated
duke@435 1301 // to a wrong method). It should not be performance critical, since the
duke@435 1302 // resolve is only done once.
duke@435 1303
duke@435 1304 MutexLocker ml(CompiledIC_lock);
duke@435 1305 //
duke@435 1306 // We do not patch the call site if the nmethod has been made non-entrant
duke@435 1307 // as it is a waste of time
duke@435 1308 //
duke@435 1309 if (caller_nm->is_in_use()) {
duke@435 1310 if (is_static_call) {
duke@435 1311 CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
duke@435 1312 ssc->set_to_clean();
duke@435 1313 } else {
duke@435 1314 // compiled, dispatched call (which used to call an interpreted method)
duke@435 1315 CompiledIC* inline_cache = CompiledIC_at(call_addr);
duke@435 1316 inline_cache->set_to_clean();
duke@435 1317 }
duke@435 1318 }
duke@435 1319 }
duke@435 1320
duke@435 1321 }
duke@435 1322
duke@435 1323 methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
duke@435 1324
duke@435 1325
duke@435 1326 #ifndef PRODUCT
duke@435 1327 Atomic::inc(&_wrong_method_ctr);
duke@435 1328
duke@435 1329 if (TraceCallFixup) {
duke@435 1330 ResourceMark rm(thread);
duke@435 1331 tty->print("handle_wrong_method reresolving call to");
duke@435 1332 callee_method->print_short_name(tty);
duke@435 1333 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1334 }
duke@435 1335 #endif
duke@435 1336
duke@435 1337 return callee_method;
duke@435 1338 }
duke@435 1339
duke@435 1340 // ---------------------------------------------------------------------------
duke@435 1341 // We are calling the interpreter via a c2i. Normally this would mean that
duke@435 1342 // we were called by a compiled method. However we could have lost a race
duke@435 1343 // where we went int -> i2c -> c2i and so the caller could in fact be
duke@435 1344 // interpreted. If the caller is compiled we attampt to patch the caller
duke@435 1345 // so he no longer calls into the interpreter.
duke@435 1346 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
duke@435 1347 methodOop moop(method);
duke@435 1348
duke@435 1349 address entry_point = moop->from_compiled_entry();
duke@435 1350
duke@435 1351 // It's possible that deoptimization can occur at a call site which hasn't
duke@435 1352 // been resolved yet, in which case this function will be called from
duke@435 1353 // an nmethod that has been patched for deopt and we can ignore the
duke@435 1354 // request for a fixup.
duke@435 1355 // Also it is possible that we lost a race in that from_compiled_entry
duke@435 1356 // is now back to the i2c in that case we don't need to patch and if
duke@435 1357 // we did we'd leap into space because the callsite needs to use
duke@435 1358 // "to interpreter" stub in order to load up the methodOop. Don't
duke@435 1359 // ask me how I know this...
duke@435 1360 //
duke@435 1361
duke@435 1362 CodeBlob* cb = CodeCache::find_blob(caller_pc);
duke@435 1363 if ( !cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
duke@435 1364 return;
duke@435 1365 }
duke@435 1366
duke@435 1367 // There is a benign race here. We could be attempting to patch to a compiled
duke@435 1368 // entry point at the same time the callee is being deoptimized. If that is
duke@435 1369 // the case then entry_point may in fact point to a c2i and we'd patch the
duke@435 1370 // call site with the same old data. clear_code will set code() to NULL
duke@435 1371 // at the end of it. If we happen to see that NULL then we can skip trying
duke@435 1372 // to patch. If we hit the window where the callee has a c2i in the
duke@435 1373 // from_compiled_entry and the NULL isn't present yet then we lose the race
duke@435 1374 // and patch the code with the same old data. Asi es la vida.
duke@435 1375
duke@435 1376 if (moop->code() == NULL) return;
duke@435 1377
duke@435 1378 if (((nmethod*)cb)->is_in_use()) {
duke@435 1379
duke@435 1380 // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
duke@435 1381 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@435 1382 if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
duke@435 1383 NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
duke@435 1384 //
duke@435 1385 // bug 6281185. We might get here after resolving a call site to a vanilla
duke@435 1386 // virtual call. Because the resolvee uses the verified entry it may then
duke@435 1387 // see compiled code and attempt to patch the site by calling us. This would
duke@435 1388 // then incorrectly convert the call site to optimized and its downhill from
duke@435 1389 // there. If you're lucky you'll get the assert in the bugid, if not you've
duke@435 1390 // just made a call site that could be megamorphic into a monomorphic site
duke@435 1391 // for the rest of its life! Just another racing bug in the life of
duke@435 1392 // fixup_callers_callsite ...
duke@435 1393 //
duke@435 1394 RelocIterator iter(cb, call->instruction_address(), call->next_instruction_address());
duke@435 1395 iter.next();
duke@435 1396 assert(iter.has_current(), "must have a reloc at java call site");
duke@435 1397 relocInfo::relocType typ = iter.reloc()->type();
duke@435 1398 if ( typ != relocInfo::static_call_type &&
duke@435 1399 typ != relocInfo::opt_virtual_call_type &&
duke@435 1400 typ != relocInfo::static_stub_type) {
duke@435 1401 return;
duke@435 1402 }
duke@435 1403 address destination = call->destination();
duke@435 1404 if (destination != entry_point) {
duke@435 1405 CodeBlob* callee = CodeCache::find_blob(destination);
duke@435 1406 // callee == cb seems weird. It means calling interpreter thru stub.
duke@435 1407 if (callee == cb || callee->is_adapter_blob()) {
duke@435 1408 // static call or optimized virtual
duke@435 1409 if (TraceCallFixup) {
duke@435 1410 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1411 moop->print_short_name(tty);
duke@435 1412 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1413 }
duke@435 1414 call->set_destination_mt_safe(entry_point);
duke@435 1415 } else {
duke@435 1416 if (TraceCallFixup) {
duke@435 1417 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1418 moop->print_short_name(tty);
duke@435 1419 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1420 }
duke@435 1421 // assert is too strong could also be resolve destinations.
