src/cpu/x86/vm/stubGenerator_x86_64.cpp

Thu, 19 Mar 2009 09:13:24 -0700

author
kvn
date
Thu, 19 Mar 2009 09:13:24 -0700
changeset 1082
bd441136a5ce
parent 1014
0fbdb4381b99
parent 1079
c517646eef23
child 1106
d0994e5bebce
permissions
-rw-r--r--

Merge

duke@435 1 /*
xdono@1014 2 * Copyright 2003-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_stubGenerator_x86_64.cpp.incl"
duke@435 27
duke@435 28 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 29 // For a more detailed description of the stub routine structure
duke@435 30 // see the comment in stubRoutines.hpp
duke@435 31
duke@435 32 #define __ _masm->
coleenp@548 33 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
never@739 34 #define a__ ((Assembler*)_masm)->
duke@435 35
duke@435 36 #ifdef PRODUCT
duke@435 37 #define BLOCK_COMMENT(str) /* nothing */
duke@435 38 #else
duke@435 39 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 40 #endif
duke@435 41
duke@435 42 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 43 const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions
duke@435 44
duke@435 45 // Stub Code definitions
duke@435 46
duke@435 47 static address handle_unsafe_access() {
duke@435 48 JavaThread* thread = JavaThread::current();
duke@435 49 address pc = thread->saved_exception_pc();
duke@435 50 // pc is the instruction which we must emulate
duke@435 51 // doing a no-op is fine: return garbage from the load
duke@435 52 // therefore, compute npc
duke@435 53 address npc = Assembler::locate_next_instruction(pc);
duke@435 54
duke@435 55 // request an async exception
duke@435 56 thread->set_pending_unsafe_access_error();
duke@435 57
duke@435 58 // return address of next instruction to execute
duke@435 59 return npc;
duke@435 60 }
duke@435 61
duke@435 62 class StubGenerator: public StubCodeGenerator {
duke@435 63 private:
duke@435 64
duke@435 65 #ifdef PRODUCT
duke@435 66 #define inc_counter_np(counter) (0)
duke@435 67 #else
duke@435 68 void inc_counter_np_(int& counter) {
duke@435 69 __ incrementl(ExternalAddress((address)&counter));
duke@435 70 }
duke@435 71 #define inc_counter_np(counter) \
duke@435 72 BLOCK_COMMENT("inc_counter " #counter); \
duke@435 73 inc_counter_np_(counter);
duke@435 74 #endif
duke@435 75
duke@435 76 // Call stubs are used to call Java from C
duke@435 77 //
duke@435 78 // Linux Arguments:
duke@435 79 // c_rarg0: call wrapper address address
duke@435 80 // c_rarg1: result address
duke@435 81 // c_rarg2: result type BasicType
duke@435 82 // c_rarg3: method methodOop
duke@435 83 // c_rarg4: (interpreter) entry point address
duke@435 84 // c_rarg5: parameters intptr_t*
duke@435 85 // 16(rbp): parameter size (in words) int
duke@435 86 // 24(rbp): thread Thread*
duke@435 87 //
duke@435 88 // [ return_from_Java ] <--- rsp
duke@435 89 // [ argument word n ]
duke@435 90 // ...
duke@435 91 // -12 [ argument word 1 ]
duke@435 92 // -11 [ saved r15 ] <--- rsp_after_call
duke@435 93 // -10 [ saved r14 ]
duke@435 94 // -9 [ saved r13 ]
duke@435 95 // -8 [ saved r12 ]
duke@435 96 // -7 [ saved rbx ]
duke@435 97 // -6 [ call wrapper ]
duke@435 98 // -5 [ result ]
duke@435 99 // -4 [ result type ]
duke@435 100 // -3 [ method ]
duke@435 101 // -2 [ entry point ]
duke@435 102 // -1 [ parameters ]
duke@435 103 // 0 [ saved rbp ] <--- rbp
duke@435 104 // 1 [ return address ]
duke@435 105 // 2 [ parameter size ]
duke@435 106 // 3 [ thread ]
duke@435 107 //
duke@435 108 // Windows Arguments:
duke@435 109 // c_rarg0: call wrapper address address
duke@435 110 // c_rarg1: result address
duke@435 111 // c_rarg2: result type BasicType
duke@435 112 // c_rarg3: method methodOop
duke@435 113 // 48(rbp): (interpreter) entry point address
duke@435 114 // 56(rbp): parameters intptr_t*
duke@435 115 // 64(rbp): parameter size (in words) int
duke@435 116 // 72(rbp): thread Thread*
duke@435 117 //
duke@435 118 // [ return_from_Java ] <--- rsp
duke@435 119 // [ argument word n ]
duke@435 120 // ...
duke@435 121 // -8 [ argument word 1 ]
duke@435 122 // -7 [ saved r15 ] <--- rsp_after_call
duke@435 123 // -6 [ saved r14 ]
duke@435 124 // -5 [ saved r13 ]
duke@435 125 // -4 [ saved r12 ]
duke@435 126 // -3 [ saved rdi ]
duke@435 127 // -2 [ saved rsi ]
duke@435 128 // -1 [ saved rbx ]
duke@435 129 // 0 [ saved rbp ] <--- rbp
duke@435 130 // 1 [ return address ]
duke@435 131 // 2 [ call wrapper ]
duke@435 132 // 3 [ result ]
duke@435 133 // 4 [ result type ]
duke@435 134 // 5 [ method ]
duke@435 135 // 6 [ entry point ]
duke@435 136 // 7 [ parameters ]
duke@435 137 // 8 [ parameter size ]
duke@435 138 // 9 [ thread ]
duke@435 139 //
duke@435 140 // Windows reserves the callers stack space for arguments 1-4.
duke@435 141 // We spill c_rarg0-c_rarg3 to this space.
duke@435 142
duke@435 143 // Call stub stack layout word offsets from rbp
duke@435 144 enum call_stub_layout {
duke@435 145 #ifdef _WIN64
duke@435 146 rsp_after_call_off = -7,
duke@435 147 r15_off = rsp_after_call_off,
duke@435 148 r14_off = -6,
duke@435 149 r13_off = -5,
duke@435 150 r12_off = -4,
duke@435 151 rdi_off = -3,
duke@435 152 rsi_off = -2,
duke@435 153 rbx_off = -1,
duke@435 154 rbp_off = 0,
duke@435 155 retaddr_off = 1,
duke@435 156 call_wrapper_off = 2,
duke@435 157 result_off = 3,
duke@435 158 result_type_off = 4,
duke@435 159 method_off = 5,
duke@435 160 entry_point_off = 6,
duke@435 161 parameters_off = 7,
duke@435 162 parameter_size_off = 8,
duke@435 163 thread_off = 9
duke@435 164 #else
duke@435 165 rsp_after_call_off = -12,
duke@435 166 mxcsr_off = rsp_after_call_off,
duke@435 167 r15_off = -11,
duke@435 168 r14_off = -10,
duke@435 169 r13_off = -9,
duke@435 170 r12_off = -8,
duke@435 171 rbx_off = -7,
duke@435 172 call_wrapper_off = -6,
duke@435 173 result_off = -5,
duke@435 174 result_type_off = -4,
duke@435 175 method_off = -3,
duke@435 176 entry_point_off = -2,
duke@435 177 parameters_off = -1,
duke@435 178 rbp_off = 0,
duke@435 179 retaddr_off = 1,
duke@435 180 parameter_size_off = 2,
duke@435 181 thread_off = 3
duke@435 182 #endif
duke@435 183 };
duke@435 184
duke@435 185 address generate_call_stub(address& return_address) {
duke@435 186 assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
duke@435 187 (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
duke@435 188 "adjust this code");
duke@435 189 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 190 address start = __ pc();
duke@435 191
duke@435 192 // same as in generate_catch_exception()!
duke@435 193 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
duke@435 194
duke@435 195 const Address call_wrapper (rbp, call_wrapper_off * wordSize);
duke@435 196 const Address result (rbp, result_off * wordSize);
duke@435 197 const Address result_type (rbp, result_type_off * wordSize);
duke@435 198 const Address method (rbp, method_off * wordSize);
duke@435 199 const Address entry_point (rbp, entry_point_off * wordSize);
duke@435 200 const Address parameters (rbp, parameters_off * wordSize);
duke@435 201 const Address parameter_size(rbp, parameter_size_off * wordSize);
duke@435 202
duke@435 203 // same as in generate_catch_exception()!
duke@435 204 const Address thread (rbp, thread_off * wordSize);
duke@435 205
duke@435 206 const Address r15_save(rbp, r15_off * wordSize);
duke@435 207 const Address r14_save(rbp, r14_off * wordSize);
duke@435 208 const Address r13_save(rbp, r13_off * wordSize);
duke@435 209 const Address r12_save(rbp, r12_off * wordSize);
duke@435 210 const Address rbx_save(rbp, rbx_off * wordSize);
duke@435 211
duke@435 212 // stub code
duke@435 213 __ enter();
never@739 214 __ subptr(rsp, -rsp_after_call_off * wordSize);
duke@435 215
duke@435 216 // save register parameters
duke@435 217 #ifndef _WIN64
never@739 218 __ movptr(parameters, c_rarg5); // parameters
never@739 219 __ movptr(entry_point, c_rarg4); // entry_point
duke@435 220 #endif
duke@435 221
never@739 222 __ movptr(method, c_rarg3); // method
never@739 223 __ movl(result_type, c_rarg2); // result type
never@739 224 __ movptr(result, c_rarg1); // result
never@739 225 __ movptr(call_wrapper, c_rarg0); // call wrapper
duke@435 226
duke@435 227 // save regs belonging to calling function
never@739 228 __ movptr(rbx_save, rbx);
never@739 229 __ movptr(r12_save, r12);
never@739 230 __ movptr(r13_save, r13);
never@739 231 __ movptr(r14_save, r14);
never@739 232 __ movptr(r15_save, r15);
duke@435 233
duke@435 234 #ifdef _WIN64
duke@435 235 const Address rdi_save(rbp, rdi_off * wordSize);
duke@435 236 const Address rsi_save(rbp, rsi_off * wordSize);
duke@435 237
never@739 238 __ movptr(rsi_save, rsi);
never@739 239 __ movptr(rdi_save, rdi);
duke@435 240 #else
duke@435 241 const Address mxcsr_save(rbp, mxcsr_off * wordSize);
duke@435 242 {
duke@435 243 Label skip_ldmx;
duke@435 244 __ stmxcsr(mxcsr_save);
duke@435 245 __ movl(rax, mxcsr_save);
duke@435 246 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
never@739 247 ExternalAddress mxcsr_std(StubRoutines::x86::mxcsr_std());
duke@435 248 __ cmp32(rax, mxcsr_std);
duke@435 249 __ jcc(Assembler::equal, skip_ldmx);
duke@435 250 __ ldmxcsr(mxcsr_std);
duke@435 251 __ bind(skip_ldmx);
duke@435 252 }
duke@435 253 #endif
duke@435 254
duke@435 255 // Load up thread register
never@739 256 __ movptr(r15_thread, thread);
coleenp@548 257 __ reinit_heapbase();
duke@435 258
duke@435 259 #ifdef ASSERT
duke@435 260 // make sure we have no pending exceptions
duke@435 261 {
duke@435 262 Label L;
never@739 263 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 264 __ jcc(Assembler::equal, L);
duke@435 265 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 266 __ bind(L);
duke@435 267 }
duke@435 268 #endif
duke@435 269
duke@435 270 // pass parameters if any
duke@435 271 BLOCK_COMMENT("pass parameters if any");
duke@435 272 Label parameters_done;
duke@435 273 __ movl(c_rarg3, parameter_size);
duke@435 274 __ testl(c_rarg3, c_rarg3);
duke@435 275 __ jcc(Assembler::zero, parameters_done);
duke@435 276
duke@435 277 Label loop;
never@739 278 __ movptr(c_rarg2, parameters); // parameter pointer
never@739 279 __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1
duke@435 280 __ BIND(loop);
duke@435 281 if (TaggedStackInterpreter) {
never@739 282 __ movl(rax, Address(c_rarg2, 0)); // get tag
never@739 283 __ addptr(c_rarg2, wordSize); // advance to next tag
never@739 284 __ push(rax); // pass tag
duke@435 285 }
never@739 286 __ movptr(rax, Address(c_rarg2, 0));// get parameter
never@739 287 __ addptr(c_rarg2, wordSize); // advance to next parameter
never@739 288 __ decrementl(c_rarg1); // decrement counter
never@739 289 __ push(rax); // pass parameter
duke@435 290 __ jcc(Assembler::notZero, loop);
duke@435 291
duke@435 292 // call Java function
duke@435 293 __ BIND(parameters_done);
never@739 294 __ movptr(rbx, method); // get methodOop
never@739 295 __ movptr(c_rarg1, entry_point); // get entry_point
never@739 296 __ mov(r13, rsp); // set sender sp
duke@435 297 BLOCK_COMMENT("call Java function");
duke@435 298 __ call(c_rarg1);
duke@435 299
duke@435 300 BLOCK_COMMENT("call_stub_return_address:");
duke@435 301 return_address = __ pc();
duke@435 302
duke@435 303 // store result depending on type (everything that is not
duke@435 304 // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
never@739 305 __ movptr(c_rarg0, result);
duke@435 306 Label is_long, is_float, is_double, exit;
duke@435 307 __ movl(c_rarg1, result_type);
duke@435 308 __ cmpl(c_rarg1, T_OBJECT);
duke@435 309 __ jcc(Assembler::equal, is_long);
duke@435 310 __ cmpl(c_rarg1, T_LONG);
duke@435 311 __ jcc(Assembler::equal, is_long);
duke@435 312 __ cmpl(c_rarg1, T_FLOAT);
duke@435 313 __ jcc(Assembler::equal, is_float);
duke@435 314 __ cmpl(c_rarg1, T_DOUBLE);
duke@435 315 __ jcc(Assembler::equal, is_double);
duke@435 316
duke@435 317 // handle T_INT case
duke@435 318 __ movl(Address(c_rarg0, 0), rax);
duke@435 319
duke@435 320 __ BIND(exit);
duke@435 321
duke@435 322 // pop parameters
never@739 323 __ lea(rsp, rsp_after_call);
duke@435 324
duke@435 325 #ifdef ASSERT
duke@435 326 // verify that threads correspond
duke@435 327 {
duke@435 328 Label L, S;
never@739 329 __ cmpptr(r15_thread, thread);
duke@435 330 __ jcc(Assembler::notEqual, S);
duke@435 331 __ get_thread(rbx);
never@739 332 __ cmpptr(r15_thread, rbx);
duke@435 333 __ jcc(Assembler::equal, L);
duke@435 334 __ bind(S);
duke@435 335 __ jcc(Assembler::equal, L);
duke@435 336 __ stop("StubRoutines::call_stub: threads must correspond");
duke@435 337 __ bind(L);
duke@435 338 }
duke@435 339 #endif
duke@435 340
duke@435 341 // restore regs belonging to calling function
never@739 342 __ movptr(r15, r15_save);
never@739 343 __ movptr(r14, r14_save);
never@739 344 __ movptr(r13, r13_save);
never@739 345 __ movptr(r12, r12_save);
never@739 346 __ movptr(rbx, rbx_save);
duke@435 347
duke@435 348 #ifdef _WIN64
never@739 349 __ movptr(rdi, rdi_save);
never@739 350 __ movptr(rsi, rsi_save);
duke@435 351 #else
duke@435 352 __ ldmxcsr(mxcsr_save);
duke@435 353 #endif
duke@435 354
duke@435 355 // restore rsp
never@739 356 __ addptr(rsp, -rsp_after_call_off * wordSize);
duke@435 357
duke@435 358 // return
never@739 359 __ pop(rbp);
duke@435 360 __ ret(0);
duke@435 361
duke@435 362 // handle return types different from T_INT
duke@435 363 __ BIND(is_long);
duke@435 364 __ movq(Address(c_rarg0, 0), rax);
duke@435 365 __ jmp(exit);
duke@435 366
duke@435 367 __ BIND(is_float);
duke@435 368 __ movflt(Address(c_rarg0, 0), xmm0);
duke@435 369 __ jmp(exit);
duke@435 370
duke@435 371 __ BIND(is_double);
duke@435 372 __ movdbl(Address(c_rarg0, 0), xmm0);
duke@435 373 __ jmp(exit);
duke@435 374
duke@435 375 return start;
duke@435 376 }
duke@435 377
duke@435 378 // Return point for a Java call if there's an exception thrown in
duke@435 379 // Java code. The exception is caught and transformed into a
duke@435 380 // pending exception stored in JavaThread that can be tested from
duke@435 381 // within the VM.
