src/share/vm/opto/coalesce.cpp

Tue, 02 Jul 2013 20:42:12 -0400

author
drchase
date
Tue, 02 Jul 2013 20:42:12 -0400
changeset 5353
b800986664f4
parent 5285
693e4d04fd09
child 5509
d1034bd8cefc
permissions
-rw-r--r--

7088419: Use x86 Hardware CRC32 Instruction with java.util.zip.CRC32
Summary: add intrinsics using new instruction to interpreter, C1, C2, for suitable x86; add test
Reviewed-by: kvn, twisti

duke@435 1 /*
drchase@5285 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "memory/allocation.inline.hpp"
stefank@2314 27 #include "opto/block.hpp"
stefank@2314 28 #include "opto/cfgnode.hpp"
stefank@2314 29 #include "opto/chaitin.hpp"
stefank@2314 30 #include "opto/coalesce.hpp"
stefank@2314 31 #include "opto/connode.hpp"
stefank@2314 32 #include "opto/indexSet.hpp"
stefank@2314 33 #include "opto/machnode.hpp"
stefank@2314 34 #include "opto/matcher.hpp"
stefank@2314 35 #include "opto/regmask.hpp"
duke@435 36
duke@435 37 //=============================================================================
duke@435 38 //------------------------------Dump-------------------------------------------
duke@435 39 #ifndef PRODUCT
neliasso@4949 40 void PhaseCoalesce::dump(Node *n) const {
duke@435 41 // Being a const function means I cannot use 'Find'
neliasso@4949 42 uint r = _phc._lrg_map.find(n);
duke@435 43 tty->print("L%d/N%d ",r,n->_idx);
duke@435 44 }
duke@435 45
duke@435 46 //------------------------------dump-------------------------------------------
duke@435 47 void PhaseCoalesce::dump() const {
duke@435 48 // I know I have a block layout now, so I can print blocks in a loop
duke@435 49 for( uint i=0; i<_phc._cfg._num_blocks; i++ ) {
duke@435 50 uint j;
duke@435 51 Block *b = _phc._cfg._blocks[i];
duke@435 52 // Print a nice block header
duke@435 53 tty->print("B%d: ",b->_pre_order);
duke@435 54 for( j=1; j<b->num_preds(); j++ )
duke@435 55 tty->print("B%d ", _phc._cfg._bbs[b->pred(j)->_idx]->_pre_order);
duke@435 56 tty->print("-> ");
duke@435 57 for( j=0; j<b->_num_succs; j++ )
duke@435 58 tty->print("B%d ",b->_succs[j]->_pre_order);
duke@435 59 tty->print(" IDom: B%d/#%d\n", b->_idom ? b->_idom->_pre_order : 0, b->_dom_depth);
duke@435 60 uint cnt = b->_nodes.size();
duke@435 61 for( j=0; j<cnt; j++ ) {
duke@435 62 Node *n = b->_nodes[j];
duke@435 63 dump( n );
duke@435 64 tty->print("\t%s\t",n->Name());
duke@435 65
duke@435 66 // Dump the inputs
duke@435 67 uint k; // Exit value of loop
duke@435 68 for( k=0; k<n->req(); k++ ) // For all required inputs
duke@435 69 if( n->in(k) ) dump( n->in(k) );
duke@435 70 else tty->print("_ ");
duke@435 71 int any_prec = 0;
duke@435 72 for( ; k<n->len(); k++ ) // For all precedence inputs
duke@435 73 if( n->in(k) ) {
duke@435 74 if( !any_prec++ ) tty->print(" |");
duke@435 75 dump( n->in(k) );
duke@435 76 }
duke@435 77
duke@435 78 // Dump node-specific info
duke@435 79 n->dump_spec(tty);
duke@435 80 tty->print("\n");
duke@435 81
duke@435 82 }
duke@435 83 tty->print("\n");
duke@435 84 }
duke@435 85 }
duke@435 86 #endif
duke@435 87
duke@435 88 //------------------------------combine_these_two------------------------------
duke@435 89 // Combine the live ranges def'd by these 2 Nodes. N2 is an input to N1.
neliasso@4949 90 void PhaseCoalesce::combine_these_two(Node *n1, Node *n2) {
neliasso@4949 91 uint lr1 = _phc._lrg_map.find(n1);
neliasso@4949 92 uint lr2 = _phc._lrg_map.find(n2);
duke@435 93 if( lr1 != lr2 && // Different live ranges already AND
duke@435 94 !_phc._ifg->test_edge_sq( lr1, lr2 ) ) { // Do not interfere
duke@435 95 LRG *lrg1 = &_phc.lrgs(lr1);
duke@435 96 LRG *lrg2 = &_phc.lrgs(lr2);
duke@435 97 // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
duke@435 98
duke@435 99 // Now, why is int->oop OK? We end up declaring a raw-pointer as an oop
duke@435 100 // and in general that's a bad thing. However, int->oop conversions only
duke@435 101 // happen at GC points, so the lifetime of the misclassified raw-pointer
duke@435 102 // is from the CheckCastPP (that converts it to an oop) backwards up
duke@435 103 // through a merge point and into the slow-path call, and around the
duke@435 104 // diamond up to the heap-top check and back down into the slow-path call.
duke@435 105 // The misclassified raw pointer is NOT live across the slow-path call,
duke@435 106 // and so does not appear in any GC info, so the fact that it is
duke@435 107 // misclassified is OK.
duke@435 108
duke@435 109 if( (lrg1->_is_oop || !lrg2->_is_oop) && // not an oop->int cast AND
duke@435 110 // Compatible final mask
duke@435 111 lrg1->mask().overlap( lrg2->mask() ) ) {
duke@435 112 // Merge larger into smaller.
