src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Sun, 13 Apr 2008 17:43:42 -0400

author
coleenp
date
Sun, 13 Apr 2008 17:43:42 -0400
changeset 548
ba764ed4b6f2
parent 464
d5fc211aea19
child 631
d1605aabd0a1
permissions
-rw-r--r--

6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
Summary: Compressed oops in instances, arrays, and headers. Code contributors are coleenp, phh, never, swamyv
Reviewed-by: jmasa, kamg, acorn, tbell, kvn, rasbold

duke@435 1 /*
duke@435 2 * Copyright 2000-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_c1_LIRAssembler_x86.cpp.incl"
duke@435 27
duke@435 28
duke@435 29 // These masks are used to provide 128-bit aligned bitmasks to the XMM
duke@435 30 // instructions, to allow sign-masking or sign-bit flipping. They allow
duke@435 31 // fast versions of NegF/NegD and AbsF/AbsD.
duke@435 32
duke@435 33 // Note: 'double' and 'long long' have 32-bits alignment on x86.
duke@435 34 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
duke@435 35 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
duke@435 36 // of 128-bits operands for SSE instructions.
duke@435 37 jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
duke@435 38 // Store the value to a 128-bits operand.
duke@435 39 operand[0] = lo;
duke@435 40 operand[1] = hi;
duke@435 41 return operand;
duke@435 42 }
duke@435 43
duke@435 44 // Buffer for 128-bits masks used by SSE instructions.
duke@435 45 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
duke@435 46
duke@435 47 // Static initialization during VM startup.
duke@435 48 static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
duke@435 49 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
duke@435 50 static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
duke@435 51 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
duke@435 52
duke@435 53
duke@435 54
duke@435 55 NEEDS_CLEANUP // remove this definitions ?
duke@435 56 const Register IC_Klass = rax; // where the IC klass is cached
duke@435 57 const Register SYNC_header = rax; // synchronization header
duke@435 58 const Register SHIFT_count = rcx; // where count for shift operations must be
duke@435 59
duke@435 60 #define __ _masm->
duke@435 61
duke@435 62
duke@435 63 static void select_different_registers(Register preserve,
duke@435 64 Register extra,
duke@435 65 Register &tmp1,
duke@435 66 Register &tmp2) {
duke@435 67 if (tmp1 == preserve) {
duke@435 68 assert_different_registers(tmp1, tmp2, extra);
duke@435 69 tmp1 = extra;
duke@435 70 } else if (tmp2 == preserve) {
duke@435 71 assert_different_registers(tmp1, tmp2, extra);
duke@435 72 tmp2 = extra;
duke@435 73 }
duke@435 74 assert_different_registers(preserve, tmp1, tmp2);
duke@435 75 }
duke@435 76
duke@435 77
duke@435 78
duke@435 79 static void select_different_registers(Register preserve,
duke@435 80 Register extra,
duke@435 81 Register &tmp1,
duke@435 82 Register &tmp2,
duke@435 83 Register &tmp3) {
duke@435 84 if (tmp1 == preserve) {
duke@435 85 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 86 tmp1 = extra;
duke@435 87 } else if (tmp2 == preserve) {
duke@435 88 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 89 tmp2 = extra;
duke@435 90 } else if (tmp3 == preserve) {
duke@435 91 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 92 tmp3 = extra;
duke@435 93 }
duke@435 94 assert_different_registers(preserve, tmp1, tmp2, tmp3);
duke@435 95 }
duke@435 96
duke@435 97
duke@435 98
duke@435 99 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
duke@435 100 if (opr->is_constant()) {
duke@435 101 LIR_Const* constant = opr->as_constant_ptr();
duke@435 102 switch (constant->type()) {
duke@435 103 case T_INT: {
duke@435 104 return true;
duke@435 105 }
duke@435 106
duke@435 107 default:
duke@435 108 return false;
duke@435 109 }
duke@435 110 }
duke@435 111 return false;
duke@435 112 }
duke@435 113
duke@435 114
duke@435 115 LIR_Opr LIR_Assembler::receiverOpr() {
duke@435 116 return FrameMap::rcx_oop_opr;
duke@435 117 }
duke@435 118
duke@435 119 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
duke@435 120 return receiverOpr();
duke@435 121 }
duke@435 122
duke@435 123 LIR_Opr LIR_Assembler::osrBufferPointer() {
duke@435 124 return FrameMap::rcx_opr;
duke@435 125 }
duke@435 126
duke@435 127 //--------------fpu register translations-----------------------
duke@435 128
duke@435 129
duke@435 130 address LIR_Assembler::float_constant(float f) {
duke@435 131 address const_addr = __ float_constant(f);
duke@435 132 if (const_addr == NULL) {
duke@435 133 bailout("const section overflow");
duke@435 134 return __ code()->consts()->start();
duke@435 135 } else {
duke@435 136 return const_addr;
duke@435 137 }
duke@435 138 }
duke@435 139
duke@435 140
duke@435 141 address LIR_Assembler::double_constant(double d) {
duke@435 142 address const_addr = __ double_constant(d);
duke@435 143 if (const_addr == NULL) {
duke@435 144 bailout("const section overflow");
duke@435 145 return __ code()->consts()->start();
duke@435 146 } else {
duke@435 147 return const_addr;
duke@435 148 }
duke@435 149 }
duke@435 150
duke@435 151
duke@435 152 void LIR_Assembler::set_24bit_FPU() {
duke@435 153 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
duke@435 154 }
duke@435 155
duke@435 156 void LIR_Assembler::reset_FPU() {
duke@435 157 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 158 }
duke@435 159
duke@435 160 void LIR_Assembler::fpop() {
duke@435 161 __ fpop();
duke@435 162 }
duke@435 163
duke@435 164 void LIR_Assembler::fxch(int i) {
duke@435 165 __ fxch(i);
duke@435 166 }
duke@435 167
duke@435 168 void LIR_Assembler::fld(int i) {
duke@435 169 __ fld_s(i);
duke@435 170 }
duke@435 171
duke@435 172 void LIR_Assembler::ffree(int i) {
duke@435 173 __ ffree(i);
duke@435 174 }
duke@435 175
duke@435 176 void LIR_Assembler::breakpoint() {
duke@435 177 __ int3();
duke@435 178 }
duke@435 179
duke@435 180 void LIR_Assembler::push(LIR_Opr opr) {
duke@435 181 if (opr->is_single_cpu()) {
duke@435 182 __ push_reg(opr->as_register());
duke@435 183 } else if (opr->is_double_cpu()) {
duke@435 184 __ push_reg(opr->as_register_hi());
duke@435 185 __ push_reg(opr->as_register_lo());
duke@435 186 } else if (opr->is_stack()) {
duke@435 187 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
duke@435 188 } else if (opr->is_constant()) {
duke@435 189 LIR_Const* const_opr = opr->as_constant_ptr();
duke@435 190 if (const_opr->type() == T_OBJECT) {
duke@435 191 __ push_oop(const_opr->as_jobject());
duke@435 192 } else if (const_opr->type() == T_INT) {
duke@435 193 __ push_jint(const_opr->as_jint());
duke@435 194 } else {
duke@435 195 ShouldNotReachHere();
duke@435 196 }
duke@435 197
duke@435 198 } else {
duke@435 199 ShouldNotReachHere();
duke@435 200 }
duke@435 201 }
duke@435 202
duke@435 203 void LIR_Assembler::pop(LIR_Opr opr) {
duke@435 204 if (opr->is_single_cpu()) {
duke@435 205 __ pop(opr->as_register());
duke@435 206 } else {
duke@435 207 ShouldNotReachHere();
duke@435 208 }
duke@435 209 }
duke@435 210
duke@435 211 //-------------------------------------------
duke@435 212 Address LIR_Assembler::as_Address(LIR_Address* addr) {
duke@435 213 if (addr->base()->is_illegal()) {
duke@435 214 assert(addr->index()->is_illegal(), "must be illegal too");
duke@435 215 //return Address(addr->disp(), relocInfo::none);
duke@435 216 // hack for now since this should really return an AddressLiteral
duke@435 217 // which will have to await 64bit c1 changes.
duke@435 218 return Address(noreg, addr->disp());
duke@435 219 }
duke@435 220
duke@435 221 Register base = addr->base()->as_register();
duke@435 222
duke@435 223 if (addr->index()->is_illegal()) {
duke@435 224 return Address( base, addr->disp());
duke@435 225 } else if (addr->index()->is_single_cpu()) {
duke@435 226 Register index = addr->index()->as_register();
duke@435 227 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
duke@435 228 } else if (addr->index()->is_constant()) {
duke@435 229 int addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
duke@435 230
duke@435 231 return Address(base, addr_offset);
duke@435 232 } else {
duke@435 233 Unimplemented();
duke@435 234 return Address();
duke@435 235 }
duke@435 236 }
duke@435 237
duke@435 238
duke@435 239 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
duke@435 240 Address base = as_Address(addr);
duke@435 241 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
duke@435 242 }
duke@435 243
duke@435 244
duke@435 245 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
duke@435 246 return as_Address(addr);
duke@435 247 }
duke@435 248
duke@435 249
duke@435 250 void LIR_Assembler::osr_entry() {
duke@435 251 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
duke@435 252 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
duke@435 253 ValueStack* entry_state = osr_entry->state();
duke@435 254 int number_of_locks = entry_state->locks_size();
duke@435 255
duke@435 256 // we jump here if osr happens with the interpreter
duke@435 257 // state set up to continue at the beginning of the
duke@435 258 // loop that triggered osr - in particular, we have
duke@435 259 // the following registers setup:
duke@435 260 //
duke@435 261 // rcx: osr buffer
duke@435 262 //
duke@435 263
duke@435 264 // build frame
duke@435 265 ciMethod* m = compilation()->method();
duke@435 266 __ build_frame(initial_frame_size_in_bytes());
duke@435 267
duke@435 268 // OSR buffer is
duke@435 269 //
duke@435 270 // locals[nlocals-1..0]
duke@435 271 // monitors[0..number_of_locks]
duke@435 272 //
duke@435 273 // locals is a direct copy of the interpreter frame so in the osr buffer
duke@435 274 // so first slot in the local array is the last local from the interpreter
duke@435 275 // and last slot is local[0] (receiver) from the interpreter
duke@435 276 //
duke@435 277 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
duke@435 278 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
duke@435 279 // in the interpreter frame (the method lock if a sync method)
duke@435 280
duke@435 281 // Initialize monitors in the compiled activation.
duke@435 282 // rcx: pointer to osr buffer
duke@435 283 //
duke@435 284 // All other registers are dead at this point and the locals will be
duke@435 285 // copied into place by code emitted in the IR.
duke@435 286
duke@435 287 Register OSR_buf = osrBufferPointer()->as_register();
duke@435 288 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
duke@435 289 int monitor_offset = BytesPerWord * method()->max_locals() +
duke@435 290 (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
duke@435 291 for (int i = 0; i < number_of_locks; i++) {
duke@435 292 int slot_offset = monitor_offset - ((i * BasicObjectLock::size()) * BytesPerWord);
duke@435 293 #ifdef ASSERT
duke@435 294 // verify the interpreter's monitor has a non-null object
duke@435 295 {
duke@435 296 Label L;
duke@435 297 __ cmpl(Address(OSR_buf, slot_offset + BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);
duke@435 298 __ jcc(Assembler::notZero, L);
duke@435 299 __ stop("locked object is NULL");
duke@435 300 __ bind(L);
duke@435 301 }
duke@435 302 #endif
duke@435 303 __ movl(rbx, Address(OSR_buf, slot_offset + BasicObjectLock::lock_offset_in_bytes()));
duke@435 304 __ movl(frame_map()->address_for_monitor_lock(i), rbx);
duke@435 305 __ movl(rbx, Address(OSR_buf, slot_offset + BasicObjectLock::obj_offset_in_bytes()));
duke@435 306 __ movl(frame_map()->address_for_monitor_object(i), rbx);
duke@435 307 }
duke@435 308 }
duke@435 309 }
duke@435 310
duke@435 311
duke@435 312 // inline cache check; done before the frame is built.
duke@435 313 int LIR_Assembler::check_icache() {
duke@435 314 Register receiver = FrameMap::receiver_opr->as_register();
duke@435 315 Register ic_klass = IC_Klass;
duke@435 316
duke@435 317 if (!VerifyOops) {
duke@435 318 // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
duke@435 319 while ((__ offset() + 9) % CodeEntryAlignment != 0) {
duke@435 320 __ nop();
duke@435 321 }
duke@435 322 }
duke@435 323 int offset = __ offset();
duke@435 324 __ inline_cache_check(receiver, IC_Klass);
duke@435 325 assert(__ offset() % CodeEntryAlignment == 0 || VerifyOops, "alignment must be correct");
duke@435 326 if (VerifyOops) {
duke@435 327 // force alignment after the cache check.
duke@435 328 // It's been verified to be aligned if !VerifyOops
duke@435 329 __ align(CodeEntryAlignment);
duke@435 330 }
duke@435 331 return offset;
duke@435 332 }
duke@435 333
duke@435 334
duke@435 335 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
duke@435 336 jobject o = NULL;
duke@435 337 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
duke@435 338 __ movoop(reg, o);
duke@435 339 patching_epilog(patch, lir_patch_normal, reg, info);
duke@435 340 }
duke@435 341
duke@435 342
duke@435 343 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
duke@435 344 if (exception->is_valid()) {
duke@435 345 // preserve exception
duke@435 346 // note: the monitor_exit runtime call is a leaf routine
duke@435 347 // and cannot block => no GC can happen
duke@435 348 // The slow case (MonitorAccessStub) uses the first two stack slots
duke@435 349 // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
duke@435 350 __ movl (Address(rsp, 2*wordSize), exception);
duke@435 351 }
duke@435 352
duke@435 353 Register obj_reg = obj_opr->as_register();
duke@435 354 Register lock_reg = lock_opr->as_register();
duke@435 355
duke@435 356 // setup registers (lock_reg must be rax, for lock_object)
duke@435 357 assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
duke@435 358 Register hdr = lock_reg;
duke@435 359 assert(new_hdr == SYNC_header, "wrong register");
duke@435 360 lock_reg = new_hdr;
duke@435 361 // compute pointer to BasicLock
duke@435 362 Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
duke@435 363 __ leal(lock_reg, lock_addr);
duke@435 364 // unlock object
duke@435 365 MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
duke@435 366 // _slow_case_stubs->append(slow_case);
duke@435 367 // temporary fix: must be created after exceptionhandler, therefore as call stub
duke@435 368 _slow_case_stubs->append(slow_case);
duke@435 369 if (UseFastLocking) {
duke@435 370 // try inlined fast unlocking first, revert to slow locking if it fails
duke@435 371 // note: lock_reg points to the displaced header since the displaced header offset is 0!
duke@435 372 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 373 __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
duke@435 374 } else {
duke@435 375 // always do slow unlocking
duke@435 376 // note: the slow unlocking code could be inlined here, however if we use
duke@435 377 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 378 // simpler and requires less duplicated code - additionally, the
duke@435 379 // slow unlocking code is the same in either case which simplifies
duke@435 380 // debugging
duke@435 381 __ jmp(*slow_case->entry());
duke@435 382 }
duke@435 383 // done
duke@435 384 __ bind(*slow_case->continuation());
duke@435 385
duke@435 386 if (exception->is_valid()) {
duke@435 387 // restore exception
duke@435 388 __ movl (exception, Address(rsp, 2 * wordSize));
duke@435 389 }
duke@435 390 }
duke@435 391
duke@435 392 // This specifies the rsp decrement needed to build the frame
duke@435 393 int LIR_Assembler::initial_frame_size_in_bytes() {
duke@435 394 // if rounding, must let FrameMap know!