duke@435 382 //
duke@435 383 // Note: Usually the parameters are removed by the callee. In case
duke@435 384 // of an exception crossing an activation frame boundary, that is
duke@435 385 // not the case if the callee is compiled code => need to setup the
duke@435 386 // rsp.
duke@435 387 //
duke@435 388 // rax: exception oop
duke@435 389
duke@435 390 address generate_catch_exception() {
duke@435 391 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 392 address start = __ pc();
duke@435 393
duke@435 394 // same as in generate_call_stub():
duke@435 395 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
duke@435 396 const Address thread (rbp, thread_off * wordSize);
duke@435 397
duke@435 398 #ifdef ASSERT
duke@435 399 // verify that threads correspond
duke@435 400 {
duke@435 401 Label L, S;
never@739 402 __ cmpptr(r15_thread, thread);
duke@435 403 __ jcc(Assembler::notEqual, S);
duke@435 404 __ get_thread(rbx);
never@739 405 __ cmpptr(r15_thread, rbx);
duke@435 406 __ jcc(Assembler::equal, L);
duke@435 407 __ bind(S);
duke@435 408 __ stop("StubRoutines::catch_exception: threads must correspond");
duke@435 409 __ bind(L);
duke@435 410 }
duke@435 411 #endif
duke@435 412
duke@435 413 // set pending exception
duke@435 414 __ verify_oop(rax);
duke@435 415
never@739 416 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
duke@435 417 __ lea(rscratch1, ExternalAddress((address)__FILE__));
never@739 418 __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
duke@435 419 __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__);
duke@435 420
duke@435 421 // complete return to VM
duke@435 422 assert(StubRoutines::_call_stub_return_address != NULL,
duke@435 423 "_call_stub_return_address must have been generated before");
duke@435 424 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
duke@435 425
duke@435 426 return start;
duke@435 427 }
duke@435 428
duke@435 429 // Continuation point for runtime calls returning with a pending
duke@435 430 // exception. The pending exception check happened in the runtime
duke@435 431 // or native call stub. The pending exception in Thread is
duke@435 432 // converted into a Java-level exception.
duke@435 433 //
duke@435 434 // Contract with Java-level exception handlers:
duke@435 435 // rax: exception
duke@435 436 // rdx: throwing pc
duke@435 437 //
duke@435 438 // NOTE: At entry of this stub, exception-pc must be on stack !!
duke@435 439
duke@435 440 address generate_forward_exception() {
duke@435 441 StubCodeMark mark(this, "StubRoutines", "forward exception");
duke@435 442 address start = __ pc();
duke@435 443
duke@435 444 // Upon entry, the sp points to the return address returning into
duke@435 445 // Java (interpreted or compiled) code; i.e., the return address
duke@435 446 // becomes the throwing pc.
duke@435 447 //
duke@435 448 // Arguments pushed before the runtime call are still on the stack
duke@435 449 // but the exception handler will reset the stack pointer ->
duke@435 450 // ignore them. A potential result in registers can be ignored as
duke@435 451 // well.
duke@435 452
duke@435 453 #ifdef ASSERT
duke@435 454 // make sure this code is only executed if there is a pending exception
duke@435 455 {
duke@435 456 Label L;
never@739 457 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
duke@435 458 __ jcc(Assembler::notEqual, L);
duke@435 459 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 460 __ bind(L);
duke@435 461 }
duke@435 462 #endif
duke@435 463
duke@435 464 // compute exception handler into rbx
never@739 465 __ movptr(c_rarg0, Address(rsp, 0));
duke@435 466 BLOCK_COMMENT("call exception_handler_for_return_address");
duke@435 467 __ call_VM_leaf(CAST_FROM_FN_PTR(address,
duke@435 468 SharedRuntime::exception_handler_for_return_address),
duke@435 469 c_rarg0);
never@739 470 __ mov(rbx, rax);
duke@435 471
duke@435 472 // setup rax & rdx, remove return address & clear pending exception
never@739 473 __ pop(rdx);
never@739 474 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
xlu@947 475 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 476
duke@435 477 #ifdef ASSERT
duke@435 478 // make sure exception is set
duke@435 479 {
duke@435 480 Label L;
never@739 481 __ testptr(rax, rax);
duke@435 482 __ jcc(Assembler::notEqual, L);
duke@435 483 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 484 __ bind(L);
duke@435 485 }
duke@435 486 #endif
duke@435 487
duke@435 488 // continue at exception handler (return address removed)
duke@435 489 // rax: exception
duke@435 490 // rbx: exception handler
duke@435 491 // rdx: throwing pc
duke@435 492 __ verify_oop(rax);
duke@435 493 __ jmp(rbx);
duke@435 494
duke@435 495 return start;
duke@435 496 }
duke@435 497
duke@435 498 // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
duke@435 499 //
duke@435 500 // Arguments :
duke@435 501 // c_rarg0: exchange_value
duke@435 502 // c_rarg0: dest
duke@435 503 //
duke@435 504 // Result:
duke@435 505 // *dest <- ex, return (orig *dest)
duke@435 506 address generate_atomic_xchg() {
duke@435 507 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 508 address start = __ pc();
duke@435 509
duke@435 510 __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
duke@435 511 __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
duke@435 512 __ ret(0);
duke@435 513
duke@435 514 return start;
duke@435 515 }
duke@435 516
duke@435 517 // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
duke@435 518 //
duke@435 519 // Arguments :
duke@435 520 // c_rarg0: exchange_value
duke@435 521 // c_rarg1: dest
duke@435 522 //
duke@435 523 // Result:
duke@435 524 // *dest <- ex, return (orig *dest)
duke@435 525 address generate_atomic_xchg_ptr() {
duke@435 526 StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
duke@435 527 address start = __ pc();
duke@435 528
never@739 529 __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
never@739 530 __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
duke@435 531 __ ret(0);
duke@435 532
duke@435 533 return start;
duke@435 534 }
duke@435 535
duke@435 536 // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
duke@435 537 // jint compare_value)
duke@435 538 //
duke@435 539 // Arguments :
duke@435 540 // c_rarg0: exchange_value
duke@435 541 // c_rarg1: dest
duke@435 542 // c_rarg2: compare_value
duke@435 543 //
duke@435 544 // Result:
duke@435 545 // if ( compare_value == *dest ) {
duke@435 546 // *dest = exchange_value
duke@435 547 // return compare_value;
duke@435 548 // else
duke@435 549 // return *dest;
duke@435 550 address generate_atomic_cmpxchg() {
duke@435 551 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
duke@435 552 address start = __ pc();
duke@435 553
duke@435 554 __ movl(rax, c_rarg2);
duke@435 555 if ( os::is_MP() ) __ lock();
duke@435 556 __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
duke@435 557 __ ret(0);
duke@435 558
duke@435 559 return start;
duke@435 560 }
duke@435 561
duke@435 562 // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
duke@435 563 // volatile jlong* dest,
duke@435 564 // jlong compare_value)
duke@435 565 // Arguments :
duke@435 566 // c_rarg0: exchange_value
duke@435 567 // c_rarg1: dest
duke@435 568 // c_rarg2: compare_value
duke@435 569 //
duke@435 570 // Result:
duke@435 571 // if ( compare_value == *dest ) {
duke@435 572 // *dest = exchange_value
duke@435 573 // return compare_value;
duke@435 574 // else
duke@435 575 // return *dest;
duke@435 576 address generate_atomic_cmpxchg_long() {
duke@435 577 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
duke@435 578 address start = __ pc();
duke@435 579
duke@435 580 __ movq(rax, c_rarg2);
duke@435 581 if ( os::is_MP() ) __ lock();
duke@435 582 __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
duke@435 583 __ ret(0);
duke@435 584
duke@435 585 return start;
duke@435 586 }
duke@435 587
duke@435 588 // Support for jint atomic::add(jint add_value, volatile jint* dest)
duke@435 589 //
duke@435 590 // Arguments :
duke@435 591 // c_rarg0: add_value
duke@435 592 // c_rarg1: dest
duke@435 593 //
duke@435 594 // Result:
duke@435 595 // *dest += add_value
duke@435 596 // return *dest;
duke@435 597 address generate_atomic_add() {
duke@435 598 StubCodeMark mark(this, "StubRoutines", "atomic_add");
duke@435 599 address start = __ pc();
duke@435 600
duke@435 601 __ movl(rax, c_rarg0);
duke@435 602 if ( os::is_MP() ) __ lock();
duke@435 603 __ xaddl(Address(c_rarg1, 0), c_rarg0);
duke@435 604 __ addl(rax, c_rarg0);
duke@435 605 __ ret(0);
duke@435 606
duke@435 607 return start;
duke@435 608 }
duke@435 609
duke@435 610 // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
duke@435 611 //
duke@435 612 // Arguments :
duke@435 613 // c_rarg0: add_value
duke@435 614 // c_rarg1: dest
duke@435 615 //
duke@435 616 // Result:
duke@435 617 // *dest += add_value
duke@435 618 // return *dest;
duke@435 619 address generate_atomic_add_ptr() {
duke@435 620 StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
duke@435 621 address start = __ pc();
duke@435 622
never@739 623 __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
duke@435 624 if ( os::is_MP() ) __ lock();
never@739 625 __ xaddptr(Address(c_rarg1, 0), c_rarg0);
never@739 626 __ addptr(rax, c_rarg0);
duke@435 627 __ ret(0);
duke@435 628
duke@435 629 return start;
duke@435 630 }
duke@435 631
duke@435 632 // Support for intptr_t OrderAccess::fence()
duke@435 633 //
duke@435 634 // Arguments :
duke@435 635 //
duke@435 636 // Result:
duke@435 637 address generate_orderaccess_fence() {
duke@435 638 StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
duke@435 639 address start = __ pc();
duke@435 640 __ mfence();
duke@435 641 __ ret(0);
duke@435 642
duke@435 643 return start;
duke@435 644 }
duke@435 645
duke@435 646 // Support for intptr_t get_previous_fp()
duke@435 647 //
duke@435 648 // This routine is used to find the previous frame pointer for the
duke@435 649 // caller (current_frame_guess). This is used as part of debugging
duke@435 650 // ps() is seemingly lost trying to find frames.
duke@435 651 // This code assumes that caller current_frame_guess) has a frame.
duke@435 652 address generate_get_previous_fp() {
duke@435 653 StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
duke@435 654 const Address old_fp(rbp, 0);
duke@435 655 const Address older_fp(rax, 0);
duke@435 656 address start = __ pc();
duke@435 657
duke@435 658 __ enter();
never@739 659 __ movptr(rax, old_fp); // callers fp
never@739 660 __ movptr(rax, older_fp); // the frame for ps()
never@739 661 __ pop(rbp);
duke@435 662 __ ret(0);
duke@435 663
duke@435 664 return start;
duke@435 665 }
duke@435 666
duke@435 667 //----------------------------------------------------------------------------------------------------
duke@435 668 // Support for void verify_mxcsr()
duke@435 669 //
duke@435 670 // This routine is used with -Xcheck:jni to verify that native
duke@435 671 // JNI code does not return to Java code without restoring the
duke@435 672 // MXCSR register to our expected state.
duke@435 673
duke@435 674 address generate_verify_mxcsr() {
duke@435 675 StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
duke@435 676 address start = __ pc();
duke@435 677
duke@435 678 const Address mxcsr_save(rsp, 0);
duke@435 679
duke@435 680 if (CheckJNICalls) {
duke@435 681 Label ok_ret;
never@739 682 __ push(rax);
never@739 683 __ subptr(rsp, wordSize); // allocate a temp location
duke@435 684 __ stmxcsr(mxcsr_save);
duke@435 685 __ movl(rax, mxcsr_save);
duke@435 686 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
never@739 687 __ cmpl(rax, *(int *)(StubRoutines::x86::mxcsr_std()));
duke@435 688 __ jcc(Assembler::equal, ok_ret);
duke@435 689
duke@435 690 __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
duke@435 691
never@739 692 __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
duke@435 693
duke@435 694 __ bind(ok_ret);
never@739 695 __ addptr(rsp, wordSize);
never@739 696 __ pop(rax);
duke@435 697 }
duke@435 698
duke@435 699 __ ret(0);
duke@435 700
duke@435 701 return start;
duke@435 702 }
duke@435 703
duke@435 704 address generate_f2i_fixup() {
duke@435 705 StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
duke@435 706 Address inout(rsp, 5 * wordSize); // return address + 4 saves
duke@435 707
duke@435 708 address start = __ pc();
duke@435 709
duke@435 710 Label L;
duke@435 711
never@739 712 __ push(rax);
never@739 713 __ push(c_rarg3);
never@739 714 __ push(c_rarg2);
never@739 715 __ push(c_rarg1);
duke@435 716
duke@435 717 __ movl(rax, 0x7f800000);
duke@435 718 __ xorl(c_rarg3, c_rarg3);
duke@435 719 __ movl(c_rarg2, inout);
duke@435 720 __ movl(c_rarg1, c_rarg2);
duke@435 721 __ andl(c_rarg1, 0x7fffffff);
duke@435 722 __ cmpl(rax, c_rarg1); // NaN? -> 0
duke@435 723 __ jcc(Assembler::negative, L);
duke@435 724 __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
duke@435 725 __ movl(c_rarg3, 0x80000000);
duke@435 726 __ movl(rax, 0x7fffffff);
duke@435 727 __ cmovl(Assembler::positive, c_rarg3, rax);
duke@435 728
duke@435 729 __ bind(L);
never@739 730 __ movptr(inout, c_rarg3);
never@739 731
never@739 732 __ pop(c_rarg1);
never@739 733 __ pop(c_rarg2);
never@739 734 __ pop(c_rarg3);
never@739 735 __ pop(rax);
duke@435 736
duke@435 737 __ ret(0);
duke@435 738
duke@435 739 return start;
duke@435 740 }
duke@435 741
duke@435 742 address generate_f2l_fixup() {
duke@435 743 StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
duke@435 744 Address inout(rsp, 5 * wordSize); // return address + 4 saves
duke@435 745 address start = __ pc();
duke@435 746
duke@435 747 Label L;
duke@435 748
never@739 749 __ push(rax);
never@739 750 __ push(c_rarg3);
never@739 751 __ push(c_rarg2);
never@739 752 __ push(c_rarg1);
duke@435 753
duke@435 754 __ movl(rax, 0x7f800000);
duke@435 755 __ xorl(c_rarg3, c_rarg3);
duke@435 756 __ movl(c_rarg2, inout);
duke@435 757 __ movl(c_rarg1, c_rarg2);
duke@435 758 __ andl(c_rarg1, 0x7fffffff);
duke@435 759 __ cmpl(rax, c_rarg1); // NaN? -> 0
duke@435 760 __ jcc(Assembler::negative, L);
duke@435 761 __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
duke@435 762 __ mov64(c_rarg3, 0x8000000000000000);
duke@435 763 __ mov64(rax, 0x7fffffffffffffff);
never@739 764 __ cmov(Assembler::positive, c_rarg3, rax);
duke@435 765
duke@435 766 __ bind(L);
never@739 767 __ movptr(inout, c_rarg3);
never@739 768
never@739 769 __ pop(c_rarg1);
never@739 770 __ pop(c_rarg2);
never@739 771 __ pop(c_rarg3);
never@739 772 __ pop(rax);
duke@435 773
duke@435 774 __ ret(0);
duke@435 775
duke@435 776 return start;
duke@435 777 }
duke@435 778
duke@435 779 address generate_d2i_fixup() {
duke@435 780 StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
duke@435 781 Address inout(rsp, 6 * wordSize); // return address + 5 saves
duke@435 782
duke@435 783 address start = __ pc();
duke@435 784
duke@435 785 Label L;
duke@435 786
never@739 787 __ push(rax);
never@739 788 __ push(c_rarg3);
never@739 789 __ push(c_rarg2);
never@739 790 __ push(c_rarg1);
never@739 791 __ push(c_rarg0);
duke@435 792
duke@435 793 __ movl(rax, 0x7ff00000);
duke@435 794 __ movq(c_rarg2, inout);
duke@435 795 __ movl(c_rarg3, c_rarg2);
never@739 796 __ mov(c_rarg1, c_rarg2);
never@739 797 __ mov(c_rarg0, c_rarg2);
duke@435 798 __ negl(c_rarg3);
never@739 799 __ shrptr(c_rarg1, 0x20);
duke@435 800 __ orl(c_rarg3, c_rarg2);
duke@435 801 __ andl(c_rarg1, 0x7fffffff);
duke@435 802 __ xorl(c_rarg2, c_rarg2);
duke@435 803 __ shrl(c_rarg3, 0x1f);
duke@435 804 __ orl(c_rarg1, c_rarg3);
duke@435 805 __ cmpl(rax, c_rarg1);
duke@435 806 __ jcc(Assembler::negative, L); // NaN -> 0
never@739 807 __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
duke@435 808 __ movl(c_rarg2, 0x80000000);
duke@435 809 __ movl(rax, 0x7fffffff);
never@739 810 __ cmov(Assembler::positive, c_rarg2, rax);
duke@435 811
duke@435 812 __ bind(L);
never@739 813 __ movptr(inout, c_rarg2);
never@739 814
never@739 815 __ pop(c_rarg0);
never@739 816 __ pop(c_rarg1);
never@739 817 __ pop(c_rarg2);
never@739 818 __ pop(c_rarg3);
never@739 819 __ pop(rax);
duke@435 820
duke@435 821 __ ret(0);
duke@435 822
duke@435 823 return start;
duke@435 824 }
duke@435 825
duke@435 826 address generate_d2l_fixup() {
duke@435 827 StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
duke@435 828 Address inout(rsp, 6 * wordSize); // return address + 5 saves
duke@435 829
duke@435 830 address start = __ pc();
duke@435 831
duke@435 832 Label L;
duke@435 833
never@739 834 __ push(rax);
never@739 835 __ push(c_rarg3);
never@739 836 __ push(c_rarg2);
never@739 837 __ push(c_rarg1);
never@739 838 __ push(c_rarg0);
duke@435 839
duke@435 840 __ movl(rax, 0x7ff00000);
duke@435 841 __ movq(c_rarg2, inout);
duke@435 842 __ movl(c_rarg3, c_rarg2);
never@739 843 __ mov(c_rarg1, c_rarg2);
never@739 844 __ mov(c_rarg0, c_rarg2);
duke@435 845 __ negl(c_rarg3);
never@739 846 __ shrptr(c_rarg1, 0x20);
duke@435 847 __ orl(c_rarg3, c_rarg2);
duke@435 848 __ andl(c_rarg1, 0x7fffffff);
duke@435 849 __ xorl(c_rarg2, c_rarg2);
duke@435 850 __ shrl(c_rarg3, 0x1f);
duke@435 851 __ orl(c_rarg1, c_rarg3);
duke@435 852 __ cmpl(rax, c_rarg1);
duke@435 853 __ jcc(Assembler::negative, L); // NaN -> 0
duke@435 854 __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
duke@435 855 __ mov64(c_rarg2, 0x8000000000000000);
duke@435 856 __ mov64(rax, 0x7fffffffffffffff);
duke@435 857 __ cmovq(Assembler::positive, c_rarg2, rax);
duke@435 858
duke@435 859 __ bind(L);
duke@435 860 __ movq(inout, c_rarg2);
duke@435 861
never@739 862 __ pop(c_rarg0);
never@739 863 __ pop(c_rarg1);
never@739 864 __ pop(c_rarg2);
never@739 865 __ pop(c_rarg3);
never@739 866 __ pop(rax);
duke@435 867
duke@435 868 __ ret(0);
duke@435 869
duke@435 870 return start;
duke@435 871 }
duke@435 872
duke@435 873 address generate_fp_mask(const char *stub_name, int64_t mask) {
duke@435 874 StubCodeMark mark(this, "StubRoutines", stub_name);
duke@435 875
duke@435 876 __ align(16);
duke@435 877 address start = __ pc();
duke@435 878
duke@435 879 __ emit_data64( mask, relocInfo::none );
duke@435 880 __ emit_data64( mask, relocInfo::none );
duke@435 881
duke@435 882 return start;
duke@435 883 }
duke@435 884
duke@435 885 // The following routine generates a subroutine to throw an
duke@435 886 // asynchronous UnknownError when an unsafe access gets a fault that
duke@435 887 // could not be reasonably prevented by the programmer. (Example:
duke@435 888 // SIGBUS/OBJERR.)
