src/cpu/x86/vm/sharedRuntime_x86_32.cpp

Wed, 23 Apr 2008 11:20:36 -0700

author
kvn
date
Wed, 23 Apr 2008 11:20:36 -0700
changeset 559
b130b98db9cf
parent 435
a61af66fc99e
child 551
018d5b58dd4f
permissions
-rw-r--r--

6689060: Escape Analysis does not work with Compressed Oops
Summary: 64-bits VM crashes with -XX:+AggresiveOpts (Escape Analysis + Compressed Oops)
Reviewed-by: never, sgoldman

duke@435 1 /*
duke@435 2 * Copyright 2003-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_sharedRuntime_x86_32.cpp.incl"
duke@435 27
duke@435 28 #define __ masm->
duke@435 29 #ifdef COMPILER2
duke@435 30 UncommonTrapBlob *SharedRuntime::_uncommon_trap_blob;
duke@435 31 #endif // COMPILER2
duke@435 32
duke@435 33 DeoptimizationBlob *SharedRuntime::_deopt_blob;
duke@435 34 SafepointBlob *SharedRuntime::_polling_page_safepoint_handler_blob;
duke@435 35 SafepointBlob *SharedRuntime::_polling_page_return_handler_blob;
duke@435 36 RuntimeStub* SharedRuntime::_wrong_method_blob;
duke@435 37 RuntimeStub* SharedRuntime::_ic_miss_blob;
duke@435 38 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob;
duke@435 39 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob;
duke@435 40 RuntimeStub* SharedRuntime::_resolve_static_call_blob;
duke@435 41
duke@435 42 class RegisterSaver {
duke@435 43 enum { FPU_regs_live = 8 /*for the FPU stack*/+8/*eight more for XMM registers*/ };
duke@435 44 // Capture info about frame layout
duke@435 45 enum layout {
duke@435 46 fpu_state_off = 0,
duke@435 47 fpu_state_end = fpu_state_off+FPUStateSizeInWords-1,
duke@435 48 st0_off, st0H_off,
duke@435 49 st1_off, st1H_off,
duke@435 50 st2_off, st2H_off,
duke@435 51 st3_off, st3H_off,
duke@435 52 st4_off, st4H_off,
duke@435 53 st5_off, st5H_off,
duke@435 54 st6_off, st6H_off,
duke@435 55 st7_off, st7H_off,
duke@435 56
duke@435 57 xmm0_off, xmm0H_off,
duke@435 58 xmm1_off, xmm1H_off,
duke@435 59 xmm2_off, xmm2H_off,
duke@435 60 xmm3_off, xmm3H_off,
duke@435 61 xmm4_off, xmm4H_off,
duke@435 62 xmm5_off, xmm5H_off,
duke@435 63 xmm6_off, xmm6H_off,
duke@435 64 xmm7_off, xmm7H_off,
duke@435 65 flags_off,
duke@435 66 rdi_off,
duke@435 67 rsi_off,
duke@435 68 ignore_off, // extra copy of rbp,
duke@435 69 rsp_off,
duke@435 70 rbx_off,
duke@435 71 rdx_off,
duke@435 72 rcx_off,
duke@435 73 rax_off,
duke@435 74 // The frame sender code expects that rbp will be in the "natural" place and
duke@435 75 // will override any oopMap setting for it. We must therefore force the layout
duke@435 76 // so that it agrees with the frame sender code.
duke@435 77 rbp_off,
duke@435 78 return_off, // slot for return address
duke@435 79 reg_save_size };
duke@435 80
duke@435 81
duke@435 82 public:
duke@435 83
duke@435 84 static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
duke@435 85 int* total_frame_words, bool verify_fpu = true);
duke@435 86 static void restore_live_registers(MacroAssembler* masm);
duke@435 87
duke@435 88 static int rax_offset() { return rax_off; }
duke@435 89 static int rbx_offset() { return rbx_off; }
duke@435 90
duke@435 91 // Offsets into the register save area
duke@435 92 // Used by deoptimization when it is managing result register
duke@435 93 // values on its own
duke@435 94
duke@435 95 static int raxOffset(void) { return rax_off; }
duke@435 96 static int rdxOffset(void) { return rdx_off; }
duke@435 97 static int rbxOffset(void) { return rbx_off; }
duke@435 98 static int xmm0Offset(void) { return xmm0_off; }
duke@435 99 // This really returns a slot in the fp save area, which one is not important
duke@435 100 static int fpResultOffset(void) { return st0_off; }
duke@435 101
duke@435 102 // During deoptimization only the result register need to be restored
duke@435 103 // all the other values have already been extracted.
duke@435 104
duke@435 105 static void restore_result_registers(MacroAssembler* masm);
duke@435 106
duke@435 107 };
duke@435 108
duke@435 109 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
duke@435 110 int* total_frame_words, bool verify_fpu) {
duke@435 111
duke@435 112 int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
duke@435 113 int frame_words = frame_size_in_bytes / wordSize;
duke@435 114 *total_frame_words = frame_words;
duke@435 115
duke@435 116 assert(FPUStateSizeInWords == 27, "update stack layout");
duke@435 117
duke@435 118 // save registers, fpu state, and flags
duke@435 119 // We assume caller has already has return address slot on the stack
duke@435 120 // We push epb twice in this sequence because we want the real rbp,
duke@435 121 // to be under the return like a normal enter and we want to use pushad
duke@435 122 // We push by hand instead of pusing push
duke@435 123 __ enter();
duke@435 124 __ pushad();
duke@435 125 __ pushfd();
duke@435 126 __ subl(rsp,FPU_regs_live*sizeof(jdouble)); // Push FPU registers space
duke@435 127 __ push_FPU_state(); // Save FPU state & init
duke@435 128
duke@435 129 if (verify_fpu) {
duke@435 130 // Some stubs may have non standard FPU control word settings so
duke@435 131 // only check and reset the value when it required to be the
duke@435 132 // standard value. The safepoint blob in particular can be used
duke@435 133 // in methods which are using the 24 bit control word for
duke@435 134 // optimized float math.
duke@435 135
duke@435 136 #ifdef ASSERT
duke@435 137 // Make sure the control word has the expected value
duke@435 138 Label ok;
duke@435 139 __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
duke@435 140 __ jccb(Assembler::equal, ok);
duke@435 141 __ stop("corrupted control word detected");
duke@435 142 __ bind(ok);
duke@435 143 #endif
duke@435 144
duke@435 145 // Reset the control word to guard against exceptions being unmasked
duke@435 146 // since fstp_d can cause FPU stack underflow exceptions. Write it
duke@435 147 // into the on stack copy and then reload that to make sure that the
duke@435 148 // current and future values are correct.
duke@435 149 __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
duke@435 150 }
duke@435 151
duke@435 152 __ frstor(Address(rsp, 0));
duke@435 153 if (!verify_fpu) {
duke@435 154 // Set the control word so that exceptions are masked for the
duke@435 155 // following code.
duke@435 156 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 157 }
duke@435 158
duke@435 159 // Save the FPU registers in de-opt-able form
duke@435 160
duke@435 161 __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0)
duke@435 162 __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1)
duke@435 163 __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2)
duke@435 164 __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3)
duke@435 165 __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4)
duke@435 166 __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5)
duke@435 167 __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6)
duke@435 168 __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7)
duke@435 169
duke@435 170 if( UseSSE == 1 ) { // Save the XMM state
duke@435 171 __ movflt(Address(rsp,xmm0_off*wordSize),xmm0);
duke@435 172 __ movflt(Address(rsp,xmm1_off*wordSize),xmm1);
duke@435 173 __ movflt(Address(rsp,xmm2_off*wordSize),xmm2);
duke@435 174 __ movflt(Address(rsp,xmm3_off*wordSize),xmm3);
duke@435 175 __ movflt(Address(rsp,xmm4_off*wordSize),xmm4);
duke@435 176 __ movflt(Address(rsp,xmm5_off*wordSize),xmm5);
duke@435 177 __ movflt(Address(rsp,xmm6_off*wordSize),xmm6);
duke@435 178 __ movflt(Address(rsp,xmm7_off*wordSize),xmm7);
duke@435 179 } else if( UseSSE >= 2 ) {
duke@435 180 __ movdbl(Address(rsp,xmm0_off*wordSize),xmm0);
duke@435 181 __ movdbl(Address(rsp,xmm1_off*wordSize),xmm1);
duke@435 182 __ movdbl(Address(rsp,xmm2_off*wordSize),xmm2);
duke@435 183 __ movdbl(Address(rsp,xmm3_off*wordSize),xmm3);
duke@435 184 __ movdbl(Address(rsp,xmm4_off*wordSize),xmm4);
duke@435 185 __ movdbl(Address(rsp,xmm5_off*wordSize),xmm5);
duke@435 186 __ movdbl(Address(rsp,xmm6_off*wordSize),xmm6);
duke@435 187 __ movdbl(Address(rsp,xmm7_off*wordSize),xmm7);
duke@435 188 }
duke@435 189
duke@435 190 // Set an oopmap for the call site. This oopmap will map all
duke@435 191 // oop-registers and debug-info registers as callee-saved. This
duke@435 192 // will allow deoptimization at this safepoint to find all possible
duke@435 193 // debug-info recordings, as well as let GC find all oops.
duke@435 194
duke@435 195 OopMapSet *oop_maps = new OopMapSet();
duke@435 196 OopMap* map = new OopMap( frame_words, 0 );
duke@435 197
duke@435 198 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
duke@435 199
duke@435 200 map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg());
duke@435 201 map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg());
duke@435 202 map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg());
duke@435 203 map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg());
duke@435 204 // rbp, location is known implicitly, no oopMap
duke@435 205 map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg());
duke@435 206 map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg());
duke@435 207 map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg());
duke@435 208 map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg());
duke@435 209 map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg());
duke@435 210 map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg());
duke@435 211 map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg());
duke@435 212 map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg());
duke@435 213 map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg());
duke@435 214 map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg());
duke@435 215 map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg());
duke@435 216 map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg());
duke@435 217 map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg());
duke@435 218 map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg());
duke@435 219 map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg());
duke@435 220 map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg());
duke@435 221 map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg());
duke@435 222 map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg());
duke@435 223 // %%% This is really a waste but we'll keep things as they were for now
duke@435 224 if (true) {
duke@435 225 #define NEXTREG(x) (x)->as_VMReg()->next()
duke@435 226 map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0)));
duke@435 227 map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1)));
duke@435 228 map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2)));
duke@435 229 map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3)));
duke@435 230 map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4)));
duke@435 231 map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5)));
duke@435 232 map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6)));
duke@435 233 map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7)));
duke@435 234 map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0));
duke@435 235 map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1));
duke@435 236 map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2));
duke@435 237 map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3));
duke@435 238 map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4));
duke@435 239 map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5));
duke@435 240 map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6));
duke@435 241 map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7));
duke@435 242 #undef NEXTREG
duke@435 243 #undef STACK_OFFSET
duke@435 244 }
duke@435 245
duke@435 246 return map;
duke@435 247
duke@435 248 }
duke@435 249
duke@435 250 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
duke@435 251
duke@435 252 // Recover XMM & FPU state
duke@435 253 if( UseSSE == 1 ) {
duke@435 254 __ movflt(xmm0,Address(rsp,xmm0_off*wordSize));
duke@435 255 __ movflt(xmm1,Address(rsp,xmm1_off*wordSize));
duke@435 256 __ movflt(xmm2,Address(rsp,xmm2_off*wordSize));
duke@435 257 __ movflt(xmm3,Address(rsp,xmm3_off*wordSize));
duke@435 258 __ movflt(xmm4,Address(rsp,xmm4_off*wordSize));
duke@435 259 __ movflt(xmm5,Address(rsp,xmm5_off*wordSize));
duke@435 260 __ movflt(xmm6,Address(rsp,xmm6_off*wordSize));
duke@435 261 __ movflt(xmm7,Address(rsp,xmm7_off*wordSize));
duke@435 262 } else if( UseSSE >= 2 ) {
duke@435 263 __ movdbl(xmm0,Address(rsp,xmm0_off*wordSize));
duke@435 264 __ movdbl(xmm1,Address(rsp,xmm1_off*wordSize));
duke@435 265 __ movdbl(xmm2,Address(rsp,xmm2_off*wordSize));
duke@435 266 __ movdbl(xmm3,Address(rsp,xmm3_off*wordSize));
duke@435 267 __ movdbl(xmm4,Address(rsp,xmm4_off*wordSize));
duke@435 268 __ movdbl(xmm5,Address(rsp,xmm5_off*wordSize));
duke@435 269 __ movdbl(xmm6,Address(rsp,xmm6_off*wordSize));
duke@435 270 __ movdbl(xmm7,Address(rsp,xmm7_off*wordSize));
duke@435 271 }
duke@435 272 __ pop_FPU_state();
duke@435 273 __ addl(rsp,FPU_regs_live*sizeof(jdouble)); // Pop FPU registers
duke@435 274
duke@435 275 __ popfd();
duke@435 276 __ popad();
duke@435 277 // Get the rbp, described implicitly by the frame sender code (no oopMap)
duke@435 278 __ popl(rbp);
duke@435 279
duke@435 280 }
duke@435 281
duke@435 282 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
duke@435 283
duke@435 284 // Just restore result register. Only used by deoptimization. By
duke@435 285 // now any callee save register that needs to be restore to a c2
duke@435 286 // caller of the deoptee has been extracted into the vframeArray
duke@435 287 // and will be stuffed into the c2i adapter we create for later
duke@435 288 // restoration so only result registers need to be restored here.
duke@435 289 //
duke@435 290
duke@435 291 __ frstor(Address(rsp, 0)); // Restore fpu state
duke@435 292
duke@435 293 // Recover XMM & FPU state
duke@435 294 if( UseSSE == 1 ) {
duke@435 295 __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
duke@435 296 } else if( UseSSE >= 2 ) {
duke@435 297 __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
duke@435 298 }
duke@435 299 __ movl(rax, Address(rsp, rax_off*wordSize));
duke@435 300 __ movl(rdx, Address(rsp, rdx_off*wordSize));
duke@435 301 // Pop all of the register save are off the stack except the return address
duke@435 302 __ addl(rsp, return_off * wordSize);
duke@435 303 }
duke@435 304
duke@435 305 // The java_calling_convention describes stack locations as ideal slots on
duke@435 306 // a frame with no abi restrictions. Since we must observe abi restrictions
duke@435 307 // (like the placement of the register window) the slots must be biased by
duke@435 308 // the following value.
duke@435 309 static int reg2offset_in(VMReg r) {
duke@435 310 // Account for saved rbp, and return address
duke@435 311 // This should really be in_preserve_stack_slots
duke@435 312 return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
duke@435 313 }
duke@435 314
duke@435 315 static int reg2offset_out(VMReg r) {
duke@435 316 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
duke@435 317 }
duke@435 318
duke@435 319 // ---------------------------------------------------------------------------
duke@435 320 // Read the array of BasicTypes from a signature, and compute where the
duke@435 321 // arguments should go. Values in the VMRegPair regs array refer to 4-byte
duke@435 322 // quantities. Values less than SharedInfo::stack0 are registers, those above
duke@435 323 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer
duke@435 324 // as framesizes are fixed.
duke@435 325 // VMRegImpl::stack0 refers to the first slot 0(sp).
