src/share/vm/memory/collectorPolicy.cpp

Wed, 01 Dec 2010 15:04:06 +0100

author
stefank
date
Wed, 01 Dec 2010 15:04:06 +0100
changeset 2325
c760f78e0a53
parent 2314
f95d63e2154a
child 2336
6cd6d394f280
permissions
-rw-r--r--

7003125: precompiled.hpp is included when precompiled headers are not used
Summary: Added an ifndef DONT_USE_PRECOMPILED_HEADER to precompiled.hpp. Set up DONT_USE_PRECOMPILED_HEADER when compiling with Sun Studio or when the user specifies USE_PRECOMPILED_HEADER=0. Fixed broken include dependencies.
Reviewed-by: coleenp, kvn

duke@435 1 /*
trims@1907 2 * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
stefank@2314 27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
stefank@2314 28 #include "gc_implementation/shared/vmGCOperations.hpp"
stefank@2314 29 #include "memory/cardTableRS.hpp"
stefank@2314 30 #include "memory/collectorPolicy.hpp"
stefank@2314 31 #include "memory/gcLocker.inline.hpp"
stefank@2314 32 #include "memory/genCollectedHeap.hpp"
stefank@2314 33 #include "memory/generationSpec.hpp"
stefank@2314 34 #include "memory/space.hpp"
stefank@2314 35 #include "memory/universe.hpp"
stefank@2314 36 #include "runtime/arguments.hpp"
stefank@2314 37 #include "runtime/globals_extension.hpp"
stefank@2314 38 #include "runtime/handles.inline.hpp"
stefank@2314 39 #include "runtime/java.hpp"
stefank@2314 40 #include "runtime/vmThread.hpp"
stefank@2314 41 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 42 # include "thread_linux.inline.hpp"
stefank@2314 43 #endif
stefank@2314 44 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 45 # include "thread_solaris.inline.hpp"
stefank@2314 46 #endif
stefank@2314 47 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 48 # include "thread_windows.inline.hpp"
stefank@2314 49 #endif
stefank@2314 50 #ifndef SERIALGC
stefank@2314 51 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
stefank@2314 52 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
stefank@2314 53 #endif
duke@435 54
duke@435 55 // CollectorPolicy methods.
duke@435 56
duke@435 57 void CollectorPolicy::initialize_flags() {
duke@435 58 if (PermSize > MaxPermSize) {
duke@435 59 MaxPermSize = PermSize;
duke@435 60 }
ysr@777 61 PermSize = MAX2(min_alignment(), align_size_down_(PermSize, min_alignment()));
kvn@2150 62 // Don't increase Perm size limit above specified.
kvn@2150 63 MaxPermSize = align_size_down(MaxPermSize, max_alignment());
kvn@2150 64 if (PermSize > MaxPermSize) {
kvn@2150 65 PermSize = MaxPermSize;
kvn@2150 66 }
duke@435 67
ysr@777 68 MinPermHeapExpansion = MAX2(min_alignment(), align_size_down_(MinPermHeapExpansion, min_alignment()));
ysr@777 69 MaxPermHeapExpansion = MAX2(min_alignment(), align_size_down_(MaxPermHeapExpansion, min_alignment()));
duke@435 70
duke@435 71 MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, min_alignment());
duke@435 72
duke@435 73 SharedReadOnlySize = align_size_up(SharedReadOnlySize, max_alignment());
duke@435 74 SharedReadWriteSize = align_size_up(SharedReadWriteSize, max_alignment());
duke@435 75 SharedMiscDataSize = align_size_up(SharedMiscDataSize, max_alignment());
duke@435 76
duke@435 77 assert(PermSize % min_alignment() == 0, "permanent space alignment");
duke@435 78 assert(MaxPermSize % max_alignment() == 0, "maximum permanent space alignment");
duke@435 79 assert(SharedReadOnlySize % max_alignment() == 0, "read-only space alignment");
duke@435 80 assert(SharedReadWriteSize % max_alignment() == 0, "read-write space alignment");
duke@435 81 assert(SharedMiscDataSize % max_alignment() == 0, "misc-data space alignment");
duke@435 82 if (PermSize < M) {
duke@435 83 vm_exit_during_initialization("Too small initial permanent heap");
duke@435 84 }
duke@435 85 }
duke@435 86
duke@435 87 void CollectorPolicy::initialize_size_info() {
duke@435 88 // User inputs from -mx and ms are aligned
phh@1499 89 set_initial_heap_byte_size(InitialHeapSize);
jmasa@448 90 if (initial_heap_byte_size() == 0) {
jmasa@448 91 set_initial_heap_byte_size(NewSize + OldSize);
duke@435 92 }
ysr@777 93 set_initial_heap_byte_size(align_size_up(_initial_heap_byte_size,
ysr@777 94 min_alignment()));
ysr@777 95
ysr@777 96 set_min_heap_byte_size(Arguments::min_heap_size());
jmasa@448 97 if (min_heap_byte_size() == 0) {
jmasa@448 98 set_min_heap_byte_size(NewSize + OldSize);
duke@435 99 }
ysr@777 100 set_min_heap_byte_size(align_size_up(_min_heap_byte_size,
ysr@777 101 min_alignment()));
ysr@777 102
ysr@777 103 set_max_heap_byte_size(align_size_up(MaxHeapSize, max_alignment()));
duke@435 104
duke@435 105 // Check heap parameter properties
jmasa@448 106 if (initial_heap_byte_size() < M) {
duke@435 107 vm_exit_during_initialization("Too small initial heap");
duke@435 108 }
duke@435 109 // Check heap parameter properties
jmasa@448 110 if (min_heap_byte_size() < M) {
