src/share/vm/opto/matcher.hpp

Wed, 02 Apr 2008 12:09:59 -0700

author
jrose
date
Wed, 02 Apr 2008 12:09:59 -0700
changeset 535
c7c777385a15
parent 435
a61af66fc99e
child 603
7793bd37a336
permissions
-rw-r--r--

6667042: PrintAssembly option does not work without special plugin
Summary: remove old private plugin interface, simplify, rework old plugin to use unchanged Gnu sources
Reviewed-by: kvn, rasbold

duke@435 1 /*
duke@435 2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 class Compile;
duke@435 26 class Node;
duke@435 27 class MachNode;
duke@435 28 class MachTypeNode;
duke@435 29 class MachOper;
duke@435 30
duke@435 31 //---------------------------Matcher-------------------------------------------
duke@435 32 class Matcher : public PhaseTransform {
duke@435 33 friend class VMStructs;
duke@435 34 // Private arena of State objects
duke@435 35 ResourceArea _states_arena;
duke@435 36
duke@435 37 VectorSet _visited; // Visit bits
duke@435 38
duke@435 39 // Used to control the Label pass
duke@435 40 VectorSet _shared; // Shared Ideal Node
duke@435 41 VectorSet _dontcare; // Nothing the matcher cares about
duke@435 42
duke@435 43 // Private methods which perform the actual matching and reduction
duke@435 44 // Walks the label tree, generating machine nodes
duke@435 45 MachNode *ReduceInst( State *s, int rule, Node *&mem);
duke@435 46 void ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach);
duke@435 47 uint ReduceInst_Interior(State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds);
duke@435 48 void ReduceOper( State *s, int newrule, Node *&mem, MachNode *mach );
duke@435 49
duke@435 50 // If this node already matched using "rule", return the MachNode for it.
duke@435 51 MachNode* find_shared_constant(Node* con, uint rule);
duke@435 52
duke@435 53 // Convert a dense opcode number to an expanded rule number
duke@435 54 const int *_reduceOp;
duke@435 55 const int *_leftOp;
duke@435 56 const int *_rightOp;
duke@435 57
duke@435 58 // Map dense opcode number to info on when rule is swallowed constant.
duke@435 59 const bool *_swallowed;
duke@435 60
duke@435 61 // Map dense rule number to determine if this is an instruction chain rule
duke@435 62 const uint _begin_inst_chain_rule;
duke@435 63 const uint _end_inst_chain_rule;
duke@435 64
duke@435 65 // We want to clone constants and possible CmpI-variants.
duke@435 66 // If we do not clone CmpI, then we can have many instances of
duke@435 67 // condition codes alive at once. This is OK on some chips and
duke@435 68 // bad on others. Hence the machine-dependent table lookup.
duke@435 69 const char *_must_clone;
duke@435 70
duke@435 71 // Find shared Nodes, or Nodes that otherwise are Matcher roots
duke@435 72 void find_shared( Node *n );
duke@435 73
duke@435 74 // Debug and profile information for nodes in old space:
duke@435 75 GrowableArray<Node_Notes*>* _old_node_note_array;
duke@435 76
duke@435 77 // Node labeling iterator for instruction selection
duke@435 78 Node *Label_Root( const Node *n, State *svec, Node *control, const Node *mem );
duke@435 79
duke@435 80 Node *transform( Node *dummy );
duke@435 81
duke@435 82 Node_List &_proj_list; // For Machine nodes killing many values
duke@435 83
duke@435 84 Node_Array _shared_constants;
duke@435 85
duke@435 86 debug_only(Node_Array _old2new_map;) // Map roots of ideal-trees to machine-roots
duke@435 87
duke@435 88 // Accessors for the inherited field PhaseTransform::_nodes:
duke@435 89 void grow_new_node_array(uint idx_limit) {
duke@435 90 _nodes.map(idx_limit-1, NULL);
duke@435 91 }
duke@435 92 bool has_new_node(const Node* n) const {
duke@435 93 return _nodes.at(n->_idx) != NULL;
duke@435 94 }
duke@435 95 Node* new_node(const Node* n) const {
duke@435 96 assert(has_new_node(n), "set before get");
duke@435 97 return _nodes.at(n->_idx);
duke@435 98 }