duke@435 395 return (frame_map()->framesize() - 2) * BytesPerWord; // subtract two words to account for return address and link
duke@435 396 }
duke@435 397
duke@435 398
duke@435 399 void LIR_Assembler::emit_exception_handler() {
duke@435 400 // if the last instruction is a call (typically to do a throw which
duke@435 401 // is coming at the end after block reordering) the return address
duke@435 402 // must still point into the code area in order to avoid assertion
duke@435 403 // failures when searching for the corresponding bci => add a nop
duke@435 404 // (was bug 5/14/1999 - gri)
duke@435 405
duke@435 406 __ nop();
duke@435 407
duke@435 408 // generate code for exception handler
duke@435 409 address handler_base = __ start_a_stub(exception_handler_size);
duke@435 410 if (handler_base == NULL) {
duke@435 411 // not enough space left for the handler
duke@435 412 bailout("exception handler overflow");
duke@435 413 return;
duke@435 414 }
duke@435 415 #ifdef ASSERT
duke@435 416 int offset = code_offset();
duke@435 417 #endif // ASSERT
duke@435 418
duke@435 419 compilation()->offsets()->set_value(CodeOffsets::Exceptions, code_offset());
duke@435 420
duke@435 421 // if the method does not have an exception handler, then there is
duke@435 422 // no reason to search for one
duke@435 423 if (compilation()->has_exception_handlers() || JvmtiExport::can_post_exceptions()) {
duke@435 424 // the exception oop and pc are in rax, and rdx
duke@435 425 // no other registers need to be preserved, so invalidate them
duke@435 426 __ invalidate_registers(false, true, true, false, true, true);
duke@435 427
duke@435 428 // check that there is really an exception
duke@435 429 __ verify_not_null_oop(rax);
duke@435 430
duke@435 431 // search an exception handler (rax: exception oop, rdx: throwing pc)
duke@435 432 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_nofpu_id)));
duke@435 433
duke@435 434 // if the call returns here, then the exception handler for particular
duke@435 435 // exception doesn't exist -> unwind activation and forward exception to caller
duke@435 436 }
duke@435 437
duke@435 438 // the exception oop is in rax,
duke@435 439 // no other registers need to be preserved, so invalidate them
duke@435 440 __ invalidate_registers(false, true, true, true, true, true);
duke@435 441
duke@435 442 // check that there is really an exception
duke@435 443 __ verify_not_null_oop(rax);
duke@435 444
duke@435 445 // unlock the receiver/klass if necessary
duke@435 446 // rax,: exception
duke@435 447 ciMethod* method = compilation()->method();
duke@435 448 if (method->is_synchronized() && GenerateSynchronizationCode) {
duke@435 449 monitorexit(FrameMap::rbx_oop_opr, FrameMap::rcx_opr, SYNC_header, 0, rax);
duke@435 450 }
duke@435 451
duke@435 452 // unwind activation and forward exception to caller
duke@435 453 // rax,: exception
duke@435 454 __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
duke@435 455
duke@435 456 assert(code_offset() - offset <= exception_handler_size, "overflow");
duke@435 457
duke@435 458 __ end_a_stub();
duke@435 459 }
duke@435 460
duke@435 461 void LIR_Assembler::emit_deopt_handler() {
duke@435 462 // if the last instruction is a call (typically to do a throw which
duke@435 463 // is coming at the end after block reordering) the return address
duke@435 464 // must still point into the code area in order to avoid assertion
duke@435 465 // failures when searching for the corresponding bci => add a nop
duke@435 466 // (was bug 5/14/1999 - gri)
duke@435 467
duke@435 468 __ nop();
duke@435 469
duke@435 470 // generate code for exception handler
duke@435 471 address handler_base = __ start_a_stub(deopt_handler_size);
duke@435 472 if (handler_base == NULL) {
duke@435 473 // not enough space left for the handler
duke@435 474 bailout("deopt handler overflow");
duke@435 475 return;
duke@435 476 }
duke@435 477 #ifdef ASSERT
duke@435 478 int offset = code_offset();
duke@435 479 #endif // ASSERT
duke@435 480
duke@435 481 compilation()->offsets()->set_value(CodeOffsets::Deopt, code_offset());
duke@435 482
duke@435 483 InternalAddress here(__ pc());
duke@435 484 __ pushptr(here.addr());
duke@435 485
duke@435 486 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
duke@435 487
duke@435 488 assert(code_offset() - offset <= deopt_handler_size, "overflow");
duke@435 489
duke@435 490 __ end_a_stub();
duke@435 491
duke@435 492 }
duke@435 493
duke@435 494
duke@435 495 // This is the fast version of java.lang.String.compare; it has not
duke@435 496 // OSR-entry and therefore, we generate a slow version for OSR's
duke@435 497 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
duke@435 498 __ movl (rbx, rcx); // receiver is in rcx
duke@435 499 __ movl (rax, arg1->as_register());
duke@435 500
duke@435 501 // Get addresses of first characters from both Strings
duke@435 502 __ movl (rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
duke@435 503 __ movl (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
duke@435 504 __ leal (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
duke@435 505
duke@435 506
duke@435 507 // rbx, may be NULL
duke@435 508 add_debug_info_for_null_check_here(info);
duke@435 509 __ movl (rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
duke@435 510 __ movl (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
duke@435 511 __ leal (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
duke@435 512
duke@435 513 // compute minimum length (in rax) and difference of lengths (on top of stack)
duke@435 514 if (VM_Version::supports_cmov()) {
duke@435 515 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
duke@435 516 __ movl (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
duke@435 517 __ movl (rcx, rbx);
duke@435 518 __ subl (rbx, rax); // subtract lengths
duke@435 519 __ pushl(rbx); // result
duke@435 520 __ cmovl(Assembler::lessEqual, rax, rcx);
duke@435 521 } else {
duke@435 522 Label L;
duke@435 523 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
duke@435 524 __ movl (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
duke@435 525 __ movl (rax, rbx);
duke@435 526 __ subl (rbx, rcx);
duke@435 527 __ pushl(rbx);
duke@435 528 __ jcc (Assembler::lessEqual, L);
duke@435 529 __ movl (rax, rcx);
duke@435 530 __ bind (L);
duke@435 531 }
duke@435 532 // is minimum length 0?
duke@435 533 Label noLoop, haveResult;
duke@435 534 __ testl (rax, rax);
duke@435 535 __ jcc (Assembler::zero, noLoop);
duke@435 536
duke@435 537 // compare first characters
duke@435 538 __ load_unsigned_word(rcx, Address(rdi, 0));
duke@435 539 __ load_unsigned_word(rbx, Address(rsi, 0));
duke@435 540 __ subl(rcx, rbx);
duke@435 541 __ jcc(Assembler::notZero, haveResult);
duke@435 542 // starting loop
duke@435 543 __ decrement(rax); // we already tested index: skip one
duke@435 544 __ jcc(Assembler::zero, noLoop);
duke@435 545
duke@435 546 // set rsi.edi to the end of the arrays (arrays have same length)
duke@435 547 // negate the index
duke@435 548
kvn@464 549 __ leal(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
kvn@464 550 __ leal(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
duke@435 551 __ negl(rax);
duke@435 552
duke@435 553 // compare the strings in a loop
duke@435 554
duke@435 555 Label loop;
duke@435 556 __ align(wordSize);
duke@435 557 __ bind(loop);
duke@435 558 __ load_unsigned_word(rcx, Address(rdi, rax, Address::times_2, 0));
duke@435 559 __ load_unsigned_word(rbx, Address(rsi, rax, Address::times_2, 0));
duke@435 560 __ subl(rcx, rbx);
duke@435 561 __ jcc(Assembler::notZero, haveResult);
duke@435 562 __ increment(rax);
duke@435 563 __ jcc(Assembler::notZero, loop);
duke@435 564
duke@435 565 // strings are equal up to min length
duke@435 566
duke@435 567 __ bind(noLoop);
duke@435 568 __ popl(rax);
duke@435 569 return_op(LIR_OprFact::illegalOpr);
duke@435 570
duke@435 571 __ bind(haveResult);
duke@435 572 // leave instruction is going to discard the TOS value
duke@435 573 __ movl (rax, rcx); // result of call is in rax,
duke@435 574 }
duke@435 575
duke@435 576
duke@435 577 void LIR_Assembler::return_op(LIR_Opr result) {
duke@435 578 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
duke@435 579 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
duke@435 580 assert(result->fpu() == 0, "result must already be on TOS");
duke@435 581 }
duke@435 582
duke@435 583 // Pop the stack before the safepoint code
duke@435 584 __ leave();
duke@435 585
duke@435 586 bool result_is_oop = result->is_valid() ? result->is_oop() : false;
duke@435 587
duke@435 588 // Note: we do not need to round double result; float result has the right precision
duke@435 589 // the poll sets the condition code, but no data registers
duke@435 590 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 591 relocInfo::poll_return_type);
duke@435 592 __ test32(rax, polling_page);
duke@435 593
duke@435 594 __ ret(0);
duke@435 595 }
duke@435 596
duke@435 597
duke@435 598 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 599 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 600 relocInfo::poll_type);
duke@435 601
duke@435 602 if (info != NULL) {
duke@435 603 add_debug_info_for_branch(info);
duke@435 604 } else {
duke@435 605 ShouldNotReachHere();
duke@435 606 }
duke@435 607
duke@435 608 int offset = __ offset();
duke@435 609 __ test32(rax, polling_page);
duke@435 610 return offset;
duke@435 611 }
duke@435 612
duke@435 613
duke@435 614 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
duke@435 615 if (from_reg != to_reg) __ movl(to_reg, from_reg);
duke@435 616 }
duke@435 617
duke@435 618 void LIR_Assembler::swap_reg(Register a, Register b) {
duke@435 619 __ xchgl(a, b);
duke@435 620 }
duke@435 621
duke@435 622
duke@435 623 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
duke@435 624 assert(src->is_constant(), "should not call otherwise");
duke@435 625 assert(dest->is_register(), "should not call otherwise");
duke@435 626 LIR_Const* c = src->as_constant_ptr();
duke@435 627
duke@435 628 switch (c->type()) {
duke@435 629 case T_INT: {
duke@435 630 assert(patch_code == lir_patch_none, "no patching handled here");
duke@435 631 __ movl(dest->as_register(), c->as_jint());
duke@435 632 break;
duke@435 633 }
duke@435 634
duke@435 635 case T_LONG: {
duke@435 636 assert(patch_code == lir_patch_none, "no patching handled here");
duke@435 637 __ movl(dest->as_register_lo(), c->as_jint_lo());
duke@435 638 __ movl(dest->as_register_hi(), c->as_jint_hi());
duke@435 639 break;
duke@435 640 }
duke@435 641
duke@435 642 case T_OBJECT: {
duke@435 643 if (patch_code != lir_patch_none) {
duke@435 644 jobject2reg_with_patching(dest->as_register(), info);
duke@435 645 } else {
duke@435 646 __ movoop(dest->as_register(), c->as_jobject());
duke@435 647 }
duke@435 648 break;
duke@435 649 }
duke@435 650
duke@435 651 case T_FLOAT: {
duke@435 652 if (dest->is_single_xmm()) {
duke@435 653 if (c->is_zero_float()) {
duke@435 654 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
duke@435 655 } else {
duke@435 656 __ movflt(dest->as_xmm_float_reg(),
duke@435 657 InternalAddress(float_constant(c->as_jfloat())));
duke@435 658 }
duke@435 659 } else {
duke@435 660 assert(dest->is_single_fpu(), "must be");
duke@435 661 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 662 if (c->is_zero_float()) {
duke@435 663 __ fldz();
duke@435 664 } else if (c->is_one_float()) {
duke@435 665 __ fld1();
duke@435 666 } else {
duke@435 667 __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
duke@435 668 }
duke@435 669 }
duke@435 670 break;
duke@435 671 }
duke@435 672
duke@435 673 case T_DOUBLE: {
duke@435 674 if (dest->is_double_xmm()) {
duke@435 675 if (c->is_zero_double()) {
duke@435 676 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
duke@435 677 } else {
duke@435 678 __ movdbl(dest->as_xmm_double_reg(),
duke@435 679 InternalAddress(double_constant(c->as_jdouble())));
duke@435 680 }
duke@435 681 } else {
duke@435 682 assert(dest->is_double_fpu(), "must be");
duke@435 683 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 684 if (c->is_zero_double()) {
duke@435 685 __ fldz();
duke@435 686 } else if (c->is_one_double()) {
duke@435 687 __ fld1();
duke@435 688 } else {
duke@435 689 __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
duke@435 690 }
duke@435 691 }
duke@435 692 break;
duke@435 693 }
duke@435 694
duke@435 695 default:
duke@435 696 ShouldNotReachHere();
duke@435 697 }
duke@435 698 }
duke@435 699
duke@435 700 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
duke@435 701 assert(src->is_constant(), "should not call otherwise");
duke@435 702 assert(dest->is_stack(), "should not call otherwise");
duke@435 703 LIR_Const* c = src->as_constant_ptr();
duke@435 704
duke@435 705 switch (c->type()) {
duke@435 706 case T_INT: // fall through
duke@435 707 case T_FLOAT:
duke@435 708 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
duke@435 709 break;
duke@435 710
duke@435 711 case T_OBJECT:
duke@435 712 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
duke@435 713 break;
duke@435 714
duke@435 715 case T_LONG: // fall through
duke@435 716 case T_DOUBLE:
duke@435 717 __ movl(frame_map()->address_for_slot(dest->double_stack_ix(),
duke@435 718 lo_word_offset_in_bytes), c->as_jint_lo_bits());
duke@435 719 __ movl(frame_map()->address_for_slot(dest->double_stack_ix(),
duke@435 720 hi_word_offset_in_bytes), c->as_jint_hi_bits());
duke@435 721 break;
duke@435 722
duke@435 723 default:
duke@435 724 ShouldNotReachHere();
duke@435 725 }
duke@435 726 }
duke@435 727
duke@435 728 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
duke@435 729 assert(src->is_constant(), "should not call otherwise");
duke@435 730 assert(dest->is_address(), "should not call otherwise");
duke@435 731 LIR_Const* c = src->as_constant_ptr();
duke@435 732 LIR_Address* addr = dest->as_address_ptr();
duke@435 733
duke@435 734 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 735 switch (type) {
duke@435 736 case T_INT: // fall through
duke@435 737 case T_FLOAT:
duke@435 738 __ movl(as_Address(addr), c->as_jint_bits());
duke@435 739 break;
duke@435 740
duke@435 741 case T_OBJECT: // fall through
duke@435 742 case T_ARRAY:
duke@435 743 if (c->as_jobject() == NULL) {
duke@435 744 __ movl(as_Address(addr), NULL_WORD);
duke@435 745 } else {
duke@435 746 __ movoop(as_Address(addr), c->as_jobject());
duke@435 747 }
duke@435 748 break;
duke@435 749
duke@435 750 case T_LONG: // fall through
duke@435 751 case T_DOUBLE:
duke@435 752 __ movl(as_Address_hi(addr), c->as_jint_hi_bits());
duke@435 753 __ movl(as_Address_lo(addr), c->as_jint_lo_bits());
duke@435 754 break;
duke@435 755
duke@435 756 case T_BOOLEAN: // fall through
duke@435 757 case T_BYTE:
duke@435 758 __ movb(as_Address(addr), c->as_jint() & 0xFF);
duke@435 759 break;
duke@435 760
duke@435 761 case T_CHAR: // fall through
duke@435 762 case T_SHORT:
duke@435 763 __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
duke@435 764 break;
duke@435 765
duke@435 766 default:
duke@435 767 ShouldNotReachHere();
duke@435 768 };
duke@435 769 }
duke@435 770
duke@435 771
duke@435 772 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
duke@435 773 assert(src->is_register(), "should not call otherwise");
duke@435 774 assert(dest->is_register(), "should not call otherwise");
duke@435 775
duke@435 776 // move between cpu-registers
duke@435 777 if (dest->is_single_cpu()) {
duke@435 778 assert(src->is_single_cpu(), "must match");
duke@435 779 if (src->type() == T_OBJECT) {
duke@435 780 __ verify_oop(src->as_register());
duke@435 781 }
duke@435 782 move_regs(src->as_register(), dest->as_register());
duke@435 783
duke@435 784 } else if (dest->is_double_cpu()) {
duke@435 785 assert(src->is_double_cpu(), "must match");
duke@435 786 Register f_lo = src->as_register_lo();
duke@435 787 Register f_hi = src->as_register_hi();
duke@435 788 Register t_lo = dest->as_register_lo();
duke@435 789 Register t_hi = dest->as_register_hi();
duke@435 790 assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
duke@435 791
duke@435 792 if (f_lo == t_hi && f_hi == t_lo) {
duke@435 793 swap_reg(f_lo, f_hi);
duke@435 794 } else if (f_hi == t_lo) {
duke@435 795 assert(f_lo != t_hi, "overwriting register");
duke@435 796 move_regs(f_hi, t_hi);
duke@435 797 move_regs(f_lo, t_lo);
duke@435 798 } else {
duke@435 799 assert(f_hi != t_lo, "overwriting register");
duke@435 800 move_regs(f_lo, t_lo);
duke@435 801 move_regs(f_hi, t_hi);
duke@435 802 }
duke@435 803
duke@435 804 // special moves from fpu-register to xmm-register
duke@435 805 // necessary for method results
duke@435 806 } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
duke@435 807 __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
duke@435 808 __ fld_s(Address(rsp, 0));
duke@435 809 } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
duke@435 810 __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
