src/share/vm/runtime/safepoint.cpp

Wed, 01 Dec 2010 15:04:06 +0100

author
stefank
date
Wed, 01 Dec 2010 15:04:06 +0100
changeset 2325
c760f78e0a53
parent 2314
f95d63e2154a
child 2497
3582bf76420e
permissions
-rw-r--r--

7003125: precompiled.hpp is included when precompiled headers are not used
Summary: Added an ifndef DONT_USE_PRECOMPILED_HEADER to precompiled.hpp. Set up DONT_USE_PRECOMPILED_HEADER when compiling with Sun Studio or when the user specifies USE_PRECOMPILED_HEADER=0. Fixed broken include dependencies.
Reviewed-by: coleenp, kvn

duke@435 1 /*
stefank@2314 2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "code/codeCache.hpp"
stefank@2314 28 #include "code/icBuffer.hpp"
stefank@2314 29 #include "code/nmethod.hpp"
stefank@2314 30 #include "code/pcDesc.hpp"
stefank@2314 31 #include "code/scopeDesc.hpp"
stefank@2314 32 #include "gc_interface/collectedHeap.hpp"
stefank@2314 33 #include "interpreter/interpreter.hpp"
stefank@2314 34 #include "memory/resourceArea.hpp"
stefank@2314 35 #include "memory/universe.inline.hpp"
stefank@2314 36 #include "oops/oop.inline.hpp"
stefank@2314 37 #include "oops/symbolOop.hpp"
stefank@2314 38 #include "runtime/compilationPolicy.hpp"
stefank@2314 39 #include "runtime/deoptimization.hpp"
stefank@2314 40 #include "runtime/frame.inline.hpp"
stefank@2314 41 #include "runtime/interfaceSupport.hpp"
stefank@2314 42 #include "runtime/mutexLocker.hpp"
stefank@2314 43 #include "runtime/osThread.hpp"
stefank@2314 44 #include "runtime/safepoint.hpp"
stefank@2314 45 #include "runtime/signature.hpp"
stefank@2314 46 #include "runtime/stubCodeGenerator.hpp"
stefank@2314 47 #include "runtime/stubRoutines.hpp"
stefank@2314 48 #include "runtime/sweeper.hpp"
stefank@2314 49 #include "runtime/synchronizer.hpp"
stefank@2314 50 #include "services/runtimeService.hpp"
stefank@2314 51 #include "utilities/events.hpp"
stefank@2314 52 #ifdef TARGET_ARCH_x86
stefank@2314 53 # include "nativeInst_x86.hpp"
stefank@2314 54 # include "vmreg_x86.inline.hpp"
stefank@2314 55 #endif
stefank@2314 56 #ifdef TARGET_ARCH_sparc
stefank@2314 57 # include "nativeInst_sparc.hpp"
stefank@2314 58 # include "vmreg_sparc.inline.hpp"
stefank@2314 59 #endif
stefank@2314 60 #ifdef TARGET_ARCH_zero
stefank@2314 61 # include "nativeInst_zero.hpp"
stefank@2314 62 # include "vmreg_zero.inline.hpp"
stefank@2314 63 #endif
stefank@2314 64 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 65 # include "thread_linux.inline.hpp"
stefank@2314 66 #endif
stefank@2314 67 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 68 # include "thread_solaris.inline.hpp"
stefank@2314 69 #endif
stefank@2314 70 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 71 # include "thread_windows.inline.hpp"
stefank@2314 72 #endif
stefank@2314 73 #ifndef SERIALGC
stefank@2314 74 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
stefank@2314 75 #include "gc_implementation/shared/concurrentGCThread.hpp"
stefank@2314 76 #endif
stefank@2314 77 #ifdef COMPILER1
stefank@2314 78 #include "c1/c1_globals.hpp"
stefank@2314 79 #endif
duke@435 80
duke@435 81 // --------------------------------------------------------------------------------------------------
duke@435 82 // Implementation of Safepoint begin/end
duke@435 83
duke@435 84 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
duke@435 85 volatile int SafepointSynchronize::_waiting_to_block = 0;
duke@435 86 volatile int SafepointSynchronize::_safepoint_counter = 0;
xlu@1726 87 long SafepointSynchronize::_end_of_last_safepoint = 0;
duke@435 88 static volatile int PageArmed = 0 ; // safepoint polling page is RO|RW vs PROT_NONE
duke@435 89 static volatile int TryingToBlock = 0 ; // proximate value -- for advisory use only
duke@435 90 static bool timeout_error_printed = false;
duke@435 91
duke@435 92 // Roll all threads forward to a safepoint and suspend them all
duke@435 93 void SafepointSynchronize::begin() {
duke@435 94
duke@435 95 Thread* myThread = Thread::current();
duke@435 96 assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
duke@435 97
xlu@1726 98 if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
xlu@1726 99 _safepoint_begin_time = os::javaTimeNanos();
xlu@1726 100 _ts_of_current_safepoint = tty->time_stamp().seconds();
xlu@1726 101 }
duke@435 102
duke@435 103 #ifndef SERIALGC
duke@435 104 if (UseConcMarkSweepGC) {
duke@435 105 // In the future we should investigate whether CMS can use the
duke@435 106 // more-general mechanism below. DLD (01/05).
duke@435 107 ConcurrentMarkSweepThread::synchronize(false);
ysr@1280 108 } else if (UseG1GC) {
duke@435 109 ConcurrentGCThread::safepoint_synchronize();
duke@435 110 }
duke@435 111 #endif // SERIALGC
duke@435 112
duke@435 113 // By getting the Threads_lock, we assure that no threads are about to start or
duke@435 114 // exit. It is released again in SafepointSynchronize::end().
duke@435 115 Threads_lock->lock();
duke@435 116
duke@435 117 assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
duke@435 118
duke@435 119 int nof_threads = Threads::number_of_threads();
duke@435 120
duke@435 121 if (TraceSafepoint) {
duke@435 122 tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
duke@435 123 }
duke@435 124
duke@435 125 RuntimeService::record_safepoint_begin();
duke@435 126
duke@435 127 {
duke@435 128 MutexLocker mu(Safepoint_lock);
duke@435 129
duke@435 130 // Set number of threads to wait for, before we initiate the callbacks
duke@435 131 _waiting_to_block = nof_threads;
duke@435 132 TryingToBlock = 0 ;
duke@435 133 int still_running = nof_threads;
duke@435 134
duke@435 135 // Save the starting time, so that it can be compared to see if this has taken
duke@435 136 // too long to complete.
duke@435 137 jlong safepoint_limit_time;
duke@435 138 timeout_error_printed = false;
duke@435 139
xlu@1438 140 // PrintSafepointStatisticsTimeout can be specified separately. When
xlu@1438 141 // specified, PrintSafepointStatistics will be set to true in
xlu@1438 142 // deferred_initialize_stat method. The initialization has to be done
xlu@1438 143 // early enough to avoid any races. See bug 6880029 for details.
xlu@1438 144 if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
xlu@1438 145 deferred_initialize_stat();
xlu@1438 146 }
xlu@1438 147
duke@435 148 // Begin the process of bringing the system to a safepoint.
duke@435 149 // Java threads can be in several different states and are
duke@435 150 // stopped by different mechanisms:
duke@435 151 //
duke@435 152 // 1. Running interpreted
duke@435 153 // The interpeter dispatch table is changed to force it to
duke@435 154 // check for a safepoint condition between bytecodes.
