src/share/vm/opto/escape.cpp

Wed, 02 Apr 2008 12:09:59 -0700

author
jrose
date
Wed, 02 Apr 2008 12:09:59 -0700
changeset 535
c7c777385a15
parent 500
99269dbf4ba8
child 512
36cd3cc4d27b
child 536
a6cb86dd209b
permissions
-rw-r--r--

6667042: PrintAssembly option does not work without special plugin
Summary: remove old private plugin interface, simplify, rework old plugin to use unchanged Gnu sources
Reviewed-by: kvn, rasbold

duke@435 1 /*
duke@435 2 * Copyright 2005-2006 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_escape.cpp.incl"
duke@435 27
duke@435 28 uint PointsToNode::edge_target(uint e) const {
duke@435 29 assert(_edges != NULL && e < (uint)_edges->length(), "valid edge index");
duke@435 30 return (_edges->at(e) >> EdgeShift);
duke@435 31 }
duke@435 32
duke@435 33 PointsToNode::EdgeType PointsToNode::edge_type(uint e) const {
duke@435 34 assert(_edges != NULL && e < (uint)_edges->length(), "valid edge index");
duke@435 35 return (EdgeType) (_edges->at(e) & EdgeMask);
duke@435 36 }
duke@435 37
duke@435 38 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 39 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 40 if (_edges == NULL) {
duke@435 41 Arena *a = Compile::current()->comp_arena();
duke@435 42 _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
duke@435 43 }
duke@435 44 _edges->append_if_missing(v);
duke@435 45 }
duke@435 46
duke@435 47 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 48 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 49
duke@435 50 _edges->remove(v);
duke@435 51 }
duke@435 52
duke@435 53 #ifndef PRODUCT
duke@435 54 static char *node_type_names[] = {
duke@435 55 "UnknownType",
duke@435 56 "JavaObject",
duke@435 57 "LocalVar",
duke@435 58 "Field"
duke@435 59 };
duke@435 60
duke@435 61 static char *esc_names[] = {
duke@435 62 "UnknownEscape",
kvn@500 63 "NoEscape",
kvn@500 64 "ArgEscape",
kvn@500 65 "GlobalEscape"
duke@435 66 };
duke@435 67
duke@435 68 static char *edge_type_suffix[] = {
duke@435 69 "?", // UnknownEdge
duke@435 70 "P", // PointsToEdge
duke@435 71 "D", // DeferredEdge
duke@435 72 "F" // FieldEdge
duke@435 73 };
duke@435 74
duke@435 75 void PointsToNode::dump() const {
duke@435 76 NodeType nt = node_type();
duke@435 77 EscapeState es = escape_state();
kvn@500 78 tty->print("%s %s %s [[", node_type_names[(int) nt], esc_names[(int) es], _scalar_replaceable ? "" : "NSR");
duke@435 79 for (uint i = 0; i < edge_count(); i++) {
duke@435 80 tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
duke@435 81 }
duke@435 82 tty->print("]] ");
duke@435 83 if (_node == NULL)
duke@435 84 tty->print_cr("<null>");
duke@435 85 else
duke@435 86 _node->dump();
duke@435 87 }
duke@435 88 #endif
duke@435 89
duke@435 90 ConnectionGraph::ConnectionGraph(Compile * C) : _processed(C->comp_arena()), _node_map(C->comp_arena()) {
duke@435 91 _collecting = true;
duke@435 92 this->_compile = C;
duke@435 93 const PointsToNode &dummy = PointsToNode();
kvn@500 94 int sz = C->unique();
kvn@500 95 _nodes = new(C->comp_arena()) GrowableArray<PointsToNode>(C->comp_arena(), sz, sz, dummy);
duke@435 96 _phantom_object = C->top()->_idx;
duke@435 97 PointsToNode *phn = ptnode_adr(_phantom_object);
kvn@500 98 phn->_node = C->top();
duke@435 99 phn->set_node_type(PointsToNode::JavaObject);
duke@435 100 phn->set_escape_state(PointsToNode::GlobalEscape);
duke@435 101 }
duke@435 102
duke@435 103 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
duke@435 104 PointsToNode *f = ptnode_adr(from_i);
duke@435 105 PointsToNode *t = ptnode_adr(to_i);
duke@435 106
duke@435 107 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 108 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
duke@435 109 assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
duke@435 110 f->add_edge(to_i, PointsToNode::PointsToEdge);
duke@435 111 }
duke@435 112
duke@435 113 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
duke@435 114 PointsToNode *f = ptnode_adr(from_i);
duke@435 115 PointsToNode *t = ptnode_adr(to_i);
duke@435 116
duke@435 117 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 118 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
duke@435 119 assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
duke@435 120 // don't add a self-referential edge, this can occur during removal of
duke@435 121 // deferred edges
duke@435 122 if (from_i != to_i)
duke@435 123 f->add_edge(to_i, PointsToNode::DeferredEdge);
duke@435 124 }
duke@435 125
kvn@500 126 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
kvn@500 127 const Type *adr_type = phase->type(adr);
kvn@500 128 if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
kvn@500 129 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 130 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 131 // We are computing a raw address for a store captured by an Initialize
kvn@500 132 // compute an appropriate address type. AddP cases #3 and #5 (see below).
kvn@500 133 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 134 assert(offs != Type::OffsetBot ||
kvn@500 135 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
kvn@500 136 "offset must be a constant or it is initialization of array");
kvn@500 137 return offs;
kvn@500 138 }
kvn@500 139 const TypePtr *t_ptr = adr_type->isa_ptr();
duke@435 140 assert(t_ptr != NULL, "must be a pointer type");
duke@435 141 return t_ptr->offset();
duke@435 142 }
duke@435 143
duke@435 144 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
duke@435 145 PointsToNode *f = ptnode_adr(from_i);
duke@435 146 PointsToNode *t = ptnode_adr(to_i);
duke@435 147
duke@435 148 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 149 assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
duke@435 150 assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
duke@435 151 assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
duke@435 152 t->set_offset(offset);
duke@435 153
duke@435 154 f->add_edge(to_i, PointsToNode::FieldEdge);
duke@435 155 }
duke@435 156
duke@435 157 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
duke@435 158 PointsToNode *npt = ptnode_adr(ni);
duke@435 159 PointsToNode::EscapeState old_es = npt->escape_state();
duke@435 160 if (es > old_es)
duke@435 161 npt->set_escape_state(es);
duke@435 162 }
duke@435 163
kvn@500 164 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
kvn@500 165 PointsToNode::EscapeState es, bool done) {
kvn@500 166 PointsToNode* ptadr = ptnode_adr(n->_idx);
kvn@500 167 ptadr->_node = n;
kvn@500 168 ptadr->set_node_type(nt);
kvn@500 169
kvn@500 170 // inline set_escape_state(idx, es);
kvn@500 171 PointsToNode::EscapeState old_es = ptadr->escape_state();
kvn@500 172 if (es > old_es)
kvn@500 173 ptadr->set_escape_state(es);
kvn@500 174
kvn@500 175 if (done)
kvn@500 176 _processed.set(n->_idx);
kvn@500 177 }
kvn@500 178
duke@435 179 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) {
duke@435 180 uint idx = n->_idx;
duke@435 181 PointsToNode::EscapeState es;
duke@435 182
kvn@500 183 // If we are still collecting or there were no non-escaping allocations
kvn@500 184 // we don't know the answer yet
kvn@500 185 if (_collecting || !_has_allocations)
duke@435 186 return PointsToNode::UnknownEscape;
duke@435 187
duke@435 188 // if the node was created after the escape computation, return
duke@435 189 // UnknownEscape
duke@435 190 if (idx >= (uint)_nodes->length())
duke@435 191 return PointsToNode::UnknownEscape;
duke@435 192
duke@435 193 es = _nodes->at_grow(idx).escape_state();
duke@435 194
duke@435 195 // if we have already computed a value, return it
duke@435 196 if (es != PointsToNode::UnknownEscape)
duke@435 197 return es;
duke@435 198
duke@435 199 // compute max escape state of anything this node could point to
duke@435 200 VectorSet ptset(Thread::current()->resource_area());
duke@435 201 PointsTo(ptset, n, phase);
kvn@500 202 for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
duke@435 203 uint pt = i.elem;
kvn@500 204 PointsToNode::EscapeState pes = _nodes->adr_at(pt)->escape_state();
duke@435 205 if (pes > es)
duke@435 206 es = pes;
duke@435 207 }
duke@435 208 // cache the computed escape state
duke@435 209 assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
duke@435 210 _nodes->adr_at(idx)->set_escape_state(es);
duke@435 211 return es;
duke@435 212 }
duke@435 213
duke@435 214 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) {
duke@435 215 VectorSet visited(Thread::current()->resource_area());
duke@435 216 GrowableArray<uint> worklist;
duke@435 217
kvn@500 218 n = n->uncast();
duke@435 219 PointsToNode npt = _nodes->at_grow(n->_idx);
duke@435 220
duke@435 221 // If we have a JavaObject, return just that object
duke@435 222 if (npt.node_type() == PointsToNode::JavaObject) {
duke@435 223 ptset.set(n->_idx);
duke@435 224 return;
duke@435 225 }
kvn@500 226 assert(npt._node != NULL, "unregistered node");
kvn@500 227
duke@435 228 worklist.push(n->_idx);
duke@435 229 while(worklist.length() > 0) {
duke@435 230 int ni = worklist.pop();
duke@435 231 PointsToNode pn = _nodes->at_grow(ni);
kvn@500 232 if (!visited.test_set(ni)) {
duke@435 233 // ensure that all inputs of a Phi have been processed
kvn@500 234 assert(!_collecting || !pn._node->is_Phi() || _processed.test(ni),"");
duke@435 235
duke@435 236 int edges_processed = 0;
duke@435 237 for (uint e = 0; e < pn.edge_count(); e++) {
kvn@500 238 uint etgt = pn.edge_target(e);
duke@435 239 PointsToNode::EdgeType et = pn.edge_type(e);
duke@435 240 if (et == PointsToNode::PointsToEdge) {
kvn@500 241 ptset.set(etgt);
duke@435 242 edges_processed++;
duke@435 243 } else if (et == PointsToNode::DeferredEdge) {
kvn@500 244 worklist.push(etgt);
duke@435 245 edges_processed++;
kvn@500 246 } else {
kvn@500 247 assert(false,"neither PointsToEdge or DeferredEdge");
duke@435 248 }
duke@435 249 }
duke@435 250 if (edges_processed == 0) {
kvn@500 251 // no deferred or pointsto edges found. Assume the value was set
kvn@500 252 // outside this method. Add the phantom object to the pointsto set.
duke@435 253 ptset.set(_phantom_object);
duke@435 254 }
duke@435 255 }
duke@435 256 }
duke@435 257 }
duke@435 258
duke@435 259 void ConnectionGraph::remove_deferred(uint ni) {
duke@435 260 VectorSet visited(Thread::current()->resource_area());
duke@435 261
duke@435 262 uint i = 0;
duke@435 263 PointsToNode *ptn = ptnode_adr(ni);
duke@435 264
duke@435 265 while(i < ptn->edge_count()) {
kvn@500 266 uint t = ptn->edge_target(i);
kvn@500 267 PointsToNode *ptt = ptnode_adr(t);
duke@435 268 if (ptn->edge_type(i) != PointsToNode::DeferredEdge) {
duke@435 269 i++;
duke@435 270 } else {
duke@435 271 ptn->remove_edge(t, PointsToNode::DeferredEdge);
kvn@500 272 if(!visited.test_set(t)) {
duke@435 273 for (uint j = 0; j < ptt->edge_count(); j++) {
duke@435 274 uint n1 = ptt->edge_target(j);
duke@435 275 PointsToNode *pt1 = ptnode_adr(n1);
duke@435 276 switch(ptt->edge_type(j)) {
duke@435 277 case PointsToNode::PointsToEdge:
kvn@500 278 add_pointsto_edge(ni, n1);
kvn@500 279 if(n1 == _phantom_object) {
kvn@500 280 // Special case - field set outside (globally escaping).
