src/share/vm/opto/lcm.cpp

Thu, 19 Mar 2009 09:13:24 -0700

author
kvn
date
Thu, 19 Mar 2009 09:13:24 -0700
changeset 1082
bd441136a5ce
parent 1014
0fbdb4381b99
parent 1077
660978a2a31a
child 1116
fbde8ec322d0
permissions
-rw-r--r--

Merge

duke@435 1 /*
xdono@1014 2 * Copyright 1998-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Optimization - Graph Style
duke@435 26
duke@435 27 #include "incls/_precompiled.incl"
duke@435 28 #include "incls/_lcm.cpp.incl"
duke@435 29
duke@435 30 //------------------------------implicit_null_check----------------------------
duke@435 31 // Detect implicit-null-check opportunities. Basically, find NULL checks
duke@435 32 // with suitable memory ops nearby. Use the memory op to do the NULL check.
duke@435 33 // I can generate a memory op if there is not one nearby.
duke@435 34 // The proj is the control projection for the not-null case.
duke@435 35 // The val is the pointer being checked for nullness.
duke@435 36 void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
duke@435 37 // Assume if null check need for 0 offset then always needed
duke@435 38 // Intel solaris doesn't support any null checks yet and no
duke@435 39 // mechanism exists (yet) to set the switches at an os_cpu level
duke@435 40 if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
duke@435 41
duke@435 42 // Make sure the ptr-is-null path appears to be uncommon!
duke@435 43 float f = end()->as_MachIf()->_prob;
duke@435 44 if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
duke@435 45 if( f > PROB_UNLIKELY_MAG(4) ) return;
duke@435 46
duke@435 47 uint bidx = 0; // Capture index of value into memop
duke@435 48 bool was_store; // Memory op is a store op
duke@435 49
duke@435 50 // Get the successor block for if the test ptr is non-null
duke@435 51 Block* not_null_block; // this one goes with the proj
duke@435 52 Block* null_block;
duke@435 53 if (_nodes[_nodes.size()-1] == proj) {
duke@435 54 null_block = _succs[0];
duke@435 55 not_null_block = _succs[1];
duke@435 56 } else {
duke@435 57 assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
duke@435 58 not_null_block = _succs[0];
duke@435 59 null_block = _succs[1];
duke@435 60 }
kvn@767 61 while (null_block->is_Empty() == Block::empty_with_goto) {
kvn@767 62 null_block = null_block->_succs[0];
kvn@767 63 }
duke@435 64
duke@435 65 // Search the exception block for an uncommon trap.
duke@435 66 // (See Parse::do_if and Parse::do_ifnull for the reason
duke@435 67 // we need an uncommon trap. Briefly, we need a way to
duke@435 68 // detect failure of this optimization, as in 6366351.)
duke@435 69 {
duke@435 70 bool found_trap = false;
duke@435 71 for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
duke@435 72 Node* nn = null_block->_nodes[i1];
duke@435 73 if (nn->is_MachCall() &&
duke@435 74 nn->as_MachCall()->entry_point() ==
duke@435 75 SharedRuntime::uncommon_trap_blob()->instructions_begin()) {
duke@435 76 const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
duke@435 77 if (trtype->isa_int() && trtype->is_int()->is_con()) {
duke@435 78 jint tr_con = trtype->is_int()->get_con();
duke@435 79 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
duke@435 80 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
duke@435 81 assert((int)reason < (int)BitsPerInt, "recode bit map");
duke@435 82 if (is_set_nth_bit(allowed_reasons, (int) reason)
duke@435 83 && action != Deoptimization::Action_none) {
duke@435 84 // This uncommon trap is sure to recompile, eventually.
duke@435 85 // When that happens, C->too_many_traps will prevent
duke@435 86 // this transformation from happening again.
duke@435 87 found_trap = true;
duke@435 88 }
duke@435 89 }
duke@435 90 break;
duke@435 91 }
duke@435 92 }
duke@435 93 if (!found_trap) {
duke@435 94 // We did not find an uncommon trap.
duke@435 95 return;
duke@435 96 }
duke@435 97 }
duke@435 98
duke@435 99 // Search the successor block for a load or store who's base value is also
duke@435 100 // the tested value. There may be several.
duke@435 101 Node_List *out = new Node_List(Thread::current()->resource_area());
duke@435 102 MachNode *best = NULL; // Best found so far
duke@435 103 for (DUIterator i = val->outs(); val->has_out(i); i++) {
duke@435 104 Node *m = val->out(i);
duke@435 105 if( !m->is_Mach() ) continue;
duke@435 106 MachNode *mach = m->as_Mach();
duke@435 107 was_store = false;
duke@435 108 switch( mach->ideal_Opcode() ) {
duke@435 109 case Op_LoadB:
twisti@993 110 case Op_LoadUS:
duke@435 111 case Op_LoadD:
duke@435 112 case Op_LoadF:
duke@435 113 case Op_LoadI:
duke@435 114 case Op_LoadL:
duke@435 115 case Op_LoadP:
coleenp@548 116 case Op_LoadN:
duke@435 117 case Op_LoadS:
duke@435 118 case Op_LoadKlass:
kvn@599 119 case Op_LoadNKlass:
duke@435 120 case Op_LoadRange:
duke@435 121 case Op_LoadD_unaligned:
duke@435 122 case Op_LoadL_unaligned:
duke@435 123 break;
duke@435 124 case Op_StoreB:
duke@435 125 case Op_StoreC:
duke@435 126 case Op_StoreCM:
duke@435 127 case Op_StoreD:
duke@435 128 case Op_StoreF:
duke@435 129 case Op_StoreI:
duke@435 130 case Op_StoreL:
duke@435 131 case Op_StoreP:
coleenp@548 132 case Op_StoreN:
duke@435 133 was_store = true; // Memory op is a store op
duke@435 134 // Stores will have their address in slot 2 (memory in slot 1).