duke@435 111 vm_exit_during_initialization("Too small minimum heap");
duke@435 112 }
jmasa@448 113 if (initial_heap_byte_size() <= NewSize) {
duke@435 114 // make sure there is at least some room in old space
duke@435 115 vm_exit_during_initialization("Too small initial heap for new size specified");
duke@435 116 }
jmasa@448 117 if (max_heap_byte_size() < min_heap_byte_size()) {
duke@435 118 vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
duke@435 119 }
jmasa@448 120 if (initial_heap_byte_size() < min_heap_byte_size()) {
duke@435 121 vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
duke@435 122 }
jmasa@448 123 if (max_heap_byte_size() < initial_heap_byte_size()) {
duke@435 124 vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
duke@435 125 }
jmasa@448 126
jmasa@448 127 if (PrintGCDetails && Verbose) {
jmasa@448 128 gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT " Initial heap "
jmasa@448 129 SIZE_FORMAT " Maximum heap " SIZE_FORMAT,
jmasa@448 130 min_heap_byte_size(), initial_heap_byte_size(), max_heap_byte_size());
jmasa@448 131 }
duke@435 132 }
duke@435 133
duke@435 134 void CollectorPolicy::initialize_perm_generation(PermGen::Name pgnm) {
duke@435 135 _permanent_generation =
duke@435 136 new PermanentGenerationSpec(pgnm, PermSize, MaxPermSize,
duke@435 137 SharedReadOnlySize,
duke@435 138 SharedReadWriteSize,
duke@435 139 SharedMiscDataSize,
duke@435 140 SharedMiscCodeSize);
duke@435 141 if (_permanent_generation == NULL) {
duke@435 142 vm_exit_during_initialization("Unable to allocate gen spec");
duke@435 143 }
duke@435 144 }
duke@435 145
jmasa@1822 146 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
jmasa@1822 147 bool result = _should_clear_all_soft_refs;
jmasa@1822 148 set_should_clear_all_soft_refs(false);
jmasa@1822 149 return result;
jmasa@1822 150 }
duke@435 151
duke@435 152 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
duke@435 153 int max_covered_regions) {
duke@435 154 switch (rem_set_name()) {
duke@435 155 case GenRemSet::CardTable: {
duke@435 156 CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
duke@435 157 return res;
duke@435 158 }
duke@435 159 default:
duke@435 160 guarantee(false, "unrecognized GenRemSet::Name");
duke@435 161 return NULL;
duke@435 162 }
duke@435 163 }
duke@435 164
jmasa@1822 165 void CollectorPolicy::cleared_all_soft_refs() {
jmasa@1822 166 // If near gc overhear limit, continue to clear SoftRefs. SoftRefs may
jmasa@1822 167 // have been cleared in the last collection but if the gc overhear
jmasa@1822 168 // limit continues to be near, SoftRefs should still be cleared.
jmasa@1822 169 if (size_policy() != NULL) {
jmasa@1822 170 _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
jmasa@1822 171 }
jmasa@1822 172 _all_soft_refs_clear = true;
jmasa@1822 173 }
jmasa@1822 174
jmasa@1822 175
duke@435 176 // GenCollectorPolicy methods.
duke@435 177
jmasa@448 178 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
jmasa@448 179 size_t x = base_size / (NewRatio+1);
jmasa@448 180 size_t new_gen_size = x > min_alignment() ?
jmasa@448 181 align_size_down(x, min_alignment()) :
jmasa@448 182 min_alignment();
jmasa@448 183 return new_gen_size;
jmasa@448 184 }
jmasa@448 185
jmasa@448 186 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
jmasa@448 187 size_t maximum_size) {
jmasa@448 188 size_t alignment = min_alignment();
jmasa@448 189 size_t max_minus = maximum_size - alignment;
jmasa@448 190 return desired_size < max_minus ? desired_size : max_minus;
jmasa@448 191 }
jmasa@448 192
jmasa@448 193
duke@435 194 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
duke@435 195 size_t init_promo_size,
duke@435 196 size_t init_survivor_size) {
jmasa@448 197 const double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
duke@435 198 _size_policy = new AdaptiveSizePolicy(init_eden_size,
duke@435 199 init_promo_size,
duke@435 200 init_survivor_size,
duke@435 201 max_gc_minor_pause_sec,
duke@435 202 GCTimeRatio);
duke@435 203 }
duke@435 204
duke@435 205 size_t GenCollectorPolicy::compute_max_alignment() {
duke@435 206 // The card marking array and the offset arrays for old generations are
duke@435 207 // committed in os pages as well. Make sure they are entirely full (to
duke@435 208 // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
duke@435 209 // byte entry and the os page size is 4096, the maximum heap size should
duke@435 210 // be 512*4096 = 2MB aligned.
duke@435 211 size_t alignment = GenRemSet::max_alignment_constraint(rem_set_name());
duke@435 212
duke@435 213 // Parallel GC does its own alignment of the generations to avoid requiring a
duke@435 214 // large page (256M on some platforms) for the permanent generation. The
duke@435 215 // other collectors should also be updated to do their own alignment and then
duke@435 216 // this use of lcm() should be removed.
