src/cpu/x86/vm/assembler_x86_32.cpp

Wed, 23 Apr 2008 11:20:36 -0700

author
kvn
date
Wed, 23 Apr 2008 11:20:36 -0700
changeset 559
b130b98db9cf
parent 552
deadee49286e
child 631
d1605aabd0a1
child 777
37f87013dfd8
permissions
-rw-r--r--

6689060: Escape Analysis does not work with Compressed Oops
Summary: 64-bits VM crashes with -XX:+AggresiveOpts (Escape Analysis + Compressed Oops)
Reviewed-by: never, sgoldman

duke@435 1 /*
duke@435 2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_assembler_x86_32.cpp.incl"
duke@435 27
duke@435 28 // Implementation of AddressLiteral
duke@435 29
duke@435 30 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
duke@435 31 _is_lval = false;
duke@435 32 _target = target;
duke@435 33 switch (rtype) {
duke@435 34 case relocInfo::oop_type:
duke@435 35 // Oops are a special case. Normally they would be their own section
duke@435 36 // but in cases like icBuffer they are literals in the code stream that
duke@435 37 // we don't have a section for. We use none so that we get a literal address
duke@435 38 // which is always patchable.
duke@435 39 break;
duke@435 40 case relocInfo::external_word_type:
duke@435 41 _rspec = external_word_Relocation::spec(target);
duke@435 42 break;
duke@435 43 case relocInfo::internal_word_type:
duke@435 44 _rspec = internal_word_Relocation::spec(target);
duke@435 45 break;
duke@435 46 case relocInfo::opt_virtual_call_type:
duke@435 47 _rspec = opt_virtual_call_Relocation::spec();
duke@435 48 break;
duke@435 49 case relocInfo::static_call_type:
duke@435 50 _rspec = static_call_Relocation::spec();
duke@435 51 break;
duke@435 52 case relocInfo::runtime_call_type:
duke@435 53 _rspec = runtime_call_Relocation::spec();
duke@435 54 break;
duke@435 55 case relocInfo::poll_type:
duke@435 56 case relocInfo::poll_return_type:
duke@435 57 _rspec = Relocation::spec_simple(rtype);
duke@435 58 break;
duke@435 59 case relocInfo::none:
duke@435 60 break;
duke@435 61 default:
duke@435 62 ShouldNotReachHere();
duke@435 63 break;
duke@435 64 }
duke@435 65 }
duke@435 66
duke@435 67 // Implementation of Address
duke@435 68
duke@435 69 Address Address::make_array(ArrayAddress adr) {
duke@435 70 #ifdef _LP64
duke@435 71 // Not implementable on 64bit machines
duke@435 72 // Should have been handled higher up the call chain.
duke@435 73 ShouldNotReachHere();
duke@435 74 #else
duke@435 75 AddressLiteral base = adr.base();
duke@435 76 Address index = adr.index();
duke@435 77 assert(index._disp == 0, "must not have disp"); // maybe it can?
duke@435 78 Address array(index._base, index._index, index._scale, (intptr_t) base.target());
duke@435 79 array._rspec = base._rspec;
duke@435 80 return array;
duke@435 81 #endif // _LP64
duke@435 82 }
duke@435 83
duke@435 84 #ifndef _LP64
duke@435 85
duke@435 86 // exceedingly dangerous constructor
duke@435 87 Address::Address(address loc, RelocationHolder spec) {
duke@435 88 _base = noreg;
duke@435 89 _index = noreg;
duke@435 90 _scale = no_scale;
duke@435 91 _disp = (intptr_t) loc;
duke@435 92 _rspec = spec;
duke@435 93 }
duke@435 94 #endif // _LP64
duke@435 95
duke@435 96 // Convert the raw encoding form into the form expected by the constructor for
duke@435 97 // Address. An index of 4 (rsp) corresponds to having no index, so convert
duke@435 98 // that to noreg for the Address constructor.
duke@435 99 Address Address::make_raw(int base, int index, int scale, int disp) {
duke@435 100 bool valid_index = index != rsp->encoding();
duke@435 101 if (valid_index) {
duke@435 102 Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
duke@435 103 return madr;
duke@435 104 } else {
duke@435 105 Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
duke@435 106 return madr;
duke@435 107 }
duke@435 108 }
duke@435 109
duke@435 110 // Implementation of Assembler
duke@435 111
duke@435 112 int AbstractAssembler::code_fill_byte() {
duke@435 113 return (u_char)'\xF4'; // hlt
duke@435 114 }
duke@435 115
duke@435 116 // make this go away someday
duke@435 117 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
duke@435 118 if (rtype == relocInfo::none)
duke@435 119 emit_long(data);
duke@435 120 else emit_data(data, Relocation::spec_simple(rtype), format);
duke@435 121 }
duke@435 122
duke@435 123
duke@435 124 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
duke@435 125 assert(imm32_operand == 0, "default format must be imm32 in this file");
duke@435 126 assert(inst_mark() != NULL, "must be inside InstructionMark");
duke@435 127 if (rspec.type() != relocInfo::none) {
duke@435 128 #ifdef ASSERT
duke@435 129 check_relocation(rspec, format);
duke@435 130 #endif
duke@435 131 // Do not use AbstractAssembler::relocate, which is not intended for
duke@435 132 // embedded words. Instead, relocate to the enclosing instruction.
duke@435 133
duke@435 134 // hack. call32 is too wide for mask so use disp32
duke@435 135 if (format == call32_operand)
duke@435 136 code_section()->relocate(inst_mark(), rspec, disp32_operand);
duke@435 137 else
duke@435 138 code_section()->relocate(inst_mark(), rspec, format);
duke@435 139 }
duke@435 140 emit_long(data);
duke@435 141 }
duke@435 142
duke@435 143
duke@435 144 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
duke@435 145 assert(dst->has_byte_register(), "must have byte register");
duke@435 146 assert(isByte(op1) && isByte(op2), "wrong opcode");
duke@435 147 assert(isByte(imm8), "not a byte");
duke@435 148 assert((op1 & 0x01) == 0, "should be 8bit operation");
duke@435 149 emit_byte(op1);
duke@435 150 emit_byte(op2 | dst->encoding());
duke@435 151 emit_byte(imm8);
duke@435 152 }
duke@435 153
duke@435 154
duke@435 155 void Assembler::emit_arith(int op1, int op2, Register dst, int imm32) {
duke@435 156 assert(isByte(op1) && isByte(op2), "wrong opcode");
duke@435 157 assert((op1 & 0x01) == 1, "should be 32bit operation");
duke@435 158 assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
duke@435 159 if (is8bit(imm32)) {
duke@435 160 emit_byte(op1 | 0x02); // set sign bit
duke@435 161 emit_byte(op2 | dst->encoding());
duke@435 162 emit_byte(imm32 & 0xFF);
duke@435 163 } else {
duke@435 164 emit_byte(op1);
duke@435 165 emit_byte(op2 | dst->encoding());
duke@435 166 emit_long(imm32);
duke@435 167 }
duke@435 168 }
duke@435 169
duke@435 170 // immediate-to-memory forms
duke@435 171 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int imm32) {
duke@435 172 assert((op1 & 0x01) == 1, "should be 32bit operation");
duke@435 173 assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
duke@435 174 if (is8bit(imm32)) {
duke@435 175 emit_byte(op1 | 0x02); // set sign bit
duke@435 176 emit_operand(rm,adr);
duke@435 177 emit_byte(imm32 & 0xFF);
duke@435 178 } else {
duke@435 179 emit_byte(op1);
duke@435 180 emit_operand(rm,adr);
duke@435 181 emit_long(imm32);
duke@435 182 }
duke@435 183 }
duke@435 184
duke@435 185 void Assembler::emit_arith(int op1, int op2, Register dst, jobject obj) {
duke@435 186 assert(isByte(op1) && isByte(op2), "wrong opcode");
duke@435 187 assert((op1 & 0x01) == 1, "should be 32bit operation");
duke@435 188 assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
duke@435 189 InstructionMark im(this);
duke@435 190 emit_byte(op1);
duke@435 191 emit_byte(op2 | dst->encoding());
duke@435 192 emit_data((int)obj, relocInfo::oop_type, 0);
duke@435 193 }
duke@435 194
duke@435 195
duke@435 196 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
duke@435 197 assert(isByte(op1) && isByte(op2), "wrong opcode");
duke@435 198 emit_byte(op1);
duke@435 199 emit_byte(op2 | dst->encoding() << 3 | src->encoding());
duke@435 200 }
duke@435 201
duke@435 202
duke@435 203 void Assembler::emit_operand(Register reg,
duke@435 204 Register base,
duke@435 205 Register index,
duke@435 206 Address::ScaleFactor scale,
duke@435 207 int disp,
duke@435 208 RelocationHolder const& rspec) {
duke@435 209
duke@435 210 relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
duke@435 211 if (base->is_valid()) {
duke@435 212 if (index->is_valid()) {
duke@435 213 assert(scale != Address::no_scale, "inconsistent address");
duke@435 214 // [base + index*scale + disp]
duke@435 215 if (disp == 0 && rtype == relocInfo::none && base != rbp) {
duke@435 216 // [base + index*scale]
duke@435 217 // [00 reg 100][ss index base]
duke@435 218 assert(index != rsp, "illegal addressing mode");
duke@435 219 emit_byte(0x04 | reg->encoding() << 3);
duke@435 220 emit_byte(scale << 6 | index->encoding() << 3 | base->encoding());
duke@435 221 } else if (is8bit(disp) && rtype == relocInfo::none) {
duke@435 222 // [base + index*scale + imm8]
duke@435 223 // [01 reg 100][ss index base] imm8
duke@435 224 assert(index != rsp, "illegal addressing mode");
duke@435 225 emit_byte(0x44 | reg->encoding() << 3);
duke@435 226 emit_byte(scale << 6 | index->encoding() << 3 | base->encoding());
duke@435 227 emit_byte(disp & 0xFF);
duke@435 228 } else {
duke@435 229 // [base + index*scale + imm32]
duke@435 230 // [10 reg 100][ss index base] imm32
duke@435 231 assert(index != rsp, "illegal addressing mode");
duke@435 232 emit_byte(0x84 | reg->encoding() << 3);
duke@435 233 emit_byte(scale << 6 | index->encoding() << 3 | base->encoding());
duke@435 234 emit_data(disp, rspec, disp32_operand);
duke@435 235 }
duke@435 236 } else if (base == rsp) {
duke@435 237 // [esp + disp]
duke@435 238 if (disp == 0 && rtype == relocInfo::none) {
duke@435 239 // [esp]
duke@435 240 // [00 reg 100][00 100 100]
duke@435 241 emit_byte(0x04 | reg->encoding() << 3);
duke@435 242 emit_byte(0x24);
duke@435 243 } else if (is8bit(disp) && rtype == relocInfo::none) {
duke@435 244 // [esp + imm8]
duke@435 245 // [01 reg 100][00 100 100] imm8
duke@435 246 emit_byte(0x44 | reg->encoding() << 3);
duke@435 247 emit_byte(0x24);
duke@435 248 emit_byte(disp & 0xFF);
duke@435 249 } else {
duke@435 250 // [esp + imm32]
duke@435 251 // [10 reg 100][00 100 100] imm32
duke@435 252 emit_byte(0x84 | reg->encoding() << 3);
duke@435 253 emit_byte(0x24);
duke@435 254 emit_data(disp, rspec, disp32_operand);
duke@435 255 }
duke@435 256 } else {
duke@435 257 // [base + disp]
duke@435 258 assert(base != rsp, "illegal addressing mode");
duke@435 259 if (disp == 0 && rtype == relocInfo::none && base != rbp) {
duke@435 260 // [base]
duke@435 261 // [00 reg base]
duke@435 262 assert(base != rbp, "illegal addressing mode");
duke@435 263 emit_byte(0x00 | reg->encoding() << 3 | base->encoding());
duke@435 264 } else if (is8bit(disp) && rtype == relocInfo::none) {
duke@435 265 // [base + imm8]
duke@435 266 // [01 reg base] imm8
duke@435 267 emit_byte(0x40 | reg->encoding() << 3 | base->encoding());
duke@435 268 emit_byte(disp & 0xFF);
duke@435 269 } else {
duke@435 270 // [base + imm32]
duke@435 271 // [10 reg base] imm32
duke@435 272 emit_byte(0x80 | reg->encoding() << 3 | base->encoding());
duke@435 273 emit_data(disp, rspec, disp32_operand);
duke@435 274 }
duke@435 275 }
duke@435 276 } else {
duke@435 277 if (index->is_valid()) {
duke@435 278 assert(scale != Address::no_scale, "inconsistent address");
duke@435 279 // [index*scale + disp]
duke@435 280 // [00 reg 100][ss index 101] imm32
duke@435 281 assert(index != rsp, "illegal addressing mode");
duke@435 282 emit_byte(0x04 | reg->encoding() << 3);
duke@435 283 emit_byte(scale << 6 | index->encoding() << 3 | 0x05);
duke@435 284 emit_data(disp, rspec, disp32_operand);
duke@435 285 } else {
duke@435 286 // [disp]
duke@435 287 // [00 reg 101] imm32
duke@435 288 emit_byte(0x05 | reg->encoding() << 3);
duke@435 289 emit_data(disp, rspec, disp32_operand);
duke@435 290 }
duke@435 291 }
duke@435 292 }
duke@435 293
duke@435 294 // Secret local extension to Assembler::WhichOperand:
duke@435 295 #define end_pc_operand (_WhichOperand_limit)
duke@435 296
duke@435 297 address Assembler::locate_operand(address inst, WhichOperand which) {
duke@435 298 // Decode the given instruction, and return the address of
duke@435 299 // an embedded 32-bit operand word.
duke@435 300
duke@435 301 // If "which" is disp32_operand, selects the displacement portion
duke@435 302 // of an effective address specifier.
duke@435 303 // If "which" is imm32_operand, selects the trailing immediate constant.
duke@435 304 // If "which" is call32_operand, selects the displacement of a call or jump.
duke@435 305 // Caller is responsible for ensuring that there is such an operand,
duke@435 306 // and that it is 32 bits wide.
duke@435 307
duke@435 308 // If "which" is end_pc_operand, find the end of the instruction.
duke@435 309
duke@435 310 address ip = inst;
duke@435 311
duke@435 312 debug_only(bool has_imm32 = false);
duke@435 313 int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
duke@435 314
duke@435 315 again_after_prefix:
duke@435 316 switch (0xFF & *ip++) {
duke@435 317
duke@435 318 // These convenience macros generate groups of "case" labels for the switch.
duke@435 319 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
duke@435 320 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
duke@435 321 case (x)+4: case (x)+5: case (x)+6: case (x)+7
duke@435 322 #define REP16(x) REP8((x)+0): \
duke@435 323 case REP8((x)+8)
duke@435 324
duke@435 325 case CS_segment:
duke@435 326 case SS_segment:
duke@435 327 case DS_segment:
duke@435 328 case ES_segment:
duke@435 329 case FS_segment:
duke@435 330 case GS_segment:
duke@435 331 assert(ip == inst+1, "only one prefix allowed");
duke@435 332 goto again_after_prefix;
duke@435 333
duke@435 334 case 0xFF: // pushl a; decl a; incl a; call a; jmp a
duke@435 335 case 0x88: // movb a, r
duke@435 336 case 0x89: // movl a, r
duke@435 337 case 0x8A: // movb r, a
duke@435 338 case 0x8B: // movl r, a
duke@435 339 case 0x8F: // popl a
duke@435 340 break;
duke@435 341
duke@435 342 case 0x68: // pushl #32(oop?)
duke@435 343 if (which == end_pc_operand) return ip + 4;
duke@435 344 assert(which == imm32_operand, "pushl has no disp32");
duke@435 345 return ip; // not produced by emit_operand
duke@435 346
duke@435 347 case 0x66: // movw ... (size prefix)
duke@435 348 switch (0xFF & *ip++) {
duke@435 349 case 0x8B: // movw r, a
duke@435 350 case 0x89: // movw a, r
duke@435 351 break;
duke@435 352 case 0xC7: // movw a, #16
duke@435 353 tail_size = 2; // the imm16
duke@435 354 break;
duke@435 355 case 0x0F: // several SSE/SSE2 variants
duke@435 356 ip--; // reparse the 0x0F
duke@435 357 goto again_after_prefix;
duke@435 358 default:
duke@435 359 ShouldNotReachHere();
duke@435 360 }
duke@435 361 break;
duke@435 362
duke@435 363 case REP8(0xB8): // movl r, #32(oop?)
duke@435 364 if (which == end_pc_operand) return ip + 4;
duke@435 365 assert(which == imm32_operand || which == disp32_operand, "");
duke@435 366 return ip;
duke@435 367
duke@435 368 case 0x69: // imul r, a, #32
duke@435 369 case 0xC7: // movl a, #32(oop?)
duke@435 370 tail_size = 4;
duke@435 371 debug_only(has_imm32 = true); // has both kinds of operands!
duke@435 372 break;
duke@435 373
duke@435 374 case 0x0F: // movx..., etc.
duke@435 375 switch (0xFF & *ip++) {
duke@435 376 case 0x12: // movlps
duke@435 377 case 0x28: // movaps
duke@435 378 case 0x2E: // ucomiss
duke@435 379 case 0x2F: // comiss
duke@435 380 case 0x54: // andps
duke@435 381 case 0x55: // andnps
duke@435 382 case 0x56: // orps
duke@435 383 case 0x57: // xorps
duke@435 384 case 0x6E: // movd
duke@435 385 case 0x7E: // movd
duke@435 386 case 0xAE: // ldmxcsr a
duke@435 387 // amd side says it these have both operands but that doesn't
duke@435 388 // appear to be true.
duke@435 389 // debug_only(has_imm32 = true); // has both kinds of operands!
duke@435 390 break;
duke@435 391
duke@435 392 case 0xAD: // shrd r, a, %cl
duke@435 393 case 0xAF: // imul r, a
duke@435 394 case 0xBE: // movsxb r, a
duke@435 395 case 0xBF: // movsxw r, a
duke@435 396 case 0xB6: // movzxb r, a
duke@435 397 case 0xB7: // movzxw r, a
duke@435 398 case REP16(0x40): // cmovl cc, r, a
duke@435 399 case 0xB0: // cmpxchgb
duke@435 400 case 0xB1: // cmpxchg
duke@435 401 case 0xC1: // xaddl
duke@435 402 case 0xC7: // cmpxchg8
duke@435 403 case REP16(0x90): // setcc a
duke@435 404 // fall out of the switch to decode the address
duke@435 405 break;
duke@435 406 case 0xAC: // shrd r, a, #8
duke@435 407 tail_size = 1; // the imm8
duke@435 408 break;
duke@435 409 case REP16(0x80): // jcc rdisp32
duke@435 410 if (which == end_pc_operand) return ip + 4;
duke@435 411 assert(which == call32_operand, "jcc has no disp32 or imm32");
duke@435 412 return ip;
duke@435 413 default:
duke@435 414 ShouldNotReachHere();
duke@435 415 }
duke@435 416 break;
duke@435 417
duke@435 418 case 0x81: // addl a, #32; addl r, #32
duke@435 419 // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
duke@435 420 // in the case of cmpl, the imm32 might be an oop
duke@435 421 tail_size = 4;
duke@435 422 debug_only(has_imm32 = true); // has both kinds of operands!