duke@435 99 void set_new_node(const Node* n, Node *nn) {
duke@435 100 assert(!has_new_node(n), "set only once");
duke@435 101 _nodes.map(n->_idx, nn);
duke@435 102 }
duke@435 103
duke@435 104 #ifdef ASSERT
duke@435 105 // Make sure only new nodes are reachable from this node
duke@435 106 void verify_new_nodes_only(Node* root);
duke@435 107 #endif
duke@435 108
duke@435 109 public:
duke@435 110 int LabelRootDepth;
duke@435 111 static const int base2reg[]; // Map Types to machine register types
duke@435 112 // Convert ideal machine register to a register mask for spill-loads
duke@435 113 static const RegMask *idealreg2regmask[];
duke@435 114 RegMask *idealreg2spillmask[_last_machine_leaf];
duke@435 115 RegMask *idealreg2debugmask[_last_machine_leaf];
duke@435 116 void init_spill_mask( Node *ret );
duke@435 117 // Convert machine register number to register mask
duke@435 118 static uint mreg2regmask_max;
duke@435 119 static RegMask mreg2regmask[];
duke@435 120 static RegMask STACK_ONLY_mask;
duke@435 121
duke@435 122 bool is_shared( Node *n ) { return _shared.test(n->_idx) != 0; }
duke@435 123 void set_shared( Node *n ) { _shared.set(n->_idx); }
duke@435 124 bool is_visited( Node *n ) { return _visited.test(n->_idx) != 0; }
duke@435 125 void set_visited( Node *n ) { _visited.set(n->_idx); }
duke@435 126 bool is_dontcare( Node *n ) { return _dontcare.test(n->_idx) != 0; }
duke@435 127 void set_dontcare( Node *n ) { _dontcare.set(n->_idx); }
duke@435 128
duke@435 129 // Mode bit to tell DFA and expand rules whether we are running after
duke@435 130 // (or during) register selection. Usually, the matcher runs before,
duke@435 131 // but it will also get called to generate post-allocation spill code.
duke@435 132 // In this situation, it is a deadly error to attempt to allocate more
duke@435 133 // temporary registers.
duke@435 134 bool _allocation_started;
duke@435 135
duke@435 136 // Machine register names
duke@435 137 static const char *regName[];
duke@435 138 // Machine register encodings
duke@435 139 static const unsigned char _regEncode[];
duke@435 140 // Machine Node names
duke@435 141 const char **_ruleName;
duke@435 142 // Rules that are cheaper to rematerialize than to spill
duke@435 143 static const uint _begin_rematerialize;
duke@435 144 static const uint _end_rematerialize;
duke@435 145
duke@435 146 // An array of chars, from 0 to _last_Mach_Reg.
duke@435 147 // No Save = 'N' (for register windows)
duke@435 148 // Save on Entry = 'E'
duke@435 149 // Save on Call = 'C'
duke@435 150 // Always Save = 'A' (same as SOE + SOC)
duke@435 151 const char *_register_save_policy;
duke@435 152 const char *_c_reg_save_policy;
duke@435 153 // Convert a machine register to a machine register type, so-as to
duke@435 154 // properly match spill code.
duke@435 155 const int *_register_save_type;
duke@435 156 // Maps from machine register to boolean; true if machine register can
duke@435 157 // be holding a call argument in some signature.
duke@435 158 static bool can_be_java_arg( int reg );
duke@435 159 // Maps from machine register to boolean; true if machine register holds
duke@435 160 // a spillable argument.
duke@435 161 static bool is_spillable_arg( int reg );
duke@435 162
duke@435 163 // List of IfFalse or IfTrue Nodes that indicate a taken null test.
duke@435 164 // List is valid in the post-matching space.
duke@435 165 Node_List _null_check_tests;
duke@435 166 void collect_null_checks( Node *proj );
duke@435 167 void validate_null_checks( );
duke@435 168
duke@435 169 Matcher( Node_List &proj_list );
duke@435 170
duke@435 171 // Select instructions for entire method
duke@435 172 void match( );
duke@435 173 // Helper for match
duke@435 174 OptoReg::Name warp_incoming_stk_arg( VMReg reg );
duke@435 175
duke@435 176 // Transform, then walk. Does implicit DCE while walking.