duke@435 113 if( lr1 > lr2 ) {
duke@435 114 uint tmp = lr1; lr1 = lr2; lr2 = tmp;
duke@435 115 Node *n = n1; n1 = n2; n2 = n;
duke@435 116 LRG *ltmp = lrg1; lrg1 = lrg2; lrg2 = ltmp;
duke@435 117 }
duke@435 118 // Union lr2 into lr1
duke@435 119 _phc.Union( n1, n2 );
duke@435 120 if (lrg1->_maxfreq < lrg2->_maxfreq)
duke@435 121 lrg1->_maxfreq = lrg2->_maxfreq;
duke@435 122 // Merge in the IFG
duke@435 123 _phc._ifg->Union( lr1, lr2 );
duke@435 124 // Combine register restrictions
duke@435 125 lrg1->AND(lrg2->mask());
duke@435 126 }
duke@435 127 }
duke@435 128 }
duke@435 129
duke@435 130 //------------------------------coalesce_driver--------------------------------
duke@435 131 // Copy coalescing
duke@435 132 void PhaseCoalesce::coalesce_driver( ) {
duke@435 133
duke@435 134 verify();
duke@435 135 // Coalesce from high frequency to low
duke@435 136 for( uint i=0; i<_phc._cfg._num_blocks; i++ )
duke@435 137 coalesce( _phc._blks[i] );
duke@435 138
duke@435 139 }
duke@435 140
duke@435 141 //------------------------------insert_copy_with_overlap-----------------------
duke@435 142 // I am inserting copies to come out of SSA form. In the general case, I am
duke@435 143 // doing a parallel renaming. I'm in the Named world now, so I can't do a
duke@435 144 // general parallel renaming. All the copies now use "names" (live-ranges)
duke@435 145 // to carry values instead of the explicit use-def chains. Suppose I need to
duke@435 146 // insert 2 copies into the same block. They copy L161->L128 and L128->L132.
duke@435 147 // If I insert them in the wrong order then L128 will get clobbered before it
duke@435 148 // can get used by the second copy. This cannot happen in the SSA model;
duke@435 149 // direct use-def chains get me the right value. It DOES happen in the named
duke@435 150 // model so I have to handle the reordering of copies.
duke@435 151 //
duke@435 152 // In general, I need to topo-sort the placed copies to avoid conflicts.
duke@435 153 // Its possible to have a closed cycle of copies (e.g., recirculating the same
duke@435 154 // values around a loop). In this case I need a temp to break the cycle.
duke@435 155 void PhaseAggressiveCoalesce::insert_copy_with_overlap( Block *b, Node *copy, uint dst_name, uint src_name ) {
duke@435 156
duke@435 157 // Scan backwards for the locations of the last use of the dst_name.
duke@435 158 // I am about to clobber the dst_name, so the copy must be inserted
duke@435 159 // after the last use. Last use is really first-use on a backwards scan.
duke@435 160 uint i = b->end_idx()-1;
neliasso@4949 161 while(1) {
duke@435 162 Node *n = b->_nodes[i];
duke@435 163 // Check for end of virtual copies; this is also the end of the
duke@435 164 // parallel renaming effort.
neliasso@4949 165 if (n->_idx < _unique) {
neliasso@4949 166 break;
neliasso@4949 167 }
duke@435 168 uint idx = n->is_Copy();
kvn@3040 169 assert( idx || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" );
neliasso@4949 170 if (idx && _phc._lrg_map.find(n->in(idx)) == dst_name) {
neliasso@4949 171 break;
neliasso@4949 172 }
duke@435 173 i--;
duke@435 174 }
duke@435 175 uint last_use_idx = i;
duke@435 176
duke@435 177 // Also search for any kill of src_name that exits the block.
duke@435 178 // Since the copy uses src_name, I have to come before any kill.
duke@435 179 uint kill_src_idx = b->end_idx();
duke@435 180 // There can be only 1 kill that exits any block and that is
duke@435 181 // the last kill. Thus it is the first kill on a backwards scan.
duke@435 182 i = b->end_idx()-1;
neliasso@4949 183 while (1) {
duke@435 184 Node *n = b->_nodes[i];
duke@435 185 // Check for end of virtual copies; this is also the end of the
duke@435 186 // parallel renaming effort.
neliasso@4949 187 if (n->_idx < _unique) {
neliasso@4949 188 break;
neliasso@4949 189 }
kvn@3040 190 assert( n->is_Copy() || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" );
neliasso@4949 191 if (_phc._lrg_map.find(n) == src_name) {
duke@435 192 kill_src_idx = i;
duke@435 193 break;
duke@435 194 }
duke@435 195 i--;
duke@435 196 }
duke@435 197 // Need a temp? Last use of dst comes after the kill of src?
neliasso@4949 198 if (last_use_idx >= kill_src_idx) {
duke@435 199 // Need to break a cycle with a temp
duke@435 200 uint idx = copy->is_Copy();
duke@435 201 Node *tmp = copy->clone();
neliasso@4949 202 uint max_lrg_id = _phc._lrg_map.max_lrg_id();
neliasso@4949 203 _phc.new_lrg(tmp, max_lrg_id);
neliasso@4949 204 _phc._lrg_map.set_max_lrg_id(max_lrg_id + 1);
neliasso@4949 205
duke@435 206 // Insert new temp between copy and source
duke@435 207 tmp ->set_req(idx,copy->in(idx));
duke@435 208 copy->set_req(idx,tmp);
duke@435 209 // Save source in temp early, before source is killed
duke@435 210 b->_nodes.insert(kill_src_idx,tmp);
duke@435 211 _phc._cfg._bbs.map( tmp->_idx, b );
duke@435 212 last_use_idx++;
duke@435 213 }
duke@435 214
duke@435 215 // Insert just after last use
duke@435 216 b->_nodes.insert(last_use_idx+1,copy);
duke@435 217 }
duke@435 218
duke@435 219 //------------------------------insert_copies----------------------------------
duke@435 220 void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
duke@435 221 // We do LRGs compressing and fix a liveout data only here since the other
duke@435 222 // place in Split() is guarded by the assert which we never hit.