duke@435 889 address generate_handler_for_unsafe_access() {
duke@435 890 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 891 address start = __ pc();
duke@435 892
never@739 893 __ push(0); // hole for return address-to-be
never@739 894 __ pusha(); // push registers
duke@435 895 Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
duke@435 896
never@739 897 __ subptr(rsp, frame::arg_reg_save_area_bytes);
duke@435 898 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 899 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
never@739 900 __ addptr(rsp, frame::arg_reg_save_area_bytes);
never@739 901
never@739 902 __ movptr(next_pc, rax); // stuff next address
never@739 903 __ popa();
duke@435 904 __ ret(0); // jump to next address
duke@435 905
duke@435 906 return start;
duke@435 907 }
duke@435 908
duke@435 909 // Non-destructive plausibility checks for oops
duke@435 910 //
duke@435 911 // Arguments:
duke@435 912 // all args on stack!
duke@435 913 //
duke@435 914 // Stack after saving c_rarg3:
duke@435 915 // [tos + 0]: saved c_rarg3
duke@435 916 // [tos + 1]: saved c_rarg2
kvn@559 917 // [tos + 2]: saved r12 (several TemplateTable methods use it)
kvn@559 918 // [tos + 3]: saved flags
kvn@559 919 // [tos + 4]: return address
kvn@559 920 // * [tos + 5]: error message (char*)
kvn@559 921 // * [tos + 6]: object to verify (oop)
kvn@559 922 // * [tos + 7]: saved rax - saved by caller and bashed
duke@435 923 // * = popped on exit
duke@435 924 address generate_verify_oop() {
duke@435 925 StubCodeMark mark(this, "StubRoutines", "verify_oop");
duke@435 926 address start = __ pc();
duke@435 927
duke@435 928 Label exit, error;
duke@435 929
never@739 930 __ pushf();
duke@435 931 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
duke@435 932
never@739 933 __ push(r12);
kvn@559 934
duke@435 935 // save c_rarg2 and c_rarg3
never@739 936 __ push(c_rarg2);
never@739 937 __ push(c_rarg3);
duke@435 938
kvn@559 939 enum {
kvn@559 940 // After previous pushes.
kvn@559 941 oop_to_verify = 6 * wordSize,
kvn@559 942 saved_rax = 7 * wordSize,
kvn@559 943
kvn@559 944 // Before the call to MacroAssembler::debug(), see below.
kvn@559 945 return_addr = 16 * wordSize,
kvn@559 946 error_msg = 17 * wordSize
kvn@559 947 };
kvn@559 948
duke@435 949 // get object
never@739 950 __ movptr(rax, Address(rsp, oop_to_verify));
duke@435 951
duke@435 952 // make sure object is 'reasonable'
never@739 953 __ testptr(rax, rax);
duke@435 954 __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
duke@435 955 // Check if the oop is in the right area of memory
never@739 956 __ movptr(c_rarg2, rax);
xlu@947 957 __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
never@739 958 __ andptr(c_rarg2, c_rarg3);
xlu@947 959 __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
never@739 960 __ cmpptr(c_rarg2, c_rarg3);
duke@435 961 __ jcc(Assembler::notZero, error);
duke@435 962
kvn@559 963 // set r12 to heapbase for load_klass()
kvn@559 964 __ reinit_heapbase();
kvn@559 965
duke@435 966 // make sure klass is 'reasonable'
coleenp@548 967 __ load_klass(rax, rax); // get klass
never@739 968 __ testptr(rax, rax);
duke@435 969 __ jcc(Assembler::zero, error); // if klass is NULL it is broken
duke@435 970 // Check if the klass is in the right area of memory
never@739 971 __ mov(c_rarg2, rax);
xlu@947 972 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
never@739 973 __ andptr(c_rarg2, c_rarg3);
xlu@947 974 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
never@739 975 __ cmpptr(c_rarg2, c_rarg3);
duke@435 976 __ jcc(Assembler::notZero, error);
duke@435 977
duke@435 978 // make sure klass' klass is 'reasonable'
coleenp@548 979 __ load_klass(rax, rax);
never@739 980 __ testptr(rax, rax);
duke@435 981 __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
duke@435 982 // Check if the klass' klass is in the right area of memory
xlu@947 983 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
never@739 984 __ andptr(rax, c_rarg3);
xlu@947 985 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
never@739 986 __ cmpptr(rax, c_rarg3);
duke@435 987 __ jcc(Assembler::notZero, error);
duke@435 988
duke@435 989 // return if everything seems ok
duke@435 990 __ bind(exit);
never@739 991 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
never@739 992 __ pop(c_rarg3); // restore c_rarg3
never@739 993 __ pop(c_rarg2); // restore c_rarg2
never@739 994 __ pop(r12); // restore r12
never@739 995 __ popf(); // restore flags
duke@435 996 __ ret(3 * wordSize); // pop caller saved stuff
duke@435 997
duke@435 998 // handle errors
duke@435 999 __ bind(error);
never@739 1000 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
never@739 1001 __ pop(c_rarg3); // get saved c_rarg3 back
never@739 1002 __ pop(c_rarg2); // get saved c_rarg2 back
never@739 1003 __ pop(r12); // get saved r12 back
never@739 1004 __ popf(); // get saved flags off stack --
duke@435 1005 // will be ignored
duke@435 1006
never@739 1007 __ pusha(); // push registers
duke@435 1008 // (rip is already
duke@435 1009 // already pushed)
kvn@559 1010 // debug(char* msg, int64_t pc, int64_t regs[])
duke@435 1011 // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
duke@435 1012 // pushed all the registers, so now the stack looks like:
duke@435 1013 // [tos + 0] 16 saved registers
duke@435 1014 // [tos + 16] return address
kvn@559 1015 // * [tos + 17] error message (char*)
kvn@559 1016 // * [tos + 18] object to verify (oop)
kvn@559 1017 // * [tos + 19] saved rax - saved by caller and bashed
kvn@559 1018 // * = popped on exit
kvn@559 1019
never@739 1020 __ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message
never@739 1021 __ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address
never@739 1022 __ movq(c_rarg2, rsp); // pass address of regs on stack
never@739 1023 __ mov(r12, rsp); // remember rsp
never@739 1024 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
never@739 1025 __ andptr(rsp, -16); // align stack as required by ABI
duke@435 1026 BLOCK_COMMENT("call MacroAssembler::debug");
never@739 1027 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
never@739 1028 __ mov(rsp, r12); // restore rsp
never@739 1029 __ popa(); // pop registers (includes r12)
never@739 1030 __ ret(3 * wordSize); // pop caller saved stuff
duke@435 1031
duke@435 1032 return start;
duke@435 1033 }
duke@435 1034
duke@435 1035 static address disjoint_byte_copy_entry;
duke@435 1036 static address disjoint_short_copy_entry;
duke@435 1037 static address disjoint_int_copy_entry;
duke@435 1038 static address disjoint_long_copy_entry;
duke@435 1039 static address disjoint_oop_copy_entry;
duke@435 1040
duke@435 1041 static address byte_copy_entry;
duke@435 1042 static address short_copy_entry;
duke@435 1043 static address int_copy_entry;
duke@435 1044 static address long_copy_entry;
duke@435 1045 static address oop_copy_entry;
duke@435 1046
duke@435 1047 static address checkcast_copy_entry;
duke@435 1048
duke@435 1049 //
duke@435 1050 // Verify that a register contains clean 32-bits positive value
duke@435 1051 // (high 32-bits are 0) so it could be used in 64-bits shifts.
duke@435 1052 //
duke@435 1053 // Input:
duke@435 1054 // Rint - 32-bits value
duke@435 1055 // Rtmp - scratch
duke@435 1056 //
duke@435 1057 void assert_clean_int(Register Rint, Register Rtmp) {
duke@435 1058 #ifdef ASSERT
duke@435 1059 Label L;
duke@435 1060 assert_different_registers(Rtmp, Rint);
duke@435 1061 __ movslq(Rtmp, Rint);
duke@435 1062 __ cmpq(Rtmp, Rint);
kvn@559 1063 __ jcc(Assembler::equal, L);
duke@435 1064 __ stop("high 32-bits of int value are not 0");
duke@435 1065 __ bind(L);
duke@435 1066 #endif
duke@435 1067 }
duke@435 1068
duke@435 1069 // Generate overlap test for array copy stubs
duke@435 1070 //
duke@435 1071 // Input:
duke@435 1072 // c_rarg0 - from
duke@435 1073 // c_rarg1 - to
duke@435 1074 // c_rarg2 - element count
duke@435 1075 //
duke@435 1076 // Output:
duke@435 1077 // rax - &from[element count - 1]
duke@435 1078 //
duke@435 1079 void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
duke@435 1080 assert(no_overlap_target != NULL, "must be generated");
duke@435 1081 array_overlap_test(no_overlap_target, NULL, sf);
duke@435 1082 }
duke@435 1083 void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
duke@435 1084 array_overlap_test(NULL, &L_no_overlap, sf);
duke@435 1085 }
duke@435 1086 void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
duke@435 1087 const Register from = c_rarg0;
duke@435 1088 const Register to = c_rarg1;
duke@435 1089 const Register count = c_rarg2;
duke@435 1090 const Register end_from = rax;
duke@435 1091
never@739 1092 __ cmpptr(to, from);
never@739 1093 __ lea(end_from, Address(from, count, sf, 0));
duke@435 1094 if (NOLp == NULL) {
duke@435 1095 ExternalAddress no_overlap(no_overlap_target);
duke@435 1096 __ jump_cc(Assembler::belowEqual, no_overlap);
never@739 1097 __ cmpptr(to, end_from);
duke@435 1098 __ jump_cc(Assembler::aboveEqual, no_overlap);
duke@435 1099 } else {
duke@435 1100 __ jcc(Assembler::belowEqual, (*NOLp));
never@739 1101 __ cmpptr(to, end_from);
duke@435 1102 __ jcc(Assembler::aboveEqual, (*NOLp));
duke@435 1103 }
duke@435 1104 }
duke@435 1105
duke@435 1106 // Shuffle first three arg regs on Windows into Linux/Solaris locations.
duke@435 1107 //
duke@435 1108 // Outputs:
duke@435 1109 // rdi - rcx
duke@435 1110 // rsi - rdx
duke@435 1111 // rdx - r8
duke@435 1112 // rcx - r9
duke@435 1113 //
duke@435 1114 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
duke@435 1115 // are non-volatile. r9 and r10 should not be used by the caller.
duke@435 1116 //
duke@435 1117 void setup_arg_regs(int nargs = 3) {
duke@435 1118 const Register saved_rdi = r9;
duke@435 1119 const Register saved_rsi = r10;
duke@435 1120 assert(nargs == 3 || nargs == 4, "else fix");
duke@435 1121 #ifdef _WIN64
duke@435 1122 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
duke@435 1123 "unexpected argument registers");
duke@435 1124 if (nargs >= 4)
never@739 1125 __ mov(rax, r9); // r9 is also saved_rdi
never@739 1126 __ movptr(saved_rdi, rdi);
never@739 1127 __ movptr(saved_rsi, rsi);
never@739 1128 __ mov(rdi, rcx); // c_rarg0
never@739 1129 __ mov(rsi, rdx); // c_rarg1
never@739 1130 __ mov(rdx, r8); // c_rarg2
duke@435 1131 if (nargs >= 4)
never@739 1132 __ mov(rcx, rax); // c_rarg3 (via rax)
duke@435 1133 #else
duke@435 1134 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
duke@435 1135 "unexpected argument registers");
duke@435 1136 #endif
duke@435 1137 }
duke@435 1138
duke@435 1139 void restore_arg_regs() {
duke@435 1140 const Register saved_rdi = r9;
duke@435 1141 const Register saved_rsi = r10;
duke@435 1142 #ifdef _WIN64
never@739 1143 __ movptr(rdi, saved_rdi);
never@739 1144 __ movptr(rsi, saved_rsi);
duke@435 1145 #endif
duke@435 1146 }
duke@435 1147
duke@435 1148 // Generate code for an array write pre barrier
duke@435 1149 //
duke@435 1150 // addr - starting address
duke@435 1151 // count - element count
duke@435 1152 //
duke@435 1153 // Destroy no registers!