duke@435 217 if (UseLargePages && !UseParallelGC) {
duke@435 218 // in presence of large pages we have to make sure that our
duke@435 219 // alignment is large page aware
duke@435 220 alignment = lcm(os::large_page_size(), alignment);
duke@435 221 }
duke@435 222
duke@435 223 return alignment;
duke@435 224 }
duke@435 225
duke@435 226 void GenCollectorPolicy::initialize_flags() {
duke@435 227 // All sizes must be multiples of the generation granularity.
duke@435 228 set_min_alignment((uintx) Generation::GenGrain);
duke@435 229 set_max_alignment(compute_max_alignment());
duke@435 230 assert(max_alignment() >= min_alignment() &&
duke@435 231 max_alignment() % min_alignment() == 0,
duke@435 232 "invalid alignment constraints");
duke@435 233
duke@435 234 CollectorPolicy::initialize_flags();
duke@435 235
duke@435 236 // All generational heaps have a youngest gen; handle those flags here.
duke@435 237
duke@435 238 // Adjust max size parameters
duke@435 239 if (NewSize > MaxNewSize) {
duke@435 240 MaxNewSize = NewSize;
duke@435 241 }
duke@435 242 NewSize = align_size_down(NewSize, min_alignment());
duke@435 243 MaxNewSize = align_size_down(MaxNewSize, min_alignment());
duke@435 244
duke@435 245 // Check validity of heap flags
duke@435 246 assert(NewSize % min_alignment() == 0, "eden space alignment");
duke@435 247 assert(MaxNewSize % min_alignment() == 0, "survivor space alignment");
duke@435 248
duke@435 249 if (NewSize < 3*min_alignment()) {
duke@435 250 // make sure there room for eden and two survivor spaces
duke@435 251 vm_exit_during_initialization("Too small new size specified");
duke@435 252 }
duke@435 253 if (SurvivorRatio < 1 || NewRatio < 1) {
duke@435 254 vm_exit_during_initialization("Invalid heap ratio specified");
duke@435 255 }
duke@435 256 }
duke@435 257
duke@435 258 void TwoGenerationCollectorPolicy::initialize_flags() {
duke@435 259 GenCollectorPolicy::initialize_flags();
duke@435 260
duke@435 261 OldSize = align_size_down(OldSize, min_alignment());
duke@435 262 if (NewSize + OldSize > MaxHeapSize) {
duke@435 263 MaxHeapSize = NewSize + OldSize;
duke@435 264 }
duke@435 265 MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
duke@435 266
duke@435 267 always_do_update_barrier = UseConcMarkSweepGC;
duke@435 268 BlockOffsetArrayUseUnallocatedBlock =
duke@435 269 BlockOffsetArrayUseUnallocatedBlock || ParallelGCThreads > 0;
duke@435 270
duke@435 271 // Check validity of heap flags
duke@435 272 assert(OldSize % min_alignment() == 0, "old space alignment");
duke@435 273 assert(MaxHeapSize % max_alignment() == 0, "maximum heap alignment");
duke@435 274 }
duke@435 275
jmasa@448 276 // Values set on the command line win over any ergonomically
jmasa@448 277 // set command line parameters.
jmasa@448 278 // Ergonomic choice of parameters are done before this
jmasa@448 279 // method is called. Values for command line parameters such as NewSize
jmasa@448 280 // and MaxNewSize feed those ergonomic choices into this method.
jmasa@448 281 // This method makes the final generation sizings consistent with
jmasa@448 282 // themselves and with overall heap sizings.
jmasa@448 283 // In the absence of explicitly set command line flags, policies
jmasa@448 284 // such as the use of NewRatio are used to size the generation.
duke@435 285 void GenCollectorPolicy::initialize_size_info() {
duke@435 286 CollectorPolicy::initialize_size_info();
duke@435 287
jmasa@448 288 // min_alignment() is used for alignment within a generation.
jmasa@448 289 // There is additional alignment done down stream for some
jmasa@448 290 // collectors that sometimes causes unwanted rounding up of
jmasa@448 291 // generations sizes.
jmasa@448 292
jmasa@448 293 // Determine maximum size of gen0
jmasa@448 294
jmasa@448 295 size_t max_new_size = 0;
jmasa@448 296 if (FLAG_IS_CMDLINE(MaxNewSize)) {
jmasa@448 297 if (MaxNewSize < min_alignment()) {
jmasa@448 298 max_new_size = min_alignment();
jmasa@448 299 } else if (MaxNewSize >= max_heap_byte_size()) {
jmasa@448 300 max_new_size = align_size_down(max_heap_byte_size() - min_alignment(),
jmasa@448 301 min_alignment());
jmasa@448 302 warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
jmasa@448 303 "greater than the entire heap (" SIZE_FORMAT "k). A "
jmasa@448 304 "new generation size of " SIZE_FORMAT "k will be used.",
jmasa@448 305 MaxNewSize/K, max_heap_byte_size()/K, max_new_size/K);
jmasa@448 306 } else {
jmasa@448 307 max_new_size = align_size_down(MaxNewSize, min_alignment());
jmasa@448 308 }
jmasa@448 309
jmasa@448 310 // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
jmasa@448 311 // specially at this point to just use an ergonomically set
jmasa@448 312 // MaxNewSize to set max_new_size. For cases with small
jmasa@448 313 // heaps such a policy often did not work because the MaxNewSize
jmasa@448 314 // was larger than the entire heap. The interpretation given
jmasa@448 315 // to ergonomically set flags is that the flags are set
jmasa@448 316 // by different collectors for their own special needs but
jmasa@448 317 // are not allowed to badly shape the heap. This allows the
jmasa@448 318 // different collectors to decide what's best for themselves
jmasa@448 319 // without having to factor in the overall heap shape. It
jmasa@448 320 // can be the case in the future that the collectors would
jmasa@448 321 // only make "wise" ergonomics choices and this policy could
jmasa@448 322 // just accept those choices. The choices currently made are
jmasa@448 323 // not always "wise".
