src/share/vm/opto/phaseX.hpp

Wed, 02 Apr 2008 12:09:59 -0700

author
jrose
date
Wed, 02 Apr 2008 12:09:59 -0700
changeset 535
c7c777385a15
parent 508
a8880a78d355
child 548
ba764ed4b6f2
permissions
-rw-r--r--

6667042: PrintAssembly option does not work without special plugin
Summary: remove old private plugin interface, simplify, rework old plugin to use unchanged Gnu sources
Reviewed-by: kvn, rasbold

duke@435 1 /*
duke@435 2 * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 class Compile;
duke@435 26 class ConINode;
duke@435 27 class ConLNode;
duke@435 28 class Node;
duke@435 29 class Type;
duke@435 30 class PhaseTransform;
duke@435 31 class PhaseGVN;
duke@435 32 class PhaseIterGVN;
duke@435 33 class PhaseCCP;
duke@435 34 class PhasePeephole;
duke@435 35 class PhaseRegAlloc;
duke@435 36
duke@435 37
duke@435 38 //-----------------------------------------------------------------------------
duke@435 39 // Expandable closed hash-table of nodes, initialized to NULL.
duke@435 40 // Note that the constructor just zeros things
duke@435 41 // Storage is reclaimed when the Arena's lifetime is over.
duke@435 42 class NodeHash : public StackObj {
duke@435 43 protected:
duke@435 44 Arena *_a; // Arena to allocate in
duke@435 45 uint _max; // Size of table (power of 2)
duke@435 46 uint _inserts; // For grow and debug, count of hash_inserts
duke@435 47 uint _insert_limit; // 'grow' when _inserts reaches _insert_limit
duke@435 48 Node **_table; // Hash table of Node pointers
duke@435 49 Node *_sentinel; // Replaces deleted entries in hash table
duke@435 50
duke@435 51 public:
duke@435 52 NodeHash(uint est_max_size);
duke@435 53 NodeHash(Arena *arena, uint est_max_size);
duke@435 54 NodeHash(NodeHash *use_this_state);
duke@435 55 #ifdef ASSERT
duke@435 56 ~NodeHash(); // Unlock all nodes upon destruction of table.
duke@435 57 void operator=(const NodeHash&); // Unlock all nodes upon replacement of table.
duke@435 58 #endif
duke@435 59 Node *hash_find(const Node*);// Find an equivalent version in hash table
duke@435 60 Node *hash_find_insert(Node*);// If not in table insert else return found node
duke@435 61 void hash_insert(Node*); // Insert into hash table
duke@435 62 bool hash_delete(const Node*);// Replace with _sentinel in hash table
duke@435 63 void check_grow() {
duke@435 64 _inserts++;
duke@435 65 if( _inserts == _insert_limit ) { grow(); }
duke@435 66 assert( _inserts <= _insert_limit, "hash table overflow");
duke@435 67 assert( _inserts < _max, "hash table overflow" );
duke@435 68 }
duke@435 69 static uint round_up(uint); // Round up to nearest power of 2
duke@435 70 void grow(); // Grow _table to next power of 2 and rehash
duke@435 71 // Return 75% of _max, rounded up.
duke@435 72 uint insert_limit() const { return _max - (_max>>2); }
duke@435 73
duke@435 74 void clear(); // Set all entries to NULL, keep storage.