neliasso@4949 223 _phc._lrg_map.compress_uf_map_for_nodes();
duke@435 224 // Fix block's liveout data for compressed live ranges.
neliasso@4949 225 for (uint lrg = 1; lrg < _phc._lrg_map.max_lrg_id(); lrg++) {
neliasso@4949 226 uint compressed_lrg = _phc._lrg_map.find(lrg);
neliasso@4949 227 if (lrg != compressed_lrg) {
neliasso@4949 228 for (uint bidx = 0; bidx < _phc._cfg._num_blocks; bidx++) {
duke@435 229 IndexSet *liveout = _phc._live->live(_phc._cfg._blocks[bidx]);
neliasso@4949 230 if (liveout->member(lrg)) {
duke@435 231 liveout->remove(lrg);
duke@435 232 liveout->insert(compressed_lrg);
duke@435 233 }
duke@435 234 }
duke@435 235 }
duke@435 236 }
duke@435 237
duke@435 238 // All new nodes added are actual copies to replace virtual copies.
duke@435 239 // Nodes with index less than '_unique' are original, non-virtual Nodes.
duke@435 240 _unique = C->unique();
duke@435 241
duke@435 242 for( uint i=0; i<_phc._cfg._num_blocks; i++ ) {
drchase@5285 243 C->check_node_count(NodeLimitFudgeFactor, "out of nodes in coalesce");
drchase@5285 244 if (C->failing()) return;
duke@435 245 Block *b = _phc._cfg._blocks[i];
duke@435 246 uint cnt = b->num_preds(); // Number of inputs to the Phi
duke@435 247
duke@435 248 for( uint l = 1; l<b->_nodes.size(); l++ ) {
duke@435 249 Node *n = b->_nodes[l];
duke@435 250
duke@435 251 // Do not use removed-copies, use copied value instead
duke@435 252 uint ncnt = n->req();
duke@435 253 for( uint k = 1; k<ncnt; k++ ) {
duke@435 254 Node *copy = n->in(k);
duke@435 255 uint cidx = copy->is_Copy();
duke@435 256 if( cidx ) {
duke@435 257 Node *def = copy->in(cidx);
neliasso@4949 258 if (_phc._lrg_map.find(copy) == _phc._lrg_map.find(def)) {
neliasso@4949 259 n->set_req(k, def);
neliasso@4949 260 }
duke@435 261 }
duke@435 262 }
duke@435 263
duke@435 264 // Remove any explicit copies that get coalesced.
duke@435 265 uint cidx = n->is_Copy();
duke@435 266 if( cidx ) {
duke@435 267 Node *def = n->in(cidx);
neliasso@4949 268 if (_phc._lrg_map.find(n) == _phc._lrg_map.find(def)) {
duke@435 269 n->replace_by(def);
duke@435 270 n->set_req(cidx,NULL);
duke@435 271 b->_nodes.remove(l);
duke@435 272 l--;
duke@435 273 continue;
duke@435 274 }
duke@435 275 }
duke@435 276
neliasso@4949 277 if (n->is_Phi()) {
duke@435 278 // Get the chosen name for the Phi
neliasso@4949 279 uint phi_name = _phc._lrg_map.find(n);
duke@435 280 // Ignore the pre-allocated specials
neliasso@4949 281 if (!phi_name) {
neliasso@4949 282 continue;
neliasso@4949 283 }
duke@435 284 // Check for mismatch inputs to Phi
neliasso@4949 285 for (uint j = 1; j < cnt; j++) {
duke@435 286 Node *m = n->in(j);
neliasso@4949 287 uint src_name = _phc._lrg_map.find(m);
neliasso@4949 288 if (src_name != phi_name) {
duke@435 289 Block *pred = _phc._cfg._bbs[b->pred(j)->_idx];
duke@435 290 Node *copy;
duke@435 291 assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
duke@435 292 // Rematerialize constants instead of copying them
duke@435 293 if( m->is_Mach() && m->as_Mach()->is_Con() &&
duke@435 294 m->as_Mach()->rematerialize() ) {
duke@435 295 copy = m->clone();
duke@435 296 // Insert the copy in the predecessor basic block
duke@435 297 pred->add_inst(copy);
duke@435 298 // Copy any flags as well
neliasso@4949 299 _phc.clone_projs(pred, pred->end_idx(), m, copy, _phc._lrg_map);
duke@435 300 } else {
duke@435 301 const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()];
neliasso@4949 302 copy = new (C) MachSpillCopyNode(m, *rm, *rm);
duke@435 303 // Find a good place to insert. Kinda tricky, use a subroutine
duke@435 304 insert_copy_with_overlap(pred,copy,phi_name,src_name);
duke@435 305 }
duke@435 306 // Insert the copy in the use-def chain
neliasso@4949 307 n->set_req(j, copy);
duke@435 308 _phc._cfg._bbs.map( copy->_idx, pred );
duke@435 309 // Extend ("register allocate") the names array for the copy.
neliasso@4949 310 _phc._lrg_map.extend(copy->_idx, phi_name);
duke@435 311 } // End of if Phi names do not match
duke@435 312 } // End of for all inputs to Phi
duke@435 313 } else { // End of if Phi
duke@435 314
duke@435 315 // Now check for 2-address instructions
duke@435 316 uint idx;
duke@435 317 if( n->is_Mach() && (idx=n->as_Mach()->two_adr()) ) {
duke@435 318 // Get the chosen name for the Node
neliasso@4949 319 uint name = _phc._lrg_map.find(n);
neliasso@4949 320 assert (name, "no 2-address specials");
duke@435 321 // Check for name mis-match on the 2-address input
duke@435 322 Node *m = n->in(idx);
neliasso@4949 323 if (_phc._lrg_map.find(m) != name) {
duke@435 324 Node *copy;
duke@435 325 assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
duke@435 326 // At this point it is unsafe to extend live ranges (6550579).
