src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Fri, 13 Mar 2009 11:35:17 -0700

author
twisti
date
Fri, 13 Mar 2009 11:35:17 -0700
changeset 1078
c771b7f43bbf
parent 1057
56aae7be60d4
child 1063
7bb995fbd3c0
child 1079
c517646eef23
permissions
-rw-r--r--

6378821: bitCount() should use POPC on SPARC processors and AMD+10h
Summary: bitCount() should use POPC on SPARC processors where POPC is implemented directly in hardware.
Reviewed-by: kvn, never

duke@435 1 /*
xdono@631 2 * Copyright 2000-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_c1_LIRAssembler_x86.cpp.incl"
duke@435 27
duke@435 28
duke@435 29 // These masks are used to provide 128-bit aligned bitmasks to the XMM
duke@435 30 // instructions, to allow sign-masking or sign-bit flipping. They allow
duke@435 31 // fast versions of NegF/NegD and AbsF/AbsD.
duke@435 32
duke@435 33 // Note: 'double' and 'long long' have 32-bits alignment on x86.
duke@435 34 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
duke@435 35 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
duke@435 36 // of 128-bits operands for SSE instructions.
duke@435 37 jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
duke@435 38 // Store the value to a 128-bits operand.
duke@435 39 operand[0] = lo;
duke@435 40 operand[1] = hi;
duke@435 41 return operand;
duke@435 42 }
duke@435 43
duke@435 44 // Buffer for 128-bits masks used by SSE instructions.
duke@435 45 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
duke@435 46
duke@435 47 // Static initialization during VM startup.
duke@435 48 static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
duke@435 49 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
duke@435 50 static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
duke@435 51 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
duke@435 52
duke@435 53
duke@435 54
duke@435 55 NEEDS_CLEANUP // remove this definitions ?
duke@435 56 const Register IC_Klass = rax; // where the IC klass is cached
duke@435 57 const Register SYNC_header = rax; // synchronization header
duke@435 58 const Register SHIFT_count = rcx; // where count for shift operations must be
duke@435 59
duke@435 60 #define __ _masm->
duke@435 61
duke@435 62
duke@435 63 static void select_different_registers(Register preserve,
duke@435 64 Register extra,
duke@435 65 Register &tmp1,
duke@435 66 Register &tmp2) {
duke@435 67 if (tmp1 == preserve) {
duke@435 68 assert_different_registers(tmp1, tmp2, extra);
duke@435 69 tmp1 = extra;
duke@435 70 } else if (tmp2 == preserve) {
duke@435 71 assert_different_registers(tmp1, tmp2, extra);
duke@435 72 tmp2 = extra;
duke@435 73 }
duke@435 74 assert_different_registers(preserve, tmp1, tmp2);
duke@435 75 }
duke@435 76
duke@435 77
duke@435 78
duke@435 79 static void select_different_registers(Register preserve,
duke@435 80 Register extra,
duke@435 81 Register &tmp1,
duke@435 82 Register &tmp2,
duke@435 83 Register &tmp3) {
duke@435 84 if (tmp1 == preserve) {
duke@435 85 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 86 tmp1 = extra;
duke@435 87 } else if (tmp2 == preserve) {
duke@435 88 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 89 tmp2 = extra;
duke@435 90 } else if (tmp3 == preserve) {
duke@435 91 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 92 tmp3 = extra;
duke@435 93 }
duke@435 94 assert_different_registers(preserve, tmp1, tmp2, tmp3);
duke@435 95 }
duke@435 96
duke@435 97
duke@435 98
duke@435 99 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
duke@435 100 if (opr->is_constant()) {
duke@435 101 LIR_Const* constant = opr->as_constant_ptr();
duke@435 102 switch (constant->type()) {
duke@435 103 case T_INT: {
duke@435 104 return true;
duke@435 105 }
duke@435 106
duke@435 107 default:
duke@435 108 return false;
duke@435 109 }
duke@435 110 }
duke@435 111 return false;
duke@435 112 }
duke@435 113
duke@435 114
duke@435 115 LIR_Opr LIR_Assembler::receiverOpr() {
never@739 116 return FrameMap::receiver_opr;
duke@435 117 }
duke@435 118
duke@435 119 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
duke@435 120 return receiverOpr();
duke@435 121 }
duke@435 122
duke@435 123 LIR_Opr LIR_Assembler::osrBufferPointer() {
never@739 124 return FrameMap::as_pointer_opr(receiverOpr()->as_register());
duke@435 125 }
duke@435 126
duke@435 127 //--------------fpu register translations-----------------------
duke@435 128
duke@435 129
duke@435 130 address LIR_Assembler::float_constant(float f) {
duke@435 131 address const_addr = __ float_constant(f);
duke@435 132 if (const_addr == NULL) {
duke@435 133 bailout("const section overflow");
duke@435 134 return __ code()->consts()->start();
duke@435 135 } else {
duke@435 136 return const_addr;
duke@435 137 }
duke@435 138 }
duke@435 139
duke@435 140
duke@435 141 address LIR_Assembler::double_constant(double d) {
duke@435 142 address const_addr = __ double_constant(d);
duke@435 143 if (const_addr == NULL) {
duke@435 144 bailout("const section overflow");
duke@435 145 return __ code()->consts()->start();
duke@435 146 } else {
duke@435 147 return const_addr;
duke@435 148 }
duke@435 149 }
duke@435 150
duke@435 151
duke@435 152 void LIR_Assembler::set_24bit_FPU() {
duke@435 153 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
duke@435 154 }
duke@435 155
duke@435 156 void LIR_Assembler::reset_FPU() {
duke@435 157 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 158 }
duke@435 159
duke@435 160 void LIR_Assembler::fpop() {
duke@435 161 __ fpop();
duke@435 162 }
duke@435 163
duke@435 164 void LIR_Assembler::fxch(int i) {
duke@435 165 __ fxch(i);
duke@435 166 }
duke@435 167
duke@435 168 void LIR_Assembler::fld(int i) {
duke@435 169 __ fld_s(i);
duke@435 170 }
duke@435 171
duke@435 172 void LIR_Assembler::ffree(int i) {
duke@435 173 __ ffree(i);
duke@435 174 }
duke@435 175
duke@435 176 void LIR_Assembler::breakpoint() {
duke@435 177 __ int3();
duke@435 178 }
duke@435 179
duke@435 180 void LIR_Assembler::push(LIR_Opr opr) {
duke@435 181 if (opr->is_single_cpu()) {
duke@435 182 __ push_reg(opr->as_register());
duke@435 183 } else if (opr->is_double_cpu()) {
never@739 184 NOT_LP64(__ push_reg(opr->as_register_hi()));
duke@435 185 __ push_reg(opr->as_register_lo());
duke@435 186 } else if (opr->is_stack()) {
duke@435 187 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
duke@435 188 } else if (opr->is_constant()) {
duke@435 189 LIR_Const* const_opr = opr->as_constant_ptr();
duke@435 190 if (const_opr->type() == T_OBJECT) {
duke@435 191 __ push_oop(const_opr->as_jobject());
duke@435 192 } else if (const_opr->type() == T_INT) {
duke@435 193 __ push_jint(const_opr->as_jint());
duke@435 194 } else {
duke@435 195 ShouldNotReachHere();
duke@435 196 }
duke@435 197
duke@435 198 } else {
duke@435 199 ShouldNotReachHere();
duke@435 200 }
duke@435 201 }
duke@435 202
duke@435 203 void LIR_Assembler::pop(LIR_Opr opr) {
duke@435 204 if (opr->is_single_cpu()) {
never@739 205 __ pop_reg(opr->as_register());
duke@435 206 } else {
duke@435 207 ShouldNotReachHere();
duke@435 208 }
duke@435 209 }
duke@435 210
never@739 211 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
never@739 212 return addr->base()->is_illegal() && addr->index()->is_illegal();
never@739 213 }
never@739 214
duke@435 215 //-------------------------------------------
never@739 216
duke@435 217 Address LIR_Assembler::as_Address(LIR_Address* addr) {
never@739 218 return as_Address(addr, rscratch1);
never@739 219 }
never@739 220
never@739 221 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
duke@435 222 if (addr->base()->is_illegal()) {
duke@435 223 assert(addr->index()->is_illegal(), "must be illegal too");
never@739 224 AddressLiteral laddr((address)addr->disp(), relocInfo::none);
never@739 225 if (! __ reachable(laddr)) {
never@739 226 __ movptr(tmp, laddr.addr());
never@739 227 Address res(tmp, 0);
never@739 228 return res;
never@739 229 } else {
never@739 230 return __ as_Address(laddr);
never@739 231 }
duke@435 232 }
duke@435 233
never@739 234 Register base = addr->base()->as_pointer_register();
duke@435 235
duke@435 236 if (addr->index()->is_illegal()) {
duke@435 237 return Address( base, addr->disp());
never@739 238 } else if (addr->index()->is_cpu_register()) {
never@739 239 Register index = addr->index()->as_pointer_register();
duke@435 240 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
duke@435 241 } else if (addr->index()->is_constant()) {
never@739 242 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
never@739 243 assert(Assembler::is_simm32(addr_offset), "must be");
duke@435 244
duke@435 245 return Address(base, addr_offset);
duke@435 246 } else {
duke@435 247 Unimplemented();
duke@435 248 return Address();
duke@435 249 }
duke@435 250 }
duke@435 251
duke@435 252
duke@435 253 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
duke@435 254 Address base = as_Address(addr);
duke@435 255 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
duke@435 256 }
duke@435 257
duke@435 258
duke@435 259 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
duke@435 260 return as_Address(addr);
duke@435 261 }
duke@435 262
duke@435 263
duke@435 264 void LIR_Assembler::osr_entry() {
duke@435 265 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
duke@435 266 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
duke@435 267 ValueStack* entry_state = osr_entry->state();
duke@435 268 int number_of_locks = entry_state->locks_size();
duke@435 269
duke@435 270 // we jump here if osr happens with the interpreter
duke@435 271 // state set up to continue at the beginning of the
duke@435 272 // loop that triggered osr - in particular, we have
duke@435 273 // the following registers setup:
duke@435 274 //
duke@435 275 // rcx: osr buffer
duke@435 276 //
duke@435 277
duke@435 278 // build frame
duke@435 279 ciMethod* m = compilation()->method();
duke@435 280 __ build_frame(initial_frame_size_in_bytes());
duke@435 281
duke@435 282 // OSR buffer is
duke@435 283 //
duke@435 284 // locals[nlocals-1..0]
duke@435 285 // monitors[0..number_of_locks]
duke@435 286 //
duke@435 287 // locals is a direct copy of the interpreter frame so in the osr buffer
duke@435 288 // so first slot in the local array is the last local from the interpreter
duke@435 289 // and last slot is local[0] (receiver) from the interpreter
duke@435 290 //
duke@435 291 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
duke@435 292 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
duke@435 293 // in the interpreter frame (the method lock if a sync method)
duke@435 294
duke@435 295 // Initialize monitors in the compiled activation.
duke@435 296 // rcx: pointer to osr buffer
duke@435 297 //
duke@435 298 // All other registers are dead at this point and the locals will be
duke@435 299 // copied into place by code emitted in the IR.
duke@435 300
never@739 301 Register OSR_buf = osrBufferPointer()->as_pointer_register();
duke@435 302 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
duke@435 303 int monitor_offset = BytesPerWord * method()->max_locals() +
duke@435 304 (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
duke@435 305 for (int i = 0; i < number_of_locks; i++) {
duke@435 306 int slot_offset = monitor_offset - ((i * BasicObjectLock::size()) * BytesPerWord);
duke@435 307 #ifdef ASSERT
duke@435 308 // verify the interpreter's monitor has a non-null object
duke@435 309 {
duke@435 310 Label L;
never@739 311 __ cmpptr(Address(OSR_buf, slot_offset + BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);
duke@435 312 __ jcc(Assembler::notZero, L);
duke@435 313 __ stop("locked object is NULL");
duke@435 314 __ bind(L);
duke@435 315 }
duke@435 316 #endif
never@739 317 __ movptr(rbx, Address(OSR_buf, slot_offset + BasicObjectLock::lock_offset_in_bytes()));
never@739 318 __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
never@739 319 __ movptr(rbx, Address(OSR_buf, slot_offset + BasicObjectLock::obj_offset_in_bytes()));
never@739 320 __ movptr(frame_map()->address_for_monitor_object(i), rbx);
duke@435 321 }
duke@435 322 }
duke@435 323 }
duke@435 324
duke@435 325
duke@435 326 // inline cache check; done before the frame is built.
duke@435 327 int LIR_Assembler::check_icache() {
duke@435 328 Register receiver = FrameMap::receiver_opr->as_register();
duke@435 329 Register ic_klass = IC_Klass;
never@739 330 const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
duke@435 331
duke@435 332 if (!VerifyOops) {
duke@435 333 // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
never@739 334 while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
duke@435 335 __ nop();
duke@435 336 }
duke@435 337 }
duke@435 338 int offset = __ offset();
duke@435 339 __ inline_cache_check(receiver, IC_Klass);
duke@435 340 assert(__ offset() % CodeEntryAlignment == 0 || VerifyOops, "alignment must be correct");
duke@435 341 if (VerifyOops) {
duke@435 342 // force alignment after the cache check.
duke@435 343 // It's been verified to be aligned if !VerifyOops
duke@435 344 __ align(CodeEntryAlignment);
duke@435 345 }
duke@435 346 return offset;
duke@435 347 }
duke@435 348
duke@435 349
duke@435 350 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
duke@435 351 jobject o = NULL;
duke@435 352 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
duke@435 353 __ movoop(reg, o);
duke@435 354 patching_epilog(patch, lir_patch_normal, reg, info);
duke@435 355 }
duke@435 356
duke@435 357
duke@435 358 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
duke@435 359 if (exception->is_valid()) {
duke@435 360 // preserve exception
duke@435 361 // note: the monitor_exit runtime call is a leaf routine
duke@435 362 // and cannot block => no GC can happen
duke@435 363 // The slow case (MonitorAccessStub) uses the first two stack slots
duke@435 364 // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
never@739 365 __ movptr (Address(rsp, 2*wordSize), exception);
duke@435 366 }
duke@435 367
duke@435 368 Register obj_reg = obj_opr->as_register();
duke@435 369 Register lock_reg = lock_opr->as_register();
duke@435 370
duke@435 371 // setup registers (lock_reg must be rax, for lock_object)
duke@435 372 assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
duke@435 373 Register hdr = lock_reg;
duke@435 374 assert(new_hdr == SYNC_header, "wrong register");
duke@435 375 lock_reg = new_hdr;
duke@435 376 // compute pointer to BasicLock
duke@435 377 Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
never@739 378 __ lea(lock_reg, lock_addr);
duke@435 379 // unlock object
duke@435 380 MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
duke@435 381 // _slow_case_stubs->append(slow_case);
duke@435 382 // temporary fix: must be created after exceptionhandler, therefore as call stub
duke@435 383 _slow_case_stubs->append(slow_case);
duke@435 384 if (UseFastLocking) {
duke@435 385 // try inlined fast unlocking first, revert to slow locking if it fails
duke@435 386 // note: lock_reg points to the displaced header since the displaced header offset is 0!
duke@435 387 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 388 __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
duke@435 389 } else {
duke@435 390 // always do slow unlocking
duke@435 391 // note: the slow unlocking code could be inlined here, however if we use
duke@435 392 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 393 // simpler and requires less duplicated code - additionally, the
duke@435 394 // slow unlocking code is the same in either case which simplifies
duke@435 395 // debugging
duke@435 396 __ jmp(*slow_case->entry());
duke@435 397 }
duke@435 398 // done
duke@435 399 __ bind(*slow_case->continuation());
duke@435 400
duke@435 401 if (exception->is_valid()) {
duke@435 402 // restore exception
never@739 403 __ movptr (exception, Address(rsp, 2 * wordSize));
duke@435 404 }
duke@435 405 }
duke@435 406
duke@435 407 // This specifies the rsp decrement needed to build the frame
duke@435 408 int LIR_Assembler::initial_frame_size_in_bytes() {
duke@435 409 // if rounding, must let FrameMap know!