duke@435 75 // Size of hash table
duke@435 76 uint size() const { return _max; }
duke@435 77 // Return Node* at index in table
duke@435 78 Node *at(uint table_index) {
duke@435 79 assert(table_index < _max, "Must be within table");
duke@435 80 return _table[table_index];
duke@435 81 }
duke@435 82
duke@435 83 void remove_useless_nodes(VectorSet &useful); // replace with sentinel
duke@435 84
duke@435 85 Node *sentinel() { return _sentinel; }
duke@435 86
duke@435 87 #ifndef PRODUCT
duke@435 88 Node *find_index(uint idx); // For debugging
duke@435 89 void dump(); // For debugging, dump statistics
duke@435 90 #endif
duke@435 91 uint _grows; // For debugging, count of table grow()s
duke@435 92 uint _look_probes; // For debugging, count of hash probes
duke@435 93 uint _lookup_hits; // For debugging, count of hash_finds
duke@435 94 uint _lookup_misses; // For debugging, count of hash_finds
duke@435 95 uint _insert_probes; // For debugging, count of hash probes
duke@435 96 uint _delete_probes; // For debugging, count of hash probes for deletes
duke@435 97 uint _delete_hits; // For debugging, count of hash probes for deletes
duke@435 98 uint _delete_misses; // For debugging, count of hash probes for deletes
duke@435 99 uint _total_inserts; // For debugging, total inserts into hash table
duke@435 100 uint _total_insert_probes; // For debugging, total probes while inserting
duke@435 101 };
duke@435 102
duke@435 103
duke@435 104 //-----------------------------------------------------------------------------
duke@435 105 // Map dense integer indices to Types. Uses classic doubling-array trick.
duke@435 106 // Abstractly provides an infinite array of Type*'s, initialized to NULL.
duke@435 107 // Note that the constructor just zeros things, and since I use Arena
duke@435 108 // allocation I do not need a destructor to reclaim storage.
duke@435 109 // Despite the general name, this class is customized for use by PhaseTransform.
duke@435 110 class Type_Array : public StackObj {
duke@435 111 Arena *_a; // Arena to allocate in
duke@435 112 uint _max;
duke@435 113 const Type **_types;
duke@435 114 void grow( uint i ); // Grow array node to fit
duke@435 115 const Type *operator[] ( uint i ) const // Lookup, or NULL for not mapped
duke@435 116 { return (i<_max) ? _types[i] : (Type*)NULL; }
duke@435 117 friend class PhaseTransform;
duke@435 118 public:
duke@435 119 Type_Array(Arena *a) : _a(a), _max(0), _types(0) {}
duke@435 120 Type_Array(Type_Array *ta) : _a(ta->_a), _max(ta->_max), _types(ta->_types) { }
duke@435 121 const Type *fast_lookup(uint i) const{assert(i<_max,"oob");return _types[i];}
duke@435 122 // Extend the mapping: index i maps to Type *n.
duke@435 123 void map( uint i, const Type *n ) { if( i>=_max ) grow(i); _types[i] = n; }
duke@435 124 uint Size() const { return _max; }
duke@435 125 #ifndef PRODUCT
duke@435 126 void dump() const;
duke@435 127 #endif
duke@435 128 };
duke@435 129
duke@435 130
duke@435 131 //------------------------------PhaseRemoveUseless-----------------------------
duke@435 132 // Remove useless nodes from GVN hash-table, worklist, and graph
duke@435 133 class PhaseRemoveUseless : public Phase {
duke@435 134 protected:
duke@435 135 Unique_Node_List _useful; // Nodes reachable from root
duke@435 136 // list is allocated from current resource area
duke@435 137 public:
duke@435 138 PhaseRemoveUseless( PhaseGVN *gvn, Unique_Node_List *worklist );
duke@435 139
duke@435 140 Unique_Node_List *get_useful() { return &_useful; }
duke@435 141 };
duke@435 142
duke@435 143
duke@435 144 //------------------------------PhaseTransform---------------------------------
duke@435 145 // Phases that analyze, then transform. Constructing the Phase object does any
duke@435 146 // global or slow analysis. The results are cached later for a fast
duke@435 147 // transformation pass. When the Phase object is deleted the cached analysis
duke@435 148 // results are deleted.
duke@435 149 class PhaseTransform : public Phase {
duke@435 150 protected:
duke@435 151 Arena* _arena;
duke@435 152 Node_Array _nodes; // Map old node indices to new nodes.
duke@435 153 Type_Array _types; // Map old node indices to Types.