duke@435 324 } else {
jmasa@448 325 max_new_size = scale_by_NewRatio_aligned(max_heap_byte_size());
jmasa@448 326 // Bound the maximum size by NewSize below (since it historically
duke@435 327 // would have been NewSize and because the NewRatio calculation could
duke@435 328 // yield a size that is too small) and bound it by MaxNewSize above.
jmasa@448 329 // Ergonomics plays here by previously calculating the desired
jmasa@448 330 // NewSize and MaxNewSize.
jmasa@448 331 max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
jmasa@448 332 }
jmasa@448 333 assert(max_new_size > 0, "All paths should set max_new_size");
jmasa@448 334
jmasa@448 335 // Given the maximum gen0 size, determine the initial and
jmasa@448 336 // minimum sizes.
jmasa@448 337
jmasa@448 338 if (max_heap_byte_size() == min_heap_byte_size()) {
jmasa@448 339 // The maximum and minimum heap sizes are the same so
jmasa@448 340 // the generations minimum and initial must be the
jmasa@448 341 // same as its maximum.
jmasa@448 342 set_min_gen0_size(max_new_size);
jmasa@448 343 set_initial_gen0_size(max_new_size);
jmasa@448 344 set_max_gen0_size(max_new_size);
jmasa@448 345 } else {
jmasa@448 346 size_t desired_new_size = 0;
jmasa@448 347 if (!FLAG_IS_DEFAULT(NewSize)) {
jmasa@448 348 // If NewSize is set ergonomically (for example by cms), it
jmasa@448 349 // would make sense to use it. If it is used, also use it
jmasa@448 350 // to set the initial size. Although there is no reason
jmasa@448 351 // the minimum size and the initial size have to be the same,
jmasa@448 352 // the current implementation gets into trouble during the calculation
jmasa@448 353 // of the tenured generation sizes if they are different.
jmasa@448 354 // Note that this makes the initial size and the minimum size
jmasa@448 355 // generally small compared to the NewRatio calculation.
jmasa@448 356 _min_gen0_size = NewSize;
jmasa@448 357 desired_new_size = NewSize;
jmasa@448 358 max_new_size = MAX2(max_new_size, NewSize);
jmasa@448 359 } else {
jmasa@448 360 // For the case where NewSize is the default, use NewRatio
jmasa@448 361 // to size the minimum and initial generation sizes.
jmasa@448 362 // Use the default NewSize as the floor for these values. If
jmasa@448 363 // NewRatio is overly large, the resulting sizes can be too
jmasa@448 364 // small.
jmasa@448 365 _min_gen0_size = MAX2(scale_by_NewRatio_aligned(min_heap_byte_size()),
jmasa@448 366 NewSize);
jmasa@448 367 desired_new_size =
jmasa@448 368 MAX2(scale_by_NewRatio_aligned(initial_heap_byte_size()),
jmasa@448 369 NewSize);
jmasa@448 370 }
jmasa@448 371
jmasa@448 372 assert(_min_gen0_size > 0, "Sanity check");
jmasa@448 373 set_initial_gen0_size(desired_new_size);
jmasa@448 374 set_max_gen0_size(max_new_size);
jmasa@448 375
jmasa@448 376 // At this point the desirable initial and minimum sizes have been
jmasa@448 377 // determined without regard to the maximum sizes.
jmasa@448 378
jmasa@448 379 // Bound the sizes by the corresponding overall heap sizes.
jmasa@448 380 set_min_gen0_size(
jmasa@448 381 bound_minus_alignment(_min_gen0_size, min_heap_byte_size()));
jmasa@448 382 set_initial_gen0_size(
jmasa@448 383 bound_minus_alignment(_initial_gen0_size, initial_heap_byte_size()));
jmasa@448 384 set_max_gen0_size(
jmasa@448 385 bound_minus_alignment(_max_gen0_size, max_heap_byte_size()));
jmasa@448 386
jmasa@448 387 // At this point all three sizes have been checked against the
jmasa@448 388 // maximum sizes but have not been checked for consistency
ysr@777 389 // among the three.