duke@435 135 // If the value being nul-checked is in another slot, it means we
duke@435 136 // are storing the checked value, which does NOT check the value!
duke@435 137 if( mach->in(2) != val ) continue;
duke@435 138 break; // Found a memory op?
duke@435 139 case Op_StrComp:
rasbold@604 140 case Op_AryEq:
duke@435 141 // Not a legit memory op for implicit null check regardless of
duke@435 142 // embedded loads
duke@435 143 continue;
duke@435 144 default: // Also check for embedded loads
duke@435 145 if( !mach->needs_anti_dependence_check() )
duke@435 146 continue; // Not an memory op; skip it
duke@435 147 break;
duke@435 148 }
duke@435 149 // check if the offset is not too high for implicit exception
duke@435 150 {
duke@435 151 intptr_t offset = 0;
duke@435 152 const TypePtr *adr_type = NULL; // Do not need this return value here
duke@435 153 const Node* base = mach->get_base_and_disp(offset, adr_type);
duke@435 154 if (base == NULL || base == NodeSentinel) {
kvn@767 155 // Narrow oop address doesn't have base, only index
kvn@767 156 if( val->bottom_type()->isa_narrowoop() &&
kvn@767 157 MacroAssembler::needs_explicit_null_check(offset) )
kvn@767 158 continue; // Give up if offset is beyond page size
duke@435 159 // cannot reason about it; is probably not implicit null exception
duke@435 160 } else {
kvn@1077 161 const TypePtr* tptr;
kvn@1077 162 if (UseCompressedOops && Universe::narrow_oop_shift() == 0) {
kvn@1077 163 // 32-bits narrow oop can be the base of address expressions
kvn@1077 164 tptr = base->bottom_type()->make_ptr();
kvn@1077 165 } else {
kvn@1077 166 // only regular oops are expected here
kvn@1077 167 tptr = base->bottom_type()->is_ptr();
kvn@1077 168 }
duke@435 169 // Give up if offset is not a compile-time constant
duke@435 170 if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
duke@435 171 continue;
duke@435 172 offset += tptr->_offset; // correct if base is offseted
duke@435 173 if( MacroAssembler::needs_explicit_null_check(offset) )
duke@435 174 continue; // Give up is reference is beyond 4K page size
duke@435 175 }
duke@435 176 }
duke@435 177
duke@435 178 // Check ctrl input to see if the null-check dominates the memory op
duke@435 179 Block *cb = cfg->_bbs[mach->_idx];
duke@435 180 cb = cb->_idom; // Always hoist at least 1 block
duke@435 181 if( !was_store ) { // Stores can be hoisted only one block
duke@435 182 while( cb->_dom_depth > (_dom_depth + 1))
duke@435 183 cb = cb->_idom; // Hoist loads as far as we want
duke@435 184 // The non-null-block should dominate the memory op, too. Live
duke@435 185 // range spilling will insert a spill in the non-null-block if it is
duke@435 186 // needs to spill the memory op for an implicit null check.
duke@435 187 if (cb->_dom_depth == (_dom_depth + 1)) {
duke@435 188 if (cb != not_null_block) continue;
duke@435 189 cb = cb->_idom;
duke@435 190 }
duke@435 191 }
duke@435 192 if( cb != this ) continue;
duke@435 193
duke@435 194 // Found a memory user; see if it can be hoisted to check-block
duke@435 195 uint vidx = 0; // Capture index of value into memop
duke@435 196 uint j;
duke@435 197 for( j = mach->req()-1; j > 0; j-- ) {
duke@435 198 if( mach->in(j) == val ) vidx = j;
duke@435 199 // Block of memory-op input
duke@435 200 Block *inb = cfg->_bbs[mach->in(j)->_idx];
duke@435 201 Block *b = this; // Start from nul check
duke@435 202 while( b != inb && b->_dom_depth > inb->_dom_depth )
duke@435 203 b = b->_idom; // search upwards for input
duke@435 204 // See if input dominates null check
duke@435 205 if( b != inb )
duke@435 206 break;
duke@435 207 }
duke@435 208 if( j > 0 )
duke@435 209 continue;
duke@435 210 Block *mb = cfg->_bbs[mach->_idx];
duke@435 211 // Hoisting stores requires more checks for the anti-dependence case.
duke@435 212 // Give up hoisting if we have to move the store past any load.
duke@435 213 if( was_store ) {
duke@435 214 Block *b = mb; // Start searching here for a local load
duke@435 215 // mach use (faulting) trying to hoist
duke@435 216 // n might be blocker to hoisting
duke@435 217 while( b != this ) {
duke@435 218 uint k;
duke@435 219 for( k = 1; k < b->_nodes.size(); k++ ) {
duke@435 220 Node *n = b->_nodes[k];
duke@435 221 if( n->needs_anti_dependence_check() &&
duke@435 222 n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
duke@435 223 break; // Found anti-dependent load
duke@435 224 }
duke@435 225 if( k < b->_nodes.size() )
duke@435 226 break; // Found anti-dependent load
duke@435 227 // Make sure control does not do a merge (would have to check allpaths)
duke@435 228 if( b->num_preds() != 2 ) break;
duke@435 229 b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
duke@435 230 }
duke@435 231 if( b != this ) continue;
duke@435 232 }
duke@435 233
duke@435 234 // Make sure this memory op is not already being used for a NullCheck
duke@435 235 Node *e = mb->end();
duke@435 236 if( e->is_MachNullCheck() && e->in(1) == mach )
duke@435 237 continue; // Already being used as a NULL check
duke@435 238
duke@435 239 // Found a candidate! Pick one with least dom depth - the highest
duke@435 240 // in the dom tree should be closest to the null check.