kvn@500 281 ptn->set_escape_state(PointsToNode::GlobalEscape);
kvn@500 282 }
duke@435 283 break;
duke@435 284 case PointsToNode::DeferredEdge:
duke@435 285 add_deferred_edge(ni, n1);
duke@435 286 break;
duke@435 287 case PointsToNode::FieldEdge:
duke@435 288 assert(false, "invalid connection graph");
duke@435 289 break;
duke@435 290 }
duke@435 291 }
duke@435 292 }
duke@435 293 }
duke@435 294 }
duke@435 295 }
duke@435 296
duke@435 297
duke@435 298 // Add an edge to node given by "to_i" from any field of adr_i whose offset
duke@435 299 // matches "offset" A deferred edge is added if to_i is a LocalVar, and
duke@435 300 // a pointsto edge is added if it is a JavaObject
duke@435 301
duke@435 302 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
duke@435 303 PointsToNode an = _nodes->at_grow(adr_i);
duke@435 304 PointsToNode to = _nodes->at_grow(to_i);
duke@435 305 bool deferred = (to.node_type() == PointsToNode::LocalVar);
duke@435 306
duke@435 307 for (uint fe = 0; fe < an.edge_count(); fe++) {
duke@435 308 assert(an.edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
duke@435 309 int fi = an.edge_target(fe);
duke@435 310 PointsToNode pf = _nodes->at_grow(fi);
duke@435 311 int po = pf.offset();
duke@435 312 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 313 if (deferred)
duke@435 314 add_deferred_edge(fi, to_i);
duke@435 315 else
duke@435 316 add_pointsto_edge(fi, to_i);
duke@435 317 }
duke@435 318 }
duke@435 319 }
duke@435 320
kvn@500 321 // Add a deferred edge from node given by "from_i" to any field of adr_i
kvn@500 322 // whose offset matches "offset".
duke@435 323 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
duke@435 324 PointsToNode an = _nodes->at_grow(adr_i);
duke@435 325 for (uint fe = 0; fe < an.edge_count(); fe++) {
duke@435 326 assert(an.edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
duke@435 327 int fi = an.edge_target(fe);
duke@435 328 PointsToNode pf = _nodes->at_grow(fi);
duke@435 329 int po = pf.offset();
duke@435 330 if (pf.edge_count() == 0) {
duke@435 331 // we have not seen any stores to this field, assume it was set outside this method
duke@435 332 add_pointsto_edge(fi, _phantom_object);
duke@435 333 }
duke@435 334 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 335 add_deferred_edge(from_i, fi);
duke@435 336 }
duke@435 337 }
duke@435 338 }
duke@435 339
kvn@500 340 // Helper functions
kvn@500 341
kvn@500 342 static Node* get_addp_base(Node *addp) {
kvn@500 343 assert(addp->is_AddP(), "must be AddP");
kvn@500 344 //
kvn@500 345 // AddP cases for Base and Address inputs:
kvn@500 346 // case #1. Direct object's field reference:
kvn@500 347 // Allocate
kvn@500 348 // |
kvn@500 349 // Proj #5 ( oop result )
kvn@500 350 // |
kvn@500 351 // CheckCastPP (cast to instance type)
kvn@500 352 // | |
kvn@500 353 // AddP ( base == address )
kvn@500 354 //
kvn@500 355 // case #2. Indirect object's field reference:
kvn@500 356 // Phi
kvn@500 357 // |
kvn@500 358 // CastPP (cast to instance type)
kvn@500 359 // | |
kvn@500 360 // AddP ( base == address )
kvn@500 361 //
kvn@500 362 // case #3. Raw object's field reference for Initialize node:
kvn@500 363 // Allocate
kvn@500 364 // |
kvn@500 365 // Proj #5 ( oop result )
kvn@500 366 // top |
kvn@500 367 // \ |
kvn@500 368 // AddP ( base == top )
kvn@500 369 //
kvn@500 370 // case #4. Array's element reference:
kvn@500 371 // {CheckCastPP | CastPP}
kvn@500 372 // | | |
kvn@500 373 // | AddP ( array's element offset )
kvn@500 374 // | |
kvn@500 375 // AddP ( array's offset )
kvn@500 376 //
kvn@500 377 // case #5. Raw object's field reference for arraycopy stub call:
kvn@500 378 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 379 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 380 // Allocate
kvn@500 381 // |
kvn@500 382 // Proj #5 ( oop result )
kvn@500 383 // | |
kvn@500 384 // AddP ( base == address )
kvn@500 385 //
kvn@500 386 // case #6. Constant Pool or ThreadLocal or Raw object's field reference:
kvn@500 387 // ConP # Object from Constant Pool.
kvn@500 388 // top |
kvn@500 389 // \ |
kvn@500 390 // AddP ( base == top )
kvn@500 391 //
kvn@500 392 Node *base = addp->in(AddPNode::Base)->uncast();
kvn@500 393 if (base->is_top()) { // The AddP case #3 and #6.
kvn@500 394 base = addp->in(AddPNode::Address)->uncast();
kvn@500 395 assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
kvn@500 396 base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL ||
kvn@500 397 base->is_Proj() && base->in(0)->is_Allocate(), "sanity");
duke@435 398 }
kvn@500 399 return base;
kvn@500 400 }
kvn@500 401
kvn@500 402 static Node* find_second_addp(Node* addp, Node* n) {
kvn@500 403 assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
kvn@500 404
kvn@500 405 Node* addp2 = addp->raw_out(0);
kvn@500 406 if (addp->outcnt() == 1 && addp2->is_AddP() &&
kvn@500 407 addp2->in(AddPNode::Base) == n &&
kvn@500 408 addp2->in(AddPNode::Address) == addp) {
kvn@500 409
kvn@500 410 assert(addp->in(AddPNode::Base) == n, "expecting the same base");
kvn@500 411 //
kvn@500 412 // Find array's offset to push it on worklist first and
kvn@500 413 // as result process an array's element offset first (pushed second)
kvn@500 414 // to avoid CastPP for the array's offset.
kvn@500 415 // Otherwise the inserted CastPP (LocalVar) will point to what
kvn@500 416 // the AddP (Field) points to. Which would be wrong since
kvn@500 417 // the algorithm expects the CastPP has the same point as
kvn@500 418 // as AddP's base CheckCastPP (LocalVar).
kvn@500 419 //
kvn@500 420 // ArrayAllocation
kvn@500 421 // |
kvn@500 422 // CheckCastPP
kvn@500 423 // |
kvn@500 424 // memProj (from ArrayAllocation CheckCastPP)
kvn@500 425 // | ||
kvn@500 426 // | || Int (element index)
kvn@500 427 // | || | ConI (log(element size))
kvn@500 428 // | || | /
kvn@500 429 // | || LShift
kvn@500 430 // | || /
kvn@500 431 // | AddP (array's element offset)
kvn@500 432 // | |
kvn@500 433 // | | ConI (array's offset: #12(32-bits) or #24(64-bits))
kvn@500 434 // | / /
kvn@500 435 // AddP (array's offset)
kvn@500 436 // |
kvn@500 437 // Load/Store (memory operation on array's element)
kvn@500 438 //
kvn@500 439 return addp2;
kvn@500 440 }
kvn@500 441 return NULL;
duke@435 442 }
duke@435 443
duke@435 444 //
duke@435 445 // Adjust the type and inputs of an AddP which computes the
duke@435 446 // address of a field of an instance
duke@435 447 //
duke@435 448 void ConnectionGraph::split_AddP(Node *addp, Node *base, PhaseGVN *igvn) {
kvn@500 449 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
kvn@500 450 assert(base_t != NULL && base_t->is_instance(), "expecting instance oopptr");
duke@435 451 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
kvn@500 452 if (t == NULL) {
kvn@500 453 // We are computing a raw address for a store captured by an Initialize
kvn@500 454 // compute an appropriate address type.
kvn@500 455 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
kvn@500 456 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
kvn@500 457 int offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 458 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 459 t = base_t->add_offset(offs)->is_oopptr();
kvn@500 460 }
duke@435 461 uint inst_id = base_t->instance_id();
duke@435 462 assert(!t->is_instance() || t->instance_id() == inst_id,
duke@435 463 "old type must be non-instance or match new type");
duke@435 464 const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
kvn@500 465 // Do NOT remove the next call: ensure an new alias index is allocated
kvn@500 466 // for the instance type
duke@435 467 int alias_idx = _compile->get_alias_index(tinst);
duke@435 468 igvn->set_type(addp, tinst);
duke@435 469 // record the allocation in the node map
duke@435 470 set_map(addp->_idx, get_map(base->_idx));
kvn@500 471 // if the Address input is not the appropriate instance type
kvn@500 472 // (due to intervening casts,) insert a cast
duke@435 473 Node *adr = addp->in(AddPNode::Address);
duke@435 474 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
kvn@500 475 if (atype != NULL && atype->instance_id() != inst_id) {
duke@435 476 assert(!atype->is_instance(), "no conflicting instances");
duke@435 477 const TypeOopPtr *new_atype = base_t->add_offset(atype->offset())->isa_oopptr();
duke@435 478 Node *acast = new (_compile, 2) CastPPNode(adr, new_atype);
duke@435 479 acast->set_req(0, adr->in(0));
duke@435 480 igvn->set_type(acast, new_atype);
duke@435 481 record_for_optimizer(acast);
duke@435 482 Node *bcast = acast;
duke@435 483 Node *abase = addp->in(AddPNode::Base);
duke@435 484 if (abase != adr) {
duke@435 485 bcast = new (_compile, 2) CastPPNode(abase, base_t);
duke@435 486 bcast->set_req(0, abase->in(0));
duke@435 487 igvn->set_type(bcast, base_t);
duke@435 488 record_for_optimizer(bcast);
duke@435 489 }
duke@435 490 igvn->hash_delete(addp);
duke@435 491 addp->set_req(AddPNode::Base, bcast);
duke@435 492 addp->set_req(AddPNode::Address, acast);
duke@435 493 igvn->hash_insert(addp);
duke@435 494 }
kvn@500 495 // Put on IGVN worklist since at least addp's type was changed above.
kvn@500 496 record_for_optimizer(addp);
duke@435 497 }
duke@435 498
duke@435 499 //
duke@435 500 // Create a new version of orig_phi if necessary. Returns either the newly
duke@435 501 // created phi or an existing phi. Sets create_new to indicate wheter a new
duke@435 502 // phi was created. Cache the last newly created phi in the node map.
duke@435 503 //
duke@435 504 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn, bool &new_created) {
duke@435 505 Compile *C = _compile;
duke@435 506 new_created = false;
duke@435 507 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
duke@435 508 // nothing to do if orig_phi is bottom memory or matches alias_idx
kvn@500 509 if (phi_alias_idx == alias_idx) {
duke@435 510 return orig_phi;
duke@435 511 }
duke@435 512 // have we already created a Phi for this alias index?
duke@435 513 PhiNode *result = get_map_phi(orig_phi->_idx);
duke@435 514 if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
duke@435 515 return result;
duke@435 516 }
kvn@473 517 if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
kvn@473 518 if (C->do_escape_analysis() == true && !C->failing()) {
kvn@473 519 // Retry compilation without escape analysis.
kvn@473 520 // If this is the first failure, the sentinel string will "stick"
kvn@473 521 // to the Compile object, and the C2Compiler will see it and retry.
kvn@473 522 C->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@473 523 }
kvn@473 524 return NULL;
kvn@473 525 }
duke@435 526 orig_phi_worklist.append_if_missing(orig_phi);
kvn@500 527 const TypePtr *atype = C->get_adr_type(alias_idx);
duke@435 528 result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
duke@435 529 set_map_phi(orig_phi->_idx, result);
duke@435 530 igvn->set_type(result, result->bottom_type());
duke@435 531 record_for_optimizer(result);
duke@435 532 new_created = true;
duke@435 533 return result;
duke@435 534 }
duke@435 535
duke@435 536 //
duke@435 537 // Return a new version of Memory Phi "orig_phi" with the inputs having the
duke@435 538 // specified alias index.
duke@435 539 //
duke@435 540 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn) {
duke@435 541
duke@435 542 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
duke@435 543 Compile *C = _compile;
duke@435 544 bool new_phi_created;
kvn@500 545 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 546 if (!new_phi_created) {
duke@435 547 return result;
duke@435 548 }
duke@435 549
duke@435 550 GrowableArray<PhiNode *> phi_list;
duke@435 551 GrowableArray<uint> cur_input;
duke@435 552
duke@435 553 PhiNode *phi = orig_phi;
duke@435 554 uint idx = 1;
duke@435 555 bool finished = false;
duke@435 556 while(!finished) {
duke@435 557 while (idx < phi->req()) {
kvn@500 558 Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
duke@435 559 if (mem != NULL && mem->is_Phi()) {
kvn@500 560 PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 561 if (new_phi_created) {
duke@435 562 // found an phi for which we created a new split, push current one on worklist and begin
duke@435 563 // processing new one
duke@435 564 phi_list.push(phi);
duke@435 565 cur_input.push(idx);
duke@435 566 phi = mem->as_Phi();
kvn@500 567 result = newphi;
duke@435 568 idx = 1;
duke@435 569 continue;
duke@435 570 } else {
kvn@500 571 mem = newphi;
duke@435 572 }
duke@435 573 }
kvn@473 574 if (C->failing()) {
kvn@473 575 return NULL;
kvn@473 576 }
duke@435 577 result->set_req(idx++, mem);
duke@435 578 }
duke@435 579 #ifdef ASSERT
duke@435 580 // verify that the new Phi has an input for each input of the original
duke@435 581 assert( phi->req() == result->req(), "must have same number of inputs.");
duke@435 582 assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
kvn@500 583 #endif
kvn@500 584 // Check if all new phi's inputs have specified alias index.