duke@435 155 // 2. Running in native code
duke@435 156 // When returning from the native code, a Java thread must check
duke@435 157 // the safepoint _state to see if we must block. If the
duke@435 158 // VM thread sees a Java thread in native, it does
duke@435 159 // not wait for this thread to block. The order of the memory
duke@435 160 // writes and reads of both the safepoint state and the Java
duke@435 161 // threads state is critical. In order to guarantee that the
duke@435 162 // memory writes are serialized with respect to each other,
duke@435 163 // the VM thread issues a memory barrier instruction
duke@435 164 // (on MP systems). In order to avoid the overhead of issuing
duke@435 165 // a memory barrier for each Java thread making native calls, each Java
duke@435 166 // thread performs a write to a single memory page after changing
duke@435 167 // the thread state. The VM thread performs a sequence of
duke@435 168 // mprotect OS calls which forces all previous writes from all
duke@435 169 // Java threads to be serialized. This is done in the
duke@435 170 // os::serialize_thread_states() call. This has proven to be
duke@435 171 // much more efficient than executing a membar instruction
duke@435 172 // on every call to native code.
duke@435 173 // 3. Running compiled Code
duke@435 174 // Compiled code reads a global (Safepoint Polling) page that
duke@435 175 // is set to fault if we are trying to get to a safepoint.
duke@435 176 // 4. Blocked
duke@435 177 // A thread which is blocked will not be allowed to return from the
duke@435 178 // block condition until the safepoint operation is complete.
duke@435 179 // 5. In VM or Transitioning between states
duke@435 180 // If a Java thread is currently running in the VM or transitioning
duke@435 181 // between states, the safepointing code will wait for the thread to
duke@435 182 // block itself when it attempts transitions to a new state.
duke@435 183 //
duke@435 184 _state = _synchronizing;
duke@435 185 OrderAccess::fence();
duke@435 186
duke@435 187 // Flush all thread states to memory
duke@435 188 if (!UseMembar) {
duke@435 189 os::serialize_thread_states();
duke@435 190 }
duke@435 191
duke@435 192 // Make interpreter safepoint aware
duke@435 193 Interpreter::notice_safepoints();
duke@435 194
duke@435 195 if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
duke@435 196 // Make polling safepoint aware
duke@435 197 guarantee (PageArmed == 0, "invariant") ;
duke@435 198 PageArmed = 1 ;
duke@435 199 os::make_polling_page_unreadable();
duke@435 200 }
duke@435 201
duke@435 202 // Consider using active_processor_count() ... but that call is expensive.
duke@435 203 int ncpus = os::processor_count() ;
duke@435 204
duke@435 205 #ifdef ASSERT
duke@435 206 for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
duke@435 207 assert(cur->safepoint_state()->is_running(), "Illegal initial state");
duke@435 208 }
duke@435 209 #endif // ASSERT
duke@435 210
duke@435 211 if (SafepointTimeout)
duke@435 212 safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
duke@435 213
duke@435 214 // Iterate through all threads until it have been determined how to stop them all at a safepoint
duke@435 215 unsigned int iterations = 0;
duke@435 216 int steps = 0 ;
duke@435 217 while(still_running > 0) {
duke@435 218 for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
duke@435 219 assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
duke@435 220 ThreadSafepointState *cur_state = cur->safepoint_state();
duke@435 221 if (cur_state->is_running()) {
duke@435 222 cur_state->examine_state_of_thread();
duke@435 223 if (!cur_state->is_running()) {
duke@435 224 still_running--;
duke@435 225 // consider adjusting steps downward:
duke@435 226 // steps = 0
duke@435 227 // steps -= NNN
duke@435 228 // steps >>= 1
duke@435 229 // steps = MIN(steps, 2000-100)
duke@435 230 // if (iterations != 0) steps -= NNN
duke@435 231 }
duke@435 232 if (TraceSafepoint && Verbose) cur_state->print();
duke@435 233 }
duke@435 234 }
duke@435 235
xlu@1438 236 if (PrintSafepointStatistics && iterations == 0) {
duke@435 237 begin_statistics(nof_threads, still_running);
duke@435 238 }
duke@435 239
duke@435 240 if (still_running > 0) {
duke@435 241 // Check for if it takes to long
duke@435 242 if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
duke@435 243 print_safepoint_timeout(_spinning_timeout);
duke@435 244 }
duke@435 245
duke@435 246 // Spin to avoid context switching.
duke@435 247 // There's a tension between allowing the mutators to run (and rendezvous)
duke@435 248 // vs spinning. As the VM thread spins, wasting cycles, it consumes CPU that
duke@435 249 // a mutator might otherwise use profitably to reach a safepoint. Excessive
duke@435 250 // spinning by the VM thread on a saturated system can increase rendezvous latency.
duke@435 251 // Blocking or yielding incur their own penalties in the form of context switching
duke@435 252 // and the resultant loss of $ residency.
duke@435 253 //
duke@435 254 // Further complicating matters is that yield() does not work as naively expected
duke@435 255 // on many platforms -- yield() does not guarantee that any other ready threads
duke@435 256 // will run. As such we revert yield_all() after some number of iterations.
duke@435 257 // Yield_all() is implemented as a short unconditional sleep on some platforms.
duke@435 258 // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
duke@435 259 // can actually increase the time it takes the VM thread to detect that a system-wide
duke@435 260 // stop-the-world safepoint has been reached. In a pathological scenario such as that
duke@435 261 // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
duke@435 262 // In that case the mutators will be stalled waiting for the safepoint to complete and the
duke@435 263 // the VMthread will be sleeping, waiting for the mutators to rendezvous. The VMthread
duke@435 264 // will eventually wake up and detect that all mutators are safe, at which point
duke@435 265 // we'll again make progress.
duke@435 266 //
duke@435 267 // Beware too that that the VMThread typically runs at elevated priority.
duke@435 268 // Its default priority is higher than the default mutator priority.
duke@435 269 // Obviously, this complicates spinning.
duke@435 270 //
duke@435 271 // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
duke@435 272 // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
duke@435 273 //
duke@435 274 // See the comments in synchronizer.cpp for additional remarks on spinning.
duke@435 275 //
duke@435 276 // In the future we might:
duke@435 277 // 1. Modify the safepoint scheme to avoid potentally unbounded spinning.
duke@435 278 // This is tricky as the path used by a thread exiting the JVM (say on
duke@435 279 // on JNI call-out) simply stores into its state field. The burden
duke@435 280 // is placed on the VM thread, which must poll (spin).
duke@435 281 // 2. Find something useful to do while spinning. If the safepoint is GC-related
duke@435 282 // we might aggressively scan the stacks of threads that are already safe.
duke@435 283 // 3. Use Solaris schedctl to examine the state of the still-running mutators.
duke@435 284 // If all the mutators are ONPROC there's no reason to sleep or yield.
duke@435 285 // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
duke@435 286 // 5. Check system saturation. If the system is not fully saturated then
duke@435 287 // simply spin and avoid sleep/yield.
duke@435 288 // 6. As still-running mutators rendezvous they could unpark the sleeping
duke@435 289 // VMthread. This works well for still-running mutators that become
duke@435 290 // safe. The VMthread must still poll for mutators that call-out.
duke@435 291 // 7. Drive the policy on time-since-begin instead of iterations.
duke@435 292 // 8. Consider making the spin duration a function of the # of CPUs:
duke@435 293 // Spin = (((ncpus-1) * M) + K) + F(still_running)
duke@435 294 // Alternately, instead of counting iterations of the outer loop
duke@435 295 // we could count the # of threads visited in the inner loop, above.
duke@435 296 // 9. On windows consider using the return value from SwitchThreadTo()
duke@435 297 // to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
duke@435 298
duke@435 299 if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
duke@435 300 guarantee (PageArmed == 0, "invariant") ;
duke@435 301 PageArmed = 1 ;
duke@435 302 os::make_polling_page_unreadable();
duke@435 303 }
duke@435 304
duke@435 305 // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
duke@435 306 // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
duke@435 307 ++steps ;
duke@435 308 if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
duke@435 309 SpinPause() ; // MP-Polite spin
duke@435 310 } else
duke@435 311 if (steps < DeferThrSuspendLoopCount) {
duke@435 312 os::NakedYield() ;
duke@435 313 } else {
duke@435 314 os::yield_all(steps) ;
duke@435 315 // Alternately, the VM thread could transiently depress its scheduling priority or
duke@435 316 // transiently increase the priority of the tardy mutator(s).
