src/share/vm/runtime/virtualspace.cpp

Wed, 02 Feb 2011 11:35:26 -0500

author
bobv
date
Wed, 02 Feb 2011 11:35:26 -0500
changeset 2508
b92c45f2bc75
parent 2314
f95d63e2154a
child 3022
6aa4feb8a366
permissions
-rw-r--r--

7016023: Enable building ARM and PPC from src/closed repository
Reviewed-by: dholmes, bdelsart

duke@435 1 /*
stefank@2314 2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "oops/markOop.hpp"
stefank@2314 27 #include "oops/oop.inline.hpp"
stefank@2314 28 #include "runtime/virtualspace.hpp"
stefank@2314 29 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 30 # include "os_linux.inline.hpp"
stefank@2314 31 #endif
stefank@2314 32 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 33 # include "os_solaris.inline.hpp"
stefank@2314 34 #endif
stefank@2314 35 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 36 # include "os_windows.inline.hpp"
stefank@2314 37 #endif
duke@435 38
duke@435 39
duke@435 40 // ReservedSpace
duke@435 41 ReservedSpace::ReservedSpace(size_t size) {
coleenp@1091 42 initialize(size, 0, false, NULL, 0, false);
duke@435 43 }
duke@435 44
duke@435 45 ReservedSpace::ReservedSpace(size_t size, size_t alignment,
coleenp@672 46 bool large,
coleenp@672 47 char* requested_address,
coleenp@672 48 const size_t noaccess_prefix) {
coleenp@672 49 initialize(size+noaccess_prefix, alignment, large, requested_address,
coleenp@1091 50 noaccess_prefix, false);
coleenp@1091 51 }
coleenp@1091 52
coleenp@1091 53 ReservedSpace::ReservedSpace(size_t size, size_t alignment,
coleenp@1091 54 bool large,
coleenp@1091 55 bool executable) {
coleenp@1091 56 initialize(size, alignment, large, NULL, 0, executable);
duke@435 57 }
duke@435 58
duke@435 59 char *
duke@435 60 ReservedSpace::align_reserved_region(char* addr, const size_t len,
duke@435 61 const size_t prefix_size,
duke@435 62 const size_t prefix_align,
duke@435 63 const size_t suffix_size,
duke@435 64 const size_t suffix_align)
duke@435 65 {
duke@435 66 assert(addr != NULL, "sanity");
duke@435 67 const size_t required_size = prefix_size + suffix_size;
duke@435 68 assert(len >= required_size, "len too small");
duke@435 69
duke@435 70 const size_t s = size_t(addr);
duke@435 71 const size_t beg_ofs = s + prefix_size & suffix_align - 1;
duke@435 72 const size_t beg_delta = beg_ofs == 0 ? 0 : suffix_align - beg_ofs;
duke@435 73
duke@435 74 if (len < beg_delta + required_size) {
duke@435 75 return NULL; // Cannot do proper alignment.
duke@435 76 }
duke@435 77 const size_t end_delta = len - (beg_delta + required_size);
duke@435 78
duke@435 79 if (beg_delta != 0) {
duke@435 80 os::release_memory(addr, beg_delta);
duke@435 81 }
duke@435 82
duke@435 83 if (end_delta != 0) {
duke@435 84 char* release_addr = (char*) (s + beg_delta + required_size);
duke@435 85 os::release_memory(release_addr, end_delta);
duke@435 86 }
duke@435 87
duke@435 88 return (char*) (s + beg_delta);
duke@435 89 }
duke@435 90
duke@435 91 char* ReservedSpace::reserve_and_align(const size_t reserve_size,
duke@435 92 const size_t prefix_size,
duke@435 93 const size_t prefix_align,
duke@435 94 const size_t suffix_size,
duke@435 95 const size_t suffix_align)
duke@435 96 {
duke@435 97 assert(reserve_size > prefix_size + suffix_size, "should not be here");
duke@435 98
duke@435 99 char* raw_addr = os::reserve_memory(reserve_size, NULL, prefix_align);
duke@435 100 if (raw_addr == NULL) return NULL;
duke@435 101
duke@435 102 char* result = align_reserved_region(raw_addr, reserve_size, prefix_size,
duke@435 103 prefix_align, suffix_size,
duke@435 104 suffix_align);
duke@435 105 if (result == NULL && !os::release_memory(raw_addr, reserve_size)) {
duke@435 106 fatal("os::release_memory failed");
duke@435 107 }
duke@435 108
duke@435 109 #ifdef ASSERT
duke@435 110 if (result != NULL) {
duke@435 111 const size_t raw = size_t(raw_addr);
duke@435 112 const size_t res = size_t(result);
duke@435 113 assert(res >= raw, "alignment decreased start addr");
duke@435 114 assert(res + prefix_size + suffix_size <= raw + reserve_size,
duke@435 115 "alignment increased end addr");
duke@435 116 assert((res & prefix_align - 1) == 0, "bad alignment of prefix");
duke@435 117 assert((res + prefix_size & suffix_align - 1) == 0,
duke@435 118 "bad alignment of suffix");
duke@435 119 }
duke@435 120 #endif
duke@435 121
duke@435 122 return result;
duke@435 123 }
duke@435 124
kvn@1973 125 // Helper method.
kvn@1973 126 static bool failed_to_reserve_as_requested(char* base, char* requested_address,
kvn@1973 127 const size_t size, bool special)
kvn@1973 128 {
kvn@1973 129 if (base == requested_address || requested_address == NULL)
kvn@1973 130 return false; // did not fail
kvn@1973 131
kvn@1973 132 if (base != NULL) {
kvn@1973 133 // Different reserve address may be acceptable in other cases
kvn@1973 134 // but for compressed oops heap should be at requested address.