duke@435 326 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register
duke@435 327 // up to RegisterImpl::number_of_registers) are the 32-bit
duke@435 328 // integer registers.
duke@435 329
duke@435 330 // Pass first two oop/int args in registers ECX and EDX.
duke@435 331 // Pass first two float/double args in registers XMM0 and XMM1.
duke@435 332 // Doubles have precedence, so if you pass a mix of floats and doubles
duke@435 333 // the doubles will grab the registers before the floats will.
duke@435 334
duke@435 335 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
duke@435 336 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
duke@435 337 // units regardless of build. Of course for i486 there is no 64 bit build
duke@435 338
duke@435 339
duke@435 340 // ---------------------------------------------------------------------------
duke@435 341 // The compiled Java calling convention.
duke@435 342 // Pass first two oop/int args in registers ECX and EDX.
duke@435 343 // Pass first two float/double args in registers XMM0 and XMM1.
duke@435 344 // Doubles have precedence, so if you pass a mix of floats and doubles
duke@435 345 // the doubles will grab the registers before the floats will.
duke@435 346 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
duke@435 347 VMRegPair *regs,
duke@435 348 int total_args_passed,
duke@435 349 int is_outgoing) {
duke@435 350 uint stack = 0; // Starting stack position for args on stack
duke@435 351
duke@435 352
duke@435 353 // Pass first two oop/int args in registers ECX and EDX.
duke@435 354 uint reg_arg0 = 9999;
duke@435 355 uint reg_arg1 = 9999;
duke@435 356
duke@435 357 // Pass first two float/double args in registers XMM0 and XMM1.
duke@435 358 // Doubles have precedence, so if you pass a mix of floats and doubles
duke@435 359 // the doubles will grab the registers before the floats will.
duke@435 360 // CNC - TURNED OFF FOR non-SSE.
duke@435 361 // On Intel we have to round all doubles (and most floats) at
duke@435 362 // call sites by storing to the stack in any case.
duke@435 363 // UseSSE=0 ==> Don't Use ==> 9999+0
duke@435 364 // UseSSE=1 ==> Floats only ==> 9999+1
duke@435 365 // UseSSE>=2 ==> Floats or doubles ==> 9999+2
duke@435 366 enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
duke@435 367 uint fargs = (UseSSE>=2) ? 2 : UseSSE;
duke@435 368 uint freg_arg0 = 9999+fargs;
duke@435 369 uint freg_arg1 = 9999+fargs;
duke@435 370
duke@435 371 // Pass doubles & longs aligned on the stack. First count stack slots for doubles
duke@435 372 int i;
duke@435 373 for( i = 0; i < total_args_passed; i++) {
duke@435 374 if( sig_bt[i] == T_DOUBLE ) {
duke@435 375 // first 2 doubles go in registers
duke@435 376 if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
duke@435 377 else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
duke@435 378 else // Else double is passed low on the stack to be aligned.
duke@435 379 stack += 2;
duke@435 380 } else if( sig_bt[i] == T_LONG ) {
duke@435 381 stack += 2;
duke@435 382 }
duke@435 383 }
duke@435 384 int dstack = 0; // Separate counter for placing doubles
duke@435 385
duke@435 386 // Now pick where all else goes.
duke@435 387 for( i = 0; i < total_args_passed; i++) {
duke@435 388 // From the type and the argument number (count) compute the location
duke@435 389 switch( sig_bt[i] ) {
duke@435 390 case T_SHORT:
duke@435 391 case T_CHAR:
duke@435 392 case T_BYTE:
duke@435 393 case T_BOOLEAN:
duke@435 394 case T_INT:
duke@435 395 case T_ARRAY:
duke@435 396 case T_OBJECT:
duke@435 397 case T_ADDRESS:
duke@435 398 if( reg_arg0 == 9999 ) {
duke@435 399 reg_arg0 = i;
duke@435 400 regs[i].set1(rcx->as_VMReg());
duke@435 401 } else if( reg_arg1 == 9999 ) {
duke@435 402 reg_arg1 = i;
duke@435 403 regs[i].set1(rdx->as_VMReg());
duke@435 404 } else {
duke@435 405 regs[i].set1(VMRegImpl::stack2reg(stack++));
duke@435 406 }
duke@435 407 break;
duke@435 408 case T_FLOAT:
duke@435 409 if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
duke@435 410 freg_arg0 = i;
duke@435 411 regs[i].set1(xmm0->as_VMReg());
duke@435 412 } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
duke@435 413 freg_arg1 = i;
duke@435 414 regs[i].set1(xmm1->as_VMReg());
duke@435 415 } else {
duke@435 416 regs[i].set1(VMRegImpl::stack2reg(stack++));
duke@435 417 }
duke@435 418 break;
duke@435 419 case T_LONG:
duke@435 420 assert(sig_bt[i+1] == T_VOID, "missing Half" );
duke@435 421 regs[i].set2(VMRegImpl::stack2reg(dstack));
duke@435 422 dstack += 2;
duke@435 423 break;
duke@435 424 case T_DOUBLE:
duke@435 425 assert(sig_bt[i+1] == T_VOID, "missing Half" );
duke@435 426 if( freg_arg0 == (uint)i ) {
duke@435 427 regs[i].set2(xmm0->as_VMReg());
duke@435 428 } else if( freg_arg1 == (uint)i ) {
duke@435 429 regs[i].set2(xmm1->as_VMReg());
duke@435 430 } else {
duke@435 431 regs[i].set2(VMRegImpl::stack2reg(dstack));
duke@435 432 dstack += 2;
duke@435 433 }
duke@435 434 break;
duke@435 435 case T_VOID: regs[i].set_bad(); break;
duke@435 436 break;
duke@435 437 default:
duke@435 438 ShouldNotReachHere();
duke@435 439 break;
duke@435 440 }
duke@435 441 }
duke@435 442
duke@435 443 // return value can be odd number of VMRegImpl stack slots make multiple of 2
duke@435 444 return round_to(stack, 2);
duke@435 445 }
duke@435 446
duke@435 447 // Patch the callers callsite with entry to compiled code if it exists.
duke@435 448 static void patch_callers_callsite(MacroAssembler *masm) {
duke@435 449 Label L;
duke@435 450 __ verify_oop(rbx);
duke@435 451 __ cmpl(Address(rbx, in_bytes(methodOopDesc::code_offset())), NULL_WORD);
duke@435 452 __ jcc(Assembler::equal, L);
duke@435 453 // Schedule the branch target address early.
duke@435 454 // Call into the VM to patch the caller, then jump to compiled callee
duke@435 455 // rax, isn't live so capture return address while we easily can
duke@435 456 __ movl(rax, Address(rsp, 0));
duke@435 457 __ pushad();
duke@435 458 __ pushfd();
duke@435 459
duke@435 460 if (UseSSE == 1) {
duke@435 461 __ subl(rsp, 2*wordSize);
duke@435 462 __ movflt(Address(rsp, 0), xmm0);
duke@435 463 __ movflt(Address(rsp, wordSize), xmm1);
duke@435 464 }
duke@435 465 if (UseSSE >= 2) {
duke@435 466 __ subl(rsp, 4*wordSize);
duke@435 467 __ movdbl(Address(rsp, 0), xmm0);
duke@435 468 __ movdbl(Address(rsp, 2*wordSize), xmm1);
duke@435 469 }
duke@435 470 #ifdef COMPILER2
duke@435 471 // C2 may leave the stack dirty if not in SSE2+ mode
duke@435 472 if (UseSSE >= 2) {
duke@435 473 __ verify_FPU(0, "c2i transition should have clean FPU stack");
duke@435 474 } else {
duke@435 475 __ empty_FPU_stack();
duke@435 476 }
duke@435 477 #endif /* COMPILER2 */
duke@435 478
duke@435 479 // VM needs caller's callsite
duke@435 480 __ pushl(rax);
duke@435 481 // VM needs target method
duke@435 482 __ pushl(rbx);
duke@435 483 __ verify_oop(rbx);
duke@435 484 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
duke@435 485 __ addl(rsp, 2*wordSize);
duke@435 486
duke@435 487 if (UseSSE == 1) {
duke@435 488 __ movflt(xmm0, Address(rsp, 0));
duke@435 489 __ movflt(xmm1, Address(rsp, wordSize));
duke@435 490 __ addl(rsp, 2*wordSize);
duke@435 491 }
duke@435 492 if (UseSSE >= 2) {
duke@435 493 __ movdbl(xmm0, Address(rsp, 0));
duke@435 494 __ movdbl(xmm1, Address(rsp, 2*wordSize));
duke@435 495 __ addl(rsp, 4*wordSize);
duke@435 496 }
duke@435 497
duke@435 498 __ popfd();
duke@435 499 __ popad();
duke@435 500 __ bind(L);
duke@435 501 }
duke@435 502
duke@435 503
duke@435 504 // Helper function to put tags in interpreter stack.
duke@435 505 static void tag_stack(MacroAssembler *masm, const BasicType sig, int st_off) {
duke@435 506 if (TaggedStackInterpreter) {
duke@435 507 int tag_offset = st_off + Interpreter::expr_tag_offset_in_bytes(0);
duke@435 508 if (sig == T_OBJECT || sig == T_ARRAY) {
duke@435 509 __ movl(Address(rsp, tag_offset), frame::TagReference);
duke@435 510 } else if (sig == T_LONG || sig == T_DOUBLE) {
duke@435 511 int next_tag_offset = st_off + Interpreter::expr_tag_offset_in_bytes(1);
duke@435 512 __ movl(Address(rsp, next_tag_offset), frame::TagValue);
duke@435 513 __ movl(Address(rsp, tag_offset), frame::TagValue);
duke@435 514 } else {
duke@435 515 __ movl(Address(rsp, tag_offset), frame::TagValue);
duke@435 516 }
duke@435 517 }
duke@435 518 }
duke@435 519
duke@435 520 // Double and long values with Tagged stacks are not contiguous.
duke@435 521 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
duke@435 522 int next_off = st_off - Interpreter::stackElementSize();
duke@435 523 if (TaggedStackInterpreter) {
duke@435 524 __ movdbl(Address(rsp, next_off), r);
duke@435 525 // Move top half up and put tag in the middle.
duke@435 526 __ movl(rdi, Address(rsp, next_off+wordSize));
duke@435 527 __ movl(Address(rsp, st_off), rdi);
duke@435 528 tag_stack(masm, T_DOUBLE, next_off);
duke@435 529 } else {
duke@435 530 __ movdbl(Address(rsp, next_off), r);
duke@435 531 }
duke@435 532 }
duke@435 533
duke@435 534 static void gen_c2i_adapter(MacroAssembler *masm,
duke@435 535 int total_args_passed,
duke@435 536 int comp_args_on_stack,
duke@435 537 const BasicType *sig_bt,
duke@435 538 const VMRegPair *regs,
duke@435 539 Label& skip_fixup) {
duke@435 540 // Before we get into the guts of the C2I adapter, see if we should be here
duke@435 541 // at all. We've come from compiled code and are attempting to jump to the
duke@435 542 // interpreter, which means the caller made a static call to get here
duke@435 543 // (vcalls always get a compiled target if there is one). Check for a
duke@435 544 // compiled target. If there is one, we need to patch the caller's call.
duke@435 545 patch_callers_callsite(masm);
duke@435 546
duke@435 547 __ bind(skip_fixup);
duke@435 548
duke@435 549 #ifdef COMPILER2
duke@435 550 // C2 may leave the stack dirty if not in SSE2+ mode
duke@435 551 if (UseSSE >= 2) {
duke@435 552 __ verify_FPU(0, "c2i transition should have clean FPU stack");
duke@435 553 } else {
duke@435 554 __ empty_FPU_stack();
duke@435 555 }
duke@435 556 #endif /* COMPILER2 */
duke@435 557
duke@435 558 // Since all args are passed on the stack, total_args_passed * interpreter_
duke@435 559 // stack_element_size is the
duke@435 560 // space we need.
duke@435 561 int extraspace = total_args_passed * Interpreter::stackElementSize();
duke@435 562
duke@435 563 // Get return address
duke@435 564 __ popl(rax);
duke@435 565
duke@435 566 // set senderSP value
duke@435 567 __ movl(rsi, rsp);
duke@435 568
duke@435 569 __ subl(rsp, extraspace);
duke@435 570
duke@435 571 // Now write the args into the outgoing interpreter space
duke@435 572 for (int i = 0; i < total_args_passed; i++) {
duke@435 573 if (sig_bt[i] == T_VOID) {
duke@435 574 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
duke@435 575 continue;
duke@435 576 }
duke@435 577
duke@435 578 // st_off points to lowest address on stack.
duke@435 579 int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize();
duke@435 580 // Say 4 args:
duke@435 581 // i st_off
duke@435 582 // 0 12 T_LONG
duke@435 583 // 1 8 T_VOID
duke@435 584 // 2 4 T_OBJECT
duke@435 585 // 3 0 T_BOOL
duke@435 586 VMReg r_1 = regs[i].first();
duke@435 587 VMReg r_2 = regs[i].second();
duke@435 588 if (!r_1->is_valid()) {
duke@435 589 assert(!r_2->is_valid(), "");
duke@435 590 continue;
duke@435 591 }
duke@435 592
duke@435 593 if (r_1->is_stack()) {
duke@435 594 // memory to memory use fpu stack top
duke@435 595 int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
duke@435 596
duke@435 597 if (!r_2->is_valid()) {
duke@435 598 __ movl(rdi, Address(rsp, ld_off));
duke@435 599 __ movl(Address(rsp, st_off), rdi);
duke@435 600 tag_stack(masm, sig_bt[i], st_off);
duke@435 601 } else {
duke@435 602
duke@435 603 // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
duke@435 604 // st_off == MSW, st_off-wordSize == LSW
duke@435 605
duke@435 606 int next_off = st_off - Interpreter::stackElementSize();
duke@435 607 __ movl(rdi, Address(rsp, ld_off));
duke@435 608 __ movl(Address(rsp, next_off), rdi);
duke@435 609 __ movl(rdi, Address(rsp, ld_off + wordSize));
duke@435 610 __ movl(Address(rsp, st_off), rdi);
duke@435 611 tag_stack(masm, sig_bt[i], next_off);
duke@435 612 }
duke@435 613 } else if (r_1->is_Register()) {
duke@435 614 Register r = r_1->as_Register();
duke@435 615 if (!r_2->is_valid()) {
duke@435 616 __ movl(Address(rsp, st_off), r);
duke@435 617 tag_stack(masm, sig_bt[i], st_off);
duke@435 618 } else {
duke@435 619 // long/double in gpr
duke@435 620 ShouldNotReachHere();
duke@435 621 }
duke@435 622 } else {
duke@435 623 assert(r_1->is_XMMRegister(), "");
duke@435 624 if (!r_2->is_valid()) {
duke@435 625 __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
duke@435 626 tag_stack(masm, sig_bt[i], st_off);
duke@435 627 } else {
duke@435 628 assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
duke@435 629 move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
duke@435 630 }
duke@435 631 }
duke@435 632 }
duke@435 633
duke@435 634 // Schedule the branch target address early.