jmasa@448 390
jmasa@448 391 // Final check min <= initial <= max
jmasa@448 392 set_min_gen0_size(MIN2(_min_gen0_size, _max_gen0_size));
jmasa@448 393 set_initial_gen0_size(
jmasa@448 394 MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size));
jmasa@448 395 set_min_gen0_size(MIN2(_min_gen0_size, _initial_gen0_size));
duke@435 396 }
duke@435 397
jmasa@448 398 if (PrintGCDetails && Verbose) {
jmasa@448 399 gclog_or_tty->print_cr("Minimum gen0 " SIZE_FORMAT " Initial gen0 "
jmasa@448 400 SIZE_FORMAT " Maximum gen0 " SIZE_FORMAT,
jmasa@448 401 min_gen0_size(), initial_gen0_size(), max_gen0_size());
jmasa@448 402 }
jmasa@448 403 }
duke@435 404
jmasa@448 405 // Call this method during the sizing of the gen1 to make
jmasa@448 406 // adjustments to gen0 because of gen1 sizing policy. gen0 initially has
jmasa@448 407 // the most freedom in sizing because it is done before the
jmasa@448 408 // policy for gen1 is applied. Once gen1 policies have been applied,
jmasa@448 409 // there may be conflicts in the shape of the heap and this method
jmasa@448 410 // is used to make the needed adjustments. The application of the
jmasa@448 411 // policies could be more sophisticated (iterative for example) but
jmasa@448 412 // keeping it simple also seems a worthwhile goal.
jmasa@448 413 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
jmasa@448 414 size_t* gen1_size_ptr,
jmasa@448 415 size_t heap_size,
jmasa@448 416 size_t min_gen0_size) {
jmasa@448 417 bool result = false;
jmasa@448 418 if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
jmasa@448 419 if (((*gen0_size_ptr + OldSize) > heap_size) &&
jmasa@448 420 (heap_size - min_gen0_size) >= min_alignment()) {
jmasa@448 421 // Adjust gen0 down to accomodate OldSize
jmasa@448 422 *gen0_size_ptr = heap_size - min_gen0_size;
jmasa@448 423 *gen0_size_ptr =
jmasa@448 424 MAX2((uintx)align_size_down(*gen0_size_ptr, min_alignment()),
jmasa@448 425 min_alignment());
jmasa@448 426 assert(*gen0_size_ptr > 0, "Min gen0 is too large");
jmasa@448 427 result = true;
jmasa@448 428 } else {
jmasa@448 429 *gen1_size_ptr = heap_size - *gen0_size_ptr;
jmasa@448 430 *gen1_size_ptr =
jmasa@448 431 MAX2((uintx)align_size_down(*gen1_size_ptr, min_alignment()),
jmasa@448 432 min_alignment());
jmasa@448 433 }
jmasa@448 434 }
jmasa@448 435 return result;
jmasa@448 436 }
duke@435 437
jmasa@448 438 // Minimum sizes of the generations may be different than
jmasa@448 439 // the initial sizes. An inconsistently is permitted here
jmasa@448 440 // in the total size that can be specified explicitly by
jmasa@448 441 // command line specification of OldSize and NewSize and
jmasa@448 442 // also a command line specification of -Xms. Issue a warning
jmasa@448 443 // but allow the values to pass.
duke@435 444
duke@435 445 void TwoGenerationCollectorPolicy::initialize_size_info() {
duke@435 446 GenCollectorPolicy::initialize_size_info();
duke@435 447
jmasa@448 448 // At this point the minimum, initial and maximum sizes
jmasa@448 449 // of the overall heap and of gen0 have been determined.
jmasa@448 450 // The maximum gen1 size can be determined from the maximum gen0
jmasa@448 451 // and maximum heap size since not explicit flags exits
jmasa@448 452 // for setting the gen1 maximum.
jmasa@448 453 _max_gen1_size = max_heap_byte_size() - _max_gen0_size;
jmasa@448 454 _max_gen1_size =
jmasa@448 455 MAX2((uintx)align_size_down(_max_gen1_size, min_alignment()),
jmasa@448 456 min_alignment());
jmasa@448 457 // If no explicit command line flag has been set for the
jmasa@448 458 // gen1 size, use what is left for gen1.
jmasa@448 459 if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
jmasa@448 460 // The user has not specified any value or ergonomics
jmasa@448 461 // has chosen a value (which may or may not be consistent
jmasa@448 462 // with the overall heap size). In either case make
jmasa@448 463 // the minimum, maximum and initial sizes consistent
jmasa@448 464 // with the gen0 sizes and the overall heap sizes.
jmasa@448 465 assert(min_heap_byte_size() > _min_gen0_size,
jmasa@448 466 "gen0 has an unexpected minimum size");
jmasa@448 467 set_min_gen1_size(min_heap_byte_size() - min_gen0_size());
jmasa@448 468 set_min_gen1_size(
jmasa@448 469 MAX2((uintx)align_size_down(_min_gen1_size, min_alignment()),
jmasa@448 470 min_alignment()));
jmasa@448 471 set_initial_gen1_size(initial_heap_byte_size() - initial_gen0_size());
jmasa@448 472 set_initial_gen1_size(
jmasa@448 473 MAX2((uintx)align_size_down(_initial_gen1_size, min_alignment()),
jmasa@448 474 min_alignment()));
jmasa@448 475
jmasa@448 476 } else {
jmasa@448 477 // It's been explicitly set on the command line. Use the
jmasa@448 478 // OldSize and then determine the consequences.
jmasa@448 479 set_min_gen1_size(OldSize);
jmasa@448 480 set_initial_gen1_size(OldSize);
jmasa@448 481
jmasa@448 482 // If the user has explicitly set an OldSize that is inconsistent
jmasa@448 483 // with other command line flags, issue a warning.
duke@435 484 // The generation minimums and the overall heap mimimum should
duke@435 485 // be within one heap alignment.