duke@435 1154 //
duke@435 1155 void gen_write_ref_array_pre_barrier(Register addr, Register count) {
duke@435 1156 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1157 switch (bs->kind()) {
duke@435 1158 case BarrierSet::G1SATBCT:
duke@435 1159 case BarrierSet::G1SATBCTLogging:
duke@435 1160 {
never@739 1161 __ pusha(); // push registers
ysr@777 1162 if (count == c_rarg0) {
ysr@777 1163 if (addr == c_rarg1) {
ysr@777 1164 // exactly backwards!!
apetrusenko@797 1165 __ xchgptr(c_rarg1, c_rarg0);
ysr@777 1166 } else {
apetrusenko@797 1167 __ movptr(c_rarg1, count);
apetrusenko@797 1168 __ movptr(c_rarg0, addr);
ysr@777 1169 }
ysr@777 1170
ysr@777 1171 } else {
apetrusenko@797 1172 __ movptr(c_rarg0, addr);
apetrusenko@797 1173 __ movptr(c_rarg1, count);
ysr@777 1174 }
ysr@777 1175 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre)));
never@739 1176 __ popa();
duke@435 1177 }
duke@435 1178 break;
duke@435 1179 case BarrierSet::CardTableModRef:
duke@435 1180 case BarrierSet::CardTableExtension:
duke@435 1181 case BarrierSet::ModRef:
duke@435 1182 break;
ysr@777 1183 default:
duke@435 1184 ShouldNotReachHere();
duke@435 1185
duke@435 1186 }
duke@435 1187 }
duke@435 1188
duke@435 1189 //
duke@435 1190 // Generate code for an array write post barrier
duke@435 1191 //
duke@435 1192 // Input:
duke@435 1193 // start - register containing starting address of destination array
duke@435 1194 // end - register containing ending address of destination array
duke@435 1195 // scratch - scratch register
duke@435 1196 //
duke@435 1197 // The input registers are overwritten.
duke@435 1198 // The ending address is inclusive.
duke@435 1199 void gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
duke@435 1200 assert_different_registers(start, end, scratch);
duke@435 1201 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1202 switch (bs->kind()) {
duke@435 1203 case BarrierSet::G1SATBCT:
duke@435 1204 case BarrierSet::G1SATBCTLogging:
duke@435 1205
duke@435 1206 {
never@739 1207 __ pusha(); // push registers (overkill)
duke@435 1208 // must compute element count unless barrier set interface is changed (other platforms supply count)
duke@435 1209 assert_different_registers(start, end, scratch);
never@739 1210 __ lea(scratch, Address(end, wordSize));
never@739 1211 __ subptr(scratch, start);
never@739 1212 __ shrptr(scratch, LogBytesPerWord);
never@739 1213 __ mov(c_rarg0, start);
never@739 1214 __ mov(c_rarg1, scratch);
ysr@777 1215 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post)));
never@739 1216 __ popa();
duke@435 1217 }
duke@435 1218 break;
duke@435 1219 case BarrierSet::CardTableModRef:
duke@435 1220 case BarrierSet::CardTableExtension:
duke@435 1221 {
duke@435 1222 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 1223 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 1224
duke@435 1225 Label L_loop;
duke@435 1226
never@739 1227 __ shrptr(start, CardTableModRefBS::card_shift);
never@739 1228 __ shrptr(end, CardTableModRefBS::card_shift);
never@739 1229 __ subptr(end, start); // number of bytes to copy
duke@435 1230
never@684 1231 intptr_t disp = (intptr_t) ct->byte_map_base;
never@684 1232 if (__ is_simm32(disp)) {
never@684 1233 Address cardtable(noreg, noreg, Address::no_scale, disp);
never@684 1234 __ lea(scratch, cardtable);
never@684 1235 } else {
never@684 1236 ExternalAddress cardtable((address)disp);
never@684 1237 __ lea(scratch, cardtable);
never@684 1238 }
never@684 1239
duke@435 1240 const Register count = end; // 'end' register contains bytes count now
never@739 1241 __ addptr(start, scratch);
duke@435 1242 __ BIND(L_loop);
duke@435 1243 __ movb(Address(start, count, Address::times_1), 0);
never@739 1244 __ decrement(count);
duke@435 1245 __ jcc(Assembler::greaterEqual, L_loop);
duke@435 1246 }
ysr@777 1247 break;
ysr@777 1248 default:
ysr@777 1249 ShouldNotReachHere();
ysr@777 1250
ysr@777 1251 }
ysr@777 1252 }
duke@435 1253
kvn@840 1254
duke@435 1255 // Copy big chunks forward
duke@435 1256 //
duke@435 1257 // Inputs:
duke@435 1258 // end_from - source arrays end address
duke@435 1259 // end_to - destination array end address
duke@435 1260 // qword_count - 64-bits element count, negative
duke@435 1261 // to - scratch
duke@435 1262 // L_copy_32_bytes - entry label
duke@435 1263 // L_copy_8_bytes - exit label
duke@435 1264 //
duke@435 1265 void copy_32_bytes_forward(Register end_from, Register end_to,
duke@435 1266 Register qword_count, Register to,
duke@435 1267 Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
duke@435 1268 DEBUG_ONLY(__ stop("enter at entry label, not here"));
duke@435 1269 Label L_loop;
duke@435 1270 __ align(16);
duke@435 1271 __ BIND(L_loop);
kvn@840 1272 if(UseUnalignedLoadStores) {
kvn@840 1273 __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
kvn@840 1274 __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
kvn@840 1275 __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
kvn@840 1276 __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
kvn@840 1277
kvn@840 1278 } else {
kvn@840 1279 __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
kvn@840 1280 __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
kvn@840 1281 __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
kvn@840 1282 __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
kvn@840 1283 __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
kvn@840 1284 __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
kvn@840 1285 __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
kvn@840 1286 __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
kvn@840 1287 }
duke@435 1288 __ BIND(L_copy_32_bytes);
never@739 1289 __ addptr(qword_count, 4);
duke@435 1290 __ jcc(Assembler::lessEqual, L_loop);
never@739 1291 __ subptr(qword_count, 4);
duke@435 1292 __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
duke@435 1293 }
duke@435 1294
duke@435 1295
duke@435 1296 // Copy big chunks backward
duke@435 1297 //
duke@435 1298 // Inputs:
duke@435 1299 // from - source arrays address
duke@435 1300 // dest - destination array address
duke@435 1301 // qword_count - 64-bits element count
duke@435 1302 // to - scratch
duke@435 1303 // L_copy_32_bytes - entry label
duke@435 1304 // L_copy_8_bytes - exit label
duke@435 1305 //
duke@435 1306 void copy_32_bytes_backward(Register from, Register dest,
duke@435 1307 Register qword_count, Register to,
duke@435 1308 Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
duke@435 1309 DEBUG_ONLY(__ stop("enter at entry label, not here"));
duke@435 1310 Label L_loop;
duke@435 1311 __ align(16);
duke@435 1312 __ BIND(L_loop);
kvn@840 1313 if(UseUnalignedLoadStores) {
kvn@840 1314 __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
kvn@840 1315 __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
kvn@840 1316 __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 0));
kvn@840 1317 __ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm1);
kvn@840 1318
kvn@840 1319 } else {
kvn@840 1320 __ movq(to, Address(from, qword_count, Address::times_8, 24));
kvn@840 1321 __ movq(Address(dest, qword_count, Address::times_8, 24), to);
kvn@840 1322 __ movq(to, Address(from, qword_count, Address::times_8, 16));
kvn@840 1323 __ movq(Address(dest, qword_count, Address::times_8, 16), to);
kvn@840 1324 __ movq(to, Address(from, qword_count, Address::times_8, 8));
kvn@840 1325 __ movq(Address(dest, qword_count, Address::times_8, 8), to);
kvn@840 1326 __ movq(to, Address(from, qword_count, Address::times_8, 0));
kvn@840 1327 __ movq(Address(dest, qword_count, Address::times_8, 0), to);
kvn@840 1328 }
duke@435 1329 __ BIND(L_copy_32_bytes);
never@739 1330 __ subptr(qword_count, 4);
duke@435 1331 __ jcc(Assembler::greaterEqual, L_loop);
never@739 1332 __ addptr(qword_count, 4);
duke@435 1333 __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
duke@435 1334 }
duke@435 1335
duke@435 1336
duke@435 1337 // Arguments:
duke@435 1338 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1339 // ignored
duke@435 1340 // name - stub name string
duke@435 1341 //
duke@435 1342 // Inputs:
duke@435 1343 // c_rarg0 - source array address
duke@435 1344 // c_rarg1 - destination array address
duke@435 1345 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1346 //
duke@435 1347 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
duke@435 1348 // we let the hardware handle it. The one to eight bytes within words,
duke@435 1349 // dwords or qwords that span cache line boundaries will still be loaded
duke@435 1350 // and stored atomically.
duke@435 1351 //
duke@435 1352 // Side Effects:
duke@435 1353 // disjoint_byte_copy_entry is set to the no-overlap entry point
duke@435 1354 // used by generate_conjoint_byte_copy().
duke@435 1355 //
duke@435 1356 address generate_disjoint_byte_copy(bool aligned, const char *name) {
duke@435 1357 __ align(CodeEntryAlignment);
duke@435 1358 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1359 address start = __ pc();
duke@435 1360
duke@435 1361 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
duke@435 1362 Label L_copy_byte, L_exit;
duke@435 1363 const Register from = rdi; // source array address
duke@435 1364 const Register to = rsi; // destination array address
duke@435 1365 const Register count = rdx; // elements count
duke@435 1366 const Register byte_count = rcx;
duke@435 1367 const Register qword_count = count;
duke@435 1368 const Register end_from = from; // source array end address
duke@435 1369 const Register end_to = to; // destination array end address
duke@435 1370 // End pointers are inclusive, and if count is not zero they point
duke@435 1371 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1372
duke@435 1373 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1374 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1375
duke@435 1376 disjoint_byte_copy_entry = __ pc();
duke@435 1377 BLOCK_COMMENT("Entry:");
duke@435 1378 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1379
duke@435 1380 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1381 // r9 and r10 may be used to save non-volatile registers
duke@435 1382
duke@435 1383 // 'from', 'to' and 'count' are now valid
never@739 1384 __ movptr(byte_count, count);
never@739 1385 __ shrptr(count, 3); // count => qword_count
duke@435 1386
duke@435 1387 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1388 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1389 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1390 __ negptr(qword_count); // make the count negative
duke@435 1391 __ jmp(L_copy_32_bytes);
duke@435 1392
duke@435 1393 // Copy trailing qwords
duke@435 1394 __ BIND(L_copy_8_bytes);
duke@435 1395 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1396 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1397 __ increment(qword_count);
duke@435 1398 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1399
duke@435 1400 // Check for and copy trailing dword
duke@435 1401 __ BIND(L_copy_4_bytes);
never@739 1402 __ testl(byte_count, 4);
duke@435 1403 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1404 __ movl(rax, Address(end_from, 8));
duke@435 1405 __ movl(Address(end_to, 8), rax);
duke@435 1406
never@739 1407 __ addptr(end_from, 4);
never@739 1408 __ addptr(end_to, 4);
duke@435 1409
duke@435 1410 // Check for and copy trailing word
duke@435 1411 __ BIND(L_copy_2_bytes);
never@739 1412 __ testl(byte_count, 2);
duke@435 1413 __ jccb(Assembler::zero, L_copy_byte);
duke@435 1414 __ movw(rax, Address(end_from, 8));
duke@435 1415 __ movw(Address(end_to, 8), rax);
duke@435 1416
never@739 1417 __ addptr(end_from, 2);
never@739 1418 __ addptr(end_to, 2);
duke@435 1419
duke@435 1420 // Check for and copy trailing byte
duke@435 1421 __ BIND(L_copy_byte);
never@739 1422 __ testl(byte_count, 1);
duke@435 1423 __ jccb(Assembler::zero, L_exit);
duke@435 1424 __ movb(rax, Address(end_from, 8));
duke@435 1425 __ movb(Address(end_to, 8), rax);
duke@435 1426
duke@435 1427 __ BIND(L_exit);
duke@435 1428 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
duke@435 1429 restore_arg_regs();
never@739 1430 __ xorptr(rax, rax); // return 0
duke@435 1431 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1432 __ ret(0);
duke@435 1433
duke@435 1434 // Copy in 32-bytes chunks
duke@435 1435 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1436 __ jmp(L_copy_4_bytes);
duke@435 1437
duke@435 1438 return start;
duke@435 1439 }
duke@435 1440
duke@435 1441 // Arguments:
duke@435 1442 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1443 // ignored
duke@435 1444 // name - stub name string
duke@435 1445 //
duke@435 1446 // Inputs:
duke@435 1447 // c_rarg0 - source array address
duke@435 1448 // c_rarg1 - destination array address
duke@435 1449 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1450 //
duke@435 1451 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
duke@435 1452 // we let the hardware handle it. The one to eight bytes within words,
duke@435 1453 // dwords or qwords that span cache line boundaries will still be loaded
duke@435 1454 // and stored atomically.
duke@435 1455 //
duke@435 1456 address generate_conjoint_byte_copy(bool aligned, const char *name) {
duke@435 1457 __ align(CodeEntryAlignment);
duke@435 1458 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1459 address start = __ pc();
duke@435 1460
duke@435 1461 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
duke@435 1462 const Register from = rdi; // source array address
duke@435 1463 const Register to = rsi; // destination array address
duke@435 1464 const Register count = rdx; // elements count
duke@435 1465 const Register byte_count = rcx;
duke@435 1466 const Register qword_count = count;
duke@435 1467
duke@435 1468 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1469 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1470
duke@435 1471 byte_copy_entry = __ pc();
duke@435 1472 BLOCK_COMMENT("Entry:");
duke@435 1473 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1474
duke@435 1475 array_overlap_test(disjoint_byte_copy_entry, Address::times_1);
duke@435 1476 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1477 // r9 and r10 may be used to save non-volatile registers
duke@435 1478
duke@435 1479 // 'from', 'to' and 'count' are now valid
never@739 1480 __ movptr(byte_count, count);
never@739 1481 __ shrptr(count, 3); // count => qword_count
duke@435 1482
duke@435 1483 // Copy from high to low addresses.
duke@435 1484
duke@435 1485 // Check for and copy trailing byte
never@739 1486 __ testl(byte_count, 1);
duke@435 1487 __ jcc(Assembler::zero, L_copy_2_bytes);
duke@435 1488 __ movb(rax, Address(from, byte_count, Address::times_1, -1));
duke@435 1489 __ movb(Address(to, byte_count, Address::times_1, -1), rax);
never@739 1490 __ decrement(byte_count); // Adjust for possible trailing word
duke@435 1491
duke@435 1492 // Check for and copy trailing word
duke@435 1493 __ BIND(L_copy_2_bytes);
never@739 1494 __ testl(byte_count, 2);
duke@435 1495 __ jcc(Assembler::zero, L_copy_4_bytes);
duke@435 1496 __ movw(rax, Address(from, byte_count, Address::times_1, -2));
duke@435 1497 __ movw(Address(to, byte_count, Address::times_1, -2), rax);
duke@435 1498
duke@435 1499 // Check for and copy trailing dword
duke@435 1500 __ BIND(L_copy_4_bytes);
never@739 1501 __ testl(byte_count, 4);
duke@435 1502 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1503 __ movl(rax, Address(from, qword_count, Address::times_8));
duke@435 1504 __ movl(Address(to, qword_count, Address::times_8), rax);
duke@435 1505 __ jmp(L_copy_32_bytes);
duke@435 1506
duke@435 1507 // Copy trailing qwords
duke@435 1508 __ BIND(L_copy_8_bytes);
duke@435 1509 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1510 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1511 __ decrement(qword_count);
duke@435 1512 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1513
duke@435 1514 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
duke@435 1515 restore_arg_regs();
never@739 1516 __ xorptr(rax, rax); // return 0
duke@435 1517 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1518 __ ret(0);
duke@435 1519
duke@435 1520 // Copy in 32-bytes chunks
duke@435 1521 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1522
duke@435 1523 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
duke@435 1524 restore_arg_regs();
never@739 1525 __ xorptr(rax, rax); // return 0
duke@435 1526 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1527 __ ret(0);
duke@435 1528
duke@435 1529 return start;
duke@435 1530 }
duke@435 1531
duke@435 1532 // Arguments:
duke@435 1533 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1534 // ignored
duke@435 1535 // name - stub name string
duke@435 1536 //
duke@435 1537 // Inputs:
duke@435 1538 // c_rarg0 - source array address
duke@435 1539 // c_rarg1 - destination array address
duke@435 1540 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1541 //
duke@435 1542 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
duke@435 1543 // let the hardware handle it. The two or four words within dwords
duke@435 1544 // or qwords that span cache line boundaries will still be loaded
duke@435 1545 // and stored atomically.