never@739 410
never@739 411 // The frame_map records size in slots (32bit word)
never@739 412
never@739 413 // subtract two words to account for return address and link
never@739 414 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size;
duke@435 415 }
duke@435 416
duke@435 417
duke@435 418 void LIR_Assembler::emit_exception_handler() {
duke@435 419 // if the last instruction is a call (typically to do a throw which
duke@435 420 // is coming at the end after block reordering) the return address
duke@435 421 // must still point into the code area in order to avoid assertion
duke@435 422 // failures when searching for the corresponding bci => add a nop
duke@435 423 // (was bug 5/14/1999 - gri)
duke@435 424
duke@435 425 __ nop();
duke@435 426
duke@435 427 // generate code for exception handler
duke@435 428 address handler_base = __ start_a_stub(exception_handler_size);
duke@435 429 if (handler_base == NULL) {
duke@435 430 // not enough space left for the handler
duke@435 431 bailout("exception handler overflow");
duke@435 432 return;
duke@435 433 }
duke@435 434 #ifdef ASSERT
duke@435 435 int offset = code_offset();
duke@435 436 #endif // ASSERT
duke@435 437
duke@435 438 compilation()->offsets()->set_value(CodeOffsets::Exceptions, code_offset());
duke@435 439
duke@435 440 // if the method does not have an exception handler, then there is
duke@435 441 // no reason to search for one
duke@435 442 if (compilation()->has_exception_handlers() || JvmtiExport::can_post_exceptions()) {
duke@435 443 // the exception oop and pc are in rax, and rdx
duke@435 444 // no other registers need to be preserved, so invalidate them
duke@435 445 __ invalidate_registers(false, true, true, false, true, true);
duke@435 446
duke@435 447 // check that there is really an exception
duke@435 448 __ verify_not_null_oop(rax);
duke@435 449
duke@435 450 // search an exception handler (rax: exception oop, rdx: throwing pc)
duke@435 451 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_nofpu_id)));
duke@435 452
duke@435 453 // if the call returns here, then the exception handler for particular
duke@435 454 // exception doesn't exist -> unwind activation and forward exception to caller
duke@435 455 }
duke@435 456
duke@435 457 // the exception oop is in rax,
duke@435 458 // no other registers need to be preserved, so invalidate them
duke@435 459 __ invalidate_registers(false, true, true, true, true, true);
duke@435 460
duke@435 461 // check that there is really an exception
duke@435 462 __ verify_not_null_oop(rax);
duke@435 463
duke@435 464 // unlock the receiver/klass if necessary
duke@435 465 // rax,: exception
duke@435 466 ciMethod* method = compilation()->method();
duke@435 467 if (method->is_synchronized() && GenerateSynchronizationCode) {
duke@435 468 monitorexit(FrameMap::rbx_oop_opr, FrameMap::rcx_opr, SYNC_header, 0, rax);
duke@435 469 }
duke@435 470
duke@435 471 // unwind activation and forward exception to caller
duke@435 472 // rax,: exception
duke@435 473 __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
duke@435 474
duke@435 475 assert(code_offset() - offset <= exception_handler_size, "overflow");
duke@435 476
duke@435 477 __ end_a_stub();
duke@435 478 }
duke@435 479
duke@435 480 void LIR_Assembler::emit_deopt_handler() {
duke@435 481 // if the last instruction is a call (typically to do a throw which
duke@435 482 // is coming at the end after block reordering) the return address
duke@435 483 // must still point into the code area in order to avoid assertion
duke@435 484 // failures when searching for the corresponding bci => add a nop
duke@435 485 // (was bug 5/14/1999 - gri)
duke@435 486
duke@435 487 __ nop();
duke@435 488
duke@435 489 // generate code for exception handler
duke@435 490 address handler_base = __ start_a_stub(deopt_handler_size);
duke@435 491 if (handler_base == NULL) {
duke@435 492 // not enough space left for the handler
duke@435 493 bailout("deopt handler overflow");
duke@435 494 return;
duke@435 495 }
duke@435 496 #ifdef ASSERT
duke@435 497 int offset = code_offset();
duke@435 498 #endif // ASSERT
duke@435 499
duke@435 500 compilation()->offsets()->set_value(CodeOffsets::Deopt, code_offset());
duke@435 501
duke@435 502 InternalAddress here(__ pc());
duke@435 503 __ pushptr(here.addr());
duke@435 504
duke@435 505 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
duke@435 506
duke@435 507 assert(code_offset() - offset <= deopt_handler_size, "overflow");
duke@435 508
duke@435 509 __ end_a_stub();
duke@435 510
duke@435 511 }
duke@435 512
duke@435 513
duke@435 514 // This is the fast version of java.lang.String.compare; it has not
duke@435 515 // OSR-entry and therefore, we generate a slow version for OSR's
duke@435 516 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
never@739 517 __ movptr (rbx, rcx); // receiver is in rcx
never@739 518 __ movptr (rax, arg1->as_register());
duke@435 519
duke@435 520 // Get addresses of first characters from both Strings
never@739 521 __ movptr (rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
never@739 522 __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
never@739 523 __ lea (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
duke@435 524
duke@435 525
duke@435 526 // rbx, may be NULL
duke@435 527 add_debug_info_for_null_check_here(info);
never@739 528 __ movptr (rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
never@739 529 __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
never@739 530 __ lea (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
duke@435 531
duke@435 532 // compute minimum length (in rax) and difference of lengths (on top of stack)
duke@435 533 if (VM_Version::supports_cmov()) {
never@739 534 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
never@739 535 __ movl (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
never@739 536 __ mov (rcx, rbx);
never@739 537 __ subptr (rbx, rax); // subtract lengths
never@739 538 __ push (rbx); // result
never@739 539 __ cmov (Assembler::lessEqual, rax, rcx);
duke@435 540 } else {
duke@435 541 Label L;
never@739 542 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
never@739 543 __ movl (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
never@739 544 __ mov (rax, rbx);
never@739 545 __ subptr (rbx, rcx);
never@739 546 __ push (rbx);
never@739 547 __ jcc (Assembler::lessEqual, L);
never@739 548 __ mov (rax, rcx);
duke@435 549 __ bind (L);
duke@435 550 }
duke@435 551 // is minimum length 0?
duke@435 552 Label noLoop, haveResult;
never@739 553 __ testptr (rax, rax);
duke@435 554 __ jcc (Assembler::zero, noLoop);
duke@435 555
duke@435 556 // compare first characters
jrose@1057 557 __ load_unsigned_short(rcx, Address(rdi, 0));
jrose@1057 558 __ load_unsigned_short(rbx, Address(rsi, 0));
duke@435 559 __ subl(rcx, rbx);
duke@435 560 __ jcc(Assembler::notZero, haveResult);
duke@435 561 // starting loop
duke@435 562 __ decrement(rax); // we already tested index: skip one
duke@435 563 __ jcc(Assembler::zero, noLoop);
duke@435 564
duke@435 565 // set rsi.edi to the end of the arrays (arrays have same length)
duke@435 566 // negate the index
duke@435 567
never@739 568 __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 569 __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 570 __ negptr(rax);
duke@435 571
duke@435 572 // compare the strings in a loop
duke@435 573
duke@435 574 Label loop;
duke@435 575 __ align(wordSize);
duke@435 576 __ bind(loop);
jrose@1057 577 __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
jrose@1057 578 __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
duke@435 579 __ subl(rcx, rbx);
duke@435 580 __ jcc(Assembler::notZero, haveResult);
duke@435 581 __ increment(rax);
duke@435 582 __ jcc(Assembler::notZero, loop);
duke@435 583
duke@435 584 // strings are equal up to min length
duke@435 585
duke@435 586 __ bind(noLoop);
never@739 587 __ pop(rax);
duke@435 588 return_op(LIR_OprFact::illegalOpr);
duke@435 589
duke@435 590 __ bind(haveResult);
duke@435 591 // leave instruction is going to discard the TOS value
never@739 592 __ mov (rax, rcx); // result of call is in rax,
duke@435 593 }
duke@435 594
duke@435 595
duke@435 596 void LIR_Assembler::return_op(LIR_Opr result) {
duke@435 597 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
duke@435 598 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
duke@435 599 assert(result->fpu() == 0, "result must already be on TOS");
duke@435 600 }
duke@435 601
duke@435 602 // Pop the stack before the safepoint code
duke@435 603 __ leave();
duke@435 604
duke@435 605 bool result_is_oop = result->is_valid() ? result->is_oop() : false;
duke@435 606
duke@435 607 // Note: we do not need to round double result; float result has the right precision
duke@435 608 // the poll sets the condition code, but no data registers
duke@435 609 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 610 relocInfo::poll_return_type);
never@739 611
never@739 612 // NOTE: the requires that the polling page be reachable else the reloc
never@739 613 // goes to the movq that loads the address and not the faulting instruction
never@739 614 // which breaks the signal handler code
never@739 615
duke@435 616 __ test32(rax, polling_page);
duke@435 617
duke@435 618 __ ret(0);
duke@435 619 }
duke@435 620
duke@435 621
duke@435 622 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 623 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 624 relocInfo::poll_type);
duke@435 625
duke@435 626 if (info != NULL) {
duke@435 627 add_debug_info_for_branch(info);
duke@435 628 } else {
duke@435 629 ShouldNotReachHere();
duke@435 630 }
duke@435 631
duke@435 632 int offset = __ offset();
never@739 633
never@739 634 // NOTE: the requires that the polling page be reachable else the reloc
never@739 635 // goes to the movq that loads the address and not the faulting instruction
never@739 636 // which breaks the signal handler code
never@739 637
duke@435 638 __ test32(rax, polling_page);
duke@435 639 return offset;
duke@435 640 }
duke@435 641
duke@435 642
duke@435 643 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
never@739 644 if (from_reg != to_reg) __ mov(to_reg, from_reg);
duke@435 645 }
duke@435 646
duke@435 647 void LIR_Assembler::swap_reg(Register a, Register b) {
never@739 648 __ xchgptr(a, b);
duke@435 649 }
duke@435 650
duke@435 651
duke@435 652 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
duke@435 653 assert(src->is_constant(), "should not call otherwise");
duke@435 654 assert(dest->is_register(), "should not call otherwise");
duke@435 655 LIR_Const* c = src->as_constant_ptr();
duke@435 656
duke@435 657 switch (c->type()) {
duke@435 658 case T_INT: {
duke@435 659 assert(patch_code == lir_patch_none, "no patching handled here");
duke@435 660 __ movl(dest->as_register(), c->as_jint());
duke@435 661 break;
duke@435 662 }
duke@435 663
duke@435 664 case T_LONG: {
duke@435 665 assert(patch_code == lir_patch_none, "no patching handled here");
never@739 666 #ifdef _LP64
never@739 667 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
never@739 668 #else
never@739 669 __ movptr(dest->as_register_lo(), c->as_jint_lo());
never@739 670 __ movptr(dest->as_register_hi(), c->as_jint_hi());
never@739 671 #endif // _LP64
duke@435 672 break;
duke@435 673 }
duke@435 674
duke@435 675 case T_OBJECT: {
duke@435 676 if (patch_code != lir_patch_none) {
duke@435 677 jobject2reg_with_patching(dest->as_register(), info);
duke@435 678 } else {
duke@435 679 __ movoop(dest->as_register(), c->as_jobject());
duke@435 680 }
duke@435 681 break;
duke@435 682 }
duke@435 683
duke@435 684 case T_FLOAT: {
duke@435 685 if (dest->is_single_xmm()) {
duke@435 686 if (c->is_zero_float()) {
duke@435 687 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
duke@435 688 } else {
duke@435 689 __ movflt(dest->as_xmm_float_reg(),
duke@435 690 InternalAddress(float_constant(c->as_jfloat())));
duke@435 691 }
duke@435 692 } else {
duke@435 693 assert(dest->is_single_fpu(), "must be");
duke@435 694 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 695 if (c->is_zero_float()) {
duke@435 696 __ fldz();
duke@435 697 } else if (c->is_one_float()) {
duke@435 698 __ fld1();
duke@435 699 } else {
duke@435 700 __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
duke@435 701 }
duke@435 702 }
duke@435 703 break;
duke@435 704 }
duke@435 705
duke@435 706 case T_DOUBLE: {
duke@435 707 if (dest->is_double_xmm()) {
duke@435 708 if (c->is_zero_double()) {
duke@435 709 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
duke@435 710 } else {
duke@435 711 __ movdbl(dest->as_xmm_double_reg(),
duke@435 712 InternalAddress(double_constant(c->as_jdouble())));
duke@435 713 }
duke@435 714 } else {
duke@435 715 assert(dest->is_double_fpu(), "must be");
duke@435 716 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 717 if (c->is_zero_double()) {
duke@435 718 __ fldz();
duke@435 719 } else if (c->is_one_double()) {
duke@435 720 __ fld1();
duke@435 721 } else {
duke@435 722 __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
duke@435 723 }
duke@435 724 }
duke@435 725 break;
duke@435 726 }
duke@435 727
duke@435 728 default:
duke@435 729 ShouldNotReachHere();
duke@435 730 }
duke@435 731 }
duke@435 732
duke@435 733 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
duke@435 734 assert(src->is_constant(), "should not call otherwise");
duke@435 735 assert(dest->is_stack(), "should not call otherwise");
duke@435 736 LIR_Const* c = src->as_constant_ptr();
duke@435 737
duke@435 738 switch (c->type()) {
duke@435 739 case T_INT: // fall through
duke@435 740 case T_FLOAT:
duke@435 741 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
duke@435 742 break;
duke@435 743
duke@435 744 case T_OBJECT:
duke@435 745 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
duke@435 746 break;
duke@435 747
duke@435 748 case T_LONG: // fall through
duke@435 749 case T_DOUBLE:
never@739 750 #ifdef _LP64
never@739 751 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 752 lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
never@739 753 #else
never@739 754 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 755 lo_word_offset_in_bytes), c->as_jint_lo_bits());
never@739 756 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 757 hi_word_offset_in_bytes), c->as_jint_hi_bits());
never@739 758 #endif // _LP64
duke@435 759 break;
duke@435 760
duke@435 761 default:
duke@435 762 ShouldNotReachHere();
duke@435 763 }
duke@435 764 }
duke@435 765
duke@435 766 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
duke@435 767 assert(src->is_constant(), "should not call otherwise");
duke@435 768 assert(dest->is_address(), "should not call otherwise");
duke@435 769 LIR_Const* c = src->as_constant_ptr();
duke@435 770 LIR_Address* addr = dest->as_address_ptr();
duke@435 771
never@739 772 int null_check_here = code_offset();
duke@435 773 switch (type) {
duke@435 774 case T_INT: // fall through
duke@435 775 case T_FLOAT:
duke@435 776 __ movl(as_Address(addr), c->as_jint_bits());
duke@435 777 break;
duke@435 778
duke@435 779 case T_OBJECT: // fall through
duke@435 780 case T_ARRAY:
duke@435 781 if (c->as_jobject() == NULL) {
xlu@947 782 __ movptr(as_Address(addr), NULL_WORD);
duke@435 783 } else {
never@739 784 if (is_literal_address(addr)) {
never@739 785 ShouldNotReachHere();
never@739 786 __ movoop(as_Address(addr, noreg), c->as_jobject());
never@739 787 } else {
never@739 788 __ movoop(as_Address(addr), c->as_jobject());
never@739 789 }
duke@435 790 }
duke@435 791 break;
duke@435 792
duke@435 793 case T_LONG: // fall through
duke@435 794 case T_DOUBLE:
never@739 795 #ifdef _LP64
never@739 796 if (is_literal_address(addr)) {
never@739 797 ShouldNotReachHere();
never@739 798 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
never@739 799 } else {
never@739 800 __ movptr(r10, (intptr_t)c->as_jlong_bits());
never@739 801 null_check_here = code_offset();
never@739 802 __ movptr(as_Address_lo(addr), r10);
never@739 803 }
never@739 804 #else
never@739 805 // Always reachable in 32bit so this doesn't produce useless move literal
never@739 806 __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
never@739 807 __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
never@739 808 #endif // _LP64
duke@435 809 break;
duke@435 810
duke@435 811 case T_BOOLEAN: // fall through
duke@435 812 case T_BYTE:
duke@435 813 __ movb(as_Address(addr), c->as_jint() & 0xFF);
duke@435 814 break;
duke@435 815
duke@435 816 case T_CHAR: // fall through
duke@435 817 case T_SHORT:
duke@435 818 __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
duke@435 819 break;
duke@435 820
duke@435 821 default:
duke@435 822 ShouldNotReachHere();
duke@435 823 };
never@739 824
never@739 825 if (info != NULL) {
never@739 826 add_debug_info_for_null_check(null_check_here, info);
never@739 827 }
duke@435 828 }
duke@435 829
duke@435 830
duke@435 831 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
duke@435 832 assert(src->is_register(), "should not call otherwise");
duke@435 833 assert(dest->is_register(), "should not call otherwise");
duke@435 834
duke@435 835 // move between cpu-registers
duke@435 836 if (dest->is_single_cpu()) {
never@739 837 #ifdef _LP64
never@739 838 if (src->type() == T_LONG) {
never@739 839 // Can do LONG -> OBJECT
never@739 840 move_regs(src->as_register_lo(), dest->as_register());
never@739 841 return;
never@739 842 }
never@739 843 #endif
duke@435 844 assert(src->is_single_cpu(), "must match");
duke@435 845 if (src->type() == T_OBJECT) {
duke@435 846 __ verify_oop(src->as_register());
duke@435 847 }
duke@435 848 move_regs(src->as_register(), dest->as_register());
duke@435 849
duke@435 850 } else if (dest->is_double_cpu()) {
never@739 851 #ifdef _LP64
never@739 852 if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
never@739 853 // Surprising to me but we can see move of a long to t_object
never@739 854 __ verify_oop(src->as_register());
never@739 855 move_regs(src->as_register(), dest->as_register_lo());
never@739 856 return;
never@739 857 }
never@739 858 #endif
duke@435 859 assert(src->is_double_cpu(), "must match");
duke@435 860 Register f_lo = src->as_register_lo();
duke@435 861 Register f_hi = src->as_register_hi();
duke@435 862 Register t_lo = dest->as_register_lo();
duke@435 863 Register t_hi = dest->as_register_hi();
never@739 864 #ifdef _LP64
never@739 865 assert(f_hi == f_lo, "must be same");
never@739 866 assert(t_hi == t_lo, "must be same");
never@739 867 move_regs(f_lo, t_lo);
never@739 868 #else
duke@435 869 assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
duke@435 870
never@739 871
duke@435 872 if (f_lo == t_hi && f_hi == t_lo) {
duke@435 873 swap_reg(f_lo, f_hi);
duke@435 874 } else if (f_hi == t_lo) {
duke@435 875 assert(f_lo != t_hi, "overwriting register");
duke@435 876 move_regs(f_hi, t_hi);
duke@435 877 move_regs(f_lo, t_lo);
duke@435 878 } else {
duke@435 879 assert(f_hi != t_lo, "overwriting register");
duke@435 880 move_regs(f_lo, t_lo);
duke@435 881 move_regs(f_hi, t_hi);
duke@435 882 }
never@739 883 #endif // LP64
duke@435 884
duke@435 885 // special moves from fpu-register to xmm-register
