src/share/vm/c1/c1_IR.cpp

Wed, 31 Aug 2011 16:46:11 -0700

author
never
date
Wed, 31 Aug 2011 16:46:11 -0700
changeset 3099
c124e2e7463e
parent 2349
5ddfcf4b079e
child 3592
701a83c86f28
permissions
-rw-r--r--

7083786: dead various dead chunks of code
Reviewed-by: iveresov, kvn

duke@435 1 /*
trims@1907 2 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "c1/c1_Compilation.hpp"
stefank@2314 27 #include "c1/c1_FrameMap.hpp"
stefank@2314 28 #include "c1/c1_GraphBuilder.hpp"
stefank@2314 29 #include "c1/c1_IR.hpp"
stefank@2314 30 #include "c1/c1_InstructionPrinter.hpp"
stefank@2314 31 #include "c1/c1_Optimizer.hpp"
stefank@2314 32 #include "utilities/bitMap.inline.hpp"
duke@435 33
duke@435 34
duke@435 35 // Implementation of XHandlers
duke@435 36 //
duke@435 37 // Note: This code could eventually go away if we are
duke@435 38 // just using the ciExceptionHandlerStream.
duke@435 39
duke@435 40 XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) {
duke@435 41 ciExceptionHandlerStream s(method);
duke@435 42 while (!s.is_done()) {
duke@435 43 _list.append(new XHandler(s.handler()));
duke@435 44 s.next();
duke@435 45 }
duke@435 46 assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent");
duke@435 47 }
duke@435 48
duke@435 49 // deep copy of all XHandler contained in list
duke@435 50 XHandlers::XHandlers(XHandlers* other) :
duke@435 51 _list(other->length())
duke@435 52 {
duke@435 53 for (int i = 0; i < other->length(); i++) {
duke@435 54 _list.append(new XHandler(other->handler_at(i)));
duke@435 55 }
duke@435 56 }
duke@435 57
duke@435 58 // Returns whether a particular exception type can be caught. Also
duke@435 59 // returns true if klass is unloaded or any exception handler
duke@435 60 // classes are unloaded. type_is_exact indicates whether the throw
duke@435 61 // is known to be exactly that class or it might throw a subtype.
duke@435 62 bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const {
duke@435 63 // the type is unknown so be conservative
duke@435 64 if (!klass->is_loaded()) {
duke@435 65 return true;
duke@435 66 }
duke@435 67
duke@435 68 for (int i = 0; i < length(); i++) {
duke@435 69 XHandler* handler = handler_at(i);
duke@435 70 if (handler->is_catch_all()) {
duke@435 71 // catch of ANY
duke@435 72 return true;
duke@435 73 }
duke@435 74 ciInstanceKlass* handler_klass = handler->catch_klass();
duke@435 75 // if it's unknown it might be catchable
duke@435 76 if (!handler_klass->is_loaded()) {
duke@435 77 return true;
duke@435 78 }
duke@435 79 // if the throw type is definitely a subtype of the catch type
duke@435 80 // then it can be caught.
duke@435 81 if (klass->is_subtype_of(handler_klass)) {
duke@435 82 return true;
duke@435 83 }
duke@435 84 if (!type_is_exact) {
duke@435 85 // If the type isn't exactly known then it can also be caught by
duke@435 86 // catch statements where the inexact type is a subtype of the
duke@435 87 // catch type.
duke@435 88 // given: foo extends bar extends Exception
duke@435 89 // throw bar can be caught by catch foo, catch bar, and catch
duke@435 90 // Exception, however it can't be caught by any handlers without
duke@435 91 // bar in its type hierarchy.
duke@435 92 if (handler_klass->is_subtype_of(klass)) {
duke@435 93 return true;
duke@435 94 }
duke@435 95 }
duke@435 96 }
duke@435 97
duke@435 98 return false;
duke@435 99 }
duke@435 100
duke@435 101
duke@435 102 bool XHandlers::equals(XHandlers* others) const {
duke@435 103 if (others == NULL) return false;
duke@435 104 if (length() != others->length()) return false;
duke@435 105
duke@435 106 for (int i = 0; i < length(); i++) {
duke@435 107 if (!handler_at(i)->equals(others->handler_at(i))) return false;
duke@435 108 }
duke@435 109 return true;
duke@435 110 }
duke@435 111
duke@435 112 bool XHandler::equals(XHandler* other) const {
duke@435 113 assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco");
duke@435 114
duke@435 115 if (entry_pco() != other->entry_pco()) return false;
duke@435 116 if (scope_count() != other->scope_count()) return false;
duke@435 117 if (_desc != other->_desc) return false;
duke@435 118
duke@435 119 assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal");
duke@435 120 return true;
duke@435 121 }
duke@435 122
duke@435 123
duke@435 124 // Implementation of IRScope
duke@435 125 BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) {
duke@435 126 GraphBuilder gm(compilation, this);
duke@435 127 NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats());
duke@435 128 if (compilation->bailed_out()) return NULL;
duke@435 129 return gm.start();
duke@435 130 }
duke@435 131
duke@435 132
duke@435 133 IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph)
duke@435 134 : _callees(2)
duke@435 135 , _compilation(compilation)
duke@435 136 , _requires_phi_function(method->max_locals())
duke@435 137 {
duke@435 138 _caller = caller;
duke@435 139 _level = caller == NULL ? 0 : caller->level() + 1;
duke@435 140 _method = method;
duke@435 141 _xhandlers = new XHandlers(method);
duke@435 142 _number_of_locks = 0;
duke@435 143 _monitor_pairing_ok = method->has_balanced_monitors();
duke@435 144 _start = NULL;
duke@435 145
duke@435 146 if (osr_bci == -1) {
duke@435 147 _requires_phi_function.clear();
duke@435 148 } else {
duke@435 149 // selective creation of phi functions is not possibel in osr-methods
duke@435 150 _requires_phi_function.set_range(0, method->max_locals());
duke@435 151 }
duke@435 152
duke@435 153 assert(method->holder()->is_loaded() , "method holder must be loaded");
duke@435 154
duke@435 155 // build graph if monitor pairing is ok
duke@435 156 if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci);
duke@435 157 }
duke@435 158
duke@435 159
duke@435 160 int IRScope::max_stack() const {
duke@435 161 int my_max = method()->max_stack();
duke@435 162 int callee_max = 0;
duke@435 163 for (int i = 0; i < number_of_callees(); i++) {
duke@435 164 callee_max = MAX2(callee_max, callee_no(i)->max_stack());
duke@435 165 }
duke@435 166 return my_max + callee_max;
duke@435 167 }
duke@435 168
duke@435 169
cfang@1335 170 bool IRScopeDebugInfo::should_reexecute() {
cfang@1335 171 ciMethod* cur_method = scope()->method();
cfang@1335 172 int cur_bci = bci();
cfang@1335 173 if (cur_method != NULL && cur_bci != SynchronizationEntryBCI) {
cfang@1335 174 Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
cfang@1335 175 return Interpreter::bytecode_should_reexecute(code);
cfang@1335 176 } else
cfang@1335 177 return false;
cfang@1335 178 }
duke@435 179
duke@435 180
duke@435 181 // Implementation of CodeEmitInfo
duke@435 182
duke@435 183 // Stack must be NON-null
roland@2174 184 CodeEmitInfo::CodeEmitInfo(ValueStack* stack, XHandlers* exception_handlers)
duke@435 185 : _scope(stack->scope())
duke@435 186 , _scope_debug_info(NULL)
duke@435 187 , _oop_map(NULL)
duke@435 188 , _stack(stack)
duke@435 189 , _exception_handlers(exception_handlers)
twisti@1919 190 , _is_method_handle_invoke(false) {
duke@435 191 assert(_stack != NULL, "must be non null");
duke@435 192 }
duke@435 193
duke@435 194
roland@2174 195 CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, ValueStack* stack)
duke@435 196 : _scope(info->_scope)
duke@435 197 , _exception_handlers(NULL)
duke@435 198 , _scope_debug_info(NULL)
twisti@1919 199 , _oop_map(NULL)