duke@435 811 __ fld_d(Address(rsp, 0));
duke@435 812 } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
duke@435 813 __ fstp_s(Address(rsp, 0));
duke@435 814 __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
duke@435 815 } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
duke@435 816 __ fstp_d(Address(rsp, 0));
duke@435 817 __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
duke@435 818
duke@435 819 // move between xmm-registers
duke@435 820 } else if (dest->is_single_xmm()) {
duke@435 821 assert(src->is_single_xmm(), "must match");
duke@435 822 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
duke@435 823 } else if (dest->is_double_xmm()) {
duke@435 824 assert(src->is_double_xmm(), "must match");
duke@435 825 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
duke@435 826
duke@435 827 // move between fpu-registers (no instruction necessary because of fpu-stack)
duke@435 828 } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
duke@435 829 assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
duke@435 830 assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
duke@435 831 } else {
duke@435 832 ShouldNotReachHere();
duke@435 833 }
duke@435 834 }
duke@435 835
duke@435 836 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
duke@435 837 assert(src->is_register(), "should not call otherwise");
duke@435 838 assert(dest->is_stack(), "should not call otherwise");
duke@435 839
duke@435 840 if (src->is_single_cpu()) {
duke@435 841 Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 842 if (type == T_OBJECT || type == T_ARRAY) {
duke@435 843 __ verify_oop(src->as_register());
duke@435 844 }
duke@435 845 __ movl (dst, src->as_register());
duke@435 846
duke@435 847 } else if (src->is_double_cpu()) {
duke@435 848 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 849 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
duke@435 850 __ movl (dstLO, src->as_register_lo());
duke@435 851 __ movl (dstHI, src->as_register_hi());
duke@435 852
duke@435 853 } else if (src->is_single_xmm()) {
duke@435 854 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 855 __ movflt(dst_addr, src->as_xmm_float_reg());
duke@435 856
duke@435 857 } else if (src->is_double_xmm()) {
duke@435 858 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 859 __ movdbl(dst_addr, src->as_xmm_double_reg());
duke@435 860
duke@435 861 } else if (src->is_single_fpu()) {
duke@435 862 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 863 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 864 if (pop_fpu_stack) __ fstp_s (dst_addr);
duke@435 865 else __ fst_s (dst_addr);
duke@435 866
duke@435 867 } else if (src->is_double_fpu()) {
duke@435 868 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 869 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 870 if (pop_fpu_stack) __ fstp_d (dst_addr);
duke@435 871 else __ fst_d (dst_addr);
duke@435 872
duke@435 873 } else {
duke@435 874 ShouldNotReachHere();
duke@435 875 }
duke@435 876 }
duke@435 877
duke@435 878
duke@435 879 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool /* unaligned */) {
duke@435 880 LIR_Address* to_addr = dest->as_address_ptr();
duke@435 881 PatchingStub* patch = NULL;
duke@435 882
duke@435 883 if (type == T_ARRAY || type == T_OBJECT) {
duke@435 884 __ verify_oop(src->as_register());
duke@435 885 }
duke@435 886 if (patch_code != lir_patch_none) {
duke@435 887 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 888 }
duke@435 889 if (info != NULL) {
duke@435 890 add_debug_info_for_null_check_here(info);
duke@435 891 }
duke@435 892
duke@435 893 switch (type) {
duke@435 894 case T_FLOAT: {
duke@435 895 if (src->is_single_xmm()) {
duke@435 896 __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
duke@435 897 } else {
duke@435 898 assert(src->is_single_fpu(), "must be");
duke@435 899 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 900 if (pop_fpu_stack) __ fstp_s(as_Address(to_addr));
duke@435 901 else __ fst_s (as_Address(to_addr));
duke@435 902 }
duke@435 903 break;
duke@435 904 }
duke@435 905
duke@435 906 case T_DOUBLE: {
duke@435 907 if (src->is_double_xmm()) {
duke@435 908 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
duke@435 909 } else {
duke@435 910 assert(src->is_double_fpu(), "must be");
duke@435 911 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 912 if (pop_fpu_stack) __ fstp_d(as_Address(to_addr));
duke@435 913 else __ fst_d (as_Address(to_addr));
duke@435 914 }
duke@435 915 break;
duke@435 916 }
duke@435 917
duke@435 918 case T_ADDRESS: // fall through
duke@435 919 case T_ARRAY: // fall through
duke@435 920 case T_OBJECT: // fall through
duke@435 921 case T_INT:
duke@435 922 __ movl(as_Address(to_addr), src->as_register());
duke@435 923 break;
duke@435 924
duke@435 925 case T_LONG: {
duke@435 926 Register from_lo = src->as_register_lo();
duke@435 927 Register from_hi = src->as_register_hi();
duke@435 928 Register base = to_addr->base()->as_register();
duke@435 929 Register index = noreg;
duke@435 930 if (to_addr->index()->is_register()) {
duke@435 931 index = to_addr->index()->as_register();
duke@435 932 }
duke@435 933 if (base == from_lo || index == from_lo) {
duke@435 934 assert(base != from_hi, "can't be");
duke@435 935 assert(index == noreg || (index != base && index != from_hi), "can't handle this");
duke@435 936 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 937 if (patch != NULL) {
duke@435 938 patching_epilog(patch, lir_patch_high, base, info);
duke@435 939 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 940 patch_code = lir_patch_low;
duke@435 941 }
duke@435 942 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 943 } else {
duke@435 944 assert(index == noreg || (index != base && index != from_lo), "can't handle this");
duke@435 945 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 946 if (patch != NULL) {
duke@435 947 patching_epilog(patch, lir_patch_low, base, info);
duke@435 948 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 949 patch_code = lir_patch_high;
duke@435 950 }
duke@435 951 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 952 }
duke@435 953 break;
duke@435 954 }
duke@435 955
duke@435 956 case T_BYTE: // fall through
duke@435 957 case T_BOOLEAN: {
duke@435 958 Register src_reg = src->as_register();
duke@435 959 Address dst_addr = as_Address(to_addr);
duke@435 960 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 961 __ movb(dst_addr, src_reg);
duke@435 962 break;
duke@435 963 }
duke@435 964
duke@435 965 case T_CHAR: // fall through
duke@435 966 case T_SHORT:
duke@435 967 __ movw(as_Address(to_addr), src->as_register());
duke@435 968 break;
duke@435 969
duke@435 970 default:
duke@435 971 ShouldNotReachHere();
duke@435 972 }
duke@435 973
duke@435 974 if (patch_code != lir_patch_none) {
duke@435 975 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
duke@435 976 }
duke@435 977 }
duke@435 978
duke@435 979
duke@435 980 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 981 assert(src->is_stack(), "should not call otherwise");
duke@435 982 assert(dest->is_register(), "should not call otherwise");
duke@435 983
duke@435 984 if (dest->is_single_cpu()) {
duke@435 985 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 986 if (type == T_ARRAY || type == T_OBJECT) {
duke@435 987 __ verify_oop(dest->as_register());
duke@435 988 }
duke@435 989
duke@435 990 } else if (dest->is_double_cpu()) {
duke@435 991 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 992 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
duke@435 993 __ movl(dest->as_register_hi(), src_addr_HI);
duke@435 994 __ movl(dest->as_register_lo(), src_addr_LO);
duke@435 995
duke@435 996 } else if (dest->is_single_xmm()) {
duke@435 997 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 998 __ movflt(dest->as_xmm_float_reg(), src_addr);
duke@435 999
duke@435 1000 } else if (dest->is_double_xmm()) {
duke@435 1001 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1002 __ movdbl(dest->as_xmm_double_reg(), src_addr);
duke@435 1003
duke@435 1004 } else if (dest->is_single_fpu()) {
duke@435 1005 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1006 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1007 __ fld_s(src_addr);
duke@435 1008
duke@435 1009 } else if (dest->is_double_fpu()) {
duke@435 1010 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1011 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1012 __ fld_d(src_addr);
duke@435 1013
duke@435 1014 } else {
duke@435 1015 ShouldNotReachHere();
duke@435 1016 }
duke@435 1017 }
duke@435 1018
duke@435 1019
duke@435 1020 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1021 if (src->is_single_stack()) {
duke@435 1022 __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
duke@435 1023 __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
duke@435 1024
duke@435 1025 } else if (src->is_double_stack()) {
duke@435 1026 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
duke@435 1027 // push and pop the part at src + 4, adding 4 for the previous push
duke@435 1028 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 4 + 4));
duke@435 1029 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 4 + 4));
duke@435 1030 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
duke@435 1031
duke@435 1032 } else {
duke@435 1033 ShouldNotReachHere();
duke@435 1034 }
duke@435 1035 }
duke@435 1036
duke@435 1037
duke@435 1038 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool /* unaligned */) {
duke@435 1039 assert(src->is_address(), "should not call otherwise");
duke@435 1040 assert(dest->is_register(), "should not call otherwise");
duke@435 1041
duke@435 1042 LIR_Address* addr = src->as_address_ptr();
duke@435 1043 Address from_addr = as_Address(addr);
duke@435 1044
duke@435 1045 switch (type) {
duke@435 1046 case T_BOOLEAN: // fall through
duke@435 1047 case T_BYTE: // fall through
duke@435 1048 case T_CHAR: // fall through
duke@435 1049 case T_SHORT:
duke@435 1050 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
duke@435 1051 // on pre P6 processors we may get partial register stalls
duke@435 1052 // so blow away the value of to_rinfo before loading a
duke@435 1053 // partial word into it. Do it here so that it precedes
duke@435 1054 // the potential patch point below.
duke@435 1055 __ xorl(dest->as_register(), dest->as_register());
duke@435 1056 }
duke@435 1057 break;
duke@435 1058 }
duke@435 1059
duke@435 1060 PatchingStub* patch = NULL;
duke@435 1061 if (patch_code != lir_patch_none) {
duke@435 1062 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1063 }
duke@435 1064 if (info != NULL) {
duke@435 1065 add_debug_info_for_null_check_here(info);
duke@435 1066 }
duke@435 1067
duke@435 1068 switch (type) {
duke@435 1069 case T_FLOAT: {
duke@435 1070 if (dest->is_single_xmm()) {
duke@435 1071 __ movflt(dest->as_xmm_float_reg(), from_addr);
duke@435 1072 } else {
duke@435 1073 assert(dest->is_single_fpu(), "must be");
duke@435 1074 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1075 __ fld_s(from_addr);
duke@435 1076 }
duke@435 1077 break;
duke@435 1078 }
duke@435 1079
duke@435 1080 case T_DOUBLE: {
duke@435 1081 if (dest->is_double_xmm()) {
duke@435 1082 __ movdbl(dest->as_xmm_double_reg(), from_addr);
duke@435 1083 } else {
duke@435 1084 assert(dest->is_double_fpu(), "must be");
duke@435 1085 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1086 __ fld_d(from_addr);
duke@435 1087 }
duke@435 1088 break;
duke@435 1089 }
duke@435 1090
duke@435 1091 case T_ADDRESS: // fall through
duke@435 1092 case T_OBJECT: // fall through
duke@435 1093 case T_ARRAY: // fall through
duke@435 1094 case T_INT:
duke@435 1095 __ movl(dest->as_register(), from_addr);
duke@435 1096 break;
duke@435 1097
duke@435 1098 case T_LONG: {
duke@435 1099 Register to_lo = dest->as_register_lo();
duke@435 1100 Register to_hi = dest->as_register_hi();
duke@435 1101 Register base = addr->base()->as_register();
duke@435 1102 Register index = noreg;
duke@435 1103 if (addr->index()->is_register()) {
duke@435 1104 index = addr->index()->as_register();
duke@435 1105 }
duke@435 1106 if ((base == to_lo && index == to_hi) ||
duke@435 1107 (base == to_hi && index == to_lo)) {
duke@435 1108 // addresses with 2 registers are only formed as a result of
duke@435 1109 // array access so this code will never have to deal with
duke@435 1110 // patches or null checks.
duke@435 1111 assert(info == NULL && patch == NULL, "must be");
duke@435 1112 __ leal(to_hi, as_Address(addr));
duke@435 1113 __ movl(to_lo, Address(to_hi, 0));
duke@435 1114 __ movl(to_hi, Address(to_hi, BytesPerWord));
duke@435 1115 } else if (base == to_lo || index == to_lo) {
duke@435 1116 assert(base != to_hi, "can't be");
duke@435 1117 assert(index == noreg || (index != base && index != to_hi), "can't handle this");
duke@435 1118 __ movl(to_hi, as_Address_hi(addr));
duke@435 1119 if (patch != NULL) {
duke@435 1120 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1121 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1122 patch_code = lir_patch_low;
duke@435 1123 }
duke@435 1124 __ movl(to_lo, as_Address_lo(addr));
duke@435 1125 } else {
duke@435 1126 assert(index == noreg || (index != base && index != to_lo), "can't handle this");
duke@435 1127 __ movl(to_lo, as_Address_lo(addr));
duke@435 1128 if (patch != NULL) {
duke@435 1129 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1130 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1131 patch_code = lir_patch_high;
duke@435 1132 }
duke@435 1133 __ movl(to_hi, as_Address_hi(addr));
duke@435 1134 }
duke@435 1135 break;
duke@435 1136 }
duke@435 1137
duke@435 1138 case T_BOOLEAN: // fall through
duke@435 1139 case T_BYTE: {
duke@435 1140 Register dest_reg = dest->as_register();
duke@435 1141 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1142 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
duke@435 1143 __ movsxb(dest_reg, from_addr);
duke@435 1144 } else {
duke@435 1145 __ movb(dest_reg, from_addr);
duke@435 1146 __ shll(dest_reg, 24);
duke@435 1147 __ sarl(dest_reg, 24);
duke@435 1148 }
duke@435 1149 break;
duke@435 1150 }
duke@435 1151
duke@435 1152 case T_CHAR: {
duke@435 1153 Register dest_reg = dest->as_register();
duke@435 1154 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1155 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
duke@435 1156 __ movzxw(dest_reg, from_addr);
duke@435 1157 } else {
duke@435 1158 __ movw(dest_reg, from_addr);
duke@435 1159 }
duke@435 1160 break;
duke@435 1161 }
duke@435 1162
duke@435 1163 case T_SHORT: {
duke@435 1164 Register dest_reg = dest->as_register();
duke@435 1165 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
duke@435 1166 __ movsxw(dest_reg, from_addr);
duke@435 1167 } else {
duke@435 1168 __ movw(dest_reg, from_addr);
duke@435 1169 __ shll(dest_reg, 16);
duke@435 1170 __ sarl(dest_reg, 16);
duke@435 1171 }
duke@435 1172 break;
duke@435 1173 }
duke@435 1174
duke@435 1175 default:
duke@435 1176 ShouldNotReachHere();
duke@435 1177 }
duke@435 1178
duke@435 1179 if (patch != NULL) {
duke@435 1180 patching_epilog(patch, patch_code, addr->base()->as_register(), info);
duke@435 1181 }
duke@435 1182
duke@435 1183 if (type == T_ARRAY || type == T_OBJECT) {
duke@435 1184 __ verify_oop(dest->as_register());
duke@435 1185 }
duke@435 1186 }
duke@435 1187
duke@435 1188
duke@435 1189 void LIR_Assembler::prefetchr(LIR_Opr src) {
duke@435 1190 LIR_Address* addr = src->as_address_ptr();
duke@435 1191 Address from_addr = as_Address(addr);
duke@435 1192
duke@435 1193 if (VM_Version::supports_sse()) {
duke@435 1194 switch (ReadPrefetchInstr) {
duke@435 1195 case 0:
duke@435 1196 __ prefetchnta(from_addr); break;
duke@435 1197 case 1:
duke@435 1198 __ prefetcht0(from_addr); break;
duke@435 1199 case 2:
duke@435 1200 __ prefetcht2(from_addr); break;
duke@435 1201 default:
duke@435 1202 ShouldNotReachHere(); break;
duke@435 1203 }
duke@435 1204 } else if (VM_Version::supports_3dnow()) {
duke@435 1205 __ prefetchr(from_addr);
duke@435 1206 }
duke@435 1207 }
duke@435 1208
duke@435 1209
duke@435 1210 void LIR_Assembler::prefetchw(LIR_Opr src) {
duke@435 1211 LIR_Address* addr = src->as_address_ptr();
duke@435 1212 Address from_addr = as_Address(addr);
duke@435 1213
duke@435 1214 if (VM_Version::supports_sse()) {
duke@435 1215 switch (AllocatePrefetchInstr) {
duke@435 1216 case 0:
duke@435 1217 __ prefetchnta(from_addr); break;
duke@435 1218 case 1:
duke@435 1219 __ prefetcht0(from_addr); break;
duke@435 1220 case 2:
duke@435 1221 __ prefetcht2(from_addr); break;
duke@435 1222 case 3:
duke@435 1223 __ prefetchw(from_addr); break;
duke@435 1224 default:
duke@435 1225 ShouldNotReachHere(); break;
duke@435 1226 }
duke@435 1227 } else if (VM_Version::supports_3dnow()) {
duke@435 1228 __ prefetchw(from_addr);
duke@435 1229 }
duke@435 1230 }
duke@435 1231
duke@435 1232
duke@435 1233 NEEDS_CLEANUP; // This could be static?
