src/share/vm/runtime/sharedRuntime.cpp

Wed, 05 Dec 2007 09:02:00 -0800

author
phh
date
Wed, 05 Dec 2007 09:02:00 -0800
changeset 453
c7d713375c94
parent 451
f8236e79048a
child 463
67914967a4b5
permissions
-rw-r--r--

6621621: HashMap front cache should be enabled only with AggressiveOpts
Reviewed-by: sbohne, xlu

duke@435 1 /*
duke@435 2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_sharedRuntime.cpp.incl"
duke@435 27 #include <math.h>
duke@435 28
duke@435 29 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
duke@435 30 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
duke@435 31 char*, int, char*, int, char*, int);
duke@435 32 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
duke@435 33 char*, int, char*, int, char*, int);
duke@435 34
duke@435 35 // Implementation of SharedRuntime
duke@435 36
duke@435 37 #ifndef PRODUCT
duke@435 38 // For statistics
duke@435 39 int SharedRuntime::_ic_miss_ctr = 0;
duke@435 40 int SharedRuntime::_wrong_method_ctr = 0;
duke@435 41 int SharedRuntime::_resolve_static_ctr = 0;
duke@435 42 int SharedRuntime::_resolve_virtual_ctr = 0;
duke@435 43 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
duke@435 44 int SharedRuntime::_implicit_null_throws = 0;
duke@435 45 int SharedRuntime::_implicit_div0_throws = 0;
duke@435 46 int SharedRuntime::_throw_null_ctr = 0;
duke@435 47
duke@435 48 int SharedRuntime::_nof_normal_calls = 0;
duke@435 49 int SharedRuntime::_nof_optimized_calls = 0;
duke@435 50 int SharedRuntime::_nof_inlined_calls = 0;
duke@435 51 int SharedRuntime::_nof_megamorphic_calls = 0;
duke@435 52 int SharedRuntime::_nof_static_calls = 0;
duke@435 53 int SharedRuntime::_nof_inlined_static_calls = 0;
duke@435 54 int SharedRuntime::_nof_interface_calls = 0;
duke@435 55 int SharedRuntime::_nof_optimized_interface_calls = 0;
duke@435 56 int SharedRuntime::_nof_inlined_interface_calls = 0;
duke@435 57 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
duke@435 58 int SharedRuntime::_nof_removable_exceptions = 0;
duke@435 59
duke@435 60 int SharedRuntime::_new_instance_ctr=0;
duke@435 61 int SharedRuntime::_new_array_ctr=0;
duke@435 62 int SharedRuntime::_multi1_ctr=0;
duke@435 63 int SharedRuntime::_multi2_ctr=0;
duke@435 64 int SharedRuntime::_multi3_ctr=0;
duke@435 65 int SharedRuntime::_multi4_ctr=0;
duke@435 66 int SharedRuntime::_multi5_ctr=0;
duke@435 67 int SharedRuntime::_mon_enter_stub_ctr=0;
duke@435 68 int SharedRuntime::_mon_exit_stub_ctr=0;
duke@435 69 int SharedRuntime::_mon_enter_ctr=0;
duke@435 70 int SharedRuntime::_mon_exit_ctr=0;
duke@435 71 int SharedRuntime::_partial_subtype_ctr=0;
duke@435 72 int SharedRuntime::_jbyte_array_copy_ctr=0;
duke@435 73 int SharedRuntime::_jshort_array_copy_ctr=0;
duke@435 74 int SharedRuntime::_jint_array_copy_ctr=0;
duke@435 75 int SharedRuntime::_jlong_array_copy_ctr=0;
duke@435 76 int SharedRuntime::_oop_array_copy_ctr=0;
duke@435 77 int SharedRuntime::_checkcast_array_copy_ctr=0;
duke@435 78 int SharedRuntime::_unsafe_array_copy_ctr=0;
duke@435 79 int SharedRuntime::_generic_array_copy_ctr=0;
duke@435 80 int SharedRuntime::_slow_array_copy_ctr=0;
duke@435 81 int SharedRuntime::_find_handler_ctr=0;
duke@435 82 int SharedRuntime::_rethrow_ctr=0;
duke@435 83
duke@435 84 int SharedRuntime::_ICmiss_index = 0;
duke@435 85 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
duke@435 86 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
duke@435 87
duke@435 88 void SharedRuntime::trace_ic_miss(address at) {
duke@435 89 for (int i = 0; i < _ICmiss_index; i++) {
duke@435 90 if (_ICmiss_at[i] == at) {
duke@435 91 _ICmiss_count[i]++;
duke@435 92 return;
duke@435 93 }
duke@435 94 }
duke@435 95 int index = _ICmiss_index++;
duke@435 96 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
duke@435 97 _ICmiss_at[index] = at;
duke@435 98 _ICmiss_count[index] = 1;
duke@435 99 }
duke@435 100
duke@435 101 void SharedRuntime::print_ic_miss_histogram() {
duke@435 102 if (ICMissHistogram) {
duke@435 103 tty->print_cr ("IC Miss Histogram:");
duke@435 104 int tot_misses = 0;
duke@435 105 for (int i = 0; i < _ICmiss_index; i++) {
duke@435 106 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
duke@435 107 tot_misses += _ICmiss_count[i];
duke@435 108 }
duke@435 109 tty->print_cr ("Total IC misses: %7d", tot_misses);
duke@435 110 }
duke@435 111 }
duke@435 112 #endif // PRODUCT
duke@435 113
duke@435 114
duke@435 115 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
duke@435 116 return x * y;
duke@435 117 JRT_END
duke@435 118
duke@435 119
duke@435 120 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
duke@435 121 if (x == min_jlong && y == CONST64(-1)) {
duke@435 122 return x;
duke@435 123 } else {
duke@435 124 return x / y;
duke@435 125 }
duke@435 126 JRT_END
duke@435 127
duke@435 128
duke@435 129 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
duke@435 130 if (x == min_jlong && y == CONST64(-1)) {
duke@435 131 return 0;
duke@435 132 } else {
duke@435 133 return x % y;
duke@435 134 }
duke@435 135 JRT_END
duke@435 136
duke@435 137
duke@435 138 const juint float_sign_mask = 0x7FFFFFFF;
duke@435 139 const juint float_infinity = 0x7F800000;
duke@435 140 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
duke@435 141 const julong double_infinity = CONST64(0x7FF0000000000000);
duke@435 142
duke@435 143 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
duke@435 144 #ifdef _WIN64
duke@435 145 // 64-bit Windows on amd64 returns the wrong values for
duke@435 146 // infinity operands.
duke@435 147 union { jfloat f; juint i; } xbits, ybits;
duke@435 148 xbits.f = x;
duke@435 149 ybits.f = y;
duke@435 150 // x Mod Infinity == x unless x is infinity
duke@435 151 if ( ((xbits.i & float_sign_mask) != float_infinity) &&
duke@435 152 ((ybits.i & float_sign_mask) == float_infinity) ) {
duke@435 153 return x;
duke@435 154 }
duke@435 155 #endif
duke@435 156 return ((jfloat)fmod((double)x,(double)y));
duke@435 157 JRT_END
duke@435 158
duke@435 159
duke@435 160 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
duke@435 161 #ifdef _WIN64
duke@435 162 union { jdouble d; julong l; } xbits, ybits;
duke@435 163 xbits.d = x;
duke@435 164 ybits.d = y;
duke@435 165 // x Mod Infinity == x unless x is infinity
duke@435 166 if ( ((xbits.l & double_sign_mask) != double_infinity) &&
duke@435 167 ((ybits.l & double_sign_mask) == double_infinity) ) {
duke@435 168 return x;
duke@435 169 }
duke@435 170 #endif
duke@435 171 return ((jdouble)fmod((double)x,(double)y));
duke@435 172 JRT_END
duke@435 173
duke@435 174
duke@435 175 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x))
duke@435 176 if (g_isnan(x)) {return 0;}
duke@435 177 jlong lltmp = (jlong)x;
duke@435 178 jint ltmp = (jint)lltmp;
duke@435 179 if (ltmp == lltmp) {
duke@435 180 return ltmp;
duke@435 181 } else {
duke@435 182 if (x < 0) {
duke@435 183 return min_jint;
duke@435 184 } else {
duke@435 185 return max_jint;
duke@435 186 }
duke@435 187 }
duke@435 188 JRT_END
duke@435 189
duke@435 190
duke@435 191 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x))
duke@435 192 if (g_isnan(x)) {return 0;}
duke@435 193 jlong lltmp = (jlong)x;
duke@435 194 if (lltmp != min_jlong) {
duke@435 195 return lltmp;
duke@435 196 } else {
duke@435 197 if (x < 0) {
duke@435 198 return min_jlong;
duke@435 199 } else {
duke@435 200 return max_jlong;
duke@435 201 }
duke@435 202 }
duke@435 203 JRT_END
duke@435 204
duke@435 205
duke@435 206 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
duke@435 207 if (g_isnan(x)) {return 0;}
duke@435 208 jlong lltmp = (jlong)x;
duke@435 209 jint ltmp = (jint)lltmp;
duke@435 210 if (ltmp == lltmp) {
duke@435 211 return ltmp;
duke@435 212 } else {
duke@435 213 if (x < 0) {
duke@435 214 return min_jint;
duke@435 215 } else {
duke@435 216 return max_jint;
duke@435 217 }
duke@435 218 }
duke@435 219 JRT_END
duke@435 220
duke@435 221
duke@435 222 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
duke@435 223 if (g_isnan(x)) {return 0;}
duke@435 224 jlong lltmp = (jlong)x;
duke@435 225 if (lltmp != min_jlong) {
duke@435 226 return lltmp;
duke@435 227 } else {
duke@435 228 if (x < 0) {
duke@435 229 return min_jlong;
duke@435 230 } else {
duke@435 231 return max_jlong;
duke@435 232 }
duke@435 233 }
duke@435 234 JRT_END
duke@435 235
duke@435 236
duke@435 237 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
duke@435 238 return (jfloat)x;
duke@435 239 JRT_END
duke@435 240
duke@435 241
duke@435 242 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
duke@435 243 return (jfloat)x;
duke@435 244 JRT_END
duke@435 245
duke@435 246
duke@435 247 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
duke@435 248 return (jdouble)x;
duke@435 249 JRT_END
duke@435 250
duke@435 251 // Exception handling accross interpreter/compiler boundaries
duke@435 252 //
duke@435 253 // exception_handler_for_return_address(...) returns the continuation address.
duke@435 254 // The continuation address is the entry point of the exception handler of the
duke@435 255 // previous frame depending on the return address.