duke@435 154
duke@435 155 // ConNode caches:
duke@435 156 enum { _icon_min = -1 * HeapWordSize,
duke@435 157 _icon_max = 16 * HeapWordSize,
duke@435 158 _lcon_min = _icon_min,
duke@435 159 _lcon_max = _icon_max,
duke@435 160 _zcon_max = (uint)T_CONFLICT
duke@435 161 };
duke@435 162 ConINode* _icons[_icon_max - _icon_min + 1]; // cached jint constant nodes
duke@435 163 ConLNode* _lcons[_lcon_max - _lcon_min + 1]; // cached jlong constant nodes
duke@435 164 ConNode* _zcons[_zcon_max + 1]; // cached is_zero_type nodes
duke@435 165 void init_con_caches();
duke@435 166
duke@435 167 // Support both int and long caches because either might be an intptr_t,
duke@435 168 // so they show up frequently in address computations.
duke@435 169
duke@435 170 public:
duke@435 171 PhaseTransform( PhaseNumber pnum );
duke@435 172 PhaseTransform( Arena *arena, PhaseNumber pnum );
duke@435 173 PhaseTransform( PhaseTransform *phase, PhaseNumber pnum );
duke@435 174
duke@435 175 Arena* arena() { return _arena; }
duke@435 176 Type_Array& types() { return _types; }
duke@435 177 // _nodes is used in varying ways by subclasses, which define local accessors
duke@435 178
duke@435 179 public:
duke@435 180 // Get a previously recorded type for the node n.
duke@435 181 // This type must already have been recorded.
duke@435 182 // If you want the type of a very new (untransformed) node,
duke@435 183 // you must use type_or_null, and test the result for NULL.
duke@435 184 const Type* type(const Node* n) const {
duke@435 185 const Type* t = _types.fast_lookup(n->_idx);
duke@435 186 assert(t != NULL, "must set before get");
duke@435 187 return t;
duke@435 188 }
duke@435 189 // Get a previously recorded type for the node n,
duke@435 190 // or else return NULL if there is none.
duke@435 191 const Type* type_or_null(const Node* n) const {
duke@435 192 return _types.fast_lookup(n->_idx);
duke@435 193 }
duke@435 194 // Record a type for a node.
duke@435 195 void set_type(const Node* n, const Type *t) {
duke@435 196 assert(t != NULL, "type must not be null");
duke@435 197 _types.map(n->_idx, t);
duke@435 198 }
duke@435 199 // Record an initial type for a node, the node's bottom type.
duke@435 200 void set_type_bottom(const Node* n) {
duke@435 201 // Use this for initialization when bottom_type() (or better) is not handy.
duke@435 202 // Usually the initialization shoudl be to n->Value(this) instead,
duke@435 203 // or a hand-optimized value like Type::MEMORY or Type::CONTROL.
duke@435 204 assert(_types[n->_idx] == NULL, "must set the initial type just once");
duke@435 205 _types.map(n->_idx, n->bottom_type());
duke@435 206 }
duke@435 207 // Make sure the types array is big enough to record a size for the node n.
duke@435 208 // (In product builds, we never want to do range checks on the types array!)
duke@435 209 void ensure_type_or_null(const Node* n) {
duke@435 210 if (n->_idx >= _types.Size())
duke@435 211 _types.map(n->_idx, NULL); // Grow the types array as needed.
duke@435 212 }
duke@435 213
duke@435 214 // Utility functions:
duke@435 215 const TypeInt* find_int_type( Node* n);
duke@435 216 const TypeLong* find_long_type(Node* n);
duke@435 217 jint find_int_con( Node* n, jint value_if_unknown) {
duke@435 218 const TypeInt* t = find_int_type(n);
duke@435 219 return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
duke@435 220 }
duke@435 221 jlong find_long_con(Node* n, jlong value_if_unknown) {
duke@435 222 const TypeLong* t = find_long_type(n);
duke@435 223 return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
duke@435 224 }
duke@435 225
duke@435 226 // Make an idealized constant, i.e., one of ConINode, ConPNode, ConFNode, etc.
duke@435 227 // Same as transform(ConNode::make(t)).
duke@435 228 ConNode* makecon(const Type* t);
duke@435 229 virtual ConNode* uncached_makecon(const Type* t) // override in PhaseValues
duke@435 230 { ShouldNotCallThis(); return NULL; }
duke@435 231
duke@435 232 // Fast int or long constant. Same as TypeInt::make(i) or TypeLong::make(l).