duke@435 635 __ movl(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
duke@435 636 // And repush original return address
duke@435 637 __ pushl(rax);
duke@435 638 __ jmp(rcx);
duke@435 639 }
duke@435 640
duke@435 641
duke@435 642 // For tagged stacks, double or long value aren't contiguous on the stack
duke@435 643 // so get them contiguous for the xmm load
duke@435 644 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
duke@435 645 int next_val_off = ld_off - Interpreter::stackElementSize();
duke@435 646 if (TaggedStackInterpreter) {
duke@435 647 // use tag slot temporarily for MSW
duke@435 648 __ movl(rsi, Address(saved_sp, ld_off));
duke@435 649 __ movl(Address(saved_sp, next_val_off+wordSize), rsi);
duke@435 650 __ movdbl(r, Address(saved_sp, next_val_off));
duke@435 651 // restore tag
duke@435 652 __ movl(Address(saved_sp, next_val_off+wordSize), frame::TagValue);
duke@435 653 } else {
duke@435 654 __ movdbl(r, Address(saved_sp, next_val_off));
duke@435 655 }
duke@435 656 }
duke@435 657
duke@435 658 static void gen_i2c_adapter(MacroAssembler *masm,
duke@435 659 int total_args_passed,
duke@435 660 int comp_args_on_stack,
duke@435 661 const BasicType *sig_bt,
duke@435 662 const VMRegPair *regs) {
duke@435 663 // we're being called from the interpreter but need to find the
duke@435 664 // compiled return entry point. The return address on the stack
duke@435 665 // should point at it and we just need to pull the old value out.
duke@435 666 // load up the pointer to the compiled return entry point and
duke@435 667 // rewrite our return pc. The code is arranged like so:
duke@435 668 //
duke@435 669 // .word Interpreter::return_sentinel
duke@435 670 // .word address_of_compiled_return_point
duke@435 671 // return_entry_point: blah_blah_blah
duke@435 672 //
duke@435 673 // So we can find the appropriate return point by loading up the word
duke@435 674 // just prior to the current return address we have on the stack.
duke@435 675 //
duke@435 676 // We will only enter here from an interpreted frame and never from after
duke@435 677 // passing thru a c2i. Azul allowed this but we do not. If we lose the
duke@435 678 // race and use a c2i we will remain interpreted for the race loser(s).
duke@435 679 // This removes all sorts of headaches on the x86 side and also eliminates
duke@435 680 // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
duke@435 681
duke@435 682
duke@435 683 // Note: rsi contains the senderSP on entry. We must preserve it since
duke@435 684 // we may do a i2c -> c2i transition if we lose a race where compiled
duke@435 685 // code goes non-entrant while we get args ready.
duke@435 686
duke@435 687 // Pick up the return address
duke@435 688 __ movl(rax, Address(rsp, 0));
duke@435 689
duke@435 690 // If UseSSE >= 2 then no cleanup is needed on the return to the
duke@435 691 // interpreter so skip fixing up the return entry point unless
duke@435 692 // VerifyFPU is enabled.
duke@435 693 if (UseSSE < 2 || VerifyFPU) {
duke@435 694 Label skip, chk_int;
duke@435 695 // If we were called from the call stub we need to do a little bit different
duke@435 696 // cleanup than if the interpreter returned to the call stub.
duke@435 697
duke@435 698 ExternalAddress stub_return_address(StubRoutines::_call_stub_return_address);
duke@435 699 __ cmp32(rax, stub_return_address.addr());
duke@435 700 __ jcc(Assembler::notEqual, chk_int);
duke@435 701 assert(StubRoutines::i486::get_call_stub_compiled_return() != NULL, "must be set");
duke@435 702 __ lea(rax, ExternalAddress(StubRoutines::i486::get_call_stub_compiled_return()));
duke@435 703 __ jmp(skip);
duke@435 704
duke@435 705 // It must be the interpreter since we never get here via a c2i (unlike Azul)
duke@435 706
duke@435 707 __ bind(chk_int);
duke@435 708 #ifdef ASSERT
duke@435 709 {
duke@435 710 Label ok;
duke@435 711 __ cmpl(Address(rax, -8), Interpreter::return_sentinel);
duke@435 712 __ jcc(Assembler::equal, ok);
duke@435 713 __ int3();
duke@435 714 __ bind(ok);
duke@435 715 }
duke@435 716 #endif // ASSERT
duke@435 717 __ movl(rax, Address(rax, -4));
duke@435 718 __ bind(skip);
duke@435 719 }
duke@435 720
duke@435 721 // rax, now contains the compiled return entry point which will do an
duke@435 722 // cleanup needed for the return from compiled to interpreted.
duke@435 723
duke@435 724 // Must preserve original SP for loading incoming arguments because
duke@435 725 // we need to align the outgoing SP for compiled code.
duke@435 726 __ movl(rdi, rsp);
duke@435 727
duke@435 728 // Cut-out for having no stack args. Since up to 2 int/oop args are passed
duke@435 729 // in registers, we will occasionally have no stack args.
duke@435 730 int comp_words_on_stack = 0;
duke@435 731 if (comp_args_on_stack) {
duke@435 732 // Sig words on the stack are greater-than VMRegImpl::stack0. Those in
duke@435 733 // registers are below. By subtracting stack0, we either get a negative
duke@435 734 // number (all values in registers) or the maximum stack slot accessed.
duke@435 735 // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
duke@435 736 // Convert 4-byte stack slots to words.
duke@435 737 comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
duke@435 738 // Round up to miminum stack alignment, in wordSize
duke@435 739 comp_words_on_stack = round_to(comp_words_on_stack, 2);
duke@435 740 __ subl(rsp, comp_words_on_stack * wordSize);
duke@435 741 }
duke@435 742
duke@435 743 // Align the outgoing SP
duke@435 744 __ andl(rsp, -(StackAlignmentInBytes));
duke@435 745
duke@435 746 // push the return address on the stack (note that pushing, rather
duke@435 747 // than storing it, yields the correct frame alignment for the callee)
duke@435 748 __ pushl(rax);
duke@435 749
duke@435 750 // Put saved SP in another register
duke@435 751 const Register saved_sp = rax;
duke@435 752 __ movl(saved_sp, rdi);
duke@435 753
duke@435 754
duke@435 755 // Will jump to the compiled code just as if compiled code was doing it.
duke@435 756 // Pre-load the register-jump target early, to schedule it better.
duke@435 757 __ movl(rdi, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
duke@435 758
duke@435 759 // Now generate the shuffle code. Pick up all register args and move the
duke@435 760 // rest through the floating point stack top.
duke@435 761 for (int i = 0; i < total_args_passed; i++) {
duke@435 762 if (sig_bt[i] == T_VOID) {
duke@435 763 // Longs and doubles are passed in native word order, but misaligned
duke@435 764 // in the 32-bit build.
duke@435 765 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
duke@435 766 continue;
duke@435 767 }
duke@435 768
duke@435 769 // Pick up 0, 1 or 2 words from SP+offset.
duke@435 770
duke@435 771 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
duke@435 772 "scrambled load targets?");
duke@435 773 // Load in argument order going down.
duke@435 774 int ld_off = (total_args_passed - i)*Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
duke@435 775 // Point to interpreter value (vs. tag)
duke@435 776 int next_off = ld_off - Interpreter::stackElementSize();
duke@435 777 //
duke@435 778 //
duke@435 779 //
duke@435 780 VMReg r_1 = regs[i].first();
duke@435 781 VMReg r_2 = regs[i].second();
duke@435 782 if (!r_1->is_valid()) {
duke@435 783 assert(!r_2->is_valid(), "");
duke@435 784 continue;
duke@435 785 }
duke@435 786 if (r_1->is_stack()) {
duke@435 787 // Convert stack slot to an SP offset (+ wordSize to account for return address )
duke@435 788 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
duke@435 789
duke@435 790 // We can use rsi as a temp here because compiled code doesn't need rsi as an input
duke@435 791 // and if we end up going thru a c2i because of a miss a reasonable value of rsi
duke@435 792 // we be generated.
duke@435 793 if (!r_2->is_valid()) {
duke@435 794 // __ fld_s(Address(saved_sp, ld_off));
duke@435 795 // __ fstp_s(Address(rsp, st_off));
duke@435 796 __ movl(rsi, Address(saved_sp, ld_off));
duke@435 797 __ movl(Address(rsp, st_off), rsi);
duke@435 798 } else {
duke@435 799 // Interpreter local[n] == MSW, local[n+1] == LSW however locals
duke@435 800 // are accessed as negative so LSW is at LOW address
duke@435 801
duke@435 802 // ld_off is MSW so get LSW
duke@435 803 // st_off is LSW (i.e. reg.first())
duke@435 804 // __ fld_d(Address(saved_sp, next_off));
duke@435 805 // __ fstp_d(Address(rsp, st_off));
duke@435 806 __ movl(rsi, Address(saved_sp, next_off));
duke@435 807 __ movl(Address(rsp, st_off), rsi);
duke@435 808 __ movl(rsi, Address(saved_sp, ld_off));
duke@435 809 __ movl(Address(rsp, st_off + wordSize), rsi);
duke@435 810 }
duke@435 811 } else if (r_1->is_Register()) { // Register argument
duke@435 812 Register r = r_1->as_Register();
duke@435 813 assert(r != rax, "must be different");
duke@435 814 if (r_2->is_valid()) {
duke@435 815 assert(r_2->as_Register() != rax, "need another temporary register");
duke@435 816 // Remember r_1 is low address (and LSB on x86)
duke@435 817 // So r_2 gets loaded from high address regardless of the platform
duke@435 818 __ movl(r_2->as_Register(), Address(saved_sp, ld_off));
duke@435 819 __ movl(r, Address(saved_sp, next_off));
duke@435 820 } else {
duke@435 821 __ movl(r, Address(saved_sp, ld_off));
duke@435 822 }
duke@435 823 } else {
duke@435 824 assert(r_1->is_XMMRegister(), "");
duke@435 825 if (!r_2->is_valid()) {
duke@435 826 __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
duke@435 827 } else {
duke@435 828 move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
duke@435 829 }
duke@435 830 }
duke@435 831 }
duke@435 832
duke@435 833 // 6243940 We might end up in handle_wrong_method if
duke@435 834 // the callee is deoptimized as we race thru here. If that
duke@435 835 // happens we don't want to take a safepoint because the
duke@435 836 // caller frame will look interpreted and arguments are now
duke@435 837 // "compiled" so it is much better to make this transition
duke@435 838 // invisible to the stack walking code. Unfortunately if
duke@435 839 // we try and find the callee by normal means a safepoint
duke@435 840 // is possible. So we stash the desired callee in the thread
duke@435 841 // and the vm will find there should this case occur.
duke@435 842
duke@435 843 __ get_thread(rax);
duke@435 844 __ movl(Address(rax, JavaThread::callee_target_offset()), rbx);
duke@435 845
duke@435 846 // move methodOop to rax, in case we end up in an c2i adapter.
duke@435 847 // the c2i adapters expect methodOop in rax, (c2) because c2's
duke@435 848 // resolve stubs return the result (the method) in rax,.
duke@435 849 // I'd love to fix this.
duke@435 850 __ movl(rax, rbx);
duke@435 851
duke@435 852 __ jmp(rdi);
duke@435 853 }
duke@435 854
duke@435 855 // ---------------------------------------------------------------
duke@435 856 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
duke@435 857 int total_args_passed,
duke@435 858 int comp_args_on_stack,
duke@435 859 const BasicType *sig_bt,
duke@435 860 const VMRegPair *regs) {
duke@435 861 address i2c_entry = __ pc();
duke@435 862
duke@435 863 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
duke@435 864
duke@435 865 // -------------------------------------------------------------------------
duke@435 866 // Generate a C2I adapter. On entry we know rbx, holds the methodOop during calls
duke@435 867 // to the interpreter. The args start out packed in the compiled layout. They
duke@435 868 // need to be unpacked into the interpreter layout. This will almost always
duke@435 869 // require some stack space. We grow the current (compiled) stack, then repack
duke@435 870 // the args. We finally end in a jump to the generic interpreter entry point.
duke@435 871 // On exit from the interpreter, the interpreter will restore our SP (lest the
duke@435 872 // compiled code, which relys solely on SP and not EBP, get sick).
duke@435 873
duke@435 874 address c2i_unverified_entry = __ pc();
duke@435 875 Label skip_fixup;
duke@435 876
duke@435 877 Register holder = rax;
duke@435 878 Register receiver = rcx;
duke@435 879 Register temp = rbx;
duke@435 880
duke@435 881 {
duke@435 882
duke@435 883 Label missed;
duke@435 884
duke@435 885 __ verify_oop(holder);
duke@435 886 __ movl(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
duke@435 887 __ verify_oop(temp);
duke@435 888
duke@435 889 __ cmpl(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
duke@435 890 __ movl(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
duke@435 891 __ jcc(Assembler::notEqual, missed);
duke@435 892 // Method might have been compiled since the call site was patched to
duke@435 893 // interpreted if that is the case treat it as a miss so we can get
duke@435 894 // the call site corrected.
duke@435 895 __ cmpl(Address(rbx, in_bytes(methodOopDesc::code_offset())), NULL_WORD);
duke@435 896 __ jcc(Assembler::equal, skip_fixup);
duke@435 897
duke@435 898 __ bind(missed);
duke@435 899 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 900 }
duke@435 901
duke@435 902 address c2i_entry = __ pc();
duke@435 903
duke@435 904 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
duke@435 905
duke@435 906 __ flush();
duke@435 907 return new AdapterHandlerEntry(i2c_entry, c2i_entry, c2i_unverified_entry);
duke@435 908 }
duke@435 909
duke@435 910 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
duke@435 911 VMRegPair *regs,
duke@435 912 int total_args_passed) {
duke@435 913 // We return the amount of VMRegImpl stack slots we need to reserve for all
duke@435 914 // the arguments NOT counting out_preserve_stack_slots.
duke@435 915
duke@435 916 uint stack = 0; // All arguments on stack
duke@435 917
duke@435 918 for( int i = 0; i < total_args_passed; i++) {
duke@435 919 // From the type and the argument number (count) compute the location
duke@435 920 switch( sig_bt[i] ) {
duke@435 921 case T_BOOLEAN:
duke@435 922 case T_CHAR:
duke@435 923 case T_FLOAT:
duke@435 924 case T_BYTE:
duke@435 925 case T_SHORT:
duke@435 926 case T_INT:
duke@435 927 case T_OBJECT:
duke@435 928 case T_ARRAY:
duke@435 929 case T_ADDRESS:
duke@435 930 regs[i].set1(VMRegImpl::stack2reg(stack++));
duke@435 931 break;
duke@435 932 case T_LONG:
duke@435 933 case T_DOUBLE: // The stack numbering is reversed from Java
duke@435 934 // Since C arguments do not get reversed, the ordering for
duke@435 935 // doubles on the stack must be opposite the Java convention
duke@435 936 assert(sig_bt[i+1] == T_VOID, "missing Half" );
duke@435 937 regs[i].set2(VMRegImpl::stack2reg(stack));
duke@435 938 stack += 2;
duke@435 939 break;
duke@435 940 case T_VOID: regs[i].set_bad(); break;
duke@435 941 default:
duke@435 942 ShouldNotReachHere();
duke@435 943 break;
duke@435 944 }
duke@435 945 }
duke@435 946 return stack;
duke@435 947 }
duke@435 948
duke@435 949 // A simple move of integer like type
duke@435 950 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 951 if (src.first()->is_stack()) {
duke@435 952 if (dst.first()->is_stack()) {
duke@435 953 // stack to stack
duke@435 954 // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
duke@435 955 // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
duke@435 956 __ movl(rax, Address(rbp, reg2offset_in(src.first())));
duke@435 957 __ movl(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 958 } else {
duke@435 959 // stack to reg
duke@435 960 __ movl(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
duke@435 961 }
duke@435 962 } else if (dst.first()->is_stack()) {
duke@435 963 // reg to stack
duke@435 964 __ movl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
duke@435 965 } else {
duke@435 966 __ movl(dst.first()->as_Register(), src.first()->as_Register());
duke@435 967 }
duke@435 968 }
duke@435 969
duke@435 970 // An oop arg. Must pass a handle not the oop itself
duke@435 971 static void object_move(MacroAssembler* masm,
duke@435 972 OopMap* map,
duke@435 973 int oop_handle_offset,
duke@435 974 int framesize_in_slots,
duke@435 975 VMRegPair src,
duke@435 976 VMRegPair dst,
duke@435 977 bool is_receiver,
duke@435 978 int* receiver_offset) {
duke@435 979
duke@435 980 // Because of the calling conventions we know that src can be a
duke@435 981 // register or a stack location. dst can only be a stack location.