duke@435 256
duke@435 257 address SharedRuntime::raw_exception_handler_for_return_address(address return_address) {
duke@435 258 assert(frame::verify_return_pc(return_address), "must be a return pc");
duke@435 259
duke@435 260 // the fastest case first
duke@435 261 CodeBlob* blob = CodeCache::find_blob(return_address);
duke@435 262 if (blob != NULL && blob->is_nmethod()) {
duke@435 263 nmethod* code = (nmethod*)blob;
duke@435 264 assert(code != NULL, "nmethod must be present");
duke@435 265 // native nmethods don't have exception handlers
duke@435 266 assert(!code->is_native_method(), "no exception handler");
duke@435 267 assert(code->header_begin() != code->exception_begin(), "no exception handler");
duke@435 268 if (code->is_deopt_pc(return_address)) {
duke@435 269 return SharedRuntime::deopt_blob()->unpack_with_exception();
duke@435 270 } else {
duke@435 271 return code->exception_begin();
duke@435 272 }
duke@435 273 }
duke@435 274
duke@435 275 // Entry code
duke@435 276 if (StubRoutines::returns_to_call_stub(return_address)) {
duke@435 277 return StubRoutines::catch_exception_entry();
duke@435 278 }
duke@435 279 // Interpreted code
duke@435 280 if (Interpreter::contains(return_address)) {
duke@435 281 return Interpreter::rethrow_exception_entry();
duke@435 282 }
duke@435 283
duke@435 284 // Compiled code
duke@435 285 if (CodeCache::contains(return_address)) {
duke@435 286 CodeBlob* blob = CodeCache::find_blob(return_address);
duke@435 287 if (blob->is_nmethod()) {
duke@435 288 nmethod* code = (nmethod*)blob;
duke@435 289 assert(code != NULL, "nmethod must be present");
duke@435 290 assert(code->header_begin() != code->exception_begin(), "no exception handler");
duke@435 291 return code->exception_begin();
duke@435 292 }
duke@435 293 if (blob->is_runtime_stub()) {
duke@435 294 ShouldNotReachHere(); // callers are responsible for skipping runtime stub frames
duke@435 295 }
duke@435 296 }
duke@435 297 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
duke@435 298 #ifndef PRODUCT
duke@435 299 { ResourceMark rm;
duke@435 300 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
duke@435 301 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
duke@435 302 tty->print_cr("b) other problem");
duke@435 303 }
duke@435 304 #endif // PRODUCT
duke@435 305 ShouldNotReachHere();
duke@435 306 return NULL;
duke@435 307 }
duke@435 308
duke@435 309
duke@435 310 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(address return_address))
duke@435 311 return raw_exception_handler_for_return_address(return_address);
duke@435 312 JRT_END
duke@435 313
duke@435 314 address SharedRuntime::get_poll_stub(address pc) {
duke@435 315 address stub;
duke@435 316 // Look up the code blob
duke@435 317 CodeBlob *cb = CodeCache::find_blob(pc);
duke@435 318
duke@435 319 // Should be an nmethod
duke@435 320 assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
duke@435 321
duke@435 322 // Look up the relocation information
duke@435 323 assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
duke@435 324 "safepoint polling: type must be poll" );
duke@435 325
duke@435 326 assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
duke@435 327 "Only polling locations are used for safepoint");
duke@435 328
duke@435 329 bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
duke@435 330 if (at_poll_return) {
duke@435 331 assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
duke@435 332 "polling page return stub not created yet");
duke@435 333 stub = SharedRuntime::polling_page_return_handler_blob()->instructions_begin();
duke@435 334 } else {
duke@435 335 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
duke@435 336 "polling page safepoint stub not created yet");
duke@435 337 stub = SharedRuntime::polling_page_safepoint_handler_blob()->instructions_begin();
duke@435 338 }
duke@435 339 #ifndef PRODUCT
duke@435 340 if( TraceSafepoint ) {
duke@435 341 char buf[256];
duke@435 342 jio_snprintf(buf, sizeof(buf),
duke@435 343 "... found polling page %s exception at pc = "
duke@435 344 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
duke@435 345 at_poll_return ? "return" : "loop",
duke@435 346 (intptr_t)pc, (intptr_t)stub);
duke@435 347 tty->print_raw_cr(buf);
duke@435 348 }
duke@435 349 #endif // PRODUCT
duke@435 350 return stub;
duke@435 351 }
duke@435 352
duke@435 353
duke@435 354 oop SharedRuntime::retrieve_receiver( symbolHandle sig, frame caller ) {
duke@435 355 assert(caller.is_interpreted_frame(), "");
duke@435 356 int args_size = ArgumentSizeComputer(sig).size() + 1;
duke@435 357 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
duke@435 358 oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
duke@435 359 assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
duke@435 360 return result;
duke@435 361 }
duke@435 362
duke@435 363
duke@435 364 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
duke@435 365 if (JvmtiExport::can_post_exceptions()) {
duke@435 366 vframeStream vfst(thread, true);
duke@435 367 methodHandle method = methodHandle(thread, vfst.method());
duke@435 368 address bcp = method()->bcp_from(vfst.bci());
duke@435 369 JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
duke@435 370 }
duke@435 371 Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
duke@435 372 }
duke@435 373
duke@435 374 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, symbolOop name, const char *message) {
duke@435 375 Handle h_exception = Exceptions::new_exception(thread, name, message);
duke@435 376 throw_and_post_jvmti_exception(thread, h_exception);
duke@435 377 }
duke@435 378
duke@435 379 // ret_pc points into caller; we are returning caller's exception handler
duke@435 380 // for given exception
duke@435 381 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
duke@435 382 bool force_unwind, bool top_frame_only) {
duke@435 383 assert(nm != NULL, "must exist");
duke@435 384 ResourceMark rm;
duke@435 385
duke@435 386 ScopeDesc* sd = nm->scope_desc_at(ret_pc);
duke@435 387 // determine handler bci, if any
duke@435 388 EXCEPTION_MARK;
duke@435 389
duke@435 390 int handler_bci = -1;
duke@435 391 int scope_depth = 0;
duke@435 392 if (!force_unwind) {
duke@435 393 int bci = sd->bci();
duke@435 394 do {
duke@435 395 bool skip_scope_increment = false;
duke@435 396 // exception handler lookup
duke@435 397 KlassHandle ek (THREAD, exception->klass());
duke@435 398 handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
duke@435 399 if (HAS_PENDING_EXCEPTION) {
duke@435 400 // We threw an exception while trying to find the exception handler.
duke@435 401 // Transfer the new exception to the exception handle which will
duke@435 402 // be set into thread local storage, and do another lookup for an
duke@435 403 // exception handler for this exception, this time starting at the
duke@435 404 // BCI of the exception handler which caused the exception to be
duke@435 405 // thrown (bugs 4307310 and 4546590). Set "exception" reference
duke@435 406 // argument to ensure that the correct exception is thrown (4870175).
duke@435 407 exception = Handle(THREAD, PENDING_EXCEPTION);
duke@435 408 CLEAR_PENDING_EXCEPTION;
duke@435 409 if (handler_bci >= 0) {
duke@435 410 bci = handler_bci;
duke@435 411 handler_bci = -1;
duke@435 412 skip_scope_increment = true;
duke@435 413 }
duke@435 414 }
duke@435 415 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
duke@435 416 sd = sd->sender();
duke@435 417 if (sd != NULL) {
duke@435 418 bci = sd->bci();
duke@435 419 }
duke@435 420 ++scope_depth;
duke@435 421 }
duke@435 422 } while (!top_frame_only && handler_bci < 0 && sd != NULL);
duke@435 423 }
duke@435 424
duke@435 425 // found handling method => lookup exception handler
duke@435 426 int catch_pco = ret_pc - nm->instructions_begin();
duke@435 427
duke@435 428 ExceptionHandlerTable table(nm);
duke@435 429 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
duke@435 430 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
duke@435 431 // Allow abbreviated catch tables. The idea is to allow a method
duke@435 432 // to materialize its exceptions without committing to the exact
duke@435 433 // routing of exceptions. In particular this is needed for adding
duke@435 434 // a synthethic handler to unlock monitors when inlining
duke@435 435 // synchonized methods since the unlock path isn't represented in
duke@435 436 // the bytecodes.
duke@435 437 t = table.entry_for(catch_pco, -1, 0);
duke@435 438 }
duke@435 439
duke@435 440 #ifdef COMPILER1
duke@435 441 if (nm->is_compiled_by_c1() && t == NULL && handler_bci == -1) {
duke@435 442 // Exception is not handled by this frame so unwind. Note that
duke@435 443 // this is not the same as how C2 does this. C2 emits a table
duke@435 444 // entry that dispatches to the unwind code in the nmethod.
duke@435 445 return NULL;
duke@435 446 }
duke@435 447 #endif /* COMPILER1 */
duke@435 448
duke@435 449
duke@435 450 if (t == NULL) {
duke@435 451 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
duke@435 452 tty->print_cr(" Exception:");
duke@435 453 exception->print();
duke@435 454 tty->cr();
duke@435 455 tty->print_cr(" Compiled exception table :");
duke@435 456 table.print();
duke@435 457 nm->print_code();
duke@435 458 guarantee(false, "missing exception handler");
duke@435 459 return NULL;
duke@435 460 }
duke@435 461
duke@435 462 return nm->instructions_begin() + t->pco();
duke@435 463 }
duke@435 464
duke@435 465 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
duke@435 466 // These errors occur only at call sites
duke@435 467 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
duke@435 468 JRT_END
duke@435 469
dcubed@451 470 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
dcubed@451 471 // These errors occur only at call sites
dcubed@451 472 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
dcubed@451 473 JRT_END
dcubed@451 474
duke@435 475 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
duke@435 476 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
duke@435 477 JRT_END
duke@435 478
duke@435 479 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
duke@435 480 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 481 JRT_END
duke@435 482
duke@435 483 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
duke@435 484 // This entry point is effectively only used for NullPointerExceptions which occur at inline
duke@435 485 // cache sites (when the callee activation is not yet set up) so we are at a call site
duke@435 486 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 487 JRT_END
duke@435 488
duke@435 489 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
duke@435 490 // We avoid using the normal exception construction in this case because
duke@435 491 // it performs an upcall to Java, and we're already out of stack space.
duke@435 492 klassOop k = SystemDictionary::StackOverflowError_klass();
duke@435 493 oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
duke@435 494 Handle exception (thread, exception_oop);
duke@435 495 if (StackTraceInThrowable) {
duke@435 496 java_lang_Throwable::fill_in_stack_trace(exception);
duke@435 497 }
duke@435 498 throw_and_post_jvmti_exception(thread, exception);
duke@435 499 JRT_END
duke@435 500
duke@435 501 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
duke@435 502 address pc,
duke@435 503 SharedRuntime::ImplicitExceptionKind exception_kind)
duke@435 504 {
duke@435 505 address target_pc = NULL;
duke@435 506
duke@435 507 if (Interpreter::contains(pc)) {
duke@435 508 #ifdef CC_INTERP
duke@435 509 // C++ interpreter doesn't throw implicit exceptions
duke@435 510 ShouldNotReachHere();
duke@435 511 #else
duke@435 512 switch (exception_kind) {
duke@435 513 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry();
duke@435 514 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
duke@435 515 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry();
duke@435 516 default: ShouldNotReachHere();
duke@435 517 }
duke@435 518 #endif // !CC_INTERP
duke@435 519 } else {
duke@435 520 switch (exception_kind) {
duke@435 521 case STACK_OVERFLOW: {
duke@435 522 // Stack overflow only occurs upon frame setup; the callee is
duke@435 523 // going to be unwound. Dispatch to a shared runtime stub
duke@435 524 // which will cause the StackOverflowError to be fabricated
duke@435 525 // and processed.
duke@435 526 // For stack overflow in deoptimization blob, cleanup thread.
duke@435 527 if (thread->deopt_mark() != NULL) {
duke@435 528 Deoptimization::cleanup_deopt_info(thread, NULL);
duke@435 529 }
duke@435 530 return StubRoutines::throw_StackOverflowError_entry();
duke@435 531 }
duke@435 532
duke@435 533 case IMPLICIT_NULL: {
duke@435 534 if (VtableStubs::contains(pc)) {
duke@435 535 // We haven't yet entered the callee frame. Fabricate an
duke@435 536 // exception and begin dispatching it in the caller. Since
duke@435 537 // the caller was at a call site, it's safe to destroy all
duke@435 538 // caller-saved registers, as these entry points do.
duke@435 539 VtableStub* vt_stub = VtableStubs::stub_containing(pc);
duke@435 540 guarantee(vt_stub != NULL, "unable to find SEGVing vtable stub");
duke@435 541 if (vt_stub->is_abstract_method_error(pc)) {
duke@435 542 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
duke@435 543 return StubRoutines::throw_AbstractMethodError_entry();
duke@435 544 } else {
duke@435 545 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 546 }
duke@435 547 } else {
duke@435 548 CodeBlob* cb = CodeCache::find_blob(pc);
duke@435 549 guarantee(cb != NULL, "exception happened outside interpreter, nmethods and vtable stubs (1)");
duke@435 550
duke@435 551 // Exception happened in CodeCache. Must be either:
duke@435 552 // 1. Inline-cache check in C2I handler blob,
duke@435 553 // 2. Inline-cache check in nmethod, or
duke@435 554 // 3. Implict null exception in nmethod
duke@435 555
duke@435 556 if (!cb->is_nmethod()) {
duke@435 557 guarantee(cb->is_adapter_blob(),
duke@435 558 "exception happened outside interpreter, nmethods and vtable stubs (2)");
duke@435 559 // There is no handler here, so we will simply unwind.
duke@435 560 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 561 }
duke@435 562
duke@435 563 // Otherwise, it's an nmethod. Consult its exception handlers.