kvn@500 585 // Otherwise use old phi.
duke@435 586 for (uint i = 1; i < phi->req(); i++) {
kvn@500 587 Node* in = result->in(i);
kvn@500 588 assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
duke@435 589 }
duke@435 590 // we have finished processing a Phi, see if there are any more to do
duke@435 591 finished = (phi_list.length() == 0 );
duke@435 592 if (!finished) {
duke@435 593 phi = phi_list.pop();
duke@435 594 idx = cur_input.pop();
kvn@500 595 PhiNode *prev_result = get_map_phi(phi->_idx);
kvn@500 596 prev_result->set_req(idx++, result);
kvn@500 597 result = prev_result;
duke@435 598 }
duke@435 599 }
duke@435 600 return result;
duke@435 601 }
duke@435 602
kvn@500 603
kvn@500 604 //
kvn@500 605 // The next methods are derived from methods in MemNode.
kvn@500 606 //
kvn@500 607 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *tinst) {
kvn@500 608 Node *mem = mmem;
kvn@500 609 // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
kvn@500 610 // means an array I have not precisely typed yet. Do not do any
kvn@500 611 // alias stuff with it any time soon.
kvn@500 612 if( tinst->base() != Type::AnyPtr &&
kvn@500 613 !(tinst->klass()->is_java_lang_Object() &&
kvn@500 614 tinst->offset() == Type::OffsetBot) ) {
kvn@500 615 mem = mmem->memory_at(alias_idx);
kvn@500 616 // Update input if it is progress over what we have now
kvn@500 617 }
kvn@500 618 return mem;
kvn@500 619 }
kvn@500 620
kvn@500 621 //
kvn@500 622 // Search memory chain of "mem" to find a MemNode whose address
kvn@500 623 // is the specified alias index.
kvn@500 624 //
kvn@500 625 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis, PhaseGVN *phase) {
kvn@500 626 if (orig_mem == NULL)
kvn@500 627 return orig_mem;
kvn@500 628 Compile* C = phase->C;
kvn@500 629 const TypeOopPtr *tinst = C->get_adr_type(alias_idx)->isa_oopptr();
kvn@500 630 bool is_instance = (tinst != NULL) && tinst->is_instance();
kvn@500 631 Node *prev = NULL;
kvn@500 632 Node *result = orig_mem;
kvn@500 633 while (prev != result) {
kvn@500 634 prev = result;
kvn@500 635 if (result->is_Mem()) {
kvn@500 636 MemNode *mem = result->as_Mem();
kvn@500 637 const Type *at = phase->type(mem->in(MemNode::Address));
kvn@500 638 if (at != Type::TOP) {
kvn@500 639 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@500 640 int idx = C->get_alias_index(at->is_ptr());
kvn@500 641 if (idx == alias_idx)
kvn@500 642 break;
kvn@500 643 }
kvn@500 644 result = mem->in(MemNode::Memory);
kvn@500 645 }
kvn@500 646 if (!is_instance)
kvn@500 647 continue; // don't search further for non-instance types
kvn@500 648 // skip over a call which does not affect this memory slice
kvn@500 649 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
kvn@500 650 Node *proj_in = result->in(0);
kvn@500 651 if (proj_in->is_Call()) {
kvn@500 652 CallNode *call = proj_in->as_Call();
kvn@500 653 if (!call->may_modify(tinst, phase)) {
kvn@500 654 result = call->in(TypeFunc::Memory);
kvn@500 655 }
kvn@500 656 } else if (proj_in->is_Initialize()) {
kvn@500 657 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
kvn@500 658 // Stop if this is the initialization for the object instance which
kvn@500 659 // which contains this memory slice, otherwise skip over it.
kvn@500 660 if (alloc == NULL || alloc->_idx != tinst->instance_id()) {
kvn@500 661 result = proj_in->in(TypeFunc::Memory);
kvn@500 662 }
kvn@500 663 } else if (proj_in->is_MemBar()) {
kvn@500 664 result = proj_in->in(TypeFunc::Memory);
kvn@500 665 }
kvn@500 666 } else if (result->is_MergeMem()) {
kvn@500 667 MergeMemNode *mmem = result->as_MergeMem();
kvn@500 668 result = step_through_mergemem(mmem, alias_idx, tinst);
kvn@500 669 if (result == mmem->base_memory()) {
kvn@500 670 // Didn't find instance memory, search through general slice recursively.
kvn@500 671 result = mmem->memory_at(C->get_general_index(alias_idx));
kvn@500 672 result = find_inst_mem(result, alias_idx, orig_phis, phase);
kvn@500 673 if (C->failing()) {
kvn@500 674 return NULL;
kvn@500 675 }
kvn@500 676 mmem->set_memory_at(alias_idx, result);
kvn@500 677 }
kvn@500 678 } else if (result->is_Phi() &&
kvn@500 679 C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
kvn@500 680 Node *un = result->as_Phi()->unique_input(phase);
kvn@500 681 if (un != NULL) {
kvn@500 682 result = un;
kvn@500 683 } else {
kvn@500 684 break;
kvn@500 685 }
kvn@500 686 }
kvn@500 687 }
kvn@500 688 if (is_instance && result->is_Phi()) {
kvn@500 689 PhiNode *mphi = result->as_Phi();
kvn@500 690 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
kvn@500 691 const TypePtr *t = mphi->adr_type();
kvn@500 692 if (C->get_alias_index(t) != alias_idx) {
kvn@500 693 result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
kvn@500 694 }
kvn@500 695 }
kvn@500 696 // the result is either MemNode, PhiNode, InitializeNode.
kvn@500 697 return result;
kvn@500 698 }
kvn@500 699
kvn@500 700
duke@435 701 //
duke@435 702 // Convert the types of unescaped object to instance types where possible,
duke@435 703 // propagate the new type information through the graph, and update memory
duke@435 704 // edges and MergeMem inputs to reflect the new type.
duke@435 705 //
duke@435 706 // We start with allocations (and calls which may be allocations) on alloc_worklist.
duke@435 707 // The processing is done in 4 phases:
duke@435 708 //
duke@435 709 // Phase 1: Process possible allocations from alloc_worklist. Create instance
duke@435 710 // types for the CheckCastPP for allocations where possible.
duke@435 711 // Propagate the the new types through users as follows:
duke@435 712 // casts and Phi: push users on alloc_worklist
duke@435 713 // AddP: cast Base and Address inputs to the instance type
duke@435 714 // push any AddP users on alloc_worklist and push any memnode
duke@435 715 // users onto memnode_worklist.
duke@435 716 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 717 // search the Memory chain for a store with the appropriate type
duke@435 718 // address type. If a Phi is found, create a new version with
duke@435 719 // the approriate memory slices from each of the Phi inputs.
duke@435 720 // For stores, process the users as follows:
duke@435 721 // MemNode: push on memnode_worklist
duke@435 722 // MergeMem: push on mergemem_worklist
duke@435 723 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
duke@435 724 // moving the first node encountered of each instance type to the
duke@435 725 // the input corresponding to its alias index.
duke@435 726 // appropriate memory slice.
duke@435 727 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes.
duke@435 728 //
duke@435 729 // In the following example, the CheckCastPP nodes are the cast of allocation
duke@435 730 // results and the allocation of node 29 is unescaped and eligible to be an
duke@435 731 // instance type.
duke@435 732 //
duke@435 733 // We start with:
duke@435 734 //
duke@435 735 // 7 Parm #memory
duke@435 736 // 10 ConI "12"
duke@435 737 // 19 CheckCastPP "Foo"
duke@435 738 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 739 // 29 CheckCastPP "Foo"
duke@435 740 // 30 AddP _ 29 29 10 Foo+12 alias_index=4
duke@435 741 //
duke@435 742 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 743 // 50 StoreP 35 40 30 ... alias_index=4
duke@435 744 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 745 // 70 LoadP _ 60 30 ... alias_index=4
duke@435 746 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 747 // 90 LoadP _ 80 30 ... alias_index=4
duke@435 748 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 749 //
duke@435 750 //
duke@435 751 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
duke@435 752 // and creating a new alias index for node 30. This gives:
duke@435 753 //
duke@435 754 // 7 Parm #memory
duke@435 755 // 10 ConI "12"
duke@435 756 // 19 CheckCastPP "Foo"
duke@435 757 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 758 // 29 CheckCastPP "Foo" iid=24
duke@435 759 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 760 //
duke@435 761 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 762 // 50 StoreP 35 40 30 ... alias_index=6
duke@435 763 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 764 // 70 LoadP _ 60 30 ... alias_index=6
duke@435 765 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 766 // 90 LoadP _ 80 30 ... alias_index=6
duke@435 767 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 768 //
duke@435 769 // In phase 2, new memory inputs are computed for the loads and stores,
duke@435 770 // And a new version of the phi is created. In phase 4, the inputs to
duke@435 771 // node 80 are updated and then the memory nodes are updated with the
duke@435 772 // values computed in phase 2. This results in:
duke@435 773 //
duke@435 774 // 7 Parm #memory
duke@435 775 // 10 ConI "12"
duke@435 776 // 19 CheckCastPP "Foo"
duke@435 777 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 778 // 29 CheckCastPP "Foo" iid=24
duke@435 779 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 780 //
duke@435 781 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 782 // 50 StoreP 35 7 30 ... alias_index=6
duke@435 783 // 60 StoreP 45 40 20 ... alias_index=4
duke@435 784 // 70 LoadP _ 50 30 ... alias_index=6
duke@435 785 // 80 Phi 75 40 60 Memory alias_index=4
duke@435 786 // 120 Phi 75 50 50 Memory alias_index=6
duke@435 787 // 90 LoadP _ 120 30 ... alias_index=6
duke@435 788 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 789 //
duke@435 790 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist) {
duke@435 791 GrowableArray<Node *> memnode_worklist;
duke@435 792 GrowableArray<Node *> mergemem_worklist;
duke@435 793 GrowableArray<PhiNode *> orig_phis;
duke@435 794 PhaseGVN *igvn = _compile->initial_gvn();
duke@435 795 uint new_index_start = (uint) _compile->num_alias_types();
duke@435 796 VectorSet visited(Thread::current()->resource_area());
duke@435 797 VectorSet ptset(Thread::current()->resource_area());
duke@435 798
kvn@500 799
kvn@500 800 // Phase 1: Process possible allocations from alloc_worklist.
kvn@500 801 // Create instance types for the CheckCastPP for allocations where possible.
duke@435 802 while (alloc_worklist.length() != 0) {
duke@435 803 Node *n = alloc_worklist.pop();
duke@435 804 uint ni = n->_idx;
kvn@500 805 const TypeOopPtr* tinst = NULL;
duke@435 806 if (n->is_Call()) {
duke@435 807 CallNode *alloc = n->as_Call();
duke@435 808 // copy escape information to call node
kvn@500 809 PointsToNode* ptn = _nodes->adr_at(alloc->_idx);
duke@435 810 PointsToNode::EscapeState es = escape_state(alloc, igvn);
kvn@500 811 // We have an allocation or call which returns a Java object,
kvn@500 812 // see if it is unescaped.
kvn@500 813 if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
duke@435 814 continue;
kvn@474 815 if (alloc->is_Allocate()) {
kvn@474 816 // Set the scalar_replaceable flag before the next check.
kvn@474 817 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@474 818 }
kvn@500 819 // find CheckCastPP of call return value
kvn@500 820 n = alloc->result_cast();
kvn@500 821 if (n == NULL || // No uses accept Initialize or
kvn@500 822 !n->is_CheckCastPP()) // not unique CheckCastPP.
kvn@500 823 continue;
kvn@500 824 // The inline code for Object.clone() casts the allocation result to
kvn@500 825 // java.lang.Object and then to the the actual type of the allocated
kvn@500 826 // object. Detect this case and use the second cast.