roland@2174 200 , _stack(stack == NULL ? info->_stack : stack)
twisti@1919 201 , _is_method_handle_invoke(info->_is_method_handle_invoke) {
duke@435 202
duke@435 203 // deep copy of exception handlers
duke@435 204 if (info->_exception_handlers != NULL) {
duke@435 205 _exception_handlers = new XHandlers(info->_exception_handlers);
duke@435 206 }
duke@435 207 }
duke@435 208
duke@435 209
twisti@1919 210 void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
duke@435 211 // record the safepoint before recording the debug info for enclosing scopes
duke@435 212 recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
twisti@1919 213 _scope_debug_info->record_debug_info(recorder, pc_offset, true/*topmost*/, _is_method_handle_invoke);
duke@435 214 recorder->end_safepoint(pc_offset);
duke@435 215 }
duke@435 216
duke@435 217
duke@435 218 void CodeEmitInfo::add_register_oop(LIR_Opr opr) {
duke@435 219 assert(_oop_map != NULL, "oop map must already exist");
duke@435 220 assert(opr->is_single_cpu(), "should not call otherwise");
duke@435 221
duke@435 222 VMReg name = frame_map()->regname(opr);
duke@435 223 _oop_map->set_oop(name);
duke@435 224 }
duke@435 225
duke@435 226
duke@435 227
duke@435 228
duke@435 229 // Implementation of IR
duke@435 230
duke@435 231 IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
duke@435 232 _locals_size(in_WordSize(-1))
duke@435 233 , _num_loops(0) {
duke@435 234 // setup IR fields
duke@435 235 _compilation = compilation;
duke@435 236 _top_scope = new IRScope(compilation, NULL, -1, method, osr_bci, true);
duke@435 237 _code = NULL;
duke@435 238 }
duke@435 239
duke@435 240
duke@435 241 void IR::optimize() {
duke@435 242 Optimizer opt(this);
iveresov@2138 243 if (!compilation()->profile_branches()) {
iveresov@2138 244 if (DoCEE) {
iveresov@2138 245 opt.eliminate_conditional_expressions();
duke@435 246 #ifndef PRODUCT
iveresov@2138 247 if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); }
iveresov@2138 248 if (PrintIR || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); }
duke@435 249 #endif
iveresov@2138 250 }
iveresov@2138 251 if (EliminateBlocks) {
iveresov@2138 252 opt.eliminate_blocks();
duke@435 253 #ifndef PRODUCT
iveresov@2138 254 if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); }
iveresov@2138 255 if (PrintIR || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); }
duke@435 256 #endif
iveresov@2138 257 }
duke@435 258 }
duke@435 259 if (EliminateNullChecks) {
duke@435 260 opt.eliminate_null_checks();
duke@435 261 #ifndef PRODUCT
duke@435 262 if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); }
duke@435 263 if (PrintIR || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); }
duke@435 264 #endif
duke@435 265 }
duke@435 266 }
duke@435 267
duke@435 268
duke@435 269 static int sort_pairs(BlockPair** a, BlockPair** b) {
duke@435 270 if ((*a)->from() == (*b)->from()) {
duke@435 271 return (*a)->to()->block_id() - (*b)->to()->block_id();
duke@435 272 } else {
duke@435 273 return (*a)->from()->block_id() - (*b)->from()->block_id();
duke@435 274 }
duke@435 275 }
duke@435 276
duke@435 277
duke@435 278 class CriticalEdgeFinder: public BlockClosure {
duke@435 279 BlockPairList blocks;
duke@435 280 IR* _ir;
duke@435 281
duke@435 282 public:
duke@435 283 CriticalEdgeFinder(IR* ir): _ir(ir) {}
duke@435 284 void block_do(BlockBegin* bb) {
duke@435 285 BlockEnd* be = bb->end();
duke@435 286 int nos = be->number_of_sux();
duke@435 287 if (nos >= 2) {
duke@435 288 for (int i = 0; i < nos; i++) {
duke@435 289 BlockBegin* sux = be->sux_at(i);
duke@435 290 if (sux->number_of_preds() >= 2) {
duke@435 291 blocks.append(new BlockPair(bb, sux));
duke@435 292 }
duke@435 293 }
duke@435 294 }
duke@435 295 }
duke@435 296
duke@435 297 void split_edges() {
duke@435 298 BlockPair* last_pair = NULL;
duke@435 299 blocks.sort(sort_pairs);
duke@435 300 for (int i = 0; i < blocks.length(); i++) {
duke@435 301 BlockPair* pair = blocks.at(i);
duke@435 302 if (last_pair != NULL && pair->is_same(last_pair)) continue;
duke@435 303 BlockBegin* from = pair->from();
duke@435 304 BlockBegin* to = pair->to();
duke@435 305 BlockBegin* split = from->insert_block_between(to);
duke@435 306 #ifndef PRODUCT
duke@435 307 if ((PrintIR || PrintIR1) && Verbose) {
duke@435 308 tty->print_cr("Split critical edge B%d -> B%d (new block B%d)",
duke@435 309 from->block_id(), to->block_id(), split->block_id());
duke@435 310 }
duke@435 311 #endif
duke@435 312 last_pair = pair;
duke@435 313 }
duke@435 314 }
duke@435 315 };
duke@435 316
duke@435 317 void IR::split_critical_edges() {
duke@435 318 CriticalEdgeFinder cef(this);
duke@435 319
duke@435 320 iterate_preorder(&cef);
duke@435 321 cef.split_edges();
duke@435 322 }
duke@435 323
duke@435 324
iveresov@1939 325 class UseCountComputer: public ValueVisitor, BlockClosure {
duke@435 326 private:
iveresov@1939 327 void visit(Value* n) {
duke@435 328 // Local instructions and Phis for expression stack values at the
duke@435 329 // start of basic blocks are not added to the instruction list
roland@2254 330 if (!(*n)->is_linked() && (*n)->can_be_linked()) {
duke@435 331 assert(false, "a node was not appended to the graph");
iveresov@1939 332 Compilation::current()->bailout("a node was not appended to the graph");
duke@435 333 }
duke@435 334 // use n's input if not visited before
duke@435 335 if (!(*n)->is_pinned() && !(*n)->has_uses()) {
duke@435 336 // note: a) if the instruction is pinned, it will be handled by compute_use_count
duke@435 337 // b) if the instruction has uses, it was touched before
duke@435 338 // => in both cases we don't need to update n's values
duke@435 339 uses_do(n);
duke@435 340 }
duke@435 341 // use n
duke@435 342 (*n)->_use_count++;
duke@435 343 }
duke@435 344
iveresov@1939 345 Values* worklist;
iveresov@1939 346 int depth;
duke@435 347 enum {
duke@435 348 max_recurse_depth = 20
duke@435 349 };
duke@435 350
iveresov@1939 351 void uses_do(Value* n) {
duke@435 352 depth++;
duke@435 353 if (depth > max_recurse_depth) {
duke@435 354 // don't allow the traversal to recurse too deeply
duke@435 355 worklist->push(*n);
duke@435 356 } else {
iveresov@1939 357 (*n)->input_values_do(this);
duke@435 358 // special handling for some instructions
duke@435 359 if ((*n)->as_BlockEnd() != NULL) {
duke@435 360 // note on BlockEnd:
duke@435 361 // must 'use' the stack only if the method doesn't
duke@435 362 // terminate, however, in those cases stack is empty
iveresov@1939 363 (*n)->state_values_do(this);
duke@435 364 }
duke@435 365 }
duke@435 366 depth--;
duke@435 367 }
duke@435 368
iveresov@1939 369 void block_do(BlockBegin* b) {
duke@435 370 depth = 0;
duke@435 371 // process all pinned nodes as the roots of expression trees
duke@435 372 for (Instruction* n = b; n != NULL; n = n->next()) {
duke@435 373 if (n->is_pinned()) uses_do(&n);
duke@435 374 }
duke@435 375 assert(depth == 0, "should have counted back down");
duke@435 376
duke@435 377 // now process any unpinned nodes which recursed too deeply
duke@435 378 while (worklist->length() > 0) {
duke@435 379 Value t = worklist->pop();
duke@435 380 if (!t->is_pinned()) {
duke@435 381 // compute the use count
duke@435 382 uses_do(&t);
duke@435 383
duke@435 384 // pin the instruction so that LIRGenerator doesn't recurse
duke@435 385 // too deeply during it's evaluation.