duke@435 241 if( !best ||
duke@435 242 cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
duke@435 243 best = mach;
duke@435 244 bidx = vidx;
duke@435 245
duke@435 246 }
duke@435 247 }
duke@435 248 // No candidate!
duke@435 249 if( !best ) return;
duke@435 250
duke@435 251 // ---- Found an implicit null check
duke@435 252 extern int implicit_null_checks;
duke@435 253 implicit_null_checks++;
duke@435 254
duke@435 255 // Hoist the memory candidate up to the end of the test block.
duke@435 256 Block *old_block = cfg->_bbs[best->_idx];
duke@435 257 old_block->find_remove(best);
duke@435 258 add_inst(best);
duke@435 259 cfg->_bbs.map(best->_idx,this);
duke@435 260
duke@435 261 // Move the control dependence
duke@435 262 if (best->in(0) && best->in(0) == old_block->_nodes[0])
duke@435 263 best->set_req(0, _nodes[0]);
duke@435 264
duke@435 265 // Check for flag-killing projections that also need to be hoisted
duke@435 266 // Should be DU safe because no edge updates.
duke@435 267 for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
duke@435 268 Node* n = best->fast_out(j);
duke@435 269 if( n->Opcode() == Op_MachProj ) {
duke@435 270 cfg->_bbs[n->_idx]->find_remove(n);
duke@435 271 add_inst(n);
duke@435 272 cfg->_bbs.map(n->_idx,this);
duke@435 273 }
duke@435 274 }
duke@435 275
duke@435 276 Compile *C = cfg->C;
duke@435 277 // proj==Op_True --> ne test; proj==Op_False --> eq test.
duke@435 278 // One of two graph shapes got matched:
duke@435 279 // (IfTrue (If (Bool NE (CmpP ptr NULL))))
duke@435 280 // (IfFalse (If (Bool EQ (CmpP ptr NULL))))
duke@435 281 // NULL checks are always branch-if-eq. If we see a IfTrue projection
duke@435 282 // then we are replacing a 'ne' test with a 'eq' NULL check test.
duke@435 283 // We need to flip the projections to keep the same semantics.
duke@435 284 if( proj->Opcode() == Op_IfTrue ) {
duke@435 285 // Swap order of projections in basic block to swap branch targets
duke@435 286 Node *tmp1 = _nodes[end_idx()+1];
duke@435 287 Node *tmp2 = _nodes[end_idx()+2];
duke@435 288 _nodes.map(end_idx()+1, tmp2);
duke@435 289 _nodes.map(end_idx()+2, tmp1);
duke@435 290 Node *tmp = new (C, 1) Node(C->top()); // Use not NULL input
duke@435 291 tmp1->replace_by(tmp);
duke@435 292 tmp2->replace_by(tmp1);
duke@435 293 tmp->replace_by(tmp2);
duke@435 294 tmp->destruct();
duke@435 295 }
duke@435 296
duke@435 297 // Remove the existing null check; use a new implicit null check instead.
duke@435 298 // Since schedule-local needs precise def-use info, we need to correct
duke@435 299 // it as well.
duke@435 300 Node *old_tst = proj->in(0);
duke@435 301 MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
duke@435 302 _nodes.map(end_idx(),nul_chk);
duke@435 303 cfg->_bbs.map(nul_chk->_idx,this);
duke@435 304 // Redirect users of old_test to nul_chk
duke@435 305 for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
duke@435 306 old_tst->last_out(i2)->set_req(0, nul_chk);
duke@435 307 // Clean-up any dead code
duke@435 308 for (uint i3 = 0; i3 < old_tst->req(); i3++)
duke@435 309 old_tst->set_req(i3, NULL);
duke@435 310
duke@435 311 cfg->latency_from_uses(nul_chk);
duke@435 312 cfg->latency_from_uses(best);
duke@435 313 }
duke@435 314
duke@435 315
duke@435 316 //------------------------------select-----------------------------------------
duke@435 317 // Select a nice fellow from the worklist to schedule next. If there is only
duke@435 318 // one choice, then use it. Projections take top priority for correctness
duke@435 319 // reasons - if I see a projection, then it is next. There are a number of
duke@435 320 // other special cases, for instructions that consume condition codes, et al.
duke@435 321 // These are chosen immediately. Some instructions are required to immediately
duke@435 322 // precede the last instruction in the block, and these are taken last. Of the
duke@435 323 // remaining cases (most), choose the instruction with the greatest latency
duke@435 324 // (that is, the most number of pseudo-cycles required to the end of the
duke@435 325 // routine). If there is a tie, choose the instruction with the most inputs.
duke@435 326 Node *Block::select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot) {
duke@435 327
duke@435 328 // If only a single entry on the stack, use it
duke@435 329 uint cnt = worklist.size();
duke@435 330 if (cnt == 1) {
duke@435 331 Node *n = worklist[0];
duke@435 332 worklist.map(0,worklist.pop());
duke@435 333 return n;
duke@435 334 }
duke@435 335
duke@435 336 uint choice = 0; // Bigger is most important
duke@435 337 uint latency = 0; // Bigger is scheduled first
duke@435 338 uint score = 0; // Bigger is better
kvn@688 339 int idx = -1; // Index in worklist
duke@435 340
duke@435 341 for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
duke@435 342 // Order in worklist is used to break ties.
duke@435 343 // See caller for how this is used to delay scheduling
duke@435 344 // of induction variable increments to after the other
duke@435 345 // uses of the phi are scheduled.