kvn@1973 135 assert(UseCompressedOops, "currently requested address used only for compressed oops");
kvn@1973 136 if (PrintCompressedOopsMode) {
kvn@1973 137 tty->cr();
kvn@1973 138 tty->print_cr("Reserved memory at not requested address: " PTR_FORMAT " vs " PTR_FORMAT, base, requested_address);
kvn@1973 139 }
kvn@1973 140 // OS ignored requested address. Try different address.
kvn@1973 141 if (special) {
kvn@1973 142 if (!os::release_memory_special(base, size)) {
kvn@1973 143 fatal("os::release_memory_special failed");
kvn@1973 144 }
kvn@1973 145 } else {
kvn@1973 146 if (!os::release_memory(base, size)) {
kvn@1973 147 fatal("os::release_memory failed");
kvn@1973 148 }
kvn@1973 149 }
kvn@1973 150 }
kvn@1973 151 return true;
kvn@1973 152 }
kvn@1973 153
duke@435 154 ReservedSpace::ReservedSpace(const size_t prefix_size,
duke@435 155 const size_t prefix_align,
duke@435 156 const size_t suffix_size,
coleenp@672 157 const size_t suffix_align,
kvn@1077 158 char* requested_address,
coleenp@672 159 const size_t noaccess_prefix)
duke@435 160 {
duke@435 161 assert(prefix_size != 0, "sanity");
duke@435 162 assert(prefix_align != 0, "sanity");
duke@435 163 assert(suffix_size != 0, "sanity");
duke@435 164 assert(suffix_align != 0, "sanity");
duke@435 165 assert((prefix_size & prefix_align - 1) == 0,
duke@435 166 "prefix_size not divisible by prefix_align");
duke@435 167 assert((suffix_size & suffix_align - 1) == 0,
duke@435 168 "suffix_size not divisible by suffix_align");
duke@435 169 assert((suffix_align & prefix_align - 1) == 0,
duke@435 170 "suffix_align not divisible by prefix_align");
duke@435 171
kvn@1973 172 // Assert that if noaccess_prefix is used, it is the same as prefix_align.
kvn@1973 173 assert(noaccess_prefix == 0 ||
kvn@1973 174 noaccess_prefix == prefix_align, "noaccess prefix wrong");
kvn@1973 175
coleenp@672 176 // Add in noaccess_prefix to prefix_size;
coleenp@672 177 const size_t adjusted_prefix_size = prefix_size + noaccess_prefix;
coleenp@672 178 const size_t size = adjusted_prefix_size + suffix_size;
coleenp@672 179
duke@435 180 // On systems where the entire region has to be reserved and committed up
duke@435 181 // front, the compound alignment normally done by this method is unnecessary.
duke@435 182 const bool try_reserve_special = UseLargePages &&
duke@435 183 prefix_align == os::large_page_size();
duke@435 184 if (!os::can_commit_large_page_memory() && try_reserve_special) {
coleenp@1091 185 initialize(size, prefix_align, true, requested_address, noaccess_prefix,
coleenp@1091 186 false);
duke@435 187 return;
duke@435 188 }
duke@435 189
duke@435 190 _base = NULL;
duke@435 191 _size = 0;
duke@435 192 _alignment = 0;
duke@435 193 _special = false;
coleenp@672 194 _noaccess_prefix = 0;
coleenp@1091 195 _executable = false;
coleenp@672 196
duke@435 197 // Optimistically try to reserve the exact size needed.
kvn@1077 198 char* addr;
kvn@1077 199 if (requested_address != 0) {
kvn@1973 200 requested_address -= noaccess_prefix; // adjust address
kvn@1973 201 assert(requested_address != NULL, "huge noaccess prefix?");
kvn@1973 202 addr = os::attempt_reserve_memory_at(size, requested_address);
kvn@1973 203 if (failed_to_reserve_as_requested(addr, requested_address, size, false)) {
kvn@1973 204 // OS ignored requested address. Try different address.
kvn@1973 205 addr = NULL;
kvn@1973 206 }
kvn@1077 207 } else {
kvn@1077 208 addr = os::reserve_memory(size, NULL, prefix_align);
kvn@1077 209 }
duke@435 210 if (addr == NULL) return;
duke@435 211
duke@435 212 // Check whether the result has the needed alignment (unlikely unless
duke@435 213 // prefix_align == suffix_align).
coleenp@672 214 const size_t ofs = size_t(addr) + adjusted_prefix_size & suffix_align - 1;
duke@435 215 if (ofs != 0) {
duke@435 216 // Wrong alignment. Release, allocate more space and do manual alignment.
duke@435 217 //
duke@435 218 // On most operating systems, another allocation with a somewhat larger size
duke@435 219 // will return an address "close to" that of the previous allocation. The
duke@435 220 // result is often the same address (if the kernel hands out virtual
duke@435 221 // addresses from low to high), or an address that is offset by the increase
duke@435 222 // in size. Exploit that to minimize the amount of extra space requested.
duke@435 223 if (!os::release_memory(addr, size)) {
duke@435 224 fatal("os::release_memory failed");
duke@435 225 }
duke@435 226
duke@435 227 const size_t extra = MAX2(ofs, suffix_align - ofs);
coleenp@672 228 addr = reserve_and_align(size + extra, adjusted_prefix_size, prefix_align,
duke@435 229 suffix_size, suffix_align);
duke@435 230 if (addr == NULL) {
duke@435 231 // Try an even larger region. If this fails, address space is exhausted.