duke@435 386 t->pin();
duke@435 387 }
duke@435 388 }
duke@435 389 assert(depth == 0, "should have counted back down");
duke@435 390 }
duke@435 391
iveresov@1939 392 UseCountComputer() {
iveresov@1939 393 worklist = new Values();
iveresov@1939 394 depth = 0;
iveresov@1939 395 }
iveresov@1939 396
duke@435 397 public:
duke@435 398 static void compute(BlockList* blocks) {
iveresov@1939 399 UseCountComputer ucc;
iveresov@1939 400 blocks->iterate_backward(&ucc);
duke@435 401 }
duke@435 402 };
duke@435 403
duke@435 404
duke@435 405 // helper macro for short definition of trace-output inside code
duke@435 406 #ifndef PRODUCT
duke@435 407 #define TRACE_LINEAR_SCAN(level, code) \
duke@435 408 if (TraceLinearScanLevel >= level) { \
duke@435 409 code; \
duke@435 410 }
duke@435 411 #else
duke@435 412 #define TRACE_LINEAR_SCAN(level, code)
duke@435 413 #endif
duke@435 414
duke@435 415 class ComputeLinearScanOrder : public StackObj {
duke@435 416 private:
duke@435 417 int _max_block_id; // the highest block_id of a block
duke@435 418 int _num_blocks; // total number of blocks (smaller than _max_block_id)
duke@435 419 int _num_loops; // total number of loops
duke@435 420 bool _iterative_dominators;// method requires iterative computation of dominatiors
duke@435 421
duke@435 422 BlockList* _linear_scan_order; // the resulting list of blocks in correct order
duke@435 423
duke@435 424 BitMap _visited_blocks; // used for recursive processing of blocks
duke@435 425 BitMap _active_blocks; // used for recursive processing of blocks
duke@435 426 BitMap _dominator_blocks; // temproary BitMap used for computation of dominator
duke@435 427 intArray _forward_branches; // number of incoming forward branches for each block
duke@435 428 BlockList _loop_end_blocks; // list of all loop end blocks collected during count_edges
duke@435 429 BitMap2D _loop_map; // two-dimensional bit set: a bit is set if a block is contained in a loop
duke@435 430 BlockList _work_list; // temporary list (used in mark_loops and compute_order)
duke@435 431
iveresov@2138 432 Compilation* _compilation;
iveresov@2138 433
duke@435 434 // accessors for _visited_blocks and _active_blocks
duke@435 435 void init_visited() { _active_blocks.clear(); _visited_blocks.clear(); }
duke@435 436 bool is_visited(BlockBegin* b) const { return _visited_blocks.at(b->block_id()); }
duke@435 437 bool is_active(BlockBegin* b) const { return _active_blocks.at(b->block_id()); }
duke@435 438 void set_visited(BlockBegin* b) { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); }
duke@435 439 void set_active(BlockBegin* b) { assert(!is_active(b), "already set"); _active_blocks.set_bit(b->block_id()); }
duke@435 440 void clear_active(BlockBegin* b) { assert(is_active(b), "not already"); _active_blocks.clear_bit(b->block_id()); }
duke@435 441
duke@435 442 // accessors for _forward_branches
duke@435 443 void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); }
duke@435 444 int dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); }
duke@435 445
duke@435 446 // accessors for _loop_map
duke@435 447 bool is_block_in_loop (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); }
duke@435 448 void set_block_in_loop (int loop_idx, BlockBegin* b) { _loop_map.set_bit(loop_idx, b->block_id()); }
duke@435 449 void clear_block_in_loop(int loop_idx, int block_id) { _loop_map.clear_bit(loop_idx, block_id); }
duke@435 450
duke@435 451 // count edges between blocks
duke@435 452 void count_edges(BlockBegin* cur, BlockBegin* parent);
duke@435 453
duke@435 454 // loop detection
duke@435 455 void mark_loops();
duke@435 456 void clear_non_natural_loops(BlockBegin* start_block);
duke@435 457 void assign_loop_depth(BlockBegin* start_block);
duke@435 458
duke@435 459 // computation of final block order
duke@435 460 BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b);
duke@435 461 void compute_dominator(BlockBegin* cur, BlockBegin* parent);
duke@435 462 int compute_weight(BlockBegin* cur);
duke@435 463 bool ready_for_processing(BlockBegin* cur);
duke@435 464 void sort_into_work_list(BlockBegin* b);
duke@435 465 void append_block(BlockBegin* cur);
duke@435 466 void compute_order(BlockBegin* start_block);
duke@435 467
duke@435 468 // fixup of dominators for non-natural loops
duke@435 469 bool compute_dominators_iter();
duke@435 470 void compute_dominators();
duke@435 471
duke@435 472 // debug functions
duke@435 473 NOT_PRODUCT(void print_blocks();)
duke@435 474 DEBUG_ONLY(void verify();)
duke@435 475
iveresov@2138 476 Compilation* compilation() const { return _compilation; }
duke@435 477 public:
iveresov@2138 478 ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block);
duke@435 479
duke@435 480 // accessors for final result
duke@435 481 BlockList* linear_scan_order() const { return _linear_scan_order; }
duke@435 482 int num_loops() const { return _num_loops; }
duke@435 483 };
duke@435 484
duke@435 485
iveresov@2138 486 ComputeLinearScanOrder::ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block) :
duke@435 487 _max_block_id(BlockBegin::number_of_blocks()),
duke@435 488 _num_blocks(0),
duke@435 489 _num_loops(0),
duke@435 490 _iterative_dominators(false),
duke@435 491 _visited_blocks(_max_block_id),
duke@435 492 _active_blocks(_max_block_id),
duke@435 493 _dominator_blocks(_max_block_id),
duke@435 494 _forward_branches(_max_block_id, 0),
duke@435 495 _loop_end_blocks(8),
duke@435 496 _work_list(8),
duke@435 497 _linear_scan_order(NULL), // initialized later with correct size
iveresov@2138 498 _loop_map(0, 0), // initialized later with correct size
iveresov@2138 499 _compilation(c)
duke@435 500 {
duke@435 501 TRACE_LINEAR_SCAN(2, "***** computing linear-scan block order");
duke@435 502
duke@435 503 init_visited();
duke@435 504 count_edges(start_block, NULL);
duke@435 505
iveresov@2138 506 if (compilation()->is_profiling()) {
iveresov@2349 507 ciMethod *method = compilation()->method();
iveresov@2349 508 if (!method->is_accessor()) {
iveresov@2349 509 ciMethodData* md = method->method_data_or_null();
iveresov@2349 510 assert(md != NULL, "Sanity");
iveresov@2349 511 md->set_compilation_stats(_num_loops, _num_blocks);