duke@435 346 Node *n = worklist[i]; // Get Node on worklist
duke@435 347
duke@435 348 int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
duke@435 349 if( n->is_Proj() || // Projections always win
duke@435 350 n->Opcode()== Op_Con || // So does constant 'Top'
duke@435 351 iop == Op_CreateEx || // Create-exception must start block
duke@435 352 iop == Op_CheckCastPP
duke@435 353 ) {
duke@435 354 worklist.map(i,worklist.pop());
duke@435 355 return n;
duke@435 356 }
duke@435 357
duke@435 358 // Final call in a block must be adjacent to 'catch'
duke@435 359 Node *e = end();
duke@435 360 if( e->is_Catch() && e->in(0)->in(0) == n )
duke@435 361 continue;
duke@435 362
duke@435 363 // Memory op for an implicit null check has to be at the end of the block
duke@435 364 if( e->is_MachNullCheck() && e->in(1) == n )
duke@435 365 continue;
duke@435 366
duke@435 367 uint n_choice = 2;
duke@435 368
duke@435 369 // See if this instruction is consumed by a branch. If so, then (as the
duke@435 370 // branch is the last instruction in the basic block) force it to the
duke@435 371 // end of the basic block
duke@435 372 if ( must_clone[iop] ) {
duke@435 373 // See if any use is a branch
duke@435 374 bool found_machif = false;
duke@435 375
duke@435 376 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
duke@435 377 Node* use = n->fast_out(j);
duke@435 378
duke@435 379 // The use is a conditional branch, make them adjacent
duke@435 380 if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
duke@435 381 found_machif = true;
duke@435 382 break;
duke@435 383 }
duke@435 384
duke@435 385 // More than this instruction pending for successor to be ready,
duke@435 386 // don't choose this if other opportunities are ready
duke@435 387 if (ready_cnt[use->_idx] > 1)
duke@435 388 n_choice = 1;
duke@435 389 }
duke@435 390
duke@435 391 // loop terminated, prefer not to use this instruction
duke@435 392 if (found_machif)
duke@435 393 continue;
duke@435 394 }
duke@435 395
duke@435 396 // See if this has a predecessor that is "must_clone", i.e. sets the
duke@435 397 // condition code. If so, choose this first
duke@435 398 for (uint j = 0; j < n->req() ; j++) {
duke@435 399 Node *inn = n->in(j);
duke@435 400 if (inn) {
duke@435 401 if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
duke@435 402 n_choice = 3;
duke@435 403 break;
duke@435 404 }
duke@435 405 }
duke@435 406 }
duke@435 407
duke@435 408 // MachTemps should be scheduled last so they are near their uses
duke@435 409 if (n->is_MachTemp()) {
duke@435 410 n_choice = 1;
duke@435 411 }
duke@435 412
duke@435 413 uint n_latency = cfg->_node_latency.at_grow(n->_idx);
duke@435 414 uint n_score = n->req(); // Many inputs get high score to break ties
duke@435 415
duke@435 416 // Keep best latency found
duke@435 417 if( choice < n_choice ||
duke@435 418 ( choice == n_choice &&
duke@435 419 ( latency < n_latency ||
duke@435 420 ( latency == n_latency &&
duke@435 421 ( score < n_score ))))) {
duke@435 422 choice = n_choice;
duke@435 423 latency = n_latency;
duke@435 424 score = n_score;
duke@435 425 idx = i; // Also keep index in worklist
duke@435 426 }
duke@435 427 } // End of for all ready nodes in worklist
duke@435 428
kvn@688 429 assert(idx >= 0, "index should be set");
kvn@688 430 Node *n = worklist[(uint)idx]; // Get the winner
duke@435 431
kvn@688 432 worklist.map((uint)idx, worklist.pop()); // Compress worklist
duke@435 433 return n;
duke@435 434 }
duke@435 435
duke@435 436
duke@435 437 //------------------------------set_next_call----------------------------------
duke@435 438 void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
duke@435 439 if( next_call.test_set(n->_idx) ) return;
duke@435 440 for( uint i=0; i<n->len(); i++ ) {
duke@435 441 Node *m = n->in(i);
duke@435 442 if( !m ) continue; // must see all nodes in block that precede call
duke@435 443 if( bbs[m->_idx] == this )
duke@435 444 set_next_call( m, next_call, bbs );
duke@435 445 }
duke@435 446 }
duke@435 447
duke@435 448 //------------------------------needed_for_next_call---------------------------
duke@435 449 // Set the flag 'next_call' for each Node that is needed for the next call to
duke@435 450 // be scheduled. This flag lets me bias scheduling so Nodes needed for the
duke@435 451 // next subroutine call get priority - basically it moves things NOT needed
duke@435 452 // for the next call till after the call. This prevents me from trying to
duke@435 453 // carry lots of stuff live across a call.
duke@435 454 void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
duke@435 455 // Find the next control-defining Node in this block
duke@435 456 Node* call = NULL;
duke@435 457 for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
duke@435 458 Node* m = this_call->fast_out(i);
duke@435 459 if( bbs[m->_idx] == this && // Local-block user
duke@435 460 m != this_call && // Not self-start node
duke@435 461 m->is_Call() )
duke@435 462 call = m;
duke@435 463 break;
duke@435 464 }
duke@435 465 if (call == NULL) return; // No next call (e.g., block end is near)
duke@435 466 // Set next-call for all inputs to this call
duke@435 467 set_next_call(call, next_call, bbs);
duke@435 468 }
duke@435 469
duke@435 470 //------------------------------sched_call-------------------------------------
duke@435 471 uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
duke@435 472 RegMask regs;
duke@435 473
duke@435 474 // Schedule all the users of the call right now. All the users are
duke@435 475 // projection Nodes, so they must be scheduled next to the call.
duke@435 476 // Collect all the defined registers.