duke@435 1546 //
duke@435 1547 // Side Effects:
duke@435 1548 // disjoint_short_copy_entry is set to the no-overlap entry point
duke@435 1549 // used by generate_conjoint_short_copy().
duke@435 1550 //
duke@435 1551 address generate_disjoint_short_copy(bool aligned, const char *name) {
duke@435 1552 __ align(CodeEntryAlignment);
duke@435 1553 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1554 address start = __ pc();
duke@435 1555
duke@435 1556 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
duke@435 1557 const Register from = rdi; // source array address
duke@435 1558 const Register to = rsi; // destination array address
duke@435 1559 const Register count = rdx; // elements count
duke@435 1560 const Register word_count = rcx;
duke@435 1561 const Register qword_count = count;
duke@435 1562 const Register end_from = from; // source array end address
duke@435 1563 const Register end_to = to; // destination array end address
duke@435 1564 // End pointers are inclusive, and if count is not zero they point
duke@435 1565 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1566
duke@435 1567 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1568 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1569
duke@435 1570 disjoint_short_copy_entry = __ pc();
duke@435 1571 BLOCK_COMMENT("Entry:");
duke@435 1572 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1573
duke@435 1574 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1575 // r9 and r10 may be used to save non-volatile registers
duke@435 1576
duke@435 1577 // 'from', 'to' and 'count' are now valid
never@739 1578 __ movptr(word_count, count);
never@739 1579 __ shrptr(count, 2); // count => qword_count
duke@435 1580
duke@435 1581 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1582 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1583 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1584 __ negptr(qword_count);
duke@435 1585 __ jmp(L_copy_32_bytes);
duke@435 1586
duke@435 1587 // Copy trailing qwords
duke@435 1588 __ BIND(L_copy_8_bytes);
duke@435 1589 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1590 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1591 __ increment(qword_count);
duke@435 1592 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1593
duke@435 1594 // Original 'dest' is trashed, so we can't use it as a
duke@435 1595 // base register for a possible trailing word copy
duke@435 1596
duke@435 1597 // Check for and copy trailing dword
duke@435 1598 __ BIND(L_copy_4_bytes);
never@739 1599 __ testl(word_count, 2);
duke@435 1600 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1601 __ movl(rax, Address(end_from, 8));
duke@435 1602 __ movl(Address(end_to, 8), rax);
duke@435 1603
never@739 1604 __ addptr(end_from, 4);
never@739 1605 __ addptr(end_to, 4);
duke@435 1606
duke@435 1607 // Check for and copy trailing word
duke@435 1608 __ BIND(L_copy_2_bytes);
never@739 1609 __ testl(word_count, 1);
duke@435 1610 __ jccb(Assembler::zero, L_exit);
duke@435 1611 __ movw(rax, Address(end_from, 8));
duke@435 1612 __ movw(Address(end_to, 8), rax);
duke@435 1613
duke@435 1614 __ BIND(L_exit);
duke@435 1615 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
duke@435 1616 restore_arg_regs();
never@739 1617 __ xorptr(rax, rax); // return 0
duke@435 1618 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1619 __ ret(0);
duke@435 1620
duke@435 1621 // Copy in 32-bytes chunks
duke@435 1622 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1623 __ jmp(L_copy_4_bytes);
duke@435 1624
duke@435 1625 return start;
duke@435 1626 }
duke@435 1627
duke@435 1628 // Arguments:
duke@435 1629 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1630 // ignored
duke@435 1631 // name - stub name string
duke@435 1632 //
duke@435 1633 // Inputs:
duke@435 1634 // c_rarg0 - source array address
duke@435 1635 // c_rarg1 - destination array address
duke@435 1636 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1637 //
duke@435 1638 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
duke@435 1639 // let the hardware handle it. The two or four words within dwords
duke@435 1640 // or qwords that span cache line boundaries will still be loaded
duke@435 1641 // and stored atomically.
duke@435 1642 //
duke@435 1643 address generate_conjoint_short_copy(bool aligned, const char *name) {
duke@435 1644 __ align(CodeEntryAlignment);
duke@435 1645 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1646 address start = __ pc();
duke@435 1647
duke@435 1648 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes;
duke@435 1649 const Register from = rdi; // source array address
duke@435 1650 const Register to = rsi; // destination array address
duke@435 1651 const Register count = rdx; // elements count
duke@435 1652 const Register word_count = rcx;
duke@435 1653 const Register qword_count = count;
duke@435 1654
duke@435 1655 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1656 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1657
duke@435 1658 short_copy_entry = __ pc();
duke@435 1659 BLOCK_COMMENT("Entry:");
duke@435 1660 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1661
duke@435 1662 array_overlap_test(disjoint_short_copy_entry, Address::times_2);
duke@435 1663 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1664 // r9 and r10 may be used to save non-volatile registers
duke@435 1665
duke@435 1666 // 'from', 'to' and 'count' are now valid
never@739 1667 __ movptr(word_count, count);
never@739 1668 __ shrptr(count, 2); // count => qword_count
duke@435 1669
duke@435 1670 // Copy from high to low addresses. Use 'to' as scratch.
duke@435 1671
duke@435 1672 // Check for and copy trailing word
never@739 1673 __ testl(word_count, 1);
duke@435 1674 __ jccb(Assembler::zero, L_copy_4_bytes);
duke@435 1675 __ movw(rax, Address(from, word_count, Address::times_2, -2));
duke@435 1676 __ movw(Address(to, word_count, Address::times_2, -2), rax);
duke@435 1677
duke@435 1678 // Check for and copy trailing dword
duke@435 1679 __ BIND(L_copy_4_bytes);
never@739 1680 __ testl(word_count, 2);
duke@435 1681 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1682 __ movl(rax, Address(from, qword_count, Address::times_8));
duke@435 1683 __ movl(Address(to, qword_count, Address::times_8), rax);
duke@435 1684 __ jmp(L_copy_32_bytes);
duke@435 1685
duke@435 1686 // Copy trailing qwords
duke@435 1687 __ BIND(L_copy_8_bytes);
duke@435 1688 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1689 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1690 __ decrement(qword_count);
duke@435 1691 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1692
duke@435 1693 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
duke@435 1694 restore_arg_regs();
never@739 1695 __ xorptr(rax, rax); // return 0
duke@435 1696 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1697 __ ret(0);
duke@435 1698
duke@435 1699 // Copy in 32-bytes chunks
duke@435 1700 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1701
duke@435 1702 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
duke@435 1703 restore_arg_regs();
never@739 1704 __ xorptr(rax, rax); // return 0
duke@435 1705 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1706 __ ret(0);
duke@435 1707
duke@435 1708 return start;
duke@435 1709 }
duke@435 1710
duke@435 1711 // Arguments:
duke@435 1712 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1713 // ignored
coleenp@548 1714 // is_oop - true => oop array, so generate store check code
duke@435 1715 // name - stub name string
duke@435 1716 //
duke@435 1717 // Inputs:
duke@435 1718 // c_rarg0 - source array address
duke@435 1719 // c_rarg1 - destination array address
duke@435 1720 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1721 //
duke@435 1722 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
duke@435 1723 // the hardware handle it. The two dwords within qwords that span
duke@435 1724 // cache line boundaries will still be loaded and stored atomicly.
duke@435 1725 //
duke@435 1726 // Side Effects:
duke@435 1727 // disjoint_int_copy_entry is set to the no-overlap entry point
coleenp@548 1728 // used by generate_conjoint_int_oop_copy().
duke@435 1729 //
coleenp@548 1730 address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
duke@435 1731 __ align(CodeEntryAlignment);
duke@435 1732 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1733 address start = __ pc();
duke@435 1734
duke@435 1735 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
duke@435 1736 const Register from = rdi; // source array address
duke@435 1737 const Register to = rsi; // destination array address
duke@435 1738 const Register count = rdx; // elements count
duke@435 1739 const Register dword_count = rcx;
duke@435 1740 const Register qword_count = count;
duke@435 1741 const Register end_from = from; // source array end address
duke@435 1742 const Register end_to = to; // destination array end address
coleenp@548 1743 const Register saved_to = r11; // saved destination array address
duke@435 1744 // End pointers are inclusive, and if count is not zero they point
duke@435 1745 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1746
duke@435 1747 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1748 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1749
coleenp@548 1750 (is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry) = __ pc();
coleenp@548 1751
coleenp@548 1752 if (is_oop) {
coleenp@548 1753 // no registers are destroyed by this call
coleenp@548 1754 gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
coleenp@548 1755 }
coleenp@548 1756
duke@435 1757 BLOCK_COMMENT("Entry:");
duke@435 1758 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1759
duke@435 1760 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1761 // r9 and r10 may be used to save non-volatile registers
duke@435 1762
coleenp@548 1763 if (is_oop) {
coleenp@548 1764 __ movq(saved_to, to);
coleenp@548 1765 }
coleenp@548 1766
duke@435 1767 // 'from', 'to' and 'count' are now valid
never@739 1768 __ movptr(dword_count, count);
never@739 1769 __ shrptr(count, 1); // count => qword_count
duke@435 1770
duke@435 1771 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1772 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1773 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1774 __ negptr(qword_count);
duke@435 1775 __ jmp(L_copy_32_bytes);
duke@435 1776
duke@435 1777 // Copy trailing qwords
duke@435 1778 __ BIND(L_copy_8_bytes);
duke@435 1779 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1780 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1781 __ increment(qword_count);
duke@435 1782 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1783
duke@435 1784 // Check for and copy trailing dword
duke@435 1785 __ BIND(L_copy_4_bytes);
never@739 1786 __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
duke@435 1787 __ jccb(Assembler::zero, L_exit);
duke@435 1788 __ movl(rax, Address(end_from, 8));
duke@435 1789 __ movl(Address(end_to, 8), rax);
duke@435 1790
duke@435 1791 __ BIND(L_exit);
coleenp@548 1792 if (is_oop) {
coleenp@548 1793 __ leaq(end_to, Address(saved_to, dword_count, Address::times_4, -4));
coleenp@548 1794 gen_write_ref_array_post_barrier(saved_to, end_to, rax);
coleenp@548 1795 }
duke@435 1796 inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
duke@435 1797 restore_arg_regs();
never@739 1798 __ xorptr(rax, rax); // return 0
duke@435 1799 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1800 __ ret(0);
duke@435 1801
duke@435 1802 // Copy 32-bytes chunks
duke@435 1803 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1804 __ jmp(L_copy_4_bytes);
duke@435 1805
duke@435 1806 return start;
duke@435 1807 }
duke@435 1808
duke@435 1809 // Arguments:
duke@435 1810 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1811 // ignored
coleenp@548 1812 // is_oop - true => oop array, so generate store check code
duke@435 1813 // name - stub name string
duke@435 1814 //
duke@435 1815 // Inputs:
duke@435 1816 // c_rarg0 - source array address
duke@435 1817 // c_rarg1 - destination array address
duke@435 1818 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1819 //
duke@435 1820 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
duke@435 1821 // the hardware handle it. The two dwords within qwords that span
duke@435 1822 // cache line boundaries will still be loaded and stored atomicly.
duke@435 1823 //
coleenp@548 1824 address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
duke@435 1825 __ align(CodeEntryAlignment);
duke@435 1826 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1827 address start = __ pc();
duke@435 1828
coleenp@548 1829 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
duke@435 1830 const Register from = rdi; // source array address
duke@435 1831 const Register to = rsi; // destination array address
duke@435 1832 const Register count = rdx; // elements count
duke@435 1833 const Register dword_count = rcx;
duke@435 1834 const Register qword_count = count;
duke@435 1835
duke@435 1836 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1837 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1838
coleenp@548 1839 if (is_oop) {
coleenp@548 1840 // no registers are destroyed by this call
coleenp@548 1841 gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
coleenp@548 1842 }
coleenp@548 1843
coleenp@548 1844 (is_oop ? oop_copy_entry : int_copy_entry) = __ pc();
duke@435 1845 BLOCK_COMMENT("Entry:");
duke@435 1846 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1847
coleenp@548 1848 array_overlap_test(is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry,
coleenp@548 1849 Address::times_4);
duke@435 1850 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1851 // r9 and r10 may be used to save non-volatile registers
duke@435 1852
coleenp@548 1853 assert_clean_int(count, rax); // Make sure 'count' is clean int.
duke@435 1854 // 'from', 'to' and 'count' are now valid
never@739 1855 __ movptr(dword_count, count);
never@739 1856 __ shrptr(count, 1); // count => qword_count
duke@435 1857
duke@435 1858 // Copy from high to low addresses. Use 'to' as scratch.
duke@435 1859
duke@435 1860 // Check for and copy trailing dword
never@739 1861 __ testl(dword_count, 1);
duke@435 1862 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1863 __ movl(rax, Address(from, dword_count, Address::times_4, -4));
duke@435 1864 __ movl(Address(to, dword_count, Address::times_4, -4), rax);
duke@435 1865 __ jmp(L_copy_32_bytes);
duke@435 1866
duke@435 1867 // Copy trailing qwords
duke@435 1868 __ BIND(L_copy_8_bytes);
duke@435 1869 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1870 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1871 __ decrement(qword_count);
duke@435 1872 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1873
duke@435 1874 inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
coleenp@548 1875 if (is_oop) {
coleenp@548 1876 __ jmp(L_exit);
coleenp@548 1877 }
duke@435 1878 restore_arg_regs();
never@739 1879 __ xorptr(rax, rax); // return 0
duke@435 1880 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1881 __ ret(0);
duke@435 1882
duke@435 1883 // Copy in 32-bytes chunks
duke@435 1884 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1885
coleenp@548 1886 inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
coleenp@548 1887 __ bind(L_exit);
coleenp@548 1888 if (is_oop) {
coleenp@548 1889 Register end_to = rdx;
coleenp@548 1890 __ leaq(end_to, Address(to, dword_count, Address::times_4, -4));
coleenp@548 1891 gen_write_ref_array_post_barrier(to, end_to, rax);
coleenp@548 1892 }
duke@435 1893 restore_arg_regs();
never@739 1894 __ xorptr(rax, rax); // return 0
duke@435 1895 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1896 __ ret(0);
duke@435 1897
duke@435 1898 return start;
duke@435 1899 }
duke@435 1900
duke@435 1901 // Arguments:
duke@435 1902 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
duke@435 1903 // ignored
duke@435 1904 // is_oop - true => oop array, so generate store check code
duke@435 1905 // name - stub name string
duke@435 1906 //
duke@435 1907 // Inputs:
duke@435 1908 // c_rarg0 - source array address
duke@435 1909 // c_rarg1 - destination array address
duke@435 1910 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1911 //
coleenp@548 1912 // Side Effects:
duke@435 1913 // disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
duke@435 1914 // no-overlap entry point used by generate_conjoint_long_oop_copy().