duke@435 886 // necessary for method results
duke@435 887 } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
duke@435 888 __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
duke@435 889 __ fld_s(Address(rsp, 0));
duke@435 890 } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
duke@435 891 __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
duke@435 892 __ fld_d(Address(rsp, 0));
duke@435 893 } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
duke@435 894 __ fstp_s(Address(rsp, 0));
duke@435 895 __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
duke@435 896 } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
duke@435 897 __ fstp_d(Address(rsp, 0));
duke@435 898 __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
duke@435 899
duke@435 900 // move between xmm-registers
duke@435 901 } else if (dest->is_single_xmm()) {
duke@435 902 assert(src->is_single_xmm(), "must match");
duke@435 903 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
duke@435 904 } else if (dest->is_double_xmm()) {
duke@435 905 assert(src->is_double_xmm(), "must match");
duke@435 906 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
duke@435 907
duke@435 908 // move between fpu-registers (no instruction necessary because of fpu-stack)
duke@435 909 } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
duke@435 910 assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
duke@435 911 assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
duke@435 912 } else {
duke@435 913 ShouldNotReachHere();
duke@435 914 }
duke@435 915 }
duke@435 916
duke@435 917 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
duke@435 918 assert(src->is_register(), "should not call otherwise");
duke@435 919 assert(dest->is_stack(), "should not call otherwise");
duke@435 920
duke@435 921 if (src->is_single_cpu()) {
duke@435 922 Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 923 if (type == T_OBJECT || type == T_ARRAY) {
duke@435 924 __ verify_oop(src->as_register());
never@739 925 __ movptr (dst, src->as_register());
never@739 926 } else {
never@739 927 __ movl (dst, src->as_register());
duke@435 928 }
duke@435 929
duke@435 930 } else if (src->is_double_cpu()) {
duke@435 931 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 932 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
never@739 933 __ movptr (dstLO, src->as_register_lo());
never@739 934 NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
duke@435 935
duke@435 936 } else if (src->is_single_xmm()) {
duke@435 937 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 938 __ movflt(dst_addr, src->as_xmm_float_reg());
duke@435 939
duke@435 940 } else if (src->is_double_xmm()) {
duke@435 941 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 942 __ movdbl(dst_addr, src->as_xmm_double_reg());
duke@435 943
duke@435 944 } else if (src->is_single_fpu()) {
duke@435 945 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 946 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 947 if (pop_fpu_stack) __ fstp_s (dst_addr);
duke@435 948 else __ fst_s (dst_addr);
duke@435 949
duke@435 950 } else if (src->is_double_fpu()) {
duke@435 951 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 952 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 953 if (pop_fpu_stack) __ fstp_d (dst_addr);
duke@435 954 else __ fst_d (dst_addr);
duke@435 955
duke@435 956 } else {
duke@435 957 ShouldNotReachHere();
duke@435 958 }
duke@435 959 }
duke@435 960
duke@435 961
duke@435 962 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool /* unaligned */) {
duke@435 963 LIR_Address* to_addr = dest->as_address_ptr();
duke@435 964 PatchingStub* patch = NULL;
duke@435 965
duke@435 966 if (type == T_ARRAY || type == T_OBJECT) {
duke@435 967 __ verify_oop(src->as_register());
duke@435 968 }
duke@435 969 if (patch_code != lir_patch_none) {
duke@435 970 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 971 Address toa = as_Address(to_addr);
never@739 972 assert(toa.disp() != 0, "must have");
duke@435 973 }
duke@435 974 if (info != NULL) {
duke@435 975 add_debug_info_for_null_check_here(info);
duke@435 976 }
duke@435 977
duke@435 978 switch (type) {
duke@435 979 case T_FLOAT: {
duke@435 980 if (src->is_single_xmm()) {
duke@435 981 __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
duke@435 982 } else {
duke@435 983 assert(src->is_single_fpu(), "must be");
duke@435 984 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 985 if (pop_fpu_stack) __ fstp_s(as_Address(to_addr));
duke@435 986 else __ fst_s (as_Address(to_addr));
duke@435 987 }
duke@435 988 break;
duke@435 989 }
duke@435 990
duke@435 991 case T_DOUBLE: {
duke@435 992 if (src->is_double_xmm()) {
duke@435 993 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
duke@435 994 } else {
duke@435 995 assert(src->is_double_fpu(), "must be");
duke@435 996 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 997 if (pop_fpu_stack) __ fstp_d(as_Address(to_addr));
duke@435 998 else __ fst_d (as_Address(to_addr));
duke@435 999 }
duke@435 1000 break;
duke@435 1001 }
duke@435 1002
duke@435 1003 case T_ADDRESS: // fall through
duke@435 1004 case T_ARRAY: // fall through
duke@435 1005 case T_OBJECT: // fall through
never@739 1006 #ifdef _LP64
never@739 1007 __ movptr(as_Address(to_addr), src->as_register());
never@739 1008 break;
never@739 1009 #endif // _LP64
duke@435 1010 case T_INT:
duke@435 1011 __ movl(as_Address(to_addr), src->as_register());
duke@435 1012 break;
duke@435 1013
duke@435 1014 case T_LONG: {
duke@435 1015 Register from_lo = src->as_register_lo();
duke@435 1016 Register from_hi = src->as_register_hi();
never@739 1017 #ifdef _LP64
never@739 1018 __ movptr(as_Address_lo(to_addr), from_lo);
never@739 1019 #else
duke@435 1020 Register base = to_addr->base()->as_register();
duke@435 1021 Register index = noreg;
duke@435 1022 if (to_addr->index()->is_register()) {
duke@435 1023 index = to_addr->index()->as_register();
duke@435 1024 }
duke@435 1025 if (base == from_lo || index == from_lo) {
duke@435 1026 assert(base != from_hi, "can't be");
duke@435 1027 assert(index == noreg || (index != base && index != from_hi), "can't handle this");
duke@435 1028 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1029 if (patch != NULL) {
duke@435 1030 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1031 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1032 patch_code = lir_patch_low;
duke@435 1033 }
duke@435 1034 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1035 } else {
duke@435 1036 assert(index == noreg || (index != base && index != from_lo), "can't handle this");
duke@435 1037 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1038 if (patch != NULL) {
duke@435 1039 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1040 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1041 patch_code = lir_patch_high;
duke@435 1042 }
duke@435 1043 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1044 }
never@739 1045 #endif // _LP64
duke@435 1046 break;
duke@435 1047 }
duke@435 1048
duke@435 1049 case T_BYTE: // fall through
duke@435 1050 case T_BOOLEAN: {
duke@435 1051 Register src_reg = src->as_register();
duke@435 1052 Address dst_addr = as_Address(to_addr);
duke@435 1053 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1054 __ movb(dst_addr, src_reg);
duke@435 1055 break;
duke@435 1056 }
duke@435 1057
duke@435 1058 case T_CHAR: // fall through
duke@435 1059 case T_SHORT:
duke@435 1060 __ movw(as_Address(to_addr), src->as_register());
duke@435 1061 break;
duke@435 1062
duke@435 1063 default:
duke@435 1064 ShouldNotReachHere();
duke@435 1065 }
duke@435 1066
duke@435 1067 if (patch_code != lir_patch_none) {
duke@435 1068 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
duke@435 1069 }
duke@435 1070 }
duke@435 1071
duke@435 1072
duke@435 1073 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1074 assert(src->is_stack(), "should not call otherwise");
duke@435 1075 assert(dest->is_register(), "should not call otherwise");
duke@435 1076
duke@435 1077 if (dest->is_single_cpu()) {
duke@435 1078 if (type == T_ARRAY || type == T_OBJECT) {
never@739 1079 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1080 __ verify_oop(dest->as_register());
never@739 1081 } else {
never@739 1082 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1083 }
duke@435 1084
duke@435 1085 } else if (dest->is_double_cpu()) {
duke@435 1086 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 1087 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
never@739 1088 __ movptr(dest->as_register_lo(), src_addr_LO);
never@739 1089 NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
duke@435 1090
duke@435 1091 } else if (dest->is_single_xmm()) {
duke@435 1092 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1093 __ movflt(dest->as_xmm_float_reg(), src_addr);
duke@435 1094
duke@435 1095 } else if (dest->is_double_xmm()) {
duke@435 1096 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1097 __ movdbl(dest->as_xmm_double_reg(), src_addr);
duke@435 1098
duke@435 1099 } else if (dest->is_single_fpu()) {
duke@435 1100 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1101 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1102 __ fld_s(src_addr);
duke@435 1103
duke@435 1104 } else if (dest->is_double_fpu()) {
duke@435 1105 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1106 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1107 __ fld_d(src_addr);
duke@435 1108
duke@435 1109 } else {
duke@435 1110 ShouldNotReachHere();
duke@435 1111 }
duke@435 1112 }
duke@435 1113
duke@435 1114
duke@435 1115 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1116 if (src->is_single_stack()) {
never@739 1117 if (type == T_OBJECT || type == T_ARRAY) {
never@739 1118 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1119 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
never@739 1120 } else {
never@739 1121 __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1122 __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
never@739 1123 }
duke@435 1124
duke@435 1125 } else if (src->is_double_stack()) {
never@739 1126 #ifdef _LP64
never@739 1127 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
never@739 1128 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
never@739 1129 #else
duke@435 1130 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
never@739 1131 // push and pop the part at src + wordSize, adding wordSize for the previous push
never@756 1132 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
never@756 1133 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
duke@435 1134 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
never@739 1135 #endif // _LP64
duke@435 1136
duke@435 1137 } else {
duke@435 1138 ShouldNotReachHere();
duke@435 1139 }
duke@435 1140 }
duke@435 1141
duke@435 1142
duke@435 1143 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool /* unaligned */) {
duke@435 1144 assert(src->is_address(), "should not call otherwise");
duke@435 1145 assert(dest->is_register(), "should not call otherwise");
duke@435 1146
duke@435 1147 LIR_Address* addr = src->as_address_ptr();
duke@435 1148 Address from_addr = as_Address(addr);
duke@435 1149
duke@435 1150 switch (type) {
duke@435 1151 case T_BOOLEAN: // fall through
duke@435 1152 case T_BYTE: // fall through
duke@435 1153 case T_CHAR: // fall through
duke@435 1154 case T_SHORT:
duke@435 1155 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
duke@435 1156 // on pre P6 processors we may get partial register stalls
duke@435 1157 // so blow away the value of to_rinfo before loading a
duke@435 1158 // partial word into it. Do it here so that it precedes
duke@435 1159 // the potential patch point below.
never@739 1160 __ xorptr(dest->as_register(), dest->as_register());
duke@435 1161 }
duke@435 1162 break;
duke@435 1163 }
duke@435 1164
duke@435 1165 PatchingStub* patch = NULL;
duke@435 1166 if (patch_code != lir_patch_none) {
duke@435 1167 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 1168 assert(from_addr.disp() != 0, "must have");
duke@435 1169 }
duke@435 1170 if (info != NULL) {
duke@435 1171 add_debug_info_for_null_check_here(info);
duke@435 1172 }
duke@435 1173
duke@435 1174 switch (type) {
duke@435 1175 case T_FLOAT: {
duke@435 1176 if (dest->is_single_xmm()) {
duke@435 1177 __ movflt(dest->as_xmm_float_reg(), from_addr);
duke@435 1178 } else {
duke@435 1179 assert(dest->is_single_fpu(), "must be");
duke@435 1180 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1181 __ fld_s(from_addr);
duke@435 1182 }
duke@435 1183 break;
duke@435 1184 }
duke@435 1185
duke@435 1186 case T_DOUBLE: {
duke@435 1187 if (dest->is_double_xmm()) {
duke@435 1188 __ movdbl(dest->as_xmm_double_reg(), from_addr);
duke@435 1189 } else {
duke@435 1190 assert(dest->is_double_fpu(), "must be");
duke@435 1191 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1192 __ fld_d(from_addr);
duke@435 1193 }
duke@435 1194 break;
duke@435 1195 }
duke@435 1196
duke@435 1197 case T_ADDRESS: // fall through
duke@435 1198 case T_OBJECT: // fall through
duke@435 1199 case T_ARRAY: // fall through
never@739 1200 #ifdef _LP64
never@739 1201 __ movptr(dest->as_register(), from_addr);
never@739 1202 break;
never@739 1203 #endif // _L64
duke@435 1204 case T_INT:
never@739 1205 // %%% could this be a movl? this is safer but longer instruction
never@739 1206 __ movl2ptr(dest->as_register(), from_addr);
duke@435 1207 break;
duke@435 1208
duke@435 1209 case T_LONG: {
duke@435 1210 Register to_lo = dest->as_register_lo();
duke@435 1211 Register to_hi = dest->as_register_hi();
never@739 1212 #ifdef _LP64
never@739 1213 __ movptr(to_lo, as_Address_lo(addr));
never@739 1214 #else
duke@435 1215 Register base = addr->base()->as_register();
duke@435 1216 Register index = noreg;
duke@435 1217 if (addr->index()->is_register()) {
duke@435 1218 index = addr->index()->as_register();
duke@435 1219 }
duke@435 1220 if ((base == to_lo && index == to_hi) ||
duke@435 1221 (base == to_hi && index == to_lo)) {
duke@435 1222 // addresses with 2 registers are only formed as a result of
duke@435 1223 // array access so this code will never have to deal with
duke@435 1224 // patches or null checks.
duke@435 1225 assert(info == NULL && patch == NULL, "must be");
never@739 1226 __ lea(to_hi, as_Address(addr));
duke@435 1227 __ movl(to_lo, Address(to_hi, 0));
duke@435 1228 __ movl(to_hi, Address(to_hi, BytesPerWord));
duke@435 1229 } else if (base == to_lo || index == to_lo) {
duke@435 1230 assert(base != to_hi, "can't be");
duke@435 1231 assert(index == noreg || (index != base && index != to_hi), "can't handle this");
duke@435 1232 __ movl(to_hi, as_Address_hi(addr));
duke@435 1233 if (patch != NULL) {
duke@435 1234 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1235 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1236 patch_code = lir_patch_low;
duke@435 1237 }
duke@435 1238 __ movl(to_lo, as_Address_lo(addr));
duke@435 1239 } else {
duke@435 1240 assert(index == noreg || (index != base && index != to_lo), "can't handle this");
duke@435 1241 __ movl(to_lo, as_Address_lo(addr));
duke@435 1242 if (patch != NULL) {
duke@435 1243 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1244 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1245 patch_code = lir_patch_high;
duke@435 1246 }
duke@435 1247 __ movl(to_hi, as_Address_hi(addr));
duke@435 1248 }
never@739 1249 #endif // _LP64
duke@435 1250 break;
duke@435 1251 }
duke@435 1252
duke@435 1253 case T_BOOLEAN: // fall through
duke@435 1254 case T_BYTE: {
duke@435 1255 Register dest_reg = dest->as_register();
duke@435 1256 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1257 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1258 __ movsbl(dest_reg, from_addr);
duke@435 1259 } else {
duke@435 1260 __ movb(dest_reg, from_addr);
duke@435 1261 __ shll(dest_reg, 24);
duke@435 1262 __ sarl(dest_reg, 24);
duke@435 1263 }
never@739 1264 // These are unsigned so the zero extension on 64bit is just what we need
duke@435 1265 break;
duke@435 1266 }
duke@435 1267
duke@435 1268 case T_CHAR: {
duke@435 1269 Register dest_reg = dest->as_register();
duke@435 1270 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1271 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1272 __ movzwl(dest_reg, from_addr);
duke@435 1273 } else {
duke@435 1274 __ movw(dest_reg, from_addr);
duke@435 1275 }
never@739 1276 // This is unsigned so the zero extension on 64bit is just what we need
never@739 1277 // __ movl2ptr(dest_reg, dest_reg);
duke@435 1278 break;
duke@435 1279 }
duke@435 1280
duke@435 1281 case T_SHORT: {
duke@435 1282 Register dest_reg = dest->as_register();
duke@435 1283 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1284 __ movswl(dest_reg, from_addr);
duke@435 1285 } else {
duke@435 1286 __ movw(dest_reg, from_addr);
duke@435 1287 __ shll(dest_reg, 16);
duke@435 1288 __ sarl(dest_reg, 16);
duke@435 1289 }
never@739 1290 // Might not be needed in 64bit but certainly doesn't hurt (except for code size)
never@739 1291 __ movl2ptr(dest_reg, dest_reg);
duke@435 1292 break;
duke@435 1293 }
duke@435 1294
duke@435 1295 default:
duke@435 1296 ShouldNotReachHere();
duke@435 1297 }
duke@435 1298
duke@435 1299 if (patch != NULL) {
duke@435 1300 patching_epilog(patch, patch_code, addr->base()->as_register(), info);
duke@435 1301 }
duke@435 1302
duke@435 1303 if (type == T_ARRAY || type == T_OBJECT) {
duke@435 1304 __ verify_oop(dest->as_register());
duke@435 1305 }
duke@435 1306 }
duke@435 1307
duke@435 1308
duke@435 1309 void LIR_Assembler::prefetchr(LIR_Opr src) {
duke@435 1310 LIR_Address* addr = src->as_address_ptr();
duke@435 1311 Address from_addr = as_Address(addr);
duke@435 1312
duke@435 1313 if (VM_Version::supports_sse()) {
duke@435 1314 switch (ReadPrefetchInstr) {
duke@435 1315 case 0:
duke@435 1316 __ prefetchnta(from_addr); break;
duke@435 1317 case 1:
duke@435 1318 __ prefetcht0(from_addr); break;
duke@435 1319 case 2:
duke@435 1320 __ prefetcht2(from_addr); break;
duke@435 1321 default:
duke@435 1322 ShouldNotReachHere(); break;
duke@435 1323 }
duke@435 1324 } else if (VM_Version::supports_3dnow()) {
duke@435 1325 __ prefetchr(from_addr);
duke@435 1326 }
duke@435 1327 }
duke@435 1328
duke@435 1329
duke@435 1330 void LIR_Assembler::prefetchw(LIR_Opr src) {
duke@435 1331 LIR_Address* addr = src->as_address_ptr();
duke@435 1332 Address from_addr = as_Address(addr);
duke@435 1333
duke@435 1334 if (VM_Version::supports_sse()) {
duke@435 1335 switch (AllocatePrefetchInstr) {
duke@435 1336 case 0:
duke@435 1337 __ prefetchnta(from_addr); break;
duke@435 1338 case 1:
duke@435 1339 __ prefetcht0(from_addr); break;
duke@435 1340 case 2:
duke@435 1341 __ prefetcht2(from_addr); break;
duke@435 1342 case 3:
duke@435 1343 __ prefetchw(from_addr); break;
duke@435 1344 default:
duke@435 1345 ShouldNotReachHere(); break;
duke@435 1346 }
duke@435 1347 } else if (VM_Version::supports_3dnow()) {
duke@435 1348 __ prefetchw(from_addr);
duke@435 1349 }
duke@435 1350 }
duke@435 1351
duke@435 1352
duke@435 1353 NEEDS_CLEANUP; // This could be static?