kvn@500 827 if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
kvn@500 828 && igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT) {
kvn@500 829 Node *cast2 = NULL;
kvn@500 830 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 831 Node *use = n->fast_out(i);
kvn@500 832 if (use->is_CheckCastPP()) {
kvn@500 833 cast2 = use;
kvn@500 834 break;
kvn@500 835 }
kvn@500 836 }
kvn@500 837 if (cast2 != NULL) {
kvn@500 838 n = cast2;
kvn@500 839 } else {
kvn@500 840 continue;
kvn@500 841 }
kvn@500 842 }
kvn@500 843 set_escape_state(n->_idx, es);
kvn@500 844 // in order for an object to be stackallocatable, it must be:
kvn@500 845 // - a direct allocation (not a call returning an object)
kvn@500 846 // - non-escaping
kvn@500 847 // - eligible to be a unique type
kvn@500 848 // - not determined to be ineligible by escape analysis
duke@435 849 set_map(alloc->_idx, n);
duke@435 850 set_map(n->_idx, alloc);
kvn@500 851 const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
kvn@500 852 if (t == NULL)
duke@435 853 continue; // not a TypeInstPtr
kvn@500 854 tinst = t->cast_to_instance(ni);
duke@435 855 igvn->hash_delete(n);
duke@435 856 igvn->set_type(n, tinst);
duke@435 857 n->raise_bottom_type(tinst);
duke@435 858 igvn->hash_insert(n);
kvn@500 859 record_for_optimizer(n);
kvn@500 860 if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
kvn@500 861 (t->isa_instptr() || t->isa_aryptr())) {
kvn@500 862 // An allocation may have an Initialize which has raw stores. Scan
kvn@500 863 // the users of the raw allocation result and push AddP users
kvn@500 864 // on alloc_worklist.
kvn@500 865 Node *raw_result = alloc->proj_out(TypeFunc::Parms);
kvn@500 866 assert (raw_result != NULL, "must have an allocation result");
kvn@500 867 for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
kvn@500 868 Node *use = raw_result->fast_out(i);
kvn@500 869 if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
kvn@500 870 Node* addp2 = find_second_addp(use, raw_result);
kvn@500 871 if (addp2 != NULL) {
kvn@500 872 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@500 873 alloc_worklist.append_if_missing(addp2);
kvn@500 874 }
kvn@500 875 alloc_worklist.append_if_missing(use);
kvn@500 876 } else if (use->is_Initialize()) {
kvn@500 877 memnode_worklist.append_if_missing(use);
kvn@500 878 }
kvn@500 879 }
kvn@500 880 }
duke@435 881 } else if (n->is_AddP()) {
duke@435 882 ptset.Clear();
kvn@500 883 PointsTo(ptset, get_addp_base(n), igvn);
duke@435 884 assert(ptset.Size() == 1, "AddP address is unique");
kvn@500 885 uint elem = ptset.getelem(); // Allocation node's index
kvn@500 886 if (elem == _phantom_object)
kvn@500 887 continue; // Assume the value was set outside this method.
kvn@500 888 Node *base = get_map(elem); // CheckCastPP node
duke@435 889 split_AddP(n, base, igvn);
kvn@500 890 tinst = igvn->type(base)->isa_oopptr();
kvn@500 891 } else if (n->is_Phi() ||
kvn@500 892 n->is_CheckCastPP() ||
kvn@500 893 (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
duke@435 894 if (visited.test_set(n->_idx)) {
duke@435 895 assert(n->is_Phi(), "loops only through Phi's");
duke@435 896 continue; // already processed
duke@435 897 }
duke@435 898 ptset.Clear();
duke@435 899 PointsTo(ptset, n, igvn);
duke@435 900 if (ptset.Size() == 1) {
kvn@500 901 uint elem = ptset.getelem(); // Allocation node's index
kvn@500 902 if (elem == _phantom_object)
kvn@500 903 continue; // Assume the value was set outside this method.
kvn@500 904 Node *val = get_map(elem); // CheckCastPP node
duke@435 905 TypeNode *tn = n->as_Type();
kvn@500 906 tinst = igvn->type(val)->isa_oopptr();
kvn@500 907 assert(tinst != NULL && tinst->is_instance() &&
kvn@500 908 tinst->instance_id() == elem , "instance type expected.");
kvn@500 909 const TypeOopPtr *tn_t = igvn->type(tn)->isa_oopptr();
duke@435 910
kvn@500 911 if (tn_t != NULL &&
kvn@500 912 tinst->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE)->higher_equal(tn_t)) {
duke@435 913 igvn->hash_delete(tn);
kvn@500 914 igvn->set_type(tn, tinst);
kvn@500 915 tn->set_type(tinst);
duke@435 916 igvn->hash_insert(tn);
kvn@500 917 record_for_optimizer(n);
duke@435 918 }
duke@435 919 }
duke@435 920 } else {
duke@435 921 continue;
duke@435 922 }
duke@435 923 // push users on appropriate worklist
duke@435 924 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 925 Node *use = n->fast_out(i);
duke@435 926 if(use->is_Mem() && use->in(MemNode::Address) == n) {
kvn@500 927 memnode_worklist.append_if_missing(use);
kvn@500 928 } else if (use->is_Initialize()) {
kvn@500 929 memnode_worklist.append_if_missing(use);
kvn@500 930 } else if (use->is_MergeMem()) {
kvn@500 931 mergemem_worklist.append_if_missing(use);
kvn@500 932 } else if (use->is_Call() && tinst != NULL) {
kvn@500 933 // Look for MergeMem nodes for calls which reference unique allocation
kvn@500 934 // (through CheckCastPP nodes) even for debug info.
kvn@500 935 Node* m = use->in(TypeFunc::Memory);
kvn@500 936 uint iid = tinst->instance_id();
kvn@500 937 while (m->is_Proj() && m->in(0)->is_Call() &&
kvn@500 938 m->in(0) != use && !m->in(0)->_idx != iid) {
kvn@500 939 m = m->in(0)->in(TypeFunc::Memory);
kvn@500 940 }
kvn@500 941 if (m->is_MergeMem()) {
kvn@500 942 mergemem_worklist.append_if_missing(m);
kvn@500 943 }
kvn@500 944 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
kvn@500 945 Node* addp2 = find_second_addp(use, n);
kvn@500 946 if (addp2 != NULL) {
kvn@500 947 alloc_worklist.append_if_missing(addp2);
kvn@500 948 }
kvn@500 949 alloc_worklist.append_if_missing(use);
kvn@500 950 } else if (use->is_Phi() ||
kvn@500 951 use->is_CheckCastPP() ||
kvn@500 952 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
kvn@500 953 alloc_worklist.append_if_missing(use);
duke@435 954 }
duke@435 955 }
duke@435 956
duke@435 957 }
kvn@500 958 // New alias types were created in split_AddP().
duke@435 959 uint new_index_end = (uint) _compile->num_alias_types();
duke@435 960
duke@435 961 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 962 // compute new values for Memory inputs (the Memory inputs are not
duke@435 963 // actually updated until phase 4.)
duke@435 964 if (memnode_worklist.length() == 0)
duke@435 965 return; // nothing to do
duke@435 966
duke@435 967 while (memnode_worklist.length() != 0) {
duke@435 968 Node *n = memnode_worklist.pop();
kvn@500 969 if (visited.test_set(n->_idx))
kvn@500 970 continue;
duke@435 971 if (n->is_Phi()) {
duke@435 972 assert(n->as_Phi()->adr_type() != TypePtr::BOTTOM, "narrow memory slice required");
duke@435 973 // we don't need to do anything, but the users must be pushed if we haven't processed
duke@435 974 // this Phi before
kvn@500 975 } else if (n->is_Initialize()) {
kvn@500 976 // we don't need to do anything, but the users of the memory projection must be pushed
kvn@500 977 n = n->as_Initialize()->proj_out(TypeFunc::Memory);
kvn@500 978 if (n == NULL)
duke@435 979 continue;
duke@435 980 } else {
duke@435 981 assert(n->is_Mem(), "memory node required.");
duke@435 982 Node *addr = n->in(MemNode::Address);
kvn@500 983 assert(addr->is_AddP(), "AddP required");
duke@435 984 const Type *addr_t = igvn->type(addr);
duke@435 985 if (addr_t == Type::TOP)
duke@435 986 continue;
duke@435 987 assert (addr_t->isa_ptr() != NULL, "pointer type required.");
duke@435 988 int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
kvn@500 989 assert ((uint)alias_idx < new_index_end, "wrong alias index");
kvn@500 990 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
kvn@473 991 if (_compile->failing()) {
kvn@473 992 return;
kvn@473 993 }
kvn@500 994 if (mem != n->in(MemNode::Memory)) {
duke@435 995 set_map(n->_idx, mem);
kvn@500 996 _nodes->adr_at(n->_idx)->_node = n;
kvn@500 997 }
duke@435 998 if (n->is_Load()) {
duke@435 999 continue; // don't push users
duke@435 1000 } else if (n->is_LoadStore()) {
duke@435 1001 // get the memory projection
duke@435 1002 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1003 Node *use = n->fast_out(i);
duke@435 1004 if (use->Opcode() == Op_SCMemProj) {
duke@435 1005 n = use;
duke@435 1006 break;
duke@435 1007 }
duke@435 1008 }
duke@435 1009 assert(n->Opcode() == Op_SCMemProj, "memory projection required");
duke@435 1010 }
duke@435 1011 }
duke@435 1012 // push user on appropriate worklist
duke@435 1013 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1014 Node *use = n->fast_out(i);
duke@435 1015 if (use->is_Phi()) {
kvn@500 1016 memnode_worklist.append_if_missing(use);
duke@435 1017 } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
kvn@500 1018 memnode_worklist.append_if_missing(use);
kvn@500 1019 } else if (use->is_Initialize()) {
kvn@500 1020 memnode_worklist.append_if_missing(use);
duke@435 1021 } else if (use->is_MergeMem()) {
kvn@500 1022 mergemem_worklist.append_if_missing(use);
duke@435 1023 }
duke@435 1024 }
duke@435 1025 }
duke@435 1026
kvn@500 1027 // Phase 3: Process MergeMem nodes from mergemem_worklist.
kvn@500 1028 // Walk each memory moving the first node encountered of each
kvn@500 1029 // instance type to the the input corresponding to its alias index.
duke@435 1030 while (mergemem_worklist.length() != 0) {
duke@435 1031 Node *n = mergemem_worklist.pop();
duke@435 1032 assert(n->is_MergeMem(), "MergeMem node required.");
kvn@500 1033 if (visited.test_set(n->_idx))
kvn@500 1034 continue;
duke@435 1035 MergeMemNode *nmm = n->as_MergeMem();
duke@435 1036 // Note: we don't want to use MergeMemStream here because we only want to
kvn@500 1037 // scan inputs which exist at the start, not ones we add during processing.
duke@435 1038 uint nslices = nmm->req();
duke@435 1039 igvn->hash_delete(nmm);
duke@435 1040 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
kvn@500 1041 Node* mem = nmm->in(i);
kvn@500 1042 Node* cur = NULL;
duke@435 1043 if (mem == NULL || mem->is_top())
duke@435 1044 continue;
duke@435 1045 while (mem->is_Mem()) {
duke@435 1046 const Type *at = igvn->type(mem->in(MemNode::Address));
duke@435 1047 if (at != Type::TOP) {
duke@435 1048 assert (at->isa_ptr() != NULL, "pointer type required.");
duke@435 1049 uint idx = (uint)_compile->get_alias_index(at->is_ptr());
duke@435 1050 if (idx == i) {
duke@435 1051 if (cur == NULL)
duke@435 1052 cur = mem;
duke@435 1053 } else {
duke@435 1054 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
duke@435 1055 nmm->set_memory_at(idx, mem);
duke@435 1056 }
duke@435 1057 }
duke@435 1058 }
duke@435 1059 mem = mem->in(MemNode::Memory);
duke@435 1060 }
duke@435 1061 nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
kvn@500 1062 // Find any instance of the current type if we haven't encountered
kvn@500 1063 // a value of the instance along the chain.