duke@435 317 }
duke@435 318
duke@435 319 iterations ++ ;
duke@435 320 }
duke@435 321 assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
duke@435 322 }
duke@435 323 assert(still_running == 0, "sanity check");
duke@435 324
duke@435 325 if (PrintSafepointStatistics) {
duke@435 326 update_statistics_on_spin_end();
duke@435 327 }
duke@435 328
duke@435 329 // wait until all threads are stopped
duke@435 330 while (_waiting_to_block > 0) {
duke@435 331 if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
duke@435 332 if (!SafepointTimeout || timeout_error_printed) {
duke@435 333 Safepoint_lock->wait(true); // true, means with no safepoint checks
duke@435 334 } else {
duke@435 335 // Compute remaining time
duke@435 336 jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
duke@435 337
duke@435 338 // If there is no remaining time, then there is an error
duke@435 339 if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
duke@435 340 print_safepoint_timeout(_blocking_timeout);
duke@435 341 }
duke@435 342 }
duke@435 343 }
duke@435 344 assert(_waiting_to_block == 0, "sanity check");
duke@435 345
duke@435 346 #ifndef PRODUCT
duke@435 347 if (SafepointTimeout) {
duke@435 348 jlong current_time = os::javaTimeNanos();
duke@435 349 if (safepoint_limit_time < current_time) {
duke@435 350 tty->print_cr("# SafepointSynchronize: Finished after "
duke@435 351 INT64_FORMAT_W(6) " ms",
duke@435 352 ((current_time - safepoint_limit_time) / MICROUNITS +
duke@435 353 SafepointTimeoutDelay));
duke@435 354 }
duke@435 355 }
duke@435 356 #endif
duke@435 357
duke@435 358 assert((_safepoint_counter & 0x1) == 0, "must be even");
duke@435 359 assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
duke@435 360 _safepoint_counter ++;
duke@435 361
duke@435 362 // Record state
duke@435 363 _state = _synchronized;
duke@435 364
duke@435 365 OrderAccess::fence();
duke@435 366
duke@435 367 if (TraceSafepoint) {
duke@435 368 VM_Operation *op = VMThread::vm_operation();
duke@435 369 tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
duke@435 370 }
duke@435 371
duke@435 372 RuntimeService::record_safepoint_synchronized();
duke@435 373 if (PrintSafepointStatistics) {
duke@435 374 update_statistics_on_sync_end(os::javaTimeNanos());
duke@435 375 }
duke@435 376
duke@435 377 // Call stuff that needs to be run when a safepoint is just about to be completed
duke@435 378 do_cleanup_tasks();
xlu@1726 379
xlu@1726 380 if (PrintSafepointStatistics) {
xlu@1726 381 // Record how much time spend on the above cleanup tasks
xlu@1726 382 update_statistics_on_cleanup_end(os::javaTimeNanos());
xlu@1726 383 }
duke@435 384 }
duke@435 385 }
duke@435 386
duke@435 387 // Wake up all threads, so they are ready to resume execution after the safepoint
duke@435 388 // operation has been carried out
duke@435 389 void SafepointSynchronize::end() {
duke@435 390
duke@435 391 assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
duke@435 392 assert((_safepoint_counter & 0x1) == 1, "must be odd");
duke@435 393 _safepoint_counter ++;
duke@435 394 // memory fence isn't required here since an odd _safepoint_counter
duke@435 395 // value can do no harm and a fence is issued below anyway.
duke@435 396
duke@435 397 DEBUG_ONLY(Thread* myThread = Thread::current();)
duke@435 398 assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
duke@435 399
duke@435 400 if (PrintSafepointStatistics) {
duke@435 401 end_statistics(os::javaTimeNanos());
duke@435 402 }
duke@435 403
duke@435 404 #ifdef ASSERT
duke@435 405 // A pending_exception cannot be installed during a safepoint. The threads
duke@435 406 // may install an async exception after they come back from a safepoint into
duke@435 407 // pending_exception after they unblock. But that should happen later.
duke@435 408 for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
duke@435 409 assert (!(cur->has_pending_exception() &&
duke@435 410 cur->safepoint_state()->is_at_poll_safepoint()),
duke@435 411 "safepoint installed a pending exception");
duke@435 412 }
duke@435 413 #endif // ASSERT
duke@435 414
duke@435 415 if (PageArmed) {
duke@435 416 // Make polling safepoint aware
duke@435 417 os::make_polling_page_readable();
duke@435 418 PageArmed = 0 ;
duke@435 419 }
duke@435 420
duke@435 421 // Remove safepoint check from interpreter
duke@435 422 Interpreter::ignore_safepoints();
duke@435 423
duke@435 424 {
duke@435 425 MutexLocker mu(Safepoint_lock);
duke@435 426
duke@435 427 assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
duke@435 428
duke@435 429 // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
duke@435 430 // when they get restarted.
duke@435 431 _state = _not_synchronized;
duke@435 432 OrderAccess::fence();
duke@435 433
duke@435 434 if (TraceSafepoint) {
duke@435 435 tty->print_cr("Leaving safepoint region");
duke@435 436 }
duke@435 437
duke@435 438 // Start suspended threads
duke@435 439 for(JavaThread *current = Threads::first(); current; current = current->next()) {
twisti@1040 440 // A problem occurring on Solaris is when attempting to restart threads
duke@435 441 // the first #cpus - 1 go well, but then the VMThread is preempted when we get
duke@435 442 // to the next one (since it has been running the longest). We then have
duke@435 443 // to wait for a cpu to become available before we can continue restarting
duke@435 444 // threads.
duke@435 445 // FIXME: This causes the performance of the VM to degrade when active and with
duke@435 446 // large numbers of threads. Apparently this is due to the synchronous nature
duke@435 447 // of suspending threads.
duke@435 448 //
duke@435 449 // TODO-FIXME: the comments above are vestigial and no longer apply.
duke@435 450 // Furthermore, using solaris' schedctl in this particular context confers no benefit
duke@435 451 if (VMThreadHintNoPreempt) {
duke@435 452 os::hint_no_preempt();
duke@435 453 }
duke@435 454 ThreadSafepointState* cur_state = current->safepoint_state();
duke@435 455 assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
duke@435 456 cur_state->restart();
duke@435 457 assert(cur_state->is_running(), "safepoint state has not been reset");
duke@435 458 }
duke@435 459
duke@435 460 RuntimeService::record_safepoint_end();
duke@435 461
duke@435 462 // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
duke@435 463 // blocked in signal_thread_blocked
duke@435 464 Threads_lock->unlock();
duke@435 465
duke@435 466 }
duke@435 467 #ifndef SERIALGC
duke@435 468 // If there are any concurrent GC threads resume them.
duke@435 469 if (UseConcMarkSweepGC) {
duke@435 470 ConcurrentMarkSweepThread::desynchronize(false);
ysr@1280 471 } else if (UseG1GC) {
duke@435 472 ConcurrentGCThread::safepoint_desynchronize();
duke@435 473 }
duke@435 474 #endif // SERIALGC
xlu@1726 475 // record this time so VMThread can keep track how much time has elasped
xlu@1726 476 // since last safepoint.