iveresov@2349 512 }
iveresov@2138 513 }
iveresov@2138 514
duke@435 515 if (_num_loops > 0) {
duke@435 516 mark_loops();
duke@435 517 clear_non_natural_loops(start_block);
duke@435 518 assign_loop_depth(start_block);
duke@435 519 }
duke@435 520
duke@435 521 compute_order(start_block);
duke@435 522 compute_dominators();
duke@435 523
duke@435 524 NOT_PRODUCT(print_blocks());
duke@435 525 DEBUG_ONLY(verify());
duke@435 526 }
duke@435 527
duke@435 528
duke@435 529 // Traverse the CFG:
duke@435 530 // * count total number of blocks
duke@435 531 // * count all incoming edges and backward incoming edges
duke@435 532 // * number loop header blocks
duke@435 533 // * create a list with all loop end blocks
duke@435 534 void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
duke@435 535 TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != NULL ? parent->block_id() : -1));
duke@435 536 assert(cur->dominator() == NULL, "dominator already initialized");
duke@435 537
duke@435 538 if (is_active(cur)) {
duke@435 539 TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch"));
duke@435 540 assert(is_visited(cur), "block must be visisted when block is active");
duke@435 541 assert(parent != NULL, "must have parent");
duke@435 542
duke@435 543 cur->set(BlockBegin::linear_scan_loop_header_flag);
duke@435 544 cur->set(BlockBegin::backward_branch_target_flag);
duke@435 545
duke@435 546 parent->set(BlockBegin::linear_scan_loop_end_flag);
never@863 547
never@863 548 // When a loop header is also the start of an exception handler, then the backward branch is
never@863 549 // an exception edge. Because such edges are usually critical edges which cannot be split, the
never@863 550 // loop must be excluded here from processing.
never@863 551 if (cur->is_set(BlockBegin::exception_entry_flag)) {
never@863 552 // Make sure that dominators are correct in this weird situation
never@863 553 _iterative_dominators = true;
never@863 554 return;
never@863 555 }
never@863 556 assert(parent->number_of_sux() == 1 && parent->sux_at(0) == cur,
never@863 557 "loop end blocks must have one successor (critical edges are split)");
never@863 558
duke@435 559 _loop_end_blocks.append(parent);
duke@435 560 return;
duke@435 561 }
duke@435 562
duke@435 563 // increment number of incoming forward branches
duke@435 564 inc_forward_branches(cur);
duke@435 565
duke@435 566 if (is_visited(cur)) {
duke@435 567 TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited"));
duke@435 568 return;
duke@435 569 }
duke@435 570
duke@435 571 _num_blocks++;
duke@435 572 set_visited(cur);
duke@435 573 set_active(cur);
duke@435 574
duke@435 575 // recursive call for all successors
duke@435 576 int i;
duke@435 577 for (i = cur->number_of_sux() - 1; i >= 0; i--) {
duke@435 578 count_edges(cur->sux_at(i), cur);
duke@435 579 }
duke@435 580 for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
duke@435 581 count_edges(cur->exception_handler_at(i), cur);
duke@435 582 }
duke@435 583
duke@435 584 clear_active(cur);
duke@435 585
duke@435 586 // Each loop has a unique number.
duke@435 587 // When multiple loops are nested, assign_loop_depth assumes that the
duke@435 588 // innermost loop has the lowest number. This is guaranteed by setting
duke@435 589 // the loop number after the recursive calls for the successors above
duke@435 590 // have returned.
duke@435 591 if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
duke@435 592 assert(cur->loop_index() == -1, "cannot set loop-index twice");
duke@435 593 TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
duke@435 594
duke@435 595 cur->set_loop_index(_num_loops);
duke@435 596 _num_loops++;
duke@435 597 }
duke@435 598
duke@435 599 TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id()));
duke@435 600 }
duke@435 601
duke@435 602
duke@435 603 void ComputeLinearScanOrder::mark_loops() {
duke@435 604 TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops"));
duke@435 605
duke@435 606 _loop_map = BitMap2D(_num_loops, _max_block_id);
duke@435 607 _loop_map.clear();
duke@435 608
duke@435 609 for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) {
duke@435 610 BlockBegin* loop_end = _loop_end_blocks.at(i);
duke@435 611 BlockBegin* loop_start = loop_end->sux_at(0);
duke@435 612 int loop_idx = loop_start->loop_index();
duke@435 613
duke@435 614 TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx));
duke@435 615 assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set");
duke@435 616 assert(loop_end->number_of_sux() == 1, "incorrect number of successors");
duke@435 617 assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set");
duke@435 618 assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set");
duke@435 619 assert(_work_list.is_empty(), "work list must be empty before processing");
duke@435 620
duke@435 621 // add the end-block of the loop to the working list
duke@435 622 _work_list.push(loop_end);
duke@435 623 set_block_in_loop(loop_idx, loop_end);
duke@435 624 do {
duke@435 625 BlockBegin* cur = _work_list.pop();
duke@435 626
duke@435 627 TRACE_LINEAR_SCAN(3, tty->print_cr(" processing B%d", cur->block_id()));
duke@435 628 assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list");
duke@435 629
duke@435 630 // recursive processing of all predecessors ends when start block of loop is reached
duke@435 631 if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) {
duke@435 632 for (int j = cur->number_of_preds() - 1; j >= 0; j--) {
duke@435 633 BlockBegin* pred = cur->pred_at(j);
duke@435 634
duke@435 635 if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) {
duke@435 636 // this predecessor has not been processed yet, so add it to work list
duke@435 637 TRACE_LINEAR_SCAN(3, tty->print_cr(" pushing B%d", pred->block_id()));
duke@435 638 _work_list.push(pred);
duke@435 639 set_block_in_loop(loop_idx, pred);
duke@435 640 }
duke@435 641 }
duke@435 642 }
duke@435 643 } while (!_work_list.is_empty());
duke@435 644 }
duke@435 645 }
duke@435 646
duke@435 647
duke@435 648 // check for non-natural loops (loops where the loop header does not dominate
duke@435 649 // all other loop blocks = loops with mulitple entries).