coleenp@672 232 addr = reserve_and_align(size + suffix_align, adjusted_prefix_size,
duke@435 233 prefix_align, suffix_size, suffix_align);
duke@435 234 }
duke@435 235 }
duke@435 236
duke@435 237 _base = addr;
duke@435 238 _size = size;
duke@435 239 _alignment = prefix_align;
coleenp@672 240 _noaccess_prefix = noaccess_prefix;
duke@435 241 }
duke@435 242
duke@435 243 void ReservedSpace::initialize(size_t size, size_t alignment, bool large,
coleenp@672 244 char* requested_address,
coleenp@1091 245 const size_t noaccess_prefix,
coleenp@1091 246 bool executable) {
duke@435 247 const size_t granularity = os::vm_allocation_granularity();
duke@435 248 assert((size & granularity - 1) == 0,
duke@435 249 "size not aligned to os::vm_allocation_granularity()");
duke@435 250 assert((alignment & granularity - 1) == 0,
duke@435 251 "alignment not aligned to os::vm_allocation_granularity()");
duke@435 252 assert(alignment == 0 || is_power_of_2((intptr_t)alignment),
duke@435 253 "not a power of 2");
duke@435 254
duke@435 255 _base = NULL;
duke@435 256 _size = 0;
duke@435 257 _special = false;
coleenp@1091 258 _executable = executable;
duke@435 259 _alignment = 0;
coleenp@672 260 _noaccess_prefix = 0;
duke@435 261 if (size == 0) {
duke@435 262 return;
duke@435 263 }
duke@435 264
duke@435 265 // If OS doesn't support demand paging for large page memory, we need
duke@435 266 // to use reserve_memory_special() to reserve and pin the entire region.
duke@435 267 bool special = large && !os::can_commit_large_page_memory();
duke@435 268 char* base = NULL;
duke@435 269
kvn@1973 270 if (requested_address != 0) {
kvn@1973 271 requested_address -= noaccess_prefix; // adjust requested address
kvn@1973 272 assert(requested_address != NULL, "huge noaccess prefix?");
kvn@1973 273 }
kvn@1973 274
duke@435 275 if (special) {
duke@435 276
coleenp@1091 277 base = os::reserve_memory_special(size, requested_address, executable);
duke@435 278
duke@435 279 if (base != NULL) {
kvn@1973 280 if (failed_to_reserve_as_requested(base, requested_address, size, true)) {
kvn@1973 281 // OS ignored requested address. Try different address.
kvn@1973 282 return;
kvn@1973 283 }
duke@435 284 // Check alignment constraints
duke@435 285 if (alignment > 0) {
duke@435 286 assert((uintptr_t) base % alignment == 0,
duke@435 287 "Large pages returned a non-aligned address");
duke@435 288 }
duke@435 289 _special = true;
duke@435 290 } else {
duke@435 291 // failed; try to reserve regular memory below
kvn@1973 292 if (UseLargePages && (!FLAG_IS_DEFAULT(UseLargePages) ||
kvn@1973 293 !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {
kvn@1973 294 if (PrintCompressedOopsMode) {
kvn@1973 295 tty->cr();
kvn@1973 296 tty->print_cr("Reserve regular memory without large pages.");
kvn@1973 297 }
kvn@1973 298 }
duke@435 299 }
duke@435 300 }
duke@435 301
duke@435 302 if (base == NULL) {
duke@435 303 // Optimistically assume that the OSes returns an aligned base pointer.
duke@435 304 // When reserving a large address range, most OSes seem to align to at
duke@435 305 // least 64K.
duke@435 306
duke@435 307 // If the memory was requested at a particular address, use
duke@435 308 // os::attempt_reserve_memory_at() to avoid over mapping something
duke@435 309 // important. If available space is not detected, return NULL.
duke@435 310
duke@435 311 if (requested_address != 0) {
kvn@1973 312 base = os::attempt_reserve_memory_at(size, requested_address);
kvn@1973 313 if (failed_to_reserve_as_requested(base, requested_address, size, false)) {
kvn@1973 314 // OS ignored requested address. Try different address.
kvn@1973 315 base = NULL;
kvn@1973 316 }
duke@435 317 } else {
duke@435 318 base = os::reserve_memory(size, NULL, alignment);
duke@435 319 }
duke@435 320
duke@435 321 if (base == NULL) return;
duke@435 322
duke@435 323 // Check alignment constraints
duke@435 324 if (alignment > 0 && ((size_t)base & alignment - 1) != 0) {
duke@435 325 // Base not aligned, retry
duke@435 326 if (!os::release_memory(base, size)) fatal("os::release_memory failed");
duke@435 327 // Reserve size large enough to do manual alignment and
duke@435 328 // increase size to a multiple of the desired alignment
duke@435 329 size = align_size_up(size, alignment);
duke@435 330 size_t extra_size = size + alignment;
ysr@777 331 do {
ysr@777 332 char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
ysr@777 333 if (extra_base == NULL) return;
ysr@777 334 // Do manual alignement
ysr@777 335 base = (char*) align_size_up((uintptr_t) extra_base, alignment);
ysr@777 336 assert(base >= extra_base, "just checking");
ysr@777 337 // Re-reserve the region at the aligned base address.