xlu@1726 477 _end_of_last_safepoint = os::javaTimeMillis();
duke@435 478 }
duke@435 479
duke@435 480 bool SafepointSynchronize::is_cleanup_needed() {
duke@435 481 // Need a safepoint if some inline cache buffers is non-empty
duke@435 482 if (!InlineCacheBuffer::is_empty()) return true;
duke@435 483 return false;
duke@435 484 }
duke@435 485
duke@435 486
duke@435 487
duke@435 488 // Various cleaning tasks that should be done periodically at safepoints
duke@435 489 void SafepointSynchronize::do_cleanup_tasks() {
xlu@1726 490 {
xlu@1756 491 TraceTime t1("deflating idle monitors", TraceSafepointCleanupTime);
xlu@1726 492 ObjectSynchronizer::deflate_idle_monitors();
duke@435 493 }
duke@435 494
xlu@1726 495 {
xlu@1756 496 TraceTime t2("updating inline caches", TraceSafepointCleanupTime);
xlu@1726 497 InlineCacheBuffer::update_inline_caches();
xlu@1726 498 }
iveresov@2138 499 {
iveresov@2138 500 TraceTime t3("compilation policy safepoint handler", TraceSafepointCleanupTime);
iveresov@2138 501 CompilationPolicy::policy()->do_safepoint_work();
duke@435 502 }
xlu@1726 503
xlu@1756 504 TraceTime t4("sweeping nmethods", TraceSafepointCleanupTime);
never@1893 505 NMethodSweeper::scan_stacks();
duke@435 506 }
duke@435 507
duke@435 508
duke@435 509 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
duke@435 510 switch(state) {
duke@435 511 case _thread_in_native:
duke@435 512 // native threads are safe if they have no java stack or have walkable stack
duke@435 513 return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
duke@435 514
duke@435 515 // blocked threads should have already have walkable stack
duke@435 516 case _thread_blocked:
duke@435 517 assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
duke@435 518 return true;
duke@435 519
duke@435 520 default:
duke@435 521 return false;
duke@435 522 }
duke@435 523 }
duke@435 524
duke@435 525
duke@435 526 // -------------------------------------------------------------------------------------------------------
duke@435 527 // Implementation of Safepoint callback point
duke@435 528
duke@435 529 void SafepointSynchronize::block(JavaThread *thread) {
duke@435 530 assert(thread != NULL, "thread must be set");
duke@435 531 assert(thread->is_Java_thread(), "not a Java thread");
duke@435 532
duke@435 533 // Threads shouldn't block if they are in the middle of printing, but...
duke@435 534 ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
duke@435 535
duke@435 536 // Only bail from the block() call if the thread is gone from the
duke@435 537 // thread list; starting to exit should still block.
duke@435 538 if (thread->is_terminated()) {
duke@435 539 // block current thread if we come here from native code when VM is gone
duke@435 540 thread->block_if_vm_exited();
duke@435 541
duke@435 542 // otherwise do nothing
duke@435 543 return;
duke@435 544 }
duke@435 545
duke@435 546 JavaThreadState state = thread->thread_state();
duke@435 547 thread->frame_anchor()->make_walkable(thread);
duke@435 548
duke@435 549 // Check that we have a valid thread_state at this point
duke@435 550 switch(state) {
duke@435 551 case _thread_in_vm_trans:
duke@435 552 case _thread_in_Java: // From compiled code
duke@435 553
duke@435 554 // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
duke@435 555 // we pretend we are still in the VM.
duke@435 556 thread->set_thread_state(_thread_in_vm);
duke@435 557
duke@435 558 if (is_synchronizing()) {
duke@435 559 Atomic::inc (&TryingToBlock) ;
duke@435 560 }
duke@435 561
duke@435 562 // We will always be holding the Safepoint_lock when we are examine the state
duke@435 563 // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
duke@435 564 // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
duke@435 565 Safepoint_lock->lock_without_safepoint_check();
duke@435 566 if (is_synchronizing()) {
duke@435 567 // Decrement the number of threads to wait for and signal vm thread
duke@435 568 assert(_waiting_to_block > 0, "sanity check");
duke@435 569 _waiting_to_block--;
duke@435 570 thread->safepoint_state()->set_has_called_back(true);
duke@435 571
duke@435 572 // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
duke@435 573 if (_waiting_to_block == 0) {
duke@435 574 Safepoint_lock->notify_all();
duke@435 575 }
duke@435 576 }
duke@435 577
duke@435 578 // We transition the thread to state _thread_blocked here, but
duke@435 579 // we can't do our usual check for external suspension and then
duke@435 580 // self-suspend after the lock_without_safepoint_check() call
duke@435 581 // below because we are often called during transitions while
duke@435 582 // we hold different locks. That would leave us suspended while
duke@435 583 // holding a resource which results in deadlocks.
duke@435 584 thread->set_thread_state(_thread_blocked);
duke@435 585 Safepoint_lock->unlock();
duke@435 586
duke@435 587 // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
duke@435 588 // the entire safepoint, the threads will all line up here during the safepoint.
duke@435 589 Threads_lock->lock_without_safepoint_check();
duke@435 590 // restore original state. This is important if the thread comes from compiled code, so it
duke@435 591 // will continue to execute with the _thread_in_Java state.
duke@435 592 thread->set_thread_state(state);
duke@435 593 Threads_lock->unlock();
duke@435 594 break;
duke@435 595
duke@435 596 case _thread_in_native_trans:
duke@435 597 case _thread_blocked_trans:
duke@435 598 case _thread_new_trans:
duke@435 599 if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
duke@435 600 thread->print_thread_state();
duke@435 601 fatal("Deadlock in safepoint code. "
duke@435 602 "Should have called back to the VM before blocking.");
duke@435 603 }
duke@435 604
duke@435 605 // We transition the thread to state _thread_blocked here, but
duke@435 606 // we can't do our usual check for external suspension and then
duke@435 607 // self-suspend after the lock_without_safepoint_check() call
duke@435 608 // below because we are often called during transitions while
duke@435 609 // we hold different locks. That would leave us suspended while
duke@435 610 // holding a resource which results in deadlocks.
duke@435 611 thread->set_thread_state(_thread_blocked);
duke@435 612
duke@435 613 // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
duke@435 614 // the safepoint code might still be waiting for it to block. We need to change the state here,
duke@435 615 // so it can see that it is at a safepoint.
duke@435 616
duke@435 617 // Block until the safepoint operation is completed.
duke@435 618 Threads_lock->lock_without_safepoint_check();
duke@435 619
duke@435 620 // Restore state
duke@435 621 thread->set_thread_state(state);
duke@435 622
duke@435 623 Threads_lock->unlock();
duke@435 624 break;
duke@435 625
duke@435 626 default:
jcoomes@1845 627 fatal(err_msg("Illegal threadstate encountered: %d", state));
duke@435 628 }
duke@435 629
duke@435 630 // Check for pending. async. exceptions or suspends - except if the
duke@435 631 // thread was blocked inside the VM. has_special_runtime_exit_condition()
duke@435 632 // is called last since it grabs a lock and we only want to do that when
duke@435 633 // we must.
duke@435 634 //
duke@435 635 // Note: we never deliver an async exception at a polling point as the
duke@435 636 // compiler may not have an exception handler for it. The polling
duke@435 637 // code will notice the async and deoptimize and the exception will
duke@435 638 // be delivered. (Polling at a return point is ok though). Sure is
duke@435 639 // a lot of bother for a deprecated feature...
duke@435 640 //
duke@435 641 // We don't deliver an async exception if the thread state is
duke@435 642 // _thread_in_native_trans so JNI functions won't be called with
duke@435 643 // a surprising pending exception. If the thread state is going back to java,
duke@435 644 // async exception is checked in check_special_condition_for_native_trans().