duke@435 1354 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
kvn@464 1355 int elem_size = type2aelembytes(type);
duke@435 1356 switch (elem_size) {
duke@435 1357 case 1: return Address::times_1;
duke@435 1358 case 2: return Address::times_2;
duke@435 1359 case 4: return Address::times_4;
duke@435 1360 case 8: return Address::times_8;
duke@435 1361 }
duke@435 1362 ShouldNotReachHere();
duke@435 1363 return Address::no_scale;
duke@435 1364 }
duke@435 1365
duke@435 1366
duke@435 1367 void LIR_Assembler::emit_op3(LIR_Op3* op) {
duke@435 1368 switch (op->code()) {
duke@435 1369 case lir_idiv:
duke@435 1370 case lir_irem:
duke@435 1371 arithmetic_idiv(op->code(),
duke@435 1372 op->in_opr1(),
duke@435 1373 op->in_opr2(),
duke@435 1374 op->in_opr3(),
duke@435 1375 op->result_opr(),
duke@435 1376 op->info());
duke@435 1377 break;
duke@435 1378 default: ShouldNotReachHere(); break;
duke@435 1379 }
duke@435 1380 }
duke@435 1381
duke@435 1382 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
duke@435 1383 #ifdef ASSERT
duke@435 1384 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
duke@435 1385 if (op->block() != NULL) _branch_target_blocks.append(op->block());
duke@435 1386 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
duke@435 1387 #endif
duke@435 1388
duke@435 1389 if (op->cond() == lir_cond_always) {
duke@435 1390 if (op->info() != NULL) add_debug_info_for_branch(op->info());
duke@435 1391 __ jmp (*(op->label()));
duke@435 1392 } else {
duke@435 1393 Assembler::Condition acond = Assembler::zero;
duke@435 1394 if (op->code() == lir_cond_float_branch) {
duke@435 1395 assert(op->ublock() != NULL, "must have unordered successor");
duke@435 1396 __ jcc(Assembler::parity, *(op->ublock()->label()));
duke@435 1397 switch(op->cond()) {
duke@435 1398 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1399 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1400 case lir_cond_less: acond = Assembler::below; break;
duke@435 1401 case lir_cond_lessEqual: acond = Assembler::belowEqual; break;
duke@435 1402 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
duke@435 1403 case lir_cond_greater: acond = Assembler::above; break;
duke@435 1404 default: ShouldNotReachHere();
duke@435 1405 }
duke@435 1406 } else {
duke@435 1407 switch (op->cond()) {
duke@435 1408 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1409 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1410 case lir_cond_less: acond = Assembler::less; break;
duke@435 1411 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 1412 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
duke@435 1413 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 1414 case lir_cond_belowEqual: acond = Assembler::belowEqual; break;
duke@435 1415 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break;
duke@435 1416 default: ShouldNotReachHere();
duke@435 1417 }
duke@435 1418 }
duke@435 1419 __ jcc(acond,*(op->label()));
duke@435 1420 }
duke@435 1421 }
duke@435 1422
duke@435 1423 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
duke@435 1424 LIR_Opr src = op->in_opr();
duke@435 1425 LIR_Opr dest = op->result_opr();
duke@435 1426
duke@435 1427 switch (op->bytecode()) {
duke@435 1428 case Bytecodes::_i2l:
never@739 1429 #ifdef _LP64
never@739 1430 __ movl2ptr(dest->as_register_lo(), src->as_register());
never@739 1431 #else
duke@435 1432 move_regs(src->as_register(), dest->as_register_lo());
duke@435 1433 move_regs(src->as_register(), dest->as_register_hi());
duke@435 1434 __ sarl(dest->as_register_hi(), 31);
never@739 1435 #endif // LP64
duke@435 1436 break;
duke@435 1437
duke@435 1438 case Bytecodes::_l2i:
duke@435 1439 move_regs(src->as_register_lo(), dest->as_register());
duke@435 1440 break;
duke@435 1441
duke@435 1442 case Bytecodes::_i2b:
duke@435 1443 move_regs(src->as_register(), dest->as_register());
duke@435 1444 __ sign_extend_byte(dest->as_register());
duke@435 1445 break;
duke@435 1446
duke@435 1447 case Bytecodes::_i2c:
duke@435 1448 move_regs(src->as_register(), dest->as_register());
duke@435 1449 __ andl(dest->as_register(), 0xFFFF);
duke@435 1450 break;
duke@435 1451
duke@435 1452 case Bytecodes::_i2s:
duke@435 1453 move_regs(src->as_register(), dest->as_register());
duke@435 1454 __ sign_extend_short(dest->as_register());
duke@435 1455 break;
duke@435 1456
duke@435 1457
duke@435 1458 case Bytecodes::_f2d:
duke@435 1459 case Bytecodes::_d2f:
duke@435 1460 if (dest->is_single_xmm()) {
duke@435 1461 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
duke@435 1462 } else if (dest->is_double_xmm()) {
duke@435 1463 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
duke@435 1464 } else {
duke@435 1465 assert(src->fpu() == dest->fpu(), "register must be equal");
duke@435 1466 // do nothing (float result is rounded later through spilling)
duke@435 1467 }
duke@435 1468 break;
duke@435 1469
duke@435 1470 case Bytecodes::_i2f:
duke@435 1471 case Bytecodes::_i2d:
duke@435 1472 if (dest->is_single_xmm()) {
never@739 1473 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
duke@435 1474 } else if (dest->is_double_xmm()) {
never@739 1475 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
duke@435 1476 } else {
duke@435 1477 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1478 __ movl(Address(rsp, 0), src->as_register());
duke@435 1479 __ fild_s(Address(rsp, 0));
duke@435 1480 }
duke@435 1481 break;
duke@435 1482
duke@435 1483 case Bytecodes::_f2i:
duke@435 1484 case Bytecodes::_d2i:
duke@435 1485 if (src->is_single_xmm()) {
never@739 1486 __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
duke@435 1487 } else if (src->is_double_xmm()) {
never@739 1488 __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
duke@435 1489 } else {
duke@435 1490 assert(src->fpu() == 0, "input must be on TOS");
duke@435 1491 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
duke@435 1492 __ fist_s(Address(rsp, 0));
duke@435 1493 __ movl(dest->as_register(), Address(rsp, 0));
duke@435 1494 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 1495 }
duke@435 1496
duke@435 1497 // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
duke@435 1498 assert(op->stub() != NULL, "stub required");
duke@435 1499 __ cmpl(dest->as_register(), 0x80000000);
duke@435 1500 __ jcc(Assembler::equal, *op->stub()->entry());
duke@435 1501 __ bind(*op->stub()->continuation());
duke@435 1502 break;
duke@435 1503
duke@435 1504 case Bytecodes::_l2f:
duke@435 1505 case Bytecodes::_l2d:
duke@435 1506 assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
duke@435 1507 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1508
never@739 1509 __ movptr(Address(rsp, 0), src->as_register_lo());
never@739 1510 NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
duke@435 1511 __ fild_d(Address(rsp, 0));
duke@435 1512 // float result is rounded later through spilling
duke@435 1513 break;
duke@435 1514
duke@435 1515 case Bytecodes::_f2l:
duke@435 1516 case Bytecodes::_d2l:
duke@435 1517 assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
duke@435 1518 assert(src->fpu() == 0, "input must be on TOS");
never@739 1519 assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
duke@435 1520
duke@435 1521 // instruction sequence too long to inline it here
duke@435 1522 {
duke@435 1523 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
duke@435 1524 }
duke@435 1525 break;
duke@435 1526
duke@435 1527 default: ShouldNotReachHere();
duke@435 1528 }
duke@435 1529 }
duke@435 1530
duke@435 1531 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
duke@435 1532 if (op->init_check()) {
duke@435 1533 __ cmpl(Address(op->klass()->as_register(),
duke@435 1534 instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
duke@435 1535 instanceKlass::fully_initialized);
duke@435 1536 add_debug_info_for_null_check_here(op->stub()->info());
duke@435 1537 __ jcc(Assembler::notEqual, *op->stub()->entry());
duke@435 1538 }
duke@435 1539 __ allocate_object(op->obj()->as_register(),
duke@435 1540 op->tmp1()->as_register(),
duke@435 1541 op->tmp2()->as_register(),
duke@435 1542 op->header_size(),
duke@435 1543 op->object_size(),
duke@435 1544 op->klass()->as_register(),
duke@435 1545 *op->stub()->entry());
duke@435 1546 __ bind(*op->stub()->continuation());
duke@435 1547 }
duke@435 1548
duke@435 1549 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
duke@435 1550 if (UseSlowPath ||
duke@435 1551 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
duke@435 1552 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
duke@435 1553 __ jmp(*op->stub()->entry());
duke@435 1554 } else {
duke@435 1555 Register len = op->len()->as_register();
duke@435 1556 Register tmp1 = op->tmp1()->as_register();
duke@435 1557 Register tmp2 = op->tmp2()->as_register();
duke@435 1558 Register tmp3 = op->tmp3()->as_register();
duke@435 1559 if (len == tmp1) {
duke@435 1560 tmp1 = tmp3;
duke@435 1561 } else if (len == tmp2) {
duke@435 1562 tmp2 = tmp3;
duke@435 1563 } else if (len == tmp3) {
duke@435 1564 // everything is ok
duke@435 1565 } else {
never@739 1566 __ mov(tmp3, len);
duke@435 1567 }
duke@435 1568 __ allocate_array(op->obj()->as_register(),
duke@435 1569 len,
duke@435 1570 tmp1,
duke@435 1571 tmp2,
duke@435 1572 arrayOopDesc::header_size(op->type()),
duke@435 1573 array_element_size(op->type()),
duke@435 1574 op->klass()->as_register(),
duke@435 1575 *op->stub()->entry());
duke@435 1576 }
duke@435 1577 __ bind(*op->stub()->continuation());
duke@435 1578 }
duke@435 1579
duke@435 1580
duke@435 1581
duke@435 1582 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
duke@435 1583 LIR_Code code = op->code();
duke@435 1584 if (code == lir_store_check) {
duke@435 1585 Register value = op->object()->as_register();
duke@435 1586 Register array = op->array()->as_register();
duke@435 1587 Register k_RInfo = op->tmp1()->as_register();
duke@435 1588 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1589 Register Rtmp1 = op->tmp3()->as_register();
duke@435 1590
duke@435 1591 CodeStub* stub = op->stub();
duke@435 1592 Label done;
never@739 1593 __ cmpptr(value, (int32_t)NULL_WORD);
duke@435 1594 __ jcc(Assembler::equal, done);
duke@435 1595 add_debug_info_for_null_check_here(op->info_for_exception());
never@739 1596 __ movptr(k_RInfo, Address(array, oopDesc::klass_offset_in_bytes()));
never@739 1597 __ movptr(klass_RInfo, Address(value, oopDesc::klass_offset_in_bytes()));
duke@435 1598
duke@435 1599 // get instance klass
never@739 1600 __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
duke@435 1601 // get super_check_offset
duke@435 1602 __ movl(Rtmp1, Address(k_RInfo, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes()));
duke@435 1603 // See if we get an immediate positive hit
never@739 1604 __ cmpptr(k_RInfo, Address(klass_RInfo, Rtmp1, Address::times_1));
duke@435 1605 __ jcc(Assembler::equal, done);
duke@435 1606 // check for immediate negative hit
duke@435 1607 __ cmpl(Rtmp1, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes());
duke@435 1608 __ jcc(Assembler::notEqual, *stub->entry());
duke@435 1609 // check for self
never@739 1610 __ cmpptr(klass_RInfo, k_RInfo);
duke@435 1611 __ jcc(Assembler::equal, done);
duke@435 1612
never@739 1613 __ push(klass_RInfo);
never@739 1614 __ push(k_RInfo);
duke@435 1615 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1616 __ pop(klass_RInfo);
never@739 1617 __ pop(k_RInfo);
never@739 1618 // result is a boolean
duke@435 1619 __ cmpl(k_RInfo, 0);
duke@435 1620 __ jcc(Assembler::equal, *stub->entry());
duke@435 1621 __ bind(done);
duke@435 1622 } else if (op->code() == lir_checkcast) {
duke@435 1623 // we always need a stub for the failure case.
duke@435 1624 CodeStub* stub = op->stub();
duke@435 1625 Register obj = op->object()->as_register();
duke@435 1626 Register k_RInfo = op->tmp1()->as_register();
duke@435 1627 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1628 Register dst = op->result_opr()->as_register();
duke@435 1629 ciKlass* k = op->klass();
duke@435 1630 Register Rtmp1 = noreg;
duke@435 1631
duke@435 1632 Label done;
duke@435 1633 if (obj == k_RInfo) {
duke@435 1634 k_RInfo = dst;
duke@435 1635 } else if (obj == klass_RInfo) {
duke@435 1636 klass_RInfo = dst;
duke@435 1637 }
duke@435 1638 if (k->is_loaded()) {
duke@435 1639 select_different_registers(obj, dst, k_RInfo, klass_RInfo);
duke@435 1640 } else {
duke@435 1641 Rtmp1 = op->tmp3()->as_register();
duke@435 1642 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
duke@435 1643 }
duke@435 1644
duke@435 1645 assert_different_registers(obj, k_RInfo, klass_RInfo);
duke@435 1646 if (!k->is_loaded()) {
duke@435 1647 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
duke@435 1648 } else {
never@739 1649 #ifdef _LP64
never@739 1650 __ movoop(k_RInfo, k->encoding());
never@739 1651 #else
duke@435 1652 k_RInfo = noreg;
never@739 1653 #endif // _LP64
duke@435 1654 }
duke@435 1655 assert(obj != k_RInfo, "must be different");
never@739 1656 __ cmpptr(obj, (int32_t)NULL_WORD);
duke@435 1657 if (op->profiled_method() != NULL) {
duke@435 1658 ciMethod* method = op->profiled_method();
duke@435 1659 int bci = op->profiled_bci();
duke@435 1660
duke@435 1661 Label profile_done;
duke@435 1662 __ jcc(Assembler::notEqual, profile_done);
duke@435 1663 // Object is null; update methodDataOop
duke@435 1664 ciMethodData* md = method->method_data();
duke@435 1665 if (md == NULL) {
duke@435 1666 bailout("out of memory building methodDataOop");
duke@435 1667 return;
duke@435 1668 }
duke@435 1669 ciProfileData* data = md->bci_to_data(bci);
duke@435 1670 assert(data != NULL, "need data for checkcast");
duke@435 1671 assert(data->is_BitData(), "need BitData for checkcast");
duke@435 1672 Register mdo = klass_RInfo;
duke@435 1673 __ movoop(mdo, md->encoding());
duke@435 1674 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
duke@435 1675 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
duke@435 1676 __ orl(data_addr, header_bits);
duke@435 1677 __ jmp(done);
duke@435 1678 __ bind(profile_done);
duke@435 1679 } else {
duke@435 1680 __ jcc(Assembler::equal, done);
duke@435 1681 }
duke@435 1682 __ verify_oop(obj);
duke@435 1683
duke@435 1684 if (op->fast_check()) {
duke@435 1685 // get object classo
duke@435 1686 // not a safepoint as obj null check happens earlier
duke@435 1687 if (k->is_loaded()) {
never@739 1688 #ifdef _LP64
never@739 1689 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
never@739 1690 #else
duke@435 1691 __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->encoding());
never@739 1692 #endif // _LP64
duke@435 1693 } else {
never@739 1694 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
duke@435 1695
duke@435 1696 }
duke@435 1697 __ jcc(Assembler::notEqual, *stub->entry());
duke@435 1698 __ bind(done);
duke@435 1699 } else {
duke@435 1700 // get object class
duke@435 1701 // not a safepoint as obj null check happens earlier
never@739 1702 __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
duke@435 1703 if (k->is_loaded()) {
duke@435 1704 // See if we get an immediate positive hit
never@739 1705 #ifdef _LP64
never@739 1706 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
never@739 1707 #else
duke@435 1708 __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->encoding());
never@739 1709 #endif // _LP64
duke@435 1710 if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
duke@435 1711 __ jcc(Assembler::notEqual, *stub->entry());
duke@435 1712 } else {
duke@435 1713 // See if we get an immediate positive hit
duke@435 1714 __ jcc(Assembler::equal, done);
duke@435 1715 // check for self
never@739 1716 #ifdef _LP64
never@739 1717 __ cmpptr(klass_RInfo, k_RInfo);
never@739 1718 #else
duke@435 1719 __ cmpoop(klass_RInfo, k->encoding());
never@739 1720 #endif // _LP64
duke@435 1721 __ jcc(Assembler::equal, done);
duke@435 1722
never@739 1723 __ push(klass_RInfo);
never@739 1724 #ifdef _LP64
never@739 1725 __ push(k_RInfo);
never@739 1726 #else
duke@435 1727 __ pushoop(k->encoding());
never@739 1728 #endif // _LP64
duke@435 1729 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1730 __ pop(klass_RInfo);
never@739 1731 __ pop(klass_RInfo);
never@739 1732 // result is a boolean
duke@435 1733 __ cmpl(klass_RInfo, 0);
duke@435 1734 __ jcc(Assembler::equal, *stub->entry());
duke@435 1735 }
duke@435 1736 __ bind(done);
duke@435 1737 } else {
duke@435 1738 __ movl(Rtmp1, Address(k_RInfo, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes()));
duke@435 1739 // See if we get an immediate positive hit
never@739 1740 __ cmpptr(k_RInfo, Address(klass_RInfo, Rtmp1, Address::times_1));
duke@435 1741 __ jcc(Assembler::equal, done);
duke@435 1742 // check for immediate negative hit
duke@435 1743 __ cmpl(Rtmp1, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes());
duke@435 1744 __ jcc(Assembler::notEqual, *stub->entry());
duke@435 1745 // check for self
never@739 1746 __ cmpptr(klass_RInfo, k_RInfo);
duke@435 1747 __ jcc(Assembler::equal, done);
duke@435 1748
never@739 1749 __ push(klass_RInfo);
never@739 1750 __ push(k_RInfo);
duke@435 1751 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1752 __ pop(klass_RInfo);
never@739 1753 __ pop(k_RInfo);
never@739 1754 // result is a boolean
duke@435 1755 __ cmpl(k_RInfo, 0);
duke@435 1756 __ jcc(Assembler::equal, *stub->entry());
duke@435 1757 __ bind(done);
duke@435 1758 }
duke@435 1759
duke@435 1760 }
duke@435 1761 if (dst != obj) {
never@739 1762 __ mov(dst, obj);
duke@435 1763 }
duke@435 1764 } else if (code == lir_instanceof) {
duke@435 1765 Register obj = op->object()->as_register();
duke@435 1766 Register k_RInfo = op->tmp1()->as_register();
duke@435 1767 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1768 Register dst = op->result_opr()->as_register();
duke@435 1769 ciKlass* k = op->klass();
duke@435 1770