ysr@777 338 os::release_memory(extra_base, extra_size);
ysr@777 339 base = os::reserve_memory(size, base);
ysr@777 340 } while (base == NULL);
duke@435 341 }
duke@435 342 }
duke@435 343 // Done
duke@435 344 _base = base;
duke@435 345 _size = size;
duke@435 346 _alignment = MAX2(alignment, (size_t) os::vm_page_size());
coleenp@672 347 _noaccess_prefix = noaccess_prefix;
coleenp@672 348
coleenp@672 349 // Assert that if noaccess_prefix is used, it is the same as alignment.
coleenp@672 350 assert(noaccess_prefix == 0 ||
coleenp@672 351 noaccess_prefix == _alignment, "noaccess prefix wrong");
duke@435 352
duke@435 353 assert(markOopDesc::encode_pointer_as_mark(_base)->decode_pointer() == _base,
duke@435 354 "area must be distinguisable from marks for mark-sweep");
duke@435 355 assert(markOopDesc::encode_pointer_as_mark(&_base[size])->decode_pointer() == &_base[size],
duke@435 356 "area must be distinguisable from marks for mark-sweep");
duke@435 357 }
duke@435 358
duke@435 359
duke@435 360 ReservedSpace::ReservedSpace(char* base, size_t size, size_t alignment,
coleenp@1091 361 bool special, bool executable) {
duke@435 362 assert((size % os::vm_allocation_granularity()) == 0,
duke@435 363 "size not allocation aligned");
duke@435 364 _base = base;
duke@435 365 _size = size;
duke@435 366 _alignment = alignment;
coleenp@672 367 _noaccess_prefix = 0;
duke@435 368 _special = special;
coleenp@1091 369 _executable = executable;
duke@435 370 }
duke@435 371
duke@435 372
duke@435 373 ReservedSpace ReservedSpace::first_part(size_t partition_size, size_t alignment,
duke@435 374 bool split, bool realloc) {
duke@435 375 assert(partition_size <= size(), "partition failed");
duke@435 376 if (split) {
coleenp@1091 377 os::split_reserved_memory(base(), size(), partition_size, realloc);
duke@435 378 }
coleenp@1091 379 ReservedSpace result(base(), partition_size, alignment, special(),
coleenp@1091 380 executable());
duke@435 381 return result;
duke@435 382 }
duke@435 383
duke@435 384
duke@435 385 ReservedSpace
duke@435 386 ReservedSpace::last_part(size_t partition_size, size_t alignment) {
duke@435 387 assert(partition_size <= size(), "partition failed");
duke@435 388 ReservedSpace result(base() + partition_size, size() - partition_size,
coleenp@1091 389 alignment, special(), executable());
duke@435 390 return result;
duke@435 391 }
duke@435 392
duke@435 393
duke@435 394 size_t ReservedSpace::page_align_size_up(size_t size) {
duke@435 395 return align_size_up(size, os::vm_page_size());
duke@435 396 }
duke@435 397
duke@435 398
duke@435 399 size_t ReservedSpace::page_align_size_down(size_t size) {
duke@435 400 return align_size_down(size, os::vm_page_size());
duke@435 401 }
duke@435 402
duke@435 403
duke@435 404 size_t ReservedSpace::allocation_align_size_up(size_t size) {
duke@435 405 return align_size_up(size, os::vm_allocation_granularity());
duke@435 406 }
duke@435 407
duke@435 408
duke@435 409 size_t ReservedSpace::allocation_align_size_down(size_t size) {
duke@435 410 return align_size_down(size, os::vm_allocation_granularity());
duke@435 411 }
duke@435 412
duke@435 413
duke@435 414 void ReservedSpace::release() {
duke@435 415 if (is_reserved()) {
coleenp@672 416 char *real_base = _base - _noaccess_prefix;
coleenp@672 417 const size_t real_size = _size + _noaccess_prefix;
duke@435 418 if (special()) {
coleenp@672 419 os::release_memory_special(real_base, real_size);
duke@435 420 } else{
coleenp@672 421 os::release_memory(real_base, real_size);
duke@435 422 }
duke@435 423 _base = NULL;
duke@435 424 _size = 0;
coleenp@672 425 _noaccess_prefix = 0;
duke@435 426 _special = false;
coleenp@1091 427 _executable = false;
duke@435 428 }
duke@435 429 }
duke@435 430
coleenp@672 431 void ReservedSpace::protect_noaccess_prefix(const size_t size) {
kvn@1973 432 assert( (_noaccess_prefix != 0) == (UseCompressedOops && _base != NULL &&
kvn@1973 433 (size_t(_base + _size) > OopEncodingHeapMax) &&
kvn@1973 434 Universe::narrow_oop_use_implicit_null_checks()),
kvn@1973 435 "noaccess_prefix should be used only with non zero based compressed oops");
kvn@1973 436
kvn@1973 437 // If there is no noaccess prefix, return.
coleenp@672 438 if (_noaccess_prefix == 0) return;
coleenp@672 439
coleenp@672 440 assert(_noaccess_prefix >= (size_t)os::vm_page_size(),
coleenp@672 441 "must be at least page size big");
coleenp@672 442
coleenp@672 443 // Protect memory at the base of the allocated region.