duke@435 645
duke@435 646 if (state != _thread_blocked_trans &&
duke@435 647 state != _thread_in_vm_trans &&
duke@435 648 thread->has_special_runtime_exit_condition()) {
duke@435 649 thread->handle_special_runtime_exit_condition(
duke@435 650 !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
duke@435 651 }
duke@435 652 }
duke@435 653
duke@435 654 // ------------------------------------------------------------------------------------------------------
duke@435 655 // Exception handlers
duke@435 656
duke@435 657 #ifndef PRODUCT
duke@435 658 #ifdef _LP64
duke@435 659 #define PTR_PAD ""
duke@435 660 #else
duke@435 661 #define PTR_PAD " "
duke@435 662 #endif
duke@435 663
duke@435 664 static void print_ptrs(intptr_t oldptr, intptr_t newptr, bool wasoop) {
duke@435 665 bool is_oop = newptr ? ((oop)newptr)->is_oop() : false;
duke@435 666 tty->print_cr(PTR_FORMAT PTR_PAD " %s %c " PTR_FORMAT PTR_PAD " %s %s",
duke@435 667 oldptr, wasoop?"oop":" ", oldptr == newptr ? ' ' : '!',
duke@435 668 newptr, is_oop?"oop":" ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":" "));
duke@435 669 }
duke@435 670
duke@435 671 static void print_longs(jlong oldptr, jlong newptr, bool wasoop) {
duke@435 672 bool is_oop = newptr ? ((oop)(intptr_t)newptr)->is_oop() : false;
duke@435 673 tty->print_cr(PTR64_FORMAT " %s %c " PTR64_FORMAT " %s %s",
duke@435 674 oldptr, wasoop?"oop":" ", oldptr == newptr ? ' ' : '!',
duke@435 675 newptr, is_oop?"oop":" ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":" "));
duke@435 676 }
duke@435 677
duke@435 678 #ifdef SPARC
duke@435 679 static void print_me(intptr_t *new_sp, intptr_t *old_sp, bool *was_oops) {
duke@435 680 #ifdef _LP64
duke@435 681 tty->print_cr("--------+------address-----+------before-----------+-------after----------+");
duke@435 682 const int incr = 1; // Increment to skip a long, in units of intptr_t
duke@435 683 #else
duke@435 684 tty->print_cr("--------+--address-+------before-----------+-------after----------+");
duke@435 685 const int incr = 2; // Increment to skip a long, in units of intptr_t
duke@435 686 #endif
duke@435 687 tty->print_cr("---SP---|");
duke@435 688 for( int i=0; i<16; i++ ) {
duke@435 689 tty->print("blob %c%d |"PTR_FORMAT" ","LO"[i>>3],i&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
duke@435 690 tty->print_cr("--------|");
duke@435 691 for( int i1=0; i1<frame::memory_parameter_word_sp_offset-16; i1++ ) {
duke@435 692 tty->print("argv pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
duke@435 693 tty->print(" pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++);
duke@435 694 tty->print_cr("--------|");
duke@435 695 tty->print(" G1 |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
duke@435 696 tty->print(" G3 |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
duke@435 697 tty->print(" G4 |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
duke@435 698 tty->print(" G5 |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
duke@435 699 tty->print_cr(" FSR |"PTR_FORMAT" "PTR64_FORMAT" "PTR64_FORMAT,new_sp,*(jlong*)old_sp,*(jlong*)new_sp);
duke@435 700 old_sp += incr; new_sp += incr; was_oops += incr;
duke@435 701 // Skip the floats
duke@435 702 tty->print_cr("--Float-|"PTR_FORMAT,new_sp);
duke@435 703 tty->print_cr("---FP---|");
duke@435 704 old_sp += incr*32; new_sp += incr*32; was_oops += incr*32;
duke@435 705 for( int i2=0; i2<16; i2++ ) {
duke@435 706 tty->print("call %c%d |"PTR_FORMAT" ","LI"[i2>>3],i2&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
duke@435 707 tty->print_cr("");
duke@435 708 }
duke@435 709 #endif // SPARC
duke@435 710 #endif // PRODUCT
duke@435 711
duke@435 712
duke@435 713 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
duke@435 714 assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
duke@435 715 assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
duke@435 716 assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
duke@435 717
duke@435 718 // Uncomment this to get some serious before/after printing of the
duke@435 719 // Sparc safepoint-blob frame structure.
duke@435 720 /*
duke@435 721 intptr_t* sp = thread->last_Java_sp();
duke@435 722 intptr_t stack_copy[150];
duke@435 723 for( int i=0; i<150; i++ ) stack_copy[i] = sp[i];
duke@435 724 bool was_oops[150];
duke@435 725 for( int i=0; i<150; i++ )
duke@435 726 was_oops[i] = stack_copy[i] ? ((oop)stack_copy[i])->is_oop() : false;
duke@435 727 */
duke@435 728
duke@435 729 if (ShowSafepointMsgs) {
duke@435 730 tty->print("handle_polling_page_exception: ");
duke@435 731 }
duke@435 732
duke@435 733 if (PrintSafepointStatistics) {
duke@435 734 inc_page_trap_count();
duke@435 735 }
duke@435 736
duke@435 737 ThreadSafepointState* state = thread->safepoint_state();
duke@435 738
duke@435 739 state->handle_polling_page_exception();
duke@435 740 // print_me(sp,stack_copy,was_oops);
duke@435 741 }
duke@435 742
duke@435 743
duke@435 744 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
duke@435 745 if (!timeout_error_printed) {
duke@435 746 timeout_error_printed = true;
duke@435 747 // Print out the thread infor which didn't reach the safepoint for debugging
duke@435 748 // purposes (useful when there are lots of threads in the debugger).
duke@435 749 tty->print_cr("");
duke@435 750 tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
duke@435 751 if (reason == _spinning_timeout) {
duke@435 752 tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
duke@435 753 } else if (reason == _blocking_timeout) {
duke@435 754 tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
duke@435 755 }
duke@435 756
duke@435 757 tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
duke@435 758 ThreadSafepointState *cur_state;
duke@435 759 ResourceMark rm;
duke@435 760 for(JavaThread *cur_thread = Threads::first(); cur_thread;
duke@435 761 cur_thread = cur_thread->next()) {
duke@435 762 cur_state = cur_thread->safepoint_state();
duke@435 763
duke@435 764 if (cur_thread->thread_state() != _thread_blocked &&
duke@435 765 ((reason == _spinning_timeout && cur_state->is_running()) ||
duke@435 766 (reason == _blocking_timeout && !cur_state->has_called_back()))) {
duke@435 767 tty->print("# ");
duke@435 768 cur_thread->print();
duke@435 769 tty->print_cr("");
duke@435 770 }
duke@435 771 }
duke@435 772 tty->print_cr("# SafepointSynchronize::begin: (End of list)");
duke@435 773 }
duke@435 774
duke@435 775 // To debug the long safepoint, specify both DieOnSafepointTimeout &
duke@435 776 // ShowMessageBoxOnError.
duke@435 777 if (DieOnSafepointTimeout) {
duke@435 778 char msg[1024];
duke@435 779 VM_Operation *op = VMThread::vm_operation();
xlu@948 780 sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
duke@435 781 SafepointTimeoutDelay,
duke@435 782 op != NULL ? op->name() : "no vm operation");
duke@435 783 fatal(msg);
duke@435 784 }
duke@435 785 }
duke@435 786
duke@435 787
duke@435 788 // -------------------------------------------------------------------------------------------------------
duke@435 789 // Implementation of ThreadSafepointState
duke@435 790
duke@435 791 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
duke@435 792 _thread = thread;
duke@435 793 _type = _running;
duke@435 794 _has_called_back = false;
duke@435 795 _at_poll_safepoint = false;
duke@435 796 }
duke@435 797
duke@435 798 void ThreadSafepointState::create(JavaThread *thread) {
duke@435 799 ThreadSafepointState *state = new ThreadSafepointState(thread);
duke@435 800 thread->set_safepoint_state(state);
duke@435 801 }
duke@435 802
duke@435 803 void ThreadSafepointState::destroy(JavaThread *thread) {
duke@435 804 if (thread->safepoint_state()) {
duke@435 805 delete(thread->safepoint_state());
duke@435 806 thread->set_safepoint_state(NULL);
duke@435 807 }
duke@435 808 }
duke@435 809
duke@435 810 void ThreadSafepointState::examine_state_of_thread() {
duke@435 811 assert(is_running(), "better be running or just have hit safepoint poll");
duke@435 812
duke@435 813 JavaThreadState state = _thread->thread_state();
duke@435 814
never@2082 815 // Save the state at the start of safepoint processing.