duke@435 477 for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
duke@435 478 Node* n = mcall->fast_out(i);
duke@435 479 assert( n->Opcode()==Op_MachProj, "" );
duke@435 480 --ready_cnt[n->_idx];
duke@435 481 assert( !ready_cnt[n->_idx], "" );
duke@435 482 // Schedule next to call
duke@435 483 _nodes.map(node_cnt++, n);
duke@435 484 // Collect defined registers
duke@435 485 regs.OR(n->out_RegMask());
duke@435 486 // Check for scheduling the next control-definer
duke@435 487 if( n->bottom_type() == Type::CONTROL )
duke@435 488 // Warm up next pile of heuristic bits
duke@435 489 needed_for_next_call(n, next_call, bbs);
duke@435 490
duke@435 491 // Children of projections are now all ready
duke@435 492 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
duke@435 493 Node* m = n->fast_out(j); // Get user
duke@435 494 if( bbs[m->_idx] != this ) continue;
duke@435 495 if( m->is_Phi() ) continue;
duke@435 496 if( !--ready_cnt[m->_idx] )
duke@435 497 worklist.push(m);
duke@435 498 }
duke@435 499
duke@435 500 }
duke@435 501
duke@435 502 // Act as if the call defines the Frame Pointer.
duke@435 503 // Certainly the FP is alive and well after the call.
duke@435 504 regs.Insert(matcher.c_frame_pointer());
duke@435 505
duke@435 506 // Set all registers killed and not already defined by the call.
duke@435 507 uint r_cnt = mcall->tf()->range()->cnt();
duke@435 508 int op = mcall->ideal_Opcode();
duke@435 509 MachProjNode *proj = new (matcher.C, 1) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
duke@435 510 bbs.map(proj->_idx,this);
duke@435 511 _nodes.insert(node_cnt++, proj);
duke@435 512
duke@435 513 // Select the right register save policy.
duke@435 514 const char * save_policy;
duke@435 515 switch (op) {
duke@435 516 case Op_CallRuntime:
duke@435 517 case Op_CallLeaf:
duke@435 518 case Op_CallLeafNoFP:
duke@435 519 // Calling C code so use C calling convention
duke@435 520 save_policy = matcher._c_reg_save_policy;
duke@435 521 break;
duke@435 522
duke@435 523 case Op_CallStaticJava:
duke@435 524 case Op_CallDynamicJava:
duke@435 525 // Calling Java code so use Java calling convention
duke@435 526 save_policy = matcher._register_save_policy;
duke@435 527 break;
duke@435 528
duke@435 529 default:
duke@435 530 ShouldNotReachHere();
duke@435 531 }
duke@435 532
duke@435 533 // When using CallRuntime mark SOE registers as killed by the call
duke@435 534 // so values that could show up in the RegisterMap aren't live in a
duke@435 535 // callee saved register since the register wouldn't know where to
duke@435 536 // find them. CallLeaf and CallLeafNoFP are ok because they can't
duke@435 537 // have debug info on them. Strictly speaking this only needs to be
duke@435 538 // done for oops since idealreg2debugmask takes care of debug info
duke@435 539 // references but there no way to handle oops differently than other
duke@435 540 // pointers as far as the kill mask goes.
duke@435 541 bool exclude_soe = op == Op_CallRuntime;
duke@435 542
duke@435 543 // Fill in the kill mask for the call
duke@435 544 for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
duke@435 545 if( !regs.Member(r) ) { // Not already defined by the call
duke@435 546 // Save-on-call register?
duke@435 547 if ((save_policy[r] == 'C') ||
duke@435 548 (save_policy[r] == 'A') ||
duke@435 549 ((save_policy[r] == 'E') && exclude_soe)) {
duke@435 550 proj->_rout.Insert(r);
duke@435 551 }
duke@435 552 }
duke@435 553 }
duke@435 554
duke@435 555 return node_cnt;
duke@435 556 }
duke@435 557
duke@435 558
duke@435 559 //------------------------------schedule_local---------------------------------
duke@435 560 // Topological sort within a block. Someday become a real scheduler.
duke@435 561 bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, int *ready_cnt, VectorSet &next_call) {
duke@435 562 // Already "sorted" are the block start Node (as the first entry), and
duke@435 563 // the block-ending Node and any trailing control projections. We leave
duke@435 564 // these alone. PhiNodes and ParmNodes are made to follow the block start
duke@435 565 // Node. Everything else gets topo-sorted.
duke@435 566
duke@435 567 #ifndef PRODUCT
duke@435 568 if (cfg->trace_opto_pipelining()) {
duke@435 569 tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
duke@435 570 for (uint i = 0;i < _nodes.size();i++) {
duke@435 571 tty->print("# ");
duke@435 572 _nodes[i]->fast_dump();
duke@435 573 }
duke@435 574 tty->print_cr("#");
duke@435 575 }
duke@435 576 #endif
duke@435 577
duke@435 578 // RootNode is already sorted
duke@435 579 if( _nodes.size() == 1 ) return true;
duke@435 580
duke@435 581 // Move PhiNodes and ParmNodes from 1 to cnt up to the start
duke@435 582 uint node_cnt = end_idx();
duke@435 583 uint phi_cnt = 1;
duke@435 584 uint i;
duke@435 585 for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
duke@435 586 Node *n = _nodes[i];
duke@435 587 if( n->is_Phi() || // Found a PhiNode or ParmNode
duke@435 588 (n->is_Proj() && n->in(0) == head()) ) {
duke@435 589 // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
duke@435 590 _nodes.map(i,_nodes[phi_cnt]);
duke@435 591 _nodes.map(phi_cnt++,n); // swap Phi/Parm up front
duke@435 592 } else { // All others
duke@435 593 // Count block-local inputs to 'n'
duke@435 594 uint cnt = n->len(); // Input count
duke@435 595 uint local = 0;
duke@435 596 for( uint j=0; j<cnt; j++ ) {
duke@435 597 Node *m = n->in(j);
duke@435 598 if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
duke@435 599 local++; // One more block-local input
duke@435 600 }
duke@435 601 ready_cnt[n->_idx] = local; // Count em up
duke@435 602
duke@435 603 // A few node types require changing a required edge to a precedence edge
duke@435 604 // before allocation.