coleenp@672 444 // If special, the page was committed (only matters on windows)
coleenp@672 445 if (!os::protect_memory(_base, _noaccess_prefix, os::MEM_PROT_NONE,
coleenp@672 446 _special)) {
coleenp@672 447 fatal("cannot protect protection page");
coleenp@672 448 }
kvn@1973 449 if (PrintCompressedOopsMode) {
kvn@1973 450 tty->cr();
kvn@1973 451 tty->print_cr("Protected page at the reserved heap base: " PTR_FORMAT " / " INTX_FORMAT " bytes", _base, _noaccess_prefix);
kvn@1973 452 }
coleenp@672 453
coleenp@672 454 _base += _noaccess_prefix;
coleenp@672 455 _size -= _noaccess_prefix;
coleenp@672 456 assert((size == _size) && ((uintptr_t)_base % _alignment == 0),
coleenp@672 457 "must be exactly of required size and alignment");
coleenp@672 458 }
coleenp@672 459
coleenp@672 460 ReservedHeapSpace::ReservedHeapSpace(size_t size, size_t alignment,
coleenp@672 461 bool large, char* requested_address) :
coleenp@672 462 ReservedSpace(size, alignment, large,
coleenp@672 463 requested_address,
kvn@1077 464 (UseCompressedOops && (Universe::narrow_oop_base() != NULL) &&
kvn@1077 465 Universe::narrow_oop_use_implicit_null_checks()) ?
coleenp@760 466 lcm(os::vm_page_size(), alignment) : 0) {
coleenp@672 467 // Only reserved space for the java heap should have a noaccess_prefix
coleenp@672 468 // if using compressed oops.
coleenp@672 469 protect_noaccess_prefix(size);
coleenp@672 470 }
coleenp@672 471
coleenp@672 472 ReservedHeapSpace::ReservedHeapSpace(const size_t prefix_size,
coleenp@672 473 const size_t prefix_align,
coleenp@672 474 const size_t suffix_size,
kvn@1077 475 const size_t suffix_align,
kvn@1077 476 char* requested_address) :
coleenp@672 477 ReservedSpace(prefix_size, prefix_align, suffix_size, suffix_align,
kvn@1077 478 requested_address,
kvn@1077 479 (UseCompressedOops && (Universe::narrow_oop_base() != NULL) &&
kvn@1077 480 Universe::narrow_oop_use_implicit_null_checks()) ?
coleenp@760 481 lcm(os::vm_page_size(), prefix_align) : 0) {
coleenp@672 482 protect_noaccess_prefix(prefix_size+suffix_size);
coleenp@672 483 }
duke@435 484
coleenp@1091 485 // Reserve space for code segment. Same as Java heap only we mark this as
coleenp@1091 486 // executable.
coleenp@1091 487 ReservedCodeSpace::ReservedCodeSpace(size_t r_size,
coleenp@1091 488 size_t rs_align,
coleenp@1091 489 bool large) :
coleenp@1091 490 ReservedSpace(r_size, rs_align, large, /*executable*/ true) {
coleenp@1091 491 }
coleenp@1091 492
duke@435 493 // VirtualSpace
duke@435 494
duke@435 495 VirtualSpace::VirtualSpace() {
duke@435 496 _low_boundary = NULL;
duke@435 497 _high_boundary = NULL;
duke@435 498 _low = NULL;
duke@435 499 _high = NULL;
duke@435 500 _lower_high = NULL;
duke@435 501 _middle_high = NULL;
duke@435 502 _upper_high = NULL;
duke@435 503 _lower_high_boundary = NULL;
duke@435 504 _middle_high_boundary = NULL;
duke@435 505 _upper_high_boundary = NULL;
duke@435 506 _lower_alignment = 0;
duke@435 507 _middle_alignment = 0;
duke@435 508 _upper_alignment = 0;
coleenp@672 509 _special = false;
coleenp@1091 510 _executable = false;
duke@435 511 }
duke@435 512
duke@435 513
duke@435 514 bool VirtualSpace::initialize(ReservedSpace rs, size_t committed_size) {
duke@435 515 if(!rs.is_reserved()) return false; // allocation failed.
duke@435 516 assert(_low_boundary == NULL, "VirtualSpace already initialized");
duke@435 517 _low_boundary = rs.base();
duke@435 518 _high_boundary = low_boundary() + rs.size();
duke@435 519
duke@435 520 _low = low_boundary();
duke@435 521 _high = low();
duke@435 522
duke@435 523 _special = rs.special();
coleenp@1091 524 _executable = rs.executable();
duke@435 525
duke@435 526 // When a VirtualSpace begins life at a large size, make all future expansion
duke@435 527 // and shrinking occur aligned to a granularity of large pages. This avoids
duke@435 528 // fragmentation of physical addresses that inhibits the use of large pages
duke@435 529 // by the OS virtual memory system. Empirically, we see that with a 4MB
duke@435 530 // page size, the only spaces that get handled this way are codecache and
duke@435 531 // the heap itself, both of which provide a substantial performance
duke@435 532 // boost in many benchmarks when covered by large pages.
duke@435 533 //
duke@435 534 // No attempt is made to force large page alignment at the very top and
duke@435 535 // bottom of the space if they are not aligned so already.
duke@435 536 _lower_alignment = os::vm_page_size();
duke@435 537 _middle_alignment = os::page_size_for_region(rs.size(), rs.size(), 1);
duke@435 538 _upper_alignment = os::vm_page_size();
duke@435 539
duke@435 540 // End of each region
duke@435 541 _lower_high_boundary = (char*) round_to((intptr_t) low_boundary(), middle_alignment());
duke@435 542 _middle_high_boundary = (char*) round_down((intptr_t) high_boundary(), middle_alignment());
duke@435 543 _upper_high_boundary = high_boundary();
duke@435 544
duke@435 545 // High address of each region
duke@435 546 _lower_high = low_boundary();
duke@435 547 _middle_high = lower_high_boundary();
duke@435 548 _upper_high = middle_high_boundary();
duke@435 549
duke@435 550 // commit to initial size
duke@435 551 if (committed_size > 0) {
duke@435 552 if (!expand_by(committed_size)) {
duke@435 553 return false;
duke@435 554 }
duke@435 555 }
duke@435 556 return true;
duke@435 557 }
duke@435 558
duke@435 559
duke@435 560 VirtualSpace::~VirtualSpace() {
duke@435 561 release();
duke@435 562 }
duke@435 563
duke@435 564
duke@435 565 void VirtualSpace::release() {
coleenp@672 566 // This does not release memory it never reserved.