kvn@500 1064 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@500 1065 if((uint)_compile->get_general_index(ni) == i) {
kvn@500 1066 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
kvn@500 1067 if (nmm->is_empty_memory(m)) {
kvn@500 1068 Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
kvn@500 1069 if (_compile->failing()) {
kvn@500 1070 return;
kvn@500 1071 }
kvn@500 1072 nmm->set_memory_at(ni, result);
kvn@500 1073 }
kvn@500 1074 }
kvn@500 1075 }
kvn@500 1076 }
kvn@500 1077 // Find the rest of instances values
kvn@500 1078 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@500 1079 const TypeOopPtr *tinst = igvn->C->get_adr_type(ni)->isa_oopptr();
kvn@500 1080 Node* result = step_through_mergemem(nmm, ni, tinst);
kvn@500 1081 if (result == nmm->base_memory()) {
kvn@500 1082 // Didn't find instance memory, search through general slice recursively.
kvn@500 1083 result = nmm->memory_at(igvn->C->get_general_index(ni));
kvn@500 1084 result = find_inst_mem(result, ni, orig_phis, igvn);
kvn@500 1085 if (_compile->failing()) {
kvn@500 1086 return;
kvn@500 1087 }
kvn@500 1088 nmm->set_memory_at(ni, result);
kvn@500 1089 }
kvn@500 1090 }
kvn@500 1091 igvn->hash_insert(nmm);
kvn@500 1092 record_for_optimizer(nmm);
kvn@500 1093
kvn@500 1094 // Propagate new memory slices to following MergeMem nodes.
kvn@500 1095 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1096 Node *use = n->fast_out(i);
kvn@500 1097 if (use->is_Call()) {
kvn@500 1098 CallNode* in = use->as_Call();
kvn@500 1099 if (in->proj_out(TypeFunc::Memory) != NULL) {
kvn@500 1100 Node* m = in->proj_out(TypeFunc::Memory);
kvn@500 1101 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
kvn@500 1102 Node* mm = m->fast_out(j);
kvn@500 1103 if (mm->is_MergeMem()) {
kvn@500 1104 mergemem_worklist.append_if_missing(mm);
kvn@500 1105 }
kvn@500 1106 }
kvn@500 1107 }
kvn@500 1108 if (use->is_Allocate()) {
kvn@500 1109 use = use->as_Allocate()->initialization();
kvn@500 1110 if (use == NULL) {
kvn@500 1111 continue;
kvn@500 1112 }
kvn@500 1113 }
kvn@500 1114 }
kvn@500 1115 if (use->is_Initialize()) {
kvn@500 1116 InitializeNode* in = use->as_Initialize();
kvn@500 1117 if (in->proj_out(TypeFunc::Memory) != NULL) {
kvn@500 1118 Node* m = in->proj_out(TypeFunc::Memory);
kvn@500 1119 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
kvn@500 1120 Node* mm = m->fast_out(j);
kvn@500 1121 if (mm->is_MergeMem()) {
kvn@500 1122 mergemem_worklist.append_if_missing(mm);
duke@435 1123 }
duke@435 1124 }
duke@435 1125 }
duke@435 1126 }
duke@435 1127 }
duke@435 1128 }
duke@435 1129
kvn@500 1130 // Phase 4: Update the inputs of non-instance memory Phis and
kvn@500 1131 // the Memory input of memnodes
duke@435 1132 // First update the inputs of any non-instance Phi's from
duke@435 1133 // which we split out an instance Phi. Note we don't have
duke@435 1134 // to recursively process Phi's encounted on the input memory
duke@435 1135 // chains as is done in split_memory_phi() since they will
duke@435 1136 // also be processed here.
duke@435 1137 while (orig_phis.length() != 0) {
duke@435 1138 PhiNode *phi = orig_phis.pop();
duke@435 1139 int alias_idx = _compile->get_alias_index(phi->adr_type());
duke@435 1140 igvn->hash_delete(phi);
duke@435 1141 for (uint i = 1; i < phi->req(); i++) {
duke@435 1142 Node *mem = phi->in(i);
kvn@500 1143 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
kvn@500 1144 if (_compile->failing()) {
kvn@500 1145 return;
kvn@500 1146 }
duke@435 1147 if (mem != new_mem) {
duke@435 1148 phi->set_req(i, new_mem);
duke@435 1149 }
duke@435 1150 }
duke@435 1151 igvn->hash_insert(phi);
duke@435 1152 record_for_optimizer(phi);
duke@435 1153 }
duke@435 1154
duke@435 1155 // Update the memory inputs of MemNodes with the value we computed
duke@435 1156 // in Phase 2.
duke@435 1157 for (int i = 0; i < _nodes->length(); i++) {
duke@435 1158 Node *nmem = get_map(i);
duke@435 1159 if (nmem != NULL) {
kvn@500 1160 Node *n = _nodes->adr_at(i)->_node;
duke@435 1161 if (n != NULL && n->is_Mem()) {
duke@435 1162 igvn->hash_delete(n);
duke@435 1163 n->set_req(MemNode::Memory, nmem);
duke@435 1164 igvn->hash_insert(n);
duke@435 1165 record_for_optimizer(n);
duke@435 1166 }
duke@435 1167 }
duke@435 1168 }
duke@435 1169 }
duke@435 1170
duke@435 1171 void ConnectionGraph::compute_escape() {
duke@435 1172
kvn@500 1173 // 1. Populate Connection Graph with Ideal nodes.
duke@435 1174
kvn@500 1175 Unique_Node_List worklist_init;
kvn@500 1176 worklist_init.map(_compile->unique(), NULL); // preallocate space
kvn@500 1177
kvn@500 1178 // Initialize worklist
kvn@500 1179 if (_compile->root() != NULL) {
kvn@500 1180 worklist_init.push(_compile->root());
kvn@500 1181 }
kvn@500 1182
kvn@500 1183 GrowableArray<int> cg_worklist;
kvn@500 1184 PhaseGVN* igvn = _compile->initial_gvn();
kvn@500 1185 bool has_allocations = false;
kvn@500 1186
kvn@500 1187 // Push all useful nodes onto CG list and set their type.
kvn@500 1188 for( uint next = 0; next < worklist_init.size(); ++next ) {
kvn@500 1189 Node* n = worklist_init.at(next);
kvn@500 1190 record_for_escape_analysis(n, igvn);
kvn@500 1191 if (n->is_Call() &&
kvn@500 1192 _nodes->adr_at(n->_idx)->node_type() == PointsToNode::JavaObject) {
kvn@500 1193 has_allocations = true;
kvn@500 1194 }
kvn@500 1195 if(n->is_AddP())
kvn@500 1196 cg_worklist.append(n->_idx);
kvn@500 1197 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1198 Node* m = n->fast_out(i); // Get user
kvn@500 1199 worklist_init.push(m);
kvn@500 1200 }
kvn@500 1201 }
kvn@500 1202
kvn@500 1203 if (has_allocations) {
kvn@500 1204 _has_allocations = true;
kvn@500 1205 } else {
kvn@500 1206 _has_allocations = false;
kvn@500 1207 _collecting = false;
kvn@500 1208 return; // Nothing to do.
kvn@500 1209 }
kvn@500 1210
kvn@500 1211 // 2. First pass to create simple CG edges (doesn't require to walk CG).
kvn@500 1212 for( uint next = 0; next < _delayed_worklist.size(); ++next ) {
kvn@500 1213 Node* n = _delayed_worklist.at(next);
kvn@500 1214 build_connection_graph(n, igvn);
kvn@500 1215 }
kvn@500 1216
kvn@500 1217 // 3. Pass to create fields edges (Allocate -F-> AddP).
kvn@500 1218 for( int next = 0; next < cg_worklist.length(); ++next ) {
kvn@500 1219 int ni = cg_worklist.at(next);
kvn@500 1220 build_connection_graph(_nodes->adr_at(ni)->_node, igvn);
kvn@500 1221 }
kvn@500 1222
kvn@500 1223 cg_worklist.clear();
kvn@500 1224 cg_worklist.append(_phantom_object);
kvn@500 1225
kvn@500 1226 // 4. Build Connection Graph which need
kvn@500 1227 // to walk the connection graph.
kvn@500 1228 for (uint ni = 0; ni < (uint)_nodes->length(); ni++) {
kvn@500 1229 PointsToNode* ptn = _nodes->adr_at(ni);
kvn@500 1230 Node *n = ptn->_node;
kvn@500 1231 if (n != NULL) { // Call, AddP, LoadP, StoreP
kvn@500 1232 build_connection_graph(n, igvn);
kvn@500 1233 if (ptn->node_type() != PointsToNode::UnknownType)
kvn@500 1234 cg_worklist.append(n->_idx); // Collect CG nodes
kvn@500 1235 }
duke@435 1236 }
duke@435 1237
duke@435 1238 VectorSet ptset(Thread::current()->resource_area());
kvn@500 1239 GrowableArray<Node*> alloc_worklist;
kvn@500 1240 GrowableArray<int> worklist;
duke@435 1241
duke@435 1242 // remove deferred edges from the graph and collect
duke@435 1243 // information we will need for type splitting
kvn@500 1244 for( int next = 0; next < cg_worklist.length(); ++next ) {
kvn@500 1245 int ni = cg_worklist.at(next);
kvn@500 1246 PointsToNode* ptn = _nodes->adr_at(ni);
duke@435 1247 PointsToNode::NodeType nt = ptn->node_type();
duke@435 1248 Node *n = ptn->_node;
duke@435 1249 if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
duke@435 1250 remove_deferred(ni);
duke@435 1251 if (n->is_AddP()) {
kvn@500 1252 // If this AddP computes an address which may point to more that one
kvn@500 1253 // object, nothing the address points to can be scalar replaceable.
kvn@500 1254 Node *base = get_addp_base(n);
duke@435 1255 ptset.Clear();
duke@435 1256 PointsTo(ptset, base, igvn);
duke@435 1257 if (ptset.Size() > 1) {
duke@435 1258 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@500 1259 uint pt = j.elem;
kvn@500 1260 ptnode_adr(pt)->_scalar_replaceable = false;
duke@435 1261 }
duke@435 1262 }
duke@435 1263 }
kvn@500 1264 } else if (nt == PointsToNode::JavaObject && n->is_Call()) {
kvn@500 1265 // Push call on alloc_worlist (alocations are calls)
kvn@500 1266 // for processing by split_unique_types().
kvn@500 1267 alloc_worklist.append(n);
duke@435 1268 }
duke@435 1269 }
kvn@500 1270
duke@435 1271 // push all GlobalEscape nodes on the worklist
kvn@500 1272 for( int next = 0; next < cg_worklist.length(); ++next ) {
kvn@500 1273 int nk = cg_worklist.at(next);
kvn@500 1274 if (_nodes->adr_at(nk)->escape_state() == PointsToNode::GlobalEscape)
kvn@500 1275 worklist.append(nk);
duke@435 1276 }
duke@435 1277 // mark all node reachable from GlobalEscape nodes
duke@435 1278 while(worklist.length() > 0) {
duke@435 1279 PointsToNode n = _nodes->at(worklist.pop());
duke@435 1280 for (uint ei = 0; ei < n.edge_count(); ei++) {
duke@435 1281 uint npi = n.edge_target(ei);
duke@435 1282 PointsToNode *np = ptnode_adr(npi);
kvn@500 1283 if (np->escape_state() < PointsToNode::GlobalEscape) {
duke@435 1284 np->set_escape_state(PointsToNode::GlobalEscape);
duke@435 1285 worklist.append_if_missing(npi);
duke@435 1286 }
duke@435 1287 }
duke@435 1288 }
duke@435 1289
duke@435 1290 // push all ArgEscape nodes on the worklist
kvn@500 1291 for( int next = 0; next < cg_worklist.length(); ++next ) {
kvn@500 1292 int nk = cg_worklist.at(next);
kvn@500 1293 if (_nodes->adr_at(nk)->escape_state() == PointsToNode::ArgEscape)
duke@435 1294 worklist.push(nk);
duke@435 1295 }
duke@435 1296 // mark all node reachable from ArgEscape nodes
duke@435 1297 while(worklist.length() > 0) {
duke@435 1298 PointsToNode n = _nodes->at(worklist.pop());
duke@435 1299 for (uint ei = 0; ei < n.edge_count(); ei++) {
duke@435 1300 uint npi = n.edge_target(ei);
duke@435 1301 PointsToNode *np = ptnode_adr(npi);
kvn@500 1302 if (np->escape_state() < PointsToNode::ArgEscape) {
duke@435 1303 np->set_escape_state(PointsToNode::ArgEscape);
duke@435 1304 worklist.append_if_missing(npi);
duke@435 1305 }
duke@435 1306 }
duke@435 1307 }
kvn@500 1308
kvn@500 1309 // push all NoEscape nodes on the worklist
kvn@500 1310 for( int next = 0; next < cg_worklist.length(); ++next ) {
kvn@500 1311 int nk = cg_worklist.at(next);
kvn@500 1312 if (_nodes->adr_at(nk)->escape_state() == PointsToNode::NoEscape)
kvn@500 1313 worklist.push(nk);
kvn@500 1314 }
kvn@500 1315 // mark all node reachable from NoEscape nodes
kvn@500 1316 while(worklist.length() > 0) {
kvn@500 1317 PointsToNode n = _nodes->at(worklist.pop());
kvn@500 1318 for (uint ei = 0; ei < n.edge_count(); ei++) {
kvn@500 1319 uint npi = n.edge_target(ei);
kvn@500 1320 PointsToNode *np = ptnode_adr(npi);
kvn@500 1321 if (np->escape_state() < PointsToNode::NoEscape) {
kvn@500 1322 np->set_escape_state(PointsToNode::NoEscape);
kvn@500 1323 worklist.append_if_missing(npi);
kvn@500 1324 }
kvn@500 1325 }
kvn@500 1326 }
kvn@500 1327
duke@435 1328 _collecting = false;
duke@435 1329
kvn@500 1330 has_allocations = false; // Are there scalar replaceable allocations?