duke@435 1234 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
kvn@464 1235 int elem_size = type2aelembytes(type);
duke@435 1236 switch (elem_size) {
duke@435 1237 case 1: return Address::times_1;
duke@435 1238 case 2: return Address::times_2;
duke@435 1239 case 4: return Address::times_4;
duke@435 1240 case 8: return Address::times_8;
duke@435 1241 }
duke@435 1242 ShouldNotReachHere();
duke@435 1243 return Address::no_scale;
duke@435 1244 }
duke@435 1245
duke@435 1246
duke@435 1247 void LIR_Assembler::emit_op3(LIR_Op3* op) {
duke@435 1248 switch (op->code()) {
duke@435 1249 case lir_idiv:
duke@435 1250 case lir_irem:
duke@435 1251 arithmetic_idiv(op->code(),
duke@435 1252 op->in_opr1(),
duke@435 1253 op->in_opr2(),
duke@435 1254 op->in_opr3(),
duke@435 1255 op->result_opr(),
duke@435 1256 op->info());
duke@435 1257 break;
duke@435 1258 default: ShouldNotReachHere(); break;
duke@435 1259 }
duke@435 1260 }
duke@435 1261
duke@435 1262 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
duke@435 1263 #ifdef ASSERT
duke@435 1264 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
duke@435 1265 if (op->block() != NULL) _branch_target_blocks.append(op->block());
duke@435 1266 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
duke@435 1267 #endif
duke@435 1268
duke@435 1269 if (op->cond() == lir_cond_always) {
duke@435 1270 if (op->info() != NULL) add_debug_info_for_branch(op->info());
duke@435 1271 __ jmp (*(op->label()));
duke@435 1272 } else {
duke@435 1273 Assembler::Condition acond = Assembler::zero;
duke@435 1274 if (op->code() == lir_cond_float_branch) {
duke@435 1275 assert(op->ublock() != NULL, "must have unordered successor");
duke@435 1276 __ jcc(Assembler::parity, *(op->ublock()->label()));
duke@435 1277 switch(op->cond()) {
duke@435 1278 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1279 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1280 case lir_cond_less: acond = Assembler::below; break;
duke@435 1281 case lir_cond_lessEqual: acond = Assembler::belowEqual; break;
duke@435 1282 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
duke@435 1283 case lir_cond_greater: acond = Assembler::above; break;
duke@435 1284 default: ShouldNotReachHere();
duke@435 1285 }
duke@435 1286 } else {
duke@435 1287 switch (op->cond()) {
duke@435 1288 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1289 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1290 case lir_cond_less: acond = Assembler::less; break;
duke@435 1291 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 1292 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
duke@435 1293 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 1294 case lir_cond_belowEqual: acond = Assembler::belowEqual; break;
duke@435 1295 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break;
duke@435 1296 default: ShouldNotReachHere();
duke@435 1297 }
duke@435 1298 }
duke@435 1299 __ jcc(acond,*(op->label()));
duke@435 1300 }
duke@435 1301 }
duke@435 1302
duke@435 1303 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
duke@435 1304 LIR_Opr src = op->in_opr();
duke@435 1305 LIR_Opr dest = op->result_opr();
duke@435 1306
duke@435 1307 switch (op->bytecode()) {
duke@435 1308 case Bytecodes::_i2l:
duke@435 1309 move_regs(src->as_register(), dest->as_register_lo());
duke@435 1310 move_regs(src->as_register(), dest->as_register_hi());
duke@435 1311 __ sarl(dest->as_register_hi(), 31);
duke@435 1312 break;
duke@435 1313
duke@435 1314 case Bytecodes::_l2i:
duke@435 1315 move_regs(src->as_register_lo(), dest->as_register());
duke@435 1316 break;
duke@435 1317
duke@435 1318 case Bytecodes::_i2b:
duke@435 1319 move_regs(src->as_register(), dest->as_register());
duke@435 1320 __ sign_extend_byte(dest->as_register());
duke@435 1321 break;
duke@435 1322
duke@435 1323 case Bytecodes::_i2c:
duke@435 1324 move_regs(src->as_register(), dest->as_register());
duke@435 1325 __ andl(dest->as_register(), 0xFFFF);
duke@435 1326 break;
duke@435 1327
duke@435 1328 case Bytecodes::_i2s:
duke@435 1329 move_regs(src->as_register(), dest->as_register());
duke@435 1330 __ sign_extend_short(dest->as_register());
duke@435 1331 break;
duke@435 1332
duke@435 1333
duke@435 1334 case Bytecodes::_f2d:
duke@435 1335 case Bytecodes::_d2f:
duke@435 1336 if (dest->is_single_xmm()) {
duke@435 1337 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
duke@435 1338 } else if (dest->is_double_xmm()) {
duke@435 1339 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
duke@435 1340 } else {
duke@435 1341 assert(src->fpu() == dest->fpu(), "register must be equal");
duke@435 1342 // do nothing (float result is rounded later through spilling)
duke@435 1343 }
duke@435 1344 break;
duke@435 1345
duke@435 1346 case Bytecodes::_i2f:
duke@435 1347 case Bytecodes::_i2d:
duke@435 1348 if (dest->is_single_xmm()) {
duke@435 1349 __ cvtsi2ss(dest->as_xmm_float_reg(), src->as_register());
duke@435 1350 } else if (dest->is_double_xmm()) {
duke@435 1351 __ cvtsi2sd(dest->as_xmm_double_reg(), src->as_register());
duke@435 1352 } else {
duke@435 1353 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1354 __ movl(Address(rsp, 0), src->as_register());
duke@435 1355 __ fild_s(Address(rsp, 0));
duke@435 1356 }
duke@435 1357 break;
duke@435 1358
duke@435 1359 case Bytecodes::_f2i:
duke@435 1360 case Bytecodes::_d2i:
duke@435 1361 if (src->is_single_xmm()) {
duke@435 1362 __ cvttss2si(dest->as_register(), src->as_xmm_float_reg());
duke@435 1363 } else if (src->is_double_xmm()) {
duke@435 1364 __ cvttsd2si(dest->as_register(), src->as_xmm_double_reg());
duke@435 1365 } else {
duke@435 1366 assert(src->fpu() == 0, "input must be on TOS");
duke@435 1367 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
duke@435 1368 __ fist_s(Address(rsp, 0));
duke@435 1369 __ movl(dest->as_register(), Address(rsp, 0));
duke@435 1370 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 1371 }
duke@435 1372
duke@435 1373 // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
duke@435 1374 assert(op->stub() != NULL, "stub required");
duke@435 1375 __ cmpl(dest->as_register(), 0x80000000);
duke@435 1376 __ jcc(Assembler::equal, *op->stub()->entry());
duke@435 1377 __ bind(*op->stub()->continuation());
duke@435 1378 break;
duke@435 1379
duke@435 1380 case Bytecodes::_l2f:
duke@435 1381 case Bytecodes::_l2d:
duke@435 1382 assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
duke@435 1383 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1384
duke@435 1385 __ movl(Address(rsp, 0), src->as_register_lo());
duke@435 1386 __ movl(Address(rsp, BytesPerWord), src->as_register_hi());
duke@435 1387 __ fild_d(Address(rsp, 0));
duke@435 1388 // float result is rounded later through spilling
duke@435 1389 break;
duke@435 1390
duke@435 1391 case Bytecodes::_f2l:
duke@435 1392 case Bytecodes::_d2l:
duke@435 1393 assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
duke@435 1394 assert(src->fpu() == 0, "input must be on TOS");
duke@435 1395 assert(dest == FrameMap::rax_rdx_long_opr, "runtime stub places result in these registers");
duke@435 1396
duke@435 1397 // instruction sequence too long to inline it here
duke@435 1398 {
duke@435 1399 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
duke@435 1400 }
duke@435 1401 break;
duke@435 1402
duke@435 1403 default: ShouldNotReachHere();
duke@435 1404 }
duke@435 1405 }
duke@435 1406
duke@435 1407 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
duke@435 1408 if (op->init_check()) {
duke@435 1409 __ cmpl(Address(op->klass()->as_register(),
duke@435 1410 instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
duke@435 1411 instanceKlass::fully_initialized);
duke@435 1412 add_debug_info_for_null_check_here(op->stub()->info());
duke@435 1413 __ jcc(Assembler::notEqual, *op->stub()->entry());
duke@435 1414 }
duke@435 1415 __ allocate_object(op->obj()->as_register(),
duke@435 1416 op->tmp1()->as_register(),
duke@435 1417 op->tmp2()->as_register(),
duke@435 1418 op->header_size(),
duke@435 1419 op->object_size(),
duke@435 1420 op->klass()->as_register(),
duke@435 1421 *op->stub()->entry());
duke@435 1422 __ bind(*op->stub()->continuation());
duke@435 1423 }
duke@435 1424
duke@435 1425 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
duke@435 1426 if (UseSlowPath ||
duke@435 1427 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
duke@435 1428 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
duke@435 1429 __ jmp(*op->stub()->entry());
duke@435 1430 } else {
duke@435 1431 Register len = op->len()->as_register();
duke@435 1432 Register tmp1 = op->tmp1()->as_register();
duke@435 1433 Register tmp2 = op->tmp2()->as_register();
duke@435 1434 Register tmp3 = op->tmp3()->as_register();
duke@435 1435 if (len == tmp1) {
duke@435 1436 tmp1 = tmp3;
duke@435 1437 } else if (len == tmp2) {
duke@435 1438 tmp2 = tmp3;
duke@435 1439 } else if (len == tmp3) {
duke@435 1440 // everything is ok
duke@435 1441 } else {
duke@435 1442 __ movl(tmp3, len);
duke@435 1443 }
duke@435 1444 __ allocate_array(op->obj()->as_register(),
duke@435 1445 len,
duke@435 1446 tmp1,
duke@435 1447 tmp2,
duke@435 1448 arrayOopDesc::header_size(op->type()),
duke@435 1449 array_element_size(op->type()),
duke@435 1450 op->klass()->as_register(),
duke@435 1451 *op->stub()->entry());
duke@435 1452 }
duke@435 1453 __ bind(*op->stub()->continuation());
duke@435 1454 }
duke@435 1455
duke@435 1456
duke@435 1457
duke@435 1458 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
duke@435 1459 LIR_Code code = op->code();
duke@435 1460 if (code == lir_store_check) {
duke@435 1461 Register value = op->object()->as_register();
duke@435 1462 Register array = op->array()->as_register();
duke@435 1463 Register k_RInfo = op->tmp1()->as_register();
duke@435 1464 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1465 Register Rtmp1 = op->tmp3()->as_register();
duke@435 1466
duke@435 1467 CodeStub* stub = op->stub();
duke@435 1468 Label done;
duke@435 1469 __ cmpl(value, 0);
duke@435 1470 __ jcc(Assembler::equal, done);
duke@435 1471 add_debug_info_for_null_check_here(op->info_for_exception());
duke@435 1472 __ movl(k_RInfo, Address(array, oopDesc::klass_offset_in_bytes()));
duke@435 1473 __ movl(klass_RInfo, Address(value, oopDesc::klass_offset_in_bytes()));
duke@435 1474
duke@435 1475 // get instance klass
duke@435 1476 __ movl(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
duke@435 1477 // get super_check_offset
duke@435 1478 __ movl(Rtmp1, Address(k_RInfo, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes()));
duke@435 1479 // See if we get an immediate positive hit
duke@435 1480 __ cmpl(k_RInfo, Address(klass_RInfo, Rtmp1, Address::times_1));
duke@435 1481 __ jcc(Assembler::equal, done);
duke@435 1482 // check for immediate negative hit
duke@435 1483 __ cmpl(Rtmp1, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes());
duke@435 1484 __ jcc(Assembler::notEqual, *stub->entry());
duke@435 1485 // check for self
duke@435 1486 __ cmpl(klass_RInfo, k_RInfo);
duke@435 1487 __ jcc(Assembler::equal, done);
duke@435 1488
duke@435 1489 __ pushl(klass_RInfo);
duke@435 1490 __ pushl(k_RInfo);
duke@435 1491 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
duke@435 1492 __ popl(klass_RInfo);
duke@435 1493 __ popl(k_RInfo);
duke@435 1494 __ cmpl(k_RInfo, 0);
duke@435 1495 __ jcc(Assembler::equal, *stub->entry());
duke@435 1496 __ bind(done);
duke@435 1497 } else if (op->code() == lir_checkcast) {
duke@435 1498 // we always need a stub for the failure case.
duke@435 1499 CodeStub* stub = op->stub();
duke@435 1500 Register obj = op->object()->as_register();
duke@435 1501 Register k_RInfo = op->tmp1()->as_register();
duke@435 1502 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1503 Register dst = op->result_opr()->as_register();
duke@435 1504 ciKlass* k = op->klass();
duke@435 1505 Register Rtmp1 = noreg;
duke@435 1506
duke@435 1507 Label done;
duke@435 1508 if (obj == k_RInfo) {
duke@435 1509 k_RInfo = dst;
duke@435 1510 } else if (obj == klass_RInfo) {
duke@435 1511 klass_RInfo = dst;
duke@435 1512 }
duke@435 1513 if (k->is_loaded()) {
duke@435 1514 select_different_registers(obj, dst, k_RInfo, klass_RInfo);
duke@435 1515 } else {
duke@435 1516 Rtmp1 = op->tmp3()->as_register();
duke@435 1517 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
duke@435 1518 }
duke@435 1519
duke@435 1520 assert_different_registers(obj, k_RInfo, klass_RInfo);
duke@435 1521 if (!k->is_loaded()) {
duke@435 1522 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
duke@435 1523 } else {
duke@435 1524 k_RInfo = noreg;
duke@435 1525 }
duke@435 1526 assert(obj != k_RInfo, "must be different");
duke@435 1527 __ cmpl(obj, 0);
duke@435 1528 if (op->profiled_method() != NULL) {
duke@435 1529 ciMethod* method = op->profiled_method();
duke@435 1530 int bci = op->profiled_bci();
duke@435 1531
duke@435 1532 Label profile_done;
duke@435 1533 __ jcc(Assembler::notEqual, profile_done);
duke@435 1534 // Object is null; update methodDataOop
duke@435 1535 ciMethodData* md = method->method_data();
duke@435 1536 if (md == NULL) {
duke@435 1537 bailout("out of memory building methodDataOop");
duke@435 1538 return;
duke@435 1539 }
duke@435 1540 ciProfileData* data = md->bci_to_data(bci);
duke@435 1541 assert(data != NULL, "need data for checkcast");
duke@435 1542 assert(data->is_BitData(), "need BitData for checkcast");
duke@435 1543 Register mdo = klass_RInfo;
duke@435 1544 __ movoop(mdo, md->encoding());
duke@435 1545 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
duke@435 1546 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
duke@435 1547 __ orl(data_addr, header_bits);
duke@435 1548 __ jmp(done);
duke@435 1549 __ bind(profile_done);
duke@435 1550 } else {
duke@435 1551 __ jcc(Assembler::equal, done);
duke@435 1552 }
duke@435 1553 __ verify_oop(obj);
duke@435 1554
duke@435 1555 if (op->fast_check()) {
duke@435 1556 // get object classo
duke@435 1557 // not a safepoint as obj null check happens earlier
duke@435 1558 if (k->is_loaded()) {
duke@435 1559 __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->encoding());
duke@435 1560 } else {
duke@435 1561 __ cmpl(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
duke@435 1562
duke@435 1563 }
duke@435 1564 __ jcc(Assembler::notEqual, *stub->entry());
duke@435 1565 __ bind(done);
duke@435 1566 } else {
duke@435 1567 // get object class
duke@435 1568 // not a safepoint as obj null check happens earlier
duke@435 1569 __ movl(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
duke@435 1570 if (k->is_loaded()) {
duke@435 1571 // See if we get an immediate positive hit
duke@435 1572 __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->encoding());
duke@435 1573 if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
duke@435 1574 __ jcc(Assembler::notEqual, *stub->entry());
duke@435 1575 } else {
duke@435 1576 // See if we get an immediate positive hit
duke@435 1577 __ jcc(Assembler::equal, done);
duke@435 1578 // check for self
duke@435 1579 __ cmpoop(klass_RInfo, k->encoding());
duke@435 1580 __ jcc(Assembler::equal, done);
duke@435 1581
duke@435 1582 __ pushl(klass_RInfo);
duke@435 1583 __ pushoop(k->encoding());
duke@435 1584 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
duke@435 1585 __ popl(klass_RInfo);
duke@435 1586 __ popl(klass_RInfo);
duke@435 1587 __ cmpl(klass_RInfo, 0);
duke@435 1588 __ jcc(Assembler::equal, *stub->entry());
duke@435 1589 }
duke@435 1590 __ bind(done);
duke@435 1591 } else {
duke@435 1592 __ movl(Rtmp1, Address(k_RInfo, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes()));
duke@435 1593 // See if we get an immediate positive hit
duke@435 1594 __ cmpl(k_RInfo, Address(klass_RInfo, Rtmp1, Address::times_1));
duke@435 1595 __ jcc(Assembler::equal, done);
duke@435 1596 // check for immediate negative hit