coleenp@672 567 // Caller must release via rs.release();
duke@435 568 _low_boundary = NULL;
duke@435 569 _high_boundary = NULL;
duke@435 570 _low = NULL;
duke@435 571 _high = NULL;
duke@435 572 _lower_high = NULL;
duke@435 573 _middle_high = NULL;
duke@435 574 _upper_high = NULL;
duke@435 575 _lower_high_boundary = NULL;
duke@435 576 _middle_high_boundary = NULL;
duke@435 577 _upper_high_boundary = NULL;
duke@435 578 _lower_alignment = 0;
duke@435 579 _middle_alignment = 0;
duke@435 580 _upper_alignment = 0;
duke@435 581 _special = false;
coleenp@1091 582 _executable = false;
duke@435 583 }
duke@435 584
duke@435 585
duke@435 586 size_t VirtualSpace::committed_size() const {
duke@435 587 return pointer_delta(high(), low(), sizeof(char));
duke@435 588 }
duke@435 589
duke@435 590
duke@435 591 size_t VirtualSpace::reserved_size() const {
duke@435 592 return pointer_delta(high_boundary(), low_boundary(), sizeof(char));
duke@435 593 }
duke@435 594
duke@435 595
duke@435 596 size_t VirtualSpace::uncommitted_size() const {
duke@435 597 return reserved_size() - committed_size();
duke@435 598 }
duke@435 599
duke@435 600
duke@435 601 bool VirtualSpace::contains(const void* p) const {
duke@435 602 return low() <= (const char*) p && (const char*) p < high();
duke@435 603 }
duke@435 604
duke@435 605 /*
duke@435 606 First we need to determine if a particular virtual space is using large
duke@435 607 pages. This is done at the initialize function and only virtual spaces
duke@435 608 that are larger than LargePageSizeInBytes use large pages. Once we
duke@435 609 have determined this, all expand_by and shrink_by calls must grow and
duke@435 610 shrink by large page size chunks. If a particular request
duke@435 611 is within the current large page, the call to commit and uncommit memory
duke@435 612 can be ignored. In the case that the low and high boundaries of this
duke@435 613 space is not large page aligned, the pages leading to the first large
duke@435 614 page address and the pages after the last large page address must be
duke@435 615 allocated with default pages.
duke@435 616 */
duke@435 617 bool VirtualSpace::expand_by(size_t bytes, bool pre_touch) {
duke@435 618 if (uncommitted_size() < bytes) return false;
duke@435 619
duke@435 620 if (special()) {
duke@435 621 // don't commit memory if the entire space is pinned in memory
duke@435 622 _high += bytes;
duke@435 623 return true;
duke@435 624 }
duke@435 625
duke@435 626 char* previous_high = high();
duke@435 627 char* unaligned_new_high = high() + bytes;
duke@435 628 assert(unaligned_new_high <= high_boundary(),
duke@435 629 "cannot expand by more than upper boundary");
duke@435 630
duke@435 631 // Calculate where the new high for each of the regions should be. If
duke@435 632 // the low_boundary() and high_boundary() are LargePageSizeInBytes aligned
duke@435 633 // then the unaligned lower and upper new highs would be the
duke@435 634 // lower_high() and upper_high() respectively.
duke@435 635 char* unaligned_lower_new_high =
duke@435 636 MIN2(unaligned_new_high, lower_high_boundary());
duke@435 637 char* unaligned_middle_new_high =
duke@435 638 MIN2(unaligned_new_high, middle_high_boundary());
duke@435 639 char* unaligned_upper_new_high =
duke@435 640 MIN2(unaligned_new_high, upper_high_boundary());
duke@435 641
duke@435 642 // Align the new highs based on the regions alignment. lower and upper
duke@435 643 // alignment will always be default page size. middle alignment will be
duke@435 644 // LargePageSizeInBytes if the actual size of the virtual space is in
duke@435 645 // fact larger than LargePageSizeInBytes.
duke@435 646 char* aligned_lower_new_high =
duke@435 647 (char*) round_to((intptr_t) unaligned_lower_new_high, lower_alignment());
duke@435 648 char* aligned_middle_new_high =
duke@435 649 (char*) round_to((intptr_t) unaligned_middle_new_high, middle_alignment());
duke@435 650 char* aligned_upper_new_high =
duke@435 651 (char*) round_to((intptr_t) unaligned_upper_new_high, upper_alignment());
duke@435 652
duke@435 653 // Determine which regions need to grow in this expand_by call.
duke@435 654 // If you are growing in the lower region, high() must be in that
duke@435 655 // region so calcuate the size based on high(). For the middle and
duke@435 656 // upper regions, determine the starting point of growth based on the
duke@435 657 // location of high(). By getting the MAX of the region's low address
duke@435 658 // (or the prevoius region's high address) and high(), we can tell if it
duke@435 659 // is an intra or inter region growth.