kvn@473 1331
kvn@500 1332 for( int next = 0; next < alloc_worklist.length(); ++next ) {
kvn@500 1333 Node* n = alloc_worklist.at(next);
kvn@500 1334 uint ni = n->_idx;
kvn@500 1335 PointsToNode* ptn = _nodes->adr_at(ni);
kvn@500 1336 PointsToNode::EscapeState es = ptn->escape_state();
kvn@500 1337 if (ptn->escape_state() == PointsToNode::NoEscape &&
kvn@500 1338 ptn->_scalar_replaceable) {
kvn@500 1339 has_allocations = true;
kvn@500 1340 break;
kvn@500 1341 }
kvn@500 1342 }
kvn@500 1343 if (!has_allocations) {
kvn@500 1344 return; // Nothing to do.
kvn@500 1345 }
duke@435 1346
kvn@500 1347 if(_compile->AliasLevel() >= 3 && EliminateAllocations) {
kvn@500 1348 // Now use the escape information to create unique types for
kvn@500 1349 // unescaped objects
kvn@500 1350 split_unique_types(alloc_worklist);
kvn@500 1351 if (_compile->failing()) return;
duke@435 1352
kvn@500 1353 // Clean up after split unique types.
kvn@500 1354 ResourceMark rm;
kvn@500 1355 PhaseRemoveUseless pru(_compile->initial_gvn(), _compile->for_igvn());
duke@435 1356
kvn@500 1357 #ifdef ASSERT
kvn@500 1358 } else if (PrintEscapeAnalysis || PrintEliminateAllocations) {
kvn@500 1359 tty->print("=== No allocations eliminated for ");
kvn@500 1360 C()->method()->print_short_name();
kvn@500 1361 if(!EliminateAllocations) {
kvn@500 1362 tty->print(" since EliminateAllocations is off ===");
kvn@500 1363 } else if(_compile->AliasLevel() < 3) {
kvn@500 1364 tty->print(" since AliasLevel < 3 ===");
duke@435 1365 }
kvn@500 1366 tty->cr();
kvn@500 1367 #endif
duke@435 1368 }
duke@435 1369 }
duke@435 1370
duke@435 1371 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
duke@435 1372
duke@435 1373 switch (call->Opcode()) {
kvn@500 1374 #ifdef ASSERT
duke@435 1375 case Op_Allocate:
duke@435 1376 case Op_AllocateArray:
duke@435 1377 case Op_Lock:
duke@435 1378 case Op_Unlock:
kvn@500 1379 assert(false, "should be done already");
duke@435 1380 break;
kvn@500 1381 #endif
kvn@500 1382 case Op_CallLeafNoFP:
kvn@500 1383 {
kvn@500 1384 // Stub calls, objects do not escape but they are not scale replaceable.
kvn@500 1385 // Adjust escape state for outgoing arguments.
kvn@500 1386 const TypeTuple * d = call->tf()->domain();
kvn@500 1387 VectorSet ptset(Thread::current()->resource_area());
kvn@500 1388 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 1389 const Type* at = d->field_at(i);
kvn@500 1390 Node *arg = call->in(i)->uncast();
kvn@500 1391 const Type *aat = phase->type(arg);
kvn@500 1392 if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr()) {
kvn@500 1393 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
kvn@500 1394 aat->isa_ptr() != NULL, "expecting an Ptr");
kvn@500 1395 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 1396 if (arg->is_AddP()) {
kvn@500 1397 //
kvn@500 1398 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 1399 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 1400 //
kvn@500 1401 // Set AddP's base (Allocate) as not scalar replaceable since
kvn@500 1402 // pointer to the base (with offset) is passed as argument.
kvn@500 1403 //
kvn@500 1404 arg = get_addp_base(arg);
kvn@500 1405 }
kvn@500 1406 ptset.Clear();
kvn@500 1407 PointsTo(ptset, arg, phase);
kvn@500 1408 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@500 1409 uint pt = j.elem;
kvn@500 1410 set_escape_state(pt, PointsToNode::ArgEscape);
kvn@500 1411 }
kvn@500 1412 }
kvn@500 1413 }
kvn@500 1414 break;
kvn@500 1415 }
duke@435 1416
duke@435 1417 case Op_CallStaticJava:
duke@435 1418 // For a static call, we know exactly what method is being called.
duke@435 1419 // Use bytecode estimator to record the call's escape affects
duke@435 1420 {
duke@435 1421 ciMethod *meth = call->as_CallJava()->method();
kvn@500 1422 BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
kvn@500 1423 // fall-through if not a Java method or no analyzer information
kvn@500 1424 if (call_analyzer != NULL) {
duke@435 1425 const TypeTuple * d = call->tf()->domain();
duke@435 1426 VectorSet ptset(Thread::current()->resource_area());
kvn@500 1427 bool copy_dependencies = false;
duke@435 1428 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1429 const Type* at = d->field_at(i);
duke@435 1430 int k = i - TypeFunc::Parms;
duke@435 1431
duke@435 1432 if (at->isa_oopptr() != NULL) {
kvn@500 1433 Node *arg = call->in(i)->uncast();
duke@435 1434
kvn@500 1435 bool global_escapes = false;
kvn@500 1436 bool fields_escapes = false;
kvn@500 1437 if (!call_analyzer->is_arg_stack(k)) {
duke@435 1438 // The argument global escapes, mark everything it could point to
kvn@500 1439 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
kvn@500 1440 global_escapes = true;
kvn@500 1441 } else {
kvn@500 1442 if (!call_analyzer->is_arg_local(k)) {
kvn@500 1443 // The argument itself doesn't escape, but any fields might
kvn@500 1444 fields_escapes = true;
kvn@500 1445 }
kvn@500 1446 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 1447 copy_dependencies = true;
kvn@500 1448 }
duke@435 1449
kvn@500 1450 ptset.Clear();
kvn@500 1451 PointsTo(ptset, arg, phase);
kvn@500 1452 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@500 1453 uint pt = j.elem;
kvn@500 1454 if (global_escapes) {
kvn@500 1455 //The argument global escapes, mark everything it could point to
duke@435 1456 set_escape_state(pt, PointsToNode::GlobalEscape);
kvn@500 1457 } else {
kvn@500 1458 if (fields_escapes) {
kvn@500 1459 // The argument itself doesn't escape, but any fields might
kvn@500 1460 add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
kvn@500 1461 }
kvn@500 1462 set_escape_state(pt, PointsToNode::ArgEscape);
duke@435 1463 }
duke@435 1464 }
duke@435 1465 }
duke@435 1466 }
kvn@500 1467 if (copy_dependencies)
kvn@500 1468 call_analyzer->copy_dependencies(C()->dependencies());
duke@435 1469 break;
duke@435 1470 }
duke@435 1471 }
duke@435 1472
duke@435 1473 default:
kvn@500 1474 // Fall-through here if not a Java method or no analyzer information
kvn@500 1475 // or some other type of call, assume the worst case: all arguments
duke@435 1476 // globally escape.
duke@435 1477 {
duke@435 1478 // adjust escape state for outgoing arguments
duke@435 1479 const TypeTuple * d = call->tf()->domain();
duke@435 1480 VectorSet ptset(Thread::current()->resource_area());
duke@435 1481 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1482 const Type* at = d->field_at(i);
duke@435 1483 if (at->isa_oopptr() != NULL) {
kvn@500 1484 Node *arg = call->in(i)->uncast();
kvn@500 1485 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
duke@435 1486 ptset.Clear();
duke@435 1487 PointsTo(ptset, arg, phase);
duke@435 1488 for( VectorSetI j(&ptset); j.test(); ++j ) {
duke@435 1489 uint pt = j.elem;
duke@435 1490 set_escape_state(pt, PointsToNode::GlobalEscape);
kvn@500 1491 PointsToNode *ptadr = ptnode_adr(pt);
duke@435 1492 }
duke@435 1493 }
duke@435 1494 }
duke@435 1495 }
duke@435 1496 }
duke@435 1497 }
duke@435 1498 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
duke@435 1499 PointsToNode *ptadr = ptnode_adr(resproj->_idx);
duke@435 1500
kvn@500 1501 CallNode *call = resproj->in(0)->as_Call();
duke@435 1502 switch (call->Opcode()) {
duke@435 1503 case Op_Allocate:
duke@435 1504 {
duke@435 1505 Node *k = call->in(AllocateNode::KlassNode);
duke@435 1506 const TypeKlassPtr *kt;
duke@435 1507 if (k->Opcode() == Op_LoadKlass) {
duke@435 1508 kt = k->as_Load()->type()->isa_klassptr();
duke@435 1509 } else {
duke@435 1510 kt = k->as_Type()->type()->isa_klassptr();
duke@435 1511 }
duke@435 1512 assert(kt != NULL, "TypeKlassPtr required.");
duke@435 1513 ciKlass* cik = kt->klass();
duke@435 1514 ciInstanceKlass* ciik = cik->as_instance_klass();
duke@435 1515
duke@435 1516 PointsToNode *ptadr = ptnode_adr(call->_idx);
kvn@500 1517 PointsToNode::EscapeState es;
kvn@500 1518 uint edge_to;
duke@435 1519 if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) {
kvn@500 1520 es = PointsToNode::GlobalEscape;
kvn@500 1521 edge_to = _phantom_object; // Could not be worse
duke@435 1522 } else {
kvn@500 1523 es = PointsToNode::NoEscape;
kvn@500 1524 edge_to = call->_idx;
duke@435 1525 }
kvn@500 1526 set_escape_state(call->_idx, es);
kvn@500 1527 add_pointsto_edge(resproj->_idx, edge_to);
kvn@500 1528 _processed.set(resproj->_idx);
duke@435 1529 break;
duke@435 1530 }
duke@435 1531
duke@435 1532 case Op_AllocateArray:
duke@435 1533 {
duke@435 1534 PointsToNode *ptadr = ptnode_adr(call->_idx);
kvn@500 1535 int length = call->in(AllocateNode::ALength)->find_int_con(-1);
kvn@500 1536 if (length < 0 || length > EliminateAllocationArraySizeLimit) {
kvn@500 1537 // Not scalar replaceable if the length is not constant or too big.
kvn@500 1538 ptadr->_scalar_replaceable = false;
kvn@500 1539 }
duke@435 1540 set_escape_state(call->_idx, PointsToNode::NoEscape);
duke@435 1541 add_pointsto_edge(resproj->_idx, call->_idx);
kvn@500 1542 _processed.set(resproj->_idx);
duke@435 1543 break;
duke@435 1544 }
duke@435 1545
duke@435 1546 case Op_CallStaticJava:
duke@435 1547 // For a static call, we know exactly what method is being called.
duke@435 1548 // Use bytecode estimator to record whether the call's return value escapes
duke@435 1549 {
kvn@500 1550 bool done = true;
duke@435 1551 const TypeTuple *r = call->tf()->range();
duke@435 1552 const Type* ret_type = NULL;
duke@435 1553
duke@435 1554 if (r->cnt() > TypeFunc::Parms)
duke@435 1555 ret_type = r->field_at(TypeFunc::Parms);
duke@435 1556
duke@435 1557 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 1558 // _multianewarray functions return a TypeRawPtr.