duke@435 650 // such loops are ignored
duke@435 651 void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
duke@435 652 for (int i = _num_loops - 1; i >= 0; i--) {
duke@435 653 if (is_block_in_loop(i, start_block)) {
duke@435 654 // loop i contains the entry block of the method
duke@435 655 // -> this is not a natural loop, so ignore it
duke@435 656 TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
duke@435 657
duke@435 658 for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
duke@435 659 clear_block_in_loop(i, block_id);
duke@435 660 }
duke@435 661 _iterative_dominators = true;
duke@435 662 }
duke@435 663 }
duke@435 664 }
duke@435 665
duke@435 666 void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) {
duke@435 667 TRACE_LINEAR_SCAN(3, "----- computing loop-depth and weight");
duke@435 668 init_visited();
duke@435 669
duke@435 670 assert(_work_list.is_empty(), "work list must be empty before processing");
duke@435 671 _work_list.append(start_block);
duke@435 672
duke@435 673 do {
duke@435 674 BlockBegin* cur = _work_list.pop();
duke@435 675
duke@435 676 if (!is_visited(cur)) {
duke@435 677 set_visited(cur);
duke@435 678 TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id()));
duke@435 679
duke@435 680 // compute loop-depth and loop-index for the block
duke@435 681 assert(cur->loop_depth() == 0, "cannot set loop-depth twice");
duke@435 682 int i;
duke@435 683 int loop_depth = 0;
duke@435 684 int min_loop_idx = -1;
duke@435 685 for (i = _num_loops - 1; i >= 0; i--) {
duke@435 686 if (is_block_in_loop(i, cur)) {
duke@435 687 loop_depth++;
duke@435 688 min_loop_idx = i;
duke@435 689 }
duke@435 690 }
duke@435 691 cur->set_loop_depth(loop_depth);
duke@435 692 cur->set_loop_index(min_loop_idx);
duke@435 693
duke@435 694 // append all unvisited successors to work list
duke@435 695 for (i = cur->number_of_sux() - 1; i >= 0; i--) {
duke@435 696 _work_list.append(cur->sux_at(i));
duke@435 697 }
duke@435 698 for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
duke@435 699 _work_list.append(cur->exception_handler_at(i));
duke@435 700 }
duke@435 701 }
duke@435 702 } while (!_work_list.is_empty());
duke@435 703 }
duke@435 704
duke@435 705
duke@435 706 BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) {
duke@435 707 assert(a != NULL && b != NULL, "must have input blocks");
duke@435 708
duke@435 709 _dominator_blocks.clear();
duke@435 710 while (a != NULL) {
duke@435 711 _dominator_blocks.set_bit(a->block_id());
duke@435 712 assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized");
duke@435 713 a = a->dominator();
duke@435 714 }
duke@435 715 while (b != NULL && !_dominator_blocks.at(b->block_id())) {
duke@435 716 assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized");
duke@435 717 b = b->dominator();
duke@435 718 }
duke@435 719
duke@435 720 assert(b != NULL, "could not find dominator");
duke@435 721 return b;
duke@435 722 }
duke@435 723
duke@435 724 void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) {
duke@435 725 if (cur->dominator() == NULL) {
duke@435 726 TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id()));
duke@435 727 cur->set_dominator(parent);
duke@435 728
duke@435 729 } else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
duke@435 730 TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
duke@435 731 assert(cur->number_of_preds() > 1, "");
duke@435 732 cur->set_dominator(common_dominator(cur->dominator(), parent));
duke@435 733 }
duke@435 734 }
duke@435 735
duke@435 736
duke@435 737 int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) {
duke@435 738 BlockBegin* single_sux = NULL;
duke@435 739 if (cur->number_of_sux() == 1) {
duke@435 740 single_sux = cur->sux_at(0);
duke@435 741 }
duke@435 742
duke@435 743 // limit loop-depth to 15 bit (only for security reason, it will never be so big)
duke@435 744 int weight = (cur->loop_depth() & 0x7FFF) << 16;
duke@435 745
duke@435 746 // general macro for short definition of weight flags
duke@435 747 // the first instance of INC_WEIGHT_IF has the highest priority
duke@435 748 int cur_bit = 15;
duke@435 749 #define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--;
duke@435 750
duke@435 751 // this is necessery for the (very rare) case that two successing blocks have
duke@435 752 // the same loop depth, but a different loop index (can happen for endless loops
duke@435 753 // with exception handlers)
duke@435 754 INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag));
duke@435 755
duke@435 756 // loop end blocks (blocks that end with a backward branch) are added
duke@435 757 // after all other blocks of the loop.
duke@435 758 INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag));
duke@435 759
duke@435 760 // critical edge split blocks are prefered because than they have a bigger
duke@435 761 // proability to be completely empty
duke@435 762 INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag));
duke@435 763
duke@435 764 // exceptions should not be thrown in normal control flow, so these blocks
duke@435 765 // are added as late as possible
duke@435 766 INC_WEIGHT_IF(cur->end()->as_Throw() == NULL && (single_sux == NULL || single_sux->end()->as_Throw() == NULL));
duke@435 767 INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL));
duke@435 768
duke@435 769 // exceptions handlers are added as late as possible
duke@435 770 INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag));
duke@435 771
duke@435 772 // guarantee that weight is > 0
duke@435 773 weight |= 1;
duke@435 774
duke@435 775 #undef INC_WEIGHT_IF
duke@435 776 assert(cur_bit >= 0, "too many flags");
duke@435 777 assert(weight > 0, "weight cannot become negative");
duke@435 778
duke@435 779 return weight;
duke@435 780 }
duke@435 781
duke@435 782 bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) {
duke@435 783 // Discount the edge just traveled.
duke@435 784 // When the number drops to zero, all forward branches were processed
duke@435 785 if (dec_forward_branches(cur) != 0) {
duke@435 786 return false;
duke@435 787 }
duke@435 788
duke@435 789 assert(_linear_scan_order->index_of(cur) == -1, "block already processed (block can be ready only once)");
duke@435 790 assert(_work_list.index_of(cur) == -1, "block already in work-list (block can be ready only once)");
duke@435 791 return true;
duke@435 792 }
duke@435 793
duke@435 794 void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) {
duke@435 795 assert(_work_list.index_of(cur) == -1, "block already in work list");
duke@435 796
duke@435 797 int cur_weight = compute_weight(cur);
duke@435 798
duke@435 799 // the linear_scan_number is used to cache the weight of a block
duke@435 800 cur->set_linear_scan_number(cur_weight);
duke@435 801
duke@435 802 #ifndef PRODUCT
duke@435 803 if (StressLinearScan) {
duke@435 804 _work_list.insert_before(0, cur);
duke@435 805 return;
duke@435 806 }
duke@435 807 #endif
duke@435 808
duke@435 809 _work_list.append(NULL); // provide space for new element
duke@435 810
duke@435 811 int insert_idx = _work_list.length() - 1;
duke@435 812 while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) {
duke@435 813 _work_list.at_put(insert_idx, _work_list.at(insert_idx - 1));
duke@435 814 insert_idx--;
duke@435 815 }
duke@435 816 _work_list.at_put(insert_idx, cur);
duke@435 817
duke@435 818 TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id()));
duke@435 819 TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number()));
duke@435 820
duke@435 821 #ifdef ASSERT
duke@435 822 for (int i = 0; i < _work_list.length(); i++) {
duke@435 823 assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set");
duke@435 824 assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist");
duke@435 825 }
duke@435 826 #endif
duke@435 827 }
duke@435 828
duke@435 829 void ComputeLinearScanOrder::append_block(BlockBegin* cur) {
duke@435 830 TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number()));
duke@435 831 assert(_linear_scan_order->index_of(cur) == -1, "cannot add the same block twice");
duke@435 832
duke@435 833 // currently, the linear scan order and code emit order are equal.