duke@435 660 size_t lower_needs = 0;
duke@435 661 if (aligned_lower_new_high > lower_high()) {
duke@435 662 lower_needs =
duke@435 663 pointer_delta(aligned_lower_new_high, lower_high(), sizeof(char));
duke@435 664 }
duke@435 665 size_t middle_needs = 0;
duke@435 666 if (aligned_middle_new_high > middle_high()) {
duke@435 667 middle_needs =
duke@435 668 pointer_delta(aligned_middle_new_high, middle_high(), sizeof(char));
duke@435 669 }
duke@435 670 size_t upper_needs = 0;
duke@435 671 if (aligned_upper_new_high > upper_high()) {
duke@435 672 upper_needs =
duke@435 673 pointer_delta(aligned_upper_new_high, upper_high(), sizeof(char));
duke@435 674 }
duke@435 675
duke@435 676 // Check contiguity.
duke@435 677 assert(low_boundary() <= lower_high() &&
duke@435 678 lower_high() <= lower_high_boundary(),
duke@435 679 "high address must be contained within the region");
duke@435 680 assert(lower_high_boundary() <= middle_high() &&
duke@435 681 middle_high() <= middle_high_boundary(),
duke@435 682 "high address must be contained within the region");
duke@435 683 assert(middle_high_boundary() <= upper_high() &&
duke@435 684 upper_high() <= upper_high_boundary(),
duke@435 685 "high address must be contained within the region");
duke@435 686
duke@435 687 // Commit regions
duke@435 688 if (lower_needs > 0) {
duke@435 689 assert(low_boundary() <= lower_high() &&
duke@435 690 lower_high() + lower_needs <= lower_high_boundary(),
duke@435 691 "must not expand beyond region");
coleenp@1091 692 if (!os::commit_memory(lower_high(), lower_needs, _executable)) {
duke@435 693 debug_only(warning("os::commit_memory failed"));
duke@435 694 return false;
duke@435 695 } else {
duke@435 696 _lower_high += lower_needs;
duke@435 697 }
duke@435 698 }
duke@435 699 if (middle_needs > 0) {
duke@435 700 assert(lower_high_boundary() <= middle_high() &&
duke@435 701 middle_high() + middle_needs <= middle_high_boundary(),
duke@435 702 "must not expand beyond region");
coleenp@1091 703 if (!os::commit_memory(middle_high(), middle_needs, middle_alignment(),
coleenp@1091 704 _executable)) {
duke@435 705 debug_only(warning("os::commit_memory failed"));
duke@435 706 return false;
duke@435 707 }
duke@435 708 _middle_high += middle_needs;
duke@435 709 }
duke@435 710 if (upper_needs > 0) {
duke@435 711 assert(middle_high_boundary() <= upper_high() &&
duke@435 712 upper_high() + upper_needs <= upper_high_boundary(),
duke@435 713 "must not expand beyond region");
coleenp@1091 714 if (!os::commit_memory(upper_high(), upper_needs, _executable)) {
duke@435 715 debug_only(warning("os::commit_memory failed"));
duke@435 716 return false;
duke@435 717 } else {
duke@435 718 _upper_high += upper_needs;
duke@435 719 }
duke@435 720 }
duke@435 721
duke@435 722 if (pre_touch || AlwaysPreTouch) {
duke@435 723 int vm_ps = os::vm_page_size();
duke@435 724 for (char* curr = previous_high;
duke@435 725 curr < unaligned_new_high;
duke@435 726 curr += vm_ps) {
duke@435 727 // Note the use of a write here; originally we tried just a read, but
duke@435 728 // since the value read was unused, the optimizer removed the read.
duke@435 729 // If we ever have a concurrent touchahead thread, we'll want to use
duke@435 730 // a read, to avoid the potential of overwriting data (if a mutator
duke@435 731 // thread beats the touchahead thread to a page). There are various
duke@435 732 // ways of making sure this read is not optimized away: for example,
duke@435 733 // generating the code for a read procedure at runtime.
duke@435 734 *curr = 0;
duke@435 735 }
duke@435 736 }
duke@435 737
duke@435 738 _high += bytes;
duke@435 739 return true;
duke@435 740 }
duke@435 741
duke@435 742 // A page is uncommitted if the contents of the entire page is deemed unusable.
duke@435 743 // Continue to decrement the high() pointer until it reaches a page boundary
duke@435 744 // in which case that particular page can now be uncommitted.
duke@435 745 void VirtualSpace::shrink_by(size_t size) {
duke@435 746 if (committed_size() < size)
duke@435 747 fatal("Cannot shrink virtual space to negative size");
duke@435 748
duke@435 749 if (special()) {
duke@435 750 // don't uncommit if the entire space is pinned in memory
duke@435 751 _high -= size;
duke@435 752 return;
duke@435 753 }
duke@435 754
duke@435 755 char* unaligned_new_high = high() - size;
duke@435 756 assert(unaligned_new_high >= low_boundary(), "cannot shrink past lower boundary");
duke@435 757
duke@435 758 // Calculate new unaligned address
duke@435 759 char* unaligned_upper_new_high =
duke@435 760 MAX2(unaligned_new_high, middle_high_boundary());
duke@435 761 char* unaligned_middle_new_high =
duke@435 762 MAX2(unaligned_new_high, lower_high_boundary());
duke@435 763 char* unaligned_lower_new_high =
duke@435 764 MAX2(unaligned_new_high, low_boundary());
duke@435 765
duke@435 766 // Align address to region's alignment
duke@435 767 char* aligned_upper_new_high =
duke@435 768 (char*) round_to((intptr_t) unaligned_upper_new_high, upper_alignment());
duke@435 769 char* aligned_middle_new_high =
duke@435 770 (char*) round_to((intptr_t) unaligned_middle_new_high, middle_alignment());
duke@435 771 char* aligned_lower_new_high =
duke@435 772 (char*) round_to((intptr_t) unaligned_lower_new_high, lower_alignment());
duke@435 773
duke@435 774 // Determine which regions need to shrink
duke@435 775 size_t upper_needs = 0;
duke@435 776 if (aligned_upper_new_high < upper_high()) {
duke@435 777 upper_needs =
duke@435 778 pointer_delta(upper_high(), aligned_upper_new_high, sizeof(char));
duke@435 779 }
duke@435 780 size_t middle_needs = 0;
duke@435 781 if (aligned_middle_new_high < middle_high()) {
duke@435 782 middle_needs =
duke@435 783 pointer_delta(middle_high(), aligned_middle_new_high, sizeof(char));
duke@435 784 }
duke@435 785 size_t lower_needs = 0;
duke@435 786 if (aligned_lower_new_high < lower_high()) {
duke@435 787 lower_needs =
duke@435 788 pointer_delta(lower_high(), aligned_lower_new_high, sizeof(char));
duke@435 789 }
duke@435 790
duke@435 791 // Check contiguity.