duke@435 233 ConINode* intcon(jint i);
duke@435 234 ConLNode* longcon(jlong l);
duke@435 235
duke@435 236 // Fast zero or null constant. Same as makecon(Type::get_zero_type(bt)).
duke@435 237 ConNode* zerocon(BasicType bt);
duke@435 238
duke@435 239 // Return a node which computes the same function as this node, but
duke@435 240 // in a faster or cheaper fashion.
duke@435 241 virtual Node *transform( Node *n ) = 0;
duke@435 242
duke@435 243 // Return whether two Nodes are equivalent.
duke@435 244 // Must not be recursive, since the recursive version is built from this.
duke@435 245 // For pessimistic optimizations this is simply pointer equivalence.
duke@435 246 bool eqv(const Node* n1, const Node* n2) const { return n1 == n2; }
duke@435 247
duke@435 248 // Return whether two Nodes are equivalent, after stripping casting.
duke@435 249 bool eqv_uncast(const Node* n1, const Node* n2) const {
duke@435 250 return eqv(n1->uncast(), n2->uncast());
duke@435 251 }
duke@435 252
duke@435 253 // For pessimistic passes, the return type must monotonically narrow.
duke@435 254 // For optimistic passes, the return type must monotonically widen.
duke@435 255 // It is possible to get into a "death march" in either type of pass,
duke@435 256 // where the types are continually moving but it will take 2**31 or
duke@435 257 // more steps to converge. This doesn't happen on most normal loops.
duke@435 258 //
duke@435 259 // Here is an example of a deadly loop for an optimistic pass, along
duke@435 260 // with a partial trace of inferred types:
duke@435 261 // x = phi(0,x'); L: x' = x+1; if (x' >= 0) goto L;
duke@435 262 // 0 1 join([0..max], 1)
duke@435 263 // [0..1] [1..2] join([0..max], [1..2])
duke@435 264 // [0..2] [1..3] join([0..max], [1..3])
duke@435 265 // ... ... ...
duke@435 266 // [0..max] [min]u[1..max] join([0..max], [min..max])
duke@435 267 // [0..max] ==> fixpoint
duke@435 268 // We would have proven, the hard way, that the iteration space is all
duke@435 269 // non-negative ints, with the loop terminating due to 32-bit overflow.
duke@435 270 //
duke@435 271 // Here is the corresponding example for a pessimistic pass:
duke@435 272 // x = phi(0,x'); L: x' = x-1; if (x' >= 0) goto L;
duke@435 273 // int int join([0..max], int)
duke@435 274 // [0..max] [-1..max-1] join([0..max], [-1..max-1])
duke@435 275 // [0..max-1] [-1..max-2] join([0..max], [-1..max-2])
duke@435 276 // ... ... ...
duke@435 277 // [0..1] [-1..0] join([0..max], [-1..0])
duke@435 278 // 0 -1 join([0..max], -1)
duke@435 279 // 0 == fixpoint
duke@435 280 // We would have proven, the hard way, that the iteration space is {0}.
duke@435 281 // (Usually, other optimizations will make the "if (x >= 0)" fold up
duke@435 282 // before we get into trouble. But not always.)
duke@435 283 //
duke@435 284 // It's a pleasant thing to observe that the pessimistic pass
duke@435 285 // will make short work of the optimistic pass's deadly loop,
duke@435 286 // and vice versa. That is a good example of the complementary
duke@435 287 // purposes of the CCP (optimistic) vs. GVN (pessimistic) phases.
duke@435 288 //
duke@435 289 // In any case, only widen or narrow a few times before going to the
duke@435 290 // correct flavor of top or bottom.
duke@435 291 //
duke@435 292 // This call only needs to be made once as the data flows around any
duke@435 293 // given cycle. We do it at Phis, and nowhere else.
duke@435 294 // The types presented are the new type of a phi (computed by PhiNode::Value)
duke@435 295 // and the previously computed type, last time the phi was visited.
duke@435 296 //
duke@435 297 // The third argument is upper limit for the saturated value,
duke@435 298 // if the phase wishes to widen the new_type.