duke@435 327 // Rematerialize only constants as we do for Phi above.
neliasso@4949 328 if(m->is_Mach() && m->as_Mach()->is_Con() &&
neliasso@4949 329 m->as_Mach()->rematerialize()) {
duke@435 330 copy = m->clone();
duke@435 331 // Insert the copy in the basic block, just before us
neliasso@4949 332 b->_nodes.insert(l++, copy);
neliasso@4949 333 if(_phc.clone_projs(b, l, m, copy, _phc._lrg_map)) {
duke@435 334 l++;
neliasso@4949 335 }
duke@435 336 } else {
duke@435 337 const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()];
neliasso@4949 338 copy = new (C) MachSpillCopyNode(m, *rm, *rm);
duke@435 339 // Insert the copy in the basic block, just before us
neliasso@4949 340 b->_nodes.insert(l++, copy);
duke@435 341 }
duke@435 342 // Insert the copy in the use-def chain
neliasso@4949 343 n->set_req(idx, copy);
duke@435 344 // Extend ("register allocate") the names array for the copy.
neliasso@4949 345 _phc._lrg_map.extend(copy->_idx, name);
duke@435 346 _phc._cfg._bbs.map( copy->_idx, b );
duke@435 347 }
duke@435 348
duke@435 349 } // End of is two-adr
duke@435 350
duke@435 351 // Insert a copy at a debug use for a lrg which has high frequency
neliasso@4949 352 if (b->_freq < OPTO_DEBUG_SPLIT_FREQ || b->is_uncommon(_phc._cfg._bbs)) {
duke@435 353 // Walk the debug inputs to the node and check for lrg freq
duke@435 354 JVMState* jvms = n->jvms();
duke@435 355 uint debug_start = jvms ? jvms->debug_start() : 999999;
duke@435 356 uint debug_end = jvms ? jvms->debug_end() : 999999;
duke@435 357 for(uint inpidx = debug_start; inpidx < debug_end; inpidx++) {
duke@435 358 // Do not split monitors; they are only needed for debug table
duke@435 359 // entries and need no code.
neliasso@4949 360 if (jvms->is_monitor_use(inpidx)) {
neliasso@4949 361 continue;
neliasso@4949 362 }
duke@435 363 Node *inp = n->in(inpidx);
neliasso@4949 364 uint nidx = _phc._lrg_map.live_range_id(inp);
duke@435 365 LRG &lrg = lrgs(nidx);
duke@435 366
duke@435 367 // If this lrg has a high frequency use/def
kvn@1108 368 if( lrg._maxfreq >= _phc.high_frequency_lrg() ) {
duke@435 369 // If the live range is also live out of this block (like it
duke@435 370 // would be for a fast/slow idiom), the normal spill mechanism
duke@435 371 // does an excellent job. If it is not live out of this block
duke@435 372 // (like it would be for debug info to uncommon trap) splitting
duke@435 373 // the live range now allows a better allocation in the high
duke@435 374 // frequency blocks.
duke@435 375 // Build_IFG_virtual has converted the live sets to
duke@435 376 // live-IN info, not live-OUT info.
duke@435 377 uint k;
duke@435 378 for( k=0; k < b->_num_succs; k++ )
duke@435 379 if( _phc._live->live(b->_succs[k])->member( nidx ) )
duke@435 380 break; // Live in to some successor block?
duke@435 381 if( k < b->_num_succs )
duke@435 382 continue; // Live out; do not pre-split
duke@435 383 // Split the lrg at this use
duke@435 384 const RegMask *rm = C->matcher()->idealreg2spillmask[inp->ideal_reg()];
duke@435 385 Node *copy = new (C) MachSpillCopyNode( inp, *rm, *rm );
duke@435 386 // Insert the copy in the use-def chain
duke@435 387 n->set_req(inpidx, copy );
duke@435 388 // Insert the copy in the basic block, just before us
duke@435 389 b->_nodes.insert( l++, copy );
duke@435 390 // Extend ("register allocate") the names array for the copy.
neliasso@4949 391 uint max_lrg_id = _phc._lrg_map.max_lrg_id();
neliasso@4949 392 _phc.new_lrg(copy, max_lrg_id);
neliasso@4949 393 _phc._lrg_map.set_max_lrg_id(max_lrg_id + 1);
neliasso@4949 394 _phc._cfg._bbs.map(copy->_idx, b);
duke@435 395 //tty->print_cr("Split a debug use in Aggressive Coalesce");
duke@435 396 } // End of if high frequency use/def
duke@435 397 } // End of for all debug inputs
duke@435 398 } // End of if low frequency safepoint
duke@435 399
duke@435 400 } // End of if Phi
duke@435 401
duke@435 402 } // End of for all instructions
duke@435 403 } // End of for all blocks
duke@435 404 }
duke@435 405
duke@435 406 //=============================================================================
duke@435 407 //------------------------------coalesce---------------------------------------
duke@435 408 // Aggressive (but pessimistic) copy coalescing of a single block
duke@435 409
duke@435 410 // The following coalesce pass represents a single round of aggressive
duke@435 411 // pessimistic coalesce. "Aggressive" means no attempt to preserve
duke@435 412 // colorability when coalescing. This occasionally means more spills, but
duke@435 413 // it also means fewer rounds of coalescing for better code - and that means
duke@435 414 // faster compiles.