duke@435 792 assert(middle_high_boundary() <= upper_high() &&
duke@435 793 upper_high() <= upper_high_boundary(),
duke@435 794 "high address must be contained within the region");
duke@435 795 assert(lower_high_boundary() <= middle_high() &&
duke@435 796 middle_high() <= middle_high_boundary(),
duke@435 797 "high address must be contained within the region");
duke@435 798 assert(low_boundary() <= lower_high() &&
duke@435 799 lower_high() <= lower_high_boundary(),
duke@435 800 "high address must be contained within the region");
duke@435 801
duke@435 802 // Uncommit
duke@435 803 if (upper_needs > 0) {
duke@435 804 assert(middle_high_boundary() <= aligned_upper_new_high &&
duke@435 805 aligned_upper_new_high + upper_needs <= upper_high_boundary(),
duke@435 806 "must not shrink beyond region");
duke@435 807 if (!os::uncommit_memory(aligned_upper_new_high, upper_needs)) {
duke@435 808 debug_only(warning("os::uncommit_memory failed"));
duke@435 809 return;
duke@435 810 } else {
duke@435 811 _upper_high -= upper_needs;
duke@435 812 }
duke@435 813 }
duke@435 814 if (middle_needs > 0) {
duke@435 815 assert(lower_high_boundary() <= aligned_middle_new_high &&
duke@435 816 aligned_middle_new_high + middle_needs <= middle_high_boundary(),
duke@435 817 "must not shrink beyond region");
duke@435 818 if (!os::uncommit_memory(aligned_middle_new_high, middle_needs)) {
duke@435 819 debug_only(warning("os::uncommit_memory failed"));
duke@435 820 return;
duke@435 821 } else {
duke@435 822 _middle_high -= middle_needs;
duke@435 823 }
duke@435 824 }
duke@435 825 if (lower_needs > 0) {
duke@435 826 assert(low_boundary() <= aligned_lower_new_high &&
duke@435 827 aligned_lower_new_high + lower_needs <= lower_high_boundary(),
duke@435 828 "must not shrink beyond region");
duke@435 829 if (!os::uncommit_memory(aligned_lower_new_high, lower_needs)) {
duke@435 830 debug_only(warning("os::uncommit_memory failed"));
duke@435 831 return;
duke@435 832 } else {
duke@435 833 _lower_high -= lower_needs;
duke@435 834 }
duke@435 835 }
duke@435 836
duke@435 837 _high -= size;
duke@435 838 }
duke@435 839
duke@435 840 #ifndef PRODUCT
duke@435 841 void VirtualSpace::check_for_contiguity() {
duke@435 842 // Check contiguity.
duke@435 843 assert(low_boundary() <= lower_high() &&
duke@435 844 lower_high() <= lower_high_boundary(),
duke@435 845 "high address must be contained within the region");
duke@435 846 assert(lower_high_boundary() <= middle_high() &&
duke@435 847 middle_high() <= middle_high_boundary(),
duke@435 848 "high address must be contained within the region");
duke@435 849 assert(middle_high_boundary() <= upper_high() &&
duke@435 850 upper_high() <= upper_high_boundary(),
duke@435 851 "high address must be contained within the region");
duke@435 852 assert(low() >= low_boundary(), "low");
duke@435 853 assert(low_boundary() <= lower_high_boundary(), "lower high boundary");
duke@435 854 assert(upper_high_boundary() <= high_boundary(), "upper high boundary");
duke@435 855 assert(high() <= upper_high(), "upper high");
duke@435 856 }
duke@435 857
duke@435 858 void VirtualSpace::print() {
duke@435 859 tty->print ("Virtual space:");
duke@435 860 if (special()) tty->print(" (pinned in memory)");
duke@435 861 tty->cr();
duke@435 862 tty->print_cr(" - committed: %ld", committed_size());
duke@435 863 tty->print_cr(" - reserved: %ld", reserved_size());
duke@435 864 tty->print_cr(" - [low, high]: [" INTPTR_FORMAT ", " INTPTR_FORMAT "]", low(), high());
duke@435 865 tty->print_cr(" - [low_b, high_b]: [" INTPTR_FORMAT ", " INTPTR_FORMAT "]", low_boundary(), high_boundary());
duke@435 866 }
duke@435 867
duke@435 868 #endif

mercurial