duke@435 1597 __ cmpl(Rtmp1, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes());
duke@435 1598 __ jcc(Assembler::notEqual, *stub->entry());
duke@435 1599 // check for self
duke@435 1600 __ cmpl(klass_RInfo, k_RInfo);
duke@435 1601 __ jcc(Assembler::equal, done);
duke@435 1602
duke@435 1603 __ pushl(klass_RInfo);
duke@435 1604 __ pushl(k_RInfo);
duke@435 1605 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
duke@435 1606 __ popl(klass_RInfo);
duke@435 1607 __ popl(k_RInfo);
duke@435 1608 __ cmpl(k_RInfo, 0);
duke@435 1609 __ jcc(Assembler::equal, *stub->entry());
duke@435 1610 __ bind(done);
duke@435 1611 }
duke@435 1612
duke@435 1613 }
duke@435 1614 if (dst != obj) {
duke@435 1615 __ movl(dst, obj);
duke@435 1616 }
duke@435 1617 } else if (code == lir_instanceof) {
duke@435 1618 Register obj = op->object()->as_register();
duke@435 1619 Register k_RInfo = op->tmp1()->as_register();
duke@435 1620 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1621 Register dst = op->result_opr()->as_register();
duke@435 1622 ciKlass* k = op->klass();
duke@435 1623
duke@435 1624 Label done;
duke@435 1625 Label zero;
duke@435 1626 Label one;
duke@435 1627 if (obj == k_RInfo) {
duke@435 1628 k_RInfo = klass_RInfo;
duke@435 1629 klass_RInfo = obj;
duke@435 1630 }
duke@435 1631 // patching may screw with our temporaries on sparc,
duke@435 1632 // so let's do it before loading the class
duke@435 1633 if (!k->is_loaded()) {
duke@435 1634 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
duke@435 1635 }
duke@435 1636 assert(obj != k_RInfo, "must be different");
duke@435 1637
duke@435 1638 __ verify_oop(obj);
duke@435 1639 if (op->fast_check()) {
duke@435 1640 __ cmpl(obj, 0);
duke@435 1641 __ jcc(Assembler::equal, zero);
duke@435 1642 // get object class
duke@435 1643 // not a safepoint as obj null check happens earlier
duke@435 1644 if (k->is_loaded()) {
duke@435 1645 __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->encoding());
duke@435 1646 k_RInfo = noreg;
duke@435 1647 } else {
duke@435 1648 __ cmpl(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
duke@435 1649
duke@435 1650 }
duke@435 1651 __ jcc(Assembler::equal, one);
duke@435 1652 } else {
duke@435 1653 // get object class
duke@435 1654 // not a safepoint as obj null check happens earlier
duke@435 1655 __ cmpl(obj, 0);
duke@435 1656 __ jcc(Assembler::equal, zero);
duke@435 1657 __ movl(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
duke@435 1658 if (k->is_loaded()) {
duke@435 1659 // See if we get an immediate positive hit
duke@435 1660 __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->encoding());
duke@435 1661 __ jcc(Assembler::equal, one);
duke@435 1662 if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() == k->super_check_offset()) {
duke@435 1663 // check for self
duke@435 1664 __ cmpoop(klass_RInfo, k->encoding());
duke@435 1665 __ jcc(Assembler::equal, one);
duke@435 1666 __ pushl(klass_RInfo);
duke@435 1667 __ pushoop(k->encoding());
duke@435 1668 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
duke@435 1669 __ popl(klass_RInfo);
duke@435 1670 __ popl(dst);
duke@435 1671 __ jmp(done);
duke@435 1672 }
duke@435 1673 } else {
duke@435 1674 assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
duke@435 1675
duke@435 1676 __ movl(dst, Address(k_RInfo, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes()));
duke@435 1677 // See if we get an immediate positive hit
duke@435 1678 __ cmpl(k_RInfo, Address(klass_RInfo, dst, Address::times_1));
duke@435 1679 __ jcc(Assembler::equal, one);
duke@435 1680 // check for immediate negative hit
duke@435 1681 __ cmpl(dst, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes());
duke@435 1682 __ jcc(Assembler::notEqual, zero);
duke@435 1683 // check for self
duke@435 1684 __ cmpl(klass_RInfo, k_RInfo);
duke@435 1685 __ jcc(Assembler::equal, one);
duke@435 1686
duke@435 1687 __ pushl(klass_RInfo);
duke@435 1688 __ pushl(k_RInfo);
duke@435 1689 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
duke@435 1690 __ popl(klass_RInfo);
duke@435 1691 __ popl(dst);
duke@435 1692 __ jmp(done);
duke@435 1693 }
duke@435 1694 }
duke@435 1695 __ bind(zero);
duke@435 1696 __ xorl(dst, dst);
duke@435 1697 __ jmp(done);
duke@435 1698 __ bind(one);
duke@435 1699 __ movl(dst, 1);
duke@435 1700 __ bind(done);
duke@435 1701 } else {
duke@435 1702 ShouldNotReachHere();
duke@435 1703 }
duke@435 1704
duke@435 1705 }
duke@435 1706
duke@435 1707
duke@435 1708 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
duke@435 1709 if (op->code() == lir_cas_long) {
duke@435 1710 assert(VM_Version::supports_cx8(), "wrong machine");
duke@435 1711 assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
duke@435 1712 assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
duke@435 1713 assert(op->new_value()->as_register_lo() == rbx, "wrong register");
duke@435 1714 assert(op->new_value()->as_register_hi() == rcx, "wrong register");
duke@435 1715 Register addr = op->addr()->as_register();
duke@435 1716 if (os::is_MP()) {
duke@435 1717 __ lock();
duke@435 1718 }
duke@435 1719 __ cmpxchg8(Address(addr, 0));
duke@435 1720
duke@435 1721 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
duke@435 1722 Register addr = op->addr()->as_register();
duke@435 1723 Register newval = op->new_value()->as_register();
duke@435 1724 Register cmpval = op->cmp_value()->as_register();
duke@435 1725 assert(cmpval == rax, "wrong register");
duke@435 1726 assert(newval != NULL, "new val must be register");
duke@435 1727 assert(cmpval != newval, "cmp and new values must be in different registers");
duke@435 1728 assert(cmpval != addr, "cmp and addr must be in different registers");
duke@435 1729 assert(newval != addr, "new value and addr must be in different registers");
duke@435 1730 if (os::is_MP()) {
duke@435 1731 __ lock();
duke@435 1732 }
duke@435 1733 __ cmpxchg(newval, Address(addr, 0));
duke@435 1734 } else {
duke@435 1735 Unimplemented();
duke@435 1736 }
duke@435 1737 }
duke@435 1738
duke@435 1739
duke@435 1740 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
duke@435 1741 Assembler::Condition acond, ncond;
duke@435 1742 switch (condition) {
duke@435 1743 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break;
duke@435 1744 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break;
duke@435 1745 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break;
duke@435 1746 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break;
duke@435 1747 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break;
duke@435 1748 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break;
duke@435 1749 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break;
duke@435 1750 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break;
duke@435 1751 default: ShouldNotReachHere();
duke@435 1752 }
duke@435 1753
duke@435 1754 if (opr1->is_cpu_register()) {
duke@435 1755 reg2reg(opr1, result);
duke@435 1756 } else if (opr1->is_stack()) {
duke@435 1757 stack2reg(opr1, result, result->type());
duke@435 1758 } else if (opr1->is_constant()) {
duke@435 1759 const2reg(opr1, result, lir_patch_none, NULL);
duke@435 1760 } else {
duke@435 1761 ShouldNotReachHere();
duke@435 1762 }
duke@435 1763
duke@435 1764 if (VM_Version::supports_cmov() && !opr2->is_constant()) {
duke@435 1765 // optimized version that does not require a branch
duke@435 1766 if (opr2->is_single_cpu()) {
duke@435 1767 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
duke@435 1768 __ cmovl(ncond, result->as_register(), opr2->as_register());
duke@435 1769 } else if (opr2->is_double_cpu()) {
duke@435 1770 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
duke@435 1771 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
duke@435 1772 __ cmovl(ncond, result->as_register_lo(), opr2->as_register_lo());
duke@435 1773 __ cmovl(ncond, result->as_register_hi(), opr2->as_register_hi());
duke@435 1774 } else if (opr2->is_single_stack()) {
duke@435 1775 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 1776 } else if (opr2->is_double_stack()) {
duke@435 1777 __ cmovl(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
duke@435 1778 __ cmovl(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));
duke@435 1779 } else {
duke@435 1780 ShouldNotReachHere();
duke@435 1781 }
duke@435 1782
duke@435 1783 } else {
duke@435 1784 Label skip;
duke@435 1785 __ jcc (acond, skip);
duke@435 1786 if (opr2->is_cpu_register()) {
duke@435 1787 reg2reg(opr2, result);
duke@435 1788 } else if (opr2->is_stack()) {
duke@435 1789 stack2reg(opr2, result, result->type());
duke@435 1790 } else if (opr2->is_constant()) {
duke@435 1791 const2reg(opr2, result, lir_patch_none, NULL);
duke@435 1792 } else {
duke@435 1793 ShouldNotReachHere();
duke@435 1794 }
duke@435 1795 __ bind(skip);
duke@435 1796 }
duke@435 1797 }
duke@435 1798
duke@435 1799
duke@435 1800 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
duke@435 1801 assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
duke@435 1802
duke@435 1803 if (left->is_single_cpu()) {
duke@435 1804 assert(left == dest, "left and dest must be equal");
duke@435 1805 Register lreg = left->as_register();
duke@435 1806
duke@435 1807 if (right->is_single_cpu()) {
duke@435 1808 // cpu register - cpu register
duke@435 1809 Register rreg = right->as_register();
duke@435 1810 switch (code) {
duke@435 1811 case lir_add: __ addl (lreg, rreg); break;
duke@435 1812 case lir_sub: __ subl (lreg, rreg); break;
duke@435 1813 case lir_mul: __ imull(lreg, rreg); break;
duke@435 1814 default: ShouldNotReachHere();
duke@435 1815 }
duke@435 1816
duke@435 1817 } else if (right->is_stack()) {
duke@435 1818 // cpu register - stack
duke@435 1819 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 1820 switch (code) {
duke@435 1821 case lir_add: __ addl(lreg, raddr); break;
duke@435 1822 case lir_sub: __ subl(lreg, raddr); break;
duke@435 1823 default: ShouldNotReachHere();
duke@435 1824 }
duke@435 1825
duke@435 1826 } else if (right->is_constant()) {
duke@435 1827 // cpu register - constant
duke@435 1828 jint c = right->as_constant_ptr()->as_jint();
duke@435 1829 switch (code) {
duke@435 1830 case lir_add: {
duke@435 1831 __ increment(lreg, c);
duke@435 1832 break;
duke@435 1833 }
duke@435 1834 case lir_sub: {
duke@435 1835 __ decrement(lreg, c);
duke@435 1836 break;
duke@435 1837 }
duke@435 1838 default: ShouldNotReachHere();
duke@435 1839 }
duke@435 1840
duke@435 1841 } else {
duke@435 1842 ShouldNotReachHere();
duke@435 1843 }
duke@435 1844
duke@435 1845 } else if (left->is_double_cpu()) {
duke@435 1846 assert(left == dest, "left and dest must be equal");
duke@435 1847 Register lreg_lo = left->as_register_lo();
duke@435 1848 Register lreg_hi = left->as_register_hi();
duke@435 1849
duke@435 1850 if (right->is_double_cpu()) {
duke@435 1851 // cpu register - cpu register
duke@435 1852 Register rreg_lo = right->as_register_lo();
duke@435 1853 Register rreg_hi = right->as_register_hi();
duke@435 1854 assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi);
duke@435 1855 switch (code) {
duke@435 1856 case lir_add:
duke@435 1857 __ addl(lreg_lo, rreg_lo);
duke@435 1858 __ adcl(lreg_hi, rreg_hi);
duke@435 1859 break;
duke@435 1860 case lir_sub:
duke@435 1861 __ subl(lreg_lo, rreg_lo);
duke@435 1862 __ sbbl(lreg_hi, rreg_hi);
duke@435 1863 break;
duke@435 1864 case lir_mul:
duke@435 1865 assert(lreg_lo == rax && lreg_hi == rdx, "must be");
duke@435 1866 __ imull(lreg_hi, rreg_lo);
duke@435 1867 __ imull(rreg_hi, lreg_lo);
duke@435 1868 __ addl (rreg_hi, lreg_hi);
duke@435 1869 __ mull (rreg_lo);
duke@435 1870 __ addl (lreg_hi, rreg_hi);
duke@435 1871 break;
duke@435 1872 default:
duke@435 1873 ShouldNotReachHere();
duke@435 1874 }
duke@435 1875
duke@435 1876 } else if (right->is_constant()) {
duke@435 1877 // cpu register - constant
duke@435 1878 jint c_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 1879 jint c_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 1880 switch (code) {
duke@435 1881 case lir_add:
duke@435 1882 __ addl(lreg_lo, c_lo);
duke@435 1883 __ adcl(lreg_hi, c_hi);
duke@435 1884 break;
duke@435 1885 case lir_sub:
duke@435 1886 __ subl(lreg_lo, c_lo);
duke@435 1887 __ sbbl(lreg_hi, c_hi);
duke@435 1888 break;
duke@435 1889 default:
duke@435 1890 ShouldNotReachHere();
duke@435 1891 }
duke@435 1892
duke@435 1893 } else {
duke@435 1894 ShouldNotReachHere();
duke@435 1895 }
duke@435 1896
duke@435 1897 } else if (left->is_single_xmm()) {
duke@435 1898 assert(left == dest, "left and dest must be equal");
duke@435 1899 XMMRegister lreg = left->as_xmm_float_reg();
duke@435 1900
duke@435 1901 if (right->is_single_xmm()) {
duke@435 1902 XMMRegister rreg = right->as_xmm_float_reg();
duke@435 1903 switch (code) {
duke@435 1904 case lir_add: __ addss(lreg, rreg); break;
duke@435 1905 case lir_sub: __ subss(lreg, rreg); break;
duke@435 1906 case lir_mul_strictfp: // fall through
duke@435 1907 case lir_mul: __ mulss(lreg, rreg); break;
duke@435 1908 case lir_div_strictfp: // fall through
duke@435 1909 case lir_div: __ divss(lreg, rreg); break;
duke@435 1910 default: ShouldNotReachHere();
duke@435 1911 }
duke@435 1912 } else {
duke@435 1913 Address raddr;
duke@435 1914 if (right->is_single_stack()) {
duke@435 1915 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 1916 } else if (right->is_constant()) {
duke@435 1917 // hack for now
duke@435 1918 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
duke@435 1919 } else {
duke@435 1920 ShouldNotReachHere();
duke@435 1921 }
duke@435 1922 switch (code) {
duke@435 1923 case lir_add: __ addss(lreg, raddr); break;
duke@435 1924 case lir_sub: __ subss(lreg, raddr); break;
duke@435 1925 case lir_mul_strictfp: // fall through
duke@435 1926 case lir_mul: __ mulss(lreg, raddr); break;
duke@435 1927 case lir_div_strictfp: // fall through
duke@435 1928 case lir_div: __ divss(lreg, raddr); break;
duke@435 1929 default: ShouldNotReachHere();
duke@435 1930 }
duke@435 1931 }
duke@435 1932
duke@435 1933 } else if (left->is_double_xmm()) {
duke@435 1934 assert(left == dest, "left and dest must be equal");
duke@435 1935
duke@435 1936 XMMRegister lreg = left->as_xmm_double_reg();
duke@435 1937 if (right->is_double_xmm()) {
duke@435 1938 XMMRegister rreg = right->as_xmm_double_reg();
duke@435 1939 switch (code) {
duke@435 1940 case lir_add: __ addsd(lreg, rreg); break;
duke@435 1941 case lir_sub: __ subsd(lreg, rreg); break;
duke@435 1942 case lir_mul_strictfp: // fall through
duke@435 1943 case lir_mul: __ mulsd(lreg, rreg); break;
duke@435 1944 case lir_div_strictfp: // fall through
duke@435 1945 case lir_div: __ divsd(lreg, rreg); break;
duke@435 1946 default: ShouldNotReachHere();
duke@435 1947 }
duke@435 1948 } else {
duke@435 1949 Address raddr;
duke@435 1950 if (right->is_double_stack()) {
duke@435 1951 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 1952 } else if (right->is_constant()) {
duke@435 1953 // hack for now
duke@435 1954 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 1955 } else {
duke@435 1956 ShouldNotReachHere();
duke@435 1957 }
duke@435 1958 switch (code) {
duke@435 1959 case lir_add: __ addsd(lreg, raddr); break;
duke@435 1960 case lir_sub: __ subsd(lreg, raddr); break;
duke@435 1961 case lir_mul_strictfp: // fall through
duke@435 1962 case lir_mul: __ mulsd(lreg, raddr); break;
duke@435 1963 case lir_div_strictfp: // fall through
duke@435 1964 case lir_div: __ divsd(lreg, raddr); break;
duke@435 1965 default: ShouldNotReachHere();
duke@435 1966 }
duke@435 1967 }
duke@435 1968
duke@435 1969 } else if (left->is_single_fpu()) {
duke@435 1970 assert(dest->is_single_fpu(), "fpu stack allocation required");
duke@435 1971
duke@435 1972 if (right->is_single_fpu()) {
duke@435 1973 arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
duke@435 1974
duke@435 1975 } else {