ysr@777 605 if( UseConcMarkSweepGC || UseG1GC ) {
duke@435 606 if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
duke@435 607 // Note: Required edges with an index greater than oper_input_base
duke@435 608 // are not supported by the allocator.
duke@435 609 // Note2: Can only depend on unmatched edge being last,
duke@435 610 // can not depend on its absolute position.
duke@435 611 Node *oop_store = n->in(n->req() - 1);
duke@435 612 n->del_req(n->req() - 1);
duke@435 613 n->add_prec(oop_store);
duke@435 614 assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
duke@435 615 }
duke@435 616 }
kvn@688 617 if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire &&
kvn@688 618 n->req() > TypeFunc::Parms ) {
kvn@688 619 // MemBarAcquire could be created without Precedent edge.
kvn@688 620 // del_req() replaces the specified edge with the last input edge
kvn@688 621 // and then removes the last edge. If the specified edge > number of
kvn@688 622 // edges the last edge will be moved outside of the input edges array
kvn@688 623 // and the edge will be lost. This is why this code should be
kvn@688 624 // executed only when Precedent (== TypeFunc::Parms) edge is present.
duke@435 625 Node *x = n->in(TypeFunc::Parms);
duke@435 626 n->del_req(TypeFunc::Parms);
duke@435 627 n->add_prec(x);
duke@435 628 }
duke@435 629 }
duke@435 630 }
duke@435 631 for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
duke@435 632 ready_cnt[_nodes[i2]->_idx] = 0;
duke@435 633
duke@435 634 // All the prescheduled guys do not hold back internal nodes
duke@435 635 uint i3;
duke@435 636 for(i3 = 0; i3<phi_cnt; i3++ ) { // For all pre-scheduled
duke@435 637 Node *n = _nodes[i3]; // Get pre-scheduled
duke@435 638 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
duke@435 639 Node* m = n->fast_out(j);
duke@435 640 if( cfg->_bbs[m->_idx] ==this ) // Local-block user
duke@435 641 ready_cnt[m->_idx]--; // Fix ready count
duke@435 642 }
duke@435 643 }
duke@435 644
duke@435 645 Node_List delay;
duke@435 646 // Make a worklist
duke@435 647 Node_List worklist;
duke@435 648 for(uint i4=i3; i4<node_cnt; i4++ ) { // Put ready guys on worklist
duke@435 649 Node *m = _nodes[i4];
duke@435 650 if( !ready_cnt[m->_idx] ) { // Zero ready count?
duke@435 651 if (m->is_iteratively_computed()) {
duke@435 652 // Push induction variable increments last to allow other uses
duke@435 653 // of the phi to be scheduled first. The select() method breaks
duke@435 654 // ties in scheduling by worklist order.
duke@435 655 delay.push(m);
never@560 656 } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
never@560 657 // Force the CreateEx to the top of the list so it's processed
never@560 658 // first and ends up at the start of the block.
never@560 659 worklist.insert(0, m);
duke@435 660 } else {
duke@435 661 worklist.push(m); // Then on to worklist!
duke@435 662 }
duke@435 663 }
duke@435 664 }
duke@435 665 while (delay.size()) {
duke@435 666 Node* d = delay.pop();
duke@435 667 worklist.push(d);
duke@435 668 }
duke@435 669
duke@435 670 // Warm up the 'next_call' heuristic bits
duke@435 671 needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
duke@435 672
duke@435 673 #ifndef PRODUCT
duke@435 674 if (cfg->trace_opto_pipelining()) {
duke@435 675 for (uint j=0; j<_nodes.size(); j++) {
duke@435 676 Node *n = _nodes[j];
duke@435 677 int idx = n->_idx;
duke@435 678 tty->print("# ready cnt:%3d ", ready_cnt[idx]);
duke@435 679 tty->print("latency:%3d ", cfg->_node_latency.at_grow(idx));
duke@435 680 tty->print("%4d: %s\n", idx, n->Name());
duke@435 681 }
duke@435 682 }
duke@435 683 #endif
duke@435 684
duke@435 685 // Pull from worklist and schedule
duke@435 686 while( worklist.size() ) { // Worklist is not ready
duke@435 687
duke@435 688 #ifndef PRODUCT
duke@435 689 if (cfg->trace_opto_pipelining()) {
duke@435 690 tty->print("# ready list:");
duke@435 691 for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
duke@435 692 Node *n = worklist[i]; // Get Node on worklist
duke@435 693 tty->print(" %d", n->_idx);
duke@435 694 }
duke@435 695 tty->cr();
duke@435 696 }
duke@435 697 #endif
duke@435 698
duke@435 699 // Select and pop a ready guy from worklist
duke@435 700 Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
duke@435 701 _nodes.map(phi_cnt++,n); // Schedule him next
duke@435 702
duke@435 703 #ifndef PRODUCT
duke@435 704 if (cfg->trace_opto_pipelining()) {
duke@435 705 tty->print("# select %d: %s", n->_idx, n->Name());
duke@435 706 tty->print(", latency:%d", cfg->_node_latency.at_grow(n->_idx));
duke@435 707 n->dump();
duke@435 708 if (Verbose) {
duke@435 709 tty->print("# ready list:");
duke@435 710 for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
duke@435 711 Node *n = worklist[i]; // Get Node on worklist
duke@435 712 tty->print(" %d", n->_idx);
duke@435 713 }
duke@435 714 tty->cr();
duke@435 715 }
duke@435 716 }
duke@435 717
duke@435 718 #endif
duke@435 719 if( n->is_MachCall() ) {
duke@435 720 MachCallNode *mcall = n->as_MachCall();
duke@435 721 phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
duke@435 722 continue;
duke@435 723 }
duke@435 724 // Children are now all ready
duke@435 725 for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
duke@435 726 Node* m = n->fast_out(i5); // Get user
duke@435 727 if( cfg->_bbs[m->_idx] != this ) continue;
duke@435 728 if( m->is_Phi() ) continue;
duke@435 729 if( !--ready_cnt[m->_idx] )
duke@435 730 worklist.push(m);
duke@435 731 }
duke@435 732 }
duke@435 733
duke@435 734 if( phi_cnt != end_idx() ) {
duke@435 735 // did not schedule all. Retry, Bailout, or Die
duke@435 736 Compile* C = matcher.C;
duke@435 737 if (C->subsume_loads() == true && !C->failing()) {
duke@435 738 // Retry with subsume_loads == false
duke@435 739 // If this is the first failure, the sentinel string will "stick"
duke@435 740 // to the Compile object, and the C2Compiler will see it and retry.