duke@435 1771 Label done;
duke@435 1772 Label zero;
duke@435 1773 Label one;
duke@435 1774 if (obj == k_RInfo) {
duke@435 1775 k_RInfo = klass_RInfo;
duke@435 1776 klass_RInfo = obj;
duke@435 1777 }
duke@435 1778 // patching may screw with our temporaries on sparc,
duke@435 1779 // so let's do it before loading the class
duke@435 1780 if (!k->is_loaded()) {
duke@435 1781 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
never@739 1782 } else {
never@739 1783 LP64_ONLY(__ movoop(k_RInfo, k->encoding()));
duke@435 1784 }
duke@435 1785 assert(obj != k_RInfo, "must be different");
duke@435 1786
duke@435 1787 __ verify_oop(obj);
duke@435 1788 if (op->fast_check()) {
never@739 1789 __ cmpptr(obj, (int32_t)NULL_WORD);
duke@435 1790 __ jcc(Assembler::equal, zero);
duke@435 1791 // get object class
duke@435 1792 // not a safepoint as obj null check happens earlier
never@739 1793 if (LP64_ONLY(false &&) k->is_loaded()) {
never@739 1794 NOT_LP64(__ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->encoding()));
duke@435 1795 k_RInfo = noreg;
duke@435 1796 } else {
never@739 1797 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
duke@435 1798
duke@435 1799 }
duke@435 1800 __ jcc(Assembler::equal, one);
duke@435 1801 } else {
duke@435 1802 // get object class
duke@435 1803 // not a safepoint as obj null check happens earlier
never@739 1804 __ cmpptr(obj, (int32_t)NULL_WORD);
duke@435 1805 __ jcc(Assembler::equal, zero);
never@739 1806 __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
never@739 1807
never@739 1808 #ifndef _LP64
duke@435 1809 if (k->is_loaded()) {
duke@435 1810 // See if we get an immediate positive hit
duke@435 1811 __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->encoding());
duke@435 1812 __ jcc(Assembler::equal, one);
duke@435 1813 if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() == k->super_check_offset()) {
duke@435 1814 // check for self
duke@435 1815 __ cmpoop(klass_RInfo, k->encoding());
duke@435 1816 __ jcc(Assembler::equal, one);
never@739 1817 __ push(klass_RInfo);
duke@435 1818 __ pushoop(k->encoding());
duke@435 1819 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1820 __ pop(klass_RInfo);
never@739 1821 __ pop(dst);
duke@435 1822 __ jmp(done);
duke@435 1823 }
duke@435 1824 } else {
never@739 1825 #else
never@739 1826 { // YUCK
never@739 1827 #endif // LP64
duke@435 1828 assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
duke@435 1829
duke@435 1830 __ movl(dst, Address(k_RInfo, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes()));
duke@435 1831 // See if we get an immediate positive hit
never@739 1832 __ cmpptr(k_RInfo, Address(klass_RInfo, dst, Address::times_1));
duke@435 1833 __ jcc(Assembler::equal, one);
duke@435 1834 // check for immediate negative hit
duke@435 1835 __ cmpl(dst, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes());
duke@435 1836 __ jcc(Assembler::notEqual, zero);
duke@435 1837 // check for self
never@739 1838 __ cmpptr(klass_RInfo, k_RInfo);
duke@435 1839 __ jcc(Assembler::equal, one);
duke@435 1840
never@739 1841 __ push(klass_RInfo);
never@739 1842 __ push(k_RInfo);
duke@435 1843 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1844 __ pop(klass_RInfo);
never@739 1845 __ pop(dst);
duke@435 1846 __ jmp(done);
duke@435 1847 }
duke@435 1848 }
duke@435 1849 __ bind(zero);
never@739 1850 __ xorptr(dst, dst);
duke@435 1851 __ jmp(done);
duke@435 1852 __ bind(one);
never@739 1853 __ movptr(dst, 1);
duke@435 1854 __ bind(done);
duke@435 1855 } else {
duke@435 1856 ShouldNotReachHere();
duke@435 1857 }
duke@435 1858
duke@435 1859 }
duke@435 1860
duke@435 1861
duke@435 1862 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
never@739 1863 if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
duke@435 1864 assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
duke@435 1865 assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
duke@435 1866 assert(op->new_value()->as_register_lo() == rbx, "wrong register");
duke@435 1867 assert(op->new_value()->as_register_hi() == rcx, "wrong register");
duke@435 1868 Register addr = op->addr()->as_register();
duke@435 1869 if (os::is_MP()) {
duke@435 1870 __ lock();
duke@435 1871 }
never@739 1872 NOT_LP64(__ cmpxchg8(Address(addr, 0)));
never@739 1873
never@739 1874 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
never@739 1875 NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
never@739 1876 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
duke@435 1877 Register newval = op->new_value()->as_register();
duke@435 1878 Register cmpval = op->cmp_value()->as_register();
duke@435 1879 assert(cmpval == rax, "wrong register");
duke@435 1880 assert(newval != NULL, "new val must be register");
duke@435 1881 assert(cmpval != newval, "cmp and new values must be in different registers");
duke@435 1882 assert(cmpval != addr, "cmp and addr must be in different registers");
duke@435 1883 assert(newval != addr, "new value and addr must be in different registers");
duke@435 1884 if (os::is_MP()) {
duke@435 1885 __ lock();
duke@435 1886 }
never@739 1887 if ( op->code() == lir_cas_obj) {
never@739 1888 __ cmpxchgptr(newval, Address(addr, 0));
never@739 1889 } else if (op->code() == lir_cas_int) {
never@739 1890 __ cmpxchgl(newval, Address(addr, 0));
never@739 1891 } else {
never@739 1892 LP64_ONLY(__ cmpxchgq(newval, Address(addr, 0)));
never@739 1893 }
never@739 1894 #ifdef _LP64
never@739 1895 } else if (op->code() == lir_cas_long) {
never@739 1896 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
never@739 1897 Register newval = op->new_value()->as_register_lo();
never@739 1898 Register cmpval = op->cmp_value()->as_register_lo();
never@739 1899 assert(cmpval == rax, "wrong register");
never@739 1900 assert(newval != NULL, "new val must be register");
never@739 1901 assert(cmpval != newval, "cmp and new values must be in different registers");
never@739 1902 assert(cmpval != addr, "cmp and addr must be in different registers");
never@739 1903 assert(newval != addr, "new value and addr must be in different registers");
never@739 1904 if (os::is_MP()) {
never@739 1905 __ lock();
never@739 1906 }
never@739 1907 __ cmpxchgq(newval, Address(addr, 0));
never@739 1908 #endif // _LP64
duke@435 1909 } else {
duke@435 1910 Unimplemented();
duke@435 1911 }
duke@435 1912 }
duke@435 1913
duke@435 1914
duke@435 1915 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
duke@435 1916 Assembler::Condition acond, ncond;
duke@435 1917 switch (condition) {
duke@435 1918 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break;
duke@435 1919 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break;
duke@435 1920 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break;
duke@435 1921 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break;
duke@435 1922 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break;
duke@435 1923 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break;
duke@435 1924 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break;
duke@435 1925 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break;
duke@435 1926 default: ShouldNotReachHere();
duke@435 1927 }
duke@435 1928
duke@435 1929 if (opr1->is_cpu_register()) {
duke@435 1930 reg2reg(opr1, result);
duke@435 1931 } else if (opr1->is_stack()) {
duke@435 1932 stack2reg(opr1, result, result->type());
duke@435 1933 } else if (opr1->is_constant()) {
duke@435 1934 const2reg(opr1, result, lir_patch_none, NULL);
duke@435 1935 } else {
duke@435 1936 ShouldNotReachHere();
duke@435 1937 }
duke@435 1938
duke@435 1939 if (VM_Version::supports_cmov() && !opr2->is_constant()) {
duke@435 1940 // optimized version that does not require a branch
duke@435 1941 if (opr2->is_single_cpu()) {
duke@435 1942 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
never@739 1943 __ cmov(ncond, result->as_register(), opr2->as_register());
duke@435 1944 } else if (opr2->is_double_cpu()) {
duke@435 1945 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
duke@435 1946 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
never@739 1947 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
never@739 1948 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
duke@435 1949 } else if (opr2->is_single_stack()) {
duke@435 1950 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 1951 } else if (opr2->is_double_stack()) {
never@739 1952 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
never@739 1953 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
duke@435 1954 } else {
duke@435 1955 ShouldNotReachHere();
duke@435 1956 }
duke@435 1957
duke@435 1958 } else {
duke@435 1959 Label skip;
duke@435 1960 __ jcc (acond, skip);
duke@435 1961 if (opr2->is_cpu_register()) {
duke@435 1962 reg2reg(opr2, result);
duke@435 1963 } else if (opr2->is_stack()) {
duke@435 1964 stack2reg(opr2, result, result->type());
duke@435 1965 } else if (opr2->is_constant()) {
duke@435 1966 const2reg(opr2, result, lir_patch_none, NULL);
duke@435 1967 } else {
duke@435 1968 ShouldNotReachHere();
duke@435 1969 }
duke@435 1970 __ bind(skip);
duke@435 1971 }
duke@435 1972 }
duke@435 1973
duke@435 1974
duke@435 1975 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
duke@435 1976 assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
duke@435 1977
duke@435 1978 if (left->is_single_cpu()) {
duke@435 1979 assert(left == dest, "left and dest must be equal");
duke@435 1980 Register lreg = left->as_register();
duke@435 1981
duke@435 1982 if (right->is_single_cpu()) {
duke@435 1983 // cpu register - cpu register
duke@435 1984 Register rreg = right->as_register();
duke@435 1985 switch (code) {
duke@435 1986 case lir_add: __ addl (lreg, rreg); break;
duke@435 1987 case lir_sub: __ subl (lreg, rreg); break;
duke@435 1988 case lir_mul: __ imull(lreg, rreg); break;
duke@435 1989 default: ShouldNotReachHere();
duke@435 1990 }
duke@435 1991
duke@435 1992 } else if (right->is_stack()) {
duke@435 1993 // cpu register - stack
duke@435 1994 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 1995 switch (code) {
duke@435 1996 case lir_add: __ addl(lreg, raddr); break;
duke@435 1997 case lir_sub: __ subl(lreg, raddr); break;
duke@435 1998 default: ShouldNotReachHere();
duke@435 1999 }
duke@435 2000
duke@435 2001 } else if (right->is_constant()) {
duke@435 2002 // cpu register - constant
duke@435 2003 jint c = right->as_constant_ptr()->as_jint();
duke@435 2004 switch (code) {
duke@435 2005 case lir_add: {
duke@435 2006 __ increment(lreg, c);
duke@435 2007 break;
duke@435 2008 }
duke@435 2009 case lir_sub: {
duke@435 2010 __ decrement(lreg, c);
duke@435 2011 break;
duke@435 2012 }
duke@435 2013 default: ShouldNotReachHere();
duke@435 2014 }
duke@435 2015
duke@435 2016 } else {
duke@435 2017 ShouldNotReachHere();
duke@435 2018 }
duke@435 2019
duke@435 2020 } else if (left->is_double_cpu()) {
duke@435 2021 assert(left == dest, "left and dest must be equal");
duke@435 2022 Register lreg_lo = left->as_register_lo();
duke@435 2023 Register lreg_hi = left->as_register_hi();
duke@435 2024
duke@435 2025 if (right->is_double_cpu()) {
duke@435 2026 // cpu register - cpu register
duke@435 2027 Register rreg_lo = right->as_register_lo();
duke@435 2028 Register rreg_hi = right->as_register_hi();
never@739 2029 NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
never@739 2030 LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
duke@435 2031 switch (code) {
duke@435 2032 case lir_add:
never@739 2033 __ addptr(lreg_lo, rreg_lo);
never@739 2034 NOT_LP64(__ adcl(lreg_hi, rreg_hi));
duke@435 2035 break;
duke@435 2036 case lir_sub:
never@739 2037 __ subptr(lreg_lo, rreg_lo);
never@739 2038 NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
duke@435 2039 break;
duke@435 2040 case lir_mul:
never@739 2041 #ifdef _LP64
never@739 2042 __ imulq(lreg_lo, rreg_lo);
never@739 2043 #else
duke@435 2044 assert(lreg_lo == rax && lreg_hi == rdx, "must be");
duke@435 2045 __ imull(lreg_hi, rreg_lo);
duke@435 2046 __ imull(rreg_hi, lreg_lo);
duke@435 2047 __ addl (rreg_hi, lreg_hi);
duke@435 2048 __ mull (rreg_lo);
duke@435 2049 __ addl (lreg_hi, rreg_hi);
never@739 2050 #endif // _LP64
duke@435 2051 break;
duke@435 2052 default:
duke@435 2053 ShouldNotReachHere();
duke@435 2054 }
duke@435 2055
duke@435 2056 } else if (right->is_constant()) {
duke@435 2057 // cpu register - constant
never@739 2058 #ifdef _LP64
never@739 2059 jlong c = right->as_constant_ptr()->as_jlong_bits();
never@739 2060 __ movptr(r10, (intptr_t) c);
never@739 2061 switch (code) {
never@739 2062 case lir_add:
never@739 2063 __ addptr(lreg_lo, r10);
never@739 2064 break;
never@739 2065 case lir_sub:
never@739 2066 __ subptr(lreg_lo, r10);
never@739 2067 break;
never@739 2068 default:
never@739 2069 ShouldNotReachHere();
never@739 2070 }
never@739 2071 #else
duke@435 2072 jint c_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2073 jint c_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2074 switch (code) {
duke@435 2075 case lir_add:
never@739 2076 __ addptr(lreg_lo, c_lo);
duke@435 2077 __ adcl(lreg_hi, c_hi);
duke@435 2078 break;
duke@435 2079 case lir_sub:
never@739 2080 __ subptr(lreg_lo, c_lo);
duke@435 2081 __ sbbl(lreg_hi, c_hi);
duke@435 2082 break;
duke@435 2083 default:
duke@435 2084 ShouldNotReachHere();
duke@435 2085 }
never@739 2086 #endif // _LP64
duke@435 2087
duke@435 2088 } else {
duke@435 2089 ShouldNotReachHere();
duke@435 2090 }
duke@435 2091
duke@435 2092 } else if (left->is_single_xmm()) {
duke@435 2093 assert(left == dest, "left and dest must be equal");
duke@435 2094 XMMRegister lreg = left->as_xmm_float_reg();
duke@435 2095
duke@435 2096 if (right->is_single_xmm()) {
duke@435 2097 XMMRegister rreg = right->as_xmm_float_reg();
duke@435 2098 switch (code) {
duke@435 2099 case lir_add: __ addss(lreg, rreg); break;
duke@435 2100 case lir_sub: __ subss(lreg, rreg); break;
duke@435 2101 case lir_mul_strictfp: // fall through
duke@435 2102 case lir_mul: __ mulss(lreg, rreg); break;
duke@435 2103 case lir_div_strictfp: // fall through
duke@435 2104 case lir_div: __ divss(lreg, rreg); break;
duke@435 2105 default: ShouldNotReachHere();
duke@435 2106 }
duke@435 2107 } else {
duke@435 2108 Address raddr;
duke@435 2109 if (right->is_single_stack()) {
duke@435 2110 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2111 } else if (right->is_constant()) {
duke@435 2112 // hack for now
duke@435 2113 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
duke@435 2114 } else {
duke@435 2115 ShouldNotReachHere();
duke@435 2116 }
duke@435 2117 switch (code) {
duke@435 2118 case lir_add: __ addss(lreg, raddr); break;
duke@435 2119 case lir_sub: __ subss(lreg, raddr); break;
duke@435 2120 case lir_mul_strictfp: // fall through
duke@435 2121 case lir_mul: __ mulss(lreg, raddr); break;
duke@435 2122 case lir_div_strictfp: // fall through
duke@435 2123 case lir_div: __ divss(lreg, raddr); break;
duke@435 2124 default: ShouldNotReachHere();
duke@435 2125 }
duke@435 2126 }
duke@435 2127
duke@435 2128 } else if (left->is_double_xmm()) {
duke@435 2129 assert(left == dest, "left and dest must be equal");
duke@435 2130
duke@435 2131 XMMRegister lreg = left->as_xmm_double_reg();
duke@435 2132 if (right->is_double_xmm()) {
duke@435 2133 XMMRegister rreg = right->as_xmm_double_reg();
duke@435 2134 switch (code) {
duke@435 2135 case lir_add: __ addsd(lreg, rreg); break;
duke@435 2136 case lir_sub: __ subsd(lreg, rreg); break;
duke@435 2137 case lir_mul_strictfp: // fall through
duke@435 2138 case lir_mul: __ mulsd(lreg, rreg); break;
duke@435 2139 case lir_div_strictfp: // fall through
duke@435 2140 case lir_div: __ divsd(lreg, rreg); break;
duke@435 2141 default: ShouldNotReachHere();
duke@435 2142 }
duke@435 2143 } else {
duke@435 2144 Address raddr;
duke@435 2145 if (right->is_double_stack()) {
duke@435 2146 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2147 } else if (right->is_constant()) {
duke@435 2148 // hack for now
duke@435 2149 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2150 } else {
duke@435 2151 ShouldNotReachHere();
duke@435 2152 }
duke@435 2153 switch (code) {
duke@435 2154 case lir_add: __ addsd(lreg, raddr); break;
duke@435 2155 case lir_sub: __ subsd(lreg, raddr); break;
duke@435 2156 case lir_mul_strictfp: // fall through
duke@435 2157 case lir_mul: __ mulsd(lreg, raddr); break;
duke@435 2158 case lir_div_strictfp: // fall through
duke@435 2159 case lir_div: __ divsd(lreg, raddr); break;
duke@435 2160 default: ShouldNotReachHere();
duke@435 2161 }
duke@435 2162 }
duke@435 2163
duke@435 2164 } else if (left->is_single_fpu()) {
duke@435 2165 assert(dest->is_single_fpu(), "fpu stack allocation required");
duke@435 2166
duke@435 2167 if (right->is_single_fpu()) {
duke@435 2168 arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
duke@435 2169
duke@435 2170 } else {
duke@435 2171 assert(left->fpu_regnr() == 0, "left must be on TOS");
duke@435 2172 assert(dest->fpu_regnr() == 0, "dest must be on TOS");
duke@435 2173
duke@435 2174 Address raddr;
duke@435 2175 if (right->is_single_stack()) {
duke@435 2176 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2177 } else if (right->is_constant()) {
duke@435 2178 address const_addr = float_constant(right->as_jfloat());
duke@435 2179 assert(const_addr != NULL, "incorrect float/double constant maintainance");
duke@435 2180 // hack for now
duke@435 2181 raddr = __ as_Address(InternalAddress(const_addr));
duke@435 2182 } else {
duke@435 2183 ShouldNotReachHere();
duke@435 2184 }
duke@435 2185
duke@435 2186 switch (code) {
duke@435 2187 case lir_add: __ fadd_s(raddr); break;
duke@435 2188 case lir_sub: __ fsub_s(raddr); break;
duke@435 2189 case lir_mul_strictfp: // fall through
duke@435 2190 case lir_mul: __ fmul_s(raddr); break;