duke@435 564 nmethod* nm = (nmethod*)cb;
duke@435 565 if (nm->inlinecache_check_contains(pc)) {
duke@435 566 // exception happened inside inline-cache check code
duke@435 567 // => the nmethod is not yet active (i.e., the frame
duke@435 568 // is not set up yet) => use return address pushed by
duke@435 569 // caller => don't push another return address
duke@435 570 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 571 }
duke@435 572
duke@435 573 #ifndef PRODUCT
duke@435 574 _implicit_null_throws++;
duke@435 575 #endif
duke@435 576 target_pc = nm->continuation_for_implicit_exception(pc);
duke@435 577 guarantee(target_pc != 0, "must have a continuation point");
duke@435 578 }
duke@435 579
duke@435 580 break; // fall through
duke@435 581 }
duke@435 582
duke@435 583
duke@435 584 case IMPLICIT_DIVIDE_BY_ZERO: {
duke@435 585 nmethod* nm = CodeCache::find_nmethod(pc);
duke@435 586 guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
duke@435 587 #ifndef PRODUCT
duke@435 588 _implicit_div0_throws++;
duke@435 589 #endif
duke@435 590 target_pc = nm->continuation_for_implicit_exception(pc);
duke@435 591 guarantee(target_pc != 0, "must have a continuation point");
duke@435 592 break; // fall through
duke@435 593 }
duke@435 594
duke@435 595 default: ShouldNotReachHere();
duke@435 596 }
duke@435 597
duke@435 598 guarantee(target_pc != NULL, "must have computed destination PC for implicit exception");
duke@435 599 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
duke@435 600
duke@435 601 // for AbortVMOnException flag
duke@435 602 NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
duke@435 603 if (exception_kind == IMPLICIT_NULL) {
duke@435 604 Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@435 605 } else {
duke@435 606 Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@435 607 }
duke@435 608 return target_pc;
duke@435 609 }
duke@435 610
duke@435 611 ShouldNotReachHere();
duke@435 612 return NULL;
duke@435 613 }
duke@435 614
duke@435 615
duke@435 616 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
duke@435 617 {
duke@435 618 THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
duke@435 619 }
duke@435 620 JNI_END
duke@435 621
duke@435 622
duke@435 623 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
duke@435 624 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
duke@435 625 }
duke@435 626
duke@435 627
duke@435 628 #ifndef PRODUCT
duke@435 629 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
duke@435 630 const frame f = thread->last_frame();
duke@435 631 assert(f.is_interpreted_frame(), "must be an interpreted frame");
duke@435 632 #ifndef PRODUCT
duke@435 633 methodHandle mh(THREAD, f.interpreter_frame_method());
duke@435 634 BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
duke@435 635 #endif // !PRODUCT
duke@435 636 return preserve_this_value;
duke@435 637 JRT_END
duke@435 638 #endif // !PRODUCT
duke@435 639
duke@435 640
duke@435 641 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
duke@435 642 os::yield_all(attempts);
duke@435 643 JRT_END
duke@435 644
duke@435 645
duke@435 646 // ---------------------------------------------------------------------------------------------------------
duke@435 647 // Non-product code
duke@435 648 #ifndef PRODUCT
duke@435 649
duke@435 650 void SharedRuntime::verify_caller_frame(frame caller_frame, methodHandle callee_method) {
duke@435 651 ResourceMark rm;
duke@435 652 assert (caller_frame.is_interpreted_frame(), "sanity check");
duke@435 653 assert (callee_method->has_compiled_code(), "callee must be compiled");
duke@435 654 methodHandle caller_method (Thread::current(), caller_frame.interpreter_frame_method());
duke@435 655 jint bci = caller_frame.interpreter_frame_bci();
duke@435 656 methodHandle method = find_callee_method_inside_interpreter(caller_frame, caller_method, bci);
duke@435 657 assert (callee_method == method, "incorrect method");
duke@435 658 }
duke@435 659
duke@435 660 methodHandle SharedRuntime::find_callee_method_inside_interpreter(frame caller_frame, methodHandle caller_method, int bci) {
duke@435 661 EXCEPTION_MARK;
duke@435 662 Bytecode_invoke* bytecode = Bytecode_invoke_at(caller_method, bci);
duke@435 663 methodHandle staticCallee = bytecode->static_target(CATCH); // Non-product code
duke@435 664
duke@435 665 bytecode = Bytecode_invoke_at(caller_method, bci);
duke@435 666 int bytecode_index = bytecode->index();
duke@435 667 Bytecodes::Code bc = bytecode->adjusted_invoke_code();
duke@435 668
duke@435 669 Handle receiver;
duke@435 670 if (bc == Bytecodes::_invokeinterface ||
duke@435 671 bc == Bytecodes::_invokevirtual ||
duke@435 672 bc == Bytecodes::_invokespecial) {
duke@435 673 symbolHandle signature (THREAD, staticCallee->signature());
duke@435 674 receiver = Handle(THREAD, retrieve_receiver(signature, caller_frame));
duke@435 675 } else {
duke@435 676 receiver = Handle();
duke@435 677 }
duke@435 678 CallInfo result;
duke@435 679 constantPoolHandle constants (THREAD, caller_method->constants());
duke@435 680 LinkResolver::resolve_invoke(result, receiver, constants, bytecode_index, bc, CATCH); // Non-product code
duke@435 681 methodHandle calleeMethod = result.selected_method();
duke@435 682 return calleeMethod;
duke@435 683 }
duke@435 684
duke@435 685 #endif // PRODUCT
duke@435 686
duke@435 687
duke@435 688 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
duke@435 689 assert(obj->is_oop(), "must be a valid oop");
duke@435 690 assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
duke@435 691 instanceKlass::register_finalizer(instanceOop(obj), CHECK);
duke@435 692 JRT_END
duke@435 693
duke@435 694
duke@435 695 jlong SharedRuntime::get_java_tid(Thread* thread) {
duke@435 696 if (thread != NULL) {
duke@435 697 if (thread->is_Java_thread()) {
duke@435 698 oop obj = ((JavaThread*)thread)->threadObj();
duke@435 699 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
duke@435 700 }
duke@435 701 }
duke@435 702 return 0;
duke@435 703 }
duke@435 704
duke@435 705 /**
duke@435 706 * This function ought to be a void function, but cannot be because
duke@435 707 * it gets turned into a tail-call on sparc, which runs into dtrace bug
duke@435 708 * 6254741. Once that is fixed we can remove the dummy return value.
duke@435 709 */
duke@435 710 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
duke@435 711 return dtrace_object_alloc_base(Thread::current(), o);
duke@435 712 }
duke@435 713
duke@435 714 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
duke@435 715 assert(DTraceAllocProbes, "wrong call");
duke@435 716 Klass* klass = o->blueprint();
duke@435 717 int size = o->size();
duke@435 718 symbolOop name = klass->name();
duke@435 719 HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
duke@435 720 name->bytes(), name->utf8_length(), size * HeapWordSize);
duke@435 721 return 0;
duke@435 722 }
duke@435 723
duke@435 724 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
duke@435 725 JavaThread* thread, methodOopDesc* method))
duke@435 726 assert(DTraceMethodProbes, "wrong call");
duke@435 727 symbolOop kname = method->klass_name();
duke@435 728 symbolOop name = method->name();
duke@435 729 symbolOop sig = method->signature();
duke@435 730 HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
duke@435 731 kname->bytes(), kname->utf8_length(),
duke@435 732 name->bytes(), name->utf8_length(),
duke@435 733 sig->bytes(), sig->utf8_length());
duke@435 734 return 0;
duke@435 735 JRT_END
duke@435 736
duke@435 737 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
duke@435 738 JavaThread* thread, methodOopDesc* method))
duke@435 739 assert(DTraceMethodProbes, "wrong call");
duke@435 740 symbolOop kname = method->klass_name();
duke@435 741 symbolOop name = method->name();
duke@435 742 symbolOop sig = method->signature();
duke@435 743 HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
duke@435 744 kname->bytes(), kname->utf8_length(),
duke@435 745 name->bytes(), name->utf8_length(),
duke@435 746 sig->bytes(), sig->utf8_length());
duke@435 747 return 0;
duke@435 748 JRT_END
duke@435 749
duke@435 750
duke@435 751 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
duke@435 752 // for a call current in progress, i.e., arguments has been pushed on stack
duke@435 753 // put callee has not been invoked yet. Used by: resolve virtual/static,
duke@435 754 // vtable updates, etc. Caller frame must be compiled.
duke@435 755 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
duke@435 756 ResourceMark rm(THREAD);
duke@435 757
duke@435 758 // last java frame on stack (which includes native call frames)
duke@435 759 vframeStream vfst(thread, true); // Do not skip and javaCalls
duke@435 760
duke@435 761 return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
duke@435 762 }
duke@435 763
duke@435 764
duke@435 765 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
duke@435 766 // for a call current in progress, i.e., arguments has been pushed on stack
duke@435 767 // but callee has not been invoked yet. Caller frame must be compiled.
duke@435 768 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
duke@435 769 vframeStream& vfst,
duke@435 770 Bytecodes::Code& bc,
duke@435 771 CallInfo& callinfo, TRAPS) {
duke@435 772 Handle receiver;
duke@435 773 Handle nullHandle; //create a handy null handle for exception returns
duke@435 774
duke@435 775 assert(!vfst.at_end(), "Java frame must exist");
duke@435 776
duke@435 777 // Find caller and bci from vframe
duke@435 778 methodHandle caller (THREAD, vfst.method());
duke@435 779 int bci = vfst.bci();
duke@435 780
duke@435 781 // Find bytecode
duke@435 782 Bytecode_invoke* bytecode = Bytecode_invoke_at(caller, bci);
duke@435 783 bc = bytecode->adjusted_invoke_code();
duke@435 784 int bytecode_index = bytecode->index();
duke@435 785
duke@435 786 // Find receiver for non-static call
duke@435 787 if (bc != Bytecodes::_invokestatic) {
duke@435 788 // This register map must be update since we need to find the receiver for
duke@435 789 // compiled frames. The receiver might be in a register.
duke@435 790 RegisterMap reg_map2(thread);
duke@435 791 frame stubFrame = thread->last_frame();
duke@435 792 // Caller-frame is a compiled frame
duke@435 793 frame callerFrame = stubFrame.sender(&reg_map2);
duke@435 794
duke@435 795 methodHandle callee = bytecode->static_target(CHECK_(nullHandle));
duke@435 796 if (callee.is_null()) {
duke@435 797 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
duke@435 798 }
duke@435 799 // Retrieve from a compiled argument list
duke@435 800 receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
duke@435 801
duke@435 802 if (receiver.is_null()) {
duke@435 803 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
duke@435 804 }
duke@435 805 }
duke@435 806
duke@435 807 // Resolve method. This is parameterized by bytecode.
duke@435 808 constantPoolHandle constants (THREAD, caller->constants());
duke@435 809 assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
duke@435 810 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
duke@435 811
duke@435 812 #ifdef ASSERT
duke@435 813 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
duke@435 814 if (bc != Bytecodes::_invokestatic) {
duke@435 815 assert(receiver.not_null(), "should have thrown exception");
duke@435 816 KlassHandle receiver_klass (THREAD, receiver->klass());
duke@435 817 klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
duke@435 818 // klass is already loaded
duke@435 819 KlassHandle static_receiver_klass (THREAD, rk);
duke@435 820 assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
duke@435 821 if (receiver_klass->oop_is_instance()) {
duke@435 822 if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
duke@435 823 tty->print_cr("ERROR: Klass not yet initialized!!");
duke@435 824 receiver_klass.print();
duke@435 825 }
duke@435 826 assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
duke@435 827 }
duke@435 828 }
duke@435 829 #endif
duke@435 830
duke@435 831 return receiver;
duke@435 832 }
duke@435 833
duke@435 834 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
duke@435 835 ResourceMark rm(THREAD);
duke@435 836 // We need first to check if any Java activations (compiled, interpreted)
duke@435 837 // exist on the stack since last JavaCall. If not, we need
duke@435 838 // to get the target method from the JavaCall wrapper.
duke@435 839 vframeStream vfst(thread, true); // Do not skip any javaCalls
duke@435 840 methodHandle callee_method;
duke@435 841 if (vfst.at_end()) {
duke@435 842 // No Java frames were found on stack since we did the JavaCall.
duke@435 843 // Hence the stack can only contain an entry_frame. We need to
duke@435 844 // find the target method from the stub frame.
duke@435 845 RegisterMap reg_map(thread, false);
duke@435 846 frame fr = thread->last_frame();
duke@435 847 assert(fr.is_runtime_frame(), "must be a runtimeStub");
duke@435 848 fr = fr.sender(&reg_map);
duke@435 849 assert(fr.is_entry_frame(), "must be");
duke@435 850 // fr is now pointing to the entry frame.
duke@435 851 callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
duke@435 852 assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
duke@435 853 } else {
duke@435 854 Bytecodes::Code bc;
duke@435 855 CallInfo callinfo;
duke@435 856 find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
duke@435 857 callee_method = callinfo.selected_method();
duke@435 858 }
duke@435 859 assert(callee_method()->is_method(), "must be");
duke@435 860 return callee_method;
duke@435 861 }
duke@435 862
duke@435 863 // Resolves a call.