duke@435 415
duke@435 416 // "Pessimistic" means we do not hit the fixed point in one pass (and we are
duke@435 417 // reaching for the least fixed point to boot). This is typically solved
duke@435 418 // with a few more rounds of coalescing, but the compiler must run fast. We
duke@435 419 // could optimistically coalescing everything touching PhiNodes together
duke@435 420 // into one big live range, then check for self-interference. Everywhere
duke@435 421 // the live range interferes with self it would have to be split. Finding
duke@435 422 // the right split points can be done with some heuristics (based on
duke@435 423 // expected frequency of edges in the live range). In short, it's a real
duke@435 424 // research problem and the timeline is too short to allow such research.
duke@435 425 // Further thoughts: (1) build the LR in a pass, (2) find self-interference
duke@435 426 // in another pass, (3) per each self-conflict, split, (4) split by finding
duke@435 427 // the low-cost cut (min-cut) of the LR, (5) edges in the LR are weighted
duke@435 428 // according to the GCM algorithm (or just exec freq on CFG edges).
duke@435 429
duke@435 430 void PhaseAggressiveCoalesce::coalesce( Block *b ) {
duke@435 431 // Copies are still "virtual" - meaning we have not made them explicitly
duke@435 432 // copies. Instead, Phi functions of successor blocks have mis-matched
duke@435 433 // live-ranges. If I fail to coalesce, I'll have to insert a copy to line
duke@435 434 // up the live-ranges. Check for Phis in successor blocks.
duke@435 435 uint i;
duke@435 436 for( i=0; i<b->_num_succs; i++ ) {
duke@435 437 Block *bs = b->_succs[i];
duke@435 438 // Find index of 'b' in 'bs' predecessors
duke@435 439 uint j=1;
duke@435 440 while( _phc._cfg._bbs[bs->pred(j)->_idx] != b ) j++;
duke@435 441 // Visit all the Phis in successor block
duke@435 442 for( uint k = 1; k<bs->_nodes.size(); k++ ) {
duke@435 443 Node *n = bs->_nodes[k];
duke@435 444 if( !n->is_Phi() ) break;
duke@435 445 combine_these_two( n, n->in(j) );
duke@435 446 }
duke@435 447 } // End of for all successor blocks
duke@435 448
duke@435 449
duke@435 450 // Check _this_ block for 2-address instructions and copies.
duke@435 451 uint cnt = b->end_idx();
duke@435 452 for( i = 1; i<cnt; i++ ) {
duke@435 453 Node *n = b->_nodes[i];
duke@435 454 uint idx;
duke@435 455 // 2-address instructions have a virtual Copy matching their input
duke@435 456 // to their output
neliasso@4949 457 if (n->is_Mach() && (idx = n->as_Mach()->two_adr())) {
duke@435 458 MachNode *mach = n->as_Mach();
neliasso@4949 459 combine_these_two(mach, mach->in(idx));
duke@435 460 }
duke@435 461 } // End of for all instructions in block
duke@435 462 }
duke@435 463
duke@435 464 //=============================================================================
duke@435 465 //------------------------------PhaseConservativeCoalesce----------------------
neliasso@4949 466 PhaseConservativeCoalesce::PhaseConservativeCoalesce(PhaseChaitin &chaitin) : PhaseCoalesce(chaitin) {
neliasso@4949 467 _ulr.initialize(_phc._lrg_map.max_lrg_id());
duke@435 468 }
duke@435 469
duke@435 470 //------------------------------verify-----------------------------------------
duke@435 471 void PhaseConservativeCoalesce::verify() {
duke@435 472 #ifdef ASSERT
duke@435 473 _phc.set_was_low();
duke@435 474 #endif
duke@435 475 }
duke@435 476
duke@435 477 //------------------------------union_helper-----------------------------------
duke@435 478 void PhaseConservativeCoalesce::union_helper( Node *lr1_node, Node *lr2_node, uint lr1, uint lr2, Node *src_def, Node *dst_copy, Node *src_copy, Block *b, uint bindex ) {
duke@435 479 // Join live ranges. Merge larger into smaller. Union lr2 into lr1 in the
duke@435 480 // union-find tree
duke@435 481 _phc.Union( lr1_node, lr2_node );
duke@435 482
duke@435 483 // Single-def live range ONLY if both live ranges are single-def.
duke@435 484 // If both are single def, then src_def powers one live range
duke@435 485 // and def_copy powers the other. After merging, src_def powers
duke@435 486 // the combined live range.
never@730 487 lrgs(lr1)._def = (lrgs(lr1).is_multidef() ||
never@730 488 lrgs(lr2).is_multidef() )
duke@435 489 ? NodeSentinel : src_def;
duke@435 490 lrgs(lr2)._def = NULL; // No def for lrg 2
duke@435 491 lrgs(lr2).Clear(); // Force empty mask for LRG 2
duke@435 492 //lrgs(lr2)._size = 0; // Live-range 2 goes dead
duke@435 493 lrgs(lr1)._is_oop |= lrgs(lr2)._is_oop;
duke@435 494 lrgs(lr2)._is_oop = 0; // In particular, not an oop for GC info
duke@435 495
duke@435 496 if (lrgs(lr1)._maxfreq < lrgs(lr2)._maxfreq)
duke@435 497 lrgs(lr1)._maxfreq = lrgs(lr2)._maxfreq;
duke@435 498
duke@435 499 // Copy original value instead. Intermediate copies go dead, and
duke@435 500 // the dst_copy becomes useless.