duke@435 299 // If the phase is narrowing, the old type provides a lower limit.
duke@435 300 // Caller guarantees that old_type and new_type are no higher than limit_type.
duke@435 301 virtual const Type* saturate(const Type* new_type, const Type* old_type,
duke@435 302 const Type* limit_type) const
duke@435 303 { ShouldNotCallThis(); return NULL; }
duke@435 304
duke@435 305 #ifndef PRODUCT
duke@435 306 void dump_old2new_map() const;
duke@435 307 void dump_new( uint new_lidx ) const;
duke@435 308 void dump_types() const;
duke@435 309 void dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl = true);
duke@435 310 void dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited);
duke@435 311
duke@435 312 uint _count_progress; // For profiling, count transforms that make progress
duke@435 313 void set_progress() { ++_count_progress; assert( allow_progress(),"No progress allowed during verification") }
duke@435 314 void clear_progress() { _count_progress = 0; }
duke@435 315 uint made_progress() const { return _count_progress; }
duke@435 316
duke@435 317 uint _count_transforms; // For profiling, count transforms performed
duke@435 318 void set_transforms() { ++_count_transforms; }
duke@435 319 void clear_transforms() { _count_transforms = 0; }
duke@435 320 uint made_transforms() const{ return _count_transforms; }
duke@435 321
duke@435 322 bool _allow_progress; // progress not allowed during verification pass
duke@435 323 void set_allow_progress(bool allow) { _allow_progress = allow; }
duke@435 324 bool allow_progress() { return _allow_progress; }
duke@435 325 #endif
duke@435 326 };
duke@435 327
duke@435 328 //------------------------------PhaseValues------------------------------------
duke@435 329 // Phase infrastructure to support values
duke@435 330 class PhaseValues : public PhaseTransform {
duke@435 331 protected:
duke@435 332 NodeHash _table; // Hash table for value-numbering
duke@435 333
duke@435 334 public:
duke@435 335 PhaseValues( Arena *arena, uint est_max_size );
duke@435 336 PhaseValues( PhaseValues *pt );
duke@435 337 PhaseValues( PhaseValues *ptv, const char *dummy );
duke@435 338 NOT_PRODUCT( ~PhaseValues(); )
duke@435 339 virtual PhaseIterGVN *is_IterGVN() { return 0; }
duke@435 340
duke@435 341 // Some Ideal and other transforms delete --> modify --> insert values
duke@435 342 bool hash_delete(Node *n) { return _table.hash_delete(n); }
duke@435 343 void hash_insert(Node *n) { _table.hash_insert(n); }
duke@435 344 Node *hash_find_insert(Node *n){ return _table.hash_find_insert(n); }
duke@435 345 Node *hash_find(const Node *n) { return _table.hash_find(n); }
duke@435 346
duke@435 347 // Used after parsing to eliminate values that are no longer in program
duke@435 348 void remove_useless_nodes(VectorSet &useful) { _table.remove_useless_nodes(useful); }
duke@435 349
duke@435 350 virtual ConNode* uncached_makecon(const Type* t); // override from PhaseTransform
duke@435 351
duke@435 352 virtual const Type* saturate(const Type* new_type, const Type* old_type,
duke@435 353 const Type* limit_type) const
duke@435 354 { return new_type; }
duke@435 355
duke@435 356 #ifndef PRODUCT
duke@435 357 uint _count_new_values; // For profiling, count new values produced
duke@435 358 void inc_new_values() { ++_count_new_values; }
duke@435 359 void clear_new_values() { _count_new_values = 0; }
duke@435 360 uint made_new_values() const { return _count_new_values; }
duke@435 361 #endif
duke@435 362 };
duke@435 363
duke@435 364
duke@435 365 //------------------------------PhaseGVN---------------------------------------
duke@435 366 // Phase for performing local, pessimistic GVN-style optimizations.