duke@435 864 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
duke@435 865 bool is_virtual,
duke@435 866 bool is_optimized, TRAPS) {
duke@435 867 methodHandle callee_method;
duke@435 868 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@435 869 if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
duke@435 870 int retry_count = 0;
duke@435 871 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
duke@435 872 callee_method->method_holder() != SystemDictionary::object_klass()) {
duke@435 873 // If has a pending exception then there is no need to re-try to
duke@435 874 // resolve this method.
duke@435 875 // If the method has been redefined, we need to try again.
duke@435 876 // Hack: we have no way to update the vtables of arrays, so don't
duke@435 877 // require that java.lang.Object has been updated.
duke@435 878
duke@435 879 // It is very unlikely that method is redefined more than 100 times
duke@435 880 // in the middle of resolve. If it is looping here more than 100 times
duke@435 881 // means then there could be a bug here.
duke@435 882 guarantee((retry_count++ < 100),
duke@435 883 "Could not resolve to latest version of redefined method");
duke@435 884 // method is redefined in the middle of resolve so re-try.
duke@435 885 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@435 886 }
duke@435 887 }
duke@435 888 return callee_method;
duke@435 889 }
duke@435 890
duke@435 891 // Resolves a call. The compilers generate code for calls that go here
duke@435 892 // and are patched with the real destination of the call.
duke@435 893 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
duke@435 894 bool is_virtual,
duke@435 895 bool is_optimized, TRAPS) {
duke@435 896
duke@435 897 ResourceMark rm(thread);
duke@435 898 RegisterMap cbl_map(thread, false);
duke@435 899 frame caller_frame = thread->last_frame().sender(&cbl_map);
duke@435 900
duke@435 901 CodeBlob* cb = caller_frame.cb();
duke@435 902 guarantee(cb != NULL && cb->is_nmethod(), "must be called from nmethod");
duke@435 903 // make sure caller is not getting deoptimized
duke@435 904 // and removed before we are done with it.
duke@435 905 // CLEANUP - with lazy deopt shouldn't need this lock
duke@435 906 nmethodLocker caller_lock((nmethod*)cb);
duke@435 907
duke@435 908
duke@435 909 // determine call info & receiver
duke@435 910 // note: a) receiver is NULL for static calls
duke@435 911 // b) an exception is thrown if receiver is NULL for non-static calls
duke@435 912 CallInfo call_info;
duke@435 913 Bytecodes::Code invoke_code = Bytecodes::_illegal;
duke@435 914 Handle receiver = find_callee_info(thread, invoke_code,
duke@435 915 call_info, CHECK_(methodHandle()));
duke@435 916 methodHandle callee_method = call_info.selected_method();
duke@435 917
duke@435 918 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
duke@435 919 ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
duke@435 920
duke@435 921 #ifndef PRODUCT
duke@435 922 // tracing/debugging/statistics
duke@435 923 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
duke@435 924 (is_virtual) ? (&_resolve_virtual_ctr) :
duke@435 925 (&_resolve_static_ctr);
duke@435 926 Atomic::inc(addr);
duke@435 927
duke@435 928 if (TraceCallFixup) {
duke@435 929 ResourceMark rm(thread);
duke@435 930 tty->print("resolving %s%s (%s) call to",
duke@435 931 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
duke@435 932 Bytecodes::name(invoke_code));
duke@435 933 callee_method->print_short_name(tty);
duke@435 934 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 935 }
duke@435 936 #endif
duke@435 937
duke@435 938 // Compute entry points. This might require generation of C2I converter
duke@435 939 // frames, so we cannot be holding any locks here. Furthermore, the
duke@435 940 // computation of the entry points is independent of patching the call. We
duke@435 941 // always return the entry-point, but we only patch the stub if the call has
duke@435 942 // not been deoptimized. Return values: For a virtual call this is an
duke@435 943 // (cached_oop, destination address) pair. For a static call/optimized
duke@435 944 // virtual this is just a destination address.
duke@435 945
duke@435 946 StaticCallInfo static_call_info;
duke@435 947 CompiledICInfo virtual_call_info;
duke@435 948
duke@435 949
duke@435 950 // Make sure the callee nmethod does not get deoptimized and removed before
duke@435 951 // we are done patching the code.
duke@435 952 nmethod* nm = callee_method->code();
duke@435 953 nmethodLocker nl_callee(nm);
duke@435 954 #ifdef ASSERT
duke@435 955 address dest_entry_point = nm == NULL ? 0 : nm->entry_point(); // used below
duke@435 956 #endif
duke@435 957
duke@435 958 if (is_virtual) {
duke@435 959 assert(receiver.not_null(), "sanity check");
duke@435 960 bool static_bound = call_info.resolved_method()->can_be_statically_bound();
duke@435 961 KlassHandle h_klass(THREAD, receiver->klass());
duke@435 962 CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
duke@435 963 is_optimized, static_bound, virtual_call_info,
duke@435 964 CHECK_(methodHandle()));
duke@435 965 } else {
duke@435 966 // static call
duke@435 967 CompiledStaticCall::compute_entry(callee_method, static_call_info);
duke@435 968 }
duke@435 969
duke@435 970 // grab lock, check for deoptimization and potentially patch caller
duke@435 971 {
duke@435 972 MutexLocker ml_patch(CompiledIC_lock);
duke@435 973
duke@435 974 // Now that we are ready to patch if the methodOop was redefined then
duke@435 975 // don't update call site and let the caller retry.
duke@435 976
duke@435 977 if (!callee_method->is_old()) {
duke@435 978 #ifdef ASSERT
duke@435 979 // We must not try to patch to jump to an already unloaded method.
duke@435 980 if (dest_entry_point != 0) {
duke@435 981 assert(CodeCache::find_blob(dest_entry_point) != NULL,
duke@435 982 "should not unload nmethod while locked");
duke@435 983 }
duke@435 984 #endif
duke@435 985 if (is_virtual) {
duke@435 986 CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
duke@435 987 if (inline_cache->is_clean()) {
duke@435 988 inline_cache->set_to_monomorphic(virtual_call_info);
duke@435 989 }
duke@435 990 } else {
duke@435 991 CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
duke@435 992 if (ssc->is_clean()) ssc->set(static_call_info);
duke@435 993 }
duke@435 994 }
duke@435 995
duke@435 996 } // unlock CompiledIC_lock
duke@435 997
duke@435 998 return callee_method;
duke@435 999 }
duke@435 1000
duke@435 1001
duke@435 1002 // Inline caches exist only in compiled code
duke@435 1003 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
duke@435 1004 #ifdef ASSERT
duke@435 1005 RegisterMap reg_map(thread, false);
duke@435 1006 frame stub_frame = thread->last_frame();
duke@435 1007 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@435 1008 frame caller_frame = stub_frame.sender(&reg_map);
duke@435 1009 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
duke@435 1010 #endif /* ASSERT */
duke@435 1011
duke@435 1012 methodHandle callee_method;
duke@435 1013 JRT_BLOCK
duke@435 1014 callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
duke@435 1015 // Return methodOop through TLS
duke@435 1016 thread->set_vm_result(callee_method());
duke@435 1017 JRT_BLOCK_END
duke@435 1018 // return compiled code entry point after potential safepoints
duke@435 1019 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1020 return callee_method->verified_code_entry();
duke@435 1021 JRT_END
duke@435 1022
duke@435 1023
duke@435 1024 // Handle call site that has been made non-entrant
duke@435 1025 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
duke@435 1026 // 6243940 We might end up in here if the callee is deoptimized
duke@435 1027 // as we race to call it. We don't want to take a safepoint if
duke@435 1028 // the caller was interpreted because the caller frame will look
duke@435 1029 // interpreted to the stack walkers and arguments are now
duke@435 1030 // "compiled" so it is much better to make this transition
duke@435 1031 // invisible to the stack walking code. The i2c path will
duke@435 1032 // place the callee method in the callee_target. It is stashed
duke@435 1033 // there because if we try and find the callee by normal means a
duke@435 1034 // safepoint is possible and have trouble gc'ing the compiled args.
duke@435 1035 RegisterMap reg_map(thread, false);
duke@435 1036 frame stub_frame = thread->last_frame();
duke@435 1037 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@435 1038 frame caller_frame = stub_frame.sender(&reg_map);
duke@435 1039 if (caller_frame.is_interpreted_frame() || caller_frame.is_entry_frame() ) {
duke@435 1040 methodOop callee = thread->callee_target();
duke@435 1041 guarantee(callee != NULL && callee->is_method(), "bad handshake");
duke@435 1042 thread->set_vm_result(callee);
duke@435 1043 thread->set_callee_target(NULL);
duke@435 1044 return callee->get_c2i_entry();
duke@435 1045 }
duke@435 1046
duke@435 1047 // Must be compiled to compiled path which is safe to stackwalk
duke@435 1048 methodHandle callee_method;
duke@435 1049 JRT_BLOCK
duke@435 1050 // Force resolving of caller (if we called from compiled frame)
duke@435 1051 callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
duke@435 1052 thread->set_vm_result(callee_method());
duke@435 1053 JRT_BLOCK_END
duke@435 1054 // return compiled code entry point after potential safepoints
duke@435 1055 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1056 return callee_method->verified_code_entry();
duke@435 1057 JRT_END
duke@435 1058
duke@435 1059
duke@435 1060 // resolve a static call and patch code
duke@435 1061 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
duke@435 1062 methodHandle callee_method;
duke@435 1063 JRT_BLOCK
duke@435 1064 callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
duke@435 1065 thread->set_vm_result(callee_method());
duke@435 1066 JRT_BLOCK_END
duke@435 1067 // return compiled code entry point after potential safepoints
duke@435 1068 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1069 return callee_method->verified_code_entry();
duke@435 1070 JRT_END
duke@435 1071
duke@435 1072
duke@435 1073 // resolve virtual call and update inline cache to monomorphic
duke@435 1074 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
duke@435 1075 methodHandle callee_method;
duke@435 1076 JRT_BLOCK
duke@435 1077 callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
duke@435 1078 thread->set_vm_result(callee_method());
duke@435 1079 JRT_BLOCK_END
duke@435 1080 // return compiled code entry point after potential safepoints
duke@435 1081 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1082 return callee_method->verified_code_entry();
duke@435 1083 JRT_END
duke@435 1084
duke@435 1085
duke@435 1086 // Resolve a virtual call that can be statically bound (e.g., always
duke@435 1087 // monomorphic, so it has no inline cache). Patch code to resolved target.
duke@435 1088 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
duke@435 1089 methodHandle callee_method;
duke@435 1090 JRT_BLOCK
duke@435 1091 callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
duke@435 1092 thread->set_vm_result(callee_method());
duke@435 1093 JRT_BLOCK_END
duke@435 1094 // return compiled code entry point after potential safepoints
duke@435 1095 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1096 return callee_method->verified_code_entry();
duke@435 1097 JRT_END
duke@435 1098
duke@435 1099
duke@435 1100
duke@435 1101
duke@435 1102
duke@435 1103 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
duke@435 1104 ResourceMark rm(thread);
duke@435 1105 CallInfo call_info;
duke@435 1106 Bytecodes::Code bc;
duke@435 1107
duke@435 1108 // receiver is NULL for static calls. An exception is thrown for NULL
duke@435 1109 // receivers for non-static calls
duke@435 1110 Handle receiver = find_callee_info(thread, bc, call_info,
duke@435 1111 CHECK_(methodHandle()));
duke@435 1112 // Compiler1 can produce virtual call sites that can actually be statically bound
duke@435 1113 // If we fell thru to below we would think that the site was going megamorphic
duke@435 1114 // when in fact the site can never miss. Worse because we'd think it was megamorphic
duke@435 1115 // we'd try and do a vtable dispatch however methods that can be statically bound
duke@435 1116 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
duke@435 1117 // reresolution of the call site (as if we did a handle_wrong_method and not an
duke@435 1118 // plain ic_miss) and the site will be converted to an optimized virtual call site
duke@435 1119 // never to miss again. I don't believe C2 will produce code like this but if it
duke@435 1120 // did this would still be the correct thing to do for it too, hence no ifdef.