duke@435 423 break;
duke@435 424
duke@435 425 case 0x85: // test r/m, r
duke@435 426 break;
duke@435 427
duke@435 428 case 0x83: // addl a, #8; addl r, #8
duke@435 429 // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
duke@435 430 tail_size = 1;
duke@435 431 break;
duke@435 432
duke@435 433 case 0x9B:
duke@435 434 switch (0xFF & *ip++) {
duke@435 435 case 0xD9: // fnstcw a
duke@435 436 break;
duke@435 437 default:
duke@435 438 ShouldNotReachHere();
duke@435 439 }
duke@435 440 break;
duke@435 441
duke@435 442 case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
duke@435 443 case REP4(0x10): // adc...
duke@435 444 case REP4(0x20): // and...
duke@435 445 case REP4(0x30): // xor...
duke@435 446 case REP4(0x08): // or...
duke@435 447 case REP4(0x18): // sbb...
duke@435 448 case REP4(0x28): // sub...
duke@435 449 case REP4(0x38): // cmp...
duke@435 450 case 0xF7: // mull a
duke@435 451 case 0x8D: // leal r, a
duke@435 452 case 0x87: // xchg r, a
duke@435 453 break;
duke@435 454
duke@435 455 case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
duke@435 456 case 0xC6: // movb a, #8
duke@435 457 case 0x80: // cmpb a, #8
duke@435 458 case 0x6B: // imul r, a, #8
duke@435 459 tail_size = 1; // the imm8
duke@435 460 break;
duke@435 461
duke@435 462 case 0xE8: // call rdisp32
duke@435 463 case 0xE9: // jmp rdisp32
duke@435 464 if (which == end_pc_operand) return ip + 4;
duke@435 465 assert(which == call32_operand, "call has no disp32 or imm32");
duke@435 466 return ip;
duke@435 467
duke@435 468 case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
duke@435 469 case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
duke@435 470 case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
duke@435 471 case 0xDD: // fld_d a; fst_d a; fstp_d a
duke@435 472 case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
duke@435 473 case 0xDF: // fild_d a; fistp_d a
duke@435 474 case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
duke@435 475 case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
duke@435 476 case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
duke@435 477 break;
duke@435 478
duke@435 479 case 0xF3: // For SSE
duke@435 480 case 0xF2: // For SSE2
duke@435 481 ip++; ip++;
duke@435 482 break;
duke@435 483
duke@435 484 default:
duke@435 485 ShouldNotReachHere();
duke@435 486
duke@435 487 #undef REP8
duke@435 488 #undef REP16
duke@435 489 }
duke@435 490
duke@435 491 assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
duke@435 492 assert(which != imm32_operand || has_imm32, "instruction has no imm32 field");
duke@435 493
duke@435 494 // parse the output of emit_operand
duke@435 495 int op2 = 0xFF & *ip++;
duke@435 496 int base = op2 & 0x07;
duke@435 497 int op3 = -1;
duke@435 498 const int b100 = 4;
duke@435 499 const int b101 = 5;
duke@435 500 if (base == b100 && (op2 >> 6) != 3) {
duke@435 501 op3 = 0xFF & *ip++;
duke@435 502 base = op3 & 0x07; // refetch the base
duke@435 503 }
duke@435 504 // now ip points at the disp (if any)
duke@435 505
duke@435 506 switch (op2 >> 6) {
duke@435 507 case 0:
duke@435 508 // [00 reg 100][ss index base]
duke@435 509 // [00 reg 100][00 100 rsp]
duke@435 510 // [00 reg base]
duke@435 511 // [00 reg 100][ss index 101][disp32]
duke@435 512 // [00 reg 101] [disp32]
duke@435 513
duke@435 514 if (base == b101) {
duke@435 515 if (which == disp32_operand)
duke@435 516 return ip; // caller wants the disp32
duke@435 517 ip += 4; // skip the disp32
duke@435 518 }
duke@435 519 break;
duke@435 520
duke@435 521 case 1:
duke@435 522 // [01 reg 100][ss index base][disp8]
duke@435 523 // [01 reg 100][00 100 rsp][disp8]
duke@435 524 // [01 reg base] [disp8]
duke@435 525 ip += 1; // skip the disp8
duke@435 526 break;
duke@435 527
duke@435 528 case 2:
duke@435 529 // [10 reg 100][ss index base][disp32]
duke@435 530 // [10 reg 100][00 100 rsp][disp32]
duke@435 531 // [10 reg base] [disp32]
duke@435 532 if (which == disp32_operand)
duke@435 533 return ip; // caller wants the disp32
duke@435 534 ip += 4; // skip the disp32
duke@435 535 break;
duke@435 536
duke@435 537 case 3:
duke@435 538 // [11 reg base] (not a memory addressing mode)
duke@435 539 break;
duke@435 540 }
duke@435 541
duke@435 542 if (which == end_pc_operand) {
duke@435 543 return ip + tail_size;
duke@435 544 }
duke@435 545
duke@435 546 assert(which == imm32_operand, "instruction has only an imm32 field");
duke@435 547 return ip;
duke@435 548 }
duke@435 549
duke@435 550 address Assembler::locate_next_instruction(address inst) {
duke@435 551 // Secretly share code with locate_operand:
duke@435 552 return locate_operand(inst, end_pc_operand);
duke@435 553 }
duke@435 554
duke@435 555
duke@435 556 #ifdef ASSERT
duke@435 557 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
duke@435 558 address inst = inst_mark();
duke@435 559 assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
duke@435 560 address opnd;
duke@435 561
duke@435 562 Relocation* r = rspec.reloc();
duke@435 563 if (r->type() == relocInfo::none) {
duke@435 564 return;
duke@435 565 } else if (r->is_call() || format == call32_operand) {
duke@435 566 // assert(format == imm32_operand, "cannot specify a nonzero format");
duke@435 567 opnd = locate_operand(inst, call32_operand);
duke@435 568 } else if (r->is_data()) {
duke@435 569 assert(format == imm32_operand || format == disp32_operand, "format ok");
duke@435 570 opnd = locate_operand(inst, (WhichOperand)format);
duke@435 571 } else {
duke@435 572 assert(format == imm32_operand, "cannot specify a format");
duke@435 573 return;
duke@435 574 }
duke@435 575 assert(opnd == pc(), "must put operand where relocs can find it");
duke@435 576 }
duke@435 577 #endif
duke@435 578
duke@435 579
duke@435 580
duke@435 581 void Assembler::emit_operand(Register reg, Address adr) {
duke@435 582 emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
duke@435 583 }
duke@435 584
duke@435 585
duke@435 586 void Assembler::emit_farith(int b1, int b2, int i) {
duke@435 587 assert(isByte(b1) && isByte(b2), "wrong opcode");
duke@435 588 assert(0 <= i && i < 8, "illegal stack offset");
duke@435 589 emit_byte(b1);
duke@435 590 emit_byte(b2 + i);
duke@435 591 }
duke@435 592
duke@435 593
duke@435 594 void Assembler::pushad() {
duke@435 595 emit_byte(0x60);
duke@435 596 }
duke@435 597
duke@435 598 void Assembler::popad() {
duke@435 599 emit_byte(0x61);
duke@435 600 }
duke@435 601
duke@435 602 void Assembler::pushfd() {
duke@435 603 emit_byte(0x9C);
duke@435 604 }
duke@435 605
duke@435 606 void Assembler::popfd() {
duke@435 607 emit_byte(0x9D);
duke@435 608 }
duke@435 609
duke@435 610 void Assembler::pushl(int imm32) {
duke@435 611 emit_byte(0x68);
duke@435 612 emit_long(imm32);
duke@435 613 }
duke@435 614
duke@435 615 #ifndef _LP64
duke@435 616 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
duke@435 617 InstructionMark im(this);
duke@435 618 emit_byte(0x68);
duke@435 619 emit_data(imm32, rspec, 0);
duke@435 620 }
duke@435 621 #endif // _LP64
duke@435 622
duke@435 623 void Assembler::pushl(Register src) {
duke@435 624 emit_byte(0x50 | src->encoding());
duke@435 625 }
duke@435 626
duke@435 627
duke@435 628 void Assembler::pushl(Address src) {
duke@435 629 InstructionMark im(this);
duke@435 630 emit_byte(0xFF);
duke@435 631 emit_operand(rsi, src);
duke@435 632 }
duke@435 633
duke@435 634 void Assembler::popl(Register dst) {
duke@435 635 emit_byte(0x58 | dst->encoding());
duke@435 636 }
duke@435 637
duke@435 638
duke@435 639 void Assembler::popl(Address dst) {
duke@435 640 InstructionMark im(this);
duke@435 641 emit_byte(0x8F);
duke@435 642 emit_operand(rax, dst);
duke@435 643 }
duke@435 644
duke@435 645
duke@435 646 void Assembler::prefix(Prefix p) {
duke@435 647 a_byte(p);
duke@435 648 }
duke@435 649
duke@435 650
duke@435 651 void Assembler::movb(Register dst, Address src) {
duke@435 652 assert(dst->has_byte_register(), "must have byte register");
duke@435 653 InstructionMark im(this);
duke@435 654 emit_byte(0x8A);
duke@435 655 emit_operand(dst, src);
duke@435 656 }
duke@435 657
duke@435 658
duke@435 659 void Assembler::movb(Address dst, int imm8) {
duke@435 660 InstructionMark im(this);
duke@435 661 emit_byte(0xC6);
duke@435 662 emit_operand(rax, dst);
duke@435 663 emit_byte(imm8);
duke@435 664 }
duke@435 665
duke@435 666
duke@435 667 void Assembler::movb(Address dst, Register src) {
duke@435 668 assert(src->has_byte_register(), "must have byte register");
duke@435 669 InstructionMark im(this);
duke@435 670 emit_byte(0x88);
duke@435 671 emit_operand(src, dst);
duke@435 672 }
duke@435 673
duke@435 674
duke@435 675 void Assembler::movw(Address dst, int imm16) {
duke@435 676 InstructionMark im(this);
duke@435 677
duke@435 678 emit_byte(0x66); // switch to 16-bit mode
duke@435 679 emit_byte(0xC7);
duke@435 680 emit_operand(rax, dst);
duke@435 681 emit_word(imm16);
duke@435 682 }
duke@435 683
duke@435 684
duke@435 685 void Assembler::movw(Register dst, Address src) {
duke@435 686 InstructionMark im(this);
duke@435 687 emit_byte(0x66);
duke@435 688 emit_byte(0x8B);
duke@435 689 emit_operand(dst, src);
duke@435 690 }
duke@435 691
duke@435 692
duke@435 693 void Assembler::movw(Address dst, Register src) {
duke@435 694 InstructionMark im(this);
duke@435 695 emit_byte(0x66);
duke@435 696 emit_byte(0x89);
duke@435 697 emit_operand(src, dst);
duke@435 698 }
duke@435 699
duke@435 700
duke@435 701 void Assembler::movl(Register dst, int imm32) {
duke@435 702 emit_byte(0xB8 | dst->encoding());
duke@435 703 emit_long(imm32);
duke@435 704 }
duke@435 705
duke@435 706 #ifndef _LP64
duke@435 707 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
duke@435 708
duke@435 709 InstructionMark im(this);
duke@435 710 emit_byte(0xB8 | dst->encoding());
duke@435 711 emit_data((int)imm32, rspec, 0);
duke@435 712 }
duke@435 713 #endif // _LP64
duke@435 714
duke@435 715 void Assembler::movl(Register dst, Register src) {
duke@435 716 emit_byte(0x8B);
duke@435 717 emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding());
duke@435 718 }
duke@435 719
duke@435 720
duke@435 721 void Assembler::movl(Register dst, Address src) {
duke@435 722 InstructionMark im(this);
duke@435 723 emit_byte(0x8B);
duke@435 724 emit_operand(dst, src);
duke@435 725 }
duke@435 726
duke@435 727
duke@435 728 void Assembler::movl(Address dst, int imm32) {
duke@435 729 InstructionMark im(this);
duke@435 730 emit_byte(0xC7);
duke@435 731 emit_operand(rax, dst);
duke@435 732 emit_long(imm32);
duke@435 733 }
duke@435 734
duke@435 735 #ifndef _LP64
duke@435 736 void Assembler::mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec) {
duke@435 737 InstructionMark im(this);
duke@435 738 emit_byte(0xC7);
duke@435 739 emit_operand(rax, dst);
duke@435 740 emit_data((int)imm32, rspec, 0);
duke@435 741 }
duke@435 742 #endif // _LP64
duke@435 743
duke@435 744 void Assembler::movl(Address dst, Register src) {
duke@435 745 InstructionMark im(this);
duke@435 746 emit_byte(0x89);
duke@435 747 emit_operand(src, dst);
duke@435 748 }
duke@435 749
duke@435 750 void Assembler::movsxb(Register dst, Address src) {
duke@435 751 InstructionMark im(this);
duke@435 752 emit_byte(0x0F);
duke@435 753 emit_byte(0xBE);
duke@435 754 emit_operand(dst, src);
duke@435 755 }
duke@435 756
duke@435 757 void Assembler::movsxb(Register dst, Register src) {
duke@435 758 assert(src->has_byte_register(), "must have byte register");
duke@435 759 emit_byte(0x0F);
duke@435 760 emit_byte(0xBE);
duke@435 761 emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding());
duke@435 762 }
duke@435 763
duke@435 764
duke@435 765 void Assembler::movsxw(Register dst, Address src) {
duke@435 766 InstructionMark im(this);
duke@435 767 emit_byte(0x0F);
duke@435 768 emit_byte(0xBF);
duke@435 769 emit_operand(dst, src);
duke@435 770 }
duke@435 771
duke@435 772
duke@435 773 void Assembler::movsxw(Register dst, Register src) {
duke@435 774 emit_byte(0x0F);
duke@435 775 emit_byte(0xBF);
duke@435 776 emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding());
duke@435 777 }
duke@435 778
duke@435 779
duke@435 780 void Assembler::movzxb(Register dst, Address src) {
duke@435 781 InstructionMark im(this);
duke@435 782 emit_byte(0x0F);
duke@435 783 emit_byte(0xB6);
duke@435 784 emit_operand(dst, src);
duke@435 785 }
duke@435 786
duke@435 787
duke@435 788 void Assembler::movzxb(Register dst, Register src) {
duke@435 789 assert(src->has_byte_register(), "must have byte register");
duke@435 790 emit_byte(0x0F);
duke@435 791 emit_byte(0xB6);
duke@435 792 emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding());
duke@435 793 }
duke@435 794
duke@435 795
duke@435 796 void Assembler::movzxw(Register dst, Address src) {
duke@435 797 InstructionMark im(this);
duke@435 798 emit_byte(0x0F);
duke@435 799 emit_byte(0xB7);
duke@435 800 emit_operand(dst, src);
duke@435 801 }
duke@435 802
duke@435 803
duke@435 804 void Assembler::movzxw(Register dst, Register src) {
duke@435 805 emit_byte(0x0F);
duke@435 806 emit_byte(0xB7);
duke@435 807 emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding());
duke@435 808 }
duke@435 809
duke@435 810
duke@435 811 void Assembler::cmovl(Condition cc, Register dst, Register src) {
duke@435 812 guarantee(VM_Version::supports_cmov(), "illegal instruction");
duke@435 813 emit_byte(0x0F);
duke@435 814 emit_byte(0x40 | cc);
duke@435 815 emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding());
duke@435 816 }
duke@435 817
duke@435 818
duke@435 819 void Assembler::cmovl(Condition cc, Register dst, Address src) {
duke@435 820 guarantee(VM_Version::supports_cmov(), "illegal instruction");
duke@435 821 // The code below seems to be wrong - however the manual is inconclusive
duke@435 822 // do not use for now (remember to enable all callers when fixing this)
duke@435 823 Unimplemented();
duke@435 824 // wrong bytes?