duke@435 741 C->record_failure(C2Compiler::retry_no_subsuming_loads());
duke@435 742 }
duke@435 743 // assert( phi_cnt == end_idx(), "did not schedule all" );
duke@435 744 return false;
duke@435 745 }
duke@435 746
duke@435 747 #ifndef PRODUCT
duke@435 748 if (cfg->trace_opto_pipelining()) {
duke@435 749 tty->print_cr("#");
duke@435 750 tty->print_cr("# after schedule_local");
duke@435 751 for (uint i = 0;i < _nodes.size();i++) {
duke@435 752 tty->print("# ");
duke@435 753 _nodes[i]->fast_dump();
duke@435 754 }
duke@435 755 tty->cr();
duke@435 756 }
duke@435 757 #endif
duke@435 758
duke@435 759
duke@435 760 return true;
duke@435 761 }
duke@435 762
duke@435 763 //--------------------------catch_cleanup_fix_all_inputs-----------------------
duke@435 764 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
duke@435 765 for (uint l = 0; l < use->len(); l++) {
duke@435 766 if (use->in(l) == old_def) {
duke@435 767 if (l < use->req()) {
duke@435 768 use->set_req(l, new_def);
duke@435 769 } else {
duke@435 770 use->rm_prec(l);
duke@435 771 use->add_prec(new_def);
duke@435 772 l--;
duke@435 773 }
duke@435 774 }
duke@435 775 }
duke@435 776 }
duke@435 777
duke@435 778 //------------------------------catch_cleanup_find_cloned_def------------------
duke@435 779 static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
duke@435 780 assert( use_blk != def_blk, "Inter-block cleanup only");
duke@435 781
duke@435 782 // The use is some block below the Catch. Find and return the clone of the def
duke@435 783 // that dominates the use. If there is no clone in a dominating block, then
duke@435 784 // create a phi for the def in a dominating block.
duke@435 785
duke@435 786 // Find which successor block dominates this use. The successor
duke@435 787 // blocks must all be single-entry (from the Catch only; I will have
duke@435 788 // split blocks to make this so), hence they all dominate.
duke@435 789 while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
duke@435 790 use_blk = use_blk->_idom;
duke@435 791
duke@435 792 // Find the successor
duke@435 793 Node *fixup = NULL;
duke@435 794
duke@435 795 uint j;
duke@435 796 for( j = 0; j < def_blk->_num_succs; j++ )
duke@435 797 if( use_blk == def_blk->_succs[j] )
duke@435 798 break;
duke@435 799
duke@435 800 if( j == def_blk->_num_succs ) {
duke@435 801 // Block at same level in dom-tree is not a successor. It needs a
duke@435 802 // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
duke@435 803 Node_Array inputs = new Node_List(Thread::current()->resource_area());
duke@435 804 for(uint k = 1; k < use_blk->num_preds(); k++) {
duke@435 805 inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
duke@435 806 }
duke@435 807
duke@435 808 // Check to see if the use_blk already has an identical phi inserted.
duke@435 809 // If it exists, it will be at the first position since all uses of a
duke@435 810 // def are processed together.
duke@435 811 Node *phi = use_blk->_nodes[1];
duke@435 812 if( phi->is_Phi() ) {
duke@435 813 fixup = phi;
duke@435 814 for (uint k = 1; k < use_blk->num_preds(); k++) {
duke@435 815 if (phi->in(k) != inputs[k]) {
duke@435 816 // Not a match
duke@435 817 fixup = NULL;
duke@435 818 break;
duke@435 819 }
duke@435 820 }
duke@435 821 }
duke@435 822
duke@435 823 // If an existing PhiNode was not found, make a new one.
duke@435 824 if (fixup == NULL) {
duke@435 825 Node *new_phi = PhiNode::make(use_blk->head(), def);
duke@435 826 use_blk->_nodes.insert(1, new_phi);
duke@435 827 bbs.map(new_phi->_idx, use_blk);
duke@435 828 for (uint k = 1; k < use_blk->num_preds(); k++) {
duke@435 829 new_phi->set_req(k, inputs[k]);
duke@435 830 }
duke@435 831 fixup = new_phi;
duke@435 832 }
duke@435 833
duke@435 834 } else {
duke@435 835 // Found the use just below the Catch. Make it use the clone.
duke@435 836 fixup = use_blk->_nodes[n_clone_idx];
duke@435 837 }
duke@435 838
duke@435 839 return fixup;
duke@435 840 }
duke@435 841
duke@435 842 //--------------------------catch_cleanup_intra_block--------------------------
duke@435 843 // Fix all input edges in use that reference "def". The use is in the same
duke@435 844 // block as the def and both have been cloned in each successor block.