duke@435 1121 //
duke@435 1122 if (call_info.resolved_method()->can_be_statically_bound()) {
duke@435 1123 methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
duke@435 1124 if (TraceCallFixup) {
duke@435 1125 RegisterMap reg_map(thread, false);
duke@435 1126 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@435 1127 ResourceMark rm(thread);
duke@435 1128 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
duke@435 1129 callee_method->print_short_name(tty);
duke@435 1130 tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
duke@435 1131 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1132 }
duke@435 1133 return callee_method;
duke@435 1134 }
duke@435 1135
duke@435 1136 methodHandle callee_method = call_info.selected_method();
duke@435 1137
duke@435 1138 bool should_be_mono = false;
duke@435 1139
duke@435 1140 #ifndef PRODUCT
duke@435 1141 Atomic::inc(&_ic_miss_ctr);
duke@435 1142
duke@435 1143 // Statistics & Tracing
duke@435 1144 if (TraceCallFixup) {
duke@435 1145 ResourceMark rm(thread);
duke@435 1146 tty->print("IC miss (%s) call to", Bytecodes::name(bc));
duke@435 1147 callee_method->print_short_name(tty);
duke@435 1148 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1149 }
duke@435 1150
duke@435 1151 if (ICMissHistogram) {
duke@435 1152 MutexLocker m(VMStatistic_lock);
duke@435 1153 RegisterMap reg_map(thread, false);
duke@435 1154 frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
duke@435 1155 // produce statistics under the lock
duke@435 1156 trace_ic_miss(f.pc());
duke@435 1157 }
duke@435 1158 #endif
duke@435 1159
duke@435 1160 // install an event collector so that when a vtable stub is created the
duke@435 1161 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
duke@435 1162 // event can't be posted when the stub is created as locks are held
duke@435 1163 // - instead the event will be deferred until the event collector goes
duke@435 1164 // out of scope.
duke@435 1165 JvmtiDynamicCodeEventCollector event_collector;
duke@435 1166
duke@435 1167 // Update inline cache to megamorphic. Skip update if caller has been
duke@435 1168 // made non-entrant or we are called from interpreted.
duke@435 1169 { MutexLocker ml_patch (CompiledIC_lock);
duke@435 1170 RegisterMap reg_map(thread, false);
duke@435 1171 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@435 1172 CodeBlob* cb = caller_frame.cb();
duke@435 1173 if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
duke@435 1174 // Not a non-entrant nmethod, so find inline_cache
duke@435 1175 CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
duke@435 1176 bool should_be_mono = false;
duke@435 1177 if (inline_cache->is_optimized()) {
duke@435 1178 if (TraceCallFixup) {
duke@435 1179 ResourceMark rm(thread);
duke@435 1180 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
duke@435 1181 callee_method->print_short_name(tty);
duke@435 1182 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1183 }
duke@435 1184 should_be_mono = true;
duke@435 1185 } else {
duke@435 1186 compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
duke@435 1187 if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
duke@435 1188
duke@435 1189 if (receiver()->klass() == ic_oop->holder_klass()) {
duke@435 1190 // This isn't a real miss. We must have seen that compiled code
duke@435 1191 // is now available and we want the call site converted to a
duke@435 1192 // monomorphic compiled call site.
duke@435 1193 // We can't assert for callee_method->code() != NULL because it
duke@435 1194 // could have been deoptimized in the meantime
duke@435 1195 if (TraceCallFixup) {
duke@435 1196 ResourceMark rm(thread);
duke@435 1197 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
duke@435 1198 callee_method->print_short_name(tty);
duke@435 1199 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1200 }
duke@435 1201 should_be_mono = true;
duke@435 1202 }
duke@435 1203 }
duke@435 1204 }
duke@435 1205
duke@435 1206 if (should_be_mono) {
duke@435 1207
duke@435 1208 // We have a path that was monomorphic but was going interpreted
duke@435 1209 // and now we have (or had) a compiled entry. We correct the IC
duke@435 1210 // by using a new icBuffer.
duke@435 1211 CompiledICInfo info;
duke@435 1212 KlassHandle receiver_klass(THREAD, receiver()->klass());
duke@435 1213 inline_cache->compute_monomorphic_entry(callee_method,
duke@435 1214 receiver_klass,
duke@435 1215 inline_cache->is_optimized(),
duke@435 1216 false,
duke@435 1217 info, CHECK_(methodHandle()));
duke@435 1218 inline_cache->set_to_monomorphic(info);
duke@435 1219 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
duke@435 1220 // Change to megamorphic
duke@435 1221 inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
duke@435 1222 } else {
duke@435 1223 // Either clean or megamorphic
duke@435 1224 }
duke@435 1225 }
duke@435 1226 } // Release CompiledIC_lock
duke@435 1227
duke@435 1228 return callee_method;
duke@435 1229 }
duke@435 1230
duke@435 1231 //
duke@435 1232 // Resets a call-site in compiled code so it will get resolved again.
duke@435 1233 // This routines handles both virtual call sites, optimized virtual call
duke@435 1234 // sites, and static call sites. Typically used to change a call sites
duke@435 1235 // destination from compiled to interpreted.
duke@435 1236 //
duke@435 1237 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
duke@435 1238 ResourceMark rm(thread);
duke@435 1239 RegisterMap reg_map(thread, false);
duke@435 1240 frame stub_frame = thread->last_frame();
duke@435 1241 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
duke@435 1242 frame caller = stub_frame.sender(&reg_map);
duke@435 1243
duke@435 1244 // Do nothing if the frame isn't a live compiled frame.
duke@435 1245 // nmethod could be deoptimized by the time we get here
duke@435 1246 // so no update to the caller is needed.
duke@435 1247
duke@435 1248 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
duke@435 1249
duke@435 1250 address pc = caller.pc();
duke@435 1251 Events::log("update call-site at pc " INTPTR_FORMAT, pc);
duke@435 1252
duke@435 1253 // Default call_addr is the location of the "basic" call.
duke@435 1254 // Determine the address of the call we a reresolving. With
duke@435 1255 // Inline Caches we will always find a recognizable call.
duke@435 1256 // With Inline Caches disabled we may or may not find a
duke@435 1257 // recognizable call. We will always find a call for static
duke@435 1258 // calls and for optimized virtual calls. For vanilla virtual
duke@435 1259 // calls it depends on the state of the UseInlineCaches switch.
duke@435 1260 //
duke@435 1261 // With Inline Caches disabled we can get here for a virtual call
duke@435 1262 // for two reasons:
duke@435 1263 // 1 - calling an abstract method. The vtable for abstract methods
duke@435 1264 // will run us thru handle_wrong_method and we will eventually
duke@435 1265 // end up in the interpreter to throw the ame.
duke@435 1266 // 2 - a racing deoptimization. We could be doing a vanilla vtable
duke@435 1267 // call and between the time we fetch the entry address and
duke@435 1268 // we jump to it the target gets deoptimized. Similar to 1
duke@435 1269 // we will wind up in the interprter (thru a c2i with c2).
duke@435 1270 //
duke@435 1271 address call_addr = NULL;
duke@435 1272 {
duke@435 1273 // Get call instruction under lock because another thread may be
duke@435 1274 // busy patching it.
duke@435 1275 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@435 1276 // Location of call instruction
duke@435 1277 if (NativeCall::is_call_before(pc)) {
duke@435 1278 NativeCall *ncall = nativeCall_before(pc);
duke@435 1279 call_addr = ncall->instruction_address();
duke@435 1280 }
duke@435 1281 }
duke@435 1282
duke@435 1283 // Check for static or virtual call
duke@435 1284 bool is_static_call = false;
duke@435 1285 nmethod* caller_nm = CodeCache::find_nmethod(pc);
duke@435 1286 // Make sure nmethod doesn't get deoptimized and removed until
duke@435 1287 // this is done with it.
duke@435 1288 // CLEANUP - with lazy deopt shouldn't need this lock
duke@435 1289 nmethodLocker nmlock(caller_nm);
duke@435 1290
duke@435 1291 if (call_addr != NULL) {
duke@435 1292 RelocIterator iter(caller_nm, call_addr, call_addr+1);
duke@435 1293 int ret = iter.next(); // Get item
duke@435 1294 if (ret) {
duke@435 1295 assert(iter.addr() == call_addr, "must find call");
duke@435 1296 if (iter.type() == relocInfo::static_call_type) {
duke@435 1297 is_static_call = true;
duke@435 1298 } else {
duke@435 1299 assert(iter.type() == relocInfo::virtual_call_type ||
duke@435 1300 iter.type() == relocInfo::opt_virtual_call_type
duke@435 1301 , "unexpected relocInfo. type");
duke@435 1302 }
duke@435 1303 } else {
duke@435 1304 assert(!UseInlineCaches, "relocation info. must exist for this address");
duke@435 1305 }
duke@435 1306
duke@435 1307 // Cleaning the inline cache will force a new resolve. This is more robust
duke@435 1308 // than directly setting it to the new destination, since resolving of calls
duke@435 1309 // is always done through the same code path. (experience shows that it
duke@435 1310 // leads to very hard to track down bugs, if an inline cache gets updated
duke@435 1311 // to a wrong method). It should not be performance critical, since the
duke@435 1312 // resolve is only done once.
duke@435 1313
duke@435 1314 MutexLocker ml(CompiledIC_lock);
duke@435 1315 //
duke@435 1316 // We do not patch the call site if the nmethod has been made non-entrant
duke@435 1317 // as it is a waste of time
duke@435 1318 //
duke@435 1319 if (caller_nm->is_in_use()) {
duke@435 1320 if (is_static_call) {
duke@435 1321 CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
duke@435 1322 ssc->set_to_clean();
duke@435 1323 } else {
duke@435 1324 // compiled, dispatched call (which used to call an interpreted method)
duke@435 1325 CompiledIC* inline_cache = CompiledIC_at(call_addr);
duke@435 1326 inline_cache->set_to_clean();
duke@435 1327 }
duke@435 1328 }
duke@435 1329 }
duke@435 1330
duke@435 1331 }
duke@435 1332
duke@435 1333 methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
duke@435 1334
duke@435 1335
duke@435 1336 #ifndef PRODUCT
duke@435 1337 Atomic::inc(&_wrong_method_ctr);
duke@435 1338
duke@435 1339 if (TraceCallFixup) {
duke@435 1340 ResourceMark rm(thread);
duke@435 1341 tty->print("handle_wrong_method reresolving call to");
duke@435 1342 callee_method->print_short_name(tty);
duke@435 1343 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1344 }
duke@435 1345 #endif
duke@435 1346
duke@435 1347 return callee_method;
duke@435 1348 }
duke@435 1349
duke@435 1350 // ---------------------------------------------------------------------------
duke@435 1351 // We are calling the interpreter via a c2i. Normally this would mean that
duke@435 1352 // we were called by a compiled method. However we could have lost a race
duke@435 1353 // where we went int -> i2c -> c2i and so the caller could in fact be
duke@435 1354 // interpreted. If the caller is compiled we attampt to patch the caller
duke@435 1355 // so he no longer calls into the interpreter.
duke@435 1356 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
duke@435 1357 methodOop moop(method);
duke@435 1358
duke@435 1359 address entry_point = moop->from_compiled_entry();
duke@435 1360
duke@435 1361 // It's possible that deoptimization can occur at a call site which hasn't
duke@435 1362 // been resolved yet, in which case this function will be called from
duke@435 1363 // an nmethod that has been patched for deopt and we can ignore the
duke@435 1364 // request for a fixup.
duke@435 1365 // Also it is possible that we lost a race in that from_compiled_entry
duke@435 1366 // is now back to the i2c in that case we don't need to patch and if
duke@435 1367 // we did we'd leap into space because the callsite needs to use
duke@435 1368 // "to interpreter" stub in order to load up the methodOop. Don't
duke@435 1369 // ask me how I know this...
duke@435 1370 //
duke@435 1371
duke@435 1372 CodeBlob* cb = CodeCache::find_blob(caller_pc);
duke@435 1373 if ( !cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
duke@435 1374 return;
duke@435 1375 }
duke@435 1376
duke@435 1377 // There is a benign race here. We could be attempting to patch to a compiled
duke@435 1378 // entry point at the same time the callee is being deoptimized. If that is
duke@435 1379 // the case then entry_point may in fact point to a c2i and we'd patch the
duke@435 1380 // call site with the same old data. clear_code will set code() to NULL
duke@435 1381 // at the end of it. If we happen to see that NULL then we can skip trying
duke@435 1382 // to patch. If we hit the window where the callee has a c2i in the
duke@435 1383 // from_compiled_entry and the NULL isn't present yet then we lose the race
duke@435 1384 // and patch the code with the same old data. Asi es la vida.
duke@435 1385
duke@435 1386 if (moop->code() == NULL) return;
duke@435 1387
duke@435 1388 if (((nmethod*)cb)->is_in_use()) {
duke@435 1389
duke@435 1390 // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
duke@435 1391 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@435 1392 if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
duke@435 1393 NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
duke@435 1394 //
duke@435 1395 // bug 6281185. We might get here after resolving a call site to a vanilla
duke@435 1396 // virtual call. Because the resolvee uses the verified entry it may then
duke@435 1397 // see compiled code and attempt to patch the site by calling us. This would
duke@435 1398 // then incorrectly convert the call site to optimized and its downhill from
duke@435 1399 // there. If you're lucky you'll get the assert in the bugid, if not you've
duke@435 1400 // just made a call site that could be megamorphic into a monomorphic site
duke@435 1401 // for the rest of its life! Just another racing bug in the life of
duke@435 1402 // fixup_callers_callsite ...