duke@435 825 InstructionMark im(this);
duke@435 826 emit_byte(0x0F);
duke@435 827 emit_byte(0x40 | cc);
duke@435 828 emit_operand(dst, src);
duke@435 829 }
duke@435 830
duke@435 831
duke@435 832 void Assembler::prefetcht0(Address src) {
duke@435 833 assert(VM_Version::supports_sse(), "must support");
duke@435 834 InstructionMark im(this);
duke@435 835 emit_byte(0x0F);
duke@435 836 emit_byte(0x18);
duke@435 837 emit_operand(rcx, src); // 1, src
duke@435 838 }
duke@435 839
duke@435 840
duke@435 841 void Assembler::prefetcht1(Address src) {
duke@435 842 assert(VM_Version::supports_sse(), "must support");
duke@435 843 InstructionMark im(this);
duke@435 844 emit_byte(0x0F);
duke@435 845 emit_byte(0x18);
duke@435 846 emit_operand(rdx, src); // 2, src
duke@435 847 }
duke@435 848
duke@435 849
duke@435 850 void Assembler::prefetcht2(Address src) {
duke@435 851 assert(VM_Version::supports_sse(), "must support");
duke@435 852 InstructionMark im(this);
duke@435 853 emit_byte(0x0F);
duke@435 854 emit_byte(0x18);
duke@435 855 emit_operand(rbx, src); // 3, src
duke@435 856 }
duke@435 857
duke@435 858
duke@435 859 void Assembler::prefetchnta(Address src) {
duke@435 860 assert(VM_Version::supports_sse2(), "must support");
duke@435 861 InstructionMark im(this);
duke@435 862 emit_byte(0x0F);
duke@435 863 emit_byte(0x18);
duke@435 864 emit_operand(rax, src); // 0, src
duke@435 865 }
duke@435 866
duke@435 867
duke@435 868 void Assembler::prefetchw(Address src) {
duke@435 869 assert(VM_Version::supports_3dnow(), "must support");
duke@435 870 InstructionMark im(this);
duke@435 871 emit_byte(0x0F);
duke@435 872 emit_byte(0x0D);
duke@435 873 emit_operand(rcx, src); // 1, src
duke@435 874 }
duke@435 875
duke@435 876
duke@435 877 void Assembler::prefetchr(Address src) {
duke@435 878 assert(VM_Version::supports_3dnow(), "must support");
duke@435 879 InstructionMark im(this);
duke@435 880 emit_byte(0x0F);
duke@435 881 emit_byte(0x0D);
duke@435 882 emit_operand(rax, src); // 0, src
duke@435 883 }
duke@435 884
duke@435 885
duke@435 886 void Assembler::adcl(Register dst, int imm32) {
duke@435 887 emit_arith(0x81, 0xD0, dst, imm32);
duke@435 888 }
duke@435 889
duke@435 890
duke@435 891 void Assembler::adcl(Register dst, Address src) {
duke@435 892 InstructionMark im(this);
duke@435 893 emit_byte(0x13);
duke@435 894 emit_operand(dst, src);
duke@435 895 }
duke@435 896
duke@435 897
duke@435 898 void Assembler::adcl(Register dst, Register src) {
duke@435 899 emit_arith(0x13, 0xC0, dst, src);
duke@435 900 }
duke@435 901
duke@435 902
duke@435 903 void Assembler::addl(Address dst, int imm32) {
duke@435 904 InstructionMark im(this);
duke@435 905 emit_arith_operand(0x81,rax,dst,imm32);
duke@435 906 }
duke@435 907
duke@435 908
duke@435 909 void Assembler::addl(Address dst, Register src) {
duke@435 910 InstructionMark im(this);
duke@435 911 emit_byte(0x01);
duke@435 912 emit_operand(src, dst);
duke@435 913 }
duke@435 914
duke@435 915
duke@435 916 void Assembler::addl(Register dst, int imm32) {
duke@435 917 emit_arith(0x81, 0xC0, dst, imm32);
duke@435 918 }
duke@435 919
duke@435 920
duke@435 921 void Assembler::addl(Register dst, Address src) {
duke@435 922 InstructionMark im(this);
duke@435 923 emit_byte(0x03);
duke@435 924 emit_operand(dst, src);
duke@435 925 }
duke@435 926
duke@435 927
duke@435 928 void Assembler::addl(Register dst, Register src) {
duke@435 929 emit_arith(0x03, 0xC0, dst, src);
duke@435 930 }
duke@435 931
duke@435 932
duke@435 933 void Assembler::andl(Register dst, int imm32) {
duke@435 934 emit_arith(0x81, 0xE0, dst, imm32);
duke@435 935 }
duke@435 936
duke@435 937
duke@435 938 void Assembler::andl(Register dst, Address src) {
duke@435 939 InstructionMark im(this);
duke@435 940 emit_byte(0x23);
duke@435 941 emit_operand(dst, src);
duke@435 942 }
duke@435 943
duke@435 944
duke@435 945 void Assembler::andl(Register dst, Register src) {
duke@435 946 emit_arith(0x23, 0xC0, dst, src);
duke@435 947 }
duke@435 948
duke@435 949
duke@435 950 void Assembler::cmpb(Address dst, int imm8) {
duke@435 951 InstructionMark im(this);
duke@435 952 emit_byte(0x80);
duke@435 953 emit_operand(rdi, dst);
duke@435 954 emit_byte(imm8);
duke@435 955 }
duke@435 956
duke@435 957 void Assembler::cmpw(Address dst, int imm16) {
duke@435 958 InstructionMark im(this);
duke@435 959 emit_byte(0x66);
duke@435 960 emit_byte(0x81);
duke@435 961 emit_operand(rdi, dst);
duke@435 962 emit_word(imm16);
duke@435 963 }
duke@435 964
duke@435 965 void Assembler::cmpl(Address dst, int imm32) {
duke@435 966 InstructionMark im(this);
duke@435 967 emit_byte(0x81);
duke@435 968 emit_operand(rdi, dst);
duke@435 969 emit_long(imm32);
duke@435 970 }
duke@435 971
duke@435 972 #ifndef _LP64
duke@435 973 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
duke@435 974 InstructionMark im(this);
duke@435 975 emit_byte(0x81);
duke@435 976 emit_byte(0xF8 | src1->encoding());
duke@435 977 emit_data(imm32, rspec, 0);
duke@435 978 }
duke@435 979
duke@435 980 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
duke@435 981 InstructionMark im(this);
duke@435 982 emit_byte(0x81);
duke@435 983 emit_operand(rdi, src1);
duke@435 984 emit_data(imm32, rspec, 0);
duke@435 985 }
duke@435 986 #endif // _LP64
duke@435 987
duke@435 988
duke@435 989 void Assembler::cmpl(Register dst, int imm32) {
duke@435 990 emit_arith(0x81, 0xF8, dst, imm32);
duke@435 991 }
duke@435 992
duke@435 993
duke@435 994 void Assembler::cmpl(Register dst, Register src) {
duke@435 995 emit_arith(0x3B, 0xC0, dst, src);
duke@435 996 }
duke@435 997
duke@435 998
duke@435 999 void Assembler::cmpl(Register dst, Address src) {
duke@435 1000 InstructionMark im(this);
duke@435 1001 emit_byte(0x3B);
duke@435 1002 emit_operand(dst, src);
duke@435 1003 }
duke@435 1004
duke@435 1005
duke@435 1006 void Assembler::decl(Register dst) {
duke@435 1007 // Don't use it directly. Use MacroAssembler::decrement() instead.
duke@435 1008 emit_byte(0x48 | dst->encoding());
duke@435 1009 }
duke@435 1010
duke@435 1011
duke@435 1012 void Assembler::decl(Address dst) {
duke@435 1013 // Don't use it directly. Use MacroAssembler::decrement() instead.
duke@435 1014 InstructionMark im(this);
duke@435 1015 emit_byte(0xFF);
duke@435 1016 emit_operand(rcx, dst);
duke@435 1017 }
duke@435 1018
duke@435 1019
duke@435 1020 void Assembler::idivl(Register src) {
duke@435 1021 emit_byte(0xF7);
duke@435 1022 emit_byte(0xF8 | src->encoding());
duke@435 1023 }
duke@435 1024
duke@435 1025
duke@435 1026 void Assembler::cdql() {
duke@435 1027 emit_byte(0x99);
duke@435 1028 }
duke@435 1029
duke@435 1030
duke@435 1031 void Assembler::imull(Register dst, Register src) {
duke@435 1032 emit_byte(0x0F);
duke@435 1033 emit_byte(0xAF);
duke@435 1034 emit_byte(0xC0 | dst->encoding() << 3 | src->encoding());
duke@435 1035 }
duke@435 1036
duke@435 1037
duke@435 1038 void Assembler::imull(Register dst, Register src, int value) {
duke@435 1039 if (is8bit(value)) {
duke@435 1040 emit_byte(0x6B);
duke@435 1041 emit_byte(0xC0 | dst->encoding() << 3 | src->encoding());
duke@435 1042 emit_byte(value);
duke@435 1043 } else {
duke@435 1044 emit_byte(0x69);
duke@435 1045 emit_byte(0xC0 | dst->encoding() << 3 | src->encoding());
duke@435 1046 emit_long(value);
duke@435 1047 }
duke@435 1048 }
duke@435 1049
duke@435 1050
duke@435 1051 void Assembler::incl(Register dst) {
duke@435 1052 // Don't use it directly. Use MacroAssembler::increment() instead.
duke@435 1053 emit_byte(0x40 | dst->encoding());
duke@435 1054 }
duke@435 1055
duke@435 1056
duke@435 1057 void Assembler::incl(Address dst) {
duke@435 1058 // Don't use it directly. Use MacroAssembler::increment() instead.
duke@435 1059 InstructionMark im(this);
duke@435 1060 emit_byte(0xFF);
duke@435 1061 emit_operand(rax, dst);
duke@435 1062 }
duke@435 1063
duke@435 1064
duke@435 1065 void Assembler::leal(Register dst, Address src) {
duke@435 1066 InstructionMark im(this);
duke@435 1067 emit_byte(0x8D);
duke@435 1068 emit_operand(dst, src);
duke@435 1069 }
duke@435 1070
duke@435 1071 void Assembler::mull(Address src) {
duke@435 1072 InstructionMark im(this);
duke@435 1073 emit_byte(0xF7);
duke@435 1074 emit_operand(rsp, src);
duke@435 1075 }
duke@435 1076
duke@435 1077
duke@435 1078 void Assembler::mull(Register src) {
duke@435 1079 emit_byte(0xF7);
duke@435 1080 emit_byte(0xE0 | src->encoding());
duke@435 1081 }
duke@435 1082
duke@435 1083
duke@435 1084 void Assembler::negl(Register dst) {
duke@435 1085 emit_byte(0xF7);
duke@435 1086 emit_byte(0xD8 | dst->encoding());
duke@435 1087 }
duke@435 1088
duke@435 1089
duke@435 1090 void Assembler::notl(Register dst) {
duke@435 1091 emit_byte(0xF7);
duke@435 1092 emit_byte(0xD0 | dst->encoding());
duke@435 1093 }
duke@435 1094
duke@435 1095
duke@435 1096 void Assembler::orl(Address dst, int imm32) {
duke@435 1097 InstructionMark im(this);
duke@435 1098 emit_byte(0x81);
duke@435 1099 emit_operand(rcx, dst);
duke@435 1100 emit_long(imm32);
duke@435 1101 }
duke@435 1102
duke@435 1103 void Assembler::orl(Register dst, int imm32) {
duke@435 1104 emit_arith(0x81, 0xC8, dst, imm32);
duke@435 1105 }
duke@435 1106
duke@435 1107
duke@435 1108 void Assembler::orl(Register dst, Address src) {
duke@435 1109 InstructionMark im(this);
duke@435 1110 emit_byte(0x0B);
duke@435 1111 emit_operand(dst, src);
duke@435 1112 }
duke@435 1113
duke@435 1114
duke@435 1115 void Assembler::orl(Register dst, Register src) {
duke@435 1116 emit_arith(0x0B, 0xC0, dst, src);
duke@435 1117 }
duke@435 1118
duke@435 1119
duke@435 1120 void Assembler::rcll(Register dst, int imm8) {
duke@435 1121 assert(isShiftCount(imm8), "illegal shift count");
duke@435 1122 if (imm8 == 1) {
duke@435 1123 emit_byte(0xD1);
duke@435 1124 emit_byte(0xD0 | dst->encoding());
duke@435 1125 } else {
duke@435 1126 emit_byte(0xC1);
duke@435 1127 emit_byte(0xD0 | dst->encoding());
duke@435 1128 emit_byte(imm8);
duke@435 1129 }
duke@435 1130 }
duke@435 1131
duke@435 1132
duke@435 1133 void Assembler::sarl(Register dst, int imm8) {
duke@435 1134 assert(isShiftCount(imm8), "illegal shift count");
duke@435 1135 if (imm8 == 1) {
duke@435 1136 emit_byte(0xD1);
duke@435 1137 emit_byte(0xF8 | dst->encoding());
duke@435 1138 } else {
duke@435 1139 emit_byte(0xC1);
duke@435 1140 emit_byte(0xF8 | dst->encoding());
duke@435 1141 emit_byte(imm8);
duke@435 1142 }
duke@435 1143 }
duke@435 1144
duke@435 1145
duke@435 1146 void Assembler::sarl(Register dst) {
duke@435 1147 emit_byte(0xD3);
duke@435 1148 emit_byte(0xF8 | dst->encoding());
duke@435 1149 }
duke@435 1150
duke@435 1151
duke@435 1152 void Assembler::sbbl(Address dst, int imm32) {
duke@435 1153 InstructionMark im(this);
duke@435 1154 emit_arith_operand(0x81,rbx,dst,imm32);
duke@435 1155 }
duke@435 1156
duke@435 1157
duke@435 1158 void Assembler::sbbl(Register dst, int imm32) {
duke@435 1159 emit_arith(0x81, 0xD8, dst, imm32);
duke@435 1160 }
duke@435 1161
duke@435 1162
duke@435 1163 void Assembler::sbbl(Register dst, Address src) {
duke@435 1164 InstructionMark im(this);
duke@435 1165 emit_byte(0x1B);
duke@435 1166 emit_operand(dst, src);
duke@435 1167 }
duke@435 1168
duke@435 1169
duke@435 1170 void Assembler::sbbl(Register dst, Register src) {
duke@435 1171 emit_arith(0x1B, 0xC0, dst, src);
duke@435 1172 }
duke@435 1173
duke@435 1174
duke@435 1175 void Assembler::shldl(Register dst, Register src) {
duke@435 1176 emit_byte(0x0F);
duke@435 1177 emit_byte(0xA5);
duke@435 1178 emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
duke@435 1179 }
duke@435 1180
duke@435 1181
duke@435 1182 void Assembler::shll(Register dst, int imm8) {
duke@435 1183 assert(isShiftCount(imm8), "illegal shift count");
duke@435 1184 if (imm8 == 1 ) {
duke@435 1185 emit_byte(0xD1);
duke@435 1186 emit_byte(0xE0 | dst->encoding());
duke@435 1187 } else {
duke@435 1188 emit_byte(0xC1);
duke@435 1189 emit_byte(0xE0 | dst->encoding());
duke@435 1190 emit_byte(imm8);
duke@435 1191 }
duke@435 1192 }
duke@435 1193
duke@435 1194
duke@435 1195 void Assembler::shll(Register dst) {
duke@435 1196 emit_byte(0xD3);
duke@435 1197 emit_byte(0xE0 | dst->encoding());
duke@435 1198 }
duke@435 1199
duke@435 1200
duke@435 1201 void Assembler::shrdl(Register dst, Register src) {
duke@435 1202 emit_byte(0x0F);
duke@435 1203 emit_byte(0xAD);
duke@435 1204 emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
duke@435 1205 }
duke@435 1206
duke@435 1207
duke@435 1208 void Assembler::shrl(Register dst, int imm8) {
duke@435 1209 assert(isShiftCount(imm8), "illegal shift count");
duke@435 1210 emit_byte(0xC1);
duke@435 1211 emit_byte(0xE8 | dst->encoding());
duke@435 1212 emit_byte(imm8);
duke@435 1213 }
duke@435 1214
duke@435 1215
duke@435 1216 void Assembler::shrl(Register dst) {
duke@435 1217 emit_byte(0xD3);
duke@435 1218 emit_byte(0xE8 | dst->encoding());
duke@435 1219 }
duke@435 1220
duke@435 1221
duke@435 1222 void Assembler::subl(Address dst, int imm32) {
duke@435 1223 if (is8bit(imm32)) {
duke@435 1224 InstructionMark im(this);
duke@435 1225 emit_byte(0x83);
duke@435 1226 emit_operand(rbp, dst);
duke@435 1227 emit_byte(imm32 & 0xFF);
duke@435 1228 } else {
duke@435 1229 InstructionMark im(this);
duke@435 1230 emit_byte(0x81);
duke@435 1231 emit_operand(rbp, dst);
duke@435 1232 emit_long(imm32);
duke@435 1233 }
duke@435 1234 }
duke@435 1235
duke@435 1236
duke@435 1237 void Assembler::subl(Register dst, int imm32) {
duke@435 1238 emit_arith(0x81, 0xE8, dst, imm32);
duke@435 1239 }
duke@435 1240
duke@435 1241
duke@435 1242 void Assembler::subl(Address dst, Register src) {
duke@435 1243 InstructionMark im(this);
duke@435 1244 emit_byte(0x29);
duke@435 1245 emit_operand(src, dst);
duke@435 1246 }
duke@435 1247
duke@435 1248
duke@435 1249 void Assembler::subl(Register dst, Address src) {
duke@435 1250 InstructionMark im(this);
duke@435 1251 emit_byte(0x2B);
duke@435 1252 emit_operand(dst, src);
duke@435 1253 }
duke@435 1254
duke@435 1255
duke@435 1256 void Assembler::subl(Register dst, Register src) {
duke@435 1257 emit_arith(0x2B, 0xC0, dst, src);
duke@435 1258 }
duke@435 1259
duke@435 1260
duke@435 1261 void Assembler::testb(Register dst, int imm8) {
duke@435 1262 assert(dst->has_byte_register(), "must have byte register");
duke@435 1263 emit_arith_b(0xF6, 0xC0, dst, imm8);
duke@435 1264 }
duke@435 1265
duke@435 1266
duke@435 1267 void Assembler::testl(Register dst, int imm32) {
duke@435 1268 // not using emit_arith because test
duke@435 1269 // doesn't support sign-extension of
duke@435 1270 // 8bit operands
duke@435 1271 if (dst->encoding() == 0) {
duke@435 1272 emit_byte(0xA9);
duke@435 1273 } else {
duke@435 1274 emit_byte(0xF7);
duke@435 1275 emit_byte(0xC0 | dst->encoding());
duke@435 1276 }
duke@435 1277 emit_long(imm32);
duke@435 1278 }
duke@435 1279
duke@435 1280
duke@435 1281 void Assembler::testl(Register dst, Register src) {
duke@435 1282 emit_arith(0x85, 0xC0, dst, src);
duke@435 1283 }
duke@435 1284
duke@435 1285 void Assembler::testl(Register dst, Address src) {
duke@435 1286 InstructionMark im(this);
duke@435 1287 emit_byte(0x85);
duke@435 1288 emit_operand(dst, src);
duke@435 1289 }
duke@435 1290
duke@435 1291 void Assembler::xaddl(Address dst, Register src) {
duke@435 1292 InstructionMark im(this);
duke@435 1293 emit_byte(0x0F);
duke@435 1294 emit_byte(0xC1);
duke@435 1295 emit_operand(src, dst);
duke@435 1296 }
duke@435 1297
duke@435 1298 void Assembler::xorl(Register dst, int imm32) {
duke@435 1299 emit_arith(0x81, 0xF0, dst, imm32);
duke@435 1300 }
duke@435 1301
duke@435 1302
duke@435 1303 void Assembler::xorl(Register dst, Address src) {
duke@435 1304 InstructionMark im(this);
duke@435 1305 emit_byte(0x33);
duke@435 1306 emit_operand(dst, src);
duke@435 1307 }
duke@435 1308
duke@435 1309
duke@435 1310 void Assembler::xorl(Register dst, Register src) {
duke@435 1311 emit_arith(0x33, 0xC0, dst, src);
duke@435 1312 }
duke@435 1313
duke@435 1314
duke@435 1315 void Assembler::bswap(Register reg) {
duke@435 1316 emit_byte(0x0F);
duke@435 1317 emit_byte(0xC8 | reg->encoding());
duke@435 1318 }
duke@435 1319
duke@435 1320
duke@435 1321 void Assembler::lock() {
duke@435 1322 if (Atomics & 1) {
duke@435 1323 // Emit either nothing, a NOP, or a NOP: prefix
duke@435 1324 emit_byte(0x90) ;
duke@435 1325 } else {
duke@435 1326 emit_byte(0xF0);
duke@435 1327 }
duke@435 1328 }
duke@435 1329
duke@435 1330
duke@435 1331 void Assembler::xchg(Register reg, Address adr) {
duke@435 1332 InstructionMark im(this);
duke@435 1333 emit_byte(0x87);
duke@435 1334 emit_operand(reg, adr);
duke@435 1335 }
duke@435 1336
duke@435 1337
duke@435 1338 void Assembler::xchgl(Register dst, Register src) {
duke@435 1339 emit_byte(0x87);
duke@435 1340 emit_byte(0xc0 | dst->encoding() << 3 | src->encoding());
duke@435 1341 }
duke@435 1342
duke@435 1343
duke@435 1344 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
duke@435 1345 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
duke@435 1346 // The ZF is set if the compared values were equal, and cleared otherwise.
duke@435 1347 void Assembler::cmpxchg(Register reg, Address adr) {
duke@435 1348 if (Atomics & 2) {
duke@435 1349 // caveat: no instructionmark, so this isn't relocatable.
duke@435 1350 // Emit a synthetic, non-atomic, CAS equivalent.
duke@435 1351 // Beware. The synthetic form sets all ICCs, not just ZF.
duke@435 1352 // cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r)
duke@435 1353 cmpl (rax, adr) ;
duke@435 1354 movl (rax, adr) ;
duke@435 1355 if (reg != rax) {
duke@435 1356 Label L ;
duke@435 1357 jcc (Assembler::notEqual, L) ;
duke@435 1358 movl (adr, reg) ;
duke@435 1359 bind (L) ;
duke@435 1360 }
duke@435 1361 } else {
duke@435 1362 InstructionMark im(this);
duke@435 1363 emit_byte(0x0F);
duke@435 1364 emit_byte(0xB1);
duke@435 1365 emit_operand(reg, adr);
duke@435 1366 }
duke@435 1367 }
duke@435 1368
duke@435 1369 // The 64-bit cmpxchg compares the value at adr with the contents of rdx:rax,
duke@435 1370 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
duke@435 1371 // into rdx:rax. The ZF is set if the compared values were equal, and cleared otherwise.