never@2082 816 _orig_thread_state = state;
never@2082 817
duke@435 818 // Check for a thread that is suspended. Note that thread resume tries
duke@435 819 // to grab the Threads_lock which we own here, so a thread cannot be
duke@435 820 // resumed during safepoint synchronization.
duke@435 821
dcubed@1414 822 // We check to see if this thread is suspended without locking to
dcubed@1414 823 // avoid deadlocking with a third thread that is waiting for this
dcubed@1414 824 // thread to be suspended. The third thread can notice the safepoint
dcubed@1414 825 // that we're trying to start at the beginning of its SR_lock->wait()
dcubed@1414 826 // call. If that happens, then the third thread will block on the
dcubed@1414 827 // safepoint while still holding the underlying SR_lock. We won't be
dcubed@1414 828 // able to get the SR_lock and we'll deadlock.
dcubed@1414 829 //
dcubed@1414 830 // We don't need to grab the SR_lock here for two reasons:
dcubed@1414 831 // 1) The suspend flags are both volatile and are set with an
dcubed@1414 832 // Atomic::cmpxchg() call so we should see the suspended
dcubed@1414 833 // state right away.
dcubed@1414 834 // 2) We're being called from the safepoint polling loop; if
dcubed@1414 835 // we don't see the suspended state on this iteration, then
dcubed@1414 836 // we'll come around again.
dcubed@1414 837 //
dcubed@1414 838 bool is_suspended = _thread->is_ext_suspended();
duke@435 839 if (is_suspended) {
duke@435 840 roll_forward(_at_safepoint);
duke@435 841 return;
duke@435 842 }
duke@435 843
duke@435 844 // Some JavaThread states have an initial safepoint state of
duke@435 845 // running, but are actually at a safepoint. We will happily
duke@435 846 // agree and update the safepoint state here.
duke@435 847 if (SafepointSynchronize::safepoint_safe(_thread, state)) {
duke@435 848 roll_forward(_at_safepoint);
duke@435 849 return;
duke@435 850 }
duke@435 851
duke@435 852 if (state == _thread_in_vm) {
duke@435 853 roll_forward(_call_back);
duke@435 854 return;
duke@435 855 }
duke@435 856
duke@435 857 // All other thread states will continue to run until they
duke@435 858 // transition and self-block in state _blocked
duke@435 859 // Safepoint polling in compiled code causes the Java threads to do the same.
duke@435 860 // Note: new threads may require a malloc so they must be allowed to finish
duke@435 861
duke@435 862 assert(is_running(), "examine_state_of_thread on non-running thread");
duke@435 863 return;
duke@435 864 }
duke@435 865
duke@435 866 // Returns true is thread could not be rolled forward at present position.
duke@435 867 void ThreadSafepointState::roll_forward(suspend_type type) {
duke@435 868 _type = type;
duke@435 869
duke@435 870 switch(_type) {
duke@435 871 case _at_safepoint:
duke@435 872 SafepointSynchronize::signal_thread_at_safepoint();
duke@435 873 break;
duke@435 874
duke@435 875 case _call_back:
duke@435 876 set_has_called_back(false);
duke@435 877 break;
duke@435 878
duke@435 879 case _running:
duke@435 880 default:
duke@435 881 ShouldNotReachHere();
duke@435 882 }
duke@435 883 }
duke@435 884
duke@435 885 void ThreadSafepointState::restart() {
duke@435 886 switch(type()) {
duke@435 887 case _at_safepoint:
duke@435 888 case _call_back:
duke@435 889 break;
duke@435 890
duke@435 891 case _running:
duke@435 892 default:
duke@435 893 tty->print_cr("restart thread "INTPTR_FORMAT" with state %d",
duke@435 894 _thread, _type);
duke@435 895 _thread->print();
duke@435 896 ShouldNotReachHere();
duke@435 897 }
duke@435 898 _type = _running;
duke@435 899 set_has_called_back(false);
duke@435 900 }
duke@435 901
duke@435 902
duke@435 903 void ThreadSafepointState::print_on(outputStream *st) const {
duke@435 904 const char *s;
duke@435 905
duke@435 906 switch(_type) {
duke@435 907 case _running : s = "_running"; break;
duke@435 908 case _at_safepoint : s = "_at_safepoint"; break;
duke@435 909 case _call_back : s = "_call_back"; break;
duke@435 910 default:
duke@435 911 ShouldNotReachHere();
duke@435 912 }
duke@435 913
duke@435 914 st->print_cr("Thread: " INTPTR_FORMAT
duke@435 915 " [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
duke@435 916 _thread, _thread->osthread()->thread_id(), s, _has_called_back,
duke@435 917 _at_poll_safepoint);
duke@435 918
duke@435 919 _thread->print_thread_state_on(st);
duke@435 920 }
duke@435 921
duke@435 922
duke@435 923 // ---------------------------------------------------------------------------------------------------------------------
duke@435 924
duke@435 925 // Block the thread at the safepoint poll or poll return.
duke@435 926 void ThreadSafepointState::handle_polling_page_exception() {
duke@435 927
duke@435 928 // Check state. block() will set thread state to thread_in_vm which will
duke@435 929 // cause the safepoint state _type to become _call_back.
duke@435 930 assert(type() == ThreadSafepointState::_running,
duke@435 931 "polling page exception on thread not running state");
duke@435 932
duke@435 933 // Step 1: Find the nmethod from the return address
duke@435 934 if (ShowSafepointMsgs && Verbose) {
duke@435 935 tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
duke@435 936 }
duke@435 937 address real_return_addr = thread()->saved_exception_pc();
duke@435 938
duke@435 939 CodeBlob *cb = CodeCache::find_blob(real_return_addr);
duke@435 940 assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
duke@435 941 nmethod* nm = (nmethod*)cb;
duke@435 942
duke@435 943 // Find frame of caller
duke@435 944 frame stub_fr = thread()->last_frame();
duke@435 945 CodeBlob* stub_cb = stub_fr.cb();
duke@435 946 assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
duke@435 947 RegisterMap map(thread(), true);
duke@435 948 frame caller_fr = stub_fr.sender(&map);
duke@435 949
duke@435 950 // Should only be poll_return or poll
duke@435 951 assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
duke@435 952
duke@435 953 // This is a poll immediately before a return. The exception handling code
duke@435 954 // has already had the effect of causing the return to occur, so the execution
duke@435 955 // will continue immediately after the call. In addition, the oopmap at the
duke@435 956 // return point does not mark the return value as an oop (if it is), so
duke@435 957 // it needs a handle here to be updated.
duke@435 958 if( nm->is_at_poll_return(real_return_addr) ) {
duke@435 959 // See if return type is an oop.
duke@435 960 bool return_oop = nm->method()->is_returning_oop();
duke@435 961 Handle return_value;
duke@435 962 if (return_oop) {
duke@435 963 // The oop result has been saved on the stack together with all
duke@435 964 // the other registers. In order to preserve it over GCs we need
duke@435 965 // to keep it in a handle.
duke@435 966 oop result = caller_fr.saved_oop_result(&map);
duke@435 967 assert(result == NULL || result->is_oop(), "must be oop");
duke@435 968 return_value = Handle(thread(), result);
duke@435 969 assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
duke@435 970 }
duke@435 971
duke@435 972 // Block the thread
duke@435 973 SafepointSynchronize::block(thread());
duke@435 974
duke@435 975 // restore oop result, if any
duke@435 976 if (return_oop) {
duke@435 977 caller_fr.set_saved_oop_result(&map, return_value());
duke@435 978 }
duke@435 979 }
duke@435 980
duke@435 981 // This is a safepoint poll. Verify the return address and block.