duke@435 834 // therefore the linear_scan_number and the weight of a block must also
duke@435 835 // be equal.
duke@435 836 cur->set_linear_scan_number(_linear_scan_order->length());
duke@435 837 _linear_scan_order->append(cur);
duke@435 838 }
duke@435 839
duke@435 840 void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
duke@435 841 TRACE_LINEAR_SCAN(3, "----- computing final block order");
duke@435 842
duke@435 843 // the start block is always the first block in the linear scan order
duke@435 844 _linear_scan_order = new BlockList(_num_blocks);
duke@435 845 append_block(start_block);
duke@435 846
duke@435 847 assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction");
duke@435 848 BlockBegin* std_entry = ((Base*)start_block->end())->std_entry();
duke@435 849 BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry();
duke@435 850
duke@435 851 BlockBegin* sux_of_osr_entry = NULL;
duke@435 852 if (osr_entry != NULL) {
duke@435 853 // special handling for osr entry:
duke@435 854 // ignore the edge between the osr entry and its successor for processing
duke@435 855 // the osr entry block is added manually below
duke@435 856 assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor");
duke@435 857 assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow");
duke@435 858
duke@435 859 sux_of_osr_entry = osr_entry->sux_at(0);
duke@435 860 dec_forward_branches(sux_of_osr_entry);
duke@435 861
duke@435 862 compute_dominator(osr_entry, start_block);
duke@435 863 _iterative_dominators = true;
duke@435 864 }
duke@435 865 compute_dominator(std_entry, start_block);
duke@435 866
duke@435 867 // start processing with standard entry block
duke@435 868 assert(_work_list.is_empty(), "list must be empty before processing");
duke@435 869
duke@435 870 if (ready_for_processing(std_entry)) {
duke@435 871 sort_into_work_list(std_entry);
duke@435 872 } else {
duke@435 873 assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)");
duke@435 874 }
duke@435 875
duke@435 876 do {
duke@435 877 BlockBegin* cur = _work_list.pop();
duke@435 878
duke@435 879 if (cur == sux_of_osr_entry) {
duke@435 880 // the osr entry block is ignored in normal processing, it is never added to the
duke@435 881 // work list. Instead, it is added as late as possible manually here.
duke@435 882 append_block(osr_entry);
duke@435 883 compute_dominator(cur, osr_entry);
duke@435 884 }
duke@435 885 append_block(cur);
duke@435 886
duke@435 887 int i;
duke@435 888 int num_sux = cur->number_of_sux();
duke@435 889 // changed loop order to get "intuitive" order of if- and else-blocks
duke@435 890 for (i = 0; i < num_sux; i++) {
duke@435 891 BlockBegin* sux = cur->sux_at(i);
duke@435 892 compute_dominator(sux, cur);
duke@435 893 if (ready_for_processing(sux)) {
duke@435 894 sort_into_work_list(sux);
duke@435 895 }
duke@435 896 }
duke@435 897 num_sux = cur->number_of_exception_handlers();
duke@435 898 for (i = 0; i < num_sux; i++) {
duke@435 899 BlockBegin* sux = cur->exception_handler_at(i);
duke@435 900 compute_dominator(sux, cur);
duke@435 901 if (ready_for_processing(sux)) {
duke@435 902 sort_into_work_list(sux);
duke@435 903 }
duke@435 904 }
duke@435 905 } while (_work_list.length() > 0);
duke@435 906 }
duke@435 907
duke@435 908
duke@435 909 bool ComputeLinearScanOrder::compute_dominators_iter() {
duke@435 910 bool changed = false;
duke@435 911 int num_blocks = _linear_scan_order->length();
duke@435 912
duke@435 913 assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator");
duke@435 914 assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors");
duke@435 915 for (int i = 1; i < num_blocks; i++) {
duke@435 916 BlockBegin* block = _linear_scan_order->at(i);
duke@435 917
duke@435 918 BlockBegin* dominator = block->pred_at(0);
duke@435 919 int num_preds = block->number_of_preds();
duke@435 920 for (int i = 1; i < num_preds; i++) {
duke@435 921 dominator = common_dominator(dominator, block->pred_at(i));
duke@435 922 }
duke@435 923
duke@435 924 if (dominator != block->dominator()) {
duke@435 925 TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id()));
duke@435 926
duke@435 927 block->set_dominator(dominator);
duke@435 928 changed = true;
duke@435 929 }
duke@435 930 }
duke@435 931 return changed;
duke@435 932 }
duke@435 933
duke@435 934 void ComputeLinearScanOrder::compute_dominators() {
duke@435 935 TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators));
duke@435 936
duke@435 937 // iterative computation of dominators is only required for methods with non-natural loops
duke@435 938 // and OSR-methods. For all other methods, the dominators computed when generating the
duke@435 939 // linear scan block order are correct.