duke@435 1372 void Assembler::cmpxchg8(Address adr) {
duke@435 1373 InstructionMark im(this);
duke@435 1374 emit_byte(0x0F);
duke@435 1375 emit_byte(0xc7);
duke@435 1376 emit_operand(rcx, adr);
duke@435 1377 }
duke@435 1378
duke@435 1379 void Assembler::hlt() {
duke@435 1380 emit_byte(0xF4);
duke@435 1381 }
duke@435 1382
duke@435 1383
duke@435 1384 void Assembler::addr_nop_4() {
duke@435 1385 // 4 bytes: NOP DWORD PTR [EAX+0]
duke@435 1386 emit_byte(0x0F);
duke@435 1387 emit_byte(0x1F);
duke@435 1388 emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
duke@435 1389 emit_byte(0); // 8-bits offset (1 byte)
duke@435 1390 }
duke@435 1391
duke@435 1392 void Assembler::addr_nop_5() {
duke@435 1393 // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
duke@435 1394 emit_byte(0x0F);
duke@435 1395 emit_byte(0x1F);
duke@435 1396 emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
duke@435 1397 emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
duke@435 1398 emit_byte(0); // 8-bits offset (1 byte)
duke@435 1399 }
duke@435 1400
duke@435 1401 void Assembler::addr_nop_7() {
duke@435 1402 // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
duke@435 1403 emit_byte(0x0F);
duke@435 1404 emit_byte(0x1F);
duke@435 1405 emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
duke@435 1406 emit_long(0); // 32-bits offset (4 bytes)
duke@435 1407 }
duke@435 1408
duke@435 1409 void Assembler::addr_nop_8() {
duke@435 1410 // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
duke@435 1411 emit_byte(0x0F);
duke@435 1412 emit_byte(0x1F);
duke@435 1413 emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
duke@435 1414 emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
duke@435 1415 emit_long(0); // 32-bits offset (4 bytes)
duke@435 1416 }
duke@435 1417
duke@435 1418 void Assembler::nop(int i) {
duke@435 1419 assert(i > 0, " ");
duke@435 1420 if (UseAddressNop && VM_Version::is_intel()) {
duke@435 1421 //
duke@435 1422 // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
duke@435 1423 // 1: 0x90
duke@435 1424 // 2: 0x66 0x90
duke@435 1425 // 3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
duke@435 1426 // 4: 0x0F 0x1F 0x40 0x00
duke@435 1427 // 5: 0x0F 0x1F 0x44 0x00 0x00
duke@435 1428 // 6: 0x66 0x0F 0x1F 0x44 0x00 0x00
duke@435 1429 // 7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
duke@435 1430 // 8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 1431 // 9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 1432 // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 1433 // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 1434
duke@435 1435 // The rest coding is Intel specific - don't use consecutive address nops
duke@435 1436
duke@435 1437 // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
duke@435 1438 // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
duke@435 1439 // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
duke@435 1440 // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
duke@435 1441
duke@435 1442 while(i >= 15) {
duke@435 1443 // For Intel don't generate consecutive addess nops (mix with regular nops)
duke@435 1444 i -= 15;
duke@435 1445 emit_byte(0x66); // size prefix
duke@435 1446 emit_byte(0x66); // size prefix
duke@435 1447 emit_byte(0x66); // size prefix
duke@435 1448 addr_nop_8();
duke@435 1449 emit_byte(0x66); // size prefix
duke@435 1450 emit_byte(0x66); // size prefix
duke@435 1451 emit_byte(0x66); // size prefix
duke@435 1452 emit_byte(0x90); // nop
duke@435 1453 }
duke@435 1454 switch (i) {
duke@435 1455 case 14:
duke@435 1456 emit_byte(0x66); // size prefix
duke@435 1457 case 13:
duke@435 1458 emit_byte(0x66); // size prefix
duke@435 1459 case 12:
duke@435 1460 addr_nop_8();
duke@435 1461 emit_byte(0x66); // size prefix
duke@435 1462 emit_byte(0x66); // size prefix
duke@435 1463 emit_byte(0x66); // size prefix
duke@435 1464 emit_byte(0x90); // nop
duke@435 1465 break;
duke@435 1466 case 11:
duke@435 1467 emit_byte(0x66); // size prefix
duke@435 1468 case 10:
duke@435 1469 emit_byte(0x66); // size prefix
duke@435 1470 case 9:
duke@435 1471 emit_byte(0x66); // size prefix
duke@435 1472 case 8:
duke@435 1473 addr_nop_8();
duke@435 1474 break;
duke@435 1475 case 7:
duke@435 1476 addr_nop_7();
duke@435 1477 break;
duke@435 1478 case 6:
duke@435 1479 emit_byte(0x66); // size prefix
duke@435 1480 case 5:
duke@435 1481 addr_nop_5();
duke@435 1482 break;
duke@435 1483 case 4:
duke@435 1484 addr_nop_4();
duke@435 1485 break;
duke@435 1486 case 3:
duke@435 1487 // Don't use "0x0F 0x1F 0x00" - need patching safe padding
duke@435 1488 emit_byte(0x66); // size prefix
duke@435 1489 case 2:
duke@435 1490 emit_byte(0x66); // size prefix
duke@435 1491 case 1:
duke@435 1492 emit_byte(0x90); // nop
duke@435 1493 break;
duke@435 1494 default:
duke@435 1495 assert(i == 0, " ");
duke@435 1496 }
duke@435 1497 return;
duke@435 1498 }
duke@435 1499 if (UseAddressNop && VM_Version::is_amd()) {
duke@435 1500 //
duke@435 1501 // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
duke@435 1502 // 1: 0x90
duke@435 1503 // 2: 0x66 0x90
duke@435 1504 // 3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
duke@435 1505 // 4: 0x0F 0x1F 0x40 0x00
duke@435 1506 // 5: 0x0F 0x1F 0x44 0x00 0x00
duke@435 1507 // 6: 0x66 0x0F 0x1F 0x44 0x00 0x00
duke@435 1508 // 7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
duke@435 1509 // 8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 1510 // 9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 1511 // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 1512 // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 1513
duke@435 1514 // The rest coding is AMD specific - use consecutive address nops
duke@435 1515
duke@435 1516 // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
duke@435 1517 // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
duke@435 1518 // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
duke@435 1519 // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
duke@435 1520 // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 1521 // Size prefixes (0x66) are added for larger sizes
duke@435 1522
duke@435 1523 while(i >= 22) {
duke@435 1524 i -= 11;
duke@435 1525 emit_byte(0x66); // size prefix
duke@435 1526 emit_byte(0x66); // size prefix
duke@435 1527 emit_byte(0x66); // size prefix
duke@435 1528 addr_nop_8();
duke@435 1529 }
duke@435 1530 // Generate first nop for size between 21-12
duke@435 1531 switch (i) {
duke@435 1532 case 21:
duke@435 1533 i -= 1;
duke@435 1534 emit_byte(0x66); // size prefix
duke@435 1535 case 20:
duke@435 1536 case 19:
duke@435 1537 i -= 1;
duke@435 1538 emit_byte(0x66); // size prefix
duke@435 1539 case 18:
duke@435 1540 case 17:
duke@435 1541 i -= 1;
duke@435 1542 emit_byte(0x66); // size prefix
duke@435 1543 case 16:
duke@435 1544 case 15:
duke@435 1545 i -= 8;
duke@435 1546 addr_nop_8();
duke@435 1547 break;
duke@435 1548 case 14:
duke@435 1549 case 13:
duke@435 1550 i -= 7;
duke@435 1551 addr_nop_7();
duke@435 1552 break;
duke@435 1553 case 12:
duke@435 1554 i -= 6;
duke@435 1555 emit_byte(0x66); // size prefix
duke@435 1556 addr_nop_5();
duke@435 1557 break;
duke@435 1558 default:
duke@435 1559 assert(i < 12, " ");
duke@435 1560 }
duke@435 1561
duke@435 1562 // Generate second nop for size between 11-1
duke@435 1563 switch (i) {
duke@435 1564 case 11:
duke@435 1565 emit_byte(0x66); // size prefix
duke@435 1566 case 10:
duke@435 1567 emit_byte(0x66); // size prefix
duke@435 1568 case 9:
duke@435 1569 emit_byte(0x66); // size prefix
duke@435 1570 case 8:
duke@435 1571 addr_nop_8();
duke@435 1572 break;
duke@435 1573 case 7:
duke@435 1574 addr_nop_7();
duke@435 1575 break;
duke@435 1576 case 6:
duke@435 1577 emit_byte(0x66); // size prefix
duke@435 1578 case 5:
duke@435 1579 addr_nop_5();
duke@435 1580 break;
duke@435 1581 case 4:
duke@435 1582 addr_nop_4();
duke@435 1583 break;
duke@435 1584 case 3:
duke@435 1585 // Don't use "0x0F 0x1F 0x00" - need patching safe padding
duke@435 1586 emit_byte(0x66); // size prefix
duke@435 1587 case 2:
duke@435 1588 emit_byte(0x66); // size prefix
duke@435 1589 case 1:
duke@435 1590 emit_byte(0x90); // nop
duke@435 1591 break;
duke@435 1592 default:
duke@435 1593 assert(i == 0, " ");
duke@435 1594 }
duke@435 1595 return;
duke@435 1596 }
duke@435 1597
duke@435 1598 // Using nops with size prefixes "0x66 0x90".
duke@435 1599 // From AMD Optimization Guide:
duke@435 1600 // 1: 0x90
duke@435 1601 // 2: 0x66 0x90
duke@435 1602 // 3: 0x66 0x66 0x90
duke@435 1603 // 4: 0x66 0x66 0x66 0x90
duke@435 1604 // 5: 0x66 0x66 0x90 0x66 0x90
duke@435 1605 // 6: 0x66 0x66 0x90 0x66 0x66 0x90
duke@435 1606 // 7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
duke@435 1607 // 8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
duke@435 1608 // 9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
duke@435 1609 // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
duke@435 1610 //
duke@435 1611 while(i > 12) {
duke@435 1612 i -= 4;
duke@435 1613 emit_byte(0x66); // size prefix
duke@435 1614 emit_byte(0x66);
duke@435 1615 emit_byte(0x66);
duke@435 1616 emit_byte(0x90); // nop
duke@435 1617 }
duke@435 1618 // 1 - 12 nops
duke@435 1619 if(i > 8) {
duke@435 1620 if(i > 9) {
duke@435 1621 i -= 1;
duke@435 1622 emit_byte(0x66);
duke@435 1623 }
duke@435 1624 i -= 3;
duke@435 1625 emit_byte(0x66);
duke@435 1626 emit_byte(0x66);
duke@435 1627 emit_byte(0x90);
duke@435 1628 }
duke@435 1629 // 1 - 8 nops
duke@435 1630 if(i > 4) {
duke@435 1631 if(i > 6) {
duke@435 1632 i -= 1;
duke@435 1633 emit_byte(0x66);
duke@435 1634 }
duke@435 1635 i -= 3;
duke@435 1636 emit_byte(0x66);
duke@435 1637 emit_byte(0x66);
duke@435 1638 emit_byte(0x90);
duke@435 1639 }
duke@435 1640 switch (i) {
duke@435 1641 case 4:
duke@435 1642 emit_byte(0x66);
duke@435 1643 case 3:
duke@435 1644 emit_byte(0x66);
duke@435 1645 case 2:
duke@435 1646 emit_byte(0x66);
duke@435 1647 case 1:
duke@435 1648 emit_byte(0x90);
duke@435 1649 break;
duke@435 1650 default:
duke@435 1651 assert(i == 0, " ");
duke@435 1652 }
duke@435 1653 }
duke@435 1654
duke@435 1655 void Assembler::ret(int imm16) {
duke@435 1656 if (imm16 == 0) {
duke@435 1657 emit_byte(0xC3);
duke@435 1658 } else {
duke@435 1659 emit_byte(0xC2);
duke@435 1660 emit_word(imm16);
duke@435 1661 }
duke@435 1662 }
duke@435 1663
duke@435 1664
duke@435 1665 void Assembler::set_byte_if_not_zero(Register dst) {
duke@435 1666 emit_byte(0x0F);
duke@435 1667 emit_byte(0x95);
duke@435 1668 emit_byte(0xE0 | dst->encoding());
duke@435 1669 }
duke@435 1670
duke@435 1671
duke@435 1672 // copies a single word from [esi] to [edi]
duke@435 1673 void Assembler::smovl() {
duke@435 1674 emit_byte(0xA5);
duke@435 1675 }
duke@435 1676
duke@435 1677 // copies data from [esi] to [edi] using rcx double words (m32)
duke@435 1678 void Assembler::rep_movl() {
duke@435 1679 emit_byte(0xF3);
duke@435 1680 emit_byte(0xA5);
duke@435 1681 }
duke@435 1682
duke@435 1683
duke@435 1684 // sets rcx double words (m32) with rax, value at [edi]
duke@435 1685 void Assembler::rep_set() {
duke@435 1686 emit_byte(0xF3);
duke@435 1687 emit_byte(0xAB);
duke@435 1688 }
duke@435 1689
duke@435 1690 // scans rcx double words (m32) at [edi] for occurance of rax,
duke@435 1691 void Assembler::repne_scan() {
duke@435 1692 emit_byte(0xF2);
duke@435 1693 emit_byte(0xAF);
duke@435 1694 }
duke@435 1695
duke@435 1696
duke@435 1697 void Assembler::setb(Condition cc, Register dst) {
duke@435 1698 assert(0 <= cc && cc < 16, "illegal cc");
duke@435 1699 emit_byte(0x0F);
duke@435 1700 emit_byte(0x90 | cc);
duke@435 1701 emit_byte(0xC0 | dst->encoding());
duke@435 1702 }
duke@435 1703
duke@435 1704 void Assembler::cld() {
duke@435 1705 emit_byte(0xfc);
duke@435 1706 }
duke@435 1707
duke@435 1708 void Assembler::std() {
duke@435 1709 emit_byte(0xfd);
duke@435 1710 }
duke@435 1711
duke@435 1712 void Assembler::emit_raw (unsigned char b) {
duke@435 1713 emit_byte (b) ;
duke@435 1714 }
duke@435 1715
duke@435 1716 // Serializes memory.
duke@435 1717 void Assembler::membar() {
duke@435 1718 // Memory barriers are only needed on multiprocessors
duke@435 1719 if (os::is_MP()) {
duke@435 1720 if( VM_Version::supports_sse2() ) {
duke@435 1721 emit_byte( 0x0F ); // MFENCE; faster blows no regs
duke@435 1722 emit_byte( 0xAE );
duke@435 1723 emit_byte( 0xF0 );
duke@435 1724 } else {
duke@435 1725 // All usable chips support "locked" instructions which suffice
duke@435 1726 // as barriers, and are much faster than the alternative of
duke@435 1727 // using cpuid instruction. We use here a locked add [esp],0.
duke@435 1728 // This is conveniently otherwise a no-op except for blowing
duke@435 1729 // flags (which we save and restore.)
duke@435 1730 pushfd(); // Save eflags register
duke@435 1731 lock();
duke@435 1732 addl(Address(rsp, 0), 0);// Assert the lock# signal here
duke@435 1733 popfd(); // Restore eflags register
duke@435 1734 }
duke@435 1735 }
duke@435 1736 }
duke@435 1737
duke@435 1738 // Identify processor type and features
duke@435 1739 void Assembler::cpuid() {
duke@435 1740 // Note: we can't assert VM_Version::supports_cpuid() here
duke@435 1741 // because this instruction is used in the processor
duke@435 1742 // identification code.
duke@435 1743 emit_byte( 0x0F );
duke@435 1744 emit_byte( 0xA2 );
duke@435 1745 }
duke@435 1746
duke@435 1747 void Assembler::call(Label& L, relocInfo::relocType rtype) {
duke@435 1748 if (L.is_bound()) {
duke@435 1749 const int long_size = 5;
duke@435 1750 int offs = target(L) - pc();
duke@435 1751 assert(offs <= 0, "assembler error");
duke@435 1752 InstructionMark im(this);
duke@435 1753 // 1110 1000 #32-bit disp
duke@435 1754 emit_byte(0xE8);
duke@435 1755 emit_data(offs - long_size, rtype, 0);
duke@435 1756 } else {
duke@435 1757 InstructionMark im(this);
duke@435 1758 // 1110 1000 #32-bit disp
duke@435 1759 L.add_patch_at(code(), locator());
duke@435 1760 emit_byte(0xE8);
duke@435 1761 emit_data(int(0), rtype, 0);
duke@435 1762 }
duke@435 1763 }
duke@435 1764
duke@435 1765 void Assembler::call(Register dst) {
duke@435 1766 emit_byte(0xFF);
duke@435 1767 emit_byte(0xD0 | dst->encoding());
duke@435 1768 }
duke@435 1769
duke@435 1770
duke@435 1771 void Assembler::call(Address adr) {
duke@435 1772 InstructionMark im(this);
duke@435 1773 relocInfo::relocType rtype = adr.reloc();
duke@435 1774 if (rtype != relocInfo::runtime_call_type) {
duke@435 1775 emit_byte(0xFF);
duke@435 1776 emit_operand(rdx, adr);
duke@435 1777 } else {
duke@435 1778 assert(false, "ack");
duke@435 1779 }
duke@435 1780
duke@435 1781 }
duke@435 1782
duke@435 1783 void Assembler::call_literal(address dest, RelocationHolder const& rspec) {
duke@435 1784 InstructionMark im(this);
duke@435 1785 emit_byte(0xE8);
duke@435 1786 intptr_t disp = dest - (_code_pos + sizeof(int32_t));
duke@435 1787 assert(dest != NULL, "must have a target");
duke@435 1788 emit_data(disp, rspec, call32_operand);
duke@435 1789
duke@435 1790 }
duke@435 1791
duke@435 1792 void Assembler::jmp(Register entry) {
duke@435 1793 emit_byte(0xFF);
duke@435 1794 emit_byte(0xE0 | entry->encoding());
duke@435 1795 }
duke@435 1796
duke@435 1797
duke@435 1798 void Assembler::jmp(Address adr) {
duke@435 1799 InstructionMark im(this);
duke@435 1800 emit_byte(0xFF);
duke@435 1801 emit_operand(rsp, adr);
duke@435 1802 }
duke@435 1803
duke@435 1804 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
duke@435 1805 InstructionMark im(this);
duke@435 1806 emit_byte(0xE9);
duke@435 1807 assert(dest != NULL, "must have a target");
duke@435 1808 intptr_t disp = dest - (_code_pos + sizeof(int32_t));
duke@435 1809 emit_data(disp, rspec.reloc(), call32_operand);
duke@435 1810 }
duke@435 1811
duke@435 1812 void Assembler::jmp(Label& L, relocInfo::relocType rtype) {
duke@435 1813 if (L.is_bound()) {
duke@435 1814 address entry = target(L);
duke@435 1815 assert(entry != NULL, "jmp most probably wrong");
duke@435 1816 InstructionMark im(this);
duke@435 1817 const int short_size = 2;
duke@435 1818 const int long_size = 5;
duke@435 1819 intptr_t offs = entry - _code_pos;
duke@435 1820 if (rtype == relocInfo::none && is8bit(offs - short_size)) {
duke@435 1821 emit_byte(0xEB);
duke@435 1822 emit_byte((offs - short_size) & 0xFF);
duke@435 1823 } else {
duke@435 1824 emit_byte(0xE9);
duke@435 1825 emit_long(offs - long_size);
duke@435 1826 }
duke@435 1827 } else {
duke@435 1828 // By default, forward jumps are always 32-bit displacements, since
duke@435 1829 // we can't yet know where the label will be bound. If you're sure that
duke@435 1830 // the forward jump will not run beyond 256 bytes, use jmpb to
duke@435 1831 // force an 8-bit displacement.