duke@435 1403 //
duke@435 1404 RelocIterator iter(cb, call->instruction_address(), call->next_instruction_address());
duke@435 1405 iter.next();
duke@435 1406 assert(iter.has_current(), "must have a reloc at java call site");
duke@435 1407 relocInfo::relocType typ = iter.reloc()->type();
duke@435 1408 if ( typ != relocInfo::static_call_type &&
duke@435 1409 typ != relocInfo::opt_virtual_call_type &&
duke@435 1410 typ != relocInfo::static_stub_type) {
duke@435 1411 return;
duke@435 1412 }
duke@435 1413 address destination = call->destination();
duke@435 1414 if (destination != entry_point) {
duke@435 1415 CodeBlob* callee = CodeCache::find_blob(destination);
duke@435 1416 // callee == cb seems weird. It means calling interpreter thru stub.
duke@435 1417 if (callee == cb || callee->is_adapter_blob()) {
duke@435 1418 // static call or optimized virtual
duke@435 1419 if (TraceCallFixup) {
duke@435 1420 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1421 moop->print_short_name(tty);
duke@435 1422 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1423 }
duke@435 1424 call->set_destination_mt_safe(entry_point);
duke@435 1425 } else {
duke@435 1426 if (TraceCallFixup) {
duke@435 1427 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1428 moop->print_short_name(tty);
duke@435 1429 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1430 }
duke@435 1431 // assert is too strong could also be resolve destinations.
duke@435 1432 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
duke@435 1433 }
duke@435 1434 } else {
duke@435 1435 if (TraceCallFixup) {
duke@435 1436 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1437 moop->print_short_name(tty);
duke@435 1438 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1439 }
duke@435 1440 }
duke@435 1441 }
duke@435 1442 }
duke@435 1443
duke@435 1444 IRT_END
duke@435 1445
duke@435 1446
duke@435 1447 // same as JVM_Arraycopy, but called directly from compiled code
duke@435 1448 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos,
duke@435 1449 oopDesc* dest, jint dest_pos,
duke@435 1450 jint length,
duke@435 1451 JavaThread* thread)) {
duke@435 1452 #ifndef PRODUCT
duke@435 1453 _slow_array_copy_ctr++;
duke@435 1454 #endif
duke@435 1455 // Check if we have null pointers
duke@435 1456 if (src == NULL || dest == NULL) {
duke@435 1457 THROW(vmSymbols::java_lang_NullPointerException());
duke@435 1458 }
duke@435 1459 // Do the copy. The casts to arrayOop are necessary to the copy_array API,
duke@435 1460 // even though the copy_array API also performs dynamic checks to ensure
duke@435 1461 // that src and dest are truly arrays (and are conformable).
duke@435 1462 // The copy_array mechanism is awkward and could be removed, but
duke@435 1463 // the compilers don't call this function except as a last resort,
duke@435 1464 // so it probably doesn't matter.
duke@435 1465 Klass::cast(src->klass())->copy_array((arrayOopDesc*)src, src_pos,
duke@435 1466 (arrayOopDesc*)dest, dest_pos,
duke@435 1467 length, thread);
duke@435 1468 }
duke@435 1469 JRT_END
duke@435 1470
duke@435 1471 char* SharedRuntime::generate_class_cast_message(
duke@435 1472 JavaThread* thread, const char* objName) {
duke@435 1473
duke@435 1474 // Get target class name from the checkcast instruction
duke@435 1475 vframeStream vfst(thread, true);
duke@435 1476 assert(!vfst.at_end(), "Java frame must exist");
duke@435 1477 Bytecode_checkcast* cc = Bytecode_checkcast_at(
duke@435 1478 vfst.method()->bcp_from(vfst.bci()));
duke@435 1479 Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
duke@435 1480 cc->index(), thread));
duke@435 1481 return generate_class_cast_message(objName, targetKlass->external_name());
duke@435 1482 }
duke@435 1483
duke@435 1484 char* SharedRuntime::generate_class_cast_message(
duke@435 1485 const char* objName, const char* targetKlassName) {
duke@435 1486 const char* desc = " cannot be cast to ";
duke@435 1487 size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
duke@435 1488
duke@435 1489 char* message = NEW_C_HEAP_ARRAY(char, msglen);
duke@435 1490 if (NULL == message) {
duke@435 1491 // out of memory - can't use a detailed message. Since caller is
duke@435 1492 // using a resource mark to free memory, returning this should be
duke@435 1493 // safe (caller won't explicitly delete it).
duke@435 1494 message = const_cast<char*>(objName);
duke@435 1495 } else {
duke@435 1496 jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
duke@435 1497 }
duke@435 1498 return message;
duke@435 1499 }
duke@435 1500
duke@435 1501 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
duke@435 1502 (void) JavaThread::current()->reguard_stack();
duke@435 1503 JRT_END
duke@435 1504
duke@435 1505
duke@435 1506 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
duke@435 1507 #ifndef PRODUCT
duke@435 1508 int SharedRuntime::_monitor_enter_ctr=0;
duke@435 1509 #endif
duke@435 1510 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
duke@435 1511 oop obj(_obj);
duke@435 1512 #ifndef PRODUCT
duke@435 1513 _monitor_enter_ctr++; // monitor enter slow
duke@435 1514 #endif
duke@435 1515 if (PrintBiasedLockingStatistics) {
duke@435 1516 Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
duke@435 1517 }
duke@435 1518 Handle h_obj(THREAD, obj);
duke@435 1519 if (UseBiasedLocking) {
duke@435 1520 // Retry fast entry if bias is revoked to avoid unnecessary inflation
duke@435 1521 ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
duke@435 1522 } else {
duke@435 1523 ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
duke@435 1524 }
duke@435 1525 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
duke@435 1526 JRT_END
duke@435 1527
duke@435 1528 #ifndef PRODUCT
duke@435 1529 int SharedRuntime::_monitor_exit_ctr=0;
duke@435 1530 #endif
duke@435 1531 // Handles the uncommon cases of monitor unlocking in compiled code
duke@435 1532 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
duke@435 1533 oop obj(_obj);
duke@435 1534 #ifndef PRODUCT
duke@435 1535 _monitor_exit_ctr++; // monitor exit slow
duke@435 1536 #endif
duke@435 1537 Thread* THREAD = JavaThread::current();
duke@435 1538 // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
duke@435 1539 // testing was unable to ever fire the assert that guarded it so I have removed it.
duke@435 1540 assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
duke@435 1541 #undef MIGHT_HAVE_PENDING
duke@435 1542 #ifdef MIGHT_HAVE_PENDING
duke@435 1543 // Save and restore any pending_exception around the exception mark.
duke@435 1544 // While the slow_exit must not throw an exception, we could come into
duke@435 1545 // this routine with one set.
duke@435 1546 oop pending_excep = NULL;
duke@435 1547 const char* pending_file;
duke@435 1548 int pending_line;
duke@435 1549 if (HAS_PENDING_EXCEPTION) {
duke@435 1550 pending_excep = PENDING_EXCEPTION;
duke@435 1551 pending_file = THREAD->exception_file();
duke@435 1552 pending_line = THREAD->exception_line();
duke@435 1553 CLEAR_PENDING_EXCEPTION;
duke@435 1554 }
duke@435 1555 #endif /* MIGHT_HAVE_PENDING */
duke@435 1556
duke@435 1557 {
duke@435 1558 // Exit must be non-blocking, and therefore no exceptions can be thrown.
duke@435 1559 EXCEPTION_MARK;
duke@435 1560 ObjectSynchronizer::slow_exit(obj, lock, THREAD);
duke@435 1561 }
duke@435 1562
duke@435 1563 #ifdef MIGHT_HAVE_PENDING
duke@435 1564 if (pending_excep != NULL) {
duke@435 1565 THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
duke@435 1566 }
duke@435 1567 #endif /* MIGHT_HAVE_PENDING */
duke@435 1568 JRT_END
duke@435 1569
duke@435 1570 #ifndef PRODUCT
duke@435 1571
duke@435 1572 void SharedRuntime::print_statistics() {
duke@435 1573 ttyLocker ttyl;
duke@435 1574 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'");
duke@435 1575
duke@435 1576 if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow", _monitor_enter_ctr);
duke@435 1577 if (_monitor_exit_ctr ) tty->print_cr("%5d monitor exit slow", _monitor_exit_ctr);
duke@435 1578 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
duke@435 1579
duke@435 1580 SharedRuntime::print_ic_miss_histogram();
duke@435 1581
duke@435 1582 if (CountRemovableExceptions) {
duke@435 1583 if (_nof_removable_exceptions > 0) {
duke@435 1584 Unimplemented(); // this counter is not yet incremented
duke@435 1585 tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
duke@435 1586 }
duke@435 1587 }
duke@435 1588
duke@435 1589 // Dump the JRT_ENTRY counters
duke@435 1590 if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
duke@435 1591 if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
duke@435 1592 if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
duke@435 1593 if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
duke@435 1594 if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
duke@435 1595 if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
duke@435 1596 if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
duke@435 1597
duke@435 1598 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
duke@435 1599 tty->print_cr("%5d wrong method", _wrong_method_ctr );
duke@435 1600 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
duke@435 1601 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
duke@435 1602 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
duke@435 1603
duke@435 1604 if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
duke@435 1605 if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
duke@435 1606 if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
duke@435 1607 if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
duke@435 1608 if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
duke@435 1609 if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
duke@435 1610 if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
duke@435 1611 if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
duke@435 1612 if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
duke@435 1613 if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
duke@435 1614 if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
duke@435 1615 if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
duke@435 1616 if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
duke@435 1617 if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
duke@435 1618 if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
duke@435 1619 if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
duke@435 1620
duke@435 1621 if (xtty != NULL) xtty->tail("statistics");
duke@435 1622 }
duke@435 1623
duke@435 1624 inline double percent(int x, int y) {
duke@435 1625 return 100.0 * x / MAX2(y, 1);
duke@435 1626 }
duke@435 1627
duke@435 1628 class MethodArityHistogram {
duke@435 1629 public:
duke@435 1630 enum { MAX_ARITY = 256 };
duke@435 1631 private:
duke@435 1632 static int _arity_histogram[MAX_ARITY]; // histogram of #args
duke@435 1633 static int _size_histogram[MAX_ARITY]; // histogram of arg size in words
duke@435 1634 static int _max_arity; // max. arity seen
duke@435 1635 static int _max_size; // max. arg size seen
duke@435 1636
duke@435 1637 static void add_method_to_histogram(nmethod* nm) {
duke@435 1638 methodOop m = nm->method();
duke@435 1639 ArgumentCount args(m->signature());
duke@435 1640 int arity = args.size() + (m->is_static() ? 0 : 1);
duke@435 1641 int argsize = m->size_of_parameters();
duke@435 1642 arity = MIN2(arity, MAX_ARITY-1);
duke@435 1643 argsize = MIN2(argsize, MAX_ARITY-1);
duke@435 1644 int count = nm->method()->compiled_invocation_count();
duke@435 1645 _arity_histogram[arity] += count;
duke@435 1646 _size_histogram[argsize] += count;
duke@435 1647 _max_arity = MAX2(_max_arity, arity);
duke@435 1648 _max_size = MAX2(_max_size, argsize);
duke@435 1649 }
duke@435 1650
duke@435 1651 void print_histogram_helper(int n, int* histo, const char* name) {
duke@435 1652 const int N = MIN2(5, n);
duke@435 1653 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@435 1654 double sum = 0;
duke@435 1655 double weighted_sum = 0;
duke@435 1656 int i;
duke@435 1657 for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
duke@435 1658 double rest = sum;
duke@435 1659 double percent = sum / 100;
duke@435 1660 for (i = 0; i <= N; i++) {
duke@435 1661 rest -= histo[i];
duke@435 1662 tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
duke@435 1663 }
duke@435 1664 tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
duke@435 1665 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
duke@435 1666 }
duke@435 1667
duke@435 1668 void print_histogram() {
duke@435 1669 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@435 1670 print_histogram_helper(_max_arity, _arity_histogram, "arity");
duke@435 1671 tty->print_cr("\nSame for parameter size (in words):");
duke@435 1672 print_histogram_helper(_max_size, _size_histogram, "size");
duke@435 1673 tty->cr();
duke@435 1674 }
duke@435 1675
duke@435 1676 public:
duke@435 1677 MethodArityHistogram() {
duke@435 1678 MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
duke@435 1679 _max_arity = _max_size = 0;
duke@435 1680 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
duke@435 1681 CodeCache::nmethods_do(add_method_to_histogram);
duke@435 1682 print_histogram();
duke@435 1683 }
duke@435 1684 };
duke@435 1685
duke@435 1686 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
duke@435 1687 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
duke@435 1688 int MethodArityHistogram::_max_arity;
duke@435 1689 int MethodArityHistogram::_max_size;
duke@435 1690
duke@435 1691 void SharedRuntime::print_call_statistics(int comp_total) {
duke@435 1692 tty->print_cr("Calls from compiled code:");
duke@435 1693 int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
duke@435 1694 int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
duke@435 1695 int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
duke@435 1696 tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total));
duke@435 1697 tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total));
duke@435 1698 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
duke@435 1699 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
duke@435 1700 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls));
duke@435 1701 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
duke@435 1702 tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total));
duke@435 1703 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
duke@435 1704 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
duke@435 1705 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls));
duke@435 1706 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
duke@435 1707 tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
duke@435 1708 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
duke@435 1709 tty->cr();
duke@435 1710 tty->print_cr("Note 1: counter updates are not MT-safe.");
duke@435 1711 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
duke@435 1712 tty->print_cr(" %% in nested categories are relative to their category");
duke@435 1713 tty->print_cr(" (and thus add up to more than 100%% with inlining)");
duke@435 1714 tty->cr();
duke@435 1715
duke@435 1716 MethodArityHistogram h;
duke@435 1717 }
duke@435 1718 #endif
duke@435 1719
duke@435 1720
duke@435 1721 // ---------------------------------------------------------------------------
duke@435 1722 // Implementation of AdapterHandlerLibrary
duke@435 1723 const char* AdapterHandlerEntry::name = "I2C/C2I adapters";
duke@435 1724 GrowableArray<uint64_t>* AdapterHandlerLibrary::_fingerprints = NULL;
duke@435 1725 GrowableArray<AdapterHandlerEntry* >* AdapterHandlerLibrary::_handlers = NULL;
duke@435 1726 const int AdapterHandlerLibrary_size = 16*K;
duke@435 1727 u_char AdapterHandlerLibrary::_buffer[AdapterHandlerLibrary_size + 32];
duke@435 1728
duke@435 1729 void AdapterHandlerLibrary::initialize() {
duke@435 1730 if (_fingerprints != NULL) return;
duke@435 1731 _fingerprints = new(ResourceObj::C_HEAP)GrowableArray<uint64_t>(32, true);
duke@435 1732 _handlers = new(ResourceObj::C_HEAP)GrowableArray<AdapterHandlerEntry*>(32, true);
duke@435 1733 // Index 0 reserved for the slow path handler
duke@435 1734 _fingerprints->append(0/*the never-allowed 0 fingerprint*/);
duke@435 1735 _handlers->append(NULL);
duke@435 1736
duke@435 1737 // Create a special handler for abstract methods. Abstract methods
duke@435 1738 // are never compiled so an i2c entry is somewhat meaningless, but
duke@435 1739 // fill it in with something appropriate just in case. Pass handle
duke@435 1740 // wrong method for the c2i transitions.