duke@435 367 class PhaseGVN : public PhaseValues {
duke@435 368 public:
duke@435 369 PhaseGVN( Arena *arena, uint est_max_size ) : PhaseValues( arena, est_max_size ) {}
duke@435 370 PhaseGVN( PhaseGVN *gvn ) : PhaseValues( gvn ) {}
duke@435 371 PhaseGVN( PhaseGVN *gvn, const char *dummy ) : PhaseValues( gvn, dummy ) {}
duke@435 372
duke@435 373 // Return a node which computes the same function as this node, but
duke@435 374 // in a faster or cheaper fashion.
duke@435 375 Node *transform( Node *n );
duke@435 376 Node *transform_no_reclaim( Node *n );
duke@435 377
duke@435 378 // Check for a simple dead loop when a data node references itself.
duke@435 379 DEBUG_ONLY(void dead_loop_check(Node *n);)
duke@435 380 };
duke@435 381
duke@435 382 //------------------------------PhaseIterGVN-----------------------------------
duke@435 383 // Phase for iteratively performing local, pessimistic GVN-style optimizations.
duke@435 384 // and ideal transformations on the graph.
duke@435 385 class PhaseIterGVN : public PhaseGVN {
duke@435 386 // Idealize old Node 'n' with respect to its inputs and its value
duke@435 387 virtual Node *transform_old( Node *a_node );
duke@435 388 protected:
duke@435 389
duke@435 390 // Idealize new Node 'n' with respect to its inputs and its value
duke@435 391 virtual Node *transform( Node *a_node );
duke@435 392
duke@435 393 // Warm up hash table, type table and initial worklist
duke@435 394 void init_worklist( Node *a_root );
duke@435 395
duke@435 396 virtual const Type* saturate(const Type* new_type, const Type* old_type,
duke@435 397 const Type* limit_type) const;
duke@435 398 // Usually returns new_type. Returns old_type if new_type is only a slight
duke@435 399 // improvement, such that it would take many (>>10) steps to reach 2**32.
duke@435 400
duke@435 401 public:
duke@435 402 PhaseIterGVN( PhaseIterGVN *igvn ); // Used by CCP constructor
duke@435 403 PhaseIterGVN( PhaseGVN *gvn ); // Used after Parser
duke@435 404 PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ); // Used after +VerifyOpto
duke@435 405
duke@435 406 virtual PhaseIterGVN *is_IterGVN() { return this; }
duke@435 407
duke@435 408 Unique_Node_List _worklist; // Iterative worklist
duke@435 409
duke@435 410 // Given def-use info and an initial worklist, apply Node::Ideal,
duke@435 411 // Node::Value, Node::Identity, hash-based value numbering, Node::Ideal_DU
duke@435 412 // and dominator info to a fixed point.
duke@435 413 void optimize();
duke@435 414
duke@435 415 // Register a new node with the iter GVN pass without transforming it.
duke@435 416 // Used when we need to restructure a Region/Phi area and all the Regions
duke@435 417 // and Phis need to complete this one big transform before any other
duke@435 418 // transforms can be triggered on the region.
duke@435 419 // Optional 'orig' is an earlier version of this node.
duke@435 420 // It is significant only for debugging and profiling.
duke@435 421 Node* register_new_node_with_optimizer(Node* n, Node* orig = NULL);
duke@435 422
duke@435 423 // Kill a globally dead Node. It is allowed to have uses which are
duke@435 424 // assumed dead and left 'in limbo'.
duke@435 425 void remove_globally_dead_node( Node *dead );
duke@435 426
duke@435 427 // Kill all inputs to a dead node, recursively making more dead nodes.
duke@435 428 // The Node must be dead locally, i.e., have no uses.
duke@435 429 void remove_dead_node( Node *dead ) {
duke@435 430 assert(dead->outcnt() == 0 && !dead->is_top(), "node must be dead");
duke@435 431 remove_globally_dead_node(dead);
duke@435 432 }
duke@435 433
duke@435 434 // Subsume users of node 'old' into node 'nn'
duke@435 435 // If no Def-Use info existed for 'nn' it will after call.
duke@435 436 void subsume_node( Node *old, Node *nn );
duke@435 437
duke@435 438 // Add users of 'n' to worklist
duke@435 439 void add_users_to_worklist0( Node *n );
duke@435 440 void add_users_to_worklist ( Node *n );
duke@435 441
kvn@508 442 // Replace old node with new one.