jmasa@448 486 if ((_min_gen1_size + _min_gen0_size + min_alignment()) <
jmasa@448 487 min_heap_byte_size()) {
duke@435 488 warning("Inconsistency between minimum heap size and minimum "
jmasa@448 489 "generation sizes: using minimum heap = " SIZE_FORMAT,
jmasa@448 490 min_heap_byte_size());
duke@435 491 }
jmasa@448 492 if ((OldSize > _max_gen1_size)) {
jmasa@448 493 warning("Inconsistency between maximum heap size and maximum "
jmasa@448 494 "generation sizes: using maximum heap = " SIZE_FORMAT
jmasa@448 495 " -XX:OldSize flag is being ignored",
jmasa@448 496 max_heap_byte_size());
duke@435 497 }
jmasa@448 498 // If there is an inconsistency between the OldSize and the minimum and/or
jmasa@448 499 // initial size of gen0, since OldSize was explicitly set, OldSize wins.
jmasa@448 500 if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
jmasa@448 501 min_heap_byte_size(), OldSize)) {
jmasa@448 502 if (PrintGCDetails && Verbose) {
jmasa@448 503 gclog_or_tty->print_cr("Minimum gen0 " SIZE_FORMAT " Initial gen0 "
jmasa@448 504 SIZE_FORMAT " Maximum gen0 " SIZE_FORMAT,
jmasa@448 505 min_gen0_size(), initial_gen0_size(), max_gen0_size());
jmasa@448 506 }
jmasa@448 507 }
jmasa@448 508 // Initial size
jmasa@448 509 if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
jmasa@448 510 initial_heap_byte_size(), OldSize)) {
jmasa@448 511 if (PrintGCDetails && Verbose) {
jmasa@448 512 gclog_or_tty->print_cr("Minimum gen0 " SIZE_FORMAT " Initial gen0 "
jmasa@448 513 SIZE_FORMAT " Maximum gen0 " SIZE_FORMAT,
jmasa@448 514 min_gen0_size(), initial_gen0_size(), max_gen0_size());
jmasa@448 515 }
jmasa@448 516 }
jmasa@448 517 }
jmasa@448 518 // Enforce the maximum gen1 size.
jmasa@448 519 set_min_gen1_size(MIN2(_min_gen1_size, _max_gen1_size));
duke@435 520
jmasa@448 521 // Check that min gen1 <= initial gen1 <= max gen1
jmasa@448 522 set_initial_gen1_size(MAX2(_initial_gen1_size, _min_gen1_size));
jmasa@448 523 set_initial_gen1_size(MIN2(_initial_gen1_size, _max_gen1_size));
jmasa@448 524
jmasa@448 525 if (PrintGCDetails && Verbose) {
jmasa@448 526 gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT " Initial gen1 "
jmasa@448 527 SIZE_FORMAT " Maximum gen1 " SIZE_FORMAT,
jmasa@448 528 min_gen1_size(), initial_gen1_size(), max_gen1_size());
jmasa@448 529 }
duke@435 530 }
duke@435 531
duke@435 532 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
duke@435 533 bool is_tlab,
duke@435 534 bool* gc_overhead_limit_was_exceeded) {
duke@435 535 GenCollectedHeap *gch = GenCollectedHeap::heap();
duke@435 536
duke@435 537 debug_only(gch->check_for_valid_allocation_state());
duke@435 538 assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
jmasa@1822 539
jmasa@1822 540 // In general gc_overhead_limit_was_exceeded should be false so
jmasa@1822 541 // set it so here and reset it to true only if the gc time
jmasa@1822 542 // limit is being exceeded as checked below.
jmasa@1822 543 *gc_overhead_limit_was_exceeded = false;
jmasa@1822 544
duke@435 545 HeapWord* result = NULL;
duke@435 546
duke@435 547 // Loop until the allocation is satisified,
duke@435 548 // or unsatisfied after GC.
duke@435 549 for (int try_count = 1; /* return or throw */; try_count += 1) {
duke@435 550 HandleMark hm; // discard any handles allocated in each iteration
duke@435 551
duke@435 552 // First allocation attempt is lock-free.
duke@435 553 Generation *gen0 = gch->get_gen(0);
duke@435 554 assert(gen0->supports_inline_contig_alloc(),
duke@435 555 "Otherwise, must do alloc within heap lock");
duke@435 556 if (gen0->should_allocate(size, is_tlab)) {
duke@435 557 result = gen0->par_allocate(size, is_tlab);
duke@435 558 if (result != NULL) {
duke@435 559 assert(gch->is_in_reserved(result), "result not in heap");
duke@435 560 return result;
duke@435 561 }
duke@435 562 }
duke@435 563 unsigned int gc_count_before; // read inside the Heap_lock locked region
duke@435 564 {
duke@435 565 MutexLocker ml(Heap_lock);
duke@435 566 if (PrintGC && Verbose) {
duke@435 567 gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
duke@435 568 " attempting locked slow path allocation");
duke@435 569 }
duke@435 570 // Note that only large objects get a shot at being
duke@435 571 // allocated in later generations.