duke@435 501 int didx = dst_copy->is_Copy();
duke@435 502 dst_copy->set_req( didx, src_def );
duke@435 503 // Add copy to free list
duke@435 504 // _phc.free_spillcopy(b->_nodes[bindex]);
duke@435 505 assert( b->_nodes[bindex] == dst_copy, "" );
duke@435 506 dst_copy->replace_by( dst_copy->in(didx) );
duke@435 507 dst_copy->set_req( didx, NULL);
duke@435 508 b->_nodes.remove(bindex);
duke@435 509 if( bindex < b->_ihrp_index ) b->_ihrp_index--;
duke@435 510 if( bindex < b->_fhrp_index ) b->_fhrp_index--;
duke@435 511
duke@435 512 // Stretched lr1; add it to liveness of intermediate blocks
duke@435 513 Block *b2 = _phc._cfg._bbs[src_copy->_idx];
duke@435 514 while( b != b2 ) {
duke@435 515 b = _phc._cfg._bbs[b->pred(1)->_idx];
duke@435 516 _phc._live->live(b)->insert(lr1);
duke@435 517 }
duke@435 518 }
duke@435 519
duke@435 520 //------------------------------compute_separating_interferences---------------
duke@435 521 // Factored code from copy_copy that computes extra interferences from
duke@435 522 // lengthening a live range by double-coalescing.
duke@435 523 uint PhaseConservativeCoalesce::compute_separating_interferences(Node *dst_copy, Node *src_copy, Block *b, uint bindex, RegMask &rm, uint reg_degree, uint rm_size, uint lr1, uint lr2 ) {
duke@435 524
duke@435 525 assert(!lrgs(lr1)._fat_proj, "cannot coalesce fat_proj");
duke@435 526 assert(!lrgs(lr2)._fat_proj, "cannot coalesce fat_proj");
duke@435 527 Node *prev_copy = dst_copy->in(dst_copy->is_Copy());
duke@435 528 Block *b2 = b;
duke@435 529 uint bindex2 = bindex;
duke@435 530 while( 1 ) {
duke@435 531 // Find previous instruction
duke@435 532 bindex2--; // Chain backwards 1 instruction
duke@435 533 while( bindex2 == 0 ) { // At block start, find prior block
duke@435 534 assert( b2->num_preds() == 2, "cannot double coalesce across c-flow" );
duke@435 535 b2 = _phc._cfg._bbs[b2->pred(1)->_idx];
duke@435 536 bindex2 = b2->end_idx()-1;
duke@435 537 }
duke@435 538 // Get prior instruction
duke@435 539 assert(bindex2 < b2->_nodes.size(), "index out of bounds");
duke@435 540 Node *x = b2->_nodes[bindex2];
duke@435 541 if( x == prev_copy ) { // Previous copy in copy chain?
duke@435 542 if( prev_copy == src_copy)// Found end of chain and all interferences
duke@435 543 break; // So break out of loop
duke@435 544 // Else work back one in copy chain
duke@435 545 prev_copy = prev_copy->in(prev_copy->is_Copy());
duke@435 546 } else { // Else collect interferences
neliasso@4949 547 uint lidx = _phc._lrg_map.find(x);
duke@435 548 // Found another def of live-range being stretched?
neliasso@4949 549 if(lidx == lr1) {
neliasso@4949 550 return max_juint;
neliasso@4949 551 }
neliasso@4949 552 if(lidx == lr2) {
neliasso@4949 553 return max_juint;
neliasso@4949 554 }
duke@435 555
duke@435 556 // If we attempt to coalesce across a bound def
duke@435 557 if( lrgs(lidx).is_bound() ) {
duke@435 558 // Do not let the coalesced LRG expect to get the bound color
duke@435 559 rm.SUBTRACT( lrgs(lidx).mask() );
duke@435 560 // Recompute rm_size
duke@435 561 rm_size = rm.Size();
duke@435 562 //if( rm._flags ) rm_size += 1000000;
duke@435 563 if( reg_degree >= rm_size ) return max_juint;
duke@435 564 }
duke@435 565 if( rm.overlap(lrgs(lidx).mask()) ) {
duke@435 566 // Insert lidx into union LRG; returns TRUE if actually inserted
duke@435 567 if( _ulr.insert(lidx) ) {
duke@435 568 // Infinite-stack neighbors do not alter colorability, as they
duke@435 569 // can always color to some other color.
duke@435 570 if( !lrgs(lidx).mask().is_AllStack() ) {
duke@435 571 // If this coalesce will make any new neighbor uncolorable,
duke@435 572 // do not coalesce.
duke@435 573 if( lrgs(lidx).just_lo_degree() )
duke@435 574 return max_juint;
duke@435 575 // Bump our degree
duke@435 576 if( ++reg_degree >= rm_size )
duke@435 577 return max_juint;
duke@435 578 } // End of if not infinite-stack neighbor
duke@435 579 } // End of if actually inserted
duke@435 580 } // End of if live range overlaps
twisti@1040 581 } // End of else collect interferences for 1 node
twisti@1040 582 } // End of while forever, scan back for interferences
duke@435 583 return reg_degree;
duke@435 584 }
duke@435 585
duke@435 586 //------------------------------update_ifg-------------------------------------
duke@435 587 void PhaseConservativeCoalesce::update_ifg(uint lr1, uint lr2, IndexSet *n_lr1, IndexSet *n_lr2) {
duke@435 588 // Some original neighbors of lr1 might have gone away
duke@435 589 // because the constrained register mask prevented them.
duke@435 590 // Remove lr1 from such neighbors.
duke@435 591 IndexSetIterator one(n_lr1);
duke@435 592 uint neighbor;
duke@435 593 LRG &lrg1 = lrgs(lr1);
duke@435 594 while ((neighbor = one.next()) != 0)
duke@435 595 if( !_ulr.member(neighbor) )
duke@435 596 if( _phc._ifg->neighbors(neighbor)->remove(lr1) )
duke@435 597 lrgs(neighbor).inc_degree( -lrg1.compute_degree(lrgs(neighbor)) );
duke@435 598
duke@435 599
duke@435 600 // lr2 is now called (coalesced into) lr1.