kvn@500 1559 if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
kvn@500 1560 _processed.set(resproj->_idx);
duke@435 1561 break; // doesn't return a pointer type
kvn@500 1562 }
duke@435 1563 ciMethod *meth = call->as_CallJava()->method();
kvn@500 1564 const TypeTuple * d = call->tf()->domain();
duke@435 1565 if (meth == NULL) {
duke@435 1566 // not a Java method, assume global escape
duke@435 1567 set_escape_state(call->_idx, PointsToNode::GlobalEscape);
duke@435 1568 if (resproj != NULL)
duke@435 1569 add_pointsto_edge(resproj->_idx, _phantom_object);
duke@435 1570 } else {
kvn@500 1571 BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
duke@435 1572 VectorSet ptset(Thread::current()->resource_area());
kvn@500 1573 bool copy_dependencies = false;
duke@435 1574
kvn@500 1575 if (call_analyzer->is_return_allocated()) {
kvn@500 1576 // Returns a newly allocated unescaped object, simply
kvn@500 1577 // update dependency information.
kvn@500 1578 // Mark it as NoEscape so that objects referenced by
kvn@500 1579 // it's fields will be marked as NoEscape at least.
kvn@500 1580 set_escape_state(call->_idx, PointsToNode::NoEscape);
kvn@500 1581 if (resproj != NULL)
kvn@500 1582 add_pointsto_edge(resproj->_idx, call->_idx);
kvn@500 1583 copy_dependencies = true;
kvn@500 1584 } else if (call_analyzer->is_return_local() && resproj != NULL) {
duke@435 1585 // determine whether any arguments are returned
duke@435 1586 set_escape_state(call->_idx, PointsToNode::NoEscape);
duke@435 1587 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1588 const Type* at = d->field_at(i);
duke@435 1589
duke@435 1590 if (at->isa_oopptr() != NULL) {
kvn@500 1591 Node *arg = call->in(i)->uncast();
duke@435 1592
kvn@500 1593 if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
duke@435 1594 PointsToNode *arg_esp = _nodes->adr_at(arg->_idx);
kvn@500 1595 if (arg_esp->node_type() == PointsToNode::UnknownType)
kvn@500 1596 done = false;
kvn@500 1597 else if (arg_esp->node_type() == PointsToNode::JavaObject)
duke@435 1598 add_pointsto_edge(resproj->_idx, arg->_idx);
duke@435 1599 else
duke@435 1600 add_deferred_edge(resproj->_idx, arg->_idx);
duke@435 1601 arg_esp->_hidden_alias = true;
duke@435 1602 }
duke@435 1603 }
duke@435 1604 }
kvn@500 1605 copy_dependencies = true;
duke@435 1606 } else {
duke@435 1607 set_escape_state(call->_idx, PointsToNode::GlobalEscape);
duke@435 1608 if (resproj != NULL)
duke@435 1609 add_pointsto_edge(resproj->_idx, _phantom_object);
kvn@500 1610 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 1611 const Type* at = d->field_at(i);
kvn@500 1612 if (at->isa_oopptr() != NULL) {
kvn@500 1613 Node *arg = call->in(i)->uncast();
kvn@500 1614 PointsToNode *arg_esp = _nodes->adr_at(arg->_idx);
kvn@500 1615 arg_esp->_hidden_alias = true;
kvn@500 1616 }
kvn@500 1617 }
duke@435 1618 }
kvn@500 1619 if (copy_dependencies)
kvn@500 1620 call_analyzer->copy_dependencies(C()->dependencies());
duke@435 1621 }
kvn@500 1622 if (done)
kvn@500 1623 _processed.set(resproj->_idx);
duke@435 1624 break;
duke@435 1625 }
duke@435 1626
duke@435 1627 default:
duke@435 1628 // Some other type of call, assume the worst case that the
duke@435 1629 // returned value, if any, globally escapes.
duke@435 1630 {
duke@435 1631 const TypeTuple *r = call->tf()->range();
duke@435 1632 if (r->cnt() > TypeFunc::Parms) {
duke@435 1633 const Type* ret_type = r->field_at(TypeFunc::Parms);
duke@435 1634
duke@435 1635 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 1636 // _multianewarray functions return a TypeRawPtr.
duke@435 1637 if (ret_type->isa_ptr() != NULL) {
duke@435 1638 PointsToNode *ptadr = ptnode_adr(call->_idx);
duke@435 1639 set_escape_state(call->_idx, PointsToNode::GlobalEscape);
duke@435 1640 if (resproj != NULL)
duke@435 1641 add_pointsto_edge(resproj->_idx, _phantom_object);
duke@435 1642 }
duke@435 1643 }
kvn@500 1644 _processed.set(resproj->_idx);
duke@435 1645 }
duke@435 1646 }
duke@435 1647 }
duke@435 1648
kvn@500 1649 // Populate Connection Graph with Ideal nodes and create simple
kvn@500 1650 // connection graph edges (do not need to check the node_type of inputs
kvn@500 1651 // or to call PointsTo() to walk the connection graph).
kvn@500 1652 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
kvn@500 1653 if (_processed.test(n->_idx))
kvn@500 1654 return; // No need to redefine node's state.
kvn@500 1655
kvn@500 1656 if (n->is_Call()) {
kvn@500 1657 // Arguments to allocation and locking don't escape.
kvn@500 1658 if (n->is_Allocate()) {
kvn@500 1659 add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
kvn@500 1660 record_for_optimizer(n);
kvn@500 1661 } else if (n->is_Lock() || n->is_Unlock()) {
kvn@500 1662 // Put Lock and Unlock nodes on IGVN worklist to process them during
kvn@500 1663 // the first IGVN optimization when escape information is still available.
kvn@500 1664 record_for_optimizer(n);
kvn@500 1665 _processed.set(n->_idx);
kvn@500 1666 } else {
kvn@500 1667 // Have to process call's arguments first.
kvn@500 1668 PointsToNode::NodeType nt = PointsToNode::UnknownType;
kvn@500 1669
kvn@500 1670 // Check if a call returns an object.
kvn@500 1671 const TypeTuple *r = n->as_Call()->tf()->range();
kvn@500 1672 if (r->cnt() > TypeFunc::Parms &&
kvn@500 1673 n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
kvn@500 1674 // Note: use isa_ptr() instead of isa_oopptr() here because
kvn@500 1675 // the _multianewarray functions return a TypeRawPtr.
kvn@500 1676 if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
kvn@500 1677 nt = PointsToNode::JavaObject;
kvn@500 1678 }
duke@435 1679 }
kvn@500 1680 add_node(n, nt, PointsToNode::UnknownEscape, false);
duke@435 1681 }
kvn@500 1682 return;
duke@435 1683 }
kvn@500 1684
kvn@500 1685 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
kvn@500 1686 // ThreadLocal has RawPrt type.
kvn@500 1687 switch (n->Opcode()) {
kvn@500 1688 case Op_AddP:
kvn@500 1689 {
kvn@500 1690 add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
kvn@500 1691 break;
kvn@500 1692 }
kvn@500 1693 case Op_CastX2P:
kvn@500 1694 { // "Unsafe" memory access.
kvn@500 1695 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 1696 break;
kvn@500 1697 }
kvn@500 1698 case Op_CastPP:
kvn@500 1699 case Op_CheckCastPP:
kvn@500 1700 {
kvn@500 1701 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 1702 int ti = n->in(1)->_idx;
kvn@500 1703 PointsToNode::NodeType nt = _nodes->adr_at(ti)->node_type();
kvn@500 1704 if (nt == PointsToNode::UnknownType) {
kvn@500 1705 _delayed_worklist.push(n); // Process it later.
kvn@500 1706 break;
kvn@500 1707 } else if (nt == PointsToNode::JavaObject) {
kvn@500 1708 add_pointsto_edge(n->_idx, ti);
kvn@500 1709 } else {
kvn@500 1710 add_deferred_edge(n->_idx, ti);
kvn@500 1711 }
kvn@500 1712 _processed.set(n->_idx);
kvn@500 1713 break;
kvn@500 1714 }
kvn@500 1715 case Op_ConP:
kvn@500 1716 {
kvn@500 1717 // assume all pointer constants globally escape except for null
kvn@500 1718 PointsToNode::EscapeState es;
kvn@500 1719 if (phase->type(n) == TypePtr::NULL_PTR)
kvn@500 1720 es = PointsToNode::NoEscape;
kvn@500 1721 else
kvn@500 1722 es = PointsToNode::GlobalEscape;
kvn@500 1723
kvn@500 1724 add_node(n, PointsToNode::JavaObject, es, true);
kvn@500 1725 break;
kvn@500 1726 }
kvn@500 1727 case Op_CreateEx:
kvn@500 1728 {
kvn@500 1729 // assume that all exception objects globally escape
kvn@500 1730 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 1731 break;
kvn@500 1732 }
kvn@500 1733 case Op_LoadKlass:
kvn@500 1734 {
kvn@500 1735 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 1736 break;
kvn@500 1737 }
kvn@500 1738 case Op_LoadP:
kvn@500 1739 {
kvn@500 1740 const Type *t = phase->type(n);
kvn@500 1741 if (t->isa_ptr() == NULL) {
kvn@500 1742 _processed.set(n->_idx);
kvn@500 1743 return;
kvn@500 1744 }
kvn@500 1745 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 1746 break;
kvn@500 1747 }
kvn@500 1748 case Op_Parm:
kvn@500 1749 {
kvn@500 1750 _processed.set(n->_idx); // No need to redefine it state.
kvn@500 1751 uint con = n->as_Proj()->_con;
kvn@500 1752 if (con < TypeFunc::Parms)
kvn@500 1753 return;
kvn@500 1754 const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
kvn@500 1755 if (t->isa_ptr() == NULL)
kvn@500 1756 return;
kvn@500 1757 // We have to assume all input parameters globally escape
kvn@500 1758 // (Note: passing 'false' since _processed is already set).
kvn@500 1759 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
kvn@500 1760 break;
kvn@500 1761 }
kvn@500 1762 case Op_Phi:
kvn@500 1763 {
kvn@500 1764 if (n->as_Phi()->type()->isa_ptr() == NULL) {
kvn@500 1765 // nothing to do if not an oop
kvn@500 1766 _processed.set(n->_idx);
kvn@500 1767 return;
kvn@500 1768 }
kvn@500 1769 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 1770 uint i;
kvn@500 1771 for (i = 1; i < n->req() ; i++) {
kvn@500 1772 Node* in = n->in(i);
kvn@500 1773 if (in == NULL)
kvn@500 1774 continue; // ignore NULL
kvn@500 1775 in = in->uncast();
kvn@500 1776 if (in->is_top() || in == n)
kvn@500 1777 continue; // ignore top or inputs which go back this node
kvn@500 1778 int ti = in->_idx;
kvn@500 1779 PointsToNode::NodeType nt = _nodes->adr_at(ti)->node_type();
kvn@500 1780 if (nt == PointsToNode::UnknownType) {
kvn@500 1781 break;
kvn@500 1782 } else if (nt == PointsToNode::JavaObject) {
kvn@500 1783 add_pointsto_edge(n->_idx, ti);
kvn@500 1784 } else {
kvn@500 1785 add_deferred_edge(n->_idx, ti);
kvn@500 1786 }
kvn@500 1787 }
kvn@500 1788 if (i >= n->req())
kvn@500 1789 _processed.set(n->_idx);
kvn@500 1790 else
kvn@500 1791 _delayed_worklist.push(n);
kvn@500 1792 break;
kvn@500 1793 }
kvn@500 1794 case Op_Proj:
kvn@500 1795 {
kvn@500 1796 // we are only interested in the result projection from a call
kvn@500 1797 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@500 1798 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 1799 process_call_result(n->as_Proj(), phase);
kvn@500 1800 if (!_processed.test(n->_idx)) {
kvn@500 1801 // The call's result may need to be processed later if the call
kvn@500 1802 // returns it's argument and the argument is not processed yet.
kvn@500 1803 _delayed_worklist.push(n);
kvn@500 1804 }
kvn@500 1805 } else {
kvn@500 1806 _processed.set(n->_idx);
kvn@500 1807 }
kvn@500 1808 break;
kvn@500 1809 }
kvn@500 1810 case Op_Return:
kvn@500 1811 {
kvn@500 1812 if( n->req() > TypeFunc::Parms &&
kvn@500 1813 phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 1814 // Treat Return value as LocalVar with GlobalEscape escape state.
kvn@500 1815 add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
kvn@500 1816 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@500 1817 PointsToNode::NodeType nt = _nodes->adr_at(ti)->node_type();
kvn@500 1818 if (nt == PointsToNode::UnknownType) {
kvn@500 1819 _delayed_worklist.push(n); // Process it later.