duke@435 2191 case lir_div_strictfp: // fall through
duke@435 2192 case lir_div: __ fdiv_s(raddr); break;
duke@435 2193 default: ShouldNotReachHere();
duke@435 2194 }
duke@435 2195 }
duke@435 2196
duke@435 2197 } else if (left->is_double_fpu()) {
duke@435 2198 assert(dest->is_double_fpu(), "fpu stack allocation required");
duke@435 2199
duke@435 2200 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2201 // Double values require special handling for strictfp mul/div on x86
duke@435 2202 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
duke@435 2203 __ fmulp(left->fpu_regnrLo() + 1);
duke@435 2204 }
duke@435 2205
duke@435 2206 if (right->is_double_fpu()) {
duke@435 2207 arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
duke@435 2208
duke@435 2209 } else {
duke@435 2210 assert(left->fpu_regnrLo() == 0, "left must be on TOS");
duke@435 2211 assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
duke@435 2212
duke@435 2213 Address raddr;
duke@435 2214 if (right->is_double_stack()) {
duke@435 2215 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2216 } else if (right->is_constant()) {
duke@435 2217 // hack for now
duke@435 2218 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2219 } else {
duke@435 2220 ShouldNotReachHere();
duke@435 2221 }
duke@435 2222
duke@435 2223 switch (code) {
duke@435 2224 case lir_add: __ fadd_d(raddr); break;
duke@435 2225 case lir_sub: __ fsub_d(raddr); break;
duke@435 2226 case lir_mul_strictfp: // fall through
duke@435 2227 case lir_mul: __ fmul_d(raddr); break;
duke@435 2228 case lir_div_strictfp: // fall through
duke@435 2229 case lir_div: __ fdiv_d(raddr); break;
duke@435 2230 default: ShouldNotReachHere();
duke@435 2231 }
duke@435 2232 }
duke@435 2233
duke@435 2234 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2235 // Double values require special handling for strictfp mul/div on x86
duke@435 2236 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
duke@435 2237 __ fmulp(dest->fpu_regnrLo() + 1);
duke@435 2238 }
duke@435 2239
duke@435 2240 } else if (left->is_single_stack() || left->is_address()) {
duke@435 2241 assert(left == dest, "left and dest must be equal");
duke@435 2242
duke@435 2243 Address laddr;
duke@435 2244 if (left->is_single_stack()) {
duke@435 2245 laddr = frame_map()->address_for_slot(left->single_stack_ix());
duke@435 2246 } else if (left->is_address()) {
duke@435 2247 laddr = as_Address(left->as_address_ptr());
duke@435 2248 } else {
duke@435 2249 ShouldNotReachHere();
duke@435 2250 }
duke@435 2251
duke@435 2252 if (right->is_single_cpu()) {
duke@435 2253 Register rreg = right->as_register();
duke@435 2254 switch (code) {
duke@435 2255 case lir_add: __ addl(laddr, rreg); break;
duke@435 2256 case lir_sub: __ subl(laddr, rreg); break;
duke@435 2257 default: ShouldNotReachHere();
duke@435 2258 }
duke@435 2259 } else if (right->is_constant()) {
duke@435 2260 jint c = right->as_constant_ptr()->as_jint();
duke@435 2261 switch (code) {
duke@435 2262 case lir_add: {
never@739 2263 __ incrementl(laddr, c);
duke@435 2264 break;
duke@435 2265 }
duke@435 2266 case lir_sub: {
never@739 2267 __ decrementl(laddr, c);
duke@435 2268 break;
duke@435 2269 }
duke@435 2270 default: ShouldNotReachHere();
duke@435 2271 }
duke@435 2272 } else {
duke@435 2273 ShouldNotReachHere();
duke@435 2274 }
duke@435 2275
duke@435 2276 } else {
duke@435 2277 ShouldNotReachHere();
duke@435 2278 }
duke@435 2279 }
duke@435 2280
duke@435 2281 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
duke@435 2282 assert(pop_fpu_stack || (left_index == dest_index || right_index == dest_index), "invalid LIR");
duke@435 2283 assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
duke@435 2284 assert(left_index == 0 || right_index == 0, "either must be on top of stack");
duke@435 2285
duke@435 2286 bool left_is_tos = (left_index == 0);
duke@435 2287 bool dest_is_tos = (dest_index == 0);
duke@435 2288 int non_tos_index = (left_is_tos ? right_index : left_index);
duke@435 2289
duke@435 2290 switch (code) {
duke@435 2291 case lir_add:
duke@435 2292 if (pop_fpu_stack) __ faddp(non_tos_index);
duke@435 2293 else if (dest_is_tos) __ fadd (non_tos_index);
duke@435 2294 else __ fadda(non_tos_index);
duke@435 2295 break;
duke@435 2296
duke@435 2297 case lir_sub:
duke@435 2298 if (left_is_tos) {
duke@435 2299 if (pop_fpu_stack) __ fsubrp(non_tos_index);
duke@435 2300 else if (dest_is_tos) __ fsub (non_tos_index);
duke@435 2301 else __ fsubra(non_tos_index);
duke@435 2302 } else {
duke@435 2303 if (pop_fpu_stack) __ fsubp (non_tos_index);
duke@435 2304 else if (dest_is_tos) __ fsubr (non_tos_index);
duke@435 2305 else __ fsuba (non_tos_index);
duke@435 2306 }
duke@435 2307 break;
duke@435 2308
duke@435 2309 case lir_mul_strictfp: // fall through
duke@435 2310 case lir_mul:
duke@435 2311 if (pop_fpu_stack) __ fmulp(non_tos_index);
duke@435 2312 else if (dest_is_tos) __ fmul (non_tos_index);
duke@435 2313 else __ fmula(non_tos_index);
duke@435 2314 break;
duke@435 2315
duke@435 2316 case lir_div_strictfp: // fall through
duke@435 2317 case lir_div:
duke@435 2318 if (left_is_tos) {
duke@435 2319 if (pop_fpu_stack) __ fdivrp(non_tos_index);
duke@435 2320 else if (dest_is_tos) __ fdiv (non_tos_index);
duke@435 2321 else __ fdivra(non_tos_index);
duke@435 2322 } else {
duke@435 2323 if (pop_fpu_stack) __ fdivp (non_tos_index);
duke@435 2324 else if (dest_is_tos) __ fdivr (non_tos_index);
duke@435 2325 else __ fdiva (non_tos_index);
duke@435 2326 }
duke@435 2327 break;
duke@435 2328
duke@435 2329 case lir_rem:
duke@435 2330 assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
duke@435 2331 __ fremr(noreg);
duke@435 2332 break;
duke@435 2333
duke@435 2334 default:
duke@435 2335 ShouldNotReachHere();
duke@435 2336 }
duke@435 2337 }
duke@435 2338
duke@435 2339
duke@435 2340 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
duke@435 2341 if (value->is_double_xmm()) {
duke@435 2342 switch(code) {
duke@435 2343 case lir_abs :
duke@435 2344 {
duke@435 2345 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
duke@435 2346 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
duke@435 2347 }
duke@435 2348 __ andpd(dest->as_xmm_double_reg(),
duke@435 2349 ExternalAddress((address)double_signmask_pool));
duke@435 2350 }
duke@435 2351 break;
duke@435 2352
duke@435 2353 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
duke@435 2354 // all other intrinsics are not available in the SSE instruction set, so FPU is used
duke@435 2355 default : ShouldNotReachHere();
duke@435 2356 }
duke@435 2357
duke@435 2358 } else if (value->is_double_fpu()) {
duke@435 2359 assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
duke@435 2360 switch(code) {
duke@435 2361 case lir_log : __ flog() ; break;
duke@435 2362 case lir_log10 : __ flog10() ; break;
duke@435 2363 case lir_abs : __ fabs() ; break;
duke@435 2364 case lir_sqrt : __ fsqrt(); break;
duke@435 2365 case lir_sin :
duke@435 2366 // Should consider not saving rbx, if not necessary
duke@435 2367 __ trigfunc('s', op->as_Op2()->fpu_stack_size());
duke@435 2368 break;
duke@435 2369 case lir_cos :
duke@435 2370 // Should consider not saving rbx, if not necessary
duke@435 2371 assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
duke@435 2372 __ trigfunc('c', op->as_Op2()->fpu_stack_size());
duke@435 2373 break;
duke@435 2374 case lir_tan :
duke@435 2375 // Should consider not saving rbx, if not necessary
duke@435 2376 __ trigfunc('t', op->as_Op2()->fpu_stack_size());
duke@435 2377 break;
duke@435 2378 default : ShouldNotReachHere();
duke@435 2379 }
duke@435 2380 } else {
duke@435 2381 Unimplemented();
duke@435 2382 }
duke@435 2383 }
duke@435 2384
duke@435 2385 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
duke@435 2386 // assert(left->destroys_register(), "check");
duke@435 2387 if (left->is_single_cpu()) {
duke@435 2388 Register reg = left->as_register();
duke@435 2389 if (right->is_constant()) {
duke@435 2390 int val = right->as_constant_ptr()->as_jint();
duke@435 2391 switch (code) {
duke@435 2392 case lir_logic_and: __ andl (reg, val); break;
duke@435 2393 case lir_logic_or: __ orl (reg, val); break;
duke@435 2394 case lir_logic_xor: __ xorl (reg, val); break;
duke@435 2395 default: ShouldNotReachHere();
duke@435 2396 }
duke@435 2397 } else if (right->is_stack()) {
duke@435 2398 // added support for stack operands
duke@435 2399 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2400 switch (code) {
duke@435 2401 case lir_logic_and: __ andl (reg, raddr); break;
duke@435 2402 case lir_logic_or: __ orl (reg, raddr); break;
duke@435 2403 case lir_logic_xor: __ xorl (reg, raddr); break;
duke@435 2404 default: ShouldNotReachHere();
duke@435 2405 }
duke@435 2406 } else {
duke@435 2407 Register rright = right->as_register();
duke@435 2408 switch (code) {
never@739 2409 case lir_logic_and: __ andptr (reg, rright); break;
never@739 2410 case lir_logic_or : __ orptr (reg, rright); break;
never@739 2411 case lir_logic_xor: __ xorptr (reg, rright); break;
duke@435 2412 default: ShouldNotReachHere();
duke@435 2413 }
duke@435 2414 }
duke@435 2415 move_regs(reg, dst->as_register());
duke@435 2416 } else {
duke@435 2417 Register l_lo = left->as_register_lo();
duke@435 2418 Register l_hi = left->as_register_hi();
duke@435 2419 if (right->is_constant()) {
never@739 2420 #ifdef _LP64
never@739 2421 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
never@739 2422 switch (code) {
never@739 2423 case lir_logic_and:
never@739 2424 __ andq(l_lo, rscratch1);
never@739 2425 break;
never@739 2426 case lir_logic_or:
never@739 2427 __ orq(l_lo, rscratch1);
never@739 2428 break;
never@739 2429 case lir_logic_xor:
never@739 2430 __ xorq(l_lo, rscratch1);
never@739 2431 break;
never@739 2432 default: ShouldNotReachHere();
never@739 2433 }
never@739 2434 #else
duke@435 2435 int r_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2436 int r_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2437 switch (code) {
duke@435 2438 case lir_logic_and:
duke@435 2439 __ andl(l_lo, r_lo);
duke@435 2440 __ andl(l_hi, r_hi);
duke@435 2441 break;
duke@435 2442 case lir_logic_or:
duke@435 2443 __ orl(l_lo, r_lo);
duke@435 2444 __ orl(l_hi, r_hi);
duke@435 2445 break;
duke@435 2446 case lir_logic_xor:
duke@435 2447 __ xorl(l_lo, r_lo);
duke@435 2448 __ xorl(l_hi, r_hi);
duke@435 2449 break;
duke@435 2450 default: ShouldNotReachHere();
duke@435 2451 }
never@739 2452 #endif // _LP64
duke@435 2453 } else {
duke@435 2454 Register r_lo = right->as_register_lo();
duke@435 2455 Register r_hi = right->as_register_hi();
duke@435 2456 assert(l_lo != r_hi, "overwriting registers");
duke@435 2457 switch (code) {
duke@435 2458 case lir_logic_and:
never@739 2459 __ andptr(l_lo, r_lo);
never@739 2460 NOT_LP64(__ andptr(l_hi, r_hi);)
duke@435 2461 break;
duke@435 2462 case lir_logic_or:
never@739 2463 __ orptr(l_lo, r_lo);
never@739 2464 NOT_LP64(__ orptr(l_hi, r_hi);)
duke@435 2465 break;
duke@435 2466 case lir_logic_xor:
never@739 2467 __ xorptr(l_lo, r_lo);
never@739 2468 NOT_LP64(__ xorptr(l_hi, r_hi);)
duke@435 2469 break;
duke@435 2470 default: ShouldNotReachHere();
duke@435 2471 }
duke@435 2472 }
duke@435 2473
duke@435 2474 Register dst_lo = dst->as_register_lo();
duke@435 2475 Register dst_hi = dst->as_register_hi();
duke@435 2476
never@739 2477 #ifdef _LP64
never@739 2478 move_regs(l_lo, dst_lo);
never@739 2479 #else
duke@435 2480 if (dst_lo == l_hi) {
duke@435 2481 assert(dst_hi != l_lo, "overwriting registers");
duke@435 2482 move_regs(l_hi, dst_hi);
duke@435 2483 move_regs(l_lo, dst_lo);
duke@435 2484 } else {
duke@435 2485 assert(dst_lo != l_hi, "overwriting registers");
duke@435 2486 move_regs(l_lo, dst_lo);
duke@435 2487 move_regs(l_hi, dst_hi);
duke@435 2488 }
never@739 2489 #endif // _LP64
duke@435 2490 }
duke@435 2491 }
duke@435 2492
duke@435 2493
duke@435 2494 // we assume that rax, and rdx can be overwritten
duke@435 2495 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
duke@435 2496
duke@435 2497 assert(left->is_single_cpu(), "left must be register");
duke@435 2498 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant");
duke@435 2499 assert(result->is_single_cpu(), "result must be register");
duke@435 2500
duke@435 2501 // assert(left->destroys_register(), "check");
duke@435 2502 // assert(right->destroys_register(), "check");
duke@435 2503
duke@435 2504 Register lreg = left->as_register();
duke@435 2505 Register dreg = result->as_register();
duke@435 2506
duke@435 2507 if (right->is_constant()) {
duke@435 2508 int divisor = right->as_constant_ptr()->as_jint();
duke@435 2509 assert(divisor > 0 && is_power_of_2(divisor), "must be");
duke@435 2510 if (code == lir_idiv) {
duke@435 2511 assert(lreg == rax, "must be rax,");
duke@435 2512 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2513 __ cdql(); // sign extend into rdx:rax
duke@435 2514 if (divisor == 2) {
duke@435 2515 __ subl(lreg, rdx);
duke@435 2516 } else {
duke@435 2517 __ andl(rdx, divisor - 1);
duke@435 2518 __ addl(lreg, rdx);
duke@435 2519 }
duke@435 2520 __ sarl(lreg, log2_intptr(divisor));
duke@435 2521 move_regs(lreg, dreg);
duke@435 2522 } else if (code == lir_irem) {
duke@435 2523 Label done;
never@739 2524 __ mov(dreg, lreg);
duke@435 2525 __ andl(dreg, 0x80000000 | (divisor - 1));
duke@435 2526 __ jcc(Assembler::positive, done);
duke@435 2527 __ decrement(dreg);
duke@435 2528 __ orl(dreg, ~(divisor - 1));
duke@435 2529 __ increment(dreg);
duke@435 2530 __ bind(done);
duke@435 2531 } else {
duke@435 2532 ShouldNotReachHere();
duke@435 2533 }
duke@435 2534 } else {
duke@435 2535 Register rreg = right->as_register();
duke@435 2536 assert(lreg == rax, "left register must be rax,");
duke@435 2537 assert(rreg != rdx, "right register must not be rdx");
duke@435 2538 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2539
duke@435 2540 move_regs(lreg, rax);
duke@435 2541
duke@435 2542 int idivl_offset = __ corrected_idivl(rreg);
duke@435 2543 add_debug_info_for_div0(idivl_offset, info);
duke@435 2544 if (code == lir_irem) {
duke@435 2545 move_regs(rdx, dreg); // result is in rdx
duke@435 2546 } else {
duke@435 2547 move_regs(rax, dreg);
duke@435 2548 }
duke@435 2549 }
duke@435 2550 }
duke@435 2551
duke@435 2552
duke@435 2553 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
duke@435 2554 if (opr1->is_single_cpu()) {
duke@435 2555 Register reg1 = opr1->as_register();
duke@435 2556 if (opr2->is_single_cpu()) {
duke@435 2557 // cpu register - cpu register
never@739 2558 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2559 __ cmpptr(reg1, opr2->as_register());
never@739 2560 } else {
never@739 2561 assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
never@739 2562 __ cmpl(reg1, opr2->as_register());
never@739 2563 }
duke@435 2564 } else if (opr2->is_stack()) {
duke@435 2565 // cpu register - stack
never@739 2566 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2567 __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2568 } else {
never@739 2569 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2570 }
duke@435 2571 } else if (opr2->is_constant()) {
duke@435 2572 // cpu register - constant
duke@435 2573 LIR_Const* c = opr2->as_constant_ptr();
duke@435 2574 if (c->type() == T_INT) {
duke@435 2575 __ cmpl(reg1, c->as_jint());
never@739 2576 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2577 // In 64bit oops are single register
duke@435 2578 jobject o = c->as_jobject();
duke@435 2579 if (o == NULL) {
never@739 2580 __ cmpptr(reg1, (int32_t)NULL_WORD);
duke@435 2581 } else {
never@739 2582 #ifdef _LP64
never@739 2583 __ movoop(rscratch1, o);
never@739 2584 __ cmpptr(reg1, rscratch1);
never@739 2585 #else
duke@435 2586 __ cmpoop(reg1, c->as_jobject());
never@739 2587 #endif // _LP64
duke@435 2588 }
duke@435 2589 } else {
duke@435 2590 ShouldNotReachHere();
duke@435 2591 }
duke@435 2592 // cpu register - address
duke@435 2593 } else if (opr2->is_address()) {
duke@435 2594 if (op->info() != NULL) {
duke@435 2595 add_debug_info_for_null_check_here(op->info());
duke@435 2596 }
duke@435 2597 __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2598 } else {
duke@435 2599 ShouldNotReachHere();
duke@435 2600 }
duke@435 2601
duke@435 2602 } else if(opr1->is_double_cpu()) {
duke@435 2603 Register xlo = opr1->as_register_lo();
duke@435 2604 Register xhi = opr1->as_register_hi();
duke@435 2605 if (opr2->is_double_cpu()) {
never@739 2606 #ifdef _LP64
never@739 2607 __ cmpptr(xlo, opr2->as_register_lo());
never@739 2608 #else
duke@435 2609 // cpu register - cpu register
duke@435 2610 Register ylo = opr2->as_register_lo();
duke@435 2611 Register yhi = opr2->as_register_hi();
duke@435 2612 __ subl(xlo, ylo);
duke@435 2613 __ sbbl(xhi, yhi);
duke@435 2614 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
duke@435 2615 __ orl(xhi, xlo);
duke@435 2616 }
never@739 2617 #endif // _LP64
duke@435 2618 } else if (opr2->is_constant()) {
duke@435 2619 // cpu register - constant 0
duke@435 2620 assert(opr2->as_jlong() == (jlong)0, "only handles zero");
never@739 2621 #ifdef _LP64
never@739 2622 __ cmpptr(xlo, (int32_t)opr2->as_jlong());
never@739 2623 #else
duke@435 2624 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
duke@435 2625 __ orl(xhi, xlo);
never@739 2626 #endif // _LP64
duke@435 2627 } else {
duke@435 2628 ShouldNotReachHere();
duke@435 2629 }
duke@435 2630
duke@435 2631 } else if (opr1->is_single_xmm()) {
duke@435 2632 XMMRegister reg1 = opr1->as_xmm_float_reg();
duke@435 2633 if (opr2->is_single_xmm()) {
duke@435 2634 // xmm register - xmm register
duke@435 2635 __ ucomiss(reg1, opr2->as_xmm_float_reg());
duke@435 2636 } else if (opr2->is_stack()) {
duke@435 2637 // xmm register - stack
duke@435 2638 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2639 } else if (opr2->is_constant()) {