duke@435 1422 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
duke@435 1423 }
duke@435 1424 } else {
duke@435 1425 if (TraceCallFixup) {
duke@435 1426 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1427 moop->print_short_name(tty);
duke@435 1428 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1429 }
duke@435 1430 }
duke@435 1431 }
duke@435 1432 }
duke@435 1433
duke@435 1434 IRT_END
duke@435 1435
duke@435 1436
duke@435 1437 // same as JVM_Arraycopy, but called directly from compiled code
duke@435 1438 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos,
duke@435 1439 oopDesc* dest, jint dest_pos,
duke@435 1440 jint length,
duke@435 1441 JavaThread* thread)) {
duke@435 1442 #ifndef PRODUCT
duke@435 1443 _slow_array_copy_ctr++;
duke@435 1444 #endif
duke@435 1445 // Check if we have null pointers
duke@435 1446 if (src == NULL || dest == NULL) {
duke@435 1447 THROW(vmSymbols::java_lang_NullPointerException());
duke@435 1448 }
duke@435 1449 // Do the copy. The casts to arrayOop are necessary to the copy_array API,
duke@435 1450 // even though the copy_array API also performs dynamic checks to ensure
duke@435 1451 // that src and dest are truly arrays (and are conformable).
duke@435 1452 // The copy_array mechanism is awkward and could be removed, but
duke@435 1453 // the compilers don't call this function except as a last resort,
duke@435 1454 // so it probably doesn't matter.
duke@435 1455 Klass::cast(src->klass())->copy_array((arrayOopDesc*)src, src_pos,
duke@435 1456 (arrayOopDesc*)dest, dest_pos,
duke@435 1457 length, thread);
duke@435 1458 }
duke@435 1459 JRT_END
duke@435 1460
duke@435 1461 char* SharedRuntime::generate_class_cast_message(
duke@435 1462 JavaThread* thread, const char* objName) {
duke@435 1463
duke@435 1464 // Get target class name from the checkcast instruction
duke@435 1465 vframeStream vfst(thread, true);
duke@435 1466 assert(!vfst.at_end(), "Java frame must exist");
duke@435 1467 Bytecode_checkcast* cc = Bytecode_checkcast_at(
duke@435 1468 vfst.method()->bcp_from(vfst.bci()));
duke@435 1469 Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
duke@435 1470 cc->index(), thread));
duke@435 1471 return generate_class_cast_message(objName, targetKlass->external_name());
duke@435 1472 }
duke@435 1473
duke@435 1474 char* SharedRuntime::generate_class_cast_message(
duke@435 1475 const char* objName, const char* targetKlassName) {
duke@435 1476 const char* desc = " cannot be cast to ";
duke@435 1477 size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
duke@435 1478
kamg@488 1479 char* message = NEW_RESOURCE_ARRAY(char, msglen);
duke@435 1480 if (NULL == message) {
kamg@488 1481 // Shouldn't happen, but don't cause even more problems if it does
duke@435 1482 message = const_cast<char*>(objName);
duke@435 1483 } else {
duke@435 1484 jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
duke@435 1485 }
duke@435 1486 return message;
duke@435 1487 }
duke@435 1488
duke@435 1489 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
duke@435 1490 (void) JavaThread::current()->reguard_stack();
duke@435 1491 JRT_END
duke@435 1492
duke@435 1493
duke@435 1494 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
duke@435 1495 #ifndef PRODUCT
duke@435 1496 int SharedRuntime::_monitor_enter_ctr=0;
duke@435 1497 #endif
duke@435 1498 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
duke@435 1499 oop obj(_obj);
duke@435 1500 #ifndef PRODUCT
duke@435 1501 _monitor_enter_ctr++; // monitor enter slow
duke@435 1502 #endif
duke@435 1503 if (PrintBiasedLockingStatistics) {
duke@435 1504 Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
duke@435 1505 }
duke@435 1506 Handle h_obj(THREAD, obj);
duke@435 1507 if (UseBiasedLocking) {
duke@435 1508 // Retry fast entry if bias is revoked to avoid unnecessary inflation
duke@435 1509 ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
duke@435 1510 } else {
duke@435 1511 ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
duke@435 1512 }
duke@435 1513 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
duke@435 1514 JRT_END
duke@435 1515
duke@435 1516 #ifndef PRODUCT
duke@435 1517 int SharedRuntime::_monitor_exit_ctr=0;
duke@435 1518 #endif
duke@435 1519 // Handles the uncommon cases of monitor unlocking in compiled code
duke@435 1520 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
duke@435 1521 oop obj(_obj);
duke@435 1522 #ifndef PRODUCT
duke@435 1523 _monitor_exit_ctr++; // monitor exit slow
duke@435 1524 #endif
duke@435 1525 Thread* THREAD = JavaThread::current();
duke@435 1526 // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
duke@435 1527 // testing was unable to ever fire the assert that guarded it so I have removed it.
duke@435 1528 assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
duke@435 1529 #undef MIGHT_HAVE_PENDING
duke@435 1530 #ifdef MIGHT_HAVE_PENDING
duke@435 1531 // Save and restore any pending_exception around the exception mark.
duke@435 1532 // While the slow_exit must not throw an exception, we could come into
duke@435 1533 // this routine with one set.
duke@435 1534 oop pending_excep = NULL;
duke@435 1535 const char* pending_file;
duke@435 1536 int pending_line;
duke@435 1537 if (HAS_PENDING_EXCEPTION) {
duke@435 1538 pending_excep = PENDING_EXCEPTION;
duke@435 1539 pending_file = THREAD->exception_file();
duke@435 1540 pending_line = THREAD->exception_line();
duke@435 1541 CLEAR_PENDING_EXCEPTION;
duke@435 1542 }
duke@435 1543 #endif /* MIGHT_HAVE_PENDING */
duke@435 1544
duke@435 1545 {
duke@435 1546 // Exit must be non-blocking, and therefore no exceptions can be thrown.