duke@435 982 else {
duke@435 983 set_at_poll_safepoint(true);
duke@435 984
duke@435 985 // verify the blob built the "return address" correctly
duke@435 986 assert(real_return_addr == caller_fr.pc(), "must match");
duke@435 987
duke@435 988 // Block the thread
duke@435 989 SafepointSynchronize::block(thread());
duke@435 990 set_at_poll_safepoint(false);
duke@435 991
duke@435 992 // If we have a pending async exception deoptimize the frame
duke@435 993 // as otherwise we may never deliver it.
duke@435 994 if (thread()->has_async_condition()) {
duke@435 995 ThreadInVMfromJavaNoAsyncException __tiv(thread());
never@2260 996 Deoptimization::deoptimize_frame(thread(), caller_fr.id());
duke@435 997 }
duke@435 998
duke@435 999 // If an exception has been installed we must check for a pending deoptimization
duke@435 1000 // Deoptimize frame if exception has been thrown.
duke@435 1001
duke@435 1002 if (thread()->has_pending_exception() ) {
duke@435 1003 RegisterMap map(thread(), true);
duke@435 1004 frame caller_fr = stub_fr.sender(&map);
duke@435 1005 if (caller_fr.is_deoptimized_frame()) {
duke@435 1006 // The exception patch will destroy registers that are still
duke@435 1007 // live and will be needed during deoptimization. Defer the
duke@435 1008 // Async exception should have defered the exception until the
duke@435 1009 // next safepoint which will be detected when we get into
duke@435 1010 // the interpreter so if we have an exception now things
duke@435 1011 // are messed up.
duke@435 1012
duke@435 1013 fatal("Exception installed and deoptimization is pending");
duke@435 1014 }
duke@435 1015 }
duke@435 1016 }
duke@435 1017 }
duke@435 1018
duke@435 1019
duke@435 1020 //
duke@435 1021 // Statistics & Instrumentations
duke@435 1022 //
duke@435 1023 SafepointSynchronize::SafepointStats* SafepointSynchronize::_safepoint_stats = NULL;
xlu@1726 1024 jlong SafepointSynchronize::_safepoint_begin_time = 0;
duke@435 1025 int SafepointSynchronize::_cur_stat_index = 0;
duke@435 1026 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
duke@435 1027 julong SafepointSynchronize::_coalesced_vmop_count = 0;
duke@435 1028 jlong SafepointSynchronize::_max_sync_time = 0;
xlu@1726 1029 jlong SafepointSynchronize::_max_vmop_time = 0;
xlu@1726 1030 float SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
duke@435 1031
xlu@1726 1032 static jlong cleanup_end_time = 0;
duke@435 1033 static bool need_to_track_page_armed_status = false;
duke@435 1034 static bool init_done = false;
duke@435 1035
xlu@1726 1036 // Helper method to print the header.
xlu@1726 1037 static void print_header() {
xlu@1726 1038 tty->print(" vmop "
xlu@1726 1039 "[threads: total initially_running wait_to_block] ");
xlu@1726 1040 tty->print("[time: spin block sync cleanup vmop] ");
xlu@1726 1041
xlu@1726 1042 // no page armed status printed out if it is always armed.
xlu@1726 1043 if (need_to_track_page_armed_status) {
xlu@1726 1044 tty->print("page_armed ");
xlu@1726 1045 }
xlu@1726 1046
xlu@1726 1047 tty->print_cr("page_trap_count");
xlu@1726 1048 }
xlu@1726 1049
duke@435 1050 void SafepointSynchronize::deferred_initialize_stat() {
duke@435 1051 if (init_done) return;
duke@435 1052
duke@435 1053 if (PrintSafepointStatisticsCount <= 0) {
duke@435 1054 fatal("Wrong PrintSafepointStatisticsCount");
duke@435 1055 }
duke@435 1056
duke@435 1057 // If PrintSafepointStatisticsTimeout is specified, the statistics data will
duke@435 1058 // be printed right away, in which case, _safepoint_stats will regress to
duke@435 1059 // a single element array. Otherwise, it is a circular ring buffer with default
duke@435 1060 // size of PrintSafepointStatisticsCount.
duke@435 1061 int stats_array_size;
duke@435 1062 if (PrintSafepointStatisticsTimeout > 0) {
duke@435 1063 stats_array_size = 1;
duke@435 1064 PrintSafepointStatistics = true;
duke@435 1065 } else {
duke@435 1066 stats_array_size = PrintSafepointStatisticsCount;
duke@435 1067 }
duke@435 1068 _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
duke@435 1069 * sizeof(SafepointStats));
duke@435 1070 guarantee(_safepoint_stats != NULL,
duke@435 1071 "not enough memory for safepoint instrumentation data");
duke@435 1072
duke@435 1073 if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
duke@435 1074 need_to_track_page_armed_status = true;
duke@435 1075 }
duke@435 1076 init_done = true;
duke@435 1077 }
duke@435 1078
duke@435 1079 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
xlu@1438 1080 assert(init_done, "safepoint statistics array hasn't been initialized");
duke@435 1081 SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
duke@435 1082
xlu@1726 1083 spstat->_time_stamp = _ts_of_current_safepoint;
xlu@1726 1084
duke@435 1085 VM_Operation *op = VMThread::vm_operation();
duke@435 1086 spstat->_vmop_type = (op != NULL ? op->type() : -1);
duke@435 1087 if (op != NULL) {
duke@435 1088 _safepoint_reasons[spstat->_vmop_type]++;
duke@435 1089 }
duke@435 1090
duke@435 1091 spstat->_nof_total_threads = nof_threads;
duke@435 1092 spstat->_nof_initial_running_threads = nof_running;
duke@435 1093 spstat->_nof_threads_hit_page_trap = 0;
duke@435 1094
duke@435 1095 // Records the start time of spinning. The real time spent on spinning
duke@435 1096 // will be adjusted when spin is done. Same trick is applied for time
duke@435 1097 // spent on waiting for threads to block.
duke@435 1098 if (nof_running != 0) {
duke@435 1099 spstat->_time_to_spin = os::javaTimeNanos();
duke@435 1100 } else {
duke@435 1101 spstat->_time_to_spin = 0;
duke@435 1102 }
duke@435 1103 }
duke@435 1104
duke@435 1105 void SafepointSynchronize::update_statistics_on_spin_end() {
duke@435 1106 SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
duke@435 1107
duke@435 1108 jlong cur_time = os::javaTimeNanos();
duke@435 1109
duke@435 1110 spstat->_nof_threads_wait_to_block = _waiting_to_block;
duke@435 1111 if (spstat->_nof_initial_running_threads != 0) {
duke@435 1112 spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
duke@435 1113 }
duke@435 1114
duke@435 1115 if (need_to_track_page_armed_status) {
duke@435 1116 spstat->_page_armed = (PageArmed == 1);
duke@435 1117 }
duke@435 1118
duke@435 1119 // Records the start time of waiting for to block. Updated when block is done.
duke@435 1120 if (_waiting_to_block != 0) {
duke@435 1121 spstat->_time_to_wait_to_block = cur_time;
duke@435 1122 } else {
duke@435 1123 spstat->_time_to_wait_to_block = 0;
duke@435 1124 }
duke@435 1125 }
duke@435 1126
duke@435 1127 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
duke@435 1128 SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
duke@435 1129
duke@435 1130 if (spstat->_nof_threads_wait_to_block != 0) {
duke@435 1131 spstat->_time_to_wait_to_block = end_time -
duke@435 1132 spstat->_time_to_wait_to_block;
duke@435 1133 }
duke@435 1134
duke@435 1135 // Records the end time of sync which will be used to calculate the total
duke@435 1136 // vm operation time. Again, the real time spending in syncing will be deducted
duke@435 1137 // from the start of the sync time later when end_statistics is called.