duke@435 1832 InstructionMark im(this);
duke@435 1833 relocate(rtype);
duke@435 1834 L.add_patch_at(code(), locator());
duke@435 1835 emit_byte(0xE9);
duke@435 1836 emit_long(0);
duke@435 1837 }
duke@435 1838 }
duke@435 1839
duke@435 1840 void Assembler::jmpb(Label& L) {
duke@435 1841 if (L.is_bound()) {
duke@435 1842 const int short_size = 2;
duke@435 1843 address entry = target(L);
duke@435 1844 assert(is8bit((entry - _code_pos) + short_size),
duke@435 1845 "Dispacement too large for a short jmp");
duke@435 1846 assert(entry != NULL, "jmp most probably wrong");
duke@435 1847 intptr_t offs = entry - _code_pos;
duke@435 1848 emit_byte(0xEB);
duke@435 1849 emit_byte((offs - short_size) & 0xFF);
duke@435 1850 } else {
duke@435 1851 InstructionMark im(this);
duke@435 1852 L.add_patch_at(code(), locator());
duke@435 1853 emit_byte(0xEB);
duke@435 1854 emit_byte(0);
duke@435 1855 }
duke@435 1856 }
duke@435 1857
duke@435 1858 void Assembler::jcc(Condition cc, Label& L, relocInfo::relocType rtype) {
duke@435 1859 InstructionMark im(this);
duke@435 1860 relocate(rtype);
duke@435 1861 assert((0 <= cc) && (cc < 16), "illegal cc");
duke@435 1862 if (L.is_bound()) {
duke@435 1863 address dst = target(L);
duke@435 1864 assert(dst != NULL, "jcc most probably wrong");
duke@435 1865
duke@435 1866 const int short_size = 2;
duke@435 1867 const int long_size = 6;
duke@435 1868 int offs = (int)dst - ((int)_code_pos);
duke@435 1869 if (rtype == relocInfo::none && is8bit(offs - short_size)) {
duke@435 1870 // 0111 tttn #8-bit disp
duke@435 1871 emit_byte(0x70 | cc);
duke@435 1872 emit_byte((offs - short_size) & 0xFF);
duke@435 1873 } else {
duke@435 1874 // 0000 1111 1000 tttn #32-bit disp
duke@435 1875 emit_byte(0x0F);
duke@435 1876 emit_byte(0x80 | cc);
duke@435 1877 emit_long(offs - long_size);
duke@435 1878 }
duke@435 1879 } else {
duke@435 1880 // Note: could eliminate cond. jumps to this jump if condition
duke@435 1881 // is the same however, seems to be rather unlikely case.
duke@435 1882 // Note: use jccb() if label to be bound is very close to get
duke@435 1883 // an 8-bit displacement
duke@435 1884 L.add_patch_at(code(), locator());
duke@435 1885 emit_byte(0x0F);
duke@435 1886 emit_byte(0x80 | cc);
duke@435 1887 emit_long(0);
duke@435 1888 }
duke@435 1889 }
duke@435 1890
duke@435 1891 void Assembler::jccb(Condition cc, Label& L) {
duke@435 1892 if (L.is_bound()) {
duke@435 1893 const int short_size = 2;
duke@435 1894 address entry = target(L);
duke@435 1895 assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)),
duke@435 1896 "Dispacement too large for a short jmp");
duke@435 1897 intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
duke@435 1898 // 0111 tttn #8-bit disp
duke@435 1899 emit_byte(0x70 | cc);
duke@435 1900 emit_byte((offs - short_size) & 0xFF);
duke@435 1901 jcc(cc, L);
duke@435 1902 } else {
duke@435 1903 InstructionMark im(this);
duke@435 1904 L.add_patch_at(code(), locator());
duke@435 1905 emit_byte(0x70 | cc);
duke@435 1906 emit_byte(0);
duke@435 1907 }
duke@435 1908 }
duke@435 1909
duke@435 1910 // FPU instructions
duke@435 1911
duke@435 1912 void Assembler::fld1() {
duke@435 1913 emit_byte(0xD9);
duke@435 1914 emit_byte(0xE8);
duke@435 1915 }
duke@435 1916
duke@435 1917
duke@435 1918 void Assembler::fldz() {
duke@435 1919 emit_byte(0xD9);
duke@435 1920 emit_byte(0xEE);
duke@435 1921 }
duke@435 1922
duke@435 1923
duke@435 1924 void Assembler::fld_s(Address adr) {
duke@435 1925 InstructionMark im(this);
duke@435 1926 emit_byte(0xD9);
duke@435 1927 emit_operand(rax, adr);
duke@435 1928 }
duke@435 1929
duke@435 1930
duke@435 1931 void Assembler::fld_s (int index) {
duke@435 1932 emit_farith(0xD9, 0xC0, index);
duke@435 1933 }
duke@435 1934
duke@435 1935
duke@435 1936 void Assembler::fld_d(Address adr) {
duke@435 1937 InstructionMark im(this);
duke@435 1938 emit_byte(0xDD);
duke@435 1939 emit_operand(rax, adr);
duke@435 1940 }
duke@435 1941
duke@435 1942
duke@435 1943 void Assembler::fld_x(Address adr) {
duke@435 1944 InstructionMark im(this);
duke@435 1945 emit_byte(0xDB);
duke@435 1946 emit_operand(rbp, adr);
duke@435 1947 }
duke@435 1948
duke@435 1949
duke@435 1950 void Assembler::fst_s(Address adr) {
duke@435 1951 InstructionMark im(this);
duke@435 1952 emit_byte(0xD9);
duke@435 1953 emit_operand(rdx, adr);
duke@435 1954 }
duke@435 1955
duke@435 1956
duke@435 1957 void Assembler::fst_d(Address adr) {
duke@435 1958 InstructionMark im(this);
duke@435 1959 emit_byte(0xDD);
duke@435 1960 emit_operand(rdx, adr);
duke@435 1961 }
duke@435 1962
duke@435 1963
duke@435 1964 void Assembler::fstp_s(Address adr) {
duke@435 1965 InstructionMark im(this);
duke@435 1966 emit_byte(0xD9);
duke@435 1967 emit_operand(rbx, adr);
duke@435 1968 }
duke@435 1969
duke@435 1970
duke@435 1971 void Assembler::fstp_d(Address adr) {
duke@435 1972 InstructionMark im(this);
duke@435 1973 emit_byte(0xDD);
duke@435 1974 emit_operand(rbx, adr);
duke@435 1975 }
duke@435 1976
duke@435 1977
duke@435 1978 void Assembler::fstp_x(Address adr) {
duke@435 1979 InstructionMark im(this);
duke@435 1980 emit_byte(0xDB);
duke@435 1981 emit_operand(rdi, adr);
duke@435 1982 }
duke@435 1983
duke@435 1984
duke@435 1985 void Assembler::fstp_d(int index) {
duke@435 1986 emit_farith(0xDD, 0xD8, index);
duke@435 1987 }
duke@435 1988
duke@435 1989
duke@435 1990 void Assembler::fild_s(Address adr) {
duke@435 1991 InstructionMark im(this);
duke@435 1992 emit_byte(0xDB);
duke@435 1993 emit_operand(rax, adr);
duke@435 1994 }
duke@435 1995
duke@435 1996
duke@435 1997 void Assembler::fild_d(Address adr) {
duke@435 1998 InstructionMark im(this);
duke@435 1999 emit_byte(0xDF);
duke@435 2000 emit_operand(rbp, adr);
duke@435 2001 }
duke@435 2002
duke@435 2003
duke@435 2004 void Assembler::fistp_s(Address adr) {
duke@435 2005 InstructionMark im(this);
duke@435 2006 emit_byte(0xDB);
duke@435 2007 emit_operand(rbx, adr);
duke@435 2008 }
duke@435 2009
duke@435 2010
duke@435 2011 void Assembler::fistp_d(Address adr) {
duke@435 2012 InstructionMark im(this);
duke@435 2013 emit_byte(0xDF);
duke@435 2014 emit_operand(rdi, adr);
duke@435 2015 }
duke@435 2016
duke@435 2017
duke@435 2018 void Assembler::fist_s(Address adr) {
duke@435 2019 InstructionMark im(this);
duke@435 2020 emit_byte(0xDB);
duke@435 2021 emit_operand(rdx, adr);
duke@435 2022 }
duke@435 2023
duke@435 2024
duke@435 2025 void Assembler::fabs() {
duke@435 2026 emit_byte(0xD9);
duke@435 2027 emit_byte(0xE1);
duke@435 2028 }
duke@435 2029
duke@435 2030
duke@435 2031 void Assembler::fldln2() {
duke@435 2032 emit_byte(0xD9);
duke@435 2033 emit_byte(0xED);
duke@435 2034 }
duke@435 2035
duke@435 2036 void Assembler::fyl2x() {
duke@435 2037 emit_byte(0xD9);
duke@435 2038 emit_byte(0xF1);
duke@435 2039 }
duke@435 2040
duke@435 2041
duke@435 2042 void Assembler::fldlg2() {
duke@435 2043 emit_byte(0xD9);
duke@435 2044 emit_byte(0xEC);
duke@435 2045 }
duke@435 2046
duke@435 2047
duke@435 2048 void Assembler::flog() {
duke@435 2049 fldln2();
duke@435 2050 fxch();
duke@435 2051 fyl2x();
duke@435 2052 }
duke@435 2053
duke@435 2054
duke@435 2055 void Assembler::flog10() {
duke@435 2056 fldlg2();
duke@435 2057 fxch();
duke@435 2058 fyl2x();
duke@435 2059 }
duke@435 2060
duke@435 2061
duke@435 2062 void Assembler::fsin() {
duke@435 2063 emit_byte(0xD9);
duke@435 2064 emit_byte(0xFE);
duke@435 2065 }
duke@435 2066
duke@435 2067
duke@435 2068 void Assembler::fcos() {
duke@435 2069 emit_byte(0xD9);
duke@435 2070 emit_byte(0xFF);
duke@435 2071 }
duke@435 2072
duke@435 2073 void Assembler::ftan() {
duke@435 2074 emit_byte(0xD9);
duke@435 2075 emit_byte(0xF2);
duke@435 2076 emit_byte(0xDD);
duke@435 2077 emit_byte(0xD8);
duke@435 2078 }
duke@435 2079
duke@435 2080 void Assembler::fsqrt() {
duke@435 2081 emit_byte(0xD9);
duke@435 2082 emit_byte(0xFA);
duke@435 2083 }
duke@435 2084
duke@435 2085
duke@435 2086 void Assembler::fchs() {
duke@435 2087 emit_byte(0xD9);
duke@435 2088 emit_byte(0xE0);
duke@435 2089 }
duke@435 2090
duke@435 2091
duke@435 2092 void Assembler::fadd_s(Address src) {
duke@435 2093 InstructionMark im(this);
duke@435 2094 emit_byte(0xD8);
duke@435 2095 emit_operand(rax, src);
duke@435 2096 }
duke@435 2097
duke@435 2098
duke@435 2099 void Assembler::fadd_d(Address src) {
duke@435 2100 InstructionMark im(this);
duke@435 2101 emit_byte(0xDC);
duke@435 2102 emit_operand(rax, src);
duke@435 2103 }
duke@435 2104
duke@435 2105
duke@435 2106 void Assembler::fadd(int i) {
duke@435 2107 emit_farith(0xD8, 0xC0, i);
duke@435 2108 }
duke@435 2109
duke@435 2110
duke@435 2111 void Assembler::fadda(int i) {
duke@435 2112 emit_farith(0xDC, 0xC0, i);
duke@435 2113 }
duke@435 2114
duke@435 2115
duke@435 2116 void Assembler::fsub_d(Address src) {
duke@435 2117 InstructionMark im(this);
duke@435 2118 emit_byte(0xDC);
duke@435 2119 emit_operand(rsp, src);
duke@435 2120 }
duke@435 2121
duke@435 2122
duke@435 2123 void Assembler::fsub_s(Address src) {
duke@435 2124 InstructionMark im(this);
duke@435 2125 emit_byte(0xD8);
duke@435 2126 emit_operand(rsp, src);
duke@435 2127 }
duke@435 2128
duke@435 2129
duke@435 2130 void Assembler::fsubr_s(Address src) {
duke@435 2131 InstructionMark im(this);
duke@435 2132 emit_byte(0xD8);
duke@435 2133 emit_operand(rbp, src);
duke@435 2134 }
duke@435 2135
duke@435 2136
duke@435 2137 void Assembler::fsubr_d(Address src) {
duke@435 2138 InstructionMark im(this);
duke@435 2139 emit_byte(0xDC);
duke@435 2140 emit_operand(rbp, src);
duke@435 2141 }
duke@435 2142
duke@435 2143
duke@435 2144 void Assembler::fmul_s(Address src) {
duke@435 2145 InstructionMark im(this);
duke@435 2146 emit_byte(0xD8);
duke@435 2147 emit_operand(rcx, src);
duke@435 2148 }
duke@435 2149
duke@435 2150
duke@435 2151 void Assembler::fmul_d(Address src) {
duke@435 2152 InstructionMark im(this);
duke@435 2153 emit_byte(0xDC);
duke@435 2154 emit_operand(rcx, src);
duke@435 2155 }
duke@435 2156
duke@435 2157
duke@435 2158 void Assembler::fmul(int i) {
duke@435 2159 emit_farith(0xD8, 0xC8, i);
duke@435 2160 }
duke@435 2161
duke@435 2162
duke@435 2163 void Assembler::fmula(int i) {
duke@435 2164 emit_farith(0xDC, 0xC8, i);
duke@435 2165 }
duke@435 2166
duke@435 2167
duke@435 2168 void Assembler::fdiv_s(Address src) {
duke@435 2169 InstructionMark im(this);
duke@435 2170 emit_byte(0xD8);
duke@435 2171 emit_operand(rsi, src);
duke@435 2172 }
duke@435 2173
duke@435 2174
duke@435 2175 void Assembler::fdiv_d(Address src) {
duke@435 2176 InstructionMark im(this);
duke@435 2177 emit_byte(0xDC);
duke@435 2178 emit_operand(rsi, src);
duke@435 2179 }
duke@435 2180
duke@435 2181
duke@435 2182 void Assembler::fdivr_s(Address src) {
duke@435 2183 InstructionMark im(this);
duke@435 2184 emit_byte(0xD8);
duke@435 2185 emit_operand(rdi, src);
duke@435 2186 }
duke@435 2187
duke@435 2188
duke@435 2189 void Assembler::fdivr_d(Address src) {
duke@435 2190 InstructionMark im(this);
duke@435 2191 emit_byte(0xDC);
duke@435 2192 emit_operand(rdi, src);
duke@435 2193 }
duke@435 2194
duke@435 2195
duke@435 2196 void Assembler::fsub(int i) {
duke@435 2197 emit_farith(0xD8, 0xE0, i);
duke@435 2198 }
duke@435 2199
duke@435 2200
duke@435 2201 void Assembler::fsuba(int i) {
duke@435 2202 emit_farith(0xDC, 0xE8, i);
duke@435 2203 }
duke@435 2204
duke@435 2205
duke@435 2206 void Assembler::fsubr(int i) {
duke@435 2207 emit_farith(0xD8, 0xE8, i);
duke@435 2208 }
duke@435 2209
duke@435 2210
duke@435 2211 void Assembler::fsubra(int i) {
duke@435 2212 emit_farith(0xDC, 0xE0, i);
duke@435 2213 }
duke@435 2214
duke@435 2215
duke@435 2216 void Assembler::fdiv(int i) {
duke@435 2217 emit_farith(0xD8, 0xF0, i);
duke@435 2218 }
duke@435 2219
duke@435 2220
duke@435 2221 void Assembler::fdiva(int i) {
duke@435 2222 emit_farith(0xDC, 0xF8, i);
duke@435 2223 }
duke@435 2224
duke@435 2225
duke@435 2226 void Assembler::fdivr(int i) {
duke@435 2227 emit_farith(0xD8, 0xF8, i);
duke@435 2228 }
duke@435 2229
duke@435 2230
duke@435 2231 void Assembler::fdivra(int i) {
duke@435 2232 emit_farith(0xDC, 0xF0, i);
duke@435 2233 }
duke@435 2234
duke@435 2235
duke@435 2236 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
duke@435 2237 // is erroneous for some of the floating-point instructions below.