duke@435 601 // Remove lr2 from the IFG.
duke@435 602 IndexSetIterator two(n_lr2);
duke@435 603 LRG &lrg2 = lrgs(lr2);
duke@435 604 while ((neighbor = two.next()) != 0)
duke@435 605 if( _phc._ifg->neighbors(neighbor)->remove(lr2) )
duke@435 606 lrgs(neighbor).inc_degree( -lrg2.compute_degree(lrgs(neighbor)) );
duke@435 607
duke@435 608 // Some neighbors of intermediate copies now interfere with the
duke@435 609 // combined live range.
duke@435 610 IndexSetIterator three(&_ulr);
duke@435 611 while ((neighbor = three.next()) != 0)
duke@435 612 if( _phc._ifg->neighbors(neighbor)->insert(lr1) )
duke@435 613 lrgs(neighbor).inc_degree( lrg1.compute_degree(lrgs(neighbor)) );
duke@435 614 }
duke@435 615
duke@435 616 //------------------------------record_bias------------------------------------
duke@435 617 static void record_bias( const PhaseIFG *ifg, int lr1, int lr2 ) {
duke@435 618 // Tag copy bias here
duke@435 619 if( !ifg->lrgs(lr1)._copy_bias )
duke@435 620 ifg->lrgs(lr1)._copy_bias = lr2;
duke@435 621 if( !ifg->lrgs(lr2)._copy_bias )
duke@435 622 ifg->lrgs(lr2)._copy_bias = lr1;
duke@435 623 }
duke@435 624
duke@435 625 //------------------------------copy_copy--------------------------------------
duke@435 626 // See if I can coalesce a series of multiple copies together. I need the
duke@435 627 // final dest copy and the original src copy. They can be the same Node.
duke@435 628 // Compute the compatible register masks.
neliasso@4949 629 bool PhaseConservativeCoalesce::copy_copy(Node *dst_copy, Node *src_copy, Block *b, uint bindex) {
duke@435 630
neliasso@4949 631 if (!dst_copy->is_SpillCopy()) {
neliasso@4949 632 return false;
neliasso@4949 633 }
neliasso@4949 634 if (!src_copy->is_SpillCopy()) {
neliasso@4949 635 return false;
neliasso@4949 636 }
duke@435 637 Node *src_def = src_copy->in(src_copy->is_Copy());
neliasso@4949 638 uint lr1 = _phc._lrg_map.find(dst_copy);
neliasso@4949 639 uint lr2 = _phc._lrg_map.find(src_def);
duke@435 640
duke@435 641 // Same live ranges already?
neliasso@4949 642 if (lr1 == lr2) {
neliasso@4949 643 return false;
neliasso@4949 644 }
duke@435 645
duke@435 646 // Interfere?
neliasso@4949 647 if (_phc._ifg->test_edge_sq(lr1, lr2)) {
neliasso@4949 648 return false;
neliasso@4949 649 }
duke@435 650
duke@435 651 // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
neliasso@4949 652 if (!lrgs(lr1)._is_oop && lrgs(lr2)._is_oop) { // not an oop->int cast
duke@435 653 return false;
neliasso@4949 654 }
duke@435 655
duke@435 656 // Coalescing between an aligned live range and a mis-aligned live range?
duke@435 657 // No, no! Alignment changes how we count degree.
neliasso@4949 658 if (lrgs(lr1)._fat_proj != lrgs(lr2)._fat_proj) {
duke@435 659 return false;
neliasso@4949 660 }
duke@435 661
duke@435 662 // Sort; use smaller live-range number
duke@435 663 Node *lr1_node = dst_copy;
duke@435 664 Node *lr2_node = src_def;
neliasso@4949 665 if (lr1 > lr2) {
duke@435 666 uint tmp = lr1; lr1 = lr2; lr2 = tmp;
duke@435 667 lr1_node = src_def; lr2_node = dst_copy;
duke@435 668 }
duke@435 669
duke@435 670 // Check for compatibility of the 2 live ranges by
duke@435 671 // intersecting their allowed register sets.
duke@435 672 RegMask rm = lrgs(lr1).mask();
duke@435 673 rm.AND(lrgs(lr2).mask());
duke@435 674 // Number of bits free
duke@435 675 uint rm_size = rm.Size();
duke@435 676
never@2085 677 if (UseFPUForSpilling && rm.is_AllStack() ) {
never@2085 678 // Don't coalesce when frequency difference is large
never@2085 679 Block *dst_b = _phc._cfg._bbs[dst_copy->_idx];
never@2085 680 Block *src_def_b = _phc._cfg._bbs[src_def->_idx];
never@2085 681 if (src_def_b->_freq > 10*dst_b->_freq )
never@2085 682 return false;
never@2085 683 }
never@2085 684
duke@435 685 // If we can use any stack slot, then effective size is infinite
duke@435 686 if( rm.is_AllStack() ) rm_size += 1000000;
duke@435 687 // Incompatible masks, no way to coalesce
duke@435 688 if( rm_size == 0 ) return false;
duke@435 689
duke@435 690 // Another early bail-out test is when we are double-coalescing and the
twisti@1040 691 // 2 copies are separated by some control flow.
duke@435 692 if( dst_copy != src_copy ) {
duke@435 693 Block *src_b = _phc._cfg._bbs[src_copy->_idx];
duke@435 694 Block *b2 = b;
duke@435 695 while( b2 != src_b ) {
duke@435 696 if( b2->num_preds() > 2 ){// Found merge-point
duke@435 697 _phc._lost_opp_cflow_coalesce++;
duke@435 698 // extra record_bias commented out because Chris believes it is not
duke@435 699 // productive. Since we can record only 1 bias, we want to choose one
duke@435 700 // that stands a chance of working and this one probably does not.