duke@435 1547 EXCEPTION_MARK;
duke@435 1548 ObjectSynchronizer::slow_exit(obj, lock, THREAD);
duke@435 1549 }
duke@435 1550
duke@435 1551 #ifdef MIGHT_HAVE_PENDING
duke@435 1552 if (pending_excep != NULL) {
duke@435 1553 THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
duke@435 1554 }
duke@435 1555 #endif /* MIGHT_HAVE_PENDING */
duke@435 1556 JRT_END
duke@435 1557
duke@435 1558 #ifndef PRODUCT
duke@435 1559
duke@435 1560 void SharedRuntime::print_statistics() {
duke@435 1561 ttyLocker ttyl;
duke@435 1562 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'");
duke@435 1563
duke@435 1564 if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow", _monitor_enter_ctr);
duke@435 1565 if (_monitor_exit_ctr ) tty->print_cr("%5d monitor exit slow", _monitor_exit_ctr);
duke@435 1566 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
duke@435 1567
duke@435 1568 SharedRuntime::print_ic_miss_histogram();
duke@435 1569
duke@435 1570 if (CountRemovableExceptions) {
duke@435 1571 if (_nof_removable_exceptions > 0) {
duke@435 1572 Unimplemented(); // this counter is not yet incremented
duke@435 1573 tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
duke@435 1574 }
duke@435 1575 }
duke@435 1576
duke@435 1577 // Dump the JRT_ENTRY counters
duke@435 1578 if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
duke@435 1579 if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
duke@435 1580 if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
duke@435 1581 if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
duke@435 1582 if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
duke@435 1583 if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
duke@435 1584 if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
duke@435 1585
duke@435 1586 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
duke@435 1587 tty->print_cr("%5d wrong method", _wrong_method_ctr );
duke@435 1588 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
duke@435 1589 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
duke@435 1590 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
duke@435 1591
duke@435 1592 if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
duke@435 1593 if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
duke@435 1594 if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
duke@435 1595 if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
duke@435 1596 if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
duke@435 1597 if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
duke@435 1598 if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
duke@435 1599 if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
duke@435 1600 if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
duke@435 1601 if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
duke@435 1602 if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
duke@435 1603 if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
duke@435 1604 if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
duke@435 1605 if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
duke@435 1606 if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
duke@435 1607 if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
duke@435 1608
duke@435 1609 if (xtty != NULL) xtty->tail("statistics");
duke@435 1610 }
duke@435 1611
duke@435 1612 inline double percent(int x, int y) {
duke@435 1613 return 100.0 * x / MAX2(y, 1);
duke@435 1614 }
duke@435 1615
duke@435 1616 class MethodArityHistogram {
duke@435 1617 public:
duke@435 1618 enum { MAX_ARITY = 256 };
duke@435 1619 private:
duke@435 1620 static int _arity_histogram[MAX_ARITY]; // histogram of #args
duke@435 1621 static int _size_histogram[MAX_ARITY]; // histogram of arg size in words
duke@435 1622 static int _max_arity; // max. arity seen
duke@435 1623 static int _max_size; // max. arg size seen
duke@435 1624
duke@435 1625 static void add_method_to_histogram(nmethod* nm) {
duke@435 1626 methodOop m = nm->method();
duke@435 1627 ArgumentCount args(m->signature());
duke@435 1628 int arity = args.size() + (m->is_static() ? 0 : 1);
duke@435 1629 int argsize = m->size_of_parameters();
duke@435 1630 arity = MIN2(arity, MAX_ARITY-1);
duke@435 1631 argsize = MIN2(argsize, MAX_ARITY-1);
duke@435 1632 int count = nm->method()->compiled_invocation_count();
duke@435 1633 _arity_histogram[arity] += count;
duke@435 1634 _size_histogram[argsize] += count;
duke@435 1635 _max_arity = MAX2(_max_arity, arity);
duke@435 1636 _max_size = MAX2(_max_size, argsize);
duke@435 1637 }
duke@435 1638
duke@435 1639 void print_histogram_helper(int n, int* histo, const char* name) {
duke@435 1640 const int N = MIN2(5, n);
duke@435 1641 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@435 1642 double sum = 0;
duke@435 1643 double weighted_sum = 0;
duke@435 1644 int i;
duke@435 1645 for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
duke@435 1646 double rest = sum;
duke@435 1647 double percent = sum / 100;
duke@435 1648 for (i = 0; i <= N; i++) {
duke@435 1649 rest -= histo[i];
duke@435 1650 tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
duke@435 1651 }
duke@435 1652 tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
duke@435 1653 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
duke@435 1654 }
duke@435 1655
duke@435 1656 void print_histogram() {
duke@435 1657 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@435 1658 print_histogram_helper(_max_arity, _arity_histogram, "arity");
duke@435 1659 tty->print_cr("\nSame for parameter size (in words):");
duke@435 1660 print_histogram_helper(_max_size, _size_histogram, "size");
duke@435 1661 tty->cr();
duke@435 1662 }
duke@435 1663
duke@435 1664 public:
duke@435 1665 MethodArityHistogram() {
duke@435 1666 MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
duke@435 1667 _max_arity = _max_size = 0;
duke@435 1668 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
duke@435 1669 CodeCache::nmethods_do(add_method_to_histogram);
duke@435 1670 print_histogram();
duke@435 1671 }
duke@435 1672 };
duke@435 1673
duke@435 1674 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
duke@435 1675 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