xlu@1726 1138 spstat->_time_to_sync = end_time - _safepoint_begin_time;
duke@435 1139 if (spstat->_time_to_sync > _max_sync_time) {
duke@435 1140 _max_sync_time = spstat->_time_to_sync;
duke@435 1141 }
xlu@1726 1142
xlu@1726 1143 spstat->_time_to_do_cleanups = end_time;
xlu@1726 1144 }
xlu@1726 1145
xlu@1726 1146 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
xlu@1726 1147 SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
xlu@1726 1148
xlu@1726 1149 // Record how long spent in cleanup tasks.
xlu@1726 1150 spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
xlu@1726 1151
xlu@1726 1152 cleanup_end_time = end_time;
duke@435 1153 }
duke@435 1154
duke@435 1155 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
duke@435 1156 SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
duke@435 1157
duke@435 1158 // Update the vm operation time.
xlu@1726 1159 spstat->_time_to_exec_vmop = vmop_end_time - cleanup_end_time;
xlu@1726 1160 if (spstat->_time_to_exec_vmop > _max_vmop_time) {
xlu@1726 1161 _max_vmop_time = spstat->_time_to_exec_vmop;
xlu@1726 1162 }
duke@435 1163 // Only the sync time longer than the specified
duke@435 1164 // PrintSafepointStatisticsTimeout will be printed out right away.
duke@435 1165 // By default, it is -1 meaning all samples will be put into the list.
duke@435 1166 if ( PrintSafepointStatisticsTimeout > 0) {
duke@435 1167 if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
duke@435 1168 print_statistics();
duke@435 1169 }
duke@435 1170 } else {
duke@435 1171 // The safepoint statistics will be printed out when the _safepoin_stats
duke@435 1172 // array fills up.
xlu@1726 1173 if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
duke@435 1174 print_statistics();
duke@435 1175 _cur_stat_index = 0;
xlu@1726 1176 } else {
xlu@1726 1177 _cur_stat_index++;
duke@435 1178 }
duke@435 1179 }
duke@435 1180 }
duke@435 1181
duke@435 1182 void SafepointSynchronize::print_statistics() {
duke@435 1183 SafepointStats* sstats = _safepoint_stats;
duke@435 1184
xlu@1726 1185 for (int index = 0; index <= _cur_stat_index; index++) {
xlu@1726 1186 if (index % 30 == 0) {
xlu@1726 1187 print_header();
xlu@1726 1188 }
duke@435 1189 sstats = &_safepoint_stats[index];
xlu@1726 1190 tty->print("%.3f: ", sstats->_time_stamp);
xlu@1726 1191 tty->print("%-26s ["
duke@435 1192 INT32_FORMAT_W(8)INT32_FORMAT_W(11)INT32_FORMAT_W(15)
xlu@1726 1193 " ] ",
duke@435 1194 sstats->_vmop_type == -1 ? "no vm operation" :
duke@435 1195 VM_Operation::name(sstats->_vmop_type),
duke@435 1196 sstats->_nof_total_threads,
duke@435 1197 sstats->_nof_initial_running_threads,
duke@435 1198 sstats->_nof_threads_wait_to_block);
duke@435 1199 // "/ MICROUNITS " is to convert the unit from nanos to millis.
xlu@1726 1200 tty->print(" ["
xlu@1726 1201 INT64_FORMAT_W(6)INT64_FORMAT_W(6)
xlu@1726 1202 INT64_FORMAT_W(6)INT64_FORMAT_W(6)
xlu@1726 1203 INT64_FORMAT_W(6)" ] ",
duke@435 1204 sstats->_time_to_spin / MICROUNITS,
duke@435 1205 sstats->_time_to_wait_to_block / MICROUNITS,
duke@435 1206 sstats->_time_to_sync / MICROUNITS,
xlu@1726 1207 sstats->_time_to_do_cleanups / MICROUNITS,
xlu@1726 1208 sstats->_time_to_exec_vmop / MICROUNITS);
duke@435 1209
duke@435 1210 if (need_to_track_page_armed_status) {
duke@435 1211 tty->print(INT32_FORMAT" ", sstats->_page_armed);
duke@435 1212 }
duke@435 1213 tty->print_cr(INT32_FORMAT" ", sstats->_nof_threads_hit_page_trap);
duke@435 1214 }
duke@435 1215 }
duke@435 1216
duke@435 1217 // This method will be called when VM exits. It will first call
duke@435 1218 // print_statistics to print out the rest of the sampling. Then
duke@435 1219 // it tries to summarize the sampling.
duke@435 1220 void SafepointSynchronize::print_stat_on_exit() {
duke@435 1221 if (_safepoint_stats == NULL) return;
duke@435 1222
duke@435 1223 SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
duke@435 1224
duke@435 1225 // During VM exit, end_statistics may not get called and in that
duke@435 1226 // case, if the sync time is less than PrintSafepointStatisticsTimeout,
duke@435 1227 // don't print it out.
duke@435 1228 // Approximate the vm op time.
duke@435 1229 _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
xlu@1726 1230 os::javaTimeNanos() - cleanup_end_time;
duke@435 1231
duke@435 1232 if ( PrintSafepointStatisticsTimeout < 0 ||
duke@435 1233 spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
duke@435 1234 print_statistics();
duke@435 1235 }
duke@435 1236 tty->print_cr("");
duke@435 1237
duke@435 1238 // Print out polling page sampling status.
duke@435 1239 if (!need_to_track_page_armed_status) {
duke@435 1240 if (UseCompilerSafepoints) {
duke@435 1241 tty->print_cr("Polling page always armed");
duke@435 1242 }
duke@435 1243 } else {
duke@435 1244 tty->print_cr("Defer polling page loop count = %d\n",
duke@435 1245 DeferPollingPageLoopCount);
duke@435 1246 }
duke@435 1247
duke@435 1248 for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
duke@435 1249 if (_safepoint_reasons[index] != 0) {
duke@435 1250 tty->print_cr("%-26s"UINT64_FORMAT_W(10), VM_Operation::name(index),
duke@435 1251 _safepoint_reasons[index]);
duke@435 1252 }
duke@435 1253 }
duke@435 1254
duke@435 1255 tty->print_cr(UINT64_FORMAT_W(5)" VM operations coalesced during safepoint",
duke@435 1256 _coalesced_vmop_count);
duke@435 1257 tty->print_cr("Maximum sync time "INT64_FORMAT_W(5)" ms",
duke@435 1258 _max_sync_time / MICROUNITS);
xlu@1726 1259 tty->print_cr("Maximum vm operation time (except for Exit VM operation) "
xlu@1726 1260 INT64_FORMAT_W(5)" ms",
xlu@1726 1261 _max_vmop_time / MICROUNITS);
duke@435 1262 }
duke@435 1263
duke@435 1264 // ------------------------------------------------------------------------------------------------
duke@435 1265 // Non-product code
duke@435 1266
duke@435 1267 #ifndef PRODUCT
duke@435 1268
duke@435 1269 void SafepointSynchronize::print_state() {
duke@435 1270 if (_state == _not_synchronized) {
duke@435 1271 tty->print_cr("not synchronized");
duke@435 1272 } else if (_state == _synchronizing || _state == _synchronized) {
duke@435 1273 tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
duke@435 1274 "synchronized");
duke@435 1275
duke@435 1276 for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
duke@435 1277 cur->safepoint_state()->print();
duke@435 1278 }
duke@435 1279 }
duke@435 1280 }
duke@435 1281
duke@435 1282 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
duke@435 1283 if (ShowSafepointMsgs) {
duke@435 1284 va_list ap;
duke@435 1285 va_start(ap, format);
duke@435 1286 tty->vprint_cr(format, ap);
duke@435 1287 va_end(ap);
duke@435 1288 }
duke@435 1289 }
duke@435 1290
duke@435 1291 #endif // !PRODUCT

mercurial