duke@435 1915 //
duke@435 1916 address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
duke@435 1917 __ align(CodeEntryAlignment);
duke@435 1918 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1919 address start = __ pc();
duke@435 1920
duke@435 1921 Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
duke@435 1922 const Register from = rdi; // source array address
duke@435 1923 const Register to = rsi; // destination array address
duke@435 1924 const Register qword_count = rdx; // elements count
duke@435 1925 const Register end_from = from; // source array end address
duke@435 1926 const Register end_to = rcx; // destination array end address
duke@435 1927 const Register saved_to = to;
duke@435 1928 // End pointers are inclusive, and if count is not zero they point
duke@435 1929 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1930
duke@435 1931 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1932 // Save no-overlap entry point for generate_conjoint_long_oop_copy()
duke@435 1933 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1934
duke@435 1935 if (is_oop) {
duke@435 1936 disjoint_oop_copy_entry = __ pc();
duke@435 1937 // no registers are destroyed by this call
duke@435 1938 gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
duke@435 1939 } else {
duke@435 1940 disjoint_long_copy_entry = __ pc();
duke@435 1941 }
duke@435 1942 BLOCK_COMMENT("Entry:");
duke@435 1943 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1944
duke@435 1945 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1946 // r9 and r10 may be used to save non-volatile registers
duke@435 1947
duke@435 1948 // 'from', 'to' and 'qword_count' are now valid
duke@435 1949
duke@435 1950 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1951 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1952 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1953 __ negptr(qword_count);
duke@435 1954 __ jmp(L_copy_32_bytes);
duke@435 1955
duke@435 1956 // Copy trailing qwords
duke@435 1957 __ BIND(L_copy_8_bytes);
duke@435 1958 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1959 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1960 __ increment(qword_count);
duke@435 1961 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1962
duke@435 1963 if (is_oop) {
duke@435 1964 __ jmp(L_exit);
duke@435 1965 } else {
duke@435 1966 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 1967 restore_arg_regs();
never@739 1968 __ xorptr(rax, rax); // return 0
duke@435 1969 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1970 __ ret(0);
duke@435 1971 }
duke@435 1972
duke@435 1973 // Copy 64-byte chunks
duke@435 1974 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1975
duke@435 1976 if (is_oop) {
duke@435 1977 __ BIND(L_exit);
duke@435 1978 gen_write_ref_array_post_barrier(saved_to, end_to, rax);
duke@435 1979 inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
duke@435 1980 } else {
duke@435 1981 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 1982 }
duke@435 1983 restore_arg_regs();
never@739 1984 __ xorptr(rax, rax); // return 0
duke@435 1985 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1986 __ ret(0);
duke@435 1987
duke@435 1988 return start;
duke@435 1989 }
duke@435 1990
duke@435 1991 // Arguments:
duke@435 1992 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
duke@435 1993 // ignored
duke@435 1994 // is_oop - true => oop array, so generate store check code
duke@435 1995 // name - stub name string
duke@435 1996 //
duke@435 1997 // Inputs:
duke@435 1998 // c_rarg0 - source array address
duke@435 1999 // c_rarg1 - destination array address
duke@435 2000 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 2001 //
duke@435 2002 address generate_conjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
duke@435 2003 __ align(CodeEntryAlignment);
duke@435 2004 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2005 address start = __ pc();
duke@435 2006
duke@435 2007 Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
duke@435 2008 const Register from = rdi; // source array address
duke@435 2009 const Register to = rsi; // destination array address
duke@435 2010 const Register qword_count = rdx; // elements count
duke@435 2011 const Register saved_count = rcx;
duke@435 2012
duke@435 2013 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2014 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 2015
duke@435 2016 address disjoint_copy_entry = NULL;
duke@435 2017 if (is_oop) {
coleenp@548 2018 assert(!UseCompressedOops, "shouldn't be called for compressed oops");
duke@435 2019 disjoint_copy_entry = disjoint_oop_copy_entry;
duke@435 2020 oop_copy_entry = __ pc();
coleenp@548 2021 array_overlap_test(disjoint_oop_copy_entry, Address::times_8);
duke@435 2022 } else {
duke@435 2023 disjoint_copy_entry = disjoint_long_copy_entry;
duke@435 2024 long_copy_entry = __ pc();
coleenp@548 2025 array_overlap_test(disjoint_long_copy_entry, Address::times_8);
duke@435 2026 }
duke@435 2027 BLOCK_COMMENT("Entry:");
duke@435 2028 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 2029
duke@435 2030 array_overlap_test(disjoint_copy_entry, Address::times_8);
duke@435 2031 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 2032 // r9 and r10 may be used to save non-volatile registers
duke@435 2033
duke@435 2034 // 'from', 'to' and 'qword_count' are now valid
duke@435 2035
duke@435 2036 if (is_oop) {
duke@435 2037 // Save to and count for store barrier
never@739 2038 __ movptr(saved_count, qword_count);
duke@435 2039 // No registers are destroyed by this call
duke@435 2040 gen_write_ref_array_pre_barrier(to, saved_count);
duke@435 2041 }
duke@435 2042
duke@435 2043 __ jmp(L_copy_32_bytes);
duke@435 2044
duke@435 2045 // Copy trailing qwords
duke@435 2046 __ BIND(L_copy_8_bytes);
duke@435 2047 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 2048 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 2049 __ decrement(qword_count);
duke@435 2050 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 2051
duke@435 2052 if (is_oop) {
duke@435 2053 __ jmp(L_exit);
duke@435 2054 } else {
duke@435 2055 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 2056 restore_arg_regs();
never@739 2057 __ xorptr(rax, rax); // return 0
duke@435 2058 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2059 __ ret(0);
duke@435 2060 }
duke@435 2061
duke@435 2062 // Copy in 32-bytes chunks
duke@435 2063 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 2064
duke@435 2065 if (is_oop) {
duke@435 2066 __ BIND(L_exit);
never@739 2067 __ lea(rcx, Address(to, saved_count, Address::times_8, -8));
duke@435 2068 gen_write_ref_array_post_barrier(to, rcx, rax);
duke@435 2069 inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
duke@435 2070 } else {
duke@435 2071 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 2072 }
duke@435 2073 restore_arg_regs();
never@739 2074 __ xorptr(rax, rax); // return 0
duke@435 2075 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2076 __ ret(0);
duke@435 2077
duke@435 2078 return start;
duke@435 2079 }
duke@435 2080
duke@435 2081
duke@435 2082 // Helper for generating a dynamic type check.
duke@435 2083 // Smashes no registers.
duke@435 2084 void generate_type_check(Register sub_klass,
duke@435 2085 Register super_check_offset,
duke@435 2086 Register super_klass,
duke@435 2087 Label& L_success) {
duke@435 2088 assert_different_registers(sub_klass, super_check_offset, super_klass);
duke@435 2089
duke@435 2090 BLOCK_COMMENT("type_check:");
duke@435 2091
duke@435 2092 Label L_miss;
duke@435 2093
jrose@1079 2094 __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg, &L_success, &L_miss, NULL,
jrose@1079 2095 super_check_offset);
jrose@1079 2096 __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
duke@435 2097
duke@435 2098 // Fall through on failure!
duke@435 2099 __ BIND(L_miss);
duke@435 2100 }
duke@435 2101
duke@435 2102 //
duke@435 2103 // Generate checkcasting array copy stub
duke@435 2104 //
duke@435 2105 // Input:
duke@435 2106 // c_rarg0 - source array address
duke@435 2107 // c_rarg1 - destination array address
duke@435 2108 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 2109 // c_rarg3 - size_t ckoff (super_check_offset)
duke@435 2110 // not Win64
duke@435 2111 // c_rarg4 - oop ckval (super_klass)
duke@435 2112 // Win64
duke@435 2113 // rsp+40 - oop ckval (super_klass)
duke@435 2114 //
duke@435 2115 // Output:
duke@435 2116 // rax == 0 - success
duke@435 2117 // rax == -1^K - failure, where K is partial transfer count
duke@435 2118 //
duke@435 2119 address generate_checkcast_copy(const char *name) {
duke@435 2120
duke@435 2121 Label L_load_element, L_store_element, L_do_card_marks, L_done;
duke@435 2122
duke@435 2123 // Input registers (after setup_arg_regs)
duke@435 2124 const Register from = rdi; // source array address
duke@435 2125 const Register to = rsi; // destination array address
duke@435 2126 const Register length = rdx; // elements count
duke@435 2127 const Register ckoff = rcx; // super_check_offset
duke@435 2128 const Register ckval = r8; // super_klass
duke@435 2129
duke@435 2130 // Registers used as temps (r13, r14 are save-on-entry)
duke@435 2131 const Register end_from = from; // source array end address
duke@435 2132 const Register end_to = r13; // destination array end address
duke@435 2133 const Register count = rdx; // -(count_remaining)
duke@435 2134 const Register r14_length = r14; // saved copy of length
duke@435 2135 // End pointers are inclusive, and if length is not zero they point
duke@435 2136 // to the last unit copied: end_to[0] := end_from[0]
duke@435 2137
duke@435 2138 const Register rax_oop = rax; // actual oop copied
duke@435 2139 const Register r11_klass = r11; // oop._klass
duke@435 2140
duke@435 2141 //---------------------------------------------------------------
duke@435 2142 // Assembler stub will be used for this call to arraycopy
duke@435 2143 // if the two arrays are subtypes of Object[] but the
duke@435 2144 // destination array type is not equal to or a supertype
duke@435 2145 // of the source type. Each element must be separately
duke@435 2146 // checked.
duke@435 2147
duke@435 2148 __ align(CodeEntryAlignment);
duke@435 2149 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2150 address start = __ pc();
duke@435 2151
duke@435 2152 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2153
duke@435 2154 checkcast_copy_entry = __ pc();
duke@435 2155 BLOCK_COMMENT("Entry:");
duke@435 2156
duke@435 2157 #ifdef ASSERT
duke@435 2158 // caller guarantees that the arrays really are different
duke@435 2159 // otherwise, we would have to make conjoint checks
duke@435 2160 { Label L;
coleenp@548 2161 array_overlap_test(L, TIMES_OOP);
duke@435 2162 __ stop("checkcast_copy within a single array");
duke@435 2163 __ bind(L);
duke@435 2164 }
duke@435 2165 #endif //ASSERT
duke@435 2166
duke@435 2167 // allocate spill slots for r13, r14
duke@435 2168 enum {
duke@435 2169 saved_r13_offset,
duke@435 2170 saved_r14_offset,
duke@435 2171 saved_rbp_offset,
duke@435 2172 saved_rip_offset,
duke@435 2173 saved_rarg0_offset
duke@435 2174 };
never@739 2175 __ subptr(rsp, saved_rbp_offset * wordSize);
never@739 2176 __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
never@739 2177 __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
duke@435 2178 setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
duke@435 2179 // ckoff => rcx, ckval => r8
duke@435 2180 // r9 and r10 may be used to save non-volatile registers
duke@435 2181 #ifdef _WIN64
duke@435 2182 // last argument (#4) is on stack on Win64
duke@435 2183 const int ckval_offset = saved_rarg0_offset + 4;
never@739 2184 __ movptr(ckval, Address(rsp, ckval_offset * wordSize));
duke@435 2185 #endif
duke@435 2186
duke@435 2187 // check that int operands are properly extended to size_t
duke@435 2188 assert_clean_int(length, rax);
duke@435 2189 assert_clean_int(ckoff, rax);
duke@435 2190
duke@435 2191 #ifdef ASSERT
duke@435 2192 BLOCK_COMMENT("assert consistent ckoff/ckval");
duke@435 2193 // The ckoff and ckval must be mutually consistent,
duke@435 2194 // even though caller generates both.
duke@435 2195 { Label L;
duke@435 2196 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2197 Klass::super_check_offset_offset_in_bytes());
duke@435 2198 __ cmpl(ckoff, Address(ckval, sco_offset));
duke@435 2199 __ jcc(Assembler::equal, L);
duke@435 2200 __ stop("super_check_offset inconsistent");
duke@435 2201 __ bind(L);
duke@435 2202 }
duke@435 2203 #endif //ASSERT
duke@435 2204
duke@435 2205 // Loop-invariant addresses. They are exclusive end pointers.
coleenp@548 2206 Address end_from_addr(from, length, TIMES_OOP, 0);
coleenp@548 2207 Address end_to_addr(to, length, TIMES_OOP, 0);
duke@435 2208 // Loop-variant addresses. They assume post-incremented count < 0.
coleenp@548 2209 Address from_element_addr(end_from, count, TIMES_OOP, 0);
coleenp@548 2210 Address to_element_addr(end_to, count, TIMES_OOP, 0);
duke@435 2211
duke@435 2212 gen_write_ref_array_pre_barrier(to, count);
duke@435 2213
duke@435 2214 // Copy from low to high addresses, indexed from the end of each array.
never@739 2215 __ lea(end_from, end_from_addr);
never@739 2216 __ lea(end_to, end_to_addr);
never@739 2217 __ movptr(r14_length, length); // save a copy of the length
never@739 2218 assert(length == count, ""); // else fix next line:
never@739 2219 __ negptr(count); // negate and test the length
duke@435 2220 __ jcc(Assembler::notZero, L_load_element);
duke@435 2221
duke@435 2222 // Empty array: Nothing to do.
never@739 2223 __ xorptr(rax, rax); // return 0 on (trivial) success
duke@435 2224 __ jmp(L_done);
duke@435 2225
duke@435 2226 // ======== begin loop ========
duke@435 2227 // (Loop is rotated; its entry is L_load_element.)
duke@435 2228 // Loop control:
duke@435 2229 // for (count = -count; count != 0; count++)
duke@435 2230 // Base pointers src, dst are biased by 8*(count-1),to last element.
duke@435 2231 __ align(16);
duke@435 2232
duke@435 2233 __ BIND(L_store_element);
coleenp@548 2234 __ store_heap_oop(to_element_addr, rax_oop); // store the oop
never@739 2235 __ increment(count); // increment the count toward zero
duke@435 2236 __ jcc(Assembler::zero, L_do_card_marks);
duke@435 2237
duke@435 2238 // ======== loop entry is here ========
duke@435 2239 __ BIND(L_load_element);
coleenp@548 2240 __ load_heap_oop(rax_oop, from_element_addr); // load the oop
never@739 2241 __ testptr(rax_oop, rax_oop);
duke@435 2242 __ jcc(Assembler::zero, L_store_element);
duke@435 2243
coleenp@548 2244 __ load_klass(r11_klass, rax_oop);// query the object klass
duke@435 2245 generate_type_check(r11_klass, ckoff, ckval, L_store_element);
duke@435 2246 // ======== end loop ========
duke@435 2247
duke@435 2248 // It was a real error; we must depend on the caller to finish the job.
duke@435 2249 // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
duke@435 2250 // Emit GC store barriers for the oops we have copied (r14 + rdx),
duke@435 2251 // and report their number to the caller.
duke@435 2252 assert_different_registers(rax, r14_length, count, to, end_to, rcx);
never@739 2253 __ lea(end_to, to_element_addr);
apetrusenko@797 2254 gen_write_ref_array_post_barrier(to, end_to, rscratch1);
never@739 2255 __ movptr(rax, r14_length); // original oops
never@739 2256 __ addptr(rax, count); // K = (original - remaining) oops
never@739 2257 __ notptr(rax); // report (-1^K) to caller
duke@435 2258 __ jmp(L_done);
duke@435 2259
duke@435 2260 // Come here on success only.
duke@435 2261 __ BIND(L_do_card_marks);
never@739 2262 __ addptr(end_to, -wordSize); // make an inclusive end pointer
apetrusenko@797 2263 gen_write_ref_array_post_barrier(to, end_to, rscratch1);
never@739 2264 __ xorptr(rax, rax); // return 0 on success
duke@435 2265
duke@435 2266 // Common exit point (success or failure).
duke@435 2267 __ BIND(L_done);
never@739 2268 __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
never@739 2269 __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
duke@435 2270 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
duke@435 2271 restore_arg_regs();
duke@435 2272 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2273 __ ret(0);
duke@435 2274
duke@435 2275 return start;
duke@435 2276 }
duke@435 2277
duke@435 2278 //
duke@435 2279 // Generate 'unsafe' array copy stub
duke@435 2280 // Though just as safe as the other stubs, it takes an unscaled
duke@435 2281 // size_t argument instead of an element count.
duke@435 2282 //
duke@435 2283 // Input:
duke@435 2284 // c_rarg0 - source array address
duke@435 2285 // c_rarg1 - destination array address
duke@435 2286 // c_rarg2 - byte count, treated as ssize_t, can be zero
duke@435 2287 //
duke@435 2288 // Examines the alignment of the operands and dispatches
duke@435 2289 // to a long, int, short, or byte copy loop.