duke@435 982
duke@435 983 assert(dst.first()->is_stack(), "must be stack");
duke@435 984 // must pass a handle. First figure out the location we use as a handle
duke@435 985
duke@435 986 if (src.first()->is_stack()) {
duke@435 987 // Oop is already on the stack as an argument
duke@435 988 Register rHandle = rax;
duke@435 989 Label nil;
duke@435 990 __ xorl(rHandle, rHandle);
duke@435 991 __ cmpl(Address(rbp, reg2offset_in(src.first())), NULL_WORD);
duke@435 992 __ jcc(Assembler::equal, nil);
duke@435 993 __ leal(rHandle, Address(rbp, reg2offset_in(src.first())));
duke@435 994 __ bind(nil);
duke@435 995 __ movl(Address(rsp, reg2offset_out(dst.first())), rHandle);
duke@435 996
duke@435 997 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
duke@435 998 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
duke@435 999 if (is_receiver) {
duke@435 1000 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
duke@435 1001 }
duke@435 1002 } else {
duke@435 1003 // Oop is in an a register we must store it to the space we reserve
duke@435 1004 // on the stack for oop_handles
duke@435 1005 const Register rOop = src.first()->as_Register();
duke@435 1006 const Register rHandle = rax;
duke@435 1007 int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
duke@435 1008 int offset = oop_slot*VMRegImpl::stack_slot_size;
duke@435 1009 Label skip;
duke@435 1010 __ movl(Address(rsp, offset), rOop);
duke@435 1011 map->set_oop(VMRegImpl::stack2reg(oop_slot));
duke@435 1012 __ xorl(rHandle, rHandle);
duke@435 1013 __ cmpl(rOop, NULL_WORD);
duke@435 1014 __ jcc(Assembler::equal, skip);
duke@435 1015 __ leal(rHandle, Address(rsp, offset));
duke@435 1016 __ bind(skip);
duke@435 1017 // Store the handle parameter
duke@435 1018 __ movl(Address(rsp, reg2offset_out(dst.first())), rHandle);
duke@435 1019 if (is_receiver) {
duke@435 1020 *receiver_offset = offset;
duke@435 1021 }
duke@435 1022 }
duke@435 1023 }
duke@435 1024
duke@435 1025 // A float arg may have to do float reg int reg conversion
duke@435 1026 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1027 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
duke@435 1028
duke@435 1029 // Because of the calling convention we know that src is either a stack location
duke@435 1030 // or an xmm register. dst can only be a stack location.
duke@435 1031
duke@435 1032 assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
duke@435 1033
duke@435 1034 if (src.first()->is_stack()) {
duke@435 1035 __ movl(rax, Address(rbp, reg2offset_in(src.first())));
duke@435 1036 __ movl(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1037 } else {
duke@435 1038 // reg to stack
duke@435 1039 __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
duke@435 1040 }
duke@435 1041 }
duke@435 1042
duke@435 1043 // A long move
duke@435 1044 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1045
duke@435 1046 // The only legal possibility for a long_move VMRegPair is:
duke@435 1047 // 1: two stack slots (possibly unaligned)
duke@435 1048 // as neither the java or C calling convention will use registers
duke@435 1049 // for longs.
duke@435 1050
duke@435 1051 if (src.first()->is_stack() && dst.first()->is_stack()) {
duke@435 1052 assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
duke@435 1053 __ movl(rax, Address(rbp, reg2offset_in(src.first())));
duke@435 1054 __ movl(rbx, Address(rbp, reg2offset_in(src.second())));
duke@435 1055 __ movl(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1056 __ movl(Address(rsp, reg2offset_out(dst.second())), rbx);
duke@435 1057 } else {
duke@435 1058 ShouldNotReachHere();
duke@435 1059 }
duke@435 1060 }
duke@435 1061
duke@435 1062 // A double move
duke@435 1063 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1064
duke@435 1065 // The only legal possibilities for a double_move VMRegPair are:
duke@435 1066 // The painful thing here is that like long_move a VMRegPair might be
duke@435 1067
duke@435 1068 // Because of the calling convention we know that src is either
duke@435 1069 // 1: a single physical register (xmm registers only)
duke@435 1070 // 2: two stack slots (possibly unaligned)
duke@435 1071 // dst can only be a pair of stack slots.
duke@435 1072
duke@435 1073 assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
duke@435 1074
duke@435 1075 if (src.first()->is_stack()) {
duke@435 1076 // source is all stack
duke@435 1077 __ movl(rax, Address(rbp, reg2offset_in(src.first())));
duke@435 1078 __ movl(rbx, Address(rbp, reg2offset_in(src.second())));
duke@435 1079 __ movl(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1080 __ movl(Address(rsp, reg2offset_out(dst.second())), rbx);
duke@435 1081 } else {
duke@435 1082 // reg to stack
duke@435 1083 // No worries about stack alignment
duke@435 1084 __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
duke@435 1085 }
duke@435 1086 }
duke@435 1087
duke@435 1088
duke@435 1089 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1090 // We always ignore the frame_slots arg and just use the space just below frame pointer
duke@435 1091 // which by this time is free to use
duke@435 1092 switch (ret_type) {
duke@435 1093 case T_FLOAT:
duke@435 1094 __ fstp_s(Address(rbp, -wordSize));
duke@435 1095 break;
duke@435 1096 case T_DOUBLE:
duke@435 1097 __ fstp_d(Address(rbp, -2*wordSize));
duke@435 1098 break;
duke@435 1099 case T_VOID: break;
duke@435 1100 case T_LONG:
duke@435 1101 __ movl(Address(rbp, -wordSize), rax);
duke@435 1102 __ movl(Address(rbp, -2*wordSize), rdx);
duke@435 1103 break;
duke@435 1104 default: {
duke@435 1105 __ movl(Address(rbp, -wordSize), rax);
duke@435 1106 }
duke@435 1107 }
duke@435 1108 }
duke@435 1109
duke@435 1110 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1111 // We always ignore the frame_slots arg and just use the space just below frame pointer
duke@435 1112 // which by this time is free to use
duke@435 1113 switch (ret_type) {
duke@435 1114 case T_FLOAT:
duke@435 1115 __ fld_s(Address(rbp, -wordSize));
duke@435 1116 break;
duke@435 1117 case T_DOUBLE:
duke@435 1118 __ fld_d(Address(rbp, -2*wordSize));
duke@435 1119 break;
duke@435 1120 case T_LONG:
duke@435 1121 __ movl(rax, Address(rbp, -wordSize));
duke@435 1122 __ movl(rdx, Address(rbp, -2*wordSize));
duke@435 1123 break;
duke@435 1124 case T_VOID: break;
duke@435 1125 default: {
duke@435 1126 __ movl(rax, Address(rbp, -wordSize));
duke@435 1127 }
duke@435 1128 }
duke@435 1129 }
duke@435 1130
duke@435 1131 // ---------------------------------------------------------------------------
duke@435 1132 // Generate a native wrapper for a given method. The method takes arguments
duke@435 1133 // in the Java compiled code convention, marshals them to the native
duke@435 1134 // convention (handlizes oops, etc), transitions to native, makes the call,
duke@435 1135 // returns to java state (possibly blocking), unhandlizes any result and
duke@435 1136 // returns.
duke@435 1137 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
duke@435 1138 methodHandle method,
duke@435 1139 int total_in_args,
duke@435 1140 int comp_args_on_stack,
duke@435 1141 BasicType *in_sig_bt,
duke@435 1142 VMRegPair *in_regs,
duke@435 1143 BasicType ret_type) {
duke@435 1144
duke@435 1145 // An OopMap for lock (and class if static)
duke@435 1146 OopMapSet *oop_maps = new OopMapSet();
duke@435 1147
duke@435 1148 // We have received a description of where all the java arg are located
duke@435 1149 // on entry to the wrapper. We need to convert these args to where
duke@435 1150 // the jni function will expect them. To figure out where they go
duke@435 1151 // we convert the java signature to a C signature by inserting
duke@435 1152 // the hidden arguments as arg[0] and possibly arg[1] (static method)
duke@435 1153
duke@435 1154 int total_c_args = total_in_args + 1;
duke@435 1155 if (method->is_static()) {
duke@435 1156 total_c_args++;
duke@435 1157 }
duke@435 1158
duke@435 1159 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
duke@435 1160 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
duke@435 1161
duke@435 1162 int argc = 0;
duke@435 1163 out_sig_bt[argc++] = T_ADDRESS;
duke@435 1164 if (method->is_static()) {
duke@435 1165 out_sig_bt[argc++] = T_OBJECT;
duke@435 1166 }
duke@435 1167
duke@435 1168 int i;
duke@435 1169 for (i = 0; i < total_in_args ; i++ ) {
duke@435 1170 out_sig_bt[argc++] = in_sig_bt[i];
duke@435 1171 }
duke@435 1172
duke@435 1173
duke@435 1174 // Now figure out where the args must be stored and how much stack space
duke@435 1175 // they require (neglecting out_preserve_stack_slots but space for storing
duke@435 1176 // the 1st six register arguments). It's weird see int_stk_helper.
duke@435 1177 //
duke@435 1178 int out_arg_slots;
duke@435 1179 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
duke@435 1180
duke@435 1181 // Compute framesize for the wrapper. We need to handlize all oops in
duke@435 1182 // registers a max of 2 on x86.
duke@435 1183
duke@435 1184 // Calculate the total number of stack slots we will need.
duke@435 1185
duke@435 1186 // First count the abi requirement plus all of the outgoing args
duke@435 1187 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
duke@435 1188
duke@435 1189 // Now the space for the inbound oop handle area
duke@435 1190
duke@435 1191 int oop_handle_offset = stack_slots;
duke@435 1192 stack_slots += 2*VMRegImpl::slots_per_word;
duke@435 1193
duke@435 1194 // Now any space we need for handlizing a klass if static method
duke@435 1195
duke@435 1196 int klass_slot_offset = 0;
duke@435 1197 int klass_offset = -1;
duke@435 1198 int lock_slot_offset = 0;
duke@435 1199 bool is_static = false;
duke@435 1200 int oop_temp_slot_offset = 0;
duke@435 1201
duke@435 1202 if (method->is_static()) {
duke@435 1203 klass_slot_offset = stack_slots;
duke@435 1204 stack_slots += VMRegImpl::slots_per_word;
duke@435 1205 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
duke@435 1206 is_static = true;
duke@435 1207 }
duke@435 1208
duke@435 1209 // Plus a lock if needed
duke@435 1210
duke@435 1211 if (method->is_synchronized()) {
duke@435 1212 lock_slot_offset = stack_slots;
duke@435 1213 stack_slots += VMRegImpl::slots_per_word;
duke@435 1214 }
duke@435 1215
duke@435 1216 // Now a place (+2) to save return values or temp during shuffling
duke@435 1217 // + 2 for return address (which we own) and saved rbp,
duke@435 1218 stack_slots += 4;
duke@435 1219
duke@435 1220 // Ok The space we have allocated will look like:
duke@435 1221 //
duke@435 1222 //
duke@435 1223 // FP-> | |
duke@435 1224 // |---------------------|
duke@435 1225 // | 2 slots for moves |
duke@435 1226 // |---------------------|
duke@435 1227 // | lock box (if sync) |
duke@435 1228 // |---------------------| <- lock_slot_offset (-lock_slot_rbp_offset)
duke@435 1229 // | klass (if static) |
duke@435 1230 // |---------------------| <- klass_slot_offset
duke@435 1231 // | oopHandle area |
duke@435 1232 // |---------------------| <- oop_handle_offset (a max of 2 registers)
duke@435 1233 // | outbound memory |
duke@435 1234 // | based arguments |
duke@435 1235 // | |
duke@435 1236 // |---------------------|
duke@435 1237 // | |
duke@435 1238 // SP-> | out_preserved_slots |
duke@435 1239 //
duke@435 1240 //
duke@435 1241 // ****************************************************************************
duke@435 1242 // WARNING - on Windows Java Natives use pascal calling convention and pop the
duke@435 1243 // arguments off of the stack after the jni call. Before the call we can use
duke@435 1244 // instructions that are SP relative. After the jni call we switch to FP
duke@435 1245 // relative instructions instead of re-adjusting the stack on windows.
duke@435 1246 // ****************************************************************************
duke@435 1247
duke@435 1248
duke@435 1249 // Now compute actual number of stack words we need rounding to make
duke@435 1250 // stack properly aligned.
duke@435 1251 stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
duke@435 1252
duke@435 1253 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
duke@435 1254
duke@435 1255 intptr_t start = (intptr_t)__ pc();
duke@435 1256
duke@435 1257 // First thing make an ic check to see if we should even be here
duke@435 1258
duke@435 1259 // We are free to use all registers as temps without saving them and
duke@435 1260 // restoring them except rbp,. rbp, is the only callee save register
duke@435 1261 // as far as the interpreter and the compiler(s) are concerned.
duke@435 1262
duke@435 1263
duke@435 1264 const Register ic_reg = rax;
duke@435 1265 const Register receiver = rcx;
duke@435 1266 Label hit;
duke@435 1267 Label exception_pending;
duke@435 1268
duke@435 1269
duke@435 1270 __ verify_oop(receiver);
duke@435 1271 __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
duke@435 1272 __ jcc(Assembler::equal, hit);
duke@435 1273
duke@435 1274 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 1275
duke@435 1276 // verified entry must be aligned for code patching.
duke@435 1277 // and the first 5 bytes must be in the same cache line
duke@435 1278 // if we align at 8 then we will be sure 5 bytes are in the same line
duke@435 1279 __ align(8);
duke@435 1280
duke@435 1281 __ bind(hit);
duke@435 1282
duke@435 1283 int vep_offset = ((intptr_t)__ pc()) - start;
duke@435 1284
duke@435 1285 #ifdef COMPILER1
duke@435 1286 if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
duke@435 1287 // Object.hashCode can pull the hashCode from the header word
duke@435 1288 // instead of doing a full VM transition once it's been computed.
duke@435 1289 // Since hashCode is usually polymorphic at call sites we can't do
duke@435 1290 // this optimization at the call site without a lot of work.