duke@435 572 bool first_only = ! should_try_older_generation_allocation(size);
duke@435 573
duke@435 574 result = gch->attempt_allocation(size, is_tlab, first_only);
duke@435 575 if (result != NULL) {
duke@435 576 assert(gch->is_in_reserved(result), "result not in heap");
duke@435 577 return result;
duke@435 578 }
duke@435 579
duke@435 580 if (GC_locker::is_active_and_needs_gc()) {
duke@435 581 if (is_tlab) {
duke@435 582 return NULL; // Caller will retry allocating individual object
duke@435 583 }
duke@435 584 if (!gch->is_maximal_no_gc()) {
duke@435 585 // Try and expand heap to satisfy request
duke@435 586 result = expand_heap_and_allocate(size, is_tlab);
duke@435 587 // result could be null if we are out of space
duke@435 588 if (result != NULL) {
duke@435 589 return result;
duke@435 590 }
duke@435 591 }
duke@435 592
duke@435 593 // If this thread is not in a jni critical section, we stall
duke@435 594 // the requestor until the critical section has cleared and
duke@435 595 // GC allowed. When the critical section clears, a GC is
duke@435 596 // initiated by the last thread exiting the critical section; so
duke@435 597 // we retry the allocation sequence from the beginning of the loop,
duke@435 598 // rather than causing more, now probably unnecessary, GC attempts.
duke@435 599 JavaThread* jthr = JavaThread::current();
duke@435 600 if (!jthr->in_critical()) {
duke@435 601 MutexUnlocker mul(Heap_lock);
duke@435 602 // Wait for JNI critical section to be exited
duke@435 603 GC_locker::stall_until_clear();
duke@435 604 continue;
duke@435 605 } else {
duke@435 606 if (CheckJNICalls) {
duke@435 607 fatal("Possible deadlock due to allocating while"
duke@435 608 " in jni critical section");
duke@435 609 }
duke@435 610 return NULL;
duke@435 611 }
duke@435 612 }
duke@435 613
duke@435 614 // Read the gc count while the heap lock is held.
duke@435 615 gc_count_before = Universe::heap()->total_collections();
duke@435 616 }
duke@435 617
duke@435 618 VM_GenCollectForAllocation op(size,
duke@435 619 is_tlab,
duke@435 620 gc_count_before);
duke@435 621 VMThread::execute(&op);
duke@435 622 if (op.prologue_succeeded()) {
duke@435 623 result = op.result();
duke@435 624 if (op.gc_locked()) {
duke@435 625 assert(result == NULL, "must be NULL if gc_locked() is true");
duke@435 626 continue; // retry and/or stall as necessary
duke@435 627 }
jmasa@1822 628
jmasa@1822 629 // Allocation has failed and a collection
jmasa@1822 630 // has been done. If the gc time limit was exceeded the
jmasa@1822 631 // this time, return NULL so that an out-of-memory
jmasa@1822 632 // will be thrown. Clear gc_overhead_limit_exceeded
jmasa@1822 633 // so that the overhead exceeded does not persist.
jmasa@1822 634
jmasa@1822 635 const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
jmasa@1822 636 const bool softrefs_clear = all_soft_refs_clear();
jmasa@1822 637 assert(!limit_exceeded || softrefs_clear, "Should have been cleared");
jmasa@1822 638 if (limit_exceeded && softrefs_clear) {
jmasa@1822 639 *gc_overhead_limit_was_exceeded = true;
jmasa@1822 640 size_policy()->set_gc_overhead_limit_exceeded(false);
jmasa@1822 641 if (op.result() != NULL) {
jmasa@1822 642 CollectedHeap::fill_with_object(op.result(), size);
jmasa@1822 643 }
jmasa@1822 644 return NULL;
jmasa@1822 645 }
duke@435 646 assert(result == NULL || gch->is_in_reserved(result),
duke@435 647 "result not in heap");
duke@435 648 return result;
duke@435 649 }
duke@435 650
duke@435 651 // Give a warning if we seem to be looping forever.
duke@435 652 if ((QueuedAllocationWarningCount > 0) &&
duke@435 653 (try_count % QueuedAllocationWarningCount == 0)) {
duke@435 654 warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
duke@435 655 " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
duke@435 656 }
duke@435 657 }
duke@435 658 }
duke@435 659
duke@435 660 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
duke@435 661 bool is_tlab) {
duke@435 662 GenCollectedHeap *gch = GenCollectedHeap::heap();
duke@435 663 HeapWord* result = NULL;
duke@435 664 for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
duke@435 665 Generation *gen = gch->get_gen(i);
duke@435 666 if (gen->should_allocate(size, is_tlab)) {
duke@435 667 result = gen->expand_and_allocate(size, is_tlab);
duke@435 668 }
duke@435 669 }
duke@435 670 assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
duke@435 671 return result;
duke@435 672 }
duke@435 673
duke@435 674 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
duke@435 675 bool is_tlab) {
duke@435 676 GenCollectedHeap *gch = GenCollectedHeap::heap();
duke@435 677 GCCauseSetter x(gch, GCCause::_allocation_failure);
duke@435 678 HeapWord* result = NULL;
duke@435 679
duke@435 680 assert(size != 0, "Precondition violated");
duke@435 681 if (GC_locker::is_active_and_needs_gc()) {
duke@435 682 // GC locker is active; instead of a collection we will attempt
duke@435 683 // to expand the heap, if there's room for expansion.