duke@435 2238
duke@435 2239 void Assembler::fdivp(int i) {
duke@435 2240 emit_farith(0xDE, 0xF8, i); // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
duke@435 2241 }
duke@435 2242
duke@435 2243
duke@435 2244 void Assembler::fdivrp(int i) {
duke@435 2245 emit_farith(0xDE, 0xF0, i); // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
duke@435 2246 }
duke@435 2247
duke@435 2248
duke@435 2249 void Assembler::fsubp(int i) {
duke@435 2250 emit_farith(0xDE, 0xE8, i); // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
duke@435 2251 }
duke@435 2252
duke@435 2253
duke@435 2254 void Assembler::fsubrp(int i) {
duke@435 2255 emit_farith(0xDE, 0xE0, i); // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
duke@435 2256 }
duke@435 2257
duke@435 2258
duke@435 2259 void Assembler::faddp(int i) {
duke@435 2260 emit_farith(0xDE, 0xC0, i);
duke@435 2261 }
duke@435 2262
duke@435 2263
duke@435 2264 void Assembler::fmulp(int i) {
duke@435 2265 emit_farith(0xDE, 0xC8, i);
duke@435 2266 }
duke@435 2267
duke@435 2268
duke@435 2269 void Assembler::fprem() {
duke@435 2270 emit_byte(0xD9);
duke@435 2271 emit_byte(0xF8);
duke@435 2272 }
duke@435 2273
duke@435 2274
duke@435 2275 void Assembler::fprem1() {
duke@435 2276 emit_byte(0xD9);
duke@435 2277 emit_byte(0xF5);
duke@435 2278 }
duke@435 2279
duke@435 2280
duke@435 2281 void Assembler::fxch(int i) {
duke@435 2282 emit_farith(0xD9, 0xC8, i);
duke@435 2283 }
duke@435 2284
duke@435 2285
duke@435 2286 void Assembler::fincstp() {
duke@435 2287 emit_byte(0xD9);
duke@435 2288 emit_byte(0xF7);
duke@435 2289 }
duke@435 2290
duke@435 2291
duke@435 2292 void Assembler::fdecstp() {
duke@435 2293 emit_byte(0xD9);
duke@435 2294 emit_byte(0xF6);
duke@435 2295 }
duke@435 2296
duke@435 2297
duke@435 2298 void Assembler::ffree(int i) {
duke@435 2299 emit_farith(0xDD, 0xC0, i);
duke@435 2300 }
duke@435 2301
duke@435 2302
duke@435 2303 void Assembler::fcomp_s(Address src) {
duke@435 2304 InstructionMark im(this);
duke@435 2305 emit_byte(0xD8);
duke@435 2306 emit_operand(rbx, src);
duke@435 2307 }
duke@435 2308
duke@435 2309
duke@435 2310 void Assembler::fcomp_d(Address src) {
duke@435 2311 InstructionMark im(this);
duke@435 2312 emit_byte(0xDC);
duke@435 2313 emit_operand(rbx, src);
duke@435 2314 }
duke@435 2315
duke@435 2316
duke@435 2317 void Assembler::fcom(int i) {
duke@435 2318 emit_farith(0xD8, 0xD0, i);
duke@435 2319 }
duke@435 2320
duke@435 2321
duke@435 2322 void Assembler::fcomp(int i) {
duke@435 2323 emit_farith(0xD8, 0xD8, i);
duke@435 2324 }
duke@435 2325
duke@435 2326
duke@435 2327 void Assembler::fcompp() {
duke@435 2328 emit_byte(0xDE);
duke@435 2329 emit_byte(0xD9);
duke@435 2330 }
duke@435 2331
duke@435 2332
duke@435 2333 void Assembler::fucomi(int i) {
duke@435 2334 // make sure the instruction is supported (introduced for P6, together with cmov)
duke@435 2335 guarantee(VM_Version::supports_cmov(), "illegal instruction");
duke@435 2336 emit_farith(0xDB, 0xE8, i);
duke@435 2337 }
duke@435 2338
duke@435 2339
duke@435 2340 void Assembler::fucomip(int i) {
duke@435 2341 // make sure the instruction is supported (introduced for P6, together with cmov)
duke@435 2342 guarantee(VM_Version::supports_cmov(), "illegal instruction");
duke@435 2343 emit_farith(0xDF, 0xE8, i);
duke@435 2344 }
duke@435 2345
duke@435 2346
duke@435 2347 void Assembler::ftst() {
duke@435 2348 emit_byte(0xD9);
duke@435 2349 emit_byte(0xE4);
duke@435 2350 }
duke@435 2351
duke@435 2352
duke@435 2353 void Assembler::fnstsw_ax() {
duke@435 2354 emit_byte(0xdF);
duke@435 2355 emit_byte(0xE0);
duke@435 2356 }
duke@435 2357
duke@435 2358
duke@435 2359 void Assembler::fwait() {
duke@435 2360 emit_byte(0x9B);
duke@435 2361 }
duke@435 2362
duke@435 2363
duke@435 2364 void Assembler::finit() {
duke@435 2365 emit_byte(0x9B);
duke@435 2366 emit_byte(0xDB);
duke@435 2367 emit_byte(0xE3);
duke@435 2368 }
duke@435 2369
duke@435 2370
duke@435 2371 void Assembler::fldcw(Address src) {
duke@435 2372 InstructionMark im(this);
duke@435 2373 emit_byte(0xd9);
duke@435 2374 emit_operand(rbp, src);
duke@435 2375 }
duke@435 2376
duke@435 2377
duke@435 2378 void Assembler::fnstcw(Address src) {
duke@435 2379 InstructionMark im(this);
duke@435 2380 emit_byte(0x9B);
duke@435 2381 emit_byte(0xD9);
duke@435 2382 emit_operand(rdi, src);
duke@435 2383 }
duke@435 2384
duke@435 2385 void Assembler::fnsave(Address dst) {
duke@435 2386 InstructionMark im(this);
duke@435 2387 emit_byte(0xDD);
duke@435 2388 emit_operand(rsi, dst);
duke@435 2389 }
duke@435 2390
duke@435 2391
duke@435 2392 void Assembler::frstor(Address src) {
duke@435 2393 InstructionMark im(this);
duke@435 2394 emit_byte(0xDD);
duke@435 2395 emit_operand(rsp, src);
duke@435 2396 }
duke@435 2397
duke@435 2398
duke@435 2399 void Assembler::fldenv(Address src) {
duke@435 2400 InstructionMark im(this);
duke@435 2401 emit_byte(0xD9);
duke@435 2402 emit_operand(rsp, src);
duke@435 2403 }
duke@435 2404
duke@435 2405
duke@435 2406 void Assembler::sahf() {
duke@435 2407 emit_byte(0x9E);
duke@435 2408 }
duke@435 2409
duke@435 2410 // MMX operations
duke@435 2411 void Assembler::emit_operand(MMXRegister reg, Address adr) {
duke@435 2412 emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
duke@435 2413 }
duke@435 2414
duke@435 2415 void Assembler::movq( MMXRegister dst, Address src ) {
duke@435 2416 assert( VM_Version::supports_mmx(), "" );
duke@435 2417 emit_byte(0x0F);
duke@435 2418 emit_byte(0x6F);
duke@435 2419 emit_operand(dst,src);
duke@435 2420 }
duke@435 2421
duke@435 2422 void Assembler::movq( Address dst, MMXRegister src ) {
duke@435 2423 assert( VM_Version::supports_mmx(), "" );
duke@435 2424 emit_byte(0x0F);
duke@435 2425 emit_byte(0x7F);
duke@435 2426 emit_operand(src,dst);
duke@435 2427 }
duke@435 2428
duke@435 2429 void Assembler::emms() {
duke@435 2430 emit_byte(0x0F);
duke@435 2431 emit_byte(0x77);
duke@435 2432 }
duke@435 2433
duke@435 2434
duke@435 2435
duke@435 2436
duke@435 2437 // SSE and SSE2 instructions
duke@435 2438 inline void Assembler::emit_sse_operand(XMMRegister reg, Address adr) {
duke@435 2439 assert(((Register)reg)->encoding() == reg->encoding(), "otherwise typecast is invalid");
duke@435 2440 emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
duke@435 2441 }
duke@435 2442 inline void Assembler::emit_sse_operand(Register reg, Address adr) {
duke@435 2443 emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
duke@435 2444 }
duke@435 2445
duke@435 2446 inline void Assembler::emit_sse_operand(XMMRegister dst, XMMRegister src) {
duke@435 2447 emit_byte(0xC0 | dst->encoding() << 3 | src->encoding());
duke@435 2448 }
duke@435 2449 inline void Assembler::emit_sse_operand(XMMRegister dst, Register src) {
duke@435 2450 emit_byte(0xC0 | dst->encoding() << 3 | src->encoding());
duke@435 2451 }
duke@435 2452 inline void Assembler::emit_sse_operand(Register dst, XMMRegister src) {
duke@435 2453 emit_byte(0xC0 | dst->encoding() << 3 | src->encoding());
duke@435 2454 }
duke@435 2455
duke@435 2456
duke@435 2457 // Macro for creation of SSE2 instructions
duke@435 2458 // The SSE2 instricution set is highly regular, so this macro saves
duke@435 2459 // a lot of cut&paste
duke@435 2460 // Each macro expansion creates two methods (same name with different
duke@435 2461 // parameter list)
duke@435 2462 //
duke@435 2463 // Macro parameters:
duke@435 2464 // * name: name of the created methods
duke@435 2465 // * sse_version: either sse or sse2 for the assertion if instruction supported by processor
duke@435 2466 // * prefix: first opcode byte of the instruction (or 0 if no prefix byte)
duke@435 2467 // * opcode: last opcode byte of the instruction
duke@435 2468 // * conversion instruction have parameters of type Register instead of XMMRegister,
duke@435 2469 // so this can also configured with macro parameters
duke@435 2470 #define emit_sse_instruction(name, sse_version, prefix, opcode, dst_register_type, src_register_type) \
duke@435 2471 \
duke@435 2472 void Assembler:: name (dst_register_type dst, Address src) { \
duke@435 2473 assert(VM_Version::supports_##sse_version(), ""); \
duke@435 2474 \
duke@435 2475 InstructionMark im(this); \
duke@435 2476 if (prefix != 0) emit_byte(prefix); \
duke@435 2477 emit_byte(0x0F); \
duke@435 2478 emit_byte(opcode); \
duke@435 2479 emit_sse_operand(dst, src); \
duke@435 2480 } \
duke@435 2481 \
duke@435 2482 void Assembler:: name (dst_register_type dst, src_register_type src) { \
duke@435 2483 assert(VM_Version::supports_##sse_version(), ""); \
duke@435 2484 \
duke@435 2485 if (prefix != 0) emit_byte(prefix); \
duke@435 2486 emit_byte(0x0F); \
duke@435 2487 emit_byte(opcode); \
duke@435 2488 emit_sse_operand(dst, src); \
duke@435 2489 } \
duke@435 2490
duke@435 2491 emit_sse_instruction(addss, sse, 0xF3, 0x58, XMMRegister, XMMRegister);
duke@435 2492 emit_sse_instruction(addsd, sse2, 0xF2, 0x58, XMMRegister, XMMRegister)
duke@435 2493 emit_sse_instruction(subss, sse, 0xF3, 0x5C, XMMRegister, XMMRegister)
duke@435 2494 emit_sse_instruction(subsd, sse2, 0xF2, 0x5C, XMMRegister, XMMRegister)
duke@435 2495 emit_sse_instruction(mulss, sse, 0xF3, 0x59, XMMRegister, XMMRegister)
duke@435 2496 emit_sse_instruction(mulsd, sse2, 0xF2, 0x59, XMMRegister, XMMRegister)
duke@435 2497 emit_sse_instruction(divss, sse, 0xF3, 0x5E, XMMRegister, XMMRegister)
duke@435 2498 emit_sse_instruction(divsd, sse2, 0xF2, 0x5E, XMMRegister, XMMRegister)
duke@435 2499 emit_sse_instruction(sqrtss, sse, 0xF3, 0x51, XMMRegister, XMMRegister)
duke@435 2500 emit_sse_instruction(sqrtsd, sse2, 0xF2, 0x51, XMMRegister, XMMRegister)
duke@435 2501
duke@435 2502 emit_sse_instruction(pxor, sse2, 0x66, 0xEF, XMMRegister, XMMRegister)
duke@435 2503
duke@435 2504 emit_sse_instruction(comiss, sse, 0, 0x2F, XMMRegister, XMMRegister)
duke@435 2505 emit_sse_instruction(comisd, sse2, 0x66, 0x2F, XMMRegister, XMMRegister)
duke@435 2506 emit_sse_instruction(ucomiss, sse, 0, 0x2E, XMMRegister, XMMRegister)
duke@435 2507 emit_sse_instruction(ucomisd, sse2, 0x66, 0x2E, XMMRegister, XMMRegister)
duke@435 2508
duke@435 2509 emit_sse_instruction(cvtss2sd, sse2, 0xF3, 0x5A, XMMRegister, XMMRegister);
duke@435 2510 emit_sse_instruction(cvtsd2ss, sse2, 0xF2, 0x5A, XMMRegister, XMMRegister)
duke@435 2511 emit_sse_instruction(cvtsi2ss, sse, 0xF3, 0x2A, XMMRegister, Register);
duke@435 2512 emit_sse_instruction(cvtsi2sd, sse2, 0xF2, 0x2A, XMMRegister, Register)
duke@435 2513 emit_sse_instruction(cvtss2si, sse, 0xF3, 0x2D, Register, XMMRegister);
duke@435 2514 emit_sse_instruction(cvtsd2si, sse2, 0xF2, 0x2D, Register, XMMRegister)
duke@435 2515 emit_sse_instruction(cvttss2si, sse, 0xF3, 0x2C, Register, XMMRegister);
duke@435 2516 emit_sse_instruction(cvttsd2si, sse2, 0xF2, 0x2C, Register, XMMRegister)
duke@435 2517
duke@435 2518 emit_sse_instruction(movss, sse, 0xF3, 0x10, XMMRegister, XMMRegister)
duke@435 2519 emit_sse_instruction(movsd, sse2, 0xF2, 0x10, XMMRegister, XMMRegister)
duke@435 2520
duke@435 2521 emit_sse_instruction(movq, sse2, 0xF3, 0x7E, XMMRegister, XMMRegister);
duke@435 2522 emit_sse_instruction(movd, sse2, 0x66, 0x6E, XMMRegister, Register);
duke@435 2523 emit_sse_instruction(movdqa, sse2, 0x66, 0x6F, XMMRegister, XMMRegister);
duke@435 2524
duke@435 2525 emit_sse_instruction(punpcklbw, sse2, 0x66, 0x60, XMMRegister, XMMRegister);
duke@435 2526
duke@435 2527
duke@435 2528 // Instruction not covered by macro
duke@435 2529 void Assembler::movq(Address dst, XMMRegister src) {
duke@435 2530 assert(VM_Version::supports_sse2(), "");
duke@435 2531
duke@435 2532 InstructionMark im(this);
duke@435 2533 emit_byte(0x66);
duke@435 2534 emit_byte(0x0F);
duke@435 2535 emit_byte(0xD6);
duke@435 2536 emit_sse_operand(src, dst);
duke@435 2537 }
duke@435 2538
duke@435 2539 void Assembler::movd(Address dst, XMMRegister src) {
duke@435 2540 assert(VM_Version::supports_sse2(), "");
duke@435 2541
duke@435 2542 InstructionMark im(this);
duke@435 2543 emit_byte(0x66);
duke@435 2544 emit_byte(0x0F);
duke@435 2545 emit_byte(0x7E);
duke@435 2546 emit_sse_operand(src, dst);
duke@435 2547 }
duke@435 2548
duke@435 2549 void Assembler::movd(Register dst, XMMRegister src) {
duke@435 2550 assert(VM_Version::supports_sse2(), "");
duke@435 2551
duke@435 2552 emit_byte(0x66);
duke@435 2553 emit_byte(0x0F);
duke@435 2554 emit_byte(0x7E);
duke@435 2555 emit_sse_operand(src, dst);
duke@435 2556 }
duke@435 2557
duke@435 2558 void Assembler::movdqa(Address dst, XMMRegister src) {
duke@435 2559 assert(VM_Version::supports_sse2(), "");
duke@435 2560
duke@435 2561 InstructionMark im(this);
duke@435 2562 emit_byte(0x66);
duke@435 2563 emit_byte(0x0F);
duke@435 2564 emit_byte(0x7F);
duke@435 2565 emit_sse_operand(src, dst);
duke@435 2566 }
duke@435 2567
duke@435 2568 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
duke@435 2569 assert(isByte(mode), "invalid value");
duke@435 2570 assert(VM_Version::supports_sse2(), "");
duke@435 2571
duke@435 2572 emit_byte(0x66);
duke@435 2573 emit_byte(0x0F);
duke@435 2574 emit_byte(0x70);
duke@435 2575 emit_sse_operand(dst, src);
duke@435 2576 emit_byte(mode & 0xFF);
duke@435 2577 }
duke@435 2578
duke@435 2579 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
duke@435 2580 assert(isByte(mode), "invalid value");
duke@435 2581 assert(VM_Version::supports_sse2(), "");
duke@435 2582
duke@435 2583 InstructionMark im(this);
duke@435 2584 emit_byte(0x66);
duke@435 2585 emit_byte(0x0F);
duke@435 2586 emit_byte(0x70);
duke@435 2587 emit_sse_operand(dst, src);
duke@435 2588 emit_byte(mode & 0xFF);
duke@435 2589 }
duke@435 2590
duke@435 2591 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
duke@435 2592 assert(isByte(mode), "invalid value");
duke@435 2593 assert(VM_Version::supports_sse2(), "");
duke@435 2594
duke@435 2595 emit_byte(0xF2);
duke@435 2596 emit_byte(0x0F);
duke@435 2597 emit_byte(0x70);
duke@435 2598 emit_sse_operand(dst, src);
duke@435 2599 emit_byte(mode & 0xFF);
duke@435 2600 }
duke@435 2601
duke@435 2602 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
duke@435 2603 assert(isByte(mode), "invalid value");
duke@435 2604 assert(VM_Version::supports_sse2(), "");
duke@435 2605
duke@435 2606 InstructionMark im(this);
duke@435 2607 emit_byte(0xF2);
duke@435 2608 emit_byte(0x0F);
duke@435 2609 emit_byte(0x70);
duke@435 2610 emit_sse_operand(dst, src);
duke@435 2611 emit_byte(mode & 0xFF);
duke@435 2612 }
duke@435 2613
duke@435 2614 void Assembler::psrlq(XMMRegister dst, int shift) {
duke@435 2615 assert(VM_Version::supports_sse2(), "");
duke@435 2616
duke@435 2617 emit_byte(0x66);
duke@435 2618 emit_byte(0x0F);
duke@435 2619 emit_byte(0x73);
duke@435 2620 emit_sse_operand(xmm2, dst);
duke@435 2621 emit_byte(shift);
duke@435 2622 }
duke@435 2623
duke@435 2624 void Assembler::movss( Address dst, XMMRegister src ) {
duke@435 2625 assert(VM_Version::supports_sse(), "");
duke@435 2626
duke@435 2627 InstructionMark im(this);
duke@435 2628 emit_byte(0xF3); // single
duke@435 2629 emit_byte(0x0F);
duke@435 2630 emit_byte(0x11); // store
duke@435 2631 emit_sse_operand(src, dst);
duke@435 2632 }
duke@435 2633
duke@435 2634 void Assembler::movsd( Address dst, XMMRegister src ) {
duke@435 2635 assert(VM_Version::supports_sse2(), "");
duke@435 2636
duke@435 2637 InstructionMark im(this);
duke@435 2638 emit_byte(0xF2); // double
duke@435 2639 emit_byte(0x0F);
duke@435 2640 emit_byte(0x11); // store
duke@435 2641 emit_sse_operand(src,dst);
duke@435 2642 }
duke@435 2643
duke@435 2644 // New cpus require to use movaps and movapd to avoid partial register stall
duke@435 2645 // when moving between registers.
duke@435 2646 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
duke@435 2647 assert(VM_Version::supports_sse(), "");
duke@435 2648
duke@435 2649 emit_byte(0x0F);
duke@435 2650 emit_byte(0x28);
duke@435 2651 emit_sse_operand(dst, src);
duke@435 2652 }
duke@435 2653 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
duke@435 2654 assert(VM_Version::supports_sse2(), "");
duke@435 2655
duke@435 2656 emit_byte(0x66);
duke@435 2657 emit_byte(0x0F);
duke@435 2658 emit_byte(0x28);
duke@435 2659 emit_sse_operand(dst, src);
duke@435 2660 }
duke@435 2661
duke@435 2662 // New cpus require to use movsd and movss to avoid partial register stall
duke@435 2663 // when loading from memory. But for old Opteron use movlpd instead of movsd.
duke@435 2664 // The selection is done in MacroAssembler::movdbl() and movflt().