duke@435 1291 Label slowCase;
duke@435 1292 Register receiver = rcx;
duke@435 1293 Register result = rax;
duke@435 1294 __ movl(result, Address(receiver, oopDesc::mark_offset_in_bytes()));
duke@435 1295
duke@435 1296 // check if locked
duke@435 1297 __ testl (result, markOopDesc::unlocked_value);
duke@435 1298 __ jcc (Assembler::zero, slowCase);
duke@435 1299
duke@435 1300 if (UseBiasedLocking) {
duke@435 1301 // Check if biased and fall through to runtime if so
duke@435 1302 __ testl (result, markOopDesc::biased_lock_bit_in_place);
duke@435 1303 __ jcc (Assembler::notZero, slowCase);
duke@435 1304 }
duke@435 1305
duke@435 1306 // get hash
duke@435 1307 __ andl (result, markOopDesc::hash_mask_in_place);
duke@435 1308 // test if hashCode exists
duke@435 1309 __ jcc (Assembler::zero, slowCase);
duke@435 1310 __ shrl (result, markOopDesc::hash_shift);
duke@435 1311 __ ret(0);
duke@435 1312 __ bind (slowCase);
duke@435 1313 }
duke@435 1314 #endif // COMPILER1
duke@435 1315
duke@435 1316 // The instruction at the verified entry point must be 5 bytes or longer
duke@435 1317 // because it can be patched on the fly by make_non_entrant. The stack bang
duke@435 1318 // instruction fits that requirement.
duke@435 1319
duke@435 1320 // Generate stack overflow check
duke@435 1321
duke@435 1322 if (UseStackBanging) {
duke@435 1323 __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
duke@435 1324 } else {
duke@435 1325 // need a 5 byte instruction to allow MT safe patching to non-entrant
duke@435 1326 __ fat_nop();
duke@435 1327 }
duke@435 1328
duke@435 1329 // Generate a new frame for the wrapper.
duke@435 1330 __ enter();
duke@435 1331 // -2 because return address is already present and so is saved rbp,
duke@435 1332 __ subl(rsp, stack_size - 2*wordSize);
duke@435 1333
duke@435 1334 // Frame is now completed as far a size and linkage.
duke@435 1335
duke@435 1336 int frame_complete = ((intptr_t)__ pc()) - start;
duke@435 1337
duke@435 1338 // Calculate the difference between rsp and rbp,. We need to know it
duke@435 1339 // after the native call because on windows Java Natives will pop
duke@435 1340 // the arguments and it is painful to do rsp relative addressing
duke@435 1341 // in a platform independent way. So after the call we switch to
duke@435 1342 // rbp, relative addressing.
duke@435 1343
duke@435 1344 int fp_adjustment = stack_size - 2*wordSize;
duke@435 1345
duke@435 1346 #ifdef COMPILER2
duke@435 1347 // C2 may leave the stack dirty if not in SSE2+ mode
duke@435 1348 if (UseSSE >= 2) {
duke@435 1349 __ verify_FPU(0, "c2i transition should have clean FPU stack");
duke@435 1350 } else {
duke@435 1351 __ empty_FPU_stack();
duke@435 1352 }
duke@435 1353 #endif /* COMPILER2 */
duke@435 1354
duke@435 1355 // Compute the rbp, offset for any slots used after the jni call
duke@435 1356
duke@435 1357 int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
duke@435 1358 int oop_temp_slot_rbp_offset = (oop_temp_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
duke@435 1359
duke@435 1360 // We use rdi as a thread pointer because it is callee save and
duke@435 1361 // if we load it once it is usable thru the entire wrapper
duke@435 1362 const Register thread = rdi;
duke@435 1363
duke@435 1364 // We use rsi as the oop handle for the receiver/klass
duke@435 1365 // It is callee save so it survives the call to native
duke@435 1366
duke@435 1367 const Register oop_handle_reg = rsi;
duke@435 1368
duke@435 1369 __ get_thread(thread);
duke@435 1370
duke@435 1371
duke@435 1372 //
duke@435 1373 // We immediately shuffle the arguments so that any vm call we have to
duke@435 1374 // make from here on out (sync slow path, jvmti, etc.) we will have
duke@435 1375 // captured the oops from our caller and have a valid oopMap for
duke@435 1376 // them.
duke@435 1377
duke@435 1378 // -----------------
duke@435 1379 // The Grand Shuffle
duke@435 1380 //
duke@435 1381 // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
duke@435 1382 // and, if static, the class mirror instead of a receiver. This pretty much
duke@435 1383 // guarantees that register layout will not match (and x86 doesn't use reg
duke@435 1384 // parms though amd does). Since the native abi doesn't use register args
duke@435 1385 // and the java conventions does we don't have to worry about collisions.
duke@435 1386 // All of our moved are reg->stack or stack->stack.
duke@435 1387 // We ignore the extra arguments during the shuffle and handle them at the
duke@435 1388 // last moment. The shuffle is described by the two calling convention
duke@435 1389 // vectors we have in our possession. We simply walk the java vector to
duke@435 1390 // get the source locations and the c vector to get the destinations.
duke@435 1391
duke@435 1392 int c_arg = method->is_static() ? 2 : 1 ;
duke@435 1393
duke@435 1394 // Record rsp-based slot for receiver on stack for non-static methods
duke@435 1395 int receiver_offset = -1;
duke@435 1396
duke@435 1397 // This is a trick. We double the stack slots so we can claim
duke@435 1398 // the oops in the caller's frame. Since we are sure to have
duke@435 1399 // more args than the caller doubling is enough to make
duke@435 1400 // sure we can capture all the incoming oop args from the
duke@435 1401 // caller.
duke@435 1402 //
duke@435 1403 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
duke@435 1404
duke@435 1405 // Mark location of rbp,
duke@435 1406 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
duke@435 1407
duke@435 1408 // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
duke@435 1409 // Are free to temporaries if we have to do stack to steck moves.
duke@435 1410 // All inbound args are referenced based on rbp, and all outbound args via rsp.
duke@435 1411
duke@435 1412 for (i = 0; i < total_in_args ; i++, c_arg++ ) {
duke@435 1413 switch (in_sig_bt[i]) {
duke@435 1414 case T_ARRAY:
duke@435 1415 case T_OBJECT:
duke@435 1416 object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
duke@435 1417 ((i == 0) && (!is_static)),
duke@435 1418 &receiver_offset);
duke@435 1419 break;
duke@435 1420 case T_VOID:
duke@435 1421 break;
duke@435 1422
duke@435 1423 case T_FLOAT:
duke@435 1424 float_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1425 break;
duke@435 1426
duke@435 1427 case T_DOUBLE:
duke@435 1428 assert( i + 1 < total_in_args &&
duke@435 1429 in_sig_bt[i + 1] == T_VOID &&
duke@435 1430 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
duke@435 1431 double_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1432 break;
duke@435 1433
duke@435 1434 case T_LONG :
duke@435 1435 long_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1436 break;
duke@435 1437
duke@435 1438 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
duke@435 1439
duke@435 1440 default:
duke@435 1441 simple_move32(masm, in_regs[i], out_regs[c_arg]);
duke@435 1442 }
duke@435 1443 }
duke@435 1444
duke@435 1445 // Pre-load a static method's oop into rsi. Used both by locking code and
duke@435 1446 // the normal JNI call code.
duke@435 1447 if (method->is_static()) {
duke@435 1448
duke@435 1449 // load opp into a register
duke@435 1450 __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
duke@435 1451
duke@435 1452 // Now handlize the static class mirror it's known not-null.
duke@435 1453 __ movl(Address(rsp, klass_offset), oop_handle_reg);
duke@435 1454 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
duke@435 1455
duke@435 1456 // Now get the handle
duke@435 1457 __ leal(oop_handle_reg, Address(rsp, klass_offset));
duke@435 1458 // store the klass handle as second argument
duke@435 1459 __ movl(Address(rsp, wordSize), oop_handle_reg);
duke@435 1460 }
duke@435 1461
duke@435 1462 // Change state to native (we save the return address in the thread, since it might not
duke@435 1463 // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
duke@435 1464 // points into the right code segment. It does not have to be the correct return pc.
duke@435 1465 // We use the same pc/oopMap repeatedly when we call out
duke@435 1466
duke@435 1467 intptr_t the_pc = (intptr_t) __ pc();
duke@435 1468 oop_maps->add_gc_map(the_pc - start, map);
duke@435 1469
duke@435 1470 __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
duke@435 1471
duke@435 1472
duke@435 1473 // We have all of the arguments setup at this point. We must not touch any register
duke@435 1474 // argument registers at this point (what if we save/restore them there are no oop?
duke@435 1475
duke@435 1476 {
duke@435 1477 SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
duke@435 1478 __ movoop(rax, JNIHandles::make_local(method()));
duke@435 1479 __ call_VM_leaf(
duke@435 1480 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
duke@435 1481 thread, rax);
duke@435 1482 }
duke@435 1483
duke@435 1484
duke@435 1485 // These are register definitions we need for locking/unlocking
duke@435 1486 const Register swap_reg = rax; // Must use rax, for cmpxchg instruction
duke@435 1487 const Register obj_reg = rcx; // Will contain the oop
duke@435 1488 const Register lock_reg = rdx; // Address of compiler lock object (BasicLock)
duke@435 1489
duke@435 1490 Label slow_path_lock;
duke@435 1491 Label lock_done;
duke@435 1492
duke@435 1493 // Lock a synchronized method
duke@435 1494 if (method->is_synchronized()) {
duke@435 1495
duke@435 1496
duke@435 1497 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
duke@435 1498
duke@435 1499 // Get the handle (the 2nd argument)
duke@435 1500 __ movl(oop_handle_reg, Address(rsp, wordSize));
duke@435 1501
duke@435 1502 // Get address of the box
duke@435 1503
duke@435 1504 __ leal(lock_reg, Address(rbp, lock_slot_rbp_offset));
duke@435 1505
duke@435 1506 // Load the oop from the handle
duke@435 1507 __ movl(obj_reg, Address(oop_handle_reg, 0));
duke@435 1508
duke@435 1509 if (UseBiasedLocking) {
duke@435 1510 // Note that oop_handle_reg is trashed during this call
duke@435 1511 __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
duke@435 1512 }
duke@435 1513
duke@435 1514 // Load immediate 1 into swap_reg %rax,
duke@435 1515 __ movl(swap_reg, 1);
duke@435 1516
duke@435 1517 // Load (object->mark() | 1) into swap_reg %rax,
duke@435 1518 __ orl(swap_reg, Address(obj_reg, 0));
duke@435 1519
duke@435 1520 // Save (object->mark() | 1) into BasicLock's displaced header
duke@435 1521 __ movl(Address(lock_reg, mark_word_offset), swap_reg);
duke@435 1522
duke@435 1523 if (os::is_MP()) {
duke@435 1524 __ lock();
duke@435 1525 }
duke@435 1526
duke@435 1527 // src -> dest iff dest == rax, else rax, <- dest
duke@435 1528 // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
duke@435 1529 __ cmpxchg(lock_reg, Address(obj_reg, 0));
duke@435 1530 __ jcc(Assembler::equal, lock_done);
duke@435 1531
duke@435 1532 // Test if the oopMark is an obvious stack pointer, i.e.,
duke@435 1533 // 1) (mark & 3) == 0, and
duke@435 1534 // 2) rsp <= mark < mark + os::pagesize()
duke@435 1535 // These 3 tests can be done by evaluating the following
duke@435 1536 // expression: ((mark - rsp) & (3 - os::vm_page_size())),
duke@435 1537 // assuming both stack pointer and pagesize have their
duke@435 1538 // least significant 2 bits clear.
duke@435 1539 // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
duke@435 1540
duke@435 1541 __ subl(swap_reg, rsp);
duke@435 1542 __ andl(swap_reg, 3 - os::vm_page_size());
duke@435 1543
duke@435 1544 // Save the test result, for recursive case, the result is zero
duke@435 1545 __ movl(Address(lock_reg, mark_word_offset), swap_reg);
duke@435 1546 __ jcc(Assembler::notEqual, slow_path_lock);
duke@435 1547 // Slow path will re-enter here
duke@435 1548 __ bind(lock_done);
duke@435 1549
duke@435 1550 if (UseBiasedLocking) {
duke@435 1551 // Re-fetch oop_handle_reg as we trashed it above
duke@435 1552 __ movl(oop_handle_reg, Address(rsp, wordSize));
duke@435 1553 }
duke@435 1554 }
duke@435 1555
duke@435 1556
duke@435 1557 // Finally just about ready to make the JNI call
duke@435 1558
duke@435 1559
duke@435 1560 // get JNIEnv* which is first argument to native
duke@435 1561
duke@435 1562 __ leal(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
duke@435 1563 __ movl(Address(rsp, 0), rdx);
duke@435 1564
duke@435 1565 // Now set thread in native
duke@435 1566 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
duke@435 1567
duke@435 1568 __ call(RuntimeAddress(method->native_function()));
duke@435 1569
duke@435 1570 // WARNING - on Windows Java Natives use pascal calling convention and pop the
duke@435 1571 // arguments off of the stack. We could just re-adjust the stack pointer here
duke@435 1572 // and continue to do SP relative addressing but we instead switch to FP
duke@435 1573 // relative addressing.
duke@435 1574
duke@435 1575 // Unpack native results.
duke@435 1576 switch (ret_type) {
duke@435 1577 case T_BOOLEAN: __ c2bool(rax); break;
duke@435 1578 case T_CHAR : __ andl(rax, 0xFFFF); break;
duke@435 1579 case T_BYTE : __ sign_extend_byte (rax); break;
duke@435 1580 case T_SHORT : __ sign_extend_short(rax); break;
duke@435 1581 case T_INT : /* nothing to do */ break;
duke@435 1582 case T_DOUBLE :
duke@435 1583 case T_FLOAT :
duke@435 1584 // Result is in st0 we'll save as needed
duke@435 1585 break;
duke@435 1586 case T_ARRAY: // Really a handle
duke@435 1587 case T_OBJECT: // Really a handle
duke@435 1588 break; // can't de-handlize until after safepoint check
duke@435 1589 case T_VOID: break;
duke@435 1590 case T_LONG: break;
duke@435 1591 default : ShouldNotReachHere();
duke@435 1592 }
duke@435 1593
duke@435 1594 // Switch thread to "native transition" state before reading the synchronization state.
duke@435 1595 // This additional state is necessary because reading and testing the synchronization
duke@435 1596 // state is not atomic w.r.t. GC, as this scenario demonstrates:
duke@435 1597 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
duke@435 1598 // VM thread changes sync state to synchronizing and suspends threads for GC.
duke@435 1599 // Thread A is resumed to finish this native method, but doesn't block here since it
duke@435 1600 // didn't see any synchronization is progress, and escapes.
duke@435 1601 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
duke@435 1602
duke@435 1603 if(os::is_MP()) {
duke@435 1604 if (UseMembar) {
duke@435 1605 __ membar(); // Force this write out before the read below
duke@435 1606 } else {
duke@435 1607 // Write serialization page so VM thread can do a pseudo remote membar.
duke@435 1608 // We use the current thread pointer to calculate a thread specific
duke@435 1609 // offset to write to within the page. This minimizes bus traffic
duke@435 1610 // due to cache line collision.
duke@435 1611 __ serialize_memory(thread, rcx);
duke@435 1612 }
duke@435 1613 }
duke@435 1614
duke@435 1615 if (AlwaysRestoreFPU) {
duke@435 1616 // Make sure the control word is correct.