duke@435 2290 //
duke@435 2291 address generate_unsafe_copy(const char *name) {
duke@435 2292
duke@435 2293 Label L_long_aligned, L_int_aligned, L_short_aligned;
duke@435 2294
duke@435 2295 // Input registers (before setup_arg_regs)
duke@435 2296 const Register from = c_rarg0; // source array address
duke@435 2297 const Register to = c_rarg1; // destination array address
duke@435 2298 const Register size = c_rarg2; // byte count (size_t)
duke@435 2299
duke@435 2300 // Register used as a temp
duke@435 2301 const Register bits = rax; // test copy of low bits
duke@435 2302
duke@435 2303 __ align(CodeEntryAlignment);
duke@435 2304 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2305 address start = __ pc();
duke@435 2306
duke@435 2307 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2308
duke@435 2309 // bump this on entry, not on exit:
duke@435 2310 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
duke@435 2311
never@739 2312 __ mov(bits, from);
never@739 2313 __ orptr(bits, to);
never@739 2314 __ orptr(bits, size);
duke@435 2315
duke@435 2316 __ testb(bits, BytesPerLong-1);
duke@435 2317 __ jccb(Assembler::zero, L_long_aligned);
duke@435 2318
duke@435 2319 __ testb(bits, BytesPerInt-1);
duke@435 2320 __ jccb(Assembler::zero, L_int_aligned);
duke@435 2321
duke@435 2322 __ testb(bits, BytesPerShort-1);
duke@435 2323 __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
duke@435 2324
duke@435 2325 __ BIND(L_short_aligned);
never@739 2326 __ shrptr(size, LogBytesPerShort); // size => short_count
duke@435 2327 __ jump(RuntimeAddress(short_copy_entry));
duke@435 2328
duke@435 2329 __ BIND(L_int_aligned);
never@739 2330 __ shrptr(size, LogBytesPerInt); // size => int_count
duke@435 2331 __ jump(RuntimeAddress(int_copy_entry));
duke@435 2332
duke@435 2333 __ BIND(L_long_aligned);
never@739 2334 __ shrptr(size, LogBytesPerLong); // size => qword_count
duke@435 2335 __ jump(RuntimeAddress(long_copy_entry));
duke@435 2336
duke@435 2337 return start;
duke@435 2338 }
duke@435 2339
duke@435 2340 // Perform range checks on the proposed arraycopy.
duke@435 2341 // Kills temp, but nothing else.
duke@435 2342 // Also, clean the sign bits of src_pos and dst_pos.
duke@435 2343 void arraycopy_range_checks(Register src, // source array oop (c_rarg0)
duke@435 2344 Register src_pos, // source position (c_rarg1)
duke@435 2345 Register dst, // destination array oo (c_rarg2)
duke@435 2346 Register dst_pos, // destination position (c_rarg3)
duke@435 2347 Register length,
duke@435 2348 Register temp,
duke@435 2349 Label& L_failed) {
duke@435 2350 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 2351
duke@435 2352 // if (src_pos + length > arrayOop(src)->length()) FAIL;
duke@435 2353 __ movl(temp, length);
duke@435 2354 __ addl(temp, src_pos); // src_pos + length
duke@435 2355 __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
duke@435 2356 __ jcc(Assembler::above, L_failed);
duke@435 2357
duke@435 2358 // if (dst_pos + length > arrayOop(dst)->length()) FAIL;
duke@435 2359 __ movl(temp, length);
duke@435 2360 __ addl(temp, dst_pos); // dst_pos + length
duke@435 2361 __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
duke@435 2362 __ jcc(Assembler::above, L_failed);
duke@435 2363
duke@435 2364 // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
duke@435 2365 // Move with sign extension can be used since they are positive.
duke@435 2366 __ movslq(src_pos, src_pos);
duke@435 2367 __ movslq(dst_pos, dst_pos);
duke@435 2368
duke@435 2369 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 2370 }
duke@435 2371
duke@435 2372 //
duke@435 2373 // Generate generic array copy stubs
duke@435 2374 //
duke@435 2375 // Input:
duke@435 2376 // c_rarg0 - src oop
duke@435 2377 // c_rarg1 - src_pos (32-bits)
duke@435 2378 // c_rarg2 - dst oop
duke@435 2379 // c_rarg3 - dst_pos (32-bits)
duke@435 2380 // not Win64
duke@435 2381 // c_rarg4 - element count (32-bits)
duke@435 2382 // Win64
duke@435 2383 // rsp+40 - element count (32-bits)
duke@435 2384 //
duke@435 2385 // Output:
duke@435 2386 // rax == 0 - success
duke@435 2387 // rax == -1^K - failure, where K is partial transfer count
duke@435 2388 //
duke@435 2389 address generate_generic_copy(const char *name) {
duke@435 2390
duke@435 2391 Label L_failed, L_failed_0, L_objArray;
duke@435 2392 Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
duke@435 2393
duke@435 2394 // Input registers
duke@435 2395 const Register src = c_rarg0; // source array oop
duke@435 2396 const Register src_pos = c_rarg1; // source position
duke@435 2397 const Register dst = c_rarg2; // destination array oop
duke@435 2398 const Register dst_pos = c_rarg3; // destination position
duke@435 2399 // elements count is on stack on Win64
duke@435 2400 #ifdef _WIN64
duke@435 2401 #define C_RARG4 Address(rsp, 6 * wordSize)
duke@435 2402 #else
duke@435 2403 #define C_RARG4 c_rarg4
duke@435 2404 #endif
duke@435 2405
duke@435 2406 { int modulus = CodeEntryAlignment;
duke@435 2407 int target = modulus - 5; // 5 = sizeof jmp(L_failed)
duke@435 2408 int advance = target - (__ offset() % modulus);
duke@435 2409 if (advance < 0) advance += modulus;
duke@435 2410 if (advance > 0) __ nop(advance);
duke@435 2411 }
duke@435 2412 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2413
duke@435 2414 // Short-hop target to L_failed. Makes for denser prologue code.
duke@435 2415 __ BIND(L_failed_0);
duke@435 2416 __ jmp(L_failed);
duke@435 2417 assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
duke@435 2418
duke@435 2419 __ align(CodeEntryAlignment);
duke@435 2420 address start = __ pc();
duke@435 2421
duke@435 2422 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2423
duke@435 2424 // bump this on entry, not on exit:
duke@435 2425 inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
duke@435 2426
duke@435 2427 //-----------------------------------------------------------------------
duke@435 2428 // Assembler stub will be used for this call to arraycopy
duke@435 2429 // if the following conditions are met:
duke@435 2430 //
duke@435 2431 // (1) src and dst must not be null.
duke@435 2432 // (2) src_pos must not be negative.
duke@435 2433 // (3) dst_pos must not be negative.
duke@435 2434 // (4) length must not be negative.
duke@435 2435 // (5) src klass and dst klass should be the same and not NULL.
duke@435 2436 // (6) src and dst should be arrays.
duke@435 2437 // (7) src_pos + length must not exceed length of src.
duke@435 2438 // (8) dst_pos + length must not exceed length of dst.
duke@435 2439 //
duke@435 2440
duke@435 2441 // if (src == NULL) return -1;
never@739 2442 __ testptr(src, src); // src oop
duke@435 2443 size_t j1off = __ offset();
duke@435 2444 __ jccb(Assembler::zero, L_failed_0);
duke@435 2445
duke@435 2446 // if (src_pos < 0) return -1;
duke@435 2447 __ testl(src_pos, src_pos); // src_pos (32-bits)
duke@435 2448 __ jccb(Assembler::negative, L_failed_0);
duke@435 2449
duke@435 2450 // if (dst == NULL) return -1;
never@739 2451 __ testptr(dst, dst); // dst oop
duke@435 2452 __ jccb(Assembler::zero, L_failed_0);
duke@435 2453
duke@435 2454 // if (dst_pos < 0) return -1;
duke@435 2455 __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
duke@435 2456 size_t j4off = __ offset();
duke@435 2457 __ jccb(Assembler::negative, L_failed_0);
duke@435 2458
duke@435 2459 // The first four tests are very dense code,
duke@435 2460 // but not quite dense enough to put four
duke@435 2461 // jumps in a 16-byte instruction fetch buffer.
duke@435 2462 // That's good, because some branch predicters
duke@435 2463 // do not like jumps so close together.
duke@435 2464 // Make sure of this.
duke@435 2465 guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
duke@435 2466
duke@435 2467 // registers used as temp
duke@435 2468 const Register r11_length = r11; // elements count to copy
duke@435 2469 const Register r10_src_klass = r10; // array klass
coleenp@548 2470 const Register r9_dst_klass = r9; // dest array klass
duke@435 2471
duke@435 2472 // if (length < 0) return -1;
duke@435 2473 __ movl(r11_length, C_RARG4); // length (elements count, 32-bits value)
duke@435 2474 __ testl(r11_length, r11_length);
duke@435 2475 __ jccb(Assembler::negative, L_failed_0);
duke@435 2476
coleenp@548 2477 __ load_klass(r10_src_klass, src);
duke@435 2478 #ifdef ASSERT
duke@435 2479 // assert(src->klass() != NULL);
duke@435 2480 BLOCK_COMMENT("assert klasses not null");
duke@435 2481 { Label L1, L2;
never@739 2482 __ testptr(r10_src_klass, r10_src_klass);
duke@435 2483 __ jcc(Assembler::notZero, L2); // it is broken if klass is NULL
duke@435 2484 __ bind(L1);
duke@435 2485 __ stop("broken null klass");
duke@435 2486 __ bind(L2);
coleenp@548 2487 __ load_klass(r9_dst_klass, dst);
coleenp@548 2488 __ cmpq(r9_dst_klass, 0);
duke@435 2489 __ jcc(Assembler::equal, L1); // this would be broken also
duke@435 2490 BLOCK_COMMENT("assert done");
duke@435 2491 }
duke@435 2492 #endif
duke@435 2493
duke@435 2494 // Load layout helper (32-bits)
duke@435 2495 //
duke@435 2496 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 2497 // 32 30 24 16 8 2 0
duke@435 2498 //
duke@435 2499 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 2500 //
duke@435 2501
duke@435 2502 int lh_offset = klassOopDesc::header_size() * HeapWordSize +
duke@435 2503 Klass::layout_helper_offset_in_bytes();
duke@435 2504
duke@435 2505 const Register rax_lh = rax; // layout helper
duke@435 2506
duke@435 2507 __ movl(rax_lh, Address(r10_src_klass, lh_offset));
duke@435 2508
duke@435 2509 // Handle objArrays completely differently...
duke@435 2510 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
duke@435 2511 __ cmpl(rax_lh, objArray_lh);
duke@435 2512 __ jcc(Assembler::equal, L_objArray);
duke@435 2513
duke@435 2514 // if (src->klass() != dst->klass()) return -1;
coleenp@548 2515 __ load_klass(r9_dst_klass, dst);
coleenp@548 2516 __ cmpq(r10_src_klass, r9_dst_klass);
duke@435 2517 __ jcc(Assembler::notEqual, L_failed);
duke@435 2518
duke@435 2519 // if (!src->is_Array()) return -1;
duke@435 2520 __ cmpl(rax_lh, Klass::_lh_neutral_value);
duke@435 2521 __ jcc(Assembler::greaterEqual, L_failed);
duke@435 2522
duke@435 2523 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 2524 #ifdef ASSERT
duke@435 2525 { Label L;
duke@435 2526 __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
duke@435 2527 __ jcc(Assembler::greaterEqual, L);
duke@435 2528 __ stop("must be a primitive array");
duke@435 2529 __ bind(L);
duke@435 2530 }
duke@435 2531 #endif
duke@435 2532
duke@435 2533 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2534 r10, L_failed);
duke@435 2535
duke@435 2536 // typeArrayKlass
duke@435 2537 //
duke@435 2538 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 2539 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 2540 //
duke@435 2541
duke@435 2542 const Register r10_offset = r10; // array offset
duke@435 2543 const Register rax_elsize = rax_lh; // element size
duke@435 2544
duke@435 2545 __ movl(r10_offset, rax_lh);
duke@435 2546 __ shrl(r10_offset, Klass::_lh_header_size_shift);
never@739 2547 __ andptr(r10_offset, Klass::_lh_header_size_mask); // array_offset
never@739 2548 __ addptr(src, r10_offset); // src array offset
never@739 2549 __ addptr(dst, r10_offset); // dst array offset
duke@435 2550 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 2551 __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
duke@435 2552
duke@435 2553 // next registers should be set before the jump to corresponding stub
duke@435 2554 const Register from = c_rarg0; // source array address
duke@435 2555 const Register to = c_rarg1; // destination array address
duke@435 2556 const Register count = c_rarg2; // elements count
duke@435 2557
duke@435 2558 // 'from', 'to', 'count' registers should be set in such order
duke@435 2559 // since they are the same as 'src', 'src_pos', 'dst'.
duke@435 2560
duke@435 2561 __ BIND(L_copy_bytes);
duke@435 2562 __ cmpl(rax_elsize, 0);
duke@435 2563 __ jccb(Assembler::notEqual, L_copy_shorts);
never@739 2564 __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
never@739 2565 __ lea(to, Address(dst, dst_pos, Address::times_1, 0));// dst_addr
never@739 2566 __ movl2ptr(count, r11_length); // length
duke@435 2567 __ jump(RuntimeAddress(byte_copy_entry));
duke@435 2568
duke@435 2569 __ BIND(L_copy_shorts);
duke@435 2570 __ cmpl(rax_elsize, LogBytesPerShort);
duke@435 2571 __ jccb(Assembler::notEqual, L_copy_ints);
never@739 2572 __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
never@739 2573 __ lea(to, Address(dst, dst_pos, Address::times_2, 0));// dst_addr
never@739 2574 __ movl2ptr(count, r11_length); // length
duke@435 2575 __ jump(RuntimeAddress(short_copy_entry));
duke@435 2576
duke@435 2577 __ BIND(L_copy_ints);
duke@435 2578 __ cmpl(rax_elsize, LogBytesPerInt);
duke@435 2579 __ jccb(Assembler::notEqual, L_copy_longs);
never@739 2580 __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
never@739 2581 __ lea(to, Address(dst, dst_pos, Address::times_4, 0));// dst_addr
never@739 2582 __ movl2ptr(count, r11_length); // length
duke@435 2583 __ jump(RuntimeAddress(int_copy_entry));
duke@435 2584
duke@435 2585 __ BIND(L_copy_longs);
duke@435 2586 #ifdef ASSERT
duke@435 2587 { Label L;
duke@435 2588 __ cmpl(rax_elsize, LogBytesPerLong);
duke@435 2589 __ jcc(Assembler::equal, L);
duke@435 2590 __ stop("must be long copy, but elsize is wrong");
duke@435 2591 __ bind(L);
duke@435 2592 }
duke@435 2593 #endif
never@739 2594 __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
never@739 2595 __ lea(to, Address(dst, dst_pos, Address::times_8, 0));// dst_addr
never@739 2596 __ movl2ptr(count, r11_length); // length
duke@435 2597 __ jump(RuntimeAddress(long_copy_entry));
duke@435 2598
duke@435 2599 // objArrayKlass
duke@435 2600 __ BIND(L_objArray);
duke@435 2601 // live at this point: r10_src_klass, src[_pos], dst[_pos]
duke@435 2602
duke@435 2603 Label L_plain_copy, L_checkcast_copy;
duke@435 2604 // test array classes for subtyping
coleenp@548 2605 __ load_klass(r9_dst_klass, dst);
coleenp@548 2606 __ cmpq(r10_src_klass, r9_dst_klass); // usual case is exact equality
duke@435 2607 __ jcc(Assembler::notEqual, L_checkcast_copy);
duke@435 2608
duke@435 2609 // Identically typed arrays can be copied without element-wise checks.
duke@435 2610 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2611 r10, L_failed);
duke@435 2612
never@739 2613 __ lea(from, Address(src, src_pos, TIMES_OOP,
duke@435 2614 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
never@739 2615 __ lea(to, Address(dst, dst_pos, TIMES_OOP,
never@739 2616 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
never@739 2617 __ movl2ptr(count, r11_length); // length
duke@435 2618 __ BIND(L_plain_copy);
duke@435 2619 __ jump(RuntimeAddress(oop_copy_entry));
duke@435 2620
duke@435 2621 __ BIND(L_checkcast_copy);
duke@435 2622 // live at this point: r10_src_klass, !r11_length
duke@435 2623 {
duke@435 2624 // assert(r11_length == C_RARG4); // will reload from here
duke@435 2625 Register r11_dst_klass = r11;
coleenp@548 2626 __ load_klass(r11_dst_klass, dst);
duke@435 2627
duke@435 2628 // Before looking at dst.length, make sure dst is also an objArray.