duke@435 1676 int MethodArityHistogram::_max_arity;
duke@435 1677 int MethodArityHistogram::_max_size;
duke@435 1678
duke@435 1679 void SharedRuntime::print_call_statistics(int comp_total) {
duke@435 1680 tty->print_cr("Calls from compiled code:");
duke@435 1681 int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
duke@435 1682 int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
duke@435 1683 int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
duke@435 1684 tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total));
duke@435 1685 tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total));
duke@435 1686 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
duke@435 1687 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
duke@435 1688 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls));
duke@435 1689 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
duke@435 1690 tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total));
duke@435 1691 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
duke@435 1692 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
duke@435 1693 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls));
duke@435 1694 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
duke@435 1695 tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
duke@435 1696 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
duke@435 1697 tty->cr();
duke@435 1698 tty->print_cr("Note 1: counter updates are not MT-safe.");
duke@435 1699 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
duke@435 1700 tty->print_cr(" %% in nested categories are relative to their category");
duke@435 1701 tty->print_cr(" (and thus add up to more than 100%% with inlining)");
duke@435 1702 tty->cr();
duke@435 1703
duke@435 1704 MethodArityHistogram h;
duke@435 1705 }
duke@435 1706 #endif
duke@435 1707
duke@435 1708
duke@435 1709 // ---------------------------------------------------------------------------
duke@435 1710 // Implementation of AdapterHandlerLibrary
duke@435 1711 const char* AdapterHandlerEntry::name = "I2C/C2I adapters";
duke@435 1712 GrowableArray<uint64_t>* AdapterHandlerLibrary::_fingerprints = NULL;
duke@435 1713 GrowableArray<AdapterHandlerEntry* >* AdapterHandlerLibrary::_handlers = NULL;
duke@435 1714 const int AdapterHandlerLibrary_size = 16*K;
duke@435 1715 u_char AdapterHandlerLibrary::_buffer[AdapterHandlerLibrary_size + 32];
duke@435 1716
duke@435 1717 void AdapterHandlerLibrary::initialize() {
duke@435 1718 if (_fingerprints != NULL) return;
duke@435 1719 _fingerprints = new(ResourceObj::C_HEAP)GrowableArray<uint64_t>(32, true);
duke@435 1720 _handlers = new(ResourceObj::C_HEAP)GrowableArray<AdapterHandlerEntry*>(32, true);
duke@435 1721 // Index 0 reserved for the slow path handler
duke@435 1722 _fingerprints->append(0/*the never-allowed 0 fingerprint*/);
duke@435 1723 _handlers->append(NULL);
duke@435 1724
duke@435 1725 // Create a special handler for abstract methods. Abstract methods
duke@435 1726 // are never compiled so an i2c entry is somewhat meaningless, but
duke@435 1727 // fill it in with something appropriate just in case. Pass handle
duke@435 1728 // wrong method for the c2i transitions.
duke@435 1729 address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
duke@435 1730 _fingerprints->append(0/*the never-allowed 0 fingerprint*/);
duke@435 1731 assert(_handlers->length() == AbstractMethodHandler, "in wrong slot");
duke@435 1732 _handlers->append(new AdapterHandlerEntry(StubRoutines::throw_AbstractMethodError_entry(),
duke@435 1733 wrong_method, wrong_method));
duke@435 1734 }
duke@435 1735
duke@435 1736 int AdapterHandlerLibrary::get_create_adapter_index(methodHandle method) {
duke@435 1737 // Use customized signature handler. Need to lock around updates to the
duke@435 1738 // _fingerprints array (it is not safe for concurrent readers and a single
duke@435 1739 // writer: this can be fixed if it becomes a problem).
duke@435 1740
duke@435 1741 // Get the address of the ic_miss handlers before we grab the
duke@435 1742 // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
duke@435 1743 // was caused by the initialization of the stubs happening
duke@435 1744 // while we held the lock and then notifying jvmti while
duke@435 1745 // holding it. This just forces the initialization to be a little
duke@435 1746 // earlier.
duke@435 1747 address ic_miss = SharedRuntime::get_ic_miss_stub();
duke@435 1748 assert(ic_miss != NULL, "must have handler");
duke@435 1749
duke@435 1750 int result;
duke@435 1751 BufferBlob *B = NULL;
duke@435 1752 uint64_t fingerprint;
duke@435 1753 {
duke@435 1754 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@435 1755 // make sure data structure is initialized
duke@435 1756 initialize();
duke@435 1757
duke@435 1758 if (method->is_abstract()) {
duke@435 1759 return AbstractMethodHandler;
duke@435 1760 }
duke@435 1761
duke@435 1762 // Lookup method signature's fingerprint
duke@435 1763 fingerprint = Fingerprinter(method).fingerprint();
duke@435 1764 assert( fingerprint != CONST64( 0), "no zero fingerprints allowed" );
duke@435 1765 // Fingerprints are small fixed-size condensed representations of
duke@435 1766 // signatures. If the signature is too large, it won't fit in a
duke@435 1767 // fingerprint. Signatures which cannot support a fingerprint get a new i2c
duke@435 1768 // adapter gen'd each time, instead of searching the cache for one. This -1
duke@435 1769 // game can be avoided if I compared signatures instead of using
duke@435 1770 // fingerprints. However, -1 fingerprints are very rare.
duke@435 1771 if( fingerprint != UCONST64(-1) ) { // If this is a cache-able fingerprint
duke@435 1772 // Turns out i2c adapters do not care what the return value is. Mask it
duke@435 1773 // out so signatures that only differ in return type will share the same
duke@435 1774 // adapter.
duke@435 1775 fingerprint &= ~(SignatureIterator::result_feature_mask << SignatureIterator::static_feature_size);
duke@435 1776 // Search for a prior existing i2c/c2i adapter
duke@435 1777 int index = _fingerprints->find(fingerprint);
duke@435 1778 if( index >= 0 ) return index; // Found existing handlers?