duke@435 177 // Name changed from "transform" to avoid it being virtual.
duke@435 178 Node *xform( Node *old_space_node, int Nodes );
duke@435 179
duke@435 180 // Match a single Ideal Node - turn it into a 1-Node tree; Label & Reduce.
duke@435 181 MachNode *match_tree( const Node *n );
duke@435 182 MachNode *match_sfpt( SafePointNode *sfpt );
duke@435 183 // Helper for match_sfpt
duke@435 184 OptoReg::Name warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call );
duke@435 185
duke@435 186 // Initialize first stack mask and related masks.
duke@435 187 void init_first_stack_mask();
duke@435 188
duke@435 189 // If we should save-on-entry this register
duke@435 190 bool is_save_on_entry( int reg );
duke@435 191
duke@435 192 // Fixup the save-on-entry registers
duke@435 193 void Fixup_Save_On_Entry( );
duke@435 194
duke@435 195 // --- Frame handling ---
duke@435 196
duke@435 197 // Register number of the stack slot corresponding to the incoming SP.
duke@435 198 // Per the Big Picture in the AD file, it is:
duke@435 199 // SharedInfo::stack0 + locks + in_preserve_stack_slots + pad2.
duke@435 200 OptoReg::Name _old_SP;
duke@435 201
duke@435 202 // Register number of the stack slot corresponding to the highest incoming
duke@435 203 // argument on the stack. Per the Big Picture in the AD file, it is:
duke@435 204 // _old_SP + out_preserve_stack_slots + incoming argument size.
duke@435 205 OptoReg::Name _in_arg_limit;
duke@435 206
duke@435 207 // Register number of the stack slot corresponding to the new SP.
duke@435 208 // Per the Big Picture in the AD file, it is:
duke@435 209 // _in_arg_limit + pad0
duke@435 210 OptoReg::Name _new_SP;
duke@435 211
duke@435 212 // Register number of the stack slot corresponding to the highest outgoing
duke@435 213 // argument on the stack. Per the Big Picture in the AD file, it is:
duke@435 214 // _new_SP + max outgoing arguments of all calls
duke@435 215 OptoReg::Name _out_arg_limit;
duke@435 216
duke@435 217 OptoRegPair *_parm_regs; // Array of machine registers per argument
duke@435 218 RegMask *_calling_convention_mask; // Array of RegMasks per argument
duke@435 219
duke@435 220 // Does matcher support this ideal node?
duke@435 221 static const bool has_match_rule(int opcode);
duke@435 222 static const bool _hasMatchRule[_last_opcode];
duke@435 223
duke@435 224 // Used to determine if we have fast l2f conversion
duke@435 225 // USII has it, USIII doesn't
duke@435 226 static const bool convL2FSupported(void);
duke@435 227
duke@435 228 // Vector width in bytes
duke@435 229 static const uint vector_width_in_bytes(void);
duke@435 230
duke@435 231 // Vector ideal reg
duke@435 232 static const uint vector_ideal_reg(void);
duke@435 233
duke@435 234 // Used to determine a "low complexity" 64-bit constant. (Zero is simple.)
duke@435 235 // The standard of comparison is one (StoreL ConL) vs. two (StoreI ConI).
duke@435 236 // Depends on the details of 64-bit constant generation on the CPU.
duke@435 237 static const bool isSimpleConstant64(jlong con);
duke@435 238
duke@435 239 // These calls are all generated by the ADLC
duke@435 240
duke@435 241 // TRUE - grows up, FALSE - grows down (Intel)
duke@435 242 virtual bool stack_direction() const;
duke@435 243
duke@435 244 // Java-Java calling convention
duke@435 245 // (what you use when Java calls Java)
duke@435 246
duke@435 247 // Alignment of stack in bytes, standard Intel word alignment is 4.
duke@435 248 // Sparc probably wants at least double-word (8).
duke@435 249 static uint stack_alignment_in_bytes();
duke@435 250 // Alignment of stack, measured in stack slots.