duke@435 1976 assert(left->fpu_regnr() == 0, "left must be on TOS");
duke@435 1977 assert(dest->fpu_regnr() == 0, "dest must be on TOS");
duke@435 1978
duke@435 1979 Address raddr;
duke@435 1980 if (right->is_single_stack()) {
duke@435 1981 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 1982 } else if (right->is_constant()) {
duke@435 1983 address const_addr = float_constant(right->as_jfloat());
duke@435 1984 assert(const_addr != NULL, "incorrect float/double constant maintainance");
duke@435 1985 // hack for now
duke@435 1986 raddr = __ as_Address(InternalAddress(const_addr));
duke@435 1987 } else {
duke@435 1988 ShouldNotReachHere();
duke@435 1989 }
duke@435 1990
duke@435 1991 switch (code) {
duke@435 1992 case lir_add: __ fadd_s(raddr); break;
duke@435 1993 case lir_sub: __ fsub_s(raddr); break;
duke@435 1994 case lir_mul_strictfp: // fall through
duke@435 1995 case lir_mul: __ fmul_s(raddr); break;
duke@435 1996 case lir_div_strictfp: // fall through
duke@435 1997 case lir_div: __ fdiv_s(raddr); break;
duke@435 1998 default: ShouldNotReachHere();
duke@435 1999 }
duke@435 2000 }
duke@435 2001
duke@435 2002 } else if (left->is_double_fpu()) {
duke@435 2003 assert(dest->is_double_fpu(), "fpu stack allocation required");
duke@435 2004
duke@435 2005 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2006 // Double values require special handling for strictfp mul/div on x86
duke@435 2007 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
duke@435 2008 __ fmulp(left->fpu_regnrLo() + 1);
duke@435 2009 }
duke@435 2010
duke@435 2011 if (right->is_double_fpu()) {
duke@435 2012 arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
duke@435 2013
duke@435 2014 } else {
duke@435 2015 assert(left->fpu_regnrLo() == 0, "left must be on TOS");
duke@435 2016 assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
duke@435 2017
duke@435 2018 Address raddr;
duke@435 2019 if (right->is_double_stack()) {
duke@435 2020 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2021 } else if (right->is_constant()) {
duke@435 2022 // hack for now
duke@435 2023 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2024 } else {
duke@435 2025 ShouldNotReachHere();
duke@435 2026 }
duke@435 2027
duke@435 2028 switch (code) {
duke@435 2029 case lir_add: __ fadd_d(raddr); break;
duke@435 2030 case lir_sub: __ fsub_d(raddr); break;
duke@435 2031 case lir_mul_strictfp: // fall through
duke@435 2032 case lir_mul: __ fmul_d(raddr); break;
duke@435 2033 case lir_div_strictfp: // fall through
duke@435 2034 case lir_div: __ fdiv_d(raddr); break;
duke@435 2035 default: ShouldNotReachHere();
duke@435 2036 }
duke@435 2037 }
duke@435 2038
duke@435 2039 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2040 // Double values require special handling for strictfp mul/div on x86
duke@435 2041 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
duke@435 2042 __ fmulp(dest->fpu_regnrLo() + 1);
duke@435 2043 }
duke@435 2044
duke@435 2045 } else if (left->is_single_stack() || left->is_address()) {
duke@435 2046 assert(left == dest, "left and dest must be equal");
duke@435 2047
duke@435 2048 Address laddr;
duke@435 2049 if (left->is_single_stack()) {
duke@435 2050 laddr = frame_map()->address_for_slot(left->single_stack_ix());
duke@435 2051 } else if (left->is_address()) {
duke@435 2052 laddr = as_Address(left->as_address_ptr());
duke@435 2053 } else {
duke@435 2054 ShouldNotReachHere();
duke@435 2055 }
duke@435 2056
duke@435 2057 if (right->is_single_cpu()) {
duke@435 2058 Register rreg = right->as_register();
duke@435 2059 switch (code) {
duke@435 2060 case lir_add: __ addl(laddr, rreg); break;
duke@435 2061 case lir_sub: __ subl(laddr, rreg); break;
duke@435 2062 default: ShouldNotReachHere();
duke@435 2063 }
duke@435 2064 } else if (right->is_constant()) {
duke@435 2065 jint c = right->as_constant_ptr()->as_jint();
duke@435 2066 switch (code) {
duke@435 2067 case lir_add: {
duke@435 2068 __ increment(laddr, c);
duke@435 2069 break;
duke@435 2070 }
duke@435 2071 case lir_sub: {
duke@435 2072 __ decrement(laddr, c);
duke@435 2073 break;
duke@435 2074 }
duke@435 2075 default: ShouldNotReachHere();
duke@435 2076 }
duke@435 2077 } else {
duke@435 2078 ShouldNotReachHere();
duke@435 2079 }
duke@435 2080
duke@435 2081 } else {
duke@435 2082 ShouldNotReachHere();
duke@435 2083 }
duke@435 2084 }
duke@435 2085
duke@435 2086 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
duke@435 2087 assert(pop_fpu_stack || (left_index == dest_index || right_index == dest_index), "invalid LIR");
duke@435 2088 assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
duke@435 2089 assert(left_index == 0 || right_index == 0, "either must be on top of stack");
duke@435 2090
duke@435 2091 bool left_is_tos = (left_index == 0);
duke@435 2092 bool dest_is_tos = (dest_index == 0);
duke@435 2093 int non_tos_index = (left_is_tos ? right_index : left_index);
duke@435 2094
duke@435 2095 switch (code) {
duke@435 2096 case lir_add:
duke@435 2097 if (pop_fpu_stack) __ faddp(non_tos_index);
duke@435 2098 else if (dest_is_tos) __ fadd (non_tos_index);
duke@435 2099 else __ fadda(non_tos_index);
duke@435 2100 break;
duke@435 2101
duke@435 2102 case lir_sub:
duke@435 2103 if (left_is_tos) {
duke@435 2104 if (pop_fpu_stack) __ fsubrp(non_tos_index);
duke@435 2105 else if (dest_is_tos) __ fsub (non_tos_index);
duke@435 2106 else __ fsubra(non_tos_index);
duke@435 2107 } else {
duke@435 2108 if (pop_fpu_stack) __ fsubp (non_tos_index);
duke@435 2109 else if (dest_is_tos) __ fsubr (non_tos_index);
duke@435 2110 else __ fsuba (non_tos_index);
duke@435 2111 }
duke@435 2112 break;
duke@435 2113
duke@435 2114 case lir_mul_strictfp: // fall through
duke@435 2115 case lir_mul:
duke@435 2116 if (pop_fpu_stack) __ fmulp(non_tos_index);
duke@435 2117 else if (dest_is_tos) __ fmul (non_tos_index);
duke@435 2118 else __ fmula(non_tos_index);
duke@435 2119 break;
duke@435 2120
duke@435 2121 case lir_div_strictfp: // fall through
duke@435 2122 case lir_div:
duke@435 2123 if (left_is_tos) {
duke@435 2124 if (pop_fpu_stack) __ fdivrp(non_tos_index);
duke@435 2125 else if (dest_is_tos) __ fdiv (non_tos_index);
duke@435 2126 else __ fdivra(non_tos_index);
duke@435 2127 } else {
duke@435 2128 if (pop_fpu_stack) __ fdivp (non_tos_index);
duke@435 2129 else if (dest_is_tos) __ fdivr (non_tos_index);
duke@435 2130 else __ fdiva (non_tos_index);
duke@435 2131 }
duke@435 2132 break;
duke@435 2133
duke@435 2134 case lir_rem:
duke@435 2135 assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
duke@435 2136 __ fremr(noreg);
duke@435 2137 break;
duke@435 2138
duke@435 2139 default:
duke@435 2140 ShouldNotReachHere();
duke@435 2141 }
duke@435 2142 }
duke@435 2143
duke@435 2144
duke@435 2145 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
duke@435 2146 if (value->is_double_xmm()) {
duke@435 2147 switch(code) {
duke@435 2148 case lir_abs :
duke@435 2149 {
duke@435 2150 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
duke@435 2151 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
duke@435 2152 }
duke@435 2153 __ andpd(dest->as_xmm_double_reg(),
duke@435 2154 ExternalAddress((address)double_signmask_pool));
duke@435 2155 }
duke@435 2156 break;
duke@435 2157
duke@435 2158 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
duke@435 2159 // all other intrinsics are not available in the SSE instruction set, so FPU is used
duke@435 2160 default : ShouldNotReachHere();
duke@435 2161 }
duke@435 2162
duke@435 2163 } else if (value->is_double_fpu()) {
duke@435 2164 assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
duke@435 2165 switch(code) {
duke@435 2166 case lir_log : __ flog() ; break;
duke@435 2167 case lir_log10 : __ flog10() ; break;
duke@435 2168 case lir_abs : __ fabs() ; break;
duke@435 2169 case lir_sqrt : __ fsqrt(); break;
duke@435 2170 case lir_sin :
duke@435 2171 // Should consider not saving rbx, if not necessary
duke@435 2172 __ trigfunc('s', op->as_Op2()->fpu_stack_size());
duke@435 2173 break;
duke@435 2174 case lir_cos :
duke@435 2175 // Should consider not saving rbx, if not necessary
duke@435 2176 assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
duke@435 2177 __ trigfunc('c', op->as_Op2()->fpu_stack_size());
duke@435 2178 break;
duke@435 2179 case lir_tan :
duke@435 2180 // Should consider not saving rbx, if not necessary
duke@435 2181 __ trigfunc('t', op->as_Op2()->fpu_stack_size());
duke@435 2182 break;
duke@435 2183 default : ShouldNotReachHere();
duke@435 2184 }
duke@435 2185 } else {
duke@435 2186 Unimplemented();
duke@435 2187 }
duke@435 2188 }
duke@435 2189
duke@435 2190 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
duke@435 2191 // assert(left->destroys_register(), "check");
duke@435 2192 if (left->is_single_cpu()) {
duke@435 2193 Register reg = left->as_register();
duke@435 2194 if (right->is_constant()) {
duke@435 2195 int val = right->as_constant_ptr()->as_jint();
duke@435 2196 switch (code) {
duke@435 2197 case lir_logic_and: __ andl (reg, val); break;
duke@435 2198 case lir_logic_or: __ orl (reg, val); break;
duke@435 2199 case lir_logic_xor: __ xorl (reg, val); break;
duke@435 2200 default: ShouldNotReachHere();
duke@435 2201 }
duke@435 2202 } else if (right->is_stack()) {
duke@435 2203 // added support for stack operands
duke@435 2204 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2205 switch (code) {
duke@435 2206 case lir_logic_and: __ andl (reg, raddr); break;
duke@435 2207 case lir_logic_or: __ orl (reg, raddr); break;
duke@435 2208 case lir_logic_xor: __ xorl (reg, raddr); break;
duke@435 2209 default: ShouldNotReachHere();
duke@435 2210 }
duke@435 2211 } else {
duke@435 2212 Register rright = right->as_register();
duke@435 2213 switch (code) {
duke@435 2214 case lir_logic_and: __ andl (reg, rright); break;
duke@435 2215 case lir_logic_or : __ orl (reg, rright); break;
duke@435 2216 case lir_logic_xor: __ xorl (reg, rright); break;
duke@435 2217 default: ShouldNotReachHere();
duke@435 2218 }
duke@435 2219 }
duke@435 2220 move_regs(reg, dst->as_register());
duke@435 2221 } else {
duke@435 2222 Register l_lo = left->as_register_lo();
duke@435 2223 Register l_hi = left->as_register_hi();
duke@435 2224 if (right->is_constant()) {
duke@435 2225 int r_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2226 int r_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2227 switch (code) {
duke@435 2228 case lir_logic_and:
duke@435 2229 __ andl(l_lo, r_lo);
duke@435 2230 __ andl(l_hi, r_hi);
duke@435 2231 break;
duke@435 2232 case lir_logic_or:
duke@435 2233 __ orl(l_lo, r_lo);
duke@435 2234 __ orl(l_hi, r_hi);
duke@435 2235 break;
duke@435 2236 case lir_logic_xor:
duke@435 2237 __ xorl(l_lo, r_lo);
duke@435 2238 __ xorl(l_hi, r_hi);
duke@435 2239 break;
duke@435 2240 default: ShouldNotReachHere();
duke@435 2241 }
duke@435 2242 } else {
duke@435 2243 Register r_lo = right->as_register_lo();
duke@435 2244 Register r_hi = right->as_register_hi();
duke@435 2245 assert(l_lo != r_hi, "overwriting registers");
duke@435 2246 switch (code) {
duke@435 2247 case lir_logic_and:
duke@435 2248 __ andl(l_lo, r_lo);
duke@435 2249 __ andl(l_hi, r_hi);
duke@435 2250 break;
duke@435 2251 case lir_logic_or:
duke@435 2252 __ orl(l_lo, r_lo);
duke@435 2253 __ orl(l_hi, r_hi);
duke@435 2254 break;
duke@435 2255 case lir_logic_xor:
duke@435 2256 __ xorl(l_lo, r_lo);
duke@435 2257 __ xorl(l_hi, r_hi);
duke@435 2258 break;
duke@435 2259 default: ShouldNotReachHere();
duke@435 2260 }
duke@435 2261 }
duke@435 2262
duke@435 2263 Register dst_lo = dst->as_register_lo();
duke@435 2264 Register dst_hi = dst->as_register_hi();
duke@435 2265
duke@435 2266 if (dst_lo == l_hi) {
duke@435 2267 assert(dst_hi != l_lo, "overwriting registers");
duke@435 2268 move_regs(l_hi, dst_hi);
duke@435 2269 move_regs(l_lo, dst_lo);
duke@435 2270 } else {
duke@435 2271 assert(dst_lo != l_hi, "overwriting registers");
duke@435 2272 move_regs(l_lo, dst_lo);
duke@435 2273 move_regs(l_hi, dst_hi);
duke@435 2274 }
duke@435 2275 }
duke@435 2276 }
duke@435 2277
duke@435 2278
duke@435 2279 // we assume that rax, and rdx can be overwritten
duke@435 2280 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
duke@435 2281
duke@435 2282 assert(left->is_single_cpu(), "left must be register");
duke@435 2283 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant");
duke@435 2284 assert(result->is_single_cpu(), "result must be register");
duke@435 2285
duke@435 2286 // assert(left->destroys_register(), "check");
duke@435 2287 // assert(right->destroys_register(), "check");
duke@435 2288
duke@435 2289 Register lreg = left->as_register();
duke@435 2290 Register dreg = result->as_register();
duke@435 2291
duke@435 2292 if (right->is_constant()) {
duke@435 2293 int divisor = right->as_constant_ptr()->as_jint();
duke@435 2294 assert(divisor > 0 && is_power_of_2(divisor), "must be");
duke@435 2295 if (code == lir_idiv) {
duke@435 2296 assert(lreg == rax, "must be rax,");
duke@435 2297 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2298 __ cdql(); // sign extend into rdx:rax
duke@435 2299 if (divisor == 2) {
duke@435 2300 __ subl(lreg, rdx);
duke@435 2301 } else {
duke@435 2302 __ andl(rdx, divisor - 1);
duke@435 2303 __ addl(lreg, rdx);
duke@435 2304 }
duke@435 2305 __ sarl(lreg, log2_intptr(divisor));
duke@435 2306 move_regs(lreg, dreg);
duke@435 2307 } else if (code == lir_irem) {
duke@435 2308 Label done;
duke@435 2309 __ movl(dreg, lreg);
duke@435 2310 __ andl(dreg, 0x80000000 | (divisor - 1));
duke@435 2311 __ jcc(Assembler::positive, done);
duke@435 2312 __ decrement(dreg);
duke@435 2313 __ orl(dreg, ~(divisor - 1));
duke@435 2314 __ increment(dreg);
duke@435 2315 __ bind(done);
duke@435 2316 } else {
duke@435 2317 ShouldNotReachHere();
duke@435 2318 }
duke@435 2319 } else {
duke@435 2320 Register rreg = right->as_register();
duke@435 2321 assert(lreg == rax, "left register must be rax,");
duke@435 2322 assert(rreg != rdx, "right register must not be rdx");
duke@435 2323 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2324
duke@435 2325 move_regs(lreg, rax);
duke@435 2326
duke@435 2327 int idivl_offset = __ corrected_idivl(rreg);
duke@435 2328 add_debug_info_for_div0(idivl_offset, info);
duke@435 2329 if (code == lir_irem) {
duke@435 2330 move_regs(rdx, dreg); // result is in rdx
duke@435 2331 } else {
duke@435 2332 move_regs(rax, dreg);
duke@435 2333 }
duke@435 2334 }
duke@435 2335 }
duke@435 2336
duke@435 2337
duke@435 2338 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
duke@435 2339 if (opr1->is_single_cpu()) {
duke@435 2340 Register reg1 = opr1->as_register();
duke@435 2341 if (opr2->is_single_cpu()) {
duke@435 2342 // cpu register - cpu register
duke@435 2343 __ cmpl(reg1, opr2->as_register());
duke@435 2344 } else if (opr2->is_stack()) {
duke@435 2345 // cpu register - stack
duke@435 2346 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2347 } else if (opr2->is_constant()) {
duke@435 2348 // cpu register - constant
duke@435 2349 LIR_Const* c = opr2->as_constant_ptr();
duke@435 2350 if (c->type() == T_INT) {
duke@435 2351 __ cmpl(reg1, c->as_jint());
duke@435 2352 } else if (c->type() == T_OBJECT) {
duke@435 2353 jobject o = c->as_jobject();
duke@435 2354 if (o == NULL) {
duke@435 2355 __ cmpl(reg1, NULL_WORD);
duke@435 2356 } else {
duke@435 2357 __ cmpoop(reg1, c->as_jobject());
duke@435 2358 }
duke@435 2359 } else {
duke@435 2360 ShouldNotReachHere();
duke@435 2361 }
duke@435 2362 // cpu register - address
duke@435 2363 } else if (opr2->is_address()) {
duke@435 2364 if (op->info() != NULL) {
duke@435 2365 add_debug_info_for_null_check_here(op->info());
duke@435 2366 }
duke@435 2367 __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2368 } else {
duke@435 2369 ShouldNotReachHere();
duke@435 2370 }
duke@435 2371
duke@435 2372 } else if(opr1->is_double_cpu()) {