duke@435 845 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
duke@435 846
duke@435 847 // Both the use and def have been cloned. For each successor block,
duke@435 848 // get the clone of the use, and make its input the clone of the def
duke@435 849 // found in that block.
duke@435 850
duke@435 851 uint use_idx = blk->find_node(use);
duke@435 852 uint offset_idx = use_idx - beg;
duke@435 853 for( uint k = 0; k < blk->_num_succs; k++ ) {
duke@435 854 // Get clone in each successor block
duke@435 855 Block *sb = blk->_succs[k];
duke@435 856 Node *clone = sb->_nodes[offset_idx+1];
duke@435 857 assert( clone->Opcode() == use->Opcode(), "" );
duke@435 858
duke@435 859 // Make use-clone reference the def-clone
duke@435 860 catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
duke@435 861 }
duke@435 862 }
duke@435 863
duke@435 864 //------------------------------catch_cleanup_inter_block---------------------
duke@435 865 // Fix all input edges in use that reference "def". The use is in a different
duke@435 866 // block than the def.
duke@435 867 static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
duke@435 868 if( !use_blk ) return; // Can happen if the use is a precedence edge
duke@435 869
duke@435 870 Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
duke@435 871 catch_cleanup_fix_all_inputs(use, def, new_def);
duke@435 872 }
duke@435 873
duke@435 874 //------------------------------call_catch_cleanup-----------------------------
duke@435 875 // If we inserted any instructions between a Call and his CatchNode,
duke@435 876 // clone the instructions on all paths below the Catch.
duke@435 877 void Block::call_catch_cleanup(Block_Array &bbs) {
duke@435 878
duke@435 879 // End of region to clone
duke@435 880 uint end = end_idx();
duke@435 881 if( !_nodes[end]->is_Catch() ) return;
duke@435 882 // Start of region to clone
duke@435 883 uint beg = end;
duke@435 884 while( _nodes[beg-1]->Opcode() != Op_MachProj ||
duke@435 885 !_nodes[beg-1]->in(0)->is_Call() ) {
duke@435 886 beg--;
duke@435 887 assert(beg > 0,"Catch cleanup walking beyond block boundary");
duke@435 888 }
duke@435 889 // Range of inserted instructions is [beg, end)
duke@435 890 if( beg == end ) return;
duke@435 891
duke@435 892 // Clone along all Catch output paths. Clone area between the 'beg' and
duke@435 893 // 'end' indices.
duke@435 894 for( uint i = 0; i < _num_succs; i++ ) {
duke@435 895 Block *sb = _succs[i];
duke@435 896 // Clone the entire area; ignoring the edge fixup for now.
duke@435 897 for( uint j = end; j > beg; j-- ) {
duke@435 898 Node *clone = _nodes[j-1]->clone();
duke@435 899 sb->_nodes.insert( 1, clone );
duke@435 900 bbs.map(clone->_idx,sb);
duke@435 901 }
duke@435 902 }
duke@435 903
duke@435 904
duke@435 905 // Fixup edges. Check the def-use info per cloned Node
duke@435 906 for(uint i2 = beg; i2 < end; i2++ ) {
duke@435 907 uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
duke@435 908 Node *n = _nodes[i2]; // Node that got cloned
duke@435 909 // Need DU safe iterator because of edge manipulation in calls.
duke@435 910 Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
duke@435 911 for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
duke@435 912 out->push(n->fast_out(j1));
duke@435 913 }
duke@435 914 uint max = out->size();
duke@435 915 for (uint j = 0; j < max; j++) {// For all users
duke@435 916 Node *use = out->pop();
duke@435 917 Block *buse = bbs[use->_idx];
duke@435 918 if( use->is_Phi() ) {
duke@435 919 for( uint k = 1; k < use->req(); k++ )
duke@435 920 if( use->in(k) == n ) {
duke@435 921 Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
duke@435 922 use->set_req(k, fixup);
duke@435 923 }
duke@435 924 } else {
duke@435 925 if (this == buse) {
duke@435 926 catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
duke@435 927 } else {
duke@435 928 catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
duke@435 929 }
duke@435 930 }
duke@435 931 } // End for all users
duke@435 932
duke@435 933 } // End of for all Nodes in cloned area
duke@435 934
duke@435 935 // Remove the now-dead cloned ops
duke@435 936 for(uint i3 = beg; i3 < end; i3++ ) {
duke@435 937 _nodes[beg]->disconnect_inputs(NULL);
duke@435 938 _nodes.remove(beg);
duke@435 939 }
duke@435 940
duke@435 941 // If the successor blocks have a CreateEx node, move it back to the top
duke@435 942 for(uint i4 = 0; i4 < _num_succs; i4++ ) {
duke@435 943 Block *sb = _succs[i4];
duke@435 944 uint new_cnt = end - beg;
duke@435 945 // Remove any newly created, but dead, nodes.
duke@435 946 for( uint j = new_cnt; j > 0; j-- ) {
duke@435 947 Node *n = sb->_nodes[j];
duke@435 948 if (n->outcnt() == 0 &&
duke@435 949 (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
duke@435 950 n->disconnect_inputs(NULL);
duke@435 951 sb->_nodes.remove(j);
duke@435 952 new_cnt--;
duke@435 953 }
duke@435 954 }
duke@435 955 // If any newly created nodes remain, move the CreateEx node to the top
duke@435 956 if (new_cnt > 0) {
duke@435 957 Node *cex = sb->_nodes[1+new_cnt];
duke@435 958 if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
duke@435 959 sb->_nodes.remove(1+new_cnt);
duke@435 960 sb->_nodes.insert(1,cex);
duke@435 961 }
duke@435 962 }
duke@435 963 }
duke@435 964 }

mercurial