duke@435 1741 address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
duke@435 1742 _fingerprints->append(0/*the never-allowed 0 fingerprint*/);
duke@435 1743 assert(_handlers->length() == AbstractMethodHandler, "in wrong slot");
duke@435 1744 _handlers->append(new AdapterHandlerEntry(StubRoutines::throw_AbstractMethodError_entry(),
duke@435 1745 wrong_method, wrong_method));
duke@435 1746 }
duke@435 1747
duke@435 1748 int AdapterHandlerLibrary::get_create_adapter_index(methodHandle method) {
duke@435 1749 // Use customized signature handler. Need to lock around updates to the
duke@435 1750 // _fingerprints array (it is not safe for concurrent readers and a single
duke@435 1751 // writer: this can be fixed if it becomes a problem).
duke@435 1752
duke@435 1753 // Shouldn't be here if running -Xint
duke@435 1754 if (Arguments::mode() == Arguments::_int) {
duke@435 1755 ShouldNotReachHere();
duke@435 1756 }
duke@435 1757
duke@435 1758 // Get the address of the ic_miss handlers before we grab the
duke@435 1759 // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
duke@435 1760 // was caused by the initialization of the stubs happening
duke@435 1761 // while we held the lock and then notifying jvmti while
duke@435 1762 // holding it. This just forces the initialization to be a little
duke@435 1763 // earlier.
duke@435 1764 address ic_miss = SharedRuntime::get_ic_miss_stub();
duke@435 1765 assert(ic_miss != NULL, "must have handler");
duke@435 1766
duke@435 1767 int result;
duke@435 1768 BufferBlob *B = NULL;
duke@435 1769 uint64_t fingerprint;
duke@435 1770 {
duke@435 1771 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@435 1772 // make sure data structure is initialized
duke@435 1773 initialize();
duke@435 1774
duke@435 1775 if (method->is_abstract()) {
duke@435 1776 return AbstractMethodHandler;
duke@435 1777 }
duke@435 1778
duke@435 1779 // Lookup method signature's fingerprint
duke@435 1780 fingerprint = Fingerprinter(method).fingerprint();
duke@435 1781 assert( fingerprint != CONST64( 0), "no zero fingerprints allowed" );
duke@435 1782 // Fingerprints are small fixed-size condensed representations of
duke@435 1783 // signatures. If the signature is too large, it won't fit in a
duke@435 1784 // fingerprint. Signatures which cannot support a fingerprint get a new i2c
duke@435 1785 // adapter gen'd each time, instead of searching the cache for one. This -1
duke@435 1786 // game can be avoided if I compared signatures instead of using
duke@435 1787 // fingerprints. However, -1 fingerprints are very rare.
duke@435 1788 if( fingerprint != UCONST64(-1) ) { // If this is a cache-able fingerprint
duke@435 1789 // Turns out i2c adapters do not care what the return value is. Mask it
duke@435 1790 // out so signatures that only differ in return type will share the same
duke@435 1791 // adapter.
duke@435 1792 fingerprint &= ~(SignatureIterator::result_feature_mask << SignatureIterator::static_feature_size);
duke@435 1793 // Search for a prior existing i2c/c2i adapter
duke@435 1794 int index = _fingerprints->find(fingerprint);
duke@435 1795 if( index >= 0 ) return index; // Found existing handlers?
duke@435 1796 } else {
duke@435 1797 // Annoyingly, I end up adding -1 fingerprints to the array of handlers,
duke@435 1798 // because I need a unique handler index. It cannot be scanned for
duke@435 1799 // because all -1's look alike. Instead, the matching index is passed out
duke@435 1800 // and immediately used to collect the 2 return values (the c2i and i2c
duke@435 1801 // adapters).
duke@435 1802 }
duke@435 1803
duke@435 1804 // Create I2C & C2I handlers
duke@435 1805 ResourceMark rm;
duke@435 1806 // Improve alignment slightly
duke@435 1807 u_char *buf = (u_char*)(((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
duke@435 1808 CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
duke@435 1809 short buffer_locs[20];
duke@435 1810 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
duke@435 1811 sizeof(buffer_locs)/sizeof(relocInfo));
duke@435 1812 MacroAssembler _masm(&buffer);
duke@435 1813
duke@435 1814 // Fill in the signature array, for the calling-convention call.
duke@435 1815 int total_args_passed = method->size_of_parameters(); // All args on stack
duke@435 1816
duke@435 1817 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
duke@435 1818 VMRegPair * regs = NEW_RESOURCE_ARRAY(VMRegPair ,total_args_passed);
duke@435 1819 int i=0;
duke@435 1820 if( !method->is_static() ) // Pass in receiver first
duke@435 1821 sig_bt[i++] = T_OBJECT;
duke@435 1822 for( SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
duke@435 1823 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
duke@435 1824 if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
duke@435 1825 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
duke@435 1826 }
duke@435 1827 assert( i==total_args_passed, "" );
duke@435 1828
duke@435 1829 // Now get the re-packed compiled-Java layout.
duke@435 1830 int comp_args_on_stack;
duke@435 1831
duke@435 1832 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
duke@435 1833 comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
duke@435 1834
duke@435 1835 AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
duke@435 1836 total_args_passed,
duke@435 1837 comp_args_on_stack,
duke@435 1838 sig_bt,
duke@435 1839 regs);
duke@435 1840
duke@435 1841 B = BufferBlob::create(AdapterHandlerEntry::name, &buffer);
duke@435 1842 if (B == NULL) return -2; // Out of CodeCache space
duke@435 1843 entry->relocate(B->instructions_begin());
duke@435 1844 #ifndef PRODUCT
duke@435 1845 // debugging suppport
duke@435 1846 if (PrintAdapterHandlers) {
duke@435 1847 tty->cr();
duke@435 1848 tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = 0x%llx, %d bytes generated)",
duke@435 1849 _handlers->length(), (method->is_static() ? "static" : "receiver"),
duke@435 1850 method->signature()->as_C_string(), fingerprint, buffer.code_size() );
duke@435 1851 tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
duke@435 1852 Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + buffer.code_size());
duke@435 1853 }
duke@435 1854 #endif
duke@435 1855
duke@435 1856 // add handlers to library
duke@435 1857 _fingerprints->append(fingerprint);
duke@435 1858 _handlers->append(entry);
duke@435 1859 // set handler index
duke@435 1860 assert(_fingerprints->length() == _handlers->length(), "sanity check");
duke@435 1861 result = _fingerprints->length() - 1;
duke@435 1862 }
duke@435 1863 // Outside of the lock
duke@435 1864 if (B != NULL) {
duke@435 1865 char blob_id[256];
duke@435 1866 jio_snprintf(blob_id,
duke@435 1867 sizeof(blob_id),
duke@435 1868 "%s(" PTR64_FORMAT ")@" PTR_FORMAT,
duke@435 1869 AdapterHandlerEntry::name,
duke@435 1870 fingerprint,
duke@435 1871 B->instructions_begin());
duke@435 1872 VTune::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
duke@435 1873 Forte::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
duke@435 1874
duke@435 1875 if (JvmtiExport::should_post_dynamic_code_generated()) {
duke@435 1876 JvmtiExport::post_dynamic_code_generated(blob_id,
duke@435 1877 B->instructions_begin(),
duke@435 1878 B->instructions_end());
duke@435 1879 }
duke@435 1880 }
duke@435 1881 return result;
duke@435 1882 }
duke@435 1883
duke@435 1884 void AdapterHandlerEntry::relocate(address new_base) {
duke@435 1885 ptrdiff_t delta = new_base - _i2c_entry;
duke@435 1886 _i2c_entry += delta;
duke@435 1887 _c2i_entry += delta;
duke@435 1888 _c2i_unverified_entry += delta;
duke@435 1889 }
duke@435 1890
duke@435 1891 // Create a native wrapper for this native method. The wrapper converts the
duke@435 1892 // java compiled calling convention to the native convention, handlizes
duke@435 1893 // arguments, and transitions to native. On return from the native we transition
duke@435 1894 // back to java blocking if a safepoint is in progress.
duke@435 1895 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
duke@435 1896 ResourceMark rm;
duke@435 1897 nmethod* nm = NULL;
duke@435 1898
duke@435 1899 if (PrintCompilation) {
duke@435 1900 ttyLocker ttyl;
duke@435 1901 tty->print("--- n%s ", (method->is_synchronized() ? "s" : " "));
duke@435 1902 method->print_short_name(tty);
duke@435 1903 if (method->is_static()) {
duke@435 1904 tty->print(" (static)");
duke@435 1905 }
duke@435 1906 tty->cr();
duke@435 1907 }
duke@435 1908
duke@435 1909 assert(method->has_native_function(), "must have something valid to call!");
duke@435 1910
duke@435 1911 {
duke@435 1912 // perform the work while holding the lock, but perform any printing outside the lock
duke@435 1913 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@435 1914 // See if somebody beat us to it
duke@435 1915 nm = method->code();
duke@435 1916 if (nm) {
duke@435 1917 return nm;
duke@435 1918 }
duke@435 1919
duke@435 1920 // Improve alignment slightly
duke@435 1921 u_char* buf = (u_char*)(((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
duke@435 1922 CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
duke@435 1923 // Need a few relocation entries
duke@435 1924 double locs_buf[20];
duke@435 1925 buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
duke@435 1926 MacroAssembler _masm(&buffer);
duke@435 1927
duke@435 1928 // Fill in the signature array, for the calling-convention call.