duke@435 2665 void Assembler::movlpd(XMMRegister dst, Address src) {
duke@435 2666 assert(VM_Version::supports_sse(), "");
duke@435 2667
duke@435 2668 InstructionMark im(this);
duke@435 2669 emit_byte(0x66);
duke@435 2670 emit_byte(0x0F);
duke@435 2671 emit_byte(0x12);
duke@435 2672 emit_sse_operand(dst, src);
duke@435 2673 }
duke@435 2674
kvn@506 2675 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
kvn@506 2676 assert(VM_Version::supports_sse2(), "");
kvn@506 2677
kvn@506 2678 emit_byte(0xF3);
kvn@506 2679 emit_byte(0x0F);
kvn@506 2680 emit_byte(0xE6);
kvn@506 2681 emit_sse_operand(dst, src);
kvn@506 2682 }
kvn@506 2683
kvn@506 2684 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
kvn@506 2685 assert(VM_Version::supports_sse2(), "");
kvn@506 2686
kvn@506 2687 emit_byte(0x0F);
kvn@506 2688 emit_byte(0x5B);
kvn@506 2689 emit_sse_operand(dst, src);
kvn@506 2690 }
duke@435 2691
duke@435 2692 emit_sse_instruction(andps, sse, 0, 0x54, XMMRegister, XMMRegister);
duke@435 2693 emit_sse_instruction(andpd, sse2, 0x66, 0x54, XMMRegister, XMMRegister);
duke@435 2694 emit_sse_instruction(andnps, sse, 0, 0x55, XMMRegister, XMMRegister);
duke@435 2695 emit_sse_instruction(andnpd, sse2, 0x66, 0x55, XMMRegister, XMMRegister);
duke@435 2696 emit_sse_instruction(orps, sse, 0, 0x56, XMMRegister, XMMRegister);
duke@435 2697 emit_sse_instruction(orpd, sse2, 0x66, 0x56, XMMRegister, XMMRegister);
duke@435 2698 emit_sse_instruction(xorps, sse, 0, 0x57, XMMRegister, XMMRegister);
duke@435 2699 emit_sse_instruction(xorpd, sse2, 0x66, 0x57, XMMRegister, XMMRegister);
duke@435 2700
duke@435 2701
duke@435 2702 void Assembler::ldmxcsr( Address src) {
duke@435 2703 InstructionMark im(this);
duke@435 2704 emit_byte(0x0F);
duke@435 2705 emit_byte(0xAE);
duke@435 2706 emit_operand(rdx /* 2 */, src);
duke@435 2707 }
duke@435 2708
duke@435 2709 void Assembler::stmxcsr( Address dst) {
duke@435 2710 InstructionMark im(this);
duke@435 2711 emit_byte(0x0F);
duke@435 2712 emit_byte(0xAE);
duke@435 2713 emit_operand(rbx /* 3 */, dst);
duke@435 2714 }
duke@435 2715
duke@435 2716 // Implementation of MacroAssembler
duke@435 2717
duke@435 2718 Address MacroAssembler::as_Address(AddressLiteral adr) {
duke@435 2719 // amd64 always does this as a pc-rel
duke@435 2720 // we can be absolute or disp based on the instruction type
duke@435 2721 // jmp/call are displacements others are absolute
duke@435 2722 assert(!adr.is_lval(), "must be rval");
duke@435 2723
duke@435 2724 return Address(adr.target(), adr.rspec());
duke@435 2725 }
duke@435 2726
duke@435 2727 Address MacroAssembler::as_Address(ArrayAddress adr) {
duke@435 2728 return Address::make_array(adr);
duke@435 2729 }
duke@435 2730
duke@435 2731 void MacroAssembler::fat_nop() {
duke@435 2732 // A 5 byte nop that is safe for patching (see patch_verified_entry)
duke@435 2733 emit_byte(0x26); // es:
duke@435 2734 emit_byte(0x2e); // cs:
duke@435 2735 emit_byte(0x64); // fs:
duke@435 2736 emit_byte(0x65); // gs:
duke@435 2737 emit_byte(0x90);
duke@435 2738 }
duke@435 2739
duke@435 2740 // 32bit can do a case table jump in one instruction but we no longer allow the base
duke@435 2741 // to be installed in the Address class
duke@435 2742 void MacroAssembler::jump(ArrayAddress entry) {
duke@435 2743 jmp(as_Address(entry));
duke@435 2744 }
duke@435 2745
duke@435 2746 void MacroAssembler::jump(AddressLiteral dst) {
duke@435 2747 jmp_literal(dst.target(), dst.rspec());
duke@435 2748 }
duke@435 2749
duke@435 2750 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
duke@435 2751 assert((0 <= cc) && (cc < 16), "illegal cc");
duke@435 2752
duke@435 2753 InstructionMark im(this);
duke@435 2754
duke@435 2755 relocInfo::relocType rtype = dst.reloc();
duke@435 2756 relocate(rtype);
duke@435 2757 const int short_size = 2;
duke@435 2758 const int long_size = 6;
duke@435 2759 int offs = (int)dst.target() - ((int)_code_pos);
duke@435 2760 if (rtype == relocInfo::none && is8bit(offs - short_size)) {
duke@435 2761 // 0111 tttn #8-bit disp
duke@435 2762 emit_byte(0x70 | cc);
duke@435 2763 emit_byte((offs - short_size) & 0xFF);
duke@435 2764 } else {
duke@435 2765 // 0000 1111 1000 tttn #32-bit disp
duke@435 2766 emit_byte(0x0F);
duke@435 2767 emit_byte(0x80 | cc);
duke@435 2768 emit_long(offs - long_size);
duke@435 2769 }
duke@435 2770 }
duke@435 2771
duke@435 2772 // Calls
duke@435 2773 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
duke@435 2774 Assembler::call(L, rtype);
duke@435 2775 }
duke@435 2776
duke@435 2777 void MacroAssembler::call(Register entry) {
duke@435 2778 Assembler::call(entry);
duke@435 2779 }
duke@435 2780
duke@435 2781 void MacroAssembler::call(AddressLiteral entry) {
duke@435 2782 Assembler::call_literal(entry.target(), entry.rspec());
duke@435 2783 }
duke@435 2784
duke@435 2785
duke@435 2786 void MacroAssembler::cmp8(AddressLiteral src1, int8_t imm) {
duke@435 2787 Assembler::cmpb(as_Address(src1), imm);
duke@435 2788 }
duke@435 2789
duke@435 2790 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
duke@435 2791 Assembler::cmpl(as_Address(src1), imm);
duke@435 2792 }
duke@435 2793
duke@435 2794 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
duke@435 2795 if (src2.is_lval()) {
duke@435 2796 cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
duke@435 2797 } else {
duke@435 2798 Assembler::cmpl(src1, as_Address(src2));
duke@435 2799 }
duke@435 2800 }
duke@435 2801
duke@435 2802 void MacroAssembler::cmp32(Register src1, int32_t imm) {
duke@435 2803 Assembler::cmpl(src1, imm);
duke@435 2804 }
duke@435 2805
duke@435 2806 void MacroAssembler::cmp32(Register src1, Address src2) {
duke@435 2807 Assembler::cmpl(src1, src2);
duke@435 2808 }
duke@435 2809
duke@435 2810 void MacroAssembler::cmpoop(Address src1, jobject obj) {
duke@435 2811 cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
duke@435 2812 }
duke@435 2813
duke@435 2814 void MacroAssembler::cmpoop(Register src1, jobject obj) {
duke@435 2815 cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
duke@435 2816 }
duke@435 2817
duke@435 2818 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
duke@435 2819 if (src2.is_lval()) {
duke@435 2820 // compare the effect address of src2 to src1
duke@435 2821 cmp_literal32(src1, (int32_t)src2.target(), src2.rspec());
duke@435 2822 } else {
duke@435 2823 Assembler::cmpl(src1, as_Address(src2));
duke@435 2824 }
duke@435 2825 }
duke@435 2826
duke@435 2827 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
duke@435 2828 assert(src2.is_lval(), "not a mem-mem compare");
duke@435 2829 cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
duke@435 2830 }
duke@435 2831
duke@435 2832
duke@435 2833 void MacroAssembler::cmpxchgptr(Register reg, AddressLiteral adr) {
duke@435 2834 cmpxchg(reg, as_Address(adr));
duke@435 2835 }
duke@435 2836
duke@435 2837 void MacroAssembler::increment(AddressLiteral dst) {
duke@435 2838 increment(as_Address(dst));
duke@435 2839 }
duke@435 2840
duke@435 2841 void MacroAssembler::increment(ArrayAddress dst) {
duke@435 2842 increment(as_Address(dst));
duke@435 2843 }
duke@435 2844
duke@435 2845 void MacroAssembler::lea(Register dst, AddressLiteral adr) {
duke@435 2846 // leal(dst, as_Address(adr));
duke@435 2847 // see note in movl as to why we musr use a move
duke@435 2848 mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
duke@435 2849 }
duke@435 2850
duke@435 2851 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
duke@435 2852 // leal(dst, as_Address(adr));
duke@435 2853 // see note in movl as to why we musr use a move
duke@435 2854 mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
duke@435 2855 }
duke@435 2856
duke@435 2857 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
duke@435 2858 Assembler::movl(as_Address(dst), src);
duke@435 2859 }
duke@435 2860
duke@435 2861 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
duke@435 2862 Assembler::movl(dst, as_Address(src));
duke@435 2863 }
duke@435 2864
duke@435 2865 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
duke@435 2866 movb(as_Address(dst), src);
duke@435 2867 }
duke@435 2868
duke@435 2869 void MacroAssembler::movoop(Address dst, jobject obj) {
duke@435 2870 mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
duke@435 2871 }
duke@435 2872
duke@435 2873 void MacroAssembler::movoop(Register dst, jobject obj) {
duke@435 2874 mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
duke@435 2875 }
duke@435 2876
duke@435 2877 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
duke@435 2878 if (src.is_lval()) {
duke@435 2879 // essentially an lea
duke@435 2880 mov_literal32(dst, (int32_t) src.target(), src.rspec());
duke@435 2881 } else {
duke@435 2882 // mov 32bits from an absolute address
duke@435 2883 movl(dst, as_Address(src));
duke@435 2884 }
duke@435 2885 }
duke@435 2886
duke@435 2887 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
duke@435 2888 movl(as_Address(dst), src);
duke@435 2889 }
duke@435 2890
duke@435 2891 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
duke@435 2892 movl(dst, as_Address(src));
duke@435 2893 }
duke@435 2894
duke@435 2895 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
duke@435 2896 movss(dst, as_Address(src));
duke@435 2897 }
duke@435 2898
duke@435 2899 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
duke@435 2900 if (UseXmmLoadAndClearUpper) { movsd (dst, as_Address(src)); return; }
duke@435 2901 else { movlpd(dst, as_Address(src)); return; }
duke@435 2902 }
duke@435 2903
duke@435 2904 void Assembler::pushoop(jobject obj) {
duke@435 2905 push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
duke@435 2906 }
duke@435 2907
duke@435 2908
duke@435 2909 void MacroAssembler::pushptr(AddressLiteral src) {
duke@435 2910 if (src.is_lval()) {
duke@435 2911 push_literal32((int32_t)src.target(), src.rspec());
duke@435 2912 } else {
duke@435 2913 pushl(as_Address(src));
duke@435 2914 }
duke@435 2915 }
duke@435 2916
duke@435 2917 void MacroAssembler::test32(Register src1, AddressLiteral src2) {
duke@435 2918 // src2 must be rval
duke@435 2919 testl(src1, as_Address(src2));
duke@435 2920 }
duke@435 2921
duke@435 2922 // FPU
duke@435 2923
duke@435 2924 void MacroAssembler::fld_x(AddressLiteral src) {
duke@435 2925 Assembler::fld_x(as_Address(src));
duke@435 2926 }
duke@435 2927
duke@435 2928 void MacroAssembler::fld_d(AddressLiteral src) {
duke@435 2929 fld_d(as_Address(src));
duke@435 2930 }
duke@435 2931
duke@435 2932 void MacroAssembler::fld_s(AddressLiteral src) {
duke@435 2933 fld_s(as_Address(src));
duke@435 2934 }
duke@435 2935
duke@435 2936 void MacroAssembler::fldcw(AddressLiteral src) {
duke@435 2937 Assembler::fldcw(as_Address(src));
duke@435 2938 }
duke@435 2939
duke@435 2940 void MacroAssembler::ldmxcsr(AddressLiteral src) {
duke@435 2941 Assembler::ldmxcsr(as_Address(src));
duke@435 2942 }
duke@435 2943
duke@435 2944 // SSE
duke@435 2945
duke@435 2946 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
duke@435 2947 andpd(dst, as_Address(src));
duke@435 2948 }
duke@435 2949
duke@435 2950 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
duke@435 2951 comisd(dst, as_Address(src));
duke@435 2952 }
duke@435 2953
duke@435 2954 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
duke@435 2955 comiss(dst, as_Address(src));
duke@435 2956 }
duke@435 2957
duke@435 2958 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
duke@435 2959 movsd(dst, as_Address(src));
duke@435 2960 }
duke@435 2961
duke@435 2962 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
duke@435 2963 movss(dst, as_Address(src));
duke@435 2964 }
duke@435 2965
duke@435 2966 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
duke@435 2967 xorpd(dst, as_Address(src));
duke@435 2968 }
duke@435 2969
duke@435 2970 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
duke@435 2971 xorps(dst, as_Address(src));
duke@435 2972 }
duke@435 2973
duke@435 2974 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
duke@435 2975 ucomisd(dst, as_Address(src));
duke@435 2976 }
duke@435 2977
duke@435 2978 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
duke@435 2979 ucomiss(dst, as_Address(src));
duke@435 2980 }
duke@435 2981
duke@435 2982 void MacroAssembler::null_check(Register reg, int offset) {
duke@435 2983 if (needs_explicit_null_check(offset)) {
duke@435 2984 // provoke OS NULL exception if reg = NULL by
duke@435 2985 // accessing M[reg] w/o changing any (non-CC) registers
duke@435 2986 cmpl(rax, Address(reg, 0));
duke@435 2987 // Note: should probably use testl(rax, Address(reg, 0));
duke@435 2988 // may be shorter code (however, this version of
duke@435 2989 // testl needs to be implemented first)
duke@435 2990 } else {
duke@435 2991 // nothing to do, (later) access of M[reg + offset]
duke@435 2992 // will provoke OS NULL exception if reg = NULL
duke@435 2993 }
duke@435 2994 }
duke@435 2995
duke@435 2996
duke@435 2997 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
duke@435 2998 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
duke@435 2999 // and "3.9 Partial Register Penalties", p. 22).
duke@435 3000 int off;
duke@435 3001 if (VM_Version::is_P6() || src.uses(dst)) {
duke@435 3002 off = offset();
duke@435 3003 movzxb(dst, src);
duke@435 3004 } else {
duke@435 3005 xorl(dst, dst);
duke@435 3006 off = offset();
duke@435 3007 movb(dst, src);
duke@435 3008 }
duke@435 3009 return off;
duke@435 3010 }
duke@435 3011
duke@435 3012
duke@435 3013 int MacroAssembler::load_unsigned_word(Register dst, Address src) {
duke@435 3014 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
duke@435 3015 // and "3.9 Partial Register Penalties", p. 22).
duke@435 3016 int off;
duke@435 3017 if (VM_Version::is_P6() || src.uses(dst)) {
duke@435 3018 off = offset();
duke@435 3019 movzxw(dst, src);
duke@435 3020 } else {
duke@435 3021 xorl(dst, dst);
duke@435 3022 off = offset();
duke@435 3023 movw(dst, src);
duke@435 3024 }
duke@435 3025 return off;
duke@435 3026 }
duke@435 3027
duke@435 3028
duke@435 3029 int MacroAssembler::load_signed_byte(Register dst, Address src) {
duke@435 3030 int off;
duke@435 3031 if (VM_Version::is_P6()) {
duke@435 3032 off = offset();
duke@435 3033 movsxb(dst, src);
duke@435 3034 } else {
duke@435 3035 off = load_unsigned_byte(dst, src);
duke@435 3036 shll(dst, 24);
duke@435 3037 sarl(dst, 24);
duke@435 3038 }
duke@435 3039 return off;
duke@435 3040 }
duke@435 3041
duke@435 3042
duke@435 3043 int MacroAssembler::load_signed_word(Register dst, Address src) {
duke@435 3044 int off;
duke@435 3045 if (VM_Version::is_P6()) {
duke@435 3046 off = offset();
duke@435 3047 movsxw(dst, src);
duke@435 3048 } else {
duke@435 3049 off = load_unsigned_word(dst, src);
duke@435 3050 shll(dst, 16);
duke@435 3051 sarl(dst, 16);
duke@435 3052 }
duke@435 3053 return off;
duke@435 3054 }
duke@435 3055
duke@435 3056
duke@435 3057 void MacroAssembler::extend_sign(Register hi, Register lo) {
duke@435 3058 // According to Intel Doc. AP-526, "Integer Divide", p.18.