duke@435 684 if (!gch->is_maximal_no_gc()) {
duke@435 685 result = expand_heap_and_allocate(size, is_tlab);
duke@435 686 }
duke@435 687 return result; // could be null if we are out of space
duke@435 688 } else if (!gch->incremental_collection_will_fail()) {
duke@435 689 // Do an incremental collection.
duke@435 690 gch->do_collection(false /* full */,
duke@435 691 false /* clear_all_soft_refs */,
duke@435 692 size /* size */,
duke@435 693 is_tlab /* is_tlab */,
duke@435 694 number_of_generations() - 1 /* max_level */);
duke@435 695 } else {
duke@435 696 // Try a full collection; see delta for bug id 6266275
duke@435 697 // for the original code and why this has been simplified
duke@435 698 // with from-space allocation criteria modified and
duke@435 699 // such allocation moved out of the safepoint path.
duke@435 700 gch->do_collection(true /* full */,
duke@435 701 false /* clear_all_soft_refs */,
duke@435 702 size /* size */,
duke@435 703 is_tlab /* is_tlab */,
duke@435 704 number_of_generations() - 1 /* max_level */);
duke@435 705 }
duke@435 706
duke@435 707 result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
duke@435 708
duke@435 709 if (result != NULL) {
duke@435 710 assert(gch->is_in_reserved(result), "result not in heap");
duke@435 711 return result;
duke@435 712 }
duke@435 713
duke@435 714 // OK, collection failed, try expansion.
duke@435 715 result = expand_heap_and_allocate(size, is_tlab);
duke@435 716 if (result != NULL) {
duke@435 717 return result;
duke@435 718 }
duke@435 719
duke@435 720 // If we reach this point, we're really out of memory. Try every trick
duke@435 721 // we can to reclaim memory. Force collection of soft references. Force
duke@435 722 // a complete compaction of the heap. Any additional methods for finding
duke@435 723 // free memory should be here, especially if they are expensive. If this
duke@435 724 // attempt fails, an OOM exception will be thrown.
duke@435 725 {
duke@435 726 IntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
duke@435 727
duke@435 728 gch->do_collection(true /* full */,
duke@435 729 true /* clear_all_soft_refs */,
duke@435 730 size /* size */,
duke@435 731 is_tlab /* is_tlab */,
duke@435 732 number_of_generations() - 1 /* max_level */);
duke@435 733 }
duke@435 734
duke@435 735 result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
duke@435 736 if (result != NULL) {
duke@435 737 assert(gch->is_in_reserved(result), "result not in heap");
duke@435 738 return result;
duke@435 739 }
duke@435 740
jmasa@1822 741 assert(!should_clear_all_soft_refs(),
jmasa@1822 742 "Flag should have been handled and cleared prior to this point");
jmasa@1822 743
duke@435 744 // What else? We might try synchronous finalization later. If the total
duke@435 745 // space available is large enough for the allocation, then a more
duke@435 746 // complete compaction phase than we've tried so far might be
duke@435 747 // appropriate.
duke@435 748 return NULL;
duke@435 749 }
duke@435 750
duke@435 751 size_t GenCollectorPolicy::large_typearray_limit() {
duke@435 752 return FastAllocateSizeLimit;
duke@435 753 }
duke@435 754
duke@435 755 // Return true if any of the following is true:
duke@435 756 // . the allocation won't fit into the current young gen heap
duke@435 757 // . gc locker is occupied (jni critical section)
duke@435 758 // . heap memory is tight -- the most recent previous collection
duke@435 759 // was a full collection because a partial collection (would
duke@435 760 // have) failed and is likely to fail again
duke@435 761 bool GenCollectorPolicy::should_try_older_generation_allocation(
duke@435 762 size_t word_size) const {
duke@435 763 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 764 size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
duke@435 765 return (word_size > heap_word_size(gen0_capacity))
ysr@2243 766 || GC_locker::is_active_and_needs_gc()
ysr@2243 767 || gch->incremental_collection_failed();
duke@435 768 }
duke@435 769
duke@435 770
duke@435 771 //
duke@435 772 // MarkSweepPolicy methods
duke@435 773 //
duke@435 774
duke@435 775 MarkSweepPolicy::MarkSweepPolicy() {
duke@435 776 initialize_all();
duke@435 777 }
duke@435 778
duke@435 779 void MarkSweepPolicy::initialize_generations() {
duke@435 780 initialize_perm_generation(PermGen::MarkSweepCompact);
duke@435 781 _generations = new GenerationSpecPtr[number_of_generations()];
duke@435 782 if (_generations == NULL)
duke@435 783 vm_exit_during_initialization("Unable to allocate gen spec");
duke@435 784
duke@435 785 if (UseParNewGC && ParallelGCThreads > 0) {
duke@435 786 _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
duke@435 787 } else {
duke@435 788 _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
duke@435 789 }
duke@435 790 _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
duke@435 791
duke@435 792 if (_generations[0] == NULL || _generations[1] == NULL)
duke@435 793 vm_exit_during_initialization("Unable to allocate gen spec");
duke@435 794 }
duke@435 795
duke@435 796 void MarkSweepPolicy::initialize_gc_policy_counters() {
duke@435 797 // initialize the policy counters - 2 collectors, 3 generations
duke@435 798 if (UseParNewGC && ParallelGCThreads > 0) {
duke@435 799 _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
duke@435 800 }
duke@435 801 else {
duke@435 802 _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
duke@435 803 }
duke@435 804 }

mercurial