duke@435 251 // The size of stack slots is defined by VMRegImpl::stack_slot_size.
duke@435 252 static uint stack_alignment_in_slots() {
duke@435 253 return stack_alignment_in_bytes() / (VMRegImpl::stack_slot_size);
duke@435 254 }
duke@435 255
duke@435 256 // Array mapping arguments to registers. Argument 0 is usually the 'this'
duke@435 257 // pointer. Registers can include stack-slots and regular registers.
duke@435 258 static void calling_convention( BasicType *, VMRegPair *, uint len, bool is_outgoing );
duke@435 259
duke@435 260 // Convert a sig into a calling convention register layout
duke@435 261 // and find interesting things about it.
duke@435 262 static OptoReg::Name find_receiver( bool is_outgoing );
duke@435 263 // Return address register. On Intel it is a stack-slot. On PowerPC
duke@435 264 // it is the Link register. On Sparc it is r31?
duke@435 265 virtual OptoReg::Name return_addr() const;
duke@435 266 RegMask _return_addr_mask;
duke@435 267 // Return value register. On Intel it is EAX. On Sparc i0/o0.
duke@435 268 static OptoRegPair return_value(int ideal_reg, bool is_outgoing);
duke@435 269 static OptoRegPair c_return_value(int ideal_reg, bool is_outgoing);
duke@435 270 RegMask _return_value_mask;
duke@435 271 // Inline Cache Register
duke@435 272 static OptoReg::Name inline_cache_reg();
duke@435 273 static const RegMask &inline_cache_reg_mask();
duke@435 274 static int inline_cache_reg_encode();
duke@435 275
duke@435 276 // Register for DIVI projection of divmodI
duke@435 277 static RegMask divI_proj_mask();
duke@435 278 // Register for MODI projection of divmodI
duke@435 279 static RegMask modI_proj_mask();
duke@435 280
duke@435 281 // Register for DIVL projection of divmodL
duke@435 282 static RegMask divL_proj_mask();
duke@435 283 // Register for MODL projection of divmodL
duke@435 284 static RegMask modL_proj_mask();
duke@435 285
duke@435 286 // Java-Interpreter calling convention
duke@435 287 // (what you use when calling between compiled-Java and Interpreted-Java
duke@435 288
duke@435 289 // Number of callee-save + always-save registers
duke@435 290 // Ignores frame pointer and "special" registers
duke@435 291 static int number_of_saved_registers();
duke@435 292
duke@435 293 // The Method-klass-holder may be passed in the inline_cache_reg
duke@435 294 // and then expanded into the inline_cache_reg and a method_oop register
duke@435 295
duke@435 296 static OptoReg::Name interpreter_method_oop_reg();
duke@435 297 static const RegMask &interpreter_method_oop_reg_mask();
duke@435 298 static int interpreter_method_oop_reg_encode();
duke@435 299
duke@435 300 static OptoReg::Name compiler_method_oop_reg();
duke@435 301 static const RegMask &compiler_method_oop_reg_mask();
duke@435 302 static int compiler_method_oop_reg_encode();
duke@435 303
duke@435 304 // Interpreter's Frame Pointer Register
duke@435 305 static OptoReg::Name interpreter_frame_pointer_reg();
duke@435 306 static const RegMask &interpreter_frame_pointer_reg_mask();
duke@435 307
duke@435 308 // Java-Native calling convention
duke@435 309 // (what you use when intercalling between Java and C++ code)
duke@435 310
duke@435 311 // Array mapping arguments to registers. Argument 0 is usually the 'this'
duke@435 312 // pointer. Registers can include stack-slots and regular registers.
duke@435 313 static void c_calling_convention( BasicType*, VMRegPair *, uint );
duke@435 314 // Frame pointer. The frame pointer is kept at the base of the stack
duke@435 315 // and so is probably the stack pointer for most machines. On Intel
duke@435 316 // it is ESP. On the PowerPC it is R1. On Sparc it is SP.