duke@435 2629 __ cmpl(Address(r11_dst_klass, lh_offset), objArray_lh);
duke@435 2630 __ jcc(Assembler::notEqual, L_failed);
duke@435 2631
duke@435 2632 // It is safe to examine both src.length and dst.length.
duke@435 2633 #ifndef _WIN64
duke@435 2634 arraycopy_range_checks(src, src_pos, dst, dst_pos, C_RARG4,
duke@435 2635 rax, L_failed);
duke@435 2636 #else
duke@435 2637 __ movl(r11_length, C_RARG4); // reload
duke@435 2638 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2639 rax, L_failed);
coleenp@548 2640 __ load_klass(r11_dst_klass, dst); // reload
duke@435 2641 #endif
duke@435 2642
duke@435 2643 // Marshal the base address arguments now, freeing registers.
never@739 2644 __ lea(from, Address(src, src_pos, TIMES_OOP,
duke@435 2645 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
never@739 2646 __ lea(to, Address(dst, dst_pos, TIMES_OOP,
duke@435 2647 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
duke@435 2648 __ movl(count, C_RARG4); // length (reloaded)
duke@435 2649 Register sco_temp = c_rarg3; // this register is free now
duke@435 2650 assert_different_registers(from, to, count, sco_temp,
duke@435 2651 r11_dst_klass, r10_src_klass);
duke@435 2652 assert_clean_int(count, sco_temp);
duke@435 2653
duke@435 2654 // Generate the type check.
duke@435 2655 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2656 Klass::super_check_offset_offset_in_bytes());
duke@435 2657 __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
duke@435 2658 assert_clean_int(sco_temp, rax);
duke@435 2659 generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
duke@435 2660
duke@435 2661 // Fetch destination element klass from the objArrayKlass header.
duke@435 2662 int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2663 objArrayKlass::element_klass_offset_in_bytes());
never@739 2664 __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
duke@435 2665 __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
duke@435 2666 assert_clean_int(sco_temp, rax);
duke@435 2667
duke@435 2668 // the checkcast_copy loop needs two extra arguments:
duke@435 2669 assert(c_rarg3 == sco_temp, "#3 already in place");
never@739 2670 __ movptr(C_RARG4, r11_dst_klass); // dst.klass.element_klass
duke@435 2671 __ jump(RuntimeAddress(checkcast_copy_entry));
duke@435 2672 }
duke@435 2673
duke@435 2674 __ BIND(L_failed);
never@739 2675 __ xorptr(rax, rax);
never@739 2676 __ notptr(rax); // return -1
duke@435 2677 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2678 __ ret(0);
duke@435 2679
duke@435 2680 return start;
duke@435 2681 }
duke@435 2682
duke@435 2683 #undef length_arg
duke@435 2684
duke@435 2685 void generate_arraycopy_stubs() {
duke@435 2686 // Call the conjoint generation methods immediately after
duke@435 2687 // the disjoint ones so that short branches from the former
duke@435 2688 // to the latter can be generated.
duke@435 2689 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
duke@435 2690 StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
duke@435 2691
duke@435 2692 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
duke@435 2693 StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, "jshort_arraycopy");
duke@435 2694
coleenp@548 2695 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, false, "jint_disjoint_arraycopy");
coleenp@548 2696 StubRoutines::_jint_arraycopy = generate_conjoint_int_oop_copy(false, false, "jint_arraycopy");
duke@435 2697
duke@435 2698 StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, false, "jlong_disjoint_arraycopy");
duke@435 2699 StubRoutines::_jlong_arraycopy = generate_conjoint_long_oop_copy(false, false, "jlong_arraycopy");
duke@435 2700
coleenp@548 2701
coleenp@548 2702 if (UseCompressedOops) {
coleenp@548 2703 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, true, "oop_disjoint_arraycopy");
coleenp@548 2704 StubRoutines::_oop_arraycopy = generate_conjoint_int_oop_copy(false, true, "oop_arraycopy");
coleenp@548 2705 } else {
coleenp@548 2706 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, true, "oop_disjoint_arraycopy");
coleenp@548 2707 StubRoutines::_oop_arraycopy = generate_conjoint_long_oop_copy(false, true, "oop_arraycopy");
coleenp@548 2708 }
duke@435 2709
duke@435 2710 StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
duke@435 2711 StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy");
duke@435 2712 StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy");
duke@435 2713
duke@435 2714 // We don't generate specialized code for HeapWord-aligned source
duke@435 2715 // arrays, so just use the code we've already generated
duke@435 2716 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = StubRoutines::_jbyte_disjoint_arraycopy;
duke@435 2717 StubRoutines::_arrayof_jbyte_arraycopy = StubRoutines::_jbyte_arraycopy;
duke@435 2718
duke@435 2719 StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
duke@435 2720 StubRoutines::_arrayof_jshort_arraycopy = StubRoutines::_jshort_arraycopy;
duke@435 2721
duke@435 2722 StubRoutines::_arrayof_jint_disjoint_arraycopy = StubRoutines::_jint_disjoint_arraycopy;
duke@435 2723 StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
duke@435 2724
duke@435 2725 StubRoutines::_arrayof_jlong_disjoint_arraycopy = StubRoutines::_jlong_disjoint_arraycopy;
duke@435 2726 StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
duke@435 2727
duke@435 2728 StubRoutines::_arrayof_oop_disjoint_arraycopy = StubRoutines::_oop_disjoint_arraycopy;
duke@435 2729 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
duke@435 2730 }
duke@435 2731
duke@435 2732 #undef __
duke@435 2733 #define __ masm->
duke@435 2734
duke@435 2735 // Continuation point for throwing of implicit exceptions that are
duke@435 2736 // not handled in the current activation. Fabricates an exception
duke@435 2737 // oop and initiates normal exception dispatching in this
duke@435 2738 // frame. Since we need to preserve callee-saved values (currently
duke@435 2739 // only for C2, but done for C1 as well) we need a callee-saved oop
duke@435 2740 // map and therefore have to make these stubs into RuntimeStubs
duke@435 2741 // rather than BufferBlobs. If the compiler needs all registers to
duke@435 2742 // be preserved between the fault point and the exception handler
duke@435 2743 // then it must assume responsibility for that in
duke@435 2744 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 2745 // continuation_for_implicit_division_by_zero_exception. All other
duke@435 2746 // implicit exceptions (e.g., NullPointerException or
duke@435 2747 // AbstractMethodError on entry) are either at call sites or
duke@435 2748 // otherwise assume that stack unwinding will be initiated, so
duke@435 2749 // caller saved registers were assumed volatile in the compiler.
duke@435 2750 address generate_throw_exception(const char* name,
duke@435 2751 address runtime_entry,
duke@435 2752 bool restore_saved_exception_pc) {
duke@435 2753 // Information about frame layout at time of blocking runtime call.
duke@435 2754 // Note that we only have to preserve callee-saved registers since
duke@435 2755 // the compilers are responsible for supplying a continuation point
duke@435 2756 // if they expect all registers to be preserved.
duke@435 2757 enum layout {
duke@435 2758 rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
duke@435 2759 rbp_off2,
duke@435 2760 return_off,
duke@435 2761 return_off2,
duke@435 2762 framesize // inclusive of return address
duke@435 2763 };
duke@435 2764
duke@435 2765 int insts_size = 512;
duke@435 2766 int locs_size = 64;
duke@435 2767
duke@435 2768 CodeBuffer code(name, insts_size, locs_size);
duke@435 2769 OopMapSet* oop_maps = new OopMapSet();
duke@435 2770 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 2771
duke@435 2772 address start = __ pc();
duke@435 2773
duke@435 2774 // This is an inlined and slightly modified version of call_VM
duke@435 2775 // which has the ability to fetch the return PC out of
duke@435 2776 // thread-local storage and also sets up last_Java_sp slightly
duke@435 2777 // differently than the real call_VM
duke@435 2778 if (restore_saved_exception_pc) {
never@739 2779 __ movptr(rax,
never@739 2780 Address(r15_thread,
never@739 2781 in_bytes(JavaThread::saved_exception_pc_offset())));
never@739 2782 __ push(rax);
duke@435 2783 }
duke@435 2784
duke@435 2785 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2786
duke@435 2787 assert(is_even(framesize/2), "sp not 16-byte aligned");
duke@435 2788
duke@435 2789 // return address and rbp are already in place
never@739 2790 __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
duke@435 2791
duke@435 2792 int frame_complete = __ pc() - start;
duke@435 2793
duke@435 2794 // Set up last_Java_sp and last_Java_fp
duke@435 2795 __ set_last_Java_frame(rsp, rbp, NULL);
duke@435 2796
duke@435 2797 // Call runtime
never@739 2798 __ movptr(c_rarg0, r15_thread);
duke@435 2799 BLOCK_COMMENT("call runtime_entry");
duke@435 2800 __ call(RuntimeAddress(runtime_entry));
duke@435 2801
duke@435 2802 // Generate oop map
duke@435 2803 OopMap* map = new OopMap(framesize, 0);
duke@435 2804
duke@435 2805 oop_maps->add_gc_map(__ pc() - start, map);
duke@435 2806
duke@435 2807 __ reset_last_Java_frame(true, false);
duke@435 2808
duke@435 2809 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2810
duke@435 2811 // check for pending exceptions
duke@435 2812 #ifdef ASSERT
duke@435 2813 Label L;
never@739 2814 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
never@739 2815 (int32_t) NULL_WORD);
duke@435 2816 __ jcc(Assembler::notEqual, L);
duke@435 2817 __ should_not_reach_here();
duke@435 2818 __ bind(L);
duke@435 2819 #endif // ASSERT
duke@435 2820 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 2821
duke@435 2822
duke@435 2823 // codeBlob framesize is in words (not VMRegImpl::slot_size)
duke@435 2824 RuntimeStub* stub =
duke@435 2825 RuntimeStub::new_runtime_stub(name,
duke@435 2826 &code,
duke@435 2827 frame_complete,
duke@435 2828 (framesize >> (LogBytesPerWord - LogBytesPerInt)),
duke@435 2829 oop_maps, false);
duke@435 2830 return stub->entry_point();
duke@435 2831 }
duke@435 2832
duke@435 2833 // Initialization
duke@435 2834 void generate_initial() {
duke@435 2835 // Generates all stubs and initializes the entry points
duke@435 2836
duke@435 2837 // This platform-specific stub is needed by generate_call_stub()
never@739 2838 StubRoutines::x86::_mxcsr_std = generate_fp_mask("mxcsr_std", 0x0000000000001F80);
duke@435 2839
duke@435 2840 // entry points that exist in all platforms Note: This is code
duke@435 2841 // that could be shared among different platforms - however the
duke@435 2842 // benefit seems to be smaller than the disadvantage of having a
duke@435 2843 // much more complicated generator structure. See also comment in
duke@435 2844 // stubRoutines.hpp.
duke@435 2845
duke@435 2846 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 2847
duke@435 2848 StubRoutines::_call_stub_entry =
duke@435 2849 generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 2850
duke@435 2851 // is referenced by megamorphic call
duke@435 2852 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 2853
duke@435 2854 // atomic calls
duke@435 2855 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 2856 StubRoutines::_atomic_xchg_ptr_entry = generate_atomic_xchg_ptr();
duke@435 2857 StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
duke@435 2858 StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
duke@435 2859 StubRoutines::_atomic_add_entry = generate_atomic_add();
duke@435 2860 StubRoutines::_atomic_add_ptr_entry = generate_atomic_add_ptr();
duke@435 2861 StubRoutines::_fence_entry = generate_orderaccess_fence();
duke@435 2862
duke@435 2863 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 2864 generate_handler_for_unsafe_access();
duke@435 2865
duke@435 2866 // platform dependent
never@739 2867 StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
never@739 2868
never@739 2869 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr();
duke@435 2870 }
duke@435 2871
duke@435 2872 void generate_all() {
duke@435 2873 // Generates all stubs and initializes the entry points
duke@435 2874
duke@435 2875 // These entry points require SharedInfo::stack0 to be set up in
duke@435 2876 // non-core builds and need to be relocatable, so they each
duke@435 2877 // fabricate a RuntimeStub internally.
duke@435 2878 StubRoutines::_throw_AbstractMethodError_entry =
duke@435 2879 generate_throw_exception("AbstractMethodError throw_exception",
duke@435 2880 CAST_FROM_FN_PTR(address,
duke@435 2881 SharedRuntime::
duke@435 2882 throw_AbstractMethodError),
duke@435 2883 false);
duke@435 2884
dcubed@451 2885 StubRoutines::_throw_IncompatibleClassChangeError_entry =
dcubed@451 2886 generate_throw_exception("IncompatibleClassChangeError throw_exception",
dcubed@451 2887 CAST_FROM_FN_PTR(address,
dcubed@451 2888 SharedRuntime::
dcubed@451 2889 throw_IncompatibleClassChangeError),
dcubed@451 2890 false);
dcubed@451 2891
duke@435 2892 StubRoutines::_throw_ArithmeticException_entry =
duke@435 2893 generate_throw_exception("ArithmeticException throw_exception",
duke@435 2894 CAST_FROM_FN_PTR(address,
duke@435 2895 SharedRuntime::
duke@435 2896 throw_ArithmeticException),
duke@435 2897 true);
duke@435 2898
duke@435 2899 StubRoutines::_throw_NullPointerException_entry =
duke@435 2900 generate_throw_exception("NullPointerException throw_exception",
duke@435 2901 CAST_FROM_FN_PTR(address,
duke@435 2902 SharedRuntime::
duke@435 2903 throw_NullPointerException),
duke@435 2904 true);
duke@435 2905
duke@435 2906 StubRoutines::_throw_NullPointerException_at_call_entry =
duke@435 2907 generate_throw_exception("NullPointerException at call throw_exception",
duke@435 2908 CAST_FROM_FN_PTR(address,
duke@435 2909 SharedRuntime::
duke@435 2910 throw_NullPointerException_at_call),
duke@435 2911 false);
duke@435 2912
duke@435 2913 StubRoutines::_throw_StackOverflowError_entry =
duke@435 2914 generate_throw_exception("StackOverflowError throw_exception",
duke@435 2915 CAST_FROM_FN_PTR(address,
duke@435 2916 SharedRuntime::
duke@435 2917 throw_StackOverflowError),
duke@435 2918 false);
duke@435 2919
duke@435 2920 // entry points that are platform specific
never@739 2921 StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
never@739 2922 StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
never@739 2923 StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
never@739 2924 StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
never@739 2925
never@739 2926 StubRoutines::x86::_float_sign_mask = generate_fp_mask("float_sign_mask", 0x7FFFFFFF7FFFFFFF);
never@739 2927 StubRoutines::x86::_float_sign_flip = generate_fp_mask("float_sign_flip", 0x8000000080000000);
never@739 2928 StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
never@739 2929 StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
duke@435 2930
duke@435 2931 // support for verify_oop (must happen after universe_init)
duke@435 2932 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
duke@435 2933
duke@435 2934 // arraycopy stubs used by compilers
duke@435 2935 generate_arraycopy_stubs();
duke@435 2936 }
duke@435 2937
duke@435 2938 public:
duke@435 2939 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 2940 if (all) {
duke@435 2941 generate_all();
duke@435 2942 } else {
duke@435 2943 generate_initial();
duke@435 2944 }
duke@435 2945 }
duke@435 2946 }; // end class declaration
duke@435 2947
duke@435 2948 address StubGenerator::disjoint_byte_copy_entry = NULL;
duke@435 2949 address StubGenerator::disjoint_short_copy_entry = NULL;
duke@435 2950 address StubGenerator::disjoint_int_copy_entry = NULL;
duke@435 2951 address StubGenerator::disjoint_long_copy_entry = NULL;
duke@435 2952 address StubGenerator::disjoint_oop_copy_entry = NULL;
duke@435 2953
duke@435 2954 address StubGenerator::byte_copy_entry = NULL;
duke@435 2955 address StubGenerator::short_copy_entry = NULL;
duke@435 2956 address StubGenerator::int_copy_entry = NULL;
duke@435 2957 address StubGenerator::long_copy_entry = NULL;
duke@435 2958 address StubGenerator::oop_copy_entry = NULL;
duke@435 2959
duke@435 2960 address StubGenerator::checkcast_copy_entry = NULL;
duke@435 2961
duke@435 2962 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 2963 StubGenerator g(code, all);
duke@435 2964 }

mercurial