duke@435 1617 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 1618 }
duke@435 1619
duke@435 1620 // check for safepoint operation in progress and/or pending suspend requests
duke@435 1621 { Label Continue;
duke@435 1622
duke@435 1623 __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
duke@435 1624 SafepointSynchronize::_not_synchronized);
duke@435 1625
duke@435 1626 Label L;
duke@435 1627 __ jcc(Assembler::notEqual, L);
duke@435 1628 __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
duke@435 1629 __ jcc(Assembler::equal, Continue);
duke@435 1630 __ bind(L);
duke@435 1631
duke@435 1632 // Don't use call_VM as it will see a possible pending exception and forward it
duke@435 1633 // and never return here preventing us from clearing _last_native_pc down below.
duke@435 1634 // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
duke@435 1635 // preserved and correspond to the bcp/locals pointers. So we do a runtime call
duke@435 1636 // by hand.
duke@435 1637 //
duke@435 1638 save_native_result(masm, ret_type, stack_slots);
duke@435 1639 __ pushl(thread);
duke@435 1640 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
duke@435 1641 JavaThread::check_special_condition_for_native_trans)));
duke@435 1642 __ increment(rsp, wordSize);
duke@435 1643 // Restore any method result value
duke@435 1644 restore_native_result(masm, ret_type, stack_slots);
duke@435 1645
duke@435 1646 __ bind(Continue);
duke@435 1647 }
duke@435 1648
duke@435 1649 // change thread state
duke@435 1650 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
duke@435 1651
duke@435 1652 Label reguard;
duke@435 1653 Label reguard_done;
duke@435 1654 __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
duke@435 1655 __ jcc(Assembler::equal, reguard);
duke@435 1656
duke@435 1657 // slow path reguard re-enters here
duke@435 1658 __ bind(reguard_done);
duke@435 1659
duke@435 1660 // Handle possible exception (will unlock if necessary)
duke@435 1661
duke@435 1662 // native result if any is live
duke@435 1663
duke@435 1664 // Unlock
duke@435 1665 Label slow_path_unlock;
duke@435 1666 Label unlock_done;
duke@435 1667 if (method->is_synchronized()) {
duke@435 1668
duke@435 1669 Label done;
duke@435 1670
duke@435 1671 // Get locked oop from the handle we passed to jni
duke@435 1672 __ movl(obj_reg, Address(oop_handle_reg, 0));
duke@435 1673
duke@435 1674 if (UseBiasedLocking) {
duke@435 1675 __ biased_locking_exit(obj_reg, rbx, done);
duke@435 1676 }
duke@435 1677
duke@435 1678 // Simple recursive lock?
duke@435 1679
duke@435 1680 __ cmpl(Address(rbp, lock_slot_rbp_offset), NULL_WORD);
duke@435 1681 __ jcc(Assembler::equal, done);
duke@435 1682
duke@435 1683 // Must save rax, if if it is live now because cmpxchg must use it
duke@435 1684 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
duke@435 1685 save_native_result(masm, ret_type, stack_slots);
duke@435 1686 }
duke@435 1687
duke@435 1688 // get old displaced header
duke@435 1689 __ movl(rbx, Address(rbp, lock_slot_rbp_offset));
duke@435 1690
duke@435 1691 // get address of the stack lock
duke@435 1692 __ leal(rax, Address(rbp, lock_slot_rbp_offset));
duke@435 1693
duke@435 1694 // Atomic swap old header if oop still contains the stack lock
duke@435 1695 if (os::is_MP()) {
duke@435 1696 __ lock();
duke@435 1697 }
duke@435 1698
duke@435 1699 // src -> dest iff dest == rax, else rax, <- dest
duke@435 1700 // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
duke@435 1701 __ cmpxchg(rbx, Address(obj_reg, 0));
duke@435 1702 __ jcc(Assembler::notEqual, slow_path_unlock);
duke@435 1703
duke@435 1704 // slow path re-enters here
duke@435 1705 __ bind(unlock_done);
duke@435 1706 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
duke@435 1707 restore_native_result(masm, ret_type, stack_slots);
duke@435 1708 }
duke@435 1709
duke@435 1710 __ bind(done);
duke@435 1711
duke@435 1712 }
duke@435 1713
duke@435 1714 {
duke@435 1715 SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
duke@435 1716 // Tell dtrace about this method exit
duke@435 1717 save_native_result(masm, ret_type, stack_slots);
duke@435 1718 __ movoop(rax, JNIHandles::make_local(method()));
duke@435 1719 __ call_VM_leaf(
duke@435 1720 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
duke@435 1721 thread, rax);
duke@435 1722 restore_native_result(masm, ret_type, stack_slots);
duke@435 1723 }
duke@435 1724
duke@435 1725 // We can finally stop using that last_Java_frame we setup ages ago
duke@435 1726
duke@435 1727 __ reset_last_Java_frame(thread, false, true);
duke@435 1728
duke@435 1729 // Unpack oop result
duke@435 1730 if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
duke@435 1731 Label L;
duke@435 1732 __ cmpl(rax, NULL_WORD);
duke@435 1733 __ jcc(Assembler::equal, L);
duke@435 1734 __ movl(rax, Address(rax, 0));
duke@435 1735 __ bind(L);
duke@435 1736 __ verify_oop(rax);
duke@435 1737 }
duke@435 1738
duke@435 1739 // reset handle block
duke@435 1740 __ movl(rcx, Address(thread, JavaThread::active_handles_offset()));
duke@435 1741
duke@435 1742 __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), 0);
duke@435 1743
duke@435 1744 // Any exception pending?
duke@435 1745 __ cmpl(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
duke@435 1746 __ jcc(Assembler::notEqual, exception_pending);
duke@435 1747
duke@435 1748
duke@435 1749 // no exception, we're almost done
duke@435 1750
duke@435 1751 // check that only result value is on FPU stack
duke@435 1752 __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
duke@435 1753
duke@435 1754 // Fixup floating pointer results so that result looks like a return from a compiled method
duke@435 1755 if (ret_type == T_FLOAT) {
duke@435 1756 if (UseSSE >= 1) {
duke@435 1757 // Pop st0 and store as float and reload into xmm register
duke@435 1758 __ fstp_s(Address(rbp, -4));
duke@435 1759 __ movflt(xmm0, Address(rbp, -4));
duke@435 1760 }
duke@435 1761 } else if (ret_type == T_DOUBLE) {
duke@435 1762 if (UseSSE >= 2) {
duke@435 1763 // Pop st0 and store as double and reload into xmm register
duke@435 1764 __ fstp_d(Address(rbp, -8));
duke@435 1765 __ movdbl(xmm0, Address(rbp, -8));
duke@435 1766 }
duke@435 1767 }
duke@435 1768
duke@435 1769 // Return
duke@435 1770
duke@435 1771 __ leave();
duke@435 1772 __ ret(0);
duke@435 1773
duke@435 1774 // Unexpected paths are out of line and go here
duke@435 1775
duke@435 1776 // Slow path locking & unlocking
duke@435 1777 if (method->is_synchronized()) {
duke@435 1778
duke@435 1779 // BEGIN Slow path lock
duke@435 1780
duke@435 1781 __ bind(slow_path_lock);
duke@435 1782
duke@435 1783 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
duke@435 1784 // args are (oop obj, BasicLock* lock, JavaThread* thread)
duke@435 1785 __ pushl(thread);
duke@435 1786 __ pushl(lock_reg);
duke@435 1787 __ pushl(obj_reg);
duke@435 1788 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
duke@435 1789 __ addl(rsp, 3*wordSize);
duke@435 1790
duke@435 1791 #ifdef ASSERT
duke@435 1792 { Label L;
duke@435 1793 __ cmpl(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
duke@435 1794 __ jcc(Assembler::equal, L);
duke@435 1795 __ stop("no pending exception allowed on exit from monitorenter");
duke@435 1796 __ bind(L);
duke@435 1797 }
duke@435 1798 #endif
duke@435 1799 __ jmp(lock_done);
duke@435 1800
duke@435 1801 // END Slow path lock
duke@435 1802
duke@435 1803 // BEGIN Slow path unlock
duke@435 1804 __ bind(slow_path_unlock);
duke@435 1805
duke@435 1806 // Slow path unlock
duke@435 1807
duke@435 1808 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
duke@435 1809 save_native_result(masm, ret_type, stack_slots);
duke@435 1810 }
duke@435 1811 // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
duke@435 1812
duke@435 1813 __ pushl(Address(thread, in_bytes(Thread::pending_exception_offset())));
duke@435 1814 __ movl(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
duke@435 1815
duke@435 1816
duke@435 1817 // should be a peal
duke@435 1818 // +wordSize because of the push above
duke@435 1819 __ leal(rax, Address(rbp, lock_slot_rbp_offset));
duke@435 1820 __ pushl(rax);
duke@435 1821
duke@435 1822 __ pushl(obj_reg);
duke@435 1823 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
duke@435 1824 __ addl(rsp, 2*wordSize);
duke@435 1825 #ifdef ASSERT
duke@435 1826 {
duke@435 1827 Label L;
duke@435 1828 __ cmpl(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
duke@435 1829 __ jcc(Assembler::equal, L);
duke@435 1830 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
duke@435 1831 __ bind(L);
duke@435 1832 }
duke@435 1833 #endif /* ASSERT */
duke@435 1834
duke@435 1835 __ popl(Address(thread, in_bytes(Thread::pending_exception_offset())));
duke@435 1836
duke@435 1837 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
duke@435 1838 restore_native_result(masm, ret_type, stack_slots);
duke@435 1839 }
duke@435 1840 __ jmp(unlock_done);
duke@435 1841 // END Slow path unlock
duke@435 1842
duke@435 1843 }
duke@435 1844
duke@435 1845 // SLOW PATH Reguard the stack if needed
duke@435 1846
duke@435 1847 __ bind(reguard);
duke@435 1848 save_native_result(masm, ret_type, stack_slots);
duke@435 1849 {
duke@435 1850 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
duke@435 1851 }
duke@435 1852 restore_native_result(masm, ret_type, stack_slots);
duke@435 1853 __ jmp(reguard_done);
duke@435 1854
duke@435 1855
duke@435 1856 // BEGIN EXCEPTION PROCESSING
duke@435 1857
duke@435 1858 // Forward the exception
duke@435 1859 __ bind(exception_pending);
duke@435 1860
duke@435 1861 // remove possible return value from FPU register stack
duke@435 1862 __ empty_FPU_stack();
duke@435 1863
duke@435 1864 // pop our frame
duke@435 1865 __ leave();
duke@435 1866 // and forward the exception
duke@435 1867 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 1868
duke@435 1869 __ flush();
duke@435 1870
duke@435 1871 nmethod *nm = nmethod::new_native_nmethod(method,
duke@435 1872 masm->code(),
duke@435 1873 vep_offset,
duke@435 1874 frame_complete,
duke@435 1875 stack_slots / VMRegImpl::slots_per_word,
duke@435 1876 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
duke@435 1877 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
duke@435 1878 oop_maps);
duke@435 1879 return nm;
duke@435 1880
duke@435 1881 }
duke@435 1882
duke@435 1883 // this function returns the adjust size (in number of words) to a c2i adapter
duke@435 1884 // activation for use during deoptimization
duke@435 1885 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
duke@435 1886 return (callee_locals - callee_parameters) * Interpreter::stackElementWords();
duke@435 1887 }
duke@435 1888
duke@435 1889
duke@435 1890 uint SharedRuntime::out_preserve_stack_slots() {
duke@435 1891 return 0;
duke@435 1892 }
duke@435 1893
duke@435 1894
duke@435 1895 //------------------------------generate_deopt_blob----------------------------
duke@435 1896 void SharedRuntime::generate_deopt_blob() {
duke@435 1897 // allocate space for the code
duke@435 1898 ResourceMark rm;
duke@435 1899 // setup code generation tools
duke@435 1900 CodeBuffer buffer("deopt_blob", 1024, 1024);
duke@435 1901 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 1902 int frame_size_in_words;
duke@435 1903 OopMap* map = NULL;
duke@435 1904 // Account for the extra args we place on the stack
duke@435 1905 // by the time we call fetch_unroll_info
duke@435 1906 const int additional_words = 2; // deopt kind, thread
duke@435 1907
duke@435 1908 OopMapSet *oop_maps = new OopMapSet();
duke@435 1909
duke@435 1910 // -------------
duke@435 1911 // This code enters when returning to a de-optimized nmethod. A return
duke@435 1912 // address has been pushed on the the stack, and return values are in
duke@435 1913 // registers.
duke@435 1914 // If we are doing a normal deopt then we were called from the patched
duke@435 1915 // nmethod from the point we returned to the nmethod. So the return
duke@435 1916 // address on the stack is wrong by NativeCall::instruction_size
duke@435 1917 // We will adjust the value to it looks like we have the original return
duke@435 1918 // address on the stack (like when we eagerly deoptimized).
duke@435 1919 // In the case of an exception pending with deoptimized then we enter
duke@435 1920 // with a return address on the stack that points after the call we patched
duke@435 1921 // into the exception handler. We have the following register state:
duke@435 1922 // rax,: exception
duke@435 1923 // rbx,: exception handler
duke@435 1924 // rdx: throwing pc
duke@435 1925 // So in this case we simply jam rdx into the useless return address and
duke@435 1926 // the stack looks just like we want.
duke@435 1927 //
duke@435 1928 // At this point we need to de-opt. We save the argument return
duke@435 1929 // registers. We call the first C routine, fetch_unroll_info(). This
duke@435 1930 // routine captures the return values and returns a structure which
duke@435 1931 // describes the current frame size and the sizes of all replacement frames.
duke@435 1932 // The current frame is compiled code and may contain many inlined
duke@435 1933 // functions, each with their own JVM state. We pop the current frame, then
duke@435 1934 // push all the new frames. Then we call the C routine unpack_frames() to
duke@435 1935 // populate these frames. Finally unpack_frames() returns us the new target
duke@435 1936 // address. Notice that callee-save registers are BLOWN here; they have
duke@435 1937 // already been captured in the vframeArray at the time the return PC was
duke@435 1938 // patched.
duke@435 1939 address start = __ pc();
duke@435 1940 Label cont;
duke@435 1941
duke@435 1942 // Prolog for non exception case!
duke@435 1943
duke@435 1944 // Save everything in sight.
duke@435 1945
duke@435 1946 map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words);
duke@435 1947 // Normal deoptimization
duke@435 1948 __ pushl(Deoptimization::Unpack_deopt);
duke@435 1949 __ jmp(cont);
duke@435 1950
duke@435 1951 int reexecute_offset = __ pc() - start;
duke@435 1952
duke@435 1953 // Reexecute case
duke@435 1954 // return address is the pc describes what bci to do re-execute at
duke@435 1955
duke@435 1956 // No need to update map as each call to save_live_registers will produce identical oopmap
duke@435 1957 (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words);
duke@435 1958
duke@435 1959 __ pushl(Deoptimization::Unpack_reexecute);
duke@435 1960 __ jmp(cont);
duke@435 1961
duke@435 1962 int exception_offset = __ pc() - start;
duke@435 1963
duke@435 1964 // Prolog for exception case
duke@435 1965
duke@435 1966 // all registers are dead at this entry point, except for rax, and
duke@435 1967 // rdx which contain the exception oop and exception pc
duke@435 1968 // respectively. Set them in TLS and fall thru to the
duke@435 1969 // unpack_with_exception_in_tls entry point.