duke@435 2640 // xmm register - constant
duke@435 2641 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
duke@435 2642 } else if (opr2->is_address()) {
duke@435 2643 // xmm register - address
duke@435 2644 if (op->info() != NULL) {
duke@435 2645 add_debug_info_for_null_check_here(op->info());
duke@435 2646 }
duke@435 2647 __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2648 } else {
duke@435 2649 ShouldNotReachHere();
duke@435 2650 }
duke@435 2651
duke@435 2652 } else if (opr1->is_double_xmm()) {
duke@435 2653 XMMRegister reg1 = opr1->as_xmm_double_reg();
duke@435 2654 if (opr2->is_double_xmm()) {
duke@435 2655 // xmm register - xmm register
duke@435 2656 __ ucomisd(reg1, opr2->as_xmm_double_reg());
duke@435 2657 } else if (opr2->is_stack()) {
duke@435 2658 // xmm register - stack
duke@435 2659 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
duke@435 2660 } else if (opr2->is_constant()) {
duke@435 2661 // xmm register - constant
duke@435 2662 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
duke@435 2663 } else if (opr2->is_address()) {
duke@435 2664 // xmm register - address
duke@435 2665 if (op->info() != NULL) {
duke@435 2666 add_debug_info_for_null_check_here(op->info());
duke@435 2667 }
duke@435 2668 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
duke@435 2669 } else {
duke@435 2670 ShouldNotReachHere();
duke@435 2671 }
duke@435 2672
duke@435 2673 } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
duke@435 2674 assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
duke@435 2675 assert(opr2->is_fpu_register(), "both must be registers");
duke@435 2676 __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2677
duke@435 2678 } else if (opr1->is_address() && opr2->is_constant()) {
never@739 2679 LIR_Const* c = opr2->as_constant_ptr();
never@739 2680 #ifdef _LP64
never@739 2681 if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2682 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
never@739 2683 __ movoop(rscratch1, c->as_jobject());
never@739 2684 }
never@739 2685 #endif // LP64
duke@435 2686 if (op->info() != NULL) {
duke@435 2687 add_debug_info_for_null_check_here(op->info());
duke@435 2688 }
duke@435 2689 // special case: address - constant
duke@435 2690 LIR_Address* addr = opr1->as_address_ptr();
duke@435 2691 if (c->type() == T_INT) {
duke@435 2692 __ cmpl(as_Address(addr), c->as_jint());
never@739 2693 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2694 #ifdef _LP64
never@739 2695 // %%% Make this explode if addr isn't reachable until we figure out a
never@739 2696 // better strategy by giving noreg as the temp for as_Address
never@739 2697 __ cmpptr(rscratch1, as_Address(addr, noreg));
never@739 2698 #else
duke@435 2699 __ cmpoop(as_Address(addr), c->as_jobject());
never@739 2700 #endif // _LP64
duke@435 2701 } else {
duke@435 2702 ShouldNotReachHere();
duke@435 2703 }
duke@435 2704
duke@435 2705 } else {
duke@435 2706 ShouldNotReachHere();
duke@435 2707 }
duke@435 2708 }
duke@435 2709
duke@435 2710 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
duke@435 2711 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
duke@435 2712 if (left->is_single_xmm()) {
duke@435 2713 assert(right->is_single_xmm(), "must match");
duke@435 2714 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2715 } else if (left->is_double_xmm()) {
duke@435 2716 assert(right->is_double_xmm(), "must match");
duke@435 2717 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2718
duke@435 2719 } else {
duke@435 2720 assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
duke@435 2721 assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
duke@435 2722
duke@435 2723 assert(left->fpu() == 0, "left must be on TOS");
duke@435 2724 __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
duke@435 2725 op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2726 }
duke@435 2727 } else {
duke@435 2728 assert(code == lir_cmp_l2i, "check");
never@739 2729 #ifdef _LP64
never@739 2730 Register dest = dst->as_register();
never@739 2731 __ xorptr(dest, dest);
never@739 2732 Label high, done;
never@739 2733 __ cmpptr(left->as_register_lo(), right->as_register_lo());
never@739 2734 __ jcc(Assembler::equal, done);
never@739 2735 __ jcc(Assembler::greater, high);
never@739 2736 __ decrement(dest);
never@739 2737 __ jmp(done);
never@739 2738 __ bind(high);
never@739 2739 __ increment(dest);
never@739 2740
never@739 2741 __ bind(done);
never@739 2742
never@739 2743 #else
duke@435 2744 __ lcmp2int(left->as_register_hi(),
duke@435 2745 left->as_register_lo(),
duke@435 2746 right->as_register_hi(),
duke@435 2747 right->as_register_lo());
duke@435 2748 move_regs(left->as_register_hi(), dst->as_register());
never@739 2749 #endif // _LP64
duke@435 2750 }
duke@435 2751 }
duke@435 2752
duke@435 2753
duke@435 2754 void LIR_Assembler::align_call(LIR_Code code) {
duke@435 2755 if (os::is_MP()) {
duke@435 2756 // make sure that the displacement word of the call ends up word aligned
duke@435 2757 int offset = __ offset();
duke@435 2758 switch (code) {
duke@435 2759 case lir_static_call:
duke@435 2760 case lir_optvirtual_call:
duke@435 2761 offset += NativeCall::displacement_offset;
duke@435 2762 break;
duke@435 2763 case lir_icvirtual_call:
duke@435 2764 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
duke@435 2765 break;
duke@435 2766 case lir_virtual_call: // currently, sparc-specific for niagara
duke@435 2767 default: ShouldNotReachHere();
duke@435 2768 }
duke@435 2769 while (offset++ % BytesPerWord != 0) {
duke@435 2770 __ nop();
duke@435 2771 }
duke@435 2772 }
duke@435 2773 }
duke@435 2774
duke@435 2775
duke@435 2776 void LIR_Assembler::call(address entry, relocInfo::relocType rtype, CodeEmitInfo* info) {
duke@435 2777 assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2778 "must be aligned");
duke@435 2779 __ call(AddressLiteral(entry, rtype));
duke@435 2780 add_call_info(code_offset(), info);
duke@435 2781 }
duke@435 2782
duke@435 2783
duke@435 2784 void LIR_Assembler::ic_call(address entry, CodeEmitInfo* info) {
duke@435 2785 RelocationHolder rh = virtual_call_Relocation::spec(pc());
duke@435 2786 __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
duke@435 2787 assert(!os::is_MP() ||
duke@435 2788 (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2789 "must be aligned");
duke@435 2790 __ call(AddressLiteral(entry, rh));
duke@435 2791 add_call_info(code_offset(), info);
duke@435 2792 }
duke@435 2793
duke@435 2794
duke@435 2795 /* Currently, vtable-dispatch is only enabled for sparc platforms */
duke@435 2796 void LIR_Assembler::vtable_call(int vtable_offset, CodeEmitInfo* info) {
duke@435 2797 ShouldNotReachHere();
duke@435 2798 }
duke@435 2799
duke@435 2800 void LIR_Assembler::emit_static_call_stub() {
duke@435 2801 address call_pc = __ pc();
duke@435 2802 address stub = __ start_a_stub(call_stub_size);
duke@435 2803 if (stub == NULL) {
duke@435 2804 bailout("static call stub overflow");
duke@435 2805 return;
duke@435 2806 }
duke@435 2807
duke@435 2808 int start = __ offset();
duke@435 2809 if (os::is_MP()) {
duke@435 2810 // make sure that the displacement word of the call ends up word aligned
duke@435 2811 int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
duke@435 2812 while (offset++ % BytesPerWord != 0) {
duke@435 2813 __ nop();
duke@435 2814 }
duke@435 2815 }
duke@435 2816 __ relocate(static_stub_Relocation::spec(call_pc));
duke@435 2817 __ movoop(rbx, (jobject)NULL);
duke@435 2818 // must be set to -1 at code generation time
duke@435 2819 assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
never@739 2820 // On 64bit this will die since it will take a movq & jmp, must be only a jmp
never@739 2821 __ jump(RuntimeAddress(__ pc()));
duke@435 2822
duke@435 2823 assert(__ offset() - start <= call_stub_size, "stub too big")
duke@435 2824 __ end_a_stub();
duke@435 2825 }
duke@435 2826
duke@435 2827
duke@435 2828 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info, bool unwind) {
duke@435 2829 assert(exceptionOop->as_register() == rax, "must match");
duke@435 2830 assert(unwind || exceptionPC->as_register() == rdx, "must match");
duke@435 2831
duke@435 2832 // exception object is not added to oop map by LinearScan
duke@435 2833 // (LinearScan assumes that no oops are in fixed registers)
duke@435 2834 info->add_register_oop(exceptionOop);
duke@435 2835 Runtime1::StubID unwind_id;
duke@435 2836
duke@435 2837 if (!unwind) {
duke@435 2838 // get current pc information
duke@435 2839 // pc is only needed if the method has an exception handler, the unwind code does not need it.
duke@435 2840 int pc_for_athrow_offset = __ offset();
duke@435 2841 InternalAddress pc_for_athrow(__ pc());
duke@435 2842 __ lea(exceptionPC->as_register(), pc_for_athrow);
duke@435 2843 add_call_info(pc_for_athrow_offset, info); // for exception handler
duke@435 2844
duke@435 2845 __ verify_not_null_oop(rax);
duke@435 2846 // search an exception handler (rax: exception oop, rdx: throwing pc)
duke@435 2847 if (compilation()->has_fpu_code()) {
duke@435 2848 unwind_id = Runtime1::handle_exception_id;
duke@435 2849 } else {
duke@435 2850 unwind_id = Runtime1::handle_exception_nofpu_id;
duke@435 2851 }
duke@435 2852 } else {
duke@435 2853 unwind_id = Runtime1::unwind_exception_id;
duke@435 2854 }
duke@435 2855 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
duke@435 2856
duke@435 2857 // enough room for two byte trap
duke@435 2858 __ nop();
duke@435 2859 }
duke@435 2860
duke@435 2861
duke@435 2862 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
duke@435 2863
duke@435 2864 // optimized version for linear scan:
duke@435 2865 // * count must be already in ECX (guaranteed by LinearScan)
duke@435 2866 // * left and dest must be equal
duke@435 2867 // * tmp must be unused
duke@435 2868 assert(count->as_register() == SHIFT_count, "count must be in ECX");
duke@435 2869 assert(left == dest, "left and dest must be equal");
duke@435 2870 assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
duke@435 2871
duke@435 2872 if (left->is_single_cpu()) {
duke@435 2873 Register value = left->as_register();
duke@435 2874 assert(value != SHIFT_count, "left cannot be ECX");
duke@435 2875
duke@435 2876 switch (code) {
duke@435 2877 case lir_shl: __ shll(value); break;
duke@435 2878 case lir_shr: __ sarl(value); break;
duke@435 2879 case lir_ushr: __ shrl(value); break;
duke@435 2880 default: ShouldNotReachHere();
duke@435 2881 }
duke@435 2882 } else if (left->is_double_cpu()) {
duke@435 2883 Register lo = left->as_register_lo();
duke@435 2884 Register hi = left->as_register_hi();
duke@435 2885 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
never@739 2886 #ifdef _LP64
never@739 2887 switch (code) {
never@739 2888 case lir_shl: __ shlptr(lo); break;
never@739 2889 case lir_shr: __ sarptr(lo); break;
never@739 2890 case lir_ushr: __ shrptr(lo); break;
never@739 2891 default: ShouldNotReachHere();
never@739 2892 }
never@739 2893 #else
duke@435 2894
duke@435 2895 switch (code) {
duke@435 2896 case lir_shl: __ lshl(hi, lo); break;
duke@435 2897 case lir_shr: __ lshr(hi, lo, true); break;
duke@435 2898 case lir_ushr: __ lshr(hi, lo, false); break;
duke@435 2899 default: ShouldNotReachHere();
duke@435 2900 }
never@739 2901 #endif // LP64
duke@435 2902 } else {
duke@435 2903 ShouldNotReachHere();
duke@435 2904 }
duke@435 2905 }
duke@435 2906
duke@435 2907
duke@435 2908 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
duke@435 2909 if (dest->is_single_cpu()) {
duke@435 2910 // first move left into dest so that left is not destroyed by the shift
duke@435 2911 Register value = dest->as_register();
duke@435 2912 count = count & 0x1F; // Java spec
duke@435 2913
duke@435 2914 move_regs(left->as_register(), value);
duke@435 2915 switch (code) {
duke@435 2916 case lir_shl: __ shll(value, count); break;
duke@435 2917 case lir_shr: __ sarl(value, count); break;
duke@435 2918 case lir_ushr: __ shrl(value, count); break;
duke@435 2919 default: ShouldNotReachHere();
duke@435 2920 }
duke@435 2921 } else if (dest->is_double_cpu()) {
never@739 2922 #ifndef _LP64
duke@435 2923 Unimplemented();
never@739 2924 #else
never@739 2925 // first move left into dest so that left is not destroyed by the shift
never@739 2926 Register value = dest->as_register_lo();
never@739 2927 count = count & 0x1F; // Java spec
never@739 2928
never@739 2929 move_regs(left->as_register_lo(), value);
never@739 2930 switch (code) {
never@739 2931 case lir_shl: __ shlptr(value, count); break;
never@739 2932 case lir_shr: __ sarptr(value, count); break;
never@739 2933 case lir_ushr: __ shrptr(value, count); break;
never@739 2934 default: ShouldNotReachHere();
never@739 2935 }
never@739 2936 #endif // _LP64
duke@435 2937 } else {
duke@435 2938 ShouldNotReachHere();
duke@435 2939 }
duke@435 2940 }
duke@435 2941
duke@435 2942
duke@435 2943 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
duke@435 2944 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 2945 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 2946 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 2947 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
duke@435 2948 }
duke@435 2949
duke@435 2950
duke@435 2951 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) {
duke@435 2952 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 2953 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 2954 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 2955 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
duke@435 2956 }
duke@435 2957
duke@435 2958
duke@435 2959 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
duke@435 2960 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 2961 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 2962 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
duke@435 2963 __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
duke@435 2964 }
duke@435 2965
duke@435 2966
duke@435 2967 // This code replaces a call to arraycopy; no exception may
duke@435 2968 // be thrown in this code, they must be thrown in the System.arraycopy
duke@435 2969 // activation frame; we could save some checks if this would not be the case
duke@435 2970 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
duke@435 2971 ciArrayKlass* default_type = op->expected_type();
duke@435 2972 Register src = op->src()->as_register();
duke@435 2973 Register dst = op->dst()->as_register();
duke@435 2974 Register src_pos = op->src_pos()->as_register();
duke@435 2975 Register dst_pos = op->dst_pos()->as_register();
duke@435 2976 Register length = op->length()->as_register();
duke@435 2977 Register tmp = op->tmp()->as_register();
duke@435 2978
duke@435 2979 CodeStub* stub = op->stub();
duke@435 2980 int flags = op->flags();
duke@435 2981 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
duke@435 2982 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
duke@435 2983
duke@435 2984 // if we don't know anything or it's an object array, just go through the generic arraycopy
duke@435 2985 if (default_type == NULL) {
duke@435 2986 Label done;
duke@435 2987 // save outgoing arguments on stack in case call to System.arraycopy is needed
duke@435 2988 // HACK ALERT. This code used to push the parameters in a hardwired fashion
duke@435 2989 // for interpreter calling conventions. Now we have to do it in new style conventions.
duke@435 2990 // For the moment until C1 gets the new register allocator I just force all the
duke@435 2991 // args to the right place (except the register args) and then on the back side
duke@435 2992 // reload the register args properly if we go slow path. Yuck
duke@435 2993
duke@435 2994 // These are proper for the calling convention
duke@435 2995
duke@435 2996 store_parameter(length, 2);
duke@435 2997 store_parameter(dst_pos, 1);
duke@435 2998 store_parameter(dst, 0);
duke@435 2999
duke@435 3000 // these are just temporary placements until we need to reload
duke@435 3001 store_parameter(src_pos, 3);
duke@435 3002 store_parameter(src, 4);
never@739 3003 NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
never@739 3004
never@739 3005 address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
duke@435 3006
duke@435 3007 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
never@739 3008 #ifdef _LP64
never@739 3009 // The arguments are in java calling convention so we can trivially shift them to C
never@739 3010 // convention
never@739 3011 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 3012 __ mov(c_rarg0, j_rarg0);
never@739 3013 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 3014 __ mov(c_rarg1, j_rarg1);
never@739 3015 assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
never@739 3016 __ mov(c_rarg2, j_rarg2);
never@739 3017 assert_different_registers(c_rarg3, j_rarg4);
never@739 3018 __ mov(c_rarg3, j_rarg3);
never@739 3019 #ifdef _WIN64
never@739 3020 // Allocate abi space for args but be sure to keep stack aligned
never@739 3021 __ subptr(rsp, 6*wordSize);
never@739 3022 store_parameter(j_rarg4, 4);
never@739 3023 __ call(RuntimeAddress(entry));
never@739 3024 __ addptr(rsp, 6*wordSize);
never@739 3025 #else
never@739 3026 __ mov(c_rarg4, j_rarg4);
never@739 3027 __ call(RuntimeAddress(entry));
never@739 3028 #endif // _WIN64
never@739 3029 #else
never@739 3030 __ push(length);
never@739 3031 __ push(dst_pos);
never@739 3032 __ push(dst);
never@739 3033 __ push(src_pos);
never@739 3034 __ push(src);
duke@435 3035 __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
duke@435 3036
never@739 3037 #endif // _LP64
never@739 3038
duke@435 3039 __ cmpl(rax, 0);
duke@435 3040 __ jcc(Assembler::equal, *stub->continuation());
duke@435 3041
duke@435 3042 // Reload values from the stack so they are where the stub
duke@435 3043 // expects them.