kvn@508 443 void replace_node( Node *old, Node *nn ) {
kvn@508 444 add_users_to_worklist(old);
kvn@508 445 hash_delete(old);
kvn@508 446 subsume_node(old, nn);
kvn@508 447 }
kvn@508 448
duke@435 449 #ifndef PRODUCT
duke@435 450 protected:
duke@435 451 // Sub-quadratic implementation of VerifyIterativeGVN.
duke@435 452 unsigned long _verify_counter;
duke@435 453 unsigned long _verify_full_passes;
duke@435 454 enum { _verify_window_size = 30 };
duke@435 455 Node* _verify_window[_verify_window_size];
duke@435 456 void verify_step(Node* n);
duke@435 457 #endif
duke@435 458 };
duke@435 459
duke@435 460 //------------------------------PhaseCCP---------------------------------------
duke@435 461 // Phase for performing global Conditional Constant Propagation.
duke@435 462 // Should be replaced with combined CCP & GVN someday.
duke@435 463 class PhaseCCP : public PhaseIterGVN {
duke@435 464 // Non-recursive. Use analysis to transform single Node.
duke@435 465 virtual Node *transform_once( Node *n );
duke@435 466
duke@435 467 public:
duke@435 468 PhaseCCP( PhaseIterGVN *igvn ); // Compute conditional constants
duke@435 469 NOT_PRODUCT( ~PhaseCCP(); )
duke@435 470
duke@435 471 // Worklist algorithm identifies constants
duke@435 472 void analyze();
duke@435 473 // Recursive traversal of program. Used analysis to modify program.
duke@435 474 virtual Node *transform( Node *n );
duke@435 475 // Do any transformation after analysis
duke@435 476 void do_transform();
duke@435 477
duke@435 478 virtual const Type* saturate(const Type* new_type, const Type* old_type,
duke@435 479 const Type* limit_type) const;
duke@435 480 // Returns new_type->widen(old_type), which increments the widen bits until
duke@435 481 // giving up with TypeInt::INT or TypeLong::LONG.
duke@435 482 // Result is clipped to limit_type if necessary.
duke@435 483
duke@435 484 #ifndef PRODUCT
duke@435 485 static uint _total_invokes; // For profiling, count invocations
duke@435 486 void inc_invokes() { ++PhaseCCP::_total_invokes; }
duke@435 487
duke@435 488 static uint _total_constants; // For profiling, count constants found
duke@435 489 uint _count_constants;
duke@435 490 void clear_constants() { _count_constants = 0; }
duke@435 491 void inc_constants() { ++_count_constants; }
duke@435 492 uint count_constants() const { return _count_constants; }
duke@435 493
duke@435 494 static void print_statistics();
duke@435 495 #endif
duke@435 496 };
duke@435 497
duke@435 498
duke@435 499 //------------------------------PhasePeephole----------------------------------
duke@435 500 // Phase for performing peephole optimizations on register allocated basic blocks.
duke@435 501 class PhasePeephole : public PhaseTransform {
duke@435 502 PhaseRegAlloc *_regalloc;
duke@435 503 PhaseCFG &_cfg;
duke@435 504 // Recursive traversal of program. Pure function is unused in this phase
duke@435 505 virtual Node *transform( Node *n );
duke@435 506
duke@435 507 public:
duke@435 508 PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg );
duke@435 509 NOT_PRODUCT( ~PhasePeephole(); )
duke@435 510
duke@435 511 // Do any transformation after analysis
duke@435 512 void do_transform();
duke@435 513
duke@435 514 #ifndef PRODUCT
duke@435 515 static uint _total_peepholes; // For profiling, count peephole rules applied
duke@435 516 uint _count_peepholes;
duke@435 517 void clear_peepholes() { _count_peepholes = 0; }
duke@435 518 void inc_peepholes() { ++_count_peepholes; }
duke@435 519 uint count_peepholes() const { return _count_peepholes; }
duke@435 520
duke@435 521 static void print_statistics();
duke@435 522 #endif
duke@435 523 };

mercurial