duke@435 940 if (_iterative_dominators) {
duke@435 941 do {
duke@435 942 TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation"));
duke@435 943 } while (compute_dominators_iter());
duke@435 944 }
duke@435 945
duke@435 946 // check that dominators are correct
duke@435 947 assert(!compute_dominators_iter(), "fix point not reached");
duke@435 948 }
duke@435 949
duke@435 950
duke@435 951 #ifndef PRODUCT
duke@435 952 void ComputeLinearScanOrder::print_blocks() {
duke@435 953 if (TraceLinearScanLevel >= 2) {
duke@435 954 tty->print_cr("----- loop information:");
duke@435 955 for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
duke@435 956 BlockBegin* cur = _linear_scan_order->at(block_idx);
duke@435 957
duke@435 958 tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id());
duke@435 959 for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
duke@435 960 tty->print ("%d ", is_block_in_loop(loop_idx, cur));
duke@435 961 }
duke@435 962 tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth());
duke@435 963 }
duke@435 964 }
duke@435 965
duke@435 966 if (TraceLinearScanLevel >= 1) {
duke@435 967 tty->print_cr("----- linear-scan block order:");
duke@435 968 for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
duke@435 969 BlockBegin* cur = _linear_scan_order->at(block_idx);
duke@435 970 tty->print("%4d: B%2d loop: %2d depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth());
duke@435 971
duke@435 972 tty->print(cur->is_set(BlockBegin::exception_entry_flag) ? " ex" : " ");
duke@435 973 tty->print(cur->is_set(BlockBegin::critical_edge_split_flag) ? " ce" : " ");
duke@435 974 tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : " ");
duke@435 975 tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag) ? " le" : " ");
duke@435 976
duke@435 977 if (cur->dominator() != NULL) {
duke@435 978 tty->print(" dom: B%d ", cur->dominator()->block_id());
duke@435 979 } else {
duke@435 980 tty->print(" dom: NULL ");
duke@435 981 }
duke@435 982
duke@435 983 if (cur->number_of_preds() > 0) {
duke@435 984 tty->print(" preds: ");
duke@435 985 for (int j = 0; j < cur->number_of_preds(); j++) {
duke@435 986 BlockBegin* pred = cur->pred_at(j);
duke@435 987 tty->print("B%d ", pred->block_id());
duke@435 988 }
duke@435 989 }
duke@435 990 if (cur->number_of_sux() > 0) {
duke@435 991 tty->print(" sux: ");
duke@435 992 for (int j = 0; j < cur->number_of_sux(); j++) {
duke@435 993 BlockBegin* sux = cur->sux_at(j);
duke@435 994 tty->print("B%d ", sux->block_id());
duke@435 995 }
duke@435 996 }
duke@435 997 if (cur->number_of_exception_handlers() > 0) {
duke@435 998 tty->print(" ex: ");
duke@435 999 for (int j = 0; j < cur->number_of_exception_handlers(); j++) {
duke@435 1000 BlockBegin* ex = cur->exception_handler_at(j);
duke@435 1001 tty->print("B%d ", ex->block_id());
duke@435 1002 }
duke@435 1003 }
duke@435 1004 tty->cr();
duke@435 1005 }
duke@435 1006 }
duke@435 1007 }
duke@435 1008 #endif
duke@435 1009
duke@435 1010 #ifdef ASSERT
duke@435 1011 void ComputeLinearScanOrder::verify() {
duke@435 1012 assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list");
duke@435 1013
duke@435 1014 if (StressLinearScan) {
duke@435 1015 // blocks are scrambled when StressLinearScan is used
duke@435 1016 return;
duke@435 1017 }
duke@435 1018
duke@435 1019 // check that all successors of a block have a higher linear-scan-number
duke@435 1020 // and that all predecessors of a block have a lower linear-scan-number
duke@435 1021 // (only backward branches of loops are ignored)
duke@435 1022 int i;
duke@435 1023 for (i = 0; i < _linear_scan_order->length(); i++) {
duke@435 1024 BlockBegin* cur = _linear_scan_order->at(i);
duke@435 1025
duke@435 1026 assert(cur->linear_scan_number() == i, "incorrect linear_scan_number");
duke@435 1027 assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->index_of(cur), "incorrect linear_scan_number");
duke@435 1028
duke@435 1029 int j;
duke@435 1030 for (j = cur->number_of_sux() - 1; j >= 0; j--) {
duke@435 1031 BlockBegin* sux = cur->sux_at(j);
duke@435 1032
duke@435 1033 assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->index_of(sux), "incorrect linear_scan_number");
duke@435 1034 if (!cur->is_set(BlockBegin::linear_scan_loop_end_flag)) {
duke@435 1035 assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
duke@435 1036 }
duke@435 1037 if (cur->loop_depth() == sux->loop_depth()) {
duke@435 1038 assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
duke@435 1039 }
duke@435 1040 }
duke@435 1041
duke@435 1042 for (j = cur->number_of_preds() - 1; j >= 0; j--) {
duke@435 1043 BlockBegin* pred = cur->pred_at(j);
duke@435 1044
duke@435 1045 assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->index_of(pred), "incorrect linear_scan_number");
duke@435 1046 if (!cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
duke@435 1047 assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
duke@435 1048 }
duke@435 1049 if (cur->loop_depth() == pred->loop_depth()) {
duke@435 1050 assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
duke@435 1051 }
duke@435 1052
duke@435 1053 assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors");
duke@435 1054 }
duke@435 1055
duke@435 1056 // check dominator
duke@435 1057 if (i == 0) {
duke@435 1058 assert(cur->dominator() == NULL, "first block has no dominator");
duke@435 1059 } else {
duke@435 1060 assert(cur->dominator() != NULL, "all but first block must have dominator");
duke@435 1061 }
duke@435 1062 assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0), "Single predecessor must also be dominator");
duke@435 1063 }
duke@435 1064
duke@435 1065 // check that all loops are continuous
duke@435 1066 for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
duke@435 1067 int block_idx = 0;
duke@435 1068 assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop");
duke@435 1069
duke@435 1070 // skip blocks before the loop
duke@435 1071 while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
duke@435 1072 block_idx++;
duke@435 1073 }
duke@435 1074 // skip blocks of loop
duke@435 1075 while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
duke@435 1076 block_idx++;
duke@435 1077 }
duke@435 1078 // after the first non-loop block, there must not be another loop-block
duke@435 1079 while (block_idx < _num_blocks) {
duke@435 1080 assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order");
duke@435 1081 block_idx++;
duke@435 1082 }
duke@435 1083 }
duke@435 1084 }
duke@435 1085 #endif
duke@435 1086
duke@435 1087
duke@435 1088 void IR::compute_code() {
duke@435 1089 assert(is_valid(), "IR must be valid");
duke@435 1090
iveresov@2138 1091 ComputeLinearScanOrder compute_order(compilation(), start());
duke@435 1092 _num_loops = compute_order.num_loops();
duke@435 1093 _code = compute_order.linear_scan_order();
duke@435 1094 }
duke@435 1095
duke@435 1096
duke@435 1097 void IR::compute_use_counts() {
duke@435 1098 // make sure all values coming out of this block get evaluated.