duke@435 2373 Register xlo = opr1->as_register_lo();
duke@435 2374 Register xhi = opr1->as_register_hi();
duke@435 2375 if (opr2->is_double_cpu()) {
duke@435 2376 // cpu register - cpu register
duke@435 2377 Register ylo = opr2->as_register_lo();
duke@435 2378 Register yhi = opr2->as_register_hi();
duke@435 2379 __ subl(xlo, ylo);
duke@435 2380 __ sbbl(xhi, yhi);
duke@435 2381 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
duke@435 2382 __ orl(xhi, xlo);
duke@435 2383 }
duke@435 2384 } else if (opr2->is_constant()) {
duke@435 2385 // cpu register - constant 0
duke@435 2386 assert(opr2->as_jlong() == (jlong)0, "only handles zero");
duke@435 2387 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
duke@435 2388 __ orl(xhi, xlo);
duke@435 2389 } else {
duke@435 2390 ShouldNotReachHere();
duke@435 2391 }
duke@435 2392
duke@435 2393 } else if (opr1->is_single_xmm()) {
duke@435 2394 XMMRegister reg1 = opr1->as_xmm_float_reg();
duke@435 2395 if (opr2->is_single_xmm()) {
duke@435 2396 // xmm register - xmm register
duke@435 2397 __ ucomiss(reg1, opr2->as_xmm_float_reg());
duke@435 2398 } else if (opr2->is_stack()) {
duke@435 2399 // xmm register - stack
duke@435 2400 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2401 } else if (opr2->is_constant()) {
duke@435 2402 // xmm register - constant
duke@435 2403 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
duke@435 2404 } else if (opr2->is_address()) {
duke@435 2405 // xmm register - address
duke@435 2406 if (op->info() != NULL) {
duke@435 2407 add_debug_info_for_null_check_here(op->info());
duke@435 2408 }
duke@435 2409 __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2410 } else {
duke@435 2411 ShouldNotReachHere();
duke@435 2412 }
duke@435 2413
duke@435 2414 } else if (opr1->is_double_xmm()) {
duke@435 2415 XMMRegister reg1 = opr1->as_xmm_double_reg();
duke@435 2416 if (opr2->is_double_xmm()) {
duke@435 2417 // xmm register - xmm register
duke@435 2418 __ ucomisd(reg1, opr2->as_xmm_double_reg());
duke@435 2419 } else if (opr2->is_stack()) {
duke@435 2420 // xmm register - stack
duke@435 2421 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
duke@435 2422 } else if (opr2->is_constant()) {
duke@435 2423 // xmm register - constant
duke@435 2424 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
duke@435 2425 } else if (opr2->is_address()) {
duke@435 2426 // xmm register - address
duke@435 2427 if (op->info() != NULL) {
duke@435 2428 add_debug_info_for_null_check_here(op->info());
duke@435 2429 }
duke@435 2430 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
duke@435 2431 } else {
duke@435 2432 ShouldNotReachHere();
duke@435 2433 }
duke@435 2434
duke@435 2435 } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
duke@435 2436 assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
duke@435 2437 assert(opr2->is_fpu_register(), "both must be registers");
duke@435 2438 __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2439
duke@435 2440 } else if (opr1->is_address() && opr2->is_constant()) {
duke@435 2441 if (op->info() != NULL) {
duke@435 2442 add_debug_info_for_null_check_here(op->info());
duke@435 2443 }
duke@435 2444 // special case: address - constant
duke@435 2445 LIR_Address* addr = opr1->as_address_ptr();
duke@435 2446 LIR_Const* c = opr2->as_constant_ptr();
duke@435 2447 if (c->type() == T_INT) {
duke@435 2448 __ cmpl(as_Address(addr), c->as_jint());
duke@435 2449 } else if (c->type() == T_OBJECT) {
duke@435 2450 __ cmpoop(as_Address(addr), c->as_jobject());
duke@435 2451 } else {
duke@435 2452 ShouldNotReachHere();
duke@435 2453 }
duke@435 2454
duke@435 2455 } else {
duke@435 2456 ShouldNotReachHere();
duke@435 2457 }
duke@435 2458 }
duke@435 2459
duke@435 2460 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
duke@435 2461 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
duke@435 2462 if (left->is_single_xmm()) {
duke@435 2463 assert(right->is_single_xmm(), "must match");
duke@435 2464 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2465 } else if (left->is_double_xmm()) {
duke@435 2466 assert(right->is_double_xmm(), "must match");
duke@435 2467 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2468
duke@435 2469 } else {
duke@435 2470 assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
duke@435 2471 assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
duke@435 2472
duke@435 2473 assert(left->fpu() == 0, "left must be on TOS");
duke@435 2474 __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
duke@435 2475 op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2476 }
duke@435 2477 } else {
duke@435 2478 assert(code == lir_cmp_l2i, "check");
duke@435 2479 __ lcmp2int(left->as_register_hi(),
duke@435 2480 left->as_register_lo(),
duke@435 2481 right->as_register_hi(),
duke@435 2482 right->as_register_lo());
duke@435 2483 move_regs(left->as_register_hi(), dst->as_register());
duke@435 2484 }
duke@435 2485 }
duke@435 2486
duke@435 2487
duke@435 2488 void LIR_Assembler::align_call(LIR_Code code) {
duke@435 2489 if (os::is_MP()) {
duke@435 2490 // make sure that the displacement word of the call ends up word aligned
duke@435 2491 int offset = __ offset();
duke@435 2492 switch (code) {
duke@435 2493 case lir_static_call:
duke@435 2494 case lir_optvirtual_call:
duke@435 2495 offset += NativeCall::displacement_offset;
duke@435 2496 break;
duke@435 2497 case lir_icvirtual_call:
duke@435 2498 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
duke@435 2499 break;
duke@435 2500 case lir_virtual_call: // currently, sparc-specific for niagara
duke@435 2501 default: ShouldNotReachHere();
duke@435 2502 }
duke@435 2503 while (offset++ % BytesPerWord != 0) {
duke@435 2504 __ nop();
duke@435 2505 }
duke@435 2506 }
duke@435 2507 }
duke@435 2508
duke@435 2509
duke@435 2510 void LIR_Assembler::call(address entry, relocInfo::relocType rtype, CodeEmitInfo* info) {
duke@435 2511 assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2512 "must be aligned");
duke@435 2513 __ call(AddressLiteral(entry, rtype));
duke@435 2514 add_call_info(code_offset(), info);
duke@435 2515 }
duke@435 2516
duke@435 2517
duke@435 2518 void LIR_Assembler::ic_call(address entry, CodeEmitInfo* info) {
duke@435 2519 RelocationHolder rh = virtual_call_Relocation::spec(pc());
duke@435 2520 __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
duke@435 2521 assert(!os::is_MP() ||
duke@435 2522 (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2523 "must be aligned");
duke@435 2524 __ call(AddressLiteral(entry, rh));
duke@435 2525 add_call_info(code_offset(), info);
duke@435 2526 }
duke@435 2527
duke@435 2528
duke@435 2529 /* Currently, vtable-dispatch is only enabled for sparc platforms */
duke@435 2530 void LIR_Assembler::vtable_call(int vtable_offset, CodeEmitInfo* info) {
duke@435 2531 ShouldNotReachHere();
duke@435 2532 }
duke@435 2533
duke@435 2534 void LIR_Assembler::emit_static_call_stub() {
duke@435 2535 address call_pc = __ pc();
duke@435 2536 address stub = __ start_a_stub(call_stub_size);
duke@435 2537 if (stub == NULL) {
duke@435 2538 bailout("static call stub overflow");
duke@435 2539 return;
duke@435 2540 }
duke@435 2541
duke@435 2542 int start = __ offset();
duke@435 2543 if (os::is_MP()) {
duke@435 2544 // make sure that the displacement word of the call ends up word aligned
duke@435 2545 int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
duke@435 2546 while (offset++ % BytesPerWord != 0) {
duke@435 2547 __ nop();
duke@435 2548 }
duke@435 2549 }
duke@435 2550 __ relocate(static_stub_Relocation::spec(call_pc));
duke@435 2551 __ movoop(rbx, (jobject)NULL);
duke@435 2552 // must be set to -1 at code generation time
duke@435 2553 assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
duke@435 2554 __ jump(RuntimeAddress((address)-1));
duke@435 2555
duke@435 2556 assert(__ offset() - start <= call_stub_size, "stub too big")
duke@435 2557 __ end_a_stub();
duke@435 2558 }
duke@435 2559
duke@435 2560
duke@435 2561 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info, bool unwind) {
duke@435 2562 assert(exceptionOop->as_register() == rax, "must match");
duke@435 2563 assert(unwind || exceptionPC->as_register() == rdx, "must match");
duke@435 2564
duke@435 2565 // exception object is not added to oop map by LinearScan
duke@435 2566 // (LinearScan assumes that no oops are in fixed registers)
duke@435 2567 info->add_register_oop(exceptionOop);
duke@435 2568 Runtime1::StubID unwind_id;
duke@435 2569
duke@435 2570 if (!unwind) {
duke@435 2571 // get current pc information
duke@435 2572 // pc is only needed if the method has an exception handler, the unwind code does not need it.
duke@435 2573 int pc_for_athrow_offset = __ offset();
duke@435 2574 InternalAddress pc_for_athrow(__ pc());
duke@435 2575 __ lea(exceptionPC->as_register(), pc_for_athrow);
duke@435 2576 add_call_info(pc_for_athrow_offset, info); // for exception handler
duke@435 2577
duke@435 2578 __ verify_not_null_oop(rax);
duke@435 2579 // search an exception handler (rax: exception oop, rdx: throwing pc)
duke@435 2580 if (compilation()->has_fpu_code()) {
duke@435 2581 unwind_id = Runtime1::handle_exception_id;
duke@435 2582 } else {
duke@435 2583 unwind_id = Runtime1::handle_exception_nofpu_id;
duke@435 2584 }
duke@435 2585 } else {
duke@435 2586 unwind_id = Runtime1::unwind_exception_id;
duke@435 2587 }
duke@435 2588 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
duke@435 2589
duke@435 2590 // enough room for two byte trap
duke@435 2591 __ nop();
duke@435 2592 }
duke@435 2593
duke@435 2594
duke@435 2595 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
duke@435 2596
duke@435 2597 // optimized version for linear scan:
duke@435 2598 // * count must be already in ECX (guaranteed by LinearScan)
duke@435 2599 // * left and dest must be equal
duke@435 2600 // * tmp must be unused
duke@435 2601 assert(count->as_register() == SHIFT_count, "count must be in ECX");
duke@435 2602 assert(left == dest, "left and dest must be equal");
duke@435 2603 assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
duke@435 2604
duke@435 2605 if (left->is_single_cpu()) {
duke@435 2606 Register value = left->as_register();
duke@435 2607 assert(value != SHIFT_count, "left cannot be ECX");
duke@435 2608
duke@435 2609 switch (code) {
duke@435 2610 case lir_shl: __ shll(value); break;
duke@435 2611 case lir_shr: __ sarl(value); break;
duke@435 2612 case lir_ushr: __ shrl(value); break;
duke@435 2613 default: ShouldNotReachHere();
duke@435 2614 }
duke@435 2615 } else if (left->is_double_cpu()) {
duke@435 2616 Register lo = left->as_register_lo();
duke@435 2617 Register hi = left->as_register_hi();
duke@435 2618 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
duke@435 2619
duke@435 2620 switch (code) {
duke@435 2621 case lir_shl: __ lshl(hi, lo); break;
duke@435 2622 case lir_shr: __ lshr(hi, lo, true); break;
duke@435 2623 case lir_ushr: __ lshr(hi, lo, false); break;
duke@435 2624 default: ShouldNotReachHere();
duke@435 2625 }
duke@435 2626 } else {
duke@435 2627 ShouldNotReachHere();
duke@435 2628 }
duke@435 2629 }
duke@435 2630
duke@435 2631
duke@435 2632 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
duke@435 2633 if (dest->is_single_cpu()) {
duke@435 2634 // first move left into dest so that left is not destroyed by the shift
duke@435 2635 Register value = dest->as_register();
duke@435 2636 count = count & 0x1F; // Java spec
duke@435 2637
duke@435 2638 move_regs(left->as_register(), value);
duke@435 2639 switch (code) {
duke@435 2640 case lir_shl: __ shll(value, count); break;
duke@435 2641 case lir_shr: __ sarl(value, count); break;
duke@435 2642 case lir_ushr: __ shrl(value, count); break;
duke@435 2643 default: ShouldNotReachHere();
duke@435 2644 }
duke@435 2645 } else if (dest->is_double_cpu()) {
duke@435 2646 Unimplemented();
duke@435 2647 } else {
duke@435 2648 ShouldNotReachHere();
duke@435 2649 }
duke@435 2650 }
duke@435 2651
duke@435 2652
duke@435 2653 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
duke@435 2654 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 2655 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 2656 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
duke@435 2657 __ movl (Address(rsp, offset_from_rsp_in_bytes), r);
duke@435 2658 }
duke@435 2659
duke@435 2660
duke@435 2661 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) {
duke@435 2662 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 2663 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 2664 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
duke@435 2665 __ movl (Address(rsp, offset_from_rsp_in_bytes), c);
duke@435 2666 }
duke@435 2667
duke@435 2668
duke@435 2669 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
duke@435 2670 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 2671 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 2672 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
duke@435 2673 __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
duke@435 2674 }
duke@435 2675
duke@435 2676
duke@435 2677 // This code replaces a call to arraycopy; no exception may
duke@435 2678 // be thrown in this code, they must be thrown in the System.arraycopy
duke@435 2679 // activation frame; we could save some checks if this would not be the case
duke@435 2680 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
duke@435 2681 ciArrayKlass* default_type = op->expected_type();
duke@435 2682 Register src = op->src()->as_register();
duke@435 2683 Register dst = op->dst()->as_register();
duke@435 2684 Register src_pos = op->src_pos()->as_register();
duke@435 2685 Register dst_pos = op->dst_pos()->as_register();
duke@435 2686 Register length = op->length()->as_register();
duke@435 2687 Register tmp = op->tmp()->as_register();
duke@435 2688
duke@435 2689 CodeStub* stub = op->stub();
duke@435 2690 int flags = op->flags();
duke@435 2691 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
duke@435 2692 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
duke@435 2693
duke@435 2694 // if we don't know anything or it's an object array, just go through the generic arraycopy
duke@435 2695 if (default_type == NULL) {
duke@435 2696 Label done;
duke@435 2697 // save outgoing arguments on stack in case call to System.arraycopy is needed
duke@435 2698 // HACK ALERT. This code used to push the parameters in a hardwired fashion
duke@435 2699 // for interpreter calling conventions. Now we have to do it in new style conventions.
duke@435 2700 // For the moment until C1 gets the new register allocator I just force all the
duke@435 2701 // args to the right place (except the register args) and then on the back side
duke@435 2702 // reload the register args properly if we go slow path. Yuck
duke@435 2703
duke@435 2704 // These are proper for the calling convention
duke@435 2705
duke@435 2706 store_parameter(length, 2);
duke@435 2707 store_parameter(dst_pos, 1);
duke@435 2708 store_parameter(dst, 0);
duke@435 2709
duke@435 2710 // these are just temporary placements until we need to reload
duke@435 2711 store_parameter(src_pos, 3);
duke@435 2712 store_parameter(src, 4);
duke@435 2713 assert(src == rcx && src_pos == rdx, "mismatch in calling convention");
duke@435 2714
duke@435 2715 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
duke@435 2716 __ pushl(length);
duke@435 2717 __ pushl(dst_pos);
duke@435 2718 __ pushl(dst);
duke@435 2719 __ pushl(src_pos);
duke@435 2720 __ pushl(src);
duke@435 2721 address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
duke@435 2722 __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
duke@435 2723
duke@435 2724 __ cmpl(rax, 0);
duke@435 2725 __ jcc(Assembler::equal, *stub->continuation());
duke@435 2726
duke@435 2727 // Reload values from the stack so they are where the stub
duke@435 2728 // expects them.