duke@435 1779 } else {
duke@435 1780 // Annoyingly, I end up adding -1 fingerprints to the array of handlers,
duke@435 1781 // because I need a unique handler index. It cannot be scanned for
duke@435 1782 // because all -1's look alike. Instead, the matching index is passed out
duke@435 1783 // and immediately used to collect the 2 return values (the c2i and i2c
duke@435 1784 // adapters).
duke@435 1785 }
duke@435 1786
duke@435 1787 // Create I2C & C2I handlers
duke@435 1788 ResourceMark rm;
duke@435 1789 // Improve alignment slightly
duke@435 1790 u_char *buf = (u_char*)(((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
duke@435 1791 CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
duke@435 1792 short buffer_locs[20];
duke@435 1793 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
duke@435 1794 sizeof(buffer_locs)/sizeof(relocInfo));
duke@435 1795 MacroAssembler _masm(&buffer);
duke@435 1796
duke@435 1797 // Fill in the signature array, for the calling-convention call.
duke@435 1798 int total_args_passed = method->size_of_parameters(); // All args on stack
duke@435 1799
duke@435 1800 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
duke@435 1801 VMRegPair * regs = NEW_RESOURCE_ARRAY(VMRegPair ,total_args_passed);
duke@435 1802 int i=0;
duke@435 1803 if( !method->is_static() ) // Pass in receiver first
duke@435 1804 sig_bt[i++] = T_OBJECT;
duke@435 1805 for( SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
duke@435 1806 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
duke@435 1807 if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
duke@435 1808 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
duke@435 1809 }
duke@435 1810 assert( i==total_args_passed, "" );
duke@435 1811
duke@435 1812 // Now get the re-packed compiled-Java layout.
duke@435 1813 int comp_args_on_stack;
duke@435 1814
duke@435 1815 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
duke@435 1816 comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
duke@435 1817
duke@435 1818 AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
duke@435 1819 total_args_passed,
duke@435 1820 comp_args_on_stack,
duke@435 1821 sig_bt,
duke@435 1822 regs);
duke@435 1823
duke@435 1824 B = BufferBlob::create(AdapterHandlerEntry::name, &buffer);
kvn@463 1825 if (B == NULL) {
kvn@463 1826 // CodeCache is full, disable compilation
kvn@463 1827 // Ought to log this but compile log is only per compile thread
kvn@463 1828 // and we're some non descript Java thread.
kvn@463 1829 UseInterpreter = true;
kvn@463 1830 if (UseCompiler || AlwaysCompileLoopMethods ) {
kvn@463 1831 #ifndef PRODUCT
kvn@463 1832 warning("CodeCache is full. Compiler has been disabled");
kvn@463 1833 if (CompileTheWorld || ExitOnFullCodeCache) {
kvn@463 1834 before_exit(JavaThread::current());
kvn@463 1835 exit_globals(); // will delete tty
kvn@463 1836 vm_direct_exit(CompileTheWorld ? 0 : 1);
kvn@463 1837 }
kvn@463 1838 #endif
kvn@463 1839 UseCompiler = false;
kvn@463 1840 AlwaysCompileLoopMethods = false;
kvn@463 1841 }
kvn@463 1842 return 0; // Out of CodeCache space (_handlers[0] == NULL)
kvn@463 1843 }
duke@435 1844 entry->relocate(B->instructions_begin());
duke@435 1845 #ifndef PRODUCT
duke@435 1846 // debugging suppport
duke@435 1847 if (PrintAdapterHandlers) {
duke@435 1848 tty->cr();
duke@435 1849 tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = 0x%llx, %d bytes generated)",
duke@435 1850 _handlers->length(), (method->is_static() ? "static" : "receiver"),
duke@435 1851 method->signature()->as_C_string(), fingerprint, buffer.code_size() );
duke@435 1852 tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
duke@435 1853 Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + buffer.code_size());
duke@435 1854 }
duke@435 1855 #endif
duke@435 1856
duke@435 1857 // add handlers to library
duke@435 1858 _fingerprints->append(fingerprint);
duke@435 1859 _handlers->append(entry);
duke@435 1860 // set handler index
duke@435 1861 assert(_fingerprints->length() == _handlers->length(), "sanity check");
duke@435 1862 result = _fingerprints->length() - 1;
duke@435 1863 }
duke@435 1864 // Outside of the lock
duke@435 1865 if (B != NULL) {
duke@435 1866 char blob_id[256];
duke@435 1867 jio_snprintf(blob_id,
duke@435 1868 sizeof(blob_id),
duke@435 1869 "%s(" PTR64_FORMAT ")@" PTR_FORMAT,
duke@435 1870 AdapterHandlerEntry::name,
duke@435 1871 fingerprint,
duke@435 1872 B->instructions_begin());
duke@435 1873 VTune::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
duke@435 1874 Forte::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
duke@435 1875
duke@435 1876 if (JvmtiExport::should_post_dynamic_code_generated()) {
duke@435 1877 JvmtiExport::post_dynamic_code_generated(blob_id,
duke@435 1878 B->instructions_begin(),
duke@435 1879 B->instructions_end());
duke@435 1880 }
duke@435 1881 }
duke@435 1882 return result;
duke@435 1883 }
duke@435 1884
duke@435 1885 void AdapterHandlerEntry::relocate(address new_base) {
duke@435 1886 ptrdiff_t delta = new_base - _i2c_entry;
duke@435 1887 _i2c_entry += delta;
duke@435 1888 _c2i_entry += delta;
duke@435 1889 _c2i_unverified_entry += delta;
duke@435 1890 }
duke@435 1891
duke@435 1892 // Create a native wrapper for this native method. The wrapper converts the
duke@435 1893 // java compiled calling convention to the native convention, handlizes
duke@435 1894 // arguments, and transitions to native. On return from the native we transition
duke@435 1895 // back to java blocking if a safepoint is in progress.