duke@435 1929 int total_args_passed = method->size_of_parameters();
duke@435 1930
duke@435 1931 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
duke@435 1932 VMRegPair * regs = NEW_RESOURCE_ARRAY(VMRegPair ,total_args_passed);
duke@435 1933 int i=0;
duke@435 1934 if( !method->is_static() ) // Pass in receiver first
duke@435 1935 sig_bt[i++] = T_OBJECT;
duke@435 1936 SignatureStream ss(method->signature());
duke@435 1937 for( ; !ss.at_return_type(); ss.next()) {
duke@435 1938 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
duke@435 1939 if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
duke@435 1940 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
duke@435 1941 }
duke@435 1942 assert( i==total_args_passed, "" );
duke@435 1943 BasicType ret_type = ss.type();
duke@435 1944
duke@435 1945 // Now get the compiled-Java layout as input arguments
duke@435 1946 int comp_args_on_stack;
duke@435 1947 comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
duke@435 1948
duke@435 1949 // Generate the compiled-to-native wrapper code
duke@435 1950 nm = SharedRuntime::generate_native_wrapper(&_masm,
duke@435 1951 method,
duke@435 1952 total_args_passed,
duke@435 1953 comp_args_on_stack,
duke@435 1954 sig_bt,regs,
duke@435 1955 ret_type);
duke@435 1956 }
duke@435 1957
duke@435 1958 // Must unlock before calling set_code
duke@435 1959 // Install the generated code.
duke@435 1960 if (nm != NULL) {
duke@435 1961 method->set_code(method, nm);
duke@435 1962 nm->post_compiled_method_load_event();
duke@435 1963 } else {
duke@435 1964 // CodeCache is full, disable compilation
duke@435 1965 // Ought to log this but compile log is only per compile thread
duke@435 1966 // and we're some non descript Java thread.
duke@435 1967 UseInterpreter = true;
duke@435 1968 if (UseCompiler || AlwaysCompileLoopMethods ) {
duke@435 1969 #ifndef PRODUCT
duke@435 1970 warning("CodeCache is full. Compiler has been disabled");
duke@435 1971 if (CompileTheWorld || ExitOnFullCodeCache) {
duke@435 1972 before_exit(JavaThread::current());
duke@435 1973 exit_globals(); // will delete tty
duke@435 1974 vm_direct_exit(CompileTheWorld ? 0 : 1);
duke@435 1975 }
duke@435 1976 #endif
duke@435 1977 UseCompiler = false;
duke@435 1978 AlwaysCompileLoopMethods = false;
duke@435 1979 }
duke@435 1980 }
duke@435 1981 return nm;
duke@435 1982 }
duke@435 1983
duke@435 1984 // -------------------------------------------------------------------------
duke@435 1985 // Java-Java calling convention
duke@435 1986 // (what you use when Java calls Java)
duke@435 1987
duke@435 1988 //------------------------------name_for_receiver----------------------------------
duke@435 1989 // For a given signature, return the VMReg for parameter 0.
duke@435 1990 VMReg SharedRuntime::name_for_receiver() {
duke@435 1991 VMRegPair regs;
duke@435 1992 BasicType sig_bt = T_OBJECT;
duke@435 1993 (void) java_calling_convention(&sig_bt, &regs, 1, true);
duke@435 1994 // Return argument 0 register. In the LP64 build pointers
duke@435 1995 // take 2 registers, but the VM wants only the 'main' name.
duke@435 1996 return regs.first();
duke@435 1997 }
duke@435 1998
duke@435 1999 VMRegPair *SharedRuntime::find_callee_arguments(symbolOop sig, bool is_static, int* arg_size) {
duke@435 2000 // This method is returning a data structure allocating as a
duke@435 2001 // ResourceObject, so do not put any ResourceMarks in here.
duke@435 2002 char *s = sig->as_C_string();
duke@435 2003 int len = (int)strlen(s);
duke@435 2004 *s++; len--; // Skip opening paren
duke@435 2005 char *t = s+len;
duke@435 2006 while( *(--t) != ')' ) ; // Find close paren
duke@435 2007
duke@435 2008 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
duke@435 2009 VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
duke@435 2010 int cnt = 0;
duke@435 2011 if (!is_static) {
duke@435 2012 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
duke@435 2013 }
duke@435 2014
duke@435 2015 while( s < t ) {
duke@435 2016 switch( *s++ ) { // Switch on signature character
duke@435 2017 case 'B': sig_bt[cnt++] = T_BYTE; break;
duke@435 2018 case 'C': sig_bt[cnt++] = T_CHAR; break;
duke@435 2019 case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break;
duke@435 2020 case 'F': sig_bt[cnt++] = T_FLOAT; break;
duke@435 2021 case 'I': sig_bt[cnt++] = T_INT; break;
duke@435 2022 case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break;
duke@435 2023 case 'S': sig_bt[cnt++] = T_SHORT; break;
duke@435 2024 case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
duke@435 2025 case 'V': sig_bt[cnt++] = T_VOID; break;
duke@435 2026 case 'L': // Oop
duke@435 2027 while( *s++ != ';' ) ; // Skip signature
duke@435 2028 sig_bt[cnt++] = T_OBJECT;
duke@435 2029 break;
duke@435 2030 case '[': { // Array
duke@435 2031 do { // Skip optional size
duke@435 2032 while( *s >= '0' && *s <= '9' ) s++;
duke@435 2033 } while( *s++ == '[' ); // Nested arrays?
duke@435 2034 // Skip element type
duke@435 2035 if( s[-1] == 'L' )
duke@435 2036 while( *s++ != ';' ) ; // Skip signature
duke@435 2037 sig_bt[cnt++] = T_ARRAY;
duke@435 2038 break;
duke@435 2039 }
duke@435 2040 default : ShouldNotReachHere();
duke@435 2041 }
duke@435 2042 }
duke@435 2043 assert( cnt < 256, "grow table size" );
duke@435 2044
duke@435 2045 int comp_args_on_stack;
duke@435 2046 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
duke@435 2047
duke@435 2048 // the calling convention doesn't count out_preserve_stack_slots so
duke@435 2049 // we must add that in to get "true" stack offsets.
duke@435 2050
duke@435 2051 if (comp_args_on_stack) {
duke@435 2052 for (int i = 0; i < cnt; i++) {
duke@435 2053 VMReg reg1 = regs[i].first();
duke@435 2054 if( reg1->is_stack()) {
duke@435 2055 // Yuck
duke@435 2056 reg1 = reg1->bias(out_preserve_stack_slots());
duke@435 2057 }
duke@435 2058 VMReg reg2 = regs[i].second();
duke@435 2059 if( reg2->is_stack()) {
duke@435 2060 // Yuck
duke@435 2061 reg2 = reg2->bias(out_preserve_stack_slots());
duke@435 2062 }
duke@435 2063 regs[i].set_pair(reg2, reg1);
duke@435 2064 }
duke@435 2065 }
duke@435 2066
duke@435 2067 // results
duke@435 2068 *arg_size = cnt;
duke@435 2069 return regs;
duke@435 2070 }
duke@435 2071
duke@435 2072 // OSR Migration Code
duke@435 2073 //
duke@435 2074 // This code is used convert interpreter frames into compiled frames. It is
duke@435 2075 // called from very start of a compiled OSR nmethod. A temp array is
duke@435 2076 // allocated to hold the interesting bits of the interpreter frame. All
duke@435 2077 // active locks are inflated to allow them to move. The displaced headers and
duke@435 2078 // active interpeter locals are copied into the temp buffer. Then we return
duke@435 2079 // back to the compiled code. The compiled code then pops the current
duke@435 2080 // interpreter frame off the stack and pushes a new compiled frame. Then it
duke@435 2081 // copies the interpreter locals and displaced headers where it wants.
duke@435 2082 // Finally it calls back to free the temp buffer.
duke@435 2083 //
duke@435 2084 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
duke@435 2085
duke@435 2086 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
duke@435 2087
duke@435 2088 #ifdef IA64
duke@435 2089 ShouldNotReachHere(); // NYI
duke@435 2090 #endif /* IA64 */
duke@435 2091
duke@435 2092 //
duke@435 2093 // This code is dependent on the memory layout of the interpreter local
duke@435 2094 // array and the monitors. On all of our platforms the layout is identical
duke@435 2095 // so this code is shared. If some platform lays the their arrays out
duke@435 2096 // differently then this code could move to platform specific code or
duke@435 2097 // the code here could be modified to copy items one at a time using
duke@435 2098 // frame accessor methods and be platform independent.
duke@435 2099
duke@435 2100 frame fr = thread->last_frame();
duke@435 2101 assert( fr.is_interpreted_frame(), "" );
duke@435 2102 assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
duke@435 2103
duke@435 2104 // Figure out how many monitors are active.
duke@435 2105 int active_monitor_count = 0;
duke@435 2106 for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
duke@435 2107 kptr < fr.interpreter_frame_monitor_begin();
duke@435 2108 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
duke@435 2109 if( kptr->obj() != NULL ) active_monitor_count++;
duke@435 2110 }
duke@435 2111
duke@435 2112 // QQQ we could place number of active monitors in the array so that compiled code
duke@435 2113 // could double check it.
duke@435 2114
duke@435 2115 methodOop moop = fr.interpreter_frame_method();
duke@435 2116 int max_locals = moop->max_locals();
duke@435 2117 // Allocate temp buffer, 1 word per local & 2 per active monitor
duke@435 2118 int buf_size_words = max_locals + active_monitor_count*2;
duke@435 2119 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
duke@435 2120
duke@435 2121 // Copy the locals. Order is preserved so that loading of longs works.
duke@435 2122 // Since there's no GC I can copy the oops blindly.
duke@435 2123 assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
duke@435 2124 if (TaggedStackInterpreter) {
duke@435 2125 for (int i = 0; i < max_locals; i++) {
duke@435 2126 // copy only each local separately to the buffer avoiding the tag
duke@435 2127 buf[i] = *fr.interpreter_frame_local_at(max_locals-i-1);
duke@435 2128 }
duke@435 2129 } else {
duke@435 2130 Copy::disjoint_words(
duke@435 2131 (HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
duke@435 2132 (HeapWord*)&buf[0],
duke@435 2133 max_locals);
duke@435 2134 }
duke@435 2135
duke@435 2136 // Inflate locks. Copy the displaced headers. Be careful, there can be holes.
duke@435 2137 int i = max_locals;
duke@435 2138 for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
duke@435 2139 kptr2 < fr.interpreter_frame_monitor_begin();
duke@435 2140 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
duke@435 2141 if( kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array
duke@435 2142 BasicLock *lock = kptr2->lock();
duke@435 2143 // Inflate so the displaced header becomes position-independent
duke@435 2144 if (lock->displaced_header()->is_unlocked())
duke@435 2145 ObjectSynchronizer::inflate_helper(kptr2->obj());
duke@435 2146 // Now the displaced header is free to move
duke@435 2147 buf[i++] = (intptr_t)lock->displaced_header();
duke@435 2148 buf[i++] = (intptr_t)kptr2->obj();
duke@435 2149 }
duke@435 2150 }
duke@435 2151 assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
duke@435 2152
duke@435 2153 return buf;
duke@435 2154 JRT_END
duke@435 2155
duke@435 2156 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
duke@435 2157 FREE_C_HEAP_ARRAY(intptr_t,buf);
duke@435 2158 JRT_END
duke@435 2159
duke@435 2160 #ifndef PRODUCT
duke@435 2161 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
duke@435 2162
duke@435 2163 for (int i = 0 ; i < _handlers->length() ; i++) {
duke@435 2164 AdapterHandlerEntry* a = get_entry(i);
duke@435 2165 if ( a != NULL && b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
duke@435 2166 }
duke@435 2167 return false;
duke@435 2168 }
duke@435 2169
duke@435 2170 void AdapterHandlerLibrary::print_handler(CodeBlob* b) {
duke@435 2171
duke@435 2172 for (int i = 0 ; i < _handlers->length() ; i++) {
duke@435 2173 AdapterHandlerEntry* a = get_entry(i);
duke@435 2174 if ( a != NULL && b == CodeCache::find_blob(a->get_i2c_entry()) ) {
duke@435 2175 tty->print("Adapter for signature: ");
duke@435 2176 // Fingerprinter::print(_fingerprints->at(i));
duke@435 2177 tty->print("0x%" FORMAT64_MODIFIER "x", _fingerprints->at(i));
duke@435 2178 tty->print_cr(" i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
duke@435 2179 a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
duke@435 2180
duke@435 2181 return;
duke@435 2182 }
duke@435 2183 }
duke@435 2184 assert(false, "Should have found handler");
duke@435 2185 }
duke@435 2186 #endif /* PRODUCT */

mercurial