duke@435 701 //record_bias( _phc._lrgs, lr1, lr2 );
duke@435 702 return false; // To hard to find all interferences
duke@435 703 }
duke@435 704 b2 = _phc._cfg._bbs[b2->pred(1)->_idx];
duke@435 705 }
duke@435 706 }
duke@435 707
duke@435 708 // Union the two interference sets together into '_ulr'
duke@435 709 uint reg_degree = _ulr.lrg_union( lr1, lr2, rm_size, _phc._ifg, rm );
duke@435 710
duke@435 711 if( reg_degree >= rm_size ) {
duke@435 712 record_bias( _phc._ifg, lr1, lr2 );
duke@435 713 return false;
duke@435 714 }
duke@435 715
duke@435 716 // Now I need to compute all the interferences between dst_copy and
duke@435 717 // src_copy. I'm not willing visit the entire interference graph, so
duke@435 718 // I limit my search to things in dst_copy's block or in a straight
duke@435 719 // line of previous blocks. I give up at merge points or when I get
duke@435 720 // more interferences than my degree. I can stop when I find src_copy.
duke@435 721 if( dst_copy != src_copy ) {
duke@435 722 reg_degree = compute_separating_interferences(dst_copy, src_copy, b, bindex, rm, rm_size, reg_degree, lr1, lr2 );
duke@435 723 if( reg_degree == max_juint ) {
duke@435 724 record_bias( _phc._ifg, lr1, lr2 );
duke@435 725 return false;
duke@435 726 }
duke@435 727 } // End of if dst_copy & src_copy are different
duke@435 728
duke@435 729
duke@435 730 // ---- THE COMBINED LRG IS COLORABLE ----
duke@435 731
duke@435 732 // YEAH - Now coalesce this copy away
duke@435 733 assert( lrgs(lr1).num_regs() == lrgs(lr2).num_regs(), "" );
duke@435 734
duke@435 735 IndexSet *n_lr1 = _phc._ifg->neighbors(lr1);
duke@435 736 IndexSet *n_lr2 = _phc._ifg->neighbors(lr2);
duke@435 737
duke@435 738 // Update the interference graph
duke@435 739 update_ifg(lr1, lr2, n_lr1, n_lr2);
duke@435 740
duke@435 741 _ulr.remove(lr1);
duke@435 742
duke@435 743 // Uncomment the following code to trace Coalescing in great detail.
duke@435 744 //
duke@435 745 //if (false) {
duke@435 746 // tty->cr();
duke@435 747 // tty->print_cr("#######################################");
duke@435 748 // tty->print_cr("union %d and %d", lr1, lr2);
duke@435 749 // n_lr1->dump();
duke@435 750 // n_lr2->dump();
duke@435 751 // tty->print_cr("resulting set is");
duke@435 752 // _ulr.dump();
duke@435 753 //}
duke@435 754
duke@435 755 // Replace n_lr1 with the new combined live range. _ulr will use
duke@435 756 // n_lr1's old memory on the next iteration. n_lr2 is cleared to
duke@435 757 // send its internal memory to the free list.
duke@435 758 _ulr.swap(n_lr1);
duke@435 759 _ulr.clear();
duke@435 760 n_lr2->clear();
duke@435 761
duke@435 762 lrgs(lr1).set_degree( _phc._ifg->effective_degree(lr1) );
duke@435 763 lrgs(lr2).set_degree( 0 );
duke@435 764
duke@435 765 // Join live ranges. Merge larger into smaller. Union lr2 into lr1 in the
duke@435 766 // union-find tree
duke@435 767 union_helper( lr1_node, lr2_node, lr1, lr2, src_def, dst_copy, src_copy, b, bindex );
duke@435 768 // Combine register restrictions
duke@435 769 lrgs(lr1).set_mask(rm);
duke@435 770 lrgs(lr1).compute_set_mask_size();
duke@435 771 lrgs(lr1)._cost += lrgs(lr2)._cost;
duke@435 772 lrgs(lr1)._area += lrgs(lr2)._area;
duke@435 773
duke@435 774 // While its uncommon to successfully coalesce live ranges that started out
duke@435 775 // being not-lo-degree, it can happen. In any case the combined coalesced
duke@435 776 // live range better Simplify nicely.
duke@435 777 lrgs(lr1)._was_lo = 1;
duke@435 778
duke@435 779 // kinda expensive to do all the time
duke@435 780 //tty->print_cr("warning: slow verify happening");
duke@435 781 //_phc._ifg->verify( &_phc );
duke@435 782 return true;
duke@435 783 }
duke@435 784
duke@435 785 //------------------------------coalesce---------------------------------------
duke@435 786 // Conservative (but pessimistic) copy coalescing of a single block
duke@435 787 void PhaseConservativeCoalesce::coalesce( Block *b ) {
duke@435 788 // Bail out on infrequent blocks
duke@435 789 if( b->is_uncommon(_phc._cfg._bbs) )
duke@435 790 return;
duke@435 791 // Check this block for copies.
duke@435 792 for( uint i = 1; i<b->end_idx(); i++ ) {
duke@435 793 // Check for actual copies on inputs. Coalesce a copy into its
duke@435 794 // input if use and copy's input are compatible.
duke@435 795 Node *copy1 = b->_nodes[i];
duke@435 796 uint idx1 = copy1->is_Copy();
duke@435 797 if( !idx1 ) continue; // Not a copy
duke@435 798
duke@435 799 if( copy_copy(copy1,copy1,b,i) ) {
duke@435 800 i--; // Retry, same location in block
duke@435 801 PhaseChaitin::_conserv_coalesce++; // Collect stats on success
duke@435 802 continue;
duke@435 803 }
duke@435 804 }
duke@435 805 }

mercurial