kvn@500 1820 break;
kvn@500 1821 } else if (nt == PointsToNode::JavaObject) {
kvn@500 1822 add_pointsto_edge(n->_idx, ti);
kvn@500 1823 } else {
kvn@500 1824 add_deferred_edge(n->_idx, ti);
kvn@500 1825 }
kvn@500 1826 }
kvn@500 1827 _processed.set(n->_idx);
kvn@500 1828 break;
kvn@500 1829 }
kvn@500 1830 case Op_StoreP:
kvn@500 1831 {
kvn@500 1832 const Type *adr_type = phase->type(n->in(MemNode::Address));
kvn@500 1833 if (adr_type->isa_oopptr()) {
kvn@500 1834 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 1835 } else {
kvn@500 1836 Node* adr = n->in(MemNode::Address);
kvn@500 1837 if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
kvn@500 1838 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 1839 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 1840 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 1841 // We are computing a raw address for a store captured
kvn@500 1842 // by an Initialize compute an appropriate address type.
kvn@500 1843 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 1844 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 1845 } else {
kvn@500 1846 _processed.set(n->_idx);
kvn@500 1847 return;
kvn@500 1848 }
kvn@500 1849 }
kvn@500 1850 break;
kvn@500 1851 }
kvn@500 1852 case Op_StorePConditional:
kvn@500 1853 case Op_CompareAndSwapP:
kvn@500 1854 {
kvn@500 1855 const Type *adr_type = phase->type(n->in(MemNode::Address));
kvn@500 1856 if (adr_type->isa_oopptr()) {
kvn@500 1857 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 1858 } else {
kvn@500 1859 _processed.set(n->_idx);
kvn@500 1860 return;
kvn@500 1861 }
kvn@500 1862 break;
kvn@500 1863 }
kvn@500 1864 case Op_ThreadLocal:
kvn@500 1865 {
kvn@500 1866 add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
kvn@500 1867 break;
kvn@500 1868 }
kvn@500 1869 default:
kvn@500 1870 ;
kvn@500 1871 // nothing to do
kvn@500 1872 }
kvn@500 1873 return;
duke@435 1874 }
duke@435 1875
kvn@500 1876 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
kvn@500 1877 // Don't set processed bit for AddP, LoadP, StoreP since
kvn@500 1878 // they may need more then one pass to process.
kvn@500 1879 if (_processed.test(n->_idx))
kvn@500 1880 return; // No need to redefine node's state.
duke@435 1881
duke@435 1882 PointsToNode *ptadr = ptnode_adr(n->_idx);
duke@435 1883
duke@435 1884 if (n->is_Call()) {
duke@435 1885 CallNode *call = n->as_Call();
duke@435 1886 process_call_arguments(call, phase);
kvn@500 1887 _processed.set(n->_idx);
duke@435 1888 return;
duke@435 1889 }
duke@435 1890
kvn@500 1891 switch (n->Opcode()) {
duke@435 1892 case Op_AddP:
duke@435 1893 {
kvn@500 1894 Node *base = get_addp_base(n);
kvn@500 1895 // Create a field edge to this node from everything base could point to.
duke@435 1896 VectorSet ptset(Thread::current()->resource_area());
duke@435 1897 PointsTo(ptset, base, phase);
duke@435 1898 for( VectorSetI i(&ptset); i.test(); ++i ) {
duke@435 1899 uint pt = i.elem;
kvn@500 1900 add_field_edge(pt, n->_idx, address_offset(n, phase));
kvn@500 1901 }
kvn@500 1902 break;
kvn@500 1903 }
kvn@500 1904 case Op_CastX2P:
kvn@500 1905 {
kvn@500 1906 assert(false, "Op_CastX2P");
kvn@500 1907 break;
kvn@500 1908 }
kvn@500 1909 case Op_CastPP:
kvn@500 1910 case Op_CheckCastPP:
kvn@500 1911 {
kvn@500 1912 int ti = n->in(1)->_idx;
kvn@500 1913 if (_nodes->adr_at(ti)->node_type() == PointsToNode::JavaObject) {
kvn@500 1914 add_pointsto_edge(n->_idx, ti);
kvn@500 1915 } else {
kvn@500 1916 add_deferred_edge(n->_idx, ti);
kvn@500 1917 }
kvn@500 1918 _processed.set(n->_idx);
kvn@500 1919 break;
kvn@500 1920 }
kvn@500 1921 case Op_ConP:
kvn@500 1922 {
kvn@500 1923 assert(false, "Op_ConP");
kvn@500 1924 break;
kvn@500 1925 }
kvn@500 1926 case Op_CreateEx:
kvn@500 1927 {
kvn@500 1928 assert(false, "Op_CreateEx");
kvn@500 1929 break;
kvn@500 1930 }
kvn@500 1931 case Op_LoadKlass:
kvn@500 1932 {
kvn@500 1933 assert(false, "Op_LoadKlass");
kvn@500 1934 break;
kvn@500 1935 }
kvn@500 1936 case Op_LoadP:
kvn@500 1937 {
kvn@500 1938 const Type *t = phase->type(n);
kvn@500 1939 #ifdef ASSERT
kvn@500 1940 if (t->isa_ptr() == NULL)
kvn@500 1941 assert(false, "Op_LoadP");
kvn@500 1942 #endif
kvn@500 1943
kvn@500 1944 Node* adr = n->in(MemNode::Address)->uncast();
kvn@500 1945 const Type *adr_type = phase->type(adr);
kvn@500 1946 Node* adr_base;
kvn@500 1947 if (adr->is_AddP()) {
kvn@500 1948 adr_base = get_addp_base(adr);
kvn@500 1949 } else {
kvn@500 1950 adr_base = adr;
kvn@500 1951 }
kvn@500 1952
kvn@500 1953 // For everything "adr_base" could point to, create a deferred edge from
kvn@500 1954 // this node to each field with the same offset.
kvn@500 1955 VectorSet ptset(Thread::current()->resource_area());
kvn@500 1956 PointsTo(ptset, adr_base, phase);
kvn@500 1957 int offset = address_offset(adr, phase);
kvn@500 1958 for( VectorSetI i(&ptset); i.test(); ++i ) {
kvn@500 1959 uint pt = i.elem;
kvn@500 1960 add_deferred_edge_to_fields(n->_idx, pt, offset);
duke@435 1961 }
duke@435 1962 break;
duke@435 1963 }
duke@435 1964 case Op_Parm:
duke@435 1965 {
kvn@500 1966 assert(false, "Op_Parm");
kvn@500 1967 break;
kvn@500 1968 }
kvn@500 1969 case Op_Phi:
kvn@500 1970 {
kvn@500 1971 #ifdef ASSERT
kvn@500 1972 if (n->as_Phi()->type()->isa_ptr() == NULL)
kvn@500 1973 assert(false, "Op_Phi");
kvn@500 1974 #endif
kvn@500 1975 for (uint i = 1; i < n->req() ; i++) {
kvn@500 1976 Node* in = n->in(i);
kvn@500 1977 if (in == NULL)
kvn@500 1978 continue; // ignore NULL
kvn@500 1979 in = in->uncast();
kvn@500 1980 if (in->is_top() || in == n)
kvn@500 1981 continue; // ignore top or inputs which go back this node
kvn@500 1982 int ti = in->_idx;
kvn@500 1983 if (_nodes->adr_at(in->_idx)->node_type() == PointsToNode::JavaObject) {
kvn@500 1984 add_pointsto_edge(n->_idx, ti);
kvn@500 1985 } else {
kvn@500 1986 add_deferred_edge(n->_idx, ti);
kvn@500 1987 }
duke@435 1988 }
duke@435 1989 _processed.set(n->_idx);
duke@435 1990 break;
duke@435 1991 }
kvn@500 1992 case Op_Proj:
duke@435 1993 {
kvn@500 1994 // we are only interested in the result projection from a call
kvn@500 1995 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@500 1996 process_call_result(n->as_Proj(), phase);
kvn@500 1997 assert(_processed.test(n->_idx), "all call results should be processed");
kvn@500 1998 } else {
kvn@500 1999 assert(false, "Op_Proj");
kvn@500 2000 }
duke@435 2001 break;
duke@435 2002 }
kvn@500 2003 case Op_Return:
duke@435 2004 {
kvn@500 2005 #ifdef ASSERT
kvn@500 2006 if( n->req() <= TypeFunc::Parms ||
kvn@500 2007 !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 2008 assert(false, "Op_Return");
kvn@500 2009 }
kvn@500 2010 #endif
kvn@500 2011 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@500 2012 if (_nodes->adr_at(ti)->node_type() == PointsToNode::JavaObject) {
kvn@500 2013 add_pointsto_edge(n->_idx, ti);
kvn@500 2014 } else {
kvn@500 2015 add_deferred_edge(n->_idx, ti);
kvn@500 2016 }
duke@435 2017 _processed.set(n->_idx);
duke@435 2018 break;
duke@435 2019 }
duke@435 2020 case Op_StoreP:
duke@435 2021 case Op_StorePConditional:
duke@435 2022 case Op_CompareAndSwapP:
duke@435 2023 {
duke@435 2024 Node *adr = n->in(MemNode::Address);
duke@435 2025 const Type *adr_type = phase->type(adr);
kvn@500 2026 #ifdef ASSERT
duke@435 2027 if (!adr_type->isa_oopptr())
kvn@500 2028 assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
kvn@500 2029 #endif
duke@435 2030
kvn@500 2031 assert(adr->is_AddP(), "expecting an AddP");
kvn@500 2032 Node *adr_base = get_addp_base(adr);
kvn@500 2033 Node *val = n->in(MemNode::ValueIn)->uncast();
kvn@500 2034 // For everything "adr_base" could point to, create a deferred edge
kvn@500 2035 // to "val" from each field with the same offset.
duke@435 2036 VectorSet ptset(Thread::current()->resource_area());
duke@435 2037 PointsTo(ptset, adr_base, phase);
duke@435 2038 for( VectorSetI i(&ptset); i.test(); ++i ) {
duke@435 2039 uint pt = i.elem;
kvn@500 2040 add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
duke@435 2041 }
duke@435 2042 break;
duke@435 2043 }
kvn@500 2044 case Op_ThreadLocal:
duke@435 2045 {
kvn@500 2046 assert(false, "Op_ThreadLocal");
duke@435 2047 break;
duke@435 2048 }
duke@435 2049 default:
duke@435 2050 ;
duke@435 2051 // nothing to do
duke@435 2052 }
duke@435 2053 }
duke@435 2054
duke@435 2055 #ifndef PRODUCT
duke@435 2056 void ConnectionGraph::dump() {
duke@435 2057 PhaseGVN *igvn = _compile->initial_gvn();
duke@435 2058 bool first = true;
duke@435 2059
kvn@500 2060 uint size = (uint)_nodes->length();
kvn@500 2061 for (uint ni = 0; ni < size; ni++) {
kvn@500 2062 PointsToNode *ptn = _nodes->adr_at(ni);
kvn@500 2063 PointsToNode::NodeType ptn_type = ptn->node_type();
kvn@500 2064
kvn@500 2065 if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
duke@435 2066 continue;
kvn@500 2067 PointsToNode::EscapeState es = escape_state(ptn->_node, igvn);
kvn@500 2068 if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
kvn@500 2069 if (first) {
kvn@500 2070 tty->cr();
kvn@500 2071 tty->print("======== Connection graph for ");
kvn@500 2072 C()->method()->print_short_name();
kvn@500 2073 tty->cr();
kvn@500 2074 first = false;
kvn@500 2075 }
kvn@500 2076 tty->print("%6d ", ni);
kvn@500 2077 ptn->dump();
kvn@500 2078 // Print all locals which reference this allocation
kvn@500 2079 for (uint li = ni; li < size; li++) {
kvn@500 2080 PointsToNode *ptn_loc = _nodes->adr_at(li);
kvn@500 2081 PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
kvn@500 2082 if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
kvn@500 2083 ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
kvn@500 2084 tty->print("%6d LocalVar [[%d]]", li, ni);
kvn@500 2085 _nodes->adr_at(li)->_node->dump();
duke@435 2086 }
duke@435 2087 }
kvn@500 2088 if (Verbose) {
kvn@500 2089 // Print all fields which reference this allocation
kvn@500 2090 for (uint i = 0; i < ptn->edge_count(); i++) {
kvn@500 2091 uint ei = ptn->edge_target(i);
kvn@500 2092 tty->print("%6d Field [[%d]]", ei, ni);
kvn@500 2093 _nodes->adr_at(ei)->_node->dump();
kvn@500 2094 }
kvn@500 2095 }
kvn@500 2096 tty->cr();
duke@435 2097 }
duke@435 2098 }
duke@435 2099 }
duke@435 2100 #endif

mercurial