duke@435 1970
duke@435 1971 __ get_thread(rdi);
duke@435 1972 __ movl(Address(rdi, JavaThread::exception_pc_offset()), rdx);
duke@435 1973 __ movl(Address(rdi, JavaThread::exception_oop_offset()), rax);
duke@435 1974
duke@435 1975 int exception_in_tls_offset = __ pc() - start;
duke@435 1976
duke@435 1977 // new implementation because exception oop is now passed in JavaThread
duke@435 1978
duke@435 1979 // Prolog for exception case
duke@435 1980 // All registers must be preserved because they might be used by LinearScan
duke@435 1981 // Exceptiop oop and throwing PC are passed in JavaThread
duke@435 1982 // tos: stack at point of call to method that threw the exception (i.e. only
duke@435 1983 // args are on the stack, no return address)
duke@435 1984
duke@435 1985 // make room on stack for the return address
duke@435 1986 // It will be patched later with the throwing pc. The correct value is not
duke@435 1987 // available now because loading it from memory would destroy registers.
duke@435 1988 __ pushl(0);
duke@435 1989
duke@435 1990 // Save everything in sight.
duke@435 1991
duke@435 1992 // No need to update map as each call to save_live_registers will produce identical oopmap
duke@435 1993 (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words);
duke@435 1994
duke@435 1995 // Now it is safe to overwrite any register
duke@435 1996
duke@435 1997 // store the correct deoptimization type
duke@435 1998 __ pushl(Deoptimization::Unpack_exception);
duke@435 1999
duke@435 2000 // load throwing pc from JavaThread and patch it as the return address
duke@435 2001 // of the current frame. Then clear the field in JavaThread
duke@435 2002 __ get_thread(rdi);
duke@435 2003 __ movl(rdx, Address(rdi, JavaThread::exception_pc_offset()));
duke@435 2004 __ movl(Address(rbp, wordSize), rdx);
duke@435 2005 __ movl(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
duke@435 2006
duke@435 2007 #ifdef ASSERT
duke@435 2008 // verify that there is really an exception oop in JavaThread
duke@435 2009 __ movl(rax, Address(rdi, JavaThread::exception_oop_offset()));
duke@435 2010 __ verify_oop(rax);
duke@435 2011
duke@435 2012 // verify that there is no pending exception
duke@435 2013 Label no_pending_exception;
duke@435 2014 __ movl(rax, Address(rdi, Thread::pending_exception_offset()));
duke@435 2015 __ testl(rax, rax);
duke@435 2016 __ jcc(Assembler::zero, no_pending_exception);
duke@435 2017 __ stop("must not have pending exception here");
duke@435 2018 __ bind(no_pending_exception);
duke@435 2019 #endif
duke@435 2020
duke@435 2021 __ bind(cont);
duke@435 2022
duke@435 2023 // Compiled code leaves the floating point stack dirty, empty it.
duke@435 2024 __ empty_FPU_stack();
duke@435 2025
duke@435 2026
duke@435 2027 // Call C code. Need thread and this frame, but NOT official VM entry
duke@435 2028 // crud. We cannot block on this call, no GC can happen.
duke@435 2029 __ get_thread(rcx);
duke@435 2030 __ pushl(rcx);
duke@435 2031 // fetch_unroll_info needs to call last_java_frame()
duke@435 2032 __ set_last_Java_frame(rcx, noreg, noreg, NULL);
duke@435 2033
duke@435 2034 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
duke@435 2035
duke@435 2036 // Need to have an oopmap that tells fetch_unroll_info where to
duke@435 2037 // find any register it might need.
duke@435 2038
duke@435 2039 oop_maps->add_gc_map( __ pc()-start, map);
duke@435 2040
duke@435 2041 // Discard arg to fetch_unroll_info
duke@435 2042 __ popl(rcx);
duke@435 2043
duke@435 2044 __ get_thread(rcx);
duke@435 2045 __ reset_last_Java_frame(rcx, false, false);
duke@435 2046
duke@435 2047 // Load UnrollBlock into EDI
duke@435 2048 __ movl(rdi, rax);
duke@435 2049
duke@435 2050 // Move the unpack kind to a safe place in the UnrollBlock because
duke@435 2051 // we are very short of registers
duke@435 2052
duke@435 2053 Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
duke@435 2054 // retrieve the deopt kind from where we left it.
duke@435 2055 __ popl(rax);
duke@435 2056 __ movl(unpack_kind, rax); // save the unpack_kind value
duke@435 2057
duke@435 2058 Label noException;
duke@435 2059 __ cmpl(rax, Deoptimization::Unpack_exception); // Was exception pending?
duke@435 2060 __ jcc(Assembler::notEqual, noException);
duke@435 2061 __ movl(rax, Address(rcx, JavaThread::exception_oop_offset()));
duke@435 2062 __ movl(rdx, Address(rcx, JavaThread::exception_pc_offset()));
duke@435 2063 __ movl(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
duke@435 2064 __ movl(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
duke@435 2065
duke@435 2066 __ verify_oop(rax);
duke@435 2067
duke@435 2068 // Overwrite the result registers with the exception results.
duke@435 2069 __ movl(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
duke@435 2070 __ movl(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
duke@435 2071
duke@435 2072 __ bind(noException);
duke@435 2073
duke@435 2074 // Stack is back to only having register save data on the stack.
duke@435 2075 // Now restore the result registers. Everything else is either dead or captured
duke@435 2076 // in the vframeArray.
duke@435 2077
duke@435 2078 RegisterSaver::restore_result_registers(masm);
duke@435 2079
duke@435 2080 // All of the register save area has been popped of the stack. Only the
duke@435 2081 // return address remains.
duke@435 2082
duke@435 2083 // Pop all the frames we must move/replace.
duke@435 2084 //
duke@435 2085 // Frame picture (youngest to oldest)
duke@435 2086 // 1: self-frame (no frame link)
duke@435 2087 // 2: deopting frame (no frame link)
duke@435 2088 // 3: caller of deopting frame (could be compiled/interpreted).
duke@435 2089 //
duke@435 2090 // Note: by leaving the return address of self-frame on the stack
duke@435 2091 // and using the size of frame 2 to adjust the stack
duke@435 2092 // when we are done the return to frame 3 will still be on the stack.
duke@435 2093
duke@435 2094 // Pop deoptimized frame
duke@435 2095 __ addl(rsp,Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
duke@435 2096
duke@435 2097 // sp should be pointing at the return address to the caller (3)
duke@435 2098
duke@435 2099 // Stack bang to make sure there's enough room for these interpreter frames.
duke@435 2100 if (UseStackBanging) {
duke@435 2101 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
duke@435 2102 __ bang_stack_size(rbx, rcx);
duke@435 2103 }
duke@435 2104
duke@435 2105 // Load array of frame pcs into ECX
duke@435 2106 __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
duke@435 2107
duke@435 2108 __ popl(rsi); // trash the old pc
duke@435 2109
duke@435 2110 // Load array of frame sizes into ESI
duke@435 2111 __ movl(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
duke@435 2112
duke@435 2113 Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
duke@435 2114
duke@435 2115 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
duke@435 2116 __ movl(counter, rbx);
duke@435 2117
duke@435 2118 // Pick up the initial fp we should save
duke@435 2119 __ movl(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
duke@435 2120
duke@435 2121 // Now adjust the caller's stack to make up for the extra locals
duke@435 2122 // but record the original sp so that we can save it in the skeletal interpreter
duke@435 2123 // frame and the stack walking of interpreter_sender will get the unextended sp
duke@435 2124 // value and not the "real" sp value.
duke@435 2125
duke@435 2126 Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
duke@435 2127 __ movl(sp_temp, rsp);
duke@435 2128 __ subl(rsp, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
duke@435 2129
duke@435 2130 // Push interpreter frames in a loop
duke@435 2131 Label loop;
duke@435 2132 __ bind(loop);
duke@435 2133 __ movl(rbx, Address(rsi, 0)); // Load frame size
duke@435 2134 #ifdef CC_INTERP
duke@435 2135 __ subl(rbx, 4*wordSize); // we'll push pc and ebp by hand and
duke@435 2136 #ifdef ASSERT
duke@435 2137 __ pushl(0xDEADDEAD); // Make a recognizable pattern
duke@435 2138 __ pushl(0xDEADDEAD);
duke@435 2139 #else /* ASSERT */
duke@435 2140 __ subl(rsp, 2*wordSize); // skip the "static long no_param"
duke@435 2141 #endif /* ASSERT */
duke@435 2142 #else /* CC_INTERP */
duke@435 2143 __ subl(rbx, 2*wordSize); // we'll push pc and rbp, by hand
duke@435 2144 #endif /* CC_INTERP */
duke@435 2145 __ pushl(Address(rcx, 0)); // save return address
duke@435 2146 __ enter(); // save old & set new rbp,
duke@435 2147 __ subl(rsp, rbx); // Prolog!
duke@435 2148 __ movl(rbx, sp_temp); // sender's sp
duke@435 2149 #ifdef CC_INTERP
duke@435 2150 __ movl(Address(rbp,
duke@435 2151 -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
duke@435 2152 rbx); // Make it walkable
duke@435 2153 #else /* CC_INTERP */
duke@435 2154 // This value is corrected by layout_activation_impl
duke@435 2155 __ movl(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
duke@435 2156 __ movl(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
duke@435 2157 #endif /* CC_INTERP */
duke@435 2158 __ movl(sp_temp, rsp); // pass to next frame
duke@435 2159 __ addl(rsi, 4); // Bump array pointer (sizes)
duke@435 2160 __ addl(rcx, 4); // Bump array pointer (pcs)
duke@435 2161 __ decrement(counter); // decrement counter
duke@435 2162 __ jcc(Assembler::notZero, loop);
duke@435 2163 __ pushl(Address(rcx, 0)); // save final return address
duke@435 2164
duke@435 2165 // Re-push self-frame
duke@435 2166 __ enter(); // save old & set new rbp,
duke@435 2167
duke@435 2168 // Return address and rbp, are in place
duke@435 2169 // We'll push additional args later. Just allocate a full sized
duke@435 2170 // register save area
duke@435 2171 __ subl(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
duke@435 2172
duke@435 2173 // Restore frame locals after moving the frame
duke@435 2174 __ movl(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
duke@435 2175 __ movl(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
duke@435 2176 __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize)); // Pop float stack and store in local
duke@435 2177 if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
duke@435 2178 if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
duke@435 2179
duke@435 2180 // Set up the args to unpack_frame
duke@435 2181
duke@435 2182 __ pushl(unpack_kind); // get the unpack_kind value
duke@435 2183 __ get_thread(rcx);
duke@435 2184 __ pushl(rcx);
duke@435 2185
duke@435 2186 // set last_Java_sp, last_Java_fp
duke@435 2187 __ set_last_Java_frame(rcx, noreg, rbp, NULL);
duke@435 2188
duke@435 2189 // Call C code. Need thread but NOT official VM entry
duke@435 2190 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 2191 // restore return values to their stack-slots with the new SP.
duke@435 2192 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
duke@435 2193 // Set an oopmap for the call site
duke@435 2194 oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
duke@435 2195
duke@435 2196 // rax, contains the return result type
duke@435 2197 __ pushl(rax);
duke@435 2198
duke@435 2199 __ get_thread(rcx);
duke@435 2200 __ reset_last_Java_frame(rcx, false, false);
duke@435 2201
duke@435 2202 // Collect return values
duke@435 2203 __ movl(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
duke@435 2204 __ movl(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
duke@435 2205
duke@435 2206 // Clear floating point stack before returning to interpreter
duke@435 2207 __ empty_FPU_stack();
duke@435 2208
duke@435 2209 // Check if we should push the float or double return value.
duke@435 2210 Label results_done, yes_double_value;
duke@435 2211 __ cmpl(Address(rsp, 0), T_DOUBLE);
duke@435 2212 __ jcc (Assembler::zero, yes_double_value);
duke@435 2213 __ cmpl(Address(rsp, 0), T_FLOAT);
duke@435 2214 __ jcc (Assembler::notZero, results_done);
duke@435 2215
duke@435 2216 // return float value as expected by interpreter
duke@435 2217 if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
duke@435 2218 else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
duke@435 2219 __ jmp(results_done);
duke@435 2220
duke@435 2221 // return double value as expected by interpreter
duke@435 2222 __ bind(yes_double_value);
duke@435 2223 if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
duke@435 2224 else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
duke@435 2225
duke@435 2226 __ bind(results_done);
duke@435 2227
duke@435 2228 // Pop self-frame.
duke@435 2229 __ leave(); // Epilog!
duke@435 2230
duke@435 2231 // Jump to interpreter
duke@435 2232 __ ret(0);
duke@435 2233
duke@435 2234 // -------------
duke@435 2235 // make sure all code is generated
duke@435 2236 masm->flush();
duke@435 2237
duke@435 2238 _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
duke@435 2239 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
duke@435 2240 }
duke@435 2241
duke@435 2242
duke@435 2243 #ifdef COMPILER2
duke@435 2244 //------------------------------generate_uncommon_trap_blob--------------------
duke@435 2245 void SharedRuntime::generate_uncommon_trap_blob() {
duke@435 2246 // allocate space for the code
duke@435 2247 ResourceMark rm;
duke@435 2248 // setup code generation tools
duke@435 2249 CodeBuffer buffer("uncommon_trap_blob", 512, 512);
duke@435 2250 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 2251
duke@435 2252 enum frame_layout {
duke@435 2253 arg0_off, // thread sp + 0 // Arg location for
duke@435 2254 arg1_off, // unloaded_class_index sp + 1 // calling C
duke@435 2255 // The frame sender code expects that rbp will be in the "natural" place and
duke@435 2256 // will override any oopMap setting for it. We must therefore force the layout
duke@435 2257 // so that it agrees with the frame sender code.
duke@435 2258 rbp_off, // callee saved register sp + 2
duke@435 2259 return_off, // slot for return address sp + 3
duke@435 2260 framesize
duke@435 2261 };
duke@435 2262
duke@435 2263 address start = __ pc();
duke@435 2264 // Push self-frame.
duke@435 2265 __ subl(rsp, return_off*wordSize); // Epilog!
duke@435 2266
duke@435 2267 // rbp, is an implicitly saved callee saved register (i.e. the calling
duke@435 2268 // convention will save restore it in prolog/epilog) Other than that
duke@435 2269 // there are no callee save registers no that adapter frames are gone.
duke@435 2270 __ movl(Address(rsp, rbp_off*wordSize),rbp);
duke@435 2271
duke@435 2272 // Clear the floating point exception stack
duke@435 2273 __ empty_FPU_stack();
duke@435 2274
duke@435 2275 // set last_Java_sp
duke@435 2276 __ get_thread(rdx);
duke@435 2277 __ set_last_Java_frame(rdx, noreg, noreg, NULL);
duke@435 2278
duke@435 2279 // Call C code. Need thread but NOT official VM entry
duke@435 2280 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 2281 // capture callee-saved registers as well as return values.