duke@435 1896 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
duke@435 1897 ResourceMark rm;
duke@435 1898 nmethod* nm = NULL;
duke@435 1899
duke@435 1900 if (PrintCompilation) {
duke@435 1901 ttyLocker ttyl;
duke@435 1902 tty->print("--- n%s ", (method->is_synchronized() ? "s" : " "));
duke@435 1903 method->print_short_name(tty);
duke@435 1904 if (method->is_static()) {
duke@435 1905 tty->print(" (static)");
duke@435 1906 }
duke@435 1907 tty->cr();
duke@435 1908 }
duke@435 1909
duke@435 1910 assert(method->has_native_function(), "must have something valid to call!");
duke@435 1911
duke@435 1912 {
duke@435 1913 // perform the work while holding the lock, but perform any printing outside the lock
duke@435 1914 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@435 1915 // See if somebody beat us to it
duke@435 1916 nm = method->code();
duke@435 1917 if (nm) {
duke@435 1918 return nm;
duke@435 1919 }
duke@435 1920
duke@435 1921 // Improve alignment slightly
duke@435 1922 u_char* buf = (u_char*)(((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
duke@435 1923 CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
duke@435 1924 // Need a few relocation entries
duke@435 1925 double locs_buf[20];
duke@435 1926 buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
duke@435 1927 MacroAssembler _masm(&buffer);
duke@435 1928
duke@435 1929 // Fill in the signature array, for the calling-convention call.
duke@435 1930 int total_args_passed = method->size_of_parameters();
duke@435 1931
duke@435 1932 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
duke@435 1933 VMRegPair * regs = NEW_RESOURCE_ARRAY(VMRegPair ,total_args_passed);
duke@435 1934 int i=0;
duke@435 1935 if( !method->is_static() ) // Pass in receiver first
duke@435 1936 sig_bt[i++] = T_OBJECT;
duke@435 1937 SignatureStream ss(method->signature());
duke@435 1938 for( ; !ss.at_return_type(); ss.next()) {
duke@435 1939 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
duke@435 1940 if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
duke@435 1941 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
duke@435 1942 }
duke@435 1943 assert( i==total_args_passed, "" );
duke@435 1944 BasicType ret_type = ss.type();
duke@435 1945
duke@435 1946 // Now get the compiled-Java layout as input arguments
duke@435 1947 int comp_args_on_stack;
duke@435 1948 comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
duke@435 1949
duke@435 1950 // Generate the compiled-to-native wrapper code
duke@435 1951 nm = SharedRuntime::generate_native_wrapper(&_masm,
duke@435 1952 method,
duke@435 1953 total_args_passed,
duke@435 1954 comp_args_on_stack,
duke@435 1955 sig_bt,regs,
duke@435 1956 ret_type);
duke@435 1957 }
duke@435 1958
duke@435 1959 // Must unlock before calling set_code
duke@435 1960 // Install the generated code.
duke@435 1961 if (nm != NULL) {
duke@435 1962 method->set_code(method, nm);
duke@435 1963 nm->post_compiled_method_load_event();
duke@435 1964 } else {
duke@435 1965 // CodeCache is full, disable compilation
duke@435 1966 // Ought to log this but compile log is only per compile thread
duke@435 1967 // and we're some non descript Java thread.
duke@435 1968 UseInterpreter = true;
duke@435 1969 if (UseCompiler || AlwaysCompileLoopMethods ) {
duke@435 1970 #ifndef PRODUCT
duke@435 1971 warning("CodeCache is full. Compiler has been disabled");
duke@435 1972 if (CompileTheWorld || ExitOnFullCodeCache) {
duke@435 1973 before_exit(JavaThread::current());
duke@435 1974 exit_globals(); // will delete tty
duke@435 1975 vm_direct_exit(CompileTheWorld ? 0 : 1);
duke@435 1976 }
duke@435 1977 #endif
duke@435 1978 UseCompiler = false;
duke@435 1979 AlwaysCompileLoopMethods = false;
duke@435 1980 }
duke@435 1981 }
duke@435 1982 return nm;
duke@435 1983 }
duke@435 1984
kamg@551 1985 #ifdef HAVE_DTRACE_H
kamg@551 1986 // Create a dtrace nmethod for this method. The wrapper converts the
kamg@551 1987 // java compiled calling convention to the native convention, makes a dummy call
kamg@551 1988 // (actually nops for the size of the call instruction, which become a trap if
kamg@551 1989 // probe is enabled). The returns to the caller. Since this all looks like a
kamg@551 1990 // leaf no thread transition is needed.
kamg@551 1991
kamg@551 1992 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
kamg@551 1993 ResourceMark rm;
kamg@551 1994 nmethod* nm = NULL;
kamg@551 1995
kamg@551 1996 if (PrintCompilation) {
kamg@551 1997 ttyLocker ttyl;
kamg@551 1998 tty->print("--- n%s ");
kamg@551 1999 method->print_short_name(tty);
kamg@551 2000 if (method->is_static()) {
kamg@551 2001 tty->print(" (static)");
kamg@551 2002 }
kamg@551 2003 tty->cr();
kamg@551 2004 }
kamg@551 2005
kamg@551 2006 {
kamg@551 2007 // perform the work while holding the lock, but perform any printing
kamg@551 2008 // outside the lock
kamg@551 2009 MutexLocker mu(AdapterHandlerLibrary_lock);
kamg@551 2010 // See if somebody beat us to it
kamg@551 2011 nm = method->code();
kamg@551 2012 if (nm) {
kamg@551 2013 return nm;
kamg@551 2014 }
kamg@551 2015
kamg@551 2016 // Improve alignment slightly
kamg@551 2017 u_char* buf = (u_char*)
kamg@551 2018 (((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
kamg@551 2019 CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
kamg@551 2020 // Need a few relocation entries
kamg@551 2021 double locs_buf[20];
kamg@551 2022 buffer.insts()->initialize_shared_locs(
kamg@551 2023 (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
kamg@551 2024 MacroAssembler _masm(&buffer);
kamg@551 2025
kamg@551 2026 // Generate the compiled-to-native wrapper code
kamg@551 2027 nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
kamg@551 2028 }
kamg@551 2029 return nm;
kamg@551 2030 }
kamg@551 2031
kamg@551 2032 // the dtrace method needs to convert java lang string to utf8 string.