duke@435 2729 __ movl (dst, Address(rsp, 0*BytesPerWord));
duke@435 2730 __ movl (dst_pos, Address(rsp, 1*BytesPerWord));
duke@435 2731 __ movl (length, Address(rsp, 2*BytesPerWord));
duke@435 2732 __ movl (src_pos, Address(rsp, 3*BytesPerWord));
duke@435 2733 __ movl (src, Address(rsp, 4*BytesPerWord));
duke@435 2734 __ jmp(*stub->entry());
duke@435 2735
duke@435 2736 __ bind(*stub->continuation());
duke@435 2737 return;
duke@435 2738 }
duke@435 2739
duke@435 2740 assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
duke@435 2741
kvn@464 2742 int elem_size = type2aelembytes(basic_type);
duke@435 2743 int shift_amount;
duke@435 2744 Address::ScaleFactor scale;
duke@435 2745
duke@435 2746 switch (elem_size) {
duke@435 2747 case 1 :
duke@435 2748 shift_amount = 0;
duke@435 2749 scale = Address::times_1;
duke@435 2750 break;
duke@435 2751 case 2 :
duke@435 2752 shift_amount = 1;
duke@435 2753 scale = Address::times_2;
duke@435 2754 break;
duke@435 2755 case 4 :
duke@435 2756 shift_amount = 2;
duke@435 2757 scale = Address::times_4;
duke@435 2758 break;
duke@435 2759 case 8 :
duke@435 2760 shift_amount = 3;
duke@435 2761 scale = Address::times_8;
duke@435 2762 break;
duke@435 2763 default:
duke@435 2764 ShouldNotReachHere();
duke@435 2765 }
duke@435 2766
duke@435 2767 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
duke@435 2768 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
duke@435 2769 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
duke@435 2770 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
duke@435 2771
duke@435 2772 // test for NULL
duke@435 2773 if (flags & LIR_OpArrayCopy::src_null_check) {
duke@435 2774 __ testl(src, src);
duke@435 2775 __ jcc(Assembler::zero, *stub->entry());
duke@435 2776 }
duke@435 2777 if (flags & LIR_OpArrayCopy::dst_null_check) {
duke@435 2778 __ testl(dst, dst);
duke@435 2779 __ jcc(Assembler::zero, *stub->entry());
duke@435 2780 }
duke@435 2781
duke@435 2782 // check if negative
duke@435 2783 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
duke@435 2784 __ testl(src_pos, src_pos);
duke@435 2785 __ jcc(Assembler::less, *stub->entry());
duke@435 2786 }
duke@435 2787 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
duke@435 2788 __ testl(dst_pos, dst_pos);
duke@435 2789 __ jcc(Assembler::less, *stub->entry());
duke@435 2790 }
duke@435 2791 if (flags & LIR_OpArrayCopy::length_positive_check) {
duke@435 2792 __ testl(length, length);
duke@435 2793 __ jcc(Assembler::less, *stub->entry());
duke@435 2794 }
duke@435 2795
duke@435 2796 if (flags & LIR_OpArrayCopy::src_range_check) {
duke@435 2797 __ leal(tmp, Address(src_pos, length, Address::times_1, 0));
duke@435 2798 __ cmpl(tmp, src_length_addr);
duke@435 2799 __ jcc(Assembler::above, *stub->entry());
duke@435 2800 }
duke@435 2801 if (flags & LIR_OpArrayCopy::dst_range_check) {
duke@435 2802 __ leal(tmp, Address(dst_pos, length, Address::times_1, 0));
duke@435 2803 __ cmpl(tmp, dst_length_addr);
duke@435 2804 __ jcc(Assembler::above, *stub->entry());
duke@435 2805 }
duke@435 2806
duke@435 2807 if (flags & LIR_OpArrayCopy::type_check) {
duke@435 2808 __ movl(tmp, src_klass_addr);
duke@435 2809 __ cmpl(tmp, dst_klass_addr);
duke@435 2810 __ jcc(Assembler::notEqual, *stub->entry());
duke@435 2811 }
duke@435 2812
duke@435 2813 #ifdef ASSERT
duke@435 2814 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
duke@435 2815 // Sanity check the known type with the incoming class. For the
duke@435 2816 // primitive case the types must match exactly with src.klass and
duke@435 2817 // dst.klass each exactly matching the default type. For the
duke@435 2818 // object array case, if no type check is needed then either the
duke@435 2819 // dst type is exactly the expected type and the src type is a
duke@435 2820 // subtype which we can't check or src is the same array as dst
duke@435 2821 // but not necessarily exactly of type default_type.
duke@435 2822 Label known_ok, halt;
duke@435 2823 __ movoop(tmp, default_type->encoding());
duke@435 2824 if (basic_type != T_OBJECT) {
duke@435 2825 __ cmpl(tmp, dst_klass_addr);
duke@435 2826 __ jcc(Assembler::notEqual, halt);
duke@435 2827 __ cmpl(tmp, src_klass_addr);
duke@435 2828 __ jcc(Assembler::equal, known_ok);
duke@435 2829 } else {
duke@435 2830 __ cmpl(tmp, dst_klass_addr);
duke@435 2831 __ jcc(Assembler::equal, known_ok);
duke@435 2832 __ cmpl(src, dst);
duke@435 2833 __ jcc(Assembler::equal, known_ok);
duke@435 2834 }
duke@435 2835 __ bind(halt);
duke@435 2836 __ stop("incorrect type information in arraycopy");
duke@435 2837 __ bind(known_ok);
duke@435 2838 }
duke@435 2839 #endif
duke@435 2840
duke@435 2841 __ leal(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 2842 store_parameter(tmp, 0);
duke@435 2843 __ leal(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 2844 store_parameter(tmp, 1);
duke@435 2845 if (shift_amount > 0 && basic_type != T_OBJECT) {
duke@435 2846 __ shll(length, shift_amount);
duke@435 2847 }
duke@435 2848 store_parameter(length, 2);
duke@435 2849 if (basic_type == T_OBJECT) {
duke@435 2850 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
duke@435 2851 } else {
duke@435 2852 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
duke@435 2853 }
duke@435 2854
duke@435 2855 __ bind(*stub->continuation());
duke@435 2856 }
duke@435 2857
duke@435 2858
duke@435 2859 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
duke@435 2860 Register obj = op->obj_opr()->as_register(); // may not be an oop
duke@435 2861 Register hdr = op->hdr_opr()->as_register();
duke@435 2862 Register lock = op->lock_opr()->as_register();
duke@435 2863 if (!UseFastLocking) {
duke@435 2864 __ jmp(*op->stub()->entry());
duke@435 2865 } else if (op->code() == lir_lock) {
duke@435 2866 Register scratch = noreg;
duke@435 2867 if (UseBiasedLocking) {
duke@435 2868 scratch = op->scratch_opr()->as_register();
duke@435 2869 }
duke@435 2870 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 2871 // add debug info for NullPointerException only if one is possible
duke@435 2872 int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
duke@435 2873 if (op->info() != NULL) {
duke@435 2874 add_debug_info_for_null_check(null_check_offset, op->info());
duke@435 2875 }
duke@435 2876 // done
duke@435 2877 } else if (op->code() == lir_unlock) {
duke@435 2878 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 2879 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
duke@435 2880 } else {
duke@435 2881 Unimplemented();
duke@435 2882 }
duke@435 2883 __ bind(*op->stub()->continuation());
duke@435 2884 }
duke@435 2885
duke@435 2886
duke@435 2887 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
duke@435 2888 ciMethod* method = op->profiled_method();
duke@435 2889 int bci = op->profiled_bci();
duke@435 2890
duke@435 2891 // Update counter for all call types
duke@435 2892 ciMethodData* md = method->method_data();
duke@435 2893 if (md == NULL) {
duke@435 2894 bailout("out of memory building methodDataOop");
duke@435 2895 return;
duke@435 2896 }
duke@435 2897 ciProfileData* data = md->bci_to_data(bci);
duke@435 2898 assert(data->is_CounterData(), "need CounterData for calls");
duke@435 2899 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
duke@435 2900 Register mdo = op->mdo()->as_register();
duke@435 2901 __ movoop(mdo, md->encoding());
duke@435 2902 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
duke@435 2903 __ addl(counter_addr, DataLayout::counter_increment);
duke@435 2904 Bytecodes::Code bc = method->java_code_at_bci(bci);
duke@435 2905 // Perform additional virtual call profiling for invokevirtual and
duke@435 2906 // invokeinterface bytecodes
duke@435 2907 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
duke@435 2908 Tier1ProfileVirtualCalls) {
duke@435 2909 assert(op->recv()->is_single_cpu(), "recv must be allocated");
duke@435 2910 Register recv = op->recv()->as_register();
duke@435 2911 assert_different_registers(mdo, recv);
duke@435 2912 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
duke@435 2913 ciKlass* known_klass = op->known_holder();
duke@435 2914 if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
duke@435 2915 // We know the type that will be seen at this call site; we can
duke@435 2916 // statically update the methodDataOop rather than needing to do
duke@435 2917 // dynamic tests on the receiver type
duke@435 2918
duke@435 2919 // NOTE: we should probably put a lock around this search to
duke@435 2920 // avoid collisions by concurrent compilations
duke@435 2921 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
duke@435 2922 uint i;
duke@435 2923 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 2924 ciKlass* receiver = vc_data->receiver(i);
duke@435 2925 if (known_klass->equals(receiver)) {
duke@435 2926 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
duke@435 2927 __ addl(data_addr, DataLayout::counter_increment);
duke@435 2928 return;
duke@435 2929 }
duke@435 2930 }
duke@435 2931
duke@435 2932 // Receiver type not found in profile data; select an empty slot
duke@435 2933
duke@435 2934 // Note that this is less efficient than it should be because it
duke@435 2935 // always does a write to the receiver part of the
duke@435 2936 // VirtualCallData rather than just the first time
duke@435 2937 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 2938 ciKlass* receiver = vc_data->receiver(i);
duke@435 2939 if (receiver == NULL) {
duke@435 2940 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
duke@435 2941 __ movoop(recv_addr, known_klass->encoding());
duke@435 2942 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
duke@435 2943 __ addl(data_addr, DataLayout::counter_increment);
duke@435 2944 return;
duke@435 2945 }
duke@435 2946 }
duke@435 2947 } else {
duke@435 2948 __ movl(recv, Address(recv, oopDesc::klass_offset_in_bytes()));
duke@435 2949 Label update_done;
duke@435 2950 uint i;
duke@435 2951 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 2952 Label next_test;
duke@435 2953 // See if the receiver is receiver[n].
duke@435 2954 __ cmpl(recv, Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))));
duke@435 2955 __ jcc(Assembler::notEqual, next_test);
duke@435 2956 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
duke@435 2957 __ addl(data_addr, DataLayout::counter_increment);
duke@435 2958 __ jmp(update_done);
duke@435 2959 __ bind(next_test);
duke@435 2960 }
duke@435 2961
duke@435 2962 // Didn't find receiver; find next empty slot and fill it in
duke@435 2963 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 2964 Label next_test;
duke@435 2965 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
duke@435 2966 __ cmpl(recv_addr, NULL_WORD);
duke@435 2967 __ jcc(Assembler::notEqual, next_test);
duke@435 2968 __ movl(recv_addr, recv);
duke@435 2969 __ movl(Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))), DataLayout::counter_increment);
duke@435 2970 if (i < (VirtualCallData::row_limit() - 1)) {
duke@435 2971 __ jmp(update_done);
duke@435 2972 }
duke@435 2973 __ bind(next_test);
duke@435 2974 }
duke@435 2975
duke@435 2976 __ bind(update_done);
duke@435 2977 }
duke@435 2978 }
duke@435 2979 }
duke@435 2980
duke@435 2981
duke@435 2982 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
duke@435 2983 Unimplemented();
duke@435 2984 }
duke@435 2985
duke@435 2986
duke@435 2987 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
duke@435 2988 __ leal(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
duke@435 2989 }
duke@435 2990
duke@435 2991
duke@435 2992 void LIR_Assembler::align_backward_branch_target() {
duke@435 2993 __ align(BytesPerWord);
duke@435 2994 }
duke@435 2995
duke@435 2996
duke@435 2997 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
duke@435 2998 if (left->is_single_cpu()) {
duke@435 2999 __ negl(left->as_register());
duke@435 3000 move_regs(left->as_register(), dest->as_register());
duke@435 3001
duke@435 3002 } else if (left->is_double_cpu()) {
duke@435 3003 Register lo = left->as_register_lo();
duke@435 3004 Register hi = left->as_register_hi();
duke@435 3005 __ lneg(hi, lo);
duke@435 3006 if (dest->as_register_lo() == hi) {
duke@435 3007 assert(dest->as_register_hi() != lo, "destroying register");
duke@435 3008 move_regs(hi, dest->as_register_hi());
duke@435 3009 move_regs(lo, dest->as_register_lo());
duke@435 3010 } else {
duke@435 3011 move_regs(lo, dest->as_register_lo());
duke@435 3012 move_regs(hi, dest->as_register_hi());
duke@435 3013 }
duke@435 3014
duke@435 3015 } else if (dest->is_single_xmm()) {
duke@435 3016 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
duke@435 3017 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
duke@435 3018 }
duke@435 3019 __ xorps(dest->as_xmm_float_reg(),
duke@435 3020 ExternalAddress((address)float_signflip_pool));
duke@435 3021
duke@435 3022 } else if (dest->is_double_xmm()) {
duke@435 3023 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
duke@435 3024 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
duke@435 3025 }
duke@435 3026 __ xorpd(dest->as_xmm_double_reg(),
duke@435 3027 ExternalAddress((address)double_signflip_pool));
duke@435 3028
duke@435 3029 } else if (left->is_single_fpu() || left->is_double_fpu()) {
duke@435 3030 assert(left->fpu() == 0, "arg must be on TOS");
duke@435 3031 assert(dest->fpu() == 0, "dest must be TOS");
duke@435 3032 __ fchs();
duke@435 3033
duke@435 3034 } else {
duke@435 3035 ShouldNotReachHere();
duke@435 3036 }
duke@435 3037 }
duke@435 3038
duke@435 3039
duke@435 3040 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
duke@435 3041 assert(addr->is_address() && dest->is_register(), "check");
duke@435 3042 Register reg = dest->as_register();
duke@435 3043 __ leal(dest->as_register(), as_Address(addr->as_address_ptr()));
duke@435 3044 }
duke@435 3045
duke@435 3046
duke@435 3047
duke@435 3048 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 3049 assert(!tmp->is_valid(), "don't need temporary");
duke@435 3050 __ call(RuntimeAddress(dest));
duke@435 3051 if (info != NULL) {
duke@435 3052 add_call_info_here(info);
duke@435 3053 }
duke@435 3054 }
duke@435 3055
duke@435 3056
duke@435 3057 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
duke@435 3058 assert(type == T_LONG, "only for volatile long fields");
duke@435 3059
duke@435 3060 if (info != NULL) {
duke@435 3061 add_debug_info_for_null_check_here(info);
duke@435 3062 }
duke@435 3063
duke@435 3064 if (src->is_double_xmm()) {
duke@435 3065 if (dest->is_double_cpu()) {
duke@435 3066 __ movd(dest->as_register_lo(), src->as_xmm_double_reg());
duke@435 3067 __ psrlq(src->as_xmm_double_reg(), 32);
duke@435 3068 __ movd(dest->as_register_hi(), src->as_xmm_double_reg());
duke@435 3069 } else if (dest->is_double_stack()) {
duke@435 3070 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
duke@435 3071 } else if (dest->is_address()) {
duke@435 3072 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
duke@435 3073 } else {
duke@435 3074 ShouldNotReachHere();
duke@435 3075 }
duke@435 3076
duke@435 3077 } else if (dest->is_double_xmm()) {
duke@435 3078 if (src->is_double_stack()) {
duke@435 3079 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3080 } else if (src->is_address()) {
duke@435 3081 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
duke@435 3082 } else {
duke@435 3083 ShouldNotReachHere();
duke@435 3084 }
duke@435 3085
duke@435 3086 } else if (src->is_double_fpu()) {
duke@435 3087 assert(src->fpu_regnrLo() == 0, "must be TOS");
duke@435 3088 if (dest->is_double_stack()) {
duke@435 3089 __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
duke@435 3090 } else if (dest->is_address()) {
duke@435 3091 __ fistp_d(as_Address(dest->as_address_ptr()));
duke@435 3092 } else {
duke@435 3093 ShouldNotReachHere();
duke@435 3094 }
duke@435 3095
duke@435 3096 } else if (dest->is_double_fpu()) {
duke@435 3097 assert(dest->fpu_regnrLo() == 0, "must be TOS");
duke@435 3098 if (src->is_double_stack()) {
duke@435 3099 __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3100 } else if (src->is_address()) {
duke@435 3101 __ fild_d(as_Address(src->as_address_ptr()));
duke@435 3102 } else {
duke@435 3103 ShouldNotReachHere();
duke@435 3104 }
duke@435 3105 } else {
duke@435 3106 ShouldNotReachHere();
duke@435 3107 }
duke@435 3108 }
duke@435 3109
duke@435 3110
duke@435 3111 void LIR_Assembler::membar() {
duke@435 3112 __ membar();
duke@435 3113 }
duke@435 3114
duke@435 3115 void LIR_Assembler::membar_acquire() {
duke@435 3116 // No x86 machines currently require load fences
duke@435 3117 // __ load_fence();
duke@435 3118 }
duke@435 3119
duke@435 3120 void LIR_Assembler::membar_release() {
duke@435 3121 // No x86 machines currently require store fences
duke@435 3122 // __ store_fence();
duke@435 3123 }
duke@435 3124
duke@435 3125 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
duke@435 3126 assert(result_reg->is_register(), "check");
duke@435 3127 __ get_thread(result_reg->as_register());
duke@435 3128 }
duke@435 3129
duke@435 3130
duke@435 3131 void LIR_Assembler::peephole(LIR_List*) {
duke@435 3132 // do nothing for now
duke@435 3133 }
duke@435 3134
duke@435 3135
duke@435 3136 #undef __

mercurial