duke@435 317 OptoReg::Name c_frame_pointer() const;
duke@435 318 static RegMask c_frame_ptr_mask;
duke@435 319
duke@435 320 // !!!!! Special stuff for building ScopeDescs
duke@435 321 virtual int regnum_to_fpu_offset(int regnum);
duke@435 322
duke@435 323 // Is this branch offset small enough to be addressed by a short branch?
duke@435 324 bool is_short_branch_offset(int offset);
duke@435 325
duke@435 326 // Optional scaling for the parameter to the ClearArray/CopyArray node.
duke@435 327 static const bool init_array_count_is_in_bytes;
duke@435 328
duke@435 329 // Threshold small size (in bytes) for a ClearArray/CopyArray node.
duke@435 330 // Anything this size or smaller may get converted to discrete scalar stores.
duke@435 331 static const int init_array_short_size;
duke@435 332
duke@435 333 // Should the Matcher clone shifts on addressing modes, expecting them to
duke@435 334 // be subsumed into complex addressing expressions or compute them into
duke@435 335 // registers? True for Intel but false for most RISCs
duke@435 336 static const bool clone_shift_expressions;
duke@435 337
duke@435 338 // Is it better to copy float constants, or load them directly from memory?
duke@435 339 // Intel can load a float constant from a direct address, requiring no
duke@435 340 // extra registers. Most RISCs will have to materialize an address into a
duke@435 341 // register first, so they may as well materialize the constant immediately.
duke@435 342 static const bool rematerialize_float_constants;
duke@435 343
duke@435 344 // If CPU can load and store mis-aligned doubles directly then no fixup is
duke@435 345 // needed. Else we split the double into 2 integer pieces and move it
duke@435 346 // piece-by-piece. Only happens when passing doubles into C code or when
duke@435 347 // calling i2c adapters as the Java calling convention forces doubles to be
duke@435 348 // aligned.
duke@435 349 static const bool misaligned_doubles_ok;
duke@435 350
duke@435 351 // Perform a platform dependent implicit null fixup. This is needed
duke@435 352 // on windows95 to take care of some unusual register constraints.
duke@435 353 void pd_implicit_null_fixup(MachNode *load, uint idx);
duke@435 354
duke@435 355 // Advertise here if the CPU requires explicit rounding operations
duke@435 356 // to implement the UseStrictFP mode.
duke@435 357 static const bool strict_fp_requires_explicit_rounding;
duke@435 358
duke@435 359 // Do floats take an entire double register or just half?
duke@435 360 static const bool float_in_double;
duke@435 361 // Do ints take an entire long register or just half?
duke@435 362 static const bool int_in_long;
duke@435 363
duke@435 364 // This routine is run whenever a graph fails to match.
duke@435 365 // If it returns, the compiler should bailout to interpreter without error.
duke@435 366 // In non-product mode, SoftMatchFailure is false to detect non-canonical
duke@435 367 // graphs. Print a message and exit.
duke@435 368 static void soft_match_failure() {
duke@435 369 if( SoftMatchFailure ) return;
duke@435 370 else { fatal("SoftMatchFailure is not allowed except in product"); }
duke@435 371 }
duke@435 372
duke@435 373 // Used by the DFA in dfa_sparc.cpp. Check for a prior FastLock
duke@435 374 // acting as an Acquire and thus we don't need an Acquire here. We
duke@435 375 // retain the Node to act as a compiler ordering barrier.
duke@435 376 static bool prior_fast_lock( const Node *acq );
duke@435 377
duke@435 378 // Used by the DFA in dfa_sparc.cpp. Check for a following
duke@435 379 // FastUnLock acting as a Release and thus we don't need a Release
duke@435 380 // here. We retain the Node to act as a compiler ordering barrier.
duke@435 381 static bool post_fast_unlock( const Node *rel );
duke@435 382
duke@435 383 // Check for a following volatile memory barrier without an
duke@435 384 // intervening load and thus we don't need a barrier here. We
duke@435 385 // retain the Node to act as a compiler ordering barrier.
duke@435 386 static bool post_store_load_barrier(const Node* mb);
duke@435 387
duke@435 388
duke@435 389 #ifdef ASSERT
duke@435 390 void dump_old2new_map(); // machine-independent to machine-dependent
duke@435 391 #endif
duke@435 392 };

mercurial