kamg@551 2033 void SharedRuntime::get_utf(oopDesc* src, address dst) {
kamg@551 2034 typeArrayOop jlsValue = java_lang_String::value(src);
kamg@551 2035 int jlsOffset = java_lang_String::offset(src);
kamg@551 2036 int jlsLen = java_lang_String::length(src);
kamg@551 2037 jchar* jlsPos = (jlsLen == 0) ? NULL :
kamg@551 2038 jlsValue->char_at_addr(jlsOffset);
kamg@551 2039 (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
kamg@551 2040 }
kamg@551 2041 #endif // ndef HAVE_DTRACE_H
kamg@551 2042
duke@435 2043 // -------------------------------------------------------------------------
duke@435 2044 // Java-Java calling convention
duke@435 2045 // (what you use when Java calls Java)
duke@435 2046
duke@435 2047 //------------------------------name_for_receiver----------------------------------
duke@435 2048 // For a given signature, return the VMReg for parameter 0.
duke@435 2049 VMReg SharedRuntime::name_for_receiver() {
duke@435 2050 VMRegPair regs;
duke@435 2051 BasicType sig_bt = T_OBJECT;
duke@435 2052 (void) java_calling_convention(&sig_bt, &regs, 1, true);
duke@435 2053 // Return argument 0 register. In the LP64 build pointers
duke@435 2054 // take 2 registers, but the VM wants only the 'main' name.
duke@435 2055 return regs.first();
duke@435 2056 }
duke@435 2057
duke@435 2058 VMRegPair *SharedRuntime::find_callee_arguments(symbolOop sig, bool is_static, int* arg_size) {
duke@435 2059 // This method is returning a data structure allocating as a
duke@435 2060 // ResourceObject, so do not put any ResourceMarks in here.
duke@435 2061 char *s = sig->as_C_string();
duke@435 2062 int len = (int)strlen(s);
duke@435 2063 *s++; len--; // Skip opening paren
duke@435 2064 char *t = s+len;
duke@435 2065 while( *(--t) != ')' ) ; // Find close paren
duke@435 2066
duke@435 2067 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
duke@435 2068 VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
duke@435 2069 int cnt = 0;
duke@435 2070 if (!is_static) {
duke@435 2071 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
duke@435 2072 }
duke@435 2073
duke@435 2074 while( s < t ) {
duke@435 2075 switch( *s++ ) { // Switch on signature character
duke@435 2076 case 'B': sig_bt[cnt++] = T_BYTE; break;
duke@435 2077 case 'C': sig_bt[cnt++] = T_CHAR; break;
duke@435 2078 case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break;
duke@435 2079 case 'F': sig_bt[cnt++] = T_FLOAT; break;
duke@435 2080 case 'I': sig_bt[cnt++] = T_INT; break;
duke@435 2081 case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break;
duke@435 2082 case 'S': sig_bt[cnt++] = T_SHORT; break;
duke@435 2083 case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
duke@435 2084 case 'V': sig_bt[cnt++] = T_VOID; break;
duke@435 2085 case 'L': // Oop
duke@435 2086 while( *s++ != ';' ) ; // Skip signature
duke@435 2087 sig_bt[cnt++] = T_OBJECT;
duke@435 2088 break;
duke@435 2089 case '[': { // Array
duke@435 2090 do { // Skip optional size
duke@435 2091 while( *s >= '0' && *s <= '9' ) s++;
duke@435 2092 } while( *s++ == '[' ); // Nested arrays?
duke@435 2093 // Skip element type
duke@435 2094 if( s[-1] == 'L' )
duke@435 2095 while( *s++ != ';' ) ; // Skip signature
duke@435 2096 sig_bt[cnt++] = T_ARRAY;
duke@435 2097 break;
duke@435 2098 }
duke@435 2099 default : ShouldNotReachHere();
duke@435 2100 }
duke@435 2101 }
duke@435 2102 assert( cnt < 256, "grow table size" );
duke@435 2103
duke@435 2104 int comp_args_on_stack;
duke@435 2105 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
duke@435 2106
duke@435 2107 // the calling convention doesn't count out_preserve_stack_slots so
duke@435 2108 // we must add that in to get "true" stack offsets.
duke@435 2109
duke@435 2110 if (comp_args_on_stack) {
duke@435 2111 for (int i = 0; i < cnt; i++) {
duke@435 2112 VMReg reg1 = regs[i].first();
duke@435 2113 if( reg1->is_stack()) {
duke@435 2114 // Yuck
duke@435 2115 reg1 = reg1->bias(out_preserve_stack_slots());
duke@435 2116 }
duke@435 2117 VMReg reg2 = regs[i].second();
duke@435 2118 if( reg2->is_stack()) {
duke@435 2119 // Yuck
duke@435 2120 reg2 = reg2->bias(out_preserve_stack_slots());
duke@435 2121 }
duke@435 2122 regs[i].set_pair(reg2, reg1);
duke@435 2123 }
duke@435 2124 }
duke@435 2125
duke@435 2126 // results
duke@435 2127 *arg_size = cnt;
duke@435 2128 return regs;
duke@435 2129 }
duke@435 2130
duke@435 2131 // OSR Migration Code
duke@435 2132 //
duke@435 2133 // This code is used convert interpreter frames into compiled frames. It is
duke@435 2134 // called from very start of a compiled OSR nmethod. A temp array is
duke@435 2135 // allocated to hold the interesting bits of the interpreter frame. All
duke@435 2136 // active locks are inflated to allow them to move. The displaced headers and
duke@435 2137 // active interpeter locals are copied into the temp buffer. Then we return
duke@435 2138 // back to the compiled code. The compiled code then pops the current
duke@435 2139 // interpreter frame off the stack and pushes a new compiled frame. Then it
duke@435 2140 // copies the interpreter locals and displaced headers where it wants.