never@739 3044 __ movptr (dst, Address(rsp, 0*BytesPerWord));
never@739 3045 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord));
never@739 3046 __ movptr (length, Address(rsp, 2*BytesPerWord));
never@739 3047 __ movptr (src_pos, Address(rsp, 3*BytesPerWord));
never@739 3048 __ movptr (src, Address(rsp, 4*BytesPerWord));
duke@435 3049 __ jmp(*stub->entry());
duke@435 3050
duke@435 3051 __ bind(*stub->continuation());
duke@435 3052 return;
duke@435 3053 }
duke@435 3054
duke@435 3055 assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
duke@435 3056
kvn@464 3057 int elem_size = type2aelembytes(basic_type);
duke@435 3058 int shift_amount;
duke@435 3059 Address::ScaleFactor scale;
duke@435 3060
duke@435 3061 switch (elem_size) {
duke@435 3062 case 1 :
duke@435 3063 shift_amount = 0;
duke@435 3064 scale = Address::times_1;
duke@435 3065 break;
duke@435 3066 case 2 :
duke@435 3067 shift_amount = 1;
duke@435 3068 scale = Address::times_2;
duke@435 3069 break;
duke@435 3070 case 4 :
duke@435 3071 shift_amount = 2;
duke@435 3072 scale = Address::times_4;
duke@435 3073 break;
duke@435 3074 case 8 :
duke@435 3075 shift_amount = 3;
duke@435 3076 scale = Address::times_8;
duke@435 3077 break;
duke@435 3078 default:
duke@435 3079 ShouldNotReachHere();
duke@435 3080 }
duke@435 3081
duke@435 3082 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
duke@435 3083 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
duke@435 3084 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
duke@435 3085 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
duke@435 3086
never@739 3087 // length and pos's are all sign extended at this point on 64bit
never@739 3088
duke@435 3089 // test for NULL
duke@435 3090 if (flags & LIR_OpArrayCopy::src_null_check) {
never@739 3091 __ testptr(src, src);
duke@435 3092 __ jcc(Assembler::zero, *stub->entry());
duke@435 3093 }
duke@435 3094 if (flags & LIR_OpArrayCopy::dst_null_check) {
never@739 3095 __ testptr(dst, dst);
duke@435 3096 __ jcc(Assembler::zero, *stub->entry());
duke@435 3097 }
duke@435 3098
duke@435 3099 // check if negative
duke@435 3100 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
duke@435 3101 __ testl(src_pos, src_pos);
duke@435 3102 __ jcc(Assembler::less, *stub->entry());
duke@435 3103 }
duke@435 3104 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
duke@435 3105 __ testl(dst_pos, dst_pos);
duke@435 3106 __ jcc(Assembler::less, *stub->entry());
duke@435 3107 }
duke@435 3108 if (flags & LIR_OpArrayCopy::length_positive_check) {
duke@435 3109 __ testl(length, length);
duke@435 3110 __ jcc(Assembler::less, *stub->entry());
duke@435 3111 }
duke@435 3112
duke@435 3113 if (flags & LIR_OpArrayCopy::src_range_check) {
never@739 3114 __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
duke@435 3115 __ cmpl(tmp, src_length_addr);
duke@435 3116 __ jcc(Assembler::above, *stub->entry());
duke@435 3117 }
duke@435 3118 if (flags & LIR_OpArrayCopy::dst_range_check) {
never@739 3119 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
duke@435 3120 __ cmpl(tmp, dst_length_addr);
duke@435 3121 __ jcc(Assembler::above, *stub->entry());
duke@435 3122 }
duke@435 3123
duke@435 3124 if (flags & LIR_OpArrayCopy::type_check) {
never@739 3125 __ movptr(tmp, src_klass_addr);
never@739 3126 __ cmpptr(tmp, dst_klass_addr);
duke@435 3127 __ jcc(Assembler::notEqual, *stub->entry());
duke@435 3128 }
duke@435 3129
duke@435 3130 #ifdef ASSERT
duke@435 3131 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
duke@435 3132 // Sanity check the known type with the incoming class. For the
duke@435 3133 // primitive case the types must match exactly with src.klass and
duke@435 3134 // dst.klass each exactly matching the default type. For the
duke@435 3135 // object array case, if no type check is needed then either the
duke@435 3136 // dst type is exactly the expected type and the src type is a
duke@435 3137 // subtype which we can't check or src is the same array as dst
duke@435 3138 // but not necessarily exactly of type default_type.
duke@435 3139 Label known_ok, halt;
duke@435 3140 __ movoop(tmp, default_type->encoding());
duke@435 3141 if (basic_type != T_OBJECT) {
never@739 3142 __ cmpptr(tmp, dst_klass_addr);
duke@435 3143 __ jcc(Assembler::notEqual, halt);
never@739 3144 __ cmpptr(tmp, src_klass_addr);
duke@435 3145 __ jcc(Assembler::equal, known_ok);
duke@435 3146 } else {
never@739 3147 __ cmpptr(tmp, dst_klass_addr);
duke@435 3148 __ jcc(Assembler::equal, known_ok);
never@739 3149 __ cmpptr(src, dst);
duke@435 3150 __ jcc(Assembler::equal, known_ok);
duke@435 3151 }
duke@435 3152 __ bind(halt);
duke@435 3153 __ stop("incorrect type information in arraycopy");
duke@435 3154 __ bind(known_ok);
duke@435 3155 }
duke@435 3156 #endif
duke@435 3157
never@739 3158 if (shift_amount > 0 && basic_type != T_OBJECT) {
never@739 3159 __ shlptr(length, shift_amount);
never@739 3160 }
never@739 3161
never@739 3162 #ifdef _LP64
never@739 3163 assert_different_registers(c_rarg0, dst, dst_pos, length);
never@739 3164 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3165 assert_different_registers(c_rarg1, length);
never@739 3166 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3167 __ mov(c_rarg2, length);
never@739 3168
never@739 3169 #else
never@739 3170 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3171 store_parameter(tmp, 0);
never@739 3172 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3173 store_parameter(tmp, 1);
duke@435 3174 store_parameter(length, 2);
never@739 3175 #endif // _LP64
duke@435 3176 if (basic_type == T_OBJECT) {
duke@435 3177 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
duke@435 3178 } else {
duke@435 3179 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
duke@435 3180 }
duke@435 3181
duke@435 3182 __ bind(*stub->continuation());
duke@435 3183 }
duke@435 3184
duke@435 3185
duke@435 3186 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
duke@435 3187 Register obj = op->obj_opr()->as_register(); // may not be an oop
duke@435 3188 Register hdr = op->hdr_opr()->as_register();
duke@435 3189 Register lock = op->lock_opr()->as_register();
duke@435 3190 if (!UseFastLocking) {
duke@435 3191 __ jmp(*op->stub()->entry());
duke@435 3192 } else if (op->code() == lir_lock) {
duke@435 3193 Register scratch = noreg;
duke@435 3194 if (UseBiasedLocking) {
duke@435 3195 scratch = op->scratch_opr()->as_register();
duke@435 3196 }
duke@435 3197 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3198 // add debug info for NullPointerException only if one is possible
duke@435 3199 int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
duke@435 3200 if (op->info() != NULL) {
duke@435 3201 add_debug_info_for_null_check(null_check_offset, op->info());
duke@435 3202 }
duke@435 3203 // done
duke@435 3204 } else if (op->code() == lir_unlock) {
duke@435 3205 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3206 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
duke@435 3207 } else {
duke@435 3208 Unimplemented();
duke@435 3209 }
duke@435 3210 __ bind(*op->stub()->continuation());
duke@435 3211 }
duke@435 3212
duke@435 3213
duke@435 3214 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
duke@435 3215 ciMethod* method = op->profiled_method();
duke@435 3216 int bci = op->profiled_bci();
duke@435 3217
duke@435 3218 // Update counter for all call types
duke@435 3219 ciMethodData* md = method->method_data();
duke@435 3220 if (md == NULL) {
duke@435 3221 bailout("out of memory building methodDataOop");
duke@435 3222 return;
duke@435 3223 }
duke@435 3224 ciProfileData* data = md->bci_to_data(bci);
duke@435 3225 assert(data->is_CounterData(), "need CounterData for calls");
duke@435 3226 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
duke@435 3227 Register mdo = op->mdo()->as_register();
duke@435 3228 __ movoop(mdo, md->encoding());
duke@435 3229 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
duke@435 3230 __ addl(counter_addr, DataLayout::counter_increment);
duke@435 3231 Bytecodes::Code bc = method->java_code_at_bci(bci);
duke@435 3232 // Perform additional virtual call profiling for invokevirtual and
duke@435 3233 // invokeinterface bytecodes
duke@435 3234 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
duke@435 3235 Tier1ProfileVirtualCalls) {
duke@435 3236 assert(op->recv()->is_single_cpu(), "recv must be allocated");
duke@435 3237 Register recv = op->recv()->as_register();
duke@435 3238 assert_different_registers(mdo, recv);
duke@435 3239 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
duke@435 3240 ciKlass* known_klass = op->known_holder();
duke@435 3241 if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
duke@435 3242 // We know the type that will be seen at this call site; we can
duke@435 3243 // statically update the methodDataOop rather than needing to do
duke@435 3244 // dynamic tests on the receiver type
duke@435 3245
duke@435 3246 // NOTE: we should probably put a lock around this search to
duke@435 3247 // avoid collisions by concurrent compilations
duke@435 3248 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
duke@435 3249 uint i;
duke@435 3250 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3251 ciKlass* receiver = vc_data->receiver(i);
duke@435 3252 if (known_klass->equals(receiver)) {
duke@435 3253 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
duke@435 3254 __ addl(data_addr, DataLayout::counter_increment);
duke@435 3255 return;
duke@435 3256 }
duke@435 3257 }
duke@435 3258
duke@435 3259 // Receiver type not found in profile data; select an empty slot
duke@435 3260
duke@435 3261 // Note that this is less efficient than it should be because it
duke@435 3262 // always does a write to the receiver part of the
duke@435 3263 // VirtualCallData rather than just the first time
duke@435 3264 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3265 ciKlass* receiver = vc_data->receiver(i);
duke@435 3266 if (receiver == NULL) {
duke@435 3267 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
duke@435 3268 __ movoop(recv_addr, known_klass->encoding());
duke@435 3269 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
duke@435 3270 __ addl(data_addr, DataLayout::counter_increment);
duke@435 3271 return;
duke@435 3272 }
duke@435 3273 }
duke@435 3274 } else {
never@739 3275 __ movptr(recv, Address(recv, oopDesc::klass_offset_in_bytes()));
duke@435 3276 Label update_done;
duke@435 3277 uint i;
duke@435 3278 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3279 Label next_test;
duke@435 3280 // See if the receiver is receiver[n].
never@739 3281 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))));
duke@435 3282 __ jcc(Assembler::notEqual, next_test);
duke@435 3283 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
duke@435 3284 __ addl(data_addr, DataLayout::counter_increment);
duke@435 3285 __ jmp(update_done);
duke@435 3286 __ bind(next_test);
duke@435 3287 }
duke@435 3288
duke@435 3289 // Didn't find receiver; find next empty slot and fill it in
duke@435 3290 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3291 Label next_test;
duke@435 3292 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
never@739 3293 __ cmpptr(recv_addr, (int32_t)NULL_WORD);
duke@435 3294 __ jcc(Assembler::notEqual, next_test);
never@739 3295 __ movptr(recv_addr, recv);
duke@435 3296 __ movl(Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))), DataLayout::counter_increment);
duke@435 3297 if (i < (VirtualCallData::row_limit() - 1)) {
duke@435 3298 __ jmp(update_done);
duke@435 3299 }
duke@435 3300 __ bind(next_test);
duke@435 3301 }
duke@435 3302
duke@435 3303 __ bind(update_done);
duke@435 3304 }
duke@435 3305 }
duke@435 3306 }
duke@435 3307
duke@435 3308
duke@435 3309 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
duke@435 3310 Unimplemented();
duke@435 3311 }
duke@435 3312
duke@435 3313
duke@435 3314 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
never@739 3315 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
duke@435 3316 }
duke@435 3317
duke@435 3318
duke@435 3319 void LIR_Assembler::align_backward_branch_target() {
duke@435 3320 __ align(BytesPerWord);
duke@435 3321 }
duke@435 3322
duke@435 3323
duke@435 3324 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
duke@435 3325 if (left->is_single_cpu()) {
duke@435 3326 __ negl(left->as_register());
duke@435 3327 move_regs(left->as_register(), dest->as_register());
duke@435 3328
duke@435 3329 } else if (left->is_double_cpu()) {
duke@435 3330 Register lo = left->as_register_lo();
never@739 3331 #ifdef _LP64
never@739 3332 Register dst = dest->as_register_lo();
never@739 3333 __ movptr(dst, lo);
never@739 3334 __ negptr(dst);
never@739 3335 #else
duke@435 3336 Register hi = left->as_register_hi();
duke@435 3337 __ lneg(hi, lo);
duke@435 3338 if (dest->as_register_lo() == hi) {
duke@435 3339 assert(dest->as_register_hi() != lo, "destroying register");
duke@435 3340 move_regs(hi, dest->as_register_hi());
duke@435 3341 move_regs(lo, dest->as_register_lo());
duke@435 3342 } else {
duke@435 3343 move_regs(lo, dest->as_register_lo());
duke@435 3344 move_regs(hi, dest->as_register_hi());
duke@435 3345 }
never@739 3346 #endif // _LP64
duke@435 3347
duke@435 3348 } else if (dest->is_single_xmm()) {
duke@435 3349 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
duke@435 3350 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
duke@435 3351 }
duke@435 3352 __ xorps(dest->as_xmm_float_reg(),
duke@435 3353 ExternalAddress((address)float_signflip_pool));
duke@435 3354
duke@435 3355 } else if (dest->is_double_xmm()) {
duke@435 3356 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
duke@435 3357 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
duke@435 3358 }
duke@435 3359 __ xorpd(dest->as_xmm_double_reg(),
duke@435 3360 ExternalAddress((address)double_signflip_pool));
duke@435 3361
duke@435 3362 } else if (left->is_single_fpu() || left->is_double_fpu()) {
duke@435 3363 assert(left->fpu() == 0, "arg must be on TOS");
duke@435 3364 assert(dest->fpu() == 0, "dest must be TOS");
duke@435 3365 __ fchs();
duke@435 3366
duke@435 3367 } else {
duke@435 3368 ShouldNotReachHere();
duke@435 3369 }
duke@435 3370 }
duke@435 3371
duke@435 3372
duke@435 3373 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
duke@435 3374 assert(addr->is_address() && dest->is_register(), "check");
never@739 3375 Register reg;
never@739 3376 reg = dest->as_pointer_register();
never@739 3377 __ lea(reg, as_Address(addr->as_address_ptr()));
duke@435 3378 }
duke@435 3379
duke@435 3380
duke@435 3381
duke@435 3382 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 3383 assert(!tmp->is_valid(), "don't need temporary");
duke@435 3384 __ call(RuntimeAddress(dest));
duke@435 3385 if (info != NULL) {
duke@435 3386 add_call_info_here(info);
duke@435 3387 }
duke@435 3388 }
duke@435 3389
duke@435 3390
duke@435 3391 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
duke@435 3392 assert(type == T_LONG, "only for volatile long fields");
duke@435 3393
duke@435 3394 if (info != NULL) {
duke@435 3395 add_debug_info_for_null_check_here(info);
duke@435 3396 }
duke@435 3397
duke@435 3398 if (src->is_double_xmm()) {
duke@435 3399 if (dest->is_double_cpu()) {
never@739 3400 #ifdef _LP64
never@739 3401 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
never@739 3402 #else
never@739 3403 __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
duke@435 3404 __ psrlq(src->as_xmm_double_reg(), 32);
never@739 3405 __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
never@739 3406 #endif // _LP64
duke@435 3407 } else if (dest->is_double_stack()) {
duke@435 3408 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
duke@435 3409 } else if (dest->is_address()) {
duke@435 3410 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
duke@435 3411 } else {
duke@435 3412 ShouldNotReachHere();
duke@435 3413 }
duke@435 3414
duke@435 3415 } else if (dest->is_double_xmm()) {
duke@435 3416 if (src->is_double_stack()) {
duke@435 3417 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3418 } else if (src->is_address()) {
duke@435 3419 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
duke@435 3420 } else {
duke@435 3421 ShouldNotReachHere();
duke@435 3422 }
duke@435 3423
duke@435 3424 } else if (src->is_double_fpu()) {
duke@435 3425 assert(src->fpu_regnrLo() == 0, "must be TOS");
duke@435 3426 if (dest->is_double_stack()) {
duke@435 3427 __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
duke@435 3428 } else if (dest->is_address()) {
duke@435 3429 __ fistp_d(as_Address(dest->as_address_ptr()));
duke@435 3430 } else {
duke@435 3431 ShouldNotReachHere();
duke@435 3432 }
duke@435 3433
duke@435 3434 } else if (dest->is_double_fpu()) {
duke@435 3435 assert(dest->fpu_regnrLo() == 0, "must be TOS");
duke@435 3436 if (src->is_double_stack()) {
duke@435 3437 __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3438 } else if (src->is_address()) {
duke@435 3439 __ fild_d(as_Address(src->as_address_ptr()));
duke@435 3440 } else {
duke@435 3441 ShouldNotReachHere();
duke@435 3442 }
duke@435 3443 } else {
duke@435 3444 ShouldNotReachHere();
duke@435 3445 }
duke@435 3446 }
duke@435 3447
duke@435 3448
duke@435 3449 void LIR_Assembler::membar() {
never@739 3450 // QQQ sparc TSO uses this,
never@739 3451 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
duke@435 3452 }
duke@435 3453
duke@435 3454 void LIR_Assembler::membar_acquire() {
duke@435 3455 // No x86 machines currently require load fences
duke@435 3456 // __ load_fence();
duke@435 3457 }
duke@435 3458
duke@435 3459 void LIR_Assembler::membar_release() {
duke@435 3460 // No x86 machines currently require store fences
duke@435 3461 // __ store_fence();
duke@435 3462 }
duke@435 3463
duke@435 3464 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
duke@435 3465 assert(result_reg->is_register(), "check");
never@739 3466 #ifdef _LP64
never@739 3467 // __ get_thread(result_reg->as_register_lo());
never@739 3468 __ mov(result_reg->as_register(), r15_thread);
never@739 3469 #else
duke@435 3470 __ get_thread(result_reg->as_register());
never@739 3471 #endif // _LP64
duke@435 3472 }
duke@435 3473
duke@435 3474
duke@435 3475 void LIR_Assembler::peephole(LIR_List*) {
duke@435 3476 // do nothing for now
duke@435 3477 }
duke@435 3478
duke@435 3479
duke@435 3480 #undef __

mercurial