duke@435 2282 __ movl(Address(rsp, arg0_off*wordSize),rdx);
duke@435 2283 // argument already in ECX
duke@435 2284 __ movl(Address(rsp, arg1_off*wordSize),rcx);
duke@435 2285 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
duke@435 2286
duke@435 2287 // Set an oopmap for the call site
duke@435 2288 OopMapSet *oop_maps = new OopMapSet();
duke@435 2289 OopMap* map = new OopMap( framesize, 0 );
duke@435 2290 // No oopMap for rbp, it is known implicitly
duke@435 2291
duke@435 2292 oop_maps->add_gc_map( __ pc()-start, map);
duke@435 2293
duke@435 2294 __ get_thread(rcx);
duke@435 2295
duke@435 2296 __ reset_last_Java_frame(rcx, false, false);
duke@435 2297
duke@435 2298 // Load UnrollBlock into EDI
duke@435 2299 __ movl(rdi, rax);
duke@435 2300
duke@435 2301 // Pop all the frames we must move/replace.
duke@435 2302 //
duke@435 2303 // Frame picture (youngest to oldest)
duke@435 2304 // 1: self-frame (no frame link)
duke@435 2305 // 2: deopting frame (no frame link)
duke@435 2306 // 3: caller of deopting frame (could be compiled/interpreted).
duke@435 2307
duke@435 2308 // Pop self-frame. We have no frame, and must rely only on EAX and ESP.
duke@435 2309 __ addl(rsp,(framesize-1)*wordSize); // Epilog!
duke@435 2310
duke@435 2311 // Pop deoptimized frame
duke@435 2312 __ addl(rsp,Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
duke@435 2313
duke@435 2314 // sp should be pointing at the return address to the caller (3)
duke@435 2315
duke@435 2316 // Stack bang to make sure there's enough room for these interpreter frames.
duke@435 2317 if (UseStackBanging) {
duke@435 2318 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
duke@435 2319 __ bang_stack_size(rbx, rcx);
duke@435 2320 }
duke@435 2321
duke@435 2322
duke@435 2323 // Load array of frame pcs into ECX
duke@435 2324 __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
duke@435 2325
duke@435 2326 __ popl(rsi); // trash the pc
duke@435 2327
duke@435 2328 // Load array of frame sizes into ESI
duke@435 2329 __ movl(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
duke@435 2330
duke@435 2331 Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
duke@435 2332
duke@435 2333 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
duke@435 2334 __ movl(counter, rbx);
duke@435 2335
duke@435 2336 // Pick up the initial fp we should save
duke@435 2337 __ movl(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
duke@435 2338
duke@435 2339 // Now adjust the caller's stack to make up for the extra locals
duke@435 2340 // but record the original sp so that we can save it in the skeletal interpreter
duke@435 2341 // frame and the stack walking of interpreter_sender will get the unextended sp
duke@435 2342 // value and not the "real" sp value.
duke@435 2343
duke@435 2344 Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
duke@435 2345 __ movl(sp_temp, rsp);
duke@435 2346 __ subl(rsp, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
duke@435 2347
duke@435 2348 // Push interpreter frames in a loop
duke@435 2349 Label loop;
duke@435 2350 __ bind(loop);
duke@435 2351 __ movl(rbx, Address(rsi, 0)); // Load frame size
duke@435 2352 #ifdef CC_INTERP
duke@435 2353 __ subl(rbx, 4*wordSize); // we'll push pc and ebp by hand and
duke@435 2354 #ifdef ASSERT
duke@435 2355 __ pushl(0xDEADDEAD); // Make a recognizable pattern
duke@435 2356 __ pushl(0xDEADDEAD); // (parm to RecursiveInterpreter...)
duke@435 2357 #else /* ASSERT */
duke@435 2358 __ subl(rsp, 2*wordSize); // skip the "static long no_param"
duke@435 2359 #endif /* ASSERT */
duke@435 2360 #else /* CC_INTERP */
duke@435 2361 __ subl(rbx, 2*wordSize); // we'll push pc and rbp, by hand
duke@435 2362 #endif /* CC_INTERP */
duke@435 2363 __ pushl(Address(rcx, 0)); // save return address
duke@435 2364 __ enter(); // save old & set new rbp,
duke@435 2365 __ subl(rsp, rbx); // Prolog!
duke@435 2366 __ movl(rbx, sp_temp); // sender's sp
duke@435 2367 #ifdef CC_INTERP
duke@435 2368 __ movl(Address(rbp,
duke@435 2369 -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
duke@435 2370 rbx); // Make it walkable
duke@435 2371 #else /* CC_INTERP */
duke@435 2372 // This value is corrected by layout_activation_impl
duke@435 2373 __ movl(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
duke@435 2374 __ movl(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
duke@435 2375 #endif /* CC_INTERP */
duke@435 2376 __ movl(sp_temp, rsp); // pass to next frame
duke@435 2377 __ addl(rsi, 4); // Bump array pointer (sizes)
duke@435 2378 __ addl(rcx, 4); // Bump array pointer (pcs)
duke@435 2379 __ decrement(counter); // decrement counter
duke@435 2380 __ jcc(Assembler::notZero, loop);
duke@435 2381 __ pushl(Address(rcx, 0)); // save final return address
duke@435 2382
duke@435 2383 // Re-push self-frame
duke@435 2384 __ enter(); // save old & set new rbp,
duke@435 2385 __ subl(rsp, (framesize-2) * wordSize); // Prolog!
duke@435 2386
duke@435 2387
duke@435 2388 // set last_Java_sp, last_Java_fp
duke@435 2389 __ get_thread(rdi);
duke@435 2390 __ set_last_Java_frame(rdi, noreg, rbp, NULL);
duke@435 2391
duke@435 2392 // Call C code. Need thread but NOT official VM entry
duke@435 2393 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 2394 // restore return values to their stack-slots with the new SP.
duke@435 2395 __ movl(Address(rsp,arg0_off*wordSize),rdi);
duke@435 2396 __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
duke@435 2397 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
duke@435 2398 // Set an oopmap for the call site
duke@435 2399 oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
duke@435 2400
duke@435 2401 __ get_thread(rdi);
duke@435 2402 __ reset_last_Java_frame(rdi, true, false);
duke@435 2403
duke@435 2404 // Pop self-frame.
duke@435 2405 __ leave(); // Epilog!
duke@435 2406
duke@435 2407 // Jump to interpreter
duke@435 2408 __ ret(0);
duke@435 2409
duke@435 2410 // -------------
duke@435 2411 // make sure all code is generated
duke@435 2412 masm->flush();
duke@435 2413
duke@435 2414 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
duke@435 2415 }
duke@435 2416 #endif // COMPILER2
duke@435 2417
duke@435 2418 //------------------------------generate_handler_blob------
duke@435 2419 //
duke@435 2420 // Generate a special Compile2Runtime blob that saves all registers,
duke@435 2421 // setup oopmap, and calls safepoint code to stop the compiled code for
duke@435 2422 // a safepoint.
duke@435 2423 //
duke@435 2424 static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
duke@435 2425
duke@435 2426 // Account for thread arg in our frame
duke@435 2427 const int additional_words = 1;
duke@435 2428 int frame_size_in_words;
duke@435 2429
duke@435 2430 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
duke@435 2431
duke@435 2432 ResourceMark rm;
duke@435 2433 OopMapSet *oop_maps = new OopMapSet();
duke@435 2434 OopMap* map;
duke@435 2435
duke@435 2436 // allocate space for the code
duke@435 2437 // setup code generation tools
duke@435 2438 CodeBuffer buffer("handler_blob", 1024, 512);
duke@435 2439 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 2440
duke@435 2441 const Register java_thread = rdi; // callee-saved for VC++
duke@435 2442 address start = __ pc();
duke@435 2443 address call_pc = NULL;
duke@435 2444
duke@435 2445 // If cause_return is true we are at a poll_return and there is
duke@435 2446 // the return address on the stack to the caller on the nmethod
duke@435 2447 // that is safepoint. We can leave this return on the stack and
duke@435 2448 // effectively complete the return and safepoint in the caller.
duke@435 2449 // Otherwise we push space for a return address that the safepoint
duke@435 2450 // handler will install later to make the stack walking sensible.
duke@435 2451 if( !cause_return )
duke@435 2452 __ pushl(rbx); // Make room for return address (or push it again)
duke@435 2453
duke@435 2454 map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
duke@435 2455
duke@435 2456 // The following is basically a call_VM. However, we need the precise
duke@435 2457 // address of the call in order to generate an oopmap. Hence, we do all the
duke@435 2458 // work ourselves.
duke@435 2459
duke@435 2460 // Push thread argument and setup last_Java_sp
duke@435 2461 __ get_thread(java_thread);
duke@435 2462 __ pushl(java_thread);
duke@435 2463 __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
duke@435 2464
duke@435 2465 // if this was not a poll_return then we need to correct the return address now.
duke@435 2466 if( !cause_return ) {
duke@435 2467 __ movl(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
duke@435 2468 __ movl(Address(rbp, wordSize), rax);
duke@435 2469 }
duke@435 2470
duke@435 2471 // do the call
duke@435 2472 __ call(RuntimeAddress(call_ptr));
duke@435 2473
duke@435 2474 // Set an oopmap for the call site. This oopmap will map all
duke@435 2475 // oop-registers and debug-info registers as callee-saved. This
duke@435 2476 // will allow deoptimization at this safepoint to find all possible
duke@435 2477 // debug-info recordings, as well as let GC find all oops.
duke@435 2478
duke@435 2479 oop_maps->add_gc_map( __ pc() - start, map);
duke@435 2480
duke@435 2481 // Discard arg
duke@435 2482 __ popl(rcx);
duke@435 2483
duke@435 2484 Label noException;
duke@435 2485
duke@435 2486 // Clear last_Java_sp again
duke@435 2487 __ get_thread(java_thread);
duke@435 2488 __ reset_last_Java_frame(java_thread, false, false);
duke@435 2489
duke@435 2490 __ cmpl(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD);
duke@435 2491 __ jcc(Assembler::equal, noException);
duke@435 2492
duke@435 2493 // Exception pending
duke@435 2494
duke@435 2495 RegisterSaver::restore_live_registers(masm);
duke@435 2496
duke@435 2497 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 2498
duke@435 2499 __ bind(noException);
duke@435 2500
duke@435 2501 // Normal exit, register restoring and exit
duke@435 2502 RegisterSaver::restore_live_registers(masm);
duke@435 2503
duke@435 2504 __ ret(0);
duke@435 2505
duke@435 2506 // make sure all code is generated
duke@435 2507 masm->flush();
duke@435 2508
duke@435 2509 // Fill-out other meta info
duke@435 2510 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
duke@435 2511 }
duke@435 2512
duke@435 2513 //
duke@435 2514 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
duke@435 2515 //
duke@435 2516 // Generate a stub that calls into vm to find out the proper destination
duke@435 2517 // of a java call. All the argument registers are live at this point
duke@435 2518 // but since this is generic code we don't know what they are and the caller
duke@435 2519 // must do any gc of the args.
duke@435 2520 //
duke@435 2521 static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
duke@435 2522 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
duke@435 2523
duke@435 2524 // allocate space for the code
duke@435 2525 ResourceMark rm;
duke@435 2526
duke@435 2527 CodeBuffer buffer(name, 1000, 512);
duke@435 2528 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 2529
duke@435 2530 int frame_size_words;
duke@435 2531 enum frame_layout {
duke@435 2532 thread_off,
duke@435 2533 extra_words };
duke@435 2534
duke@435 2535 OopMapSet *oop_maps = new OopMapSet();
duke@435 2536 OopMap* map = NULL;
duke@435 2537
duke@435 2538 int start = __ offset();
duke@435 2539
duke@435 2540 map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
duke@435 2541
duke@435 2542 int frame_complete = __ offset();
duke@435 2543
duke@435 2544 const Register thread = rdi;
duke@435 2545 __ get_thread(rdi);
duke@435 2546
duke@435 2547 __ pushl(thread);
duke@435 2548 __ set_last_Java_frame(thread, noreg, rbp, NULL);
duke@435 2549
duke@435 2550 __ call(RuntimeAddress(destination));
duke@435 2551
duke@435 2552
duke@435 2553 // Set an oopmap for the call site.
duke@435 2554 // We need this not only for callee-saved registers, but also for volatile
duke@435 2555 // registers that the compiler might be keeping live across a safepoint.
duke@435 2556
duke@435 2557 oop_maps->add_gc_map( __ offset() - start, map);
duke@435 2558
duke@435 2559 // rax, contains the address we are going to jump to assuming no exception got installed
duke@435 2560
duke@435 2561 __ addl(rsp, wordSize);
duke@435 2562
duke@435 2563 // clear last_Java_sp
duke@435 2564 __ reset_last_Java_frame(thread, true, false);
duke@435 2565 // check for pending exceptions
duke@435 2566 Label pending;
duke@435 2567 __ cmpl(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
duke@435 2568 __ jcc(Assembler::notEqual, pending);
duke@435 2569
duke@435 2570 // get the returned methodOop
duke@435 2571 __ movl(rbx, Address(thread, JavaThread::vm_result_offset()));
duke@435 2572 __ movl(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
duke@435 2573
duke@435 2574 __ movl(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
duke@435 2575
duke@435 2576 RegisterSaver::restore_live_registers(masm);
duke@435 2577
duke@435 2578 // We are back the the original state on entry and ready to go.
duke@435 2579
duke@435 2580 __ jmp(rax);
duke@435 2581
duke@435 2582 // Pending exception after the safepoint
duke@435 2583
duke@435 2584 __ bind(pending);
duke@435 2585
duke@435 2586 RegisterSaver::restore_live_registers(masm);
duke@435 2587
duke@435 2588 // exception pending => remove activation and forward to exception handler
duke@435 2589
duke@435 2590 __ get_thread(thread);
duke@435 2591 __ movl(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
duke@435 2592 __ movl(rax, Address(thread, Thread::pending_exception_offset()));
duke@435 2593 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 2594
duke@435 2595 // -------------
duke@435 2596 // make sure all code is generated
duke@435 2597 masm->flush();
duke@435 2598
duke@435 2599 // return the blob
duke@435 2600 // frame_size_words or bytes??
duke@435 2601 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
duke@435 2602 }
duke@435 2603
duke@435 2604 void SharedRuntime::generate_stubs() {
duke@435 2605
duke@435 2606 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
duke@435 2607 "wrong_method_stub");
duke@435 2608
duke@435 2609 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
duke@435 2610 "ic_miss_stub");
duke@435 2611
duke@435 2612 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
duke@435 2613 "resolve_opt_virtual_call");
duke@435 2614
duke@435 2615 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
duke@435 2616 "resolve_virtual_call");
duke@435 2617
duke@435 2618 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
duke@435 2619 "resolve_static_call");
duke@435 2620
duke@435 2621 _polling_page_safepoint_handler_blob =
duke@435 2622 generate_handler_blob(CAST_FROM_FN_PTR(address,
duke@435 2623 SafepointSynchronize::handle_polling_page_exception), false);
duke@435 2624
duke@435 2625 _polling_page_return_handler_blob =
duke@435 2626 generate_handler_blob(CAST_FROM_FN_PTR(address,
duke@435 2627 SafepointSynchronize::handle_polling_page_exception), true);
duke@435 2628
duke@435 2629 generate_deopt_blob();
duke@435 2630 #ifdef COMPILER2
duke@435 2631 generate_uncommon_trap_blob();
duke@435 2632 #endif // COMPILER2
duke@435 2633 }

mercurial