duke@435 2141 // Finally it calls back to free the temp buffer.
duke@435 2142 //
duke@435 2143 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
duke@435 2144
duke@435 2145 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
duke@435 2146
duke@435 2147 #ifdef IA64
duke@435 2148 ShouldNotReachHere(); // NYI
duke@435 2149 #endif /* IA64 */
duke@435 2150
duke@435 2151 //
duke@435 2152 // This code is dependent on the memory layout of the interpreter local
duke@435 2153 // array and the monitors. On all of our platforms the layout is identical
duke@435 2154 // so this code is shared. If some platform lays the their arrays out
duke@435 2155 // differently then this code could move to platform specific code or
duke@435 2156 // the code here could be modified to copy items one at a time using
duke@435 2157 // frame accessor methods and be platform independent.
duke@435 2158
duke@435 2159 frame fr = thread->last_frame();
duke@435 2160 assert( fr.is_interpreted_frame(), "" );
duke@435 2161 assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
duke@435 2162
duke@435 2163 // Figure out how many monitors are active.
duke@435 2164 int active_monitor_count = 0;
duke@435 2165 for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
duke@435 2166 kptr < fr.interpreter_frame_monitor_begin();
duke@435 2167 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
duke@435 2168 if( kptr->obj() != NULL ) active_monitor_count++;
duke@435 2169 }
duke@435 2170
duke@435 2171 // QQQ we could place number of active monitors in the array so that compiled code
duke@435 2172 // could double check it.
duke@435 2173
duke@435 2174 methodOop moop = fr.interpreter_frame_method();
duke@435 2175 int max_locals = moop->max_locals();
duke@435 2176 // Allocate temp buffer, 1 word per local & 2 per active monitor
duke@435 2177 int buf_size_words = max_locals + active_monitor_count*2;
duke@435 2178 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
duke@435 2179
duke@435 2180 // Copy the locals. Order is preserved so that loading of longs works.
duke@435 2181 // Since there's no GC I can copy the oops blindly.
duke@435 2182 assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
duke@435 2183 if (TaggedStackInterpreter) {
duke@435 2184 for (int i = 0; i < max_locals; i++) {
duke@435 2185 // copy only each local separately to the buffer avoiding the tag
duke@435 2186 buf[i] = *fr.interpreter_frame_local_at(max_locals-i-1);
duke@435 2187 }
duke@435 2188 } else {
duke@435 2189 Copy::disjoint_words(
duke@435 2190 (HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
duke@435 2191 (HeapWord*)&buf[0],
duke@435 2192 max_locals);
duke@435 2193 }
duke@435 2194
duke@435 2195 // Inflate locks. Copy the displaced headers. Be careful, there can be holes.
duke@435 2196 int i = max_locals;
duke@435 2197 for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
duke@435 2198 kptr2 < fr.interpreter_frame_monitor_begin();
duke@435 2199 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
duke@435 2200 if( kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array
duke@435 2201 BasicLock *lock = kptr2->lock();
duke@435 2202 // Inflate so the displaced header becomes position-independent
duke@435 2203 if (lock->displaced_header()->is_unlocked())
duke@435 2204 ObjectSynchronizer::inflate_helper(kptr2->obj());
duke@435 2205 // Now the displaced header is free to move
duke@435 2206 buf[i++] = (intptr_t)lock->displaced_header();
duke@435 2207 buf[i++] = (intptr_t)kptr2->obj();
duke@435 2208 }
duke@435 2209 }
duke@435 2210 assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
duke@435 2211
duke@435 2212 return buf;
duke@435 2213 JRT_END
duke@435 2214
duke@435 2215 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
duke@435 2216 FREE_C_HEAP_ARRAY(intptr_t,buf);
duke@435 2217 JRT_END
duke@435 2218
duke@435 2219 #ifndef PRODUCT
duke@435 2220 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
duke@435 2221
kvn@559 2222 if (_handlers == NULL) return false;
kvn@559 2223
duke@435 2224 for (int i = 0 ; i < _handlers->length() ; i++) {
duke@435 2225 AdapterHandlerEntry* a = get_entry(i);
duke@435 2226 if ( a != NULL && b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
duke@435 2227 }
duke@435 2228 return false;
duke@435 2229 }
duke@435 2230
duke@435 2231 void AdapterHandlerLibrary::print_handler(CodeBlob* b) {
duke@435 2232
duke@435 2233 for (int i = 0 ; i < _handlers->length() ; i++) {
duke@435 2234 AdapterHandlerEntry* a = get_entry(i);
duke@435 2235 if ( a != NULL && b == CodeCache::find_blob(a->get_i2c_entry()) ) {
duke@435 2236 tty->print("Adapter for signature: ");
duke@435 2237 // Fingerprinter::print(_fingerprints->at(i));
duke@435 2238 tty->print("0x%" FORMAT64_MODIFIER "x", _fingerprints->at(i));
duke@435 2239 tty->print_cr(" i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
duke@435 2240 a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
duke@435 2241
duke@435 2242 return;
duke@435 2243 }
duke@435 2244 }
duke@435 2245 assert(false, "Should have found handler");
duke@435 2246 }
duke@435 2247 #endif /* PRODUCT */

mercurial