duke@435 1099 int num_blocks = _code->length();
duke@435 1100 for (int i = 0; i < num_blocks; i++) {
duke@435 1101 _code->at(i)->end()->state()->pin_stack_for_linear_scan();
duke@435 1102 }
duke@435 1103
duke@435 1104 // compute use counts
duke@435 1105 UseCountComputer::compute(_code);
duke@435 1106 }
duke@435 1107
duke@435 1108
duke@435 1109 void IR::iterate_preorder(BlockClosure* closure) {
duke@435 1110 assert(is_valid(), "IR must be valid");
duke@435 1111 start()->iterate_preorder(closure);
duke@435 1112 }
duke@435 1113
duke@435 1114
duke@435 1115 void IR::iterate_postorder(BlockClosure* closure) {
duke@435 1116 assert(is_valid(), "IR must be valid");
duke@435 1117 start()->iterate_postorder(closure);
duke@435 1118 }
duke@435 1119
duke@435 1120 void IR::iterate_linear_scan_order(BlockClosure* closure) {
duke@435 1121 linear_scan_order()->iterate_forward(closure);
duke@435 1122 }
duke@435 1123
duke@435 1124
duke@435 1125 #ifndef PRODUCT
duke@435 1126 class BlockPrinter: public BlockClosure {
duke@435 1127 private:
duke@435 1128 InstructionPrinter* _ip;
duke@435 1129 bool _cfg_only;
duke@435 1130 bool _live_only;
duke@435 1131
duke@435 1132 public:
duke@435 1133 BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) {
duke@435 1134 _ip = ip;
duke@435 1135 _cfg_only = cfg_only;
duke@435 1136 _live_only = live_only;
duke@435 1137 }
duke@435 1138
duke@435 1139 virtual void block_do(BlockBegin* block) {
duke@435 1140 if (_cfg_only) {
duke@435 1141 _ip->print_instr(block); tty->cr();
duke@435 1142 } else {
duke@435 1143 block->print_block(*_ip, _live_only);
duke@435 1144 }
duke@435 1145 }
duke@435 1146 };
duke@435 1147
duke@435 1148
duke@435 1149 void IR::print(BlockBegin* start, bool cfg_only, bool live_only) {
duke@435 1150 ttyLocker ttyl;
duke@435 1151 InstructionPrinter ip(!cfg_only);
duke@435 1152 BlockPrinter bp(&ip, cfg_only, live_only);
duke@435 1153 start->iterate_preorder(&bp);
duke@435 1154 tty->cr();
duke@435 1155 }
duke@435 1156
duke@435 1157 void IR::print(bool cfg_only, bool live_only) {
duke@435 1158 if (is_valid()) {
duke@435 1159 print(start(), cfg_only, live_only);
duke@435 1160 } else {
duke@435 1161 tty->print_cr("invalid IR");
duke@435 1162 }
duke@435 1163 }
duke@435 1164
duke@435 1165
duke@435 1166 define_array(BlockListArray, BlockList*)
duke@435 1167 define_stack(BlockListList, BlockListArray)
duke@435 1168
duke@435 1169 class PredecessorValidator : public BlockClosure {
duke@435 1170 private:
duke@435 1171 BlockListList* _predecessors;
duke@435 1172 BlockList* _blocks;
duke@435 1173
duke@435 1174 static int cmp(BlockBegin** a, BlockBegin** b) {
duke@435 1175 return (*a)->block_id() - (*b)->block_id();
duke@435 1176 }
duke@435 1177
duke@435 1178 public:
duke@435 1179 PredecessorValidator(IR* hir) {
duke@435 1180 ResourceMark rm;
duke@435 1181 _predecessors = new BlockListList(BlockBegin::number_of_blocks(), NULL);
duke@435 1182 _blocks = new BlockList();
duke@435 1183
duke@435 1184 int i;
duke@435 1185 hir->start()->iterate_preorder(this);
duke@435 1186 if (hir->code() != NULL) {
duke@435 1187 assert(hir->code()->length() == _blocks->length(), "must match");
duke@435 1188 for (i = 0; i < _blocks->length(); i++) {
duke@435 1189 assert(hir->code()->contains(_blocks->at(i)), "should be in both lists");
duke@435 1190 }
duke@435 1191 }
duke@435 1192
duke@435 1193 for (i = 0; i < _blocks->length(); i++) {
duke@435 1194 BlockBegin* block = _blocks->at(i);
duke@435 1195 BlockList* preds = _predecessors->at(block->block_id());
duke@435 1196 if (preds == NULL) {
duke@435 1197 assert(block->number_of_preds() == 0, "should be the same");
duke@435 1198 continue;
duke@435 1199 }
duke@435 1200
duke@435 1201 // clone the pred list so we can mutate it
duke@435 1202 BlockList* pred_copy = new BlockList();
duke@435 1203 int j;
duke@435 1204 for (j = 0; j < block->number_of_preds(); j++) {
duke@435 1205 pred_copy->append(block->pred_at(j));
duke@435 1206 }
duke@435 1207 // sort them in the same order
duke@435 1208 preds->sort(cmp);
duke@435 1209 pred_copy->sort(cmp);
duke@435 1210 int length = MIN2(preds->length(), block->number_of_preds());
duke@435 1211 for (j = 0; j < block->number_of_preds(); j++) {
duke@435 1212 assert(preds->at(j) == pred_copy->at(j), "must match");
duke@435 1213 }
duke@435 1214
duke@435 1215 assert(preds->length() == block->number_of_preds(), "should be the same");
duke@435 1216 }
duke@435 1217 }
duke@435 1218
duke@435 1219 virtual void block_do(BlockBegin* block) {
duke@435 1220 _blocks->append(block);
duke@435 1221 BlockEnd* be = block->end();
duke@435 1222 int n = be->number_of_sux();
duke@435 1223 int i;
duke@435 1224 for (i = 0; i < n; i++) {
duke@435 1225 BlockBegin* sux = be->sux_at(i);
duke@435 1226 assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler");
duke@435 1227
duke@435 1228 BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
duke@435 1229 if (preds == NULL) {
duke@435 1230 preds = new BlockList();
duke@435 1231 _predecessors->at_put(sux->block_id(), preds);
duke@435 1232 }
duke@435 1233 preds->append(block);
duke@435 1234 }
duke@435 1235
duke@435 1236 n = block->number_of_exception_handlers();
duke@435 1237 for (i = 0; i < n; i++) {
duke@435 1238 BlockBegin* sux = block->exception_handler_at(i);
duke@435 1239 assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler");
duke@435 1240
duke@435 1241 BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
duke@435 1242 if (preds == NULL) {
duke@435 1243 preds = new BlockList();
duke@435 1244 _predecessors->at_put(sux->block_id(), preds);
duke@435 1245 }
duke@435 1246 preds->append(block);
duke@435 1247 }
duke@435 1248 }
duke@435 1249 };
duke@435 1250
duke@435 1251 void IR::verify() {
duke@435 1252 #ifdef ASSERT
duke@435 1253 PredecessorValidator pv(this);
duke@435 1254 #endif
duke@435 1255 }
duke@435 1256
duke@435 1257 #endif // PRODUCT
duke@435 1258
iveresov@1939 1259 void SubstitutionResolver::visit(Value* v) {
duke@435 1260 Value v0 = *v;
duke@435 1261 if (v0) {
duke@435 1262 Value vs = v0->subst();
duke@435 1263 if (vs != v0) {
duke@435 1264 *v = v0->subst();
duke@435 1265 }
duke@435 1266 }
duke@435 1267 }
duke@435 1268
duke@435 1269 #ifdef ASSERT
iveresov@1939 1270 class SubstitutionChecker: public ValueVisitor {
iveresov@1939 1271 void visit(Value* v) {
iveresov@1939 1272 Value v0 = *v;
iveresov@1939 1273 if (v0) {
iveresov@1939 1274 Value vs = v0->subst();
iveresov@1939 1275 assert(vs == v0, "missed substitution");
iveresov@1939 1276 }
duke@435 1277 }
iveresov@1939 1278 };
duke@435 1279 #endif
duke@435 1280
duke@435 1281
duke@435 1282 void SubstitutionResolver::block_do(BlockBegin* block) {
duke@435 1283 Instruction* last = NULL;
duke@435 1284 for (Instruction* n = block; n != NULL;) {
iveresov@1939 1285 n->values_do(this);
duke@435 1286 // need to remove this instruction from the instruction stream
duke@435 1287 if (n->subst() != n) {
duke@435 1288 assert(last != NULL, "must have last");
roland@2174 1289 last->set_next(n->next());
duke@435 1290 } else {
duke@435 1291 last = n;
duke@435 1292 }
duke@435 1293 n = last->next();
duke@435 1294 }
duke@435 1295
duke@435 1296 #ifdef ASSERT
iveresov@1939 1297 SubstitutionChecker check_substitute;
iveresov@1939 1298 if (block->state()) block->state()->values_do(&check_substitute);
iveresov@1939 1299 block->block_values_do(&check_substitute);
iveresov@1939 1300 if (block->end() && block->end()->state()) block->end()->state()->values_do(&check_substitute);
duke@435 1301 #endif
duke@435 1302 }

mercurial