duke@435 3059 if (VM_Version::is_P6() && hi == rdx && lo == rax) {
duke@435 3060 cdql();
duke@435 3061 } else {
duke@435 3062 movl(hi, lo);
duke@435 3063 sarl(hi, 31);
duke@435 3064 }
duke@435 3065 }
duke@435 3066
duke@435 3067
duke@435 3068 void MacroAssembler::increment(Register reg, int value) {
duke@435 3069 if (value == min_jint) {addl(reg, value); return; }
duke@435 3070 if (value < 0) { decrement(reg, -value); return; }
duke@435 3071 if (value == 0) { ; return; }
duke@435 3072 if (value == 1 && UseIncDec) { incl(reg); return; }
duke@435 3073 /* else */ { addl(reg, value) ; return; }
duke@435 3074 }
duke@435 3075
duke@435 3076 void MacroAssembler::increment(Address dst, int value) {
duke@435 3077 if (value == min_jint) {addl(dst, value); return; }
duke@435 3078 if (value < 0) { decrement(dst, -value); return; }
duke@435 3079 if (value == 0) { ; return; }
duke@435 3080 if (value == 1 && UseIncDec) { incl(dst); return; }
duke@435 3081 /* else */ { addl(dst, value) ; return; }
duke@435 3082 }
duke@435 3083
duke@435 3084 void MacroAssembler::decrement(Register reg, int value) {
duke@435 3085 if (value == min_jint) {subl(reg, value); return; }
duke@435 3086 if (value < 0) { increment(reg, -value); return; }
duke@435 3087 if (value == 0) { ; return; }
duke@435 3088 if (value == 1 && UseIncDec) { decl(reg); return; }
duke@435 3089 /* else */ { subl(reg, value) ; return; }
duke@435 3090 }
duke@435 3091
duke@435 3092 void MacroAssembler::decrement(Address dst, int value) {
duke@435 3093 if (value == min_jint) {subl(dst, value); return; }
duke@435 3094 if (value < 0) { increment(dst, -value); return; }
duke@435 3095 if (value == 0) { ; return; }
duke@435 3096 if (value == 1 && UseIncDec) { decl(dst); return; }
duke@435 3097 /* else */ { subl(dst, value) ; return; }
duke@435 3098 }
duke@435 3099
duke@435 3100 void MacroAssembler::align(int modulus) {
duke@435 3101 if (offset() % modulus != 0) nop(modulus - (offset() % modulus));
duke@435 3102 }
duke@435 3103
duke@435 3104
duke@435 3105 void MacroAssembler::enter() {
duke@435 3106 pushl(rbp);
duke@435 3107 movl(rbp, rsp);
duke@435 3108 }
duke@435 3109
duke@435 3110
duke@435 3111 void MacroAssembler::leave() {
duke@435 3112 movl(rsp, rbp);
duke@435 3113 popl(rbp);
duke@435 3114 }
duke@435 3115
duke@435 3116 void MacroAssembler::set_last_Java_frame(Register java_thread,
duke@435 3117 Register last_java_sp,
duke@435 3118 Register last_java_fp,
duke@435 3119 address last_java_pc) {
duke@435 3120 // determine java_thread register
duke@435 3121 if (!java_thread->is_valid()) {
duke@435 3122 java_thread = rdi;
duke@435 3123 get_thread(java_thread);
duke@435 3124 }
duke@435 3125 // determine last_java_sp register
duke@435 3126 if (!last_java_sp->is_valid()) {
duke@435 3127 last_java_sp = rsp;
duke@435 3128 }
duke@435 3129
duke@435 3130 // last_java_fp is optional
duke@435 3131
duke@435 3132 if (last_java_fp->is_valid()) {
duke@435 3133 movl(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
duke@435 3134 }
duke@435 3135
duke@435 3136 // last_java_pc is optional
duke@435 3137
duke@435 3138 if (last_java_pc != NULL) {
duke@435 3139 lea(Address(java_thread,
duke@435 3140 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
duke@435 3141 InternalAddress(last_java_pc));
duke@435 3142
duke@435 3143 }
duke@435 3144 movl(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
duke@435 3145 }
duke@435 3146
duke@435 3147 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
duke@435 3148 // determine java_thread register
duke@435 3149 if (!java_thread->is_valid()) {
duke@435 3150 java_thread = rdi;
duke@435 3151 get_thread(java_thread);
duke@435 3152 }
duke@435 3153 // we must set sp to zero to clear frame
duke@435 3154 movl(Address(java_thread, JavaThread::last_Java_sp_offset()), 0);
duke@435 3155 if (clear_fp) {
duke@435 3156 movl(Address(java_thread, JavaThread::last_Java_fp_offset()), 0);
duke@435 3157 }
duke@435 3158
duke@435 3159 if (clear_pc)
duke@435 3160 movl(Address(java_thread, JavaThread::last_Java_pc_offset()), 0);
duke@435 3161
duke@435 3162 }
duke@435 3163
duke@435 3164
duke@435 3165
duke@435 3166 // Implementation of call_VM versions
duke@435 3167
duke@435 3168 void MacroAssembler::call_VM_leaf_base(
duke@435 3169 address entry_point,
duke@435 3170 int number_of_arguments
duke@435 3171 ) {
duke@435 3172 call(RuntimeAddress(entry_point));
duke@435 3173 increment(rsp, number_of_arguments * wordSize);
duke@435 3174 }
duke@435 3175
duke@435 3176
duke@435 3177 void MacroAssembler::call_VM_base(
duke@435 3178 Register oop_result,
duke@435 3179 Register java_thread,
duke@435 3180 Register last_java_sp,
duke@435 3181 address entry_point,
duke@435 3182 int number_of_arguments,
duke@435 3183 bool check_exceptions
duke@435 3184 ) {
duke@435 3185 // determine java_thread register
duke@435 3186 if (!java_thread->is_valid()) {
duke@435 3187 java_thread = rdi;
duke@435 3188 get_thread(java_thread);
duke@435 3189 }
duke@435 3190 // determine last_java_sp register
duke@435 3191 if (!last_java_sp->is_valid()) {
duke@435 3192 last_java_sp = rsp;
duke@435 3193 }
duke@435 3194 // debugging support
duke@435 3195 assert(number_of_arguments >= 0 , "cannot have negative number of arguments");
duke@435 3196 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result");
duke@435 3197 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
duke@435 3198 // push java thread (becomes first argument of C function)
duke@435 3199 pushl(java_thread);
duke@435 3200 // set last Java frame before call
duke@435 3201 assert(last_java_sp != rbp, "this code doesn't work for last_java_sp == rbp, which currently can't portably work anyway since C2 doesn't save rbp,");
duke@435 3202 // Only interpreter should have to set fp
duke@435 3203 set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
duke@435 3204 // do the call
duke@435 3205 call(RuntimeAddress(entry_point));
duke@435 3206 // restore the thread (cannot use the pushed argument since arguments
duke@435 3207 // may be overwritten by C code generated by an optimizing compiler);
duke@435 3208 // however can use the register value directly if it is callee saved.
duke@435 3209 if (java_thread == rdi || java_thread == rsi) {
duke@435 3210 // rdi & rsi are callee saved -> nothing to do
duke@435 3211 #ifdef ASSERT
duke@435 3212 guarantee(java_thread != rax, "change this code");
duke@435 3213 pushl(rax);
duke@435 3214 { Label L;
duke@435 3215 get_thread(rax);
duke@435 3216 cmpl(java_thread, rax);
duke@435 3217 jcc(Assembler::equal, L);
duke@435 3218 stop("MacroAssembler::call_VM_base: rdi not callee saved?");
duke@435 3219 bind(L);
duke@435 3220 }
duke@435 3221 popl(rax);
duke@435 3222 #endif
duke@435 3223 } else {
duke@435 3224 get_thread(java_thread);
duke@435 3225 }
duke@435 3226 // reset last Java frame
duke@435 3227 // Only interpreter should have to clear fp
duke@435 3228 reset_last_Java_frame(java_thread, true, false);
duke@435 3229 // discard thread and arguments
duke@435 3230 addl(rsp, (1 + number_of_arguments)*wordSize);
duke@435 3231
duke@435 3232 #ifndef CC_INTERP
duke@435 3233 // C++ interp handles this in the interpreter
duke@435 3234 check_and_handle_popframe(java_thread);
duke@435 3235 check_and_handle_earlyret(java_thread);
duke@435 3236 #endif /* CC_INTERP */
duke@435 3237
duke@435 3238 if (check_exceptions) {
duke@435 3239 // check for pending exceptions (java_thread is set upon return)
duke@435 3240 cmpl(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD);
duke@435 3241 jump_cc(Assembler::notEqual,
duke@435 3242 RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 3243 }
duke@435 3244
duke@435 3245 // get oop result if there is one and reset the value in the thread
duke@435 3246 if (oop_result->is_valid()) {
duke@435 3247 movl(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
duke@435 3248 movl(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
duke@435 3249 verify_oop(oop_result);
duke@435 3250 }
duke@435 3251 }
duke@435 3252
duke@435 3253
duke@435 3254 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
duke@435 3255 }
duke@435 3256
duke@435 3257 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
duke@435 3258 }
duke@435 3259
duke@435 3260 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
duke@435 3261 leal(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
duke@435 3262 call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
duke@435 3263 }
duke@435 3264
duke@435 3265
duke@435 3266 void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
duke@435 3267 Label C, E;
duke@435 3268 call(C, relocInfo::none);
duke@435 3269 jmp(E);
duke@435 3270
duke@435 3271 bind(C);
duke@435 3272 call_VM_helper(oop_result, entry_point, 0, check_exceptions);
duke@435 3273 ret(0);
duke@435 3274
duke@435 3275 bind(E);
duke@435 3276 }
duke@435 3277
duke@435 3278
duke@435 3279 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
duke@435 3280 Label C, E;
duke@435 3281 call(C, relocInfo::none);
duke@435 3282 jmp(E);
duke@435 3283
duke@435 3284 bind(C);
duke@435 3285 pushl(arg_1);
duke@435 3286 call_VM_helper(oop_result, entry_point, 1, check_exceptions);
duke@435 3287 ret(0);
duke@435 3288
duke@435 3289 bind(E);
duke@435 3290 }
duke@435 3291
duke@435 3292
duke@435 3293 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
duke@435 3294 Label C, E;
duke@435 3295 call(C, relocInfo::none);
duke@435 3296 jmp(E);
duke@435 3297
duke@435 3298 bind(C);
duke@435 3299 pushl(arg_2);
duke@435 3300 pushl(arg_1);
duke@435 3301 call_VM_helper(oop_result, entry_point, 2, check_exceptions);
duke@435 3302 ret(0);
duke@435 3303
duke@435 3304 bind(E);
duke@435 3305 }
duke@435 3306
duke@435 3307
duke@435 3308 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
duke@435 3309 Label C, E;
duke@435 3310 call(C, relocInfo::none);
duke@435 3311 jmp(E);
duke@435 3312
duke@435 3313 bind(C);
duke@435 3314 pushl(arg_3);
duke@435 3315 pushl(arg_2);
duke@435 3316 pushl(arg_1);
duke@435 3317 call_VM_helper(oop_result, entry_point, 3, check_exceptions);
duke@435 3318 ret(0);
duke@435 3319
duke@435 3320 bind(E);
duke@435 3321 }
duke@435 3322
duke@435 3323
duke@435 3324 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
duke@435 3325 call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
duke@435 3326 }
duke@435 3327
duke@435 3328
duke@435 3329 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
duke@435 3330 pushl(arg_1);
duke@435 3331 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
duke@435 3332 }
duke@435 3333
duke@435 3334
duke@435 3335 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
duke@435 3336 pushl(arg_2);
duke@435 3337 pushl(arg_1);
duke@435 3338 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
duke@435 3339 }
duke@435 3340
duke@435 3341
duke@435 3342 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
duke@435 3343 pushl(arg_3);
duke@435 3344 pushl(arg_2);
duke@435 3345 pushl(arg_1);
duke@435 3346 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
duke@435 3347 }
duke@435 3348
duke@435 3349
duke@435 3350 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
duke@435 3351 call_VM_leaf_base(entry_point, number_of_arguments);
duke@435 3352 }
duke@435 3353
duke@435 3354
duke@435 3355 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
duke@435 3356 pushl(arg_1);
duke@435 3357 call_VM_leaf(entry_point, 1);
duke@435 3358 }
duke@435 3359
duke@435 3360
duke@435 3361 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
duke@435 3362 pushl(arg_2);
duke@435 3363 pushl(arg_1);
duke@435 3364 call_VM_leaf(entry_point, 2);
duke@435 3365 }
duke@435 3366
duke@435 3367
duke@435 3368 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
duke@435 3369 pushl(arg_3);
duke@435 3370 pushl(arg_2);
duke@435 3371 pushl(arg_1);
duke@435 3372 call_VM_leaf(entry_point, 3);
duke@435 3373 }
duke@435 3374
duke@435 3375
duke@435 3376 // Calls to C land
duke@435 3377 //
duke@435 3378 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
duke@435 3379 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
duke@435 3380 // has to be reset to 0. This is required to allow proper stack traversal.
duke@435 3381
duke@435 3382 void MacroAssembler::store_check(Register obj) {
duke@435 3383 // Does a store check for the oop in register obj. The content of
duke@435 3384 // register obj is destroyed afterwards.
duke@435 3385 store_check_part_1(obj);
duke@435 3386 store_check_part_2(obj);
duke@435 3387 }
duke@435 3388
duke@435 3389
duke@435 3390 void MacroAssembler::store_check(Register obj, Address dst) {
duke@435 3391 store_check(obj);
duke@435 3392 }
duke@435 3393
duke@435 3394
duke@435 3395 // split the store check operation so that other instructions can be scheduled inbetween
duke@435 3396 void MacroAssembler::store_check_part_1(Register obj) {
duke@435 3397 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 3398 assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
duke@435 3399 shrl(obj, CardTableModRefBS::card_shift);
duke@435 3400 }
duke@435 3401
duke@435 3402
duke@435 3403 void MacroAssembler::store_check_part_2(Register obj) {
duke@435 3404 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 3405 assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
duke@435 3406 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 3407 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
sgoldman@552 3408
sgoldman@552 3409 // The calculation for byte_map_base is as follows:
sgoldman@552 3410 // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
sgoldman@552 3411 // So this essentially converts an address to a displacement and
sgoldman@552 3412 // it will never need to be relocated. On 64bit however the value may be too
sgoldman@552 3413 // large for a 32bit displacement
sgoldman@552 3414
sgoldman@552 3415 intptr_t disp = (intptr_t) ct->byte_map_base;
sgoldman@552 3416 Address cardtable(noreg, obj, Address::times_1, disp);
sgoldman@552 3417 movb(cardtable, 0);
duke@435 3418 }
duke@435 3419
duke@435 3420
duke@435 3421 void MacroAssembler::c2bool(Register x) {
duke@435 3422 // implements x == 0 ? 0 : 1
duke@435 3423 // note: must only look at least-significant byte of x
duke@435 3424 // since C-style booleans are stored in one byte
duke@435 3425 // only! (was bug)
duke@435 3426 andl(x, 0xFF);
duke@435 3427 setb(Assembler::notZero, x);
duke@435 3428 }
duke@435 3429
duke@435 3430
duke@435 3431 int MacroAssembler::corrected_idivl(Register reg) {
duke@435 3432 // Full implementation of Java idiv and irem; checks for
duke@435 3433 // special case as described in JVM spec., p.243 & p.271.
duke@435 3434 // The function returns the (pc) offset of the idivl
duke@435 3435 // instruction - may be needed for implicit exceptions.
duke@435 3436 //
duke@435 3437 // normal case special case
duke@435 3438 //
duke@435 3439 // input : rax,: dividend min_int
duke@435 3440 // reg: divisor (may not be rax,/rdx) -1
duke@435 3441 //
duke@435 3442 // output: rax,: quotient (= rax, idiv reg) min_int
duke@435 3443 // rdx: remainder (= rax, irem reg) 0
duke@435 3444 assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
duke@435 3445 const int min_int = 0x80000000;
duke@435 3446 Label normal_case, special_case;
duke@435 3447
duke@435 3448 // check for special case
duke@435 3449 cmpl(rax, min_int);
duke@435 3450 jcc(Assembler::notEqual, normal_case);
duke@435 3451 xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
duke@435 3452 cmpl(reg, -1);
duke@435 3453 jcc(Assembler::equal, special_case);
duke@435 3454
duke@435 3455 // handle normal case
duke@435 3456 bind(normal_case);
duke@435 3457 cdql();
duke@435 3458 int idivl_offset = offset();
duke@435 3459 idivl(reg);
duke@435 3460
duke@435 3461 // normal and special case exit
duke@435 3462 bind(special_case);
duke@435 3463
duke@435 3464 return idivl_offset;
duke@435 3465 }
duke@435 3466
duke@435 3467
duke@435 3468 void MacroAssembler::lneg(Register hi, Register lo) {
duke@435 3469 negl(lo);
duke@435 3470 adcl(hi, 0);
duke@435 3471 negl(hi);
duke@435 3472 }
duke@435 3473
duke@435 3474
duke@435 3475 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
duke@435 3476 // Multiplication of two Java long values stored on the stack
duke@435 3477 // as illustrated below. Result is in rdx:rax.
duke@435 3478 //
duke@435 3479 // rsp ---> [ ?? ] \ \
duke@435 3480 // .... | y_rsp_offset |
duke@435 3481 // [ y_lo ] / (in bytes) | x_rsp_offset
duke@435 3482 // [ y_hi ] | (in bytes)
duke@435 3483 // .... |
duke@435 3484 // [ x_lo ] /
duke@435 3485 // [ x_hi ]
duke@435 3486 // ....
duke@435 3487 //
duke@435 3488 // Basic idea: lo(result) = lo(x_lo * y_lo)
duke@435 3489 // hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
duke@435 3490 Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
duke@435 3491 Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
duke@435 3492 Label quick;
duke@435 3493 // load x_hi, y_hi and check if quick
duke@435 3494 // multiplication is possible
duke@435 3495 movl(rbx, x_hi);
duke@435 3496 movl(rcx, y_hi);
duke@435 3497 movl(rax, rbx);
duke@435 3498 orl(rbx, rcx); // rbx, = 0 <=> x_hi = 0 and y_hi = 0
duke@435 3499 jcc(Assembler::zero, quick); // if rbx, = 0 do quick multiply
duke@435 3500 // do full multiplication
duke@435 3501 // 1st step
duke@435 3502 mull(y_lo); // x_hi * y_lo
duke@435 3503 movl(rbx, rax); // save lo(x_hi * y_lo) in rbx,
duke@435 3504 // 2nd step
duke@435 3505 movl(rax, x_lo);
duke@435 3506 mull(rcx); // x_lo * y_hi
duke@435 3507 addl(rbx, rax); // add lo(x_lo * y_hi) to rbx,
duke@435 3508 // 3rd step
duke@435 3509 bind(quick); // note: rbx, = 0 if quick multiply!
duke@435 3510 movl(rax, x_lo);
duke@435 3511 mull(y_lo); // x_lo * y_lo
duke@435 3512 addl(rdx, rbx); // correct hi(x_lo * y_lo)
duke@435 3513 }
duke@435 3514
duke@435 3515
duke@435 3516 void MacroAssembler::lshl(Register hi, Register lo) {
duke@435 3517 // Java shift left long support (semantics as described in JVM spec., p.305)
duke@435 3518 // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
duke@435 3519 // shift value is in rcx !
duke@435 3520 assert(hi != rcx, "must not use rcx");
duke@435 3521 assert(lo != rcx, "must not use rcx");
duke@435 3522 const Register s = rcx; // shift count
duke@435 3523 const int n = BitsPerWord;
duke@435 3524 Label L;
duke@435 3525 andl(s, 0x3f); // s := s & 0x3f (s < 0x40)
duke@435 3526 cmpl(s, n); // if (s < n)
duke@435 3527 jcc(Assembler::less, L); // else (s >= n)
duke@435 3528 movl(hi, lo); // x := x << n
duke@435 3529 xorl(lo, lo);
duke@435 3530 // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
duke@435 3531 bind(L); // s (mod n) < n
duke@435 3532 shldl(hi, lo); // x := x << s
duke@435 3533 shll(lo);
duke@435 3534 }
duke@435 3535
duke@435 3536
duke@435 3537 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
duke@435 3538 // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
duke@435 3539 // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
duke@435 3540 assert(hi != rcx, "must not use rcx");
duke@435 3541 assert(lo != rcx, "must not use rcx");
duke@435 3542 const Register s = rcx; // shift count
duke@435 3543 const int n = BitsPerWord;
duke@435 3544 Label L;
duke@435 3545 andl(s, 0x3f); // s := s & 0x3f (s < 0x40)
duke@435 3546 cmpl(s, n); // if (s < n)
duke@435 3547 jcc(Assembler::less, L); // else (s >= n)
duke@435 3548 movl(lo, hi); // x := x >> n
duke@435 3549 if (sign_extension) sarl(hi, 31);
duke@435 3550 else xorl(hi, hi);
duke@435 3551 // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
duke@435 3552 bind(L); // s (mod n) < n
duke@435 3553 shrdl(lo, hi); // x := x >> s
duke@435 3554 if (sign_extension) sarl(hi);
duke@435 3555 else shrl(hi);
duke@435 3556 }
duke@435 3557
duke@435 3558
duke@435 3559 // Note: y_lo will be destroyed
duke@435 3560 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
duke@435 3561 // Long compare for Java (semantics as described in JVM spec.)
duke@435 3562 Label high, low, done;
duke@435 3563
duke@435 3564 cmpl(x_hi, y_hi);
duke@435 3565 jcc(Assembler::less, low);
duke@435 3566 jcc(Assembler::greater, high);
duke@435 3567 // x_hi is the return register
duke@435 3568 xorl(x_hi, x_hi);
duke@435 3569 cmpl(x_lo, y_lo);
duke@435 3570 jcc(Assembler::below, low);
duke@435 3571 jcc(Assembler::equal, done);
duke@435 3572
duke@435 3573 bind(high);
duke@435 3574 xorl(x_hi, x_hi);
duke@435 3575 increment(x_hi);
duke@435 3576 jmp(done);
duke@435 3577
duke@435 3578 bind(low);
duke@435 3579 xorl(x_hi, x_hi);
duke@435 3580 decrement(x_hi);
duke@435 3581
duke@435 3582 bind(done);
duke@435 3583 }
duke@435 3584
duke@435 3585
duke@435 3586 void MacroAssembler::save_rax(Register tmp) {
duke@435 3587 if (tmp == noreg) pushl(rax);
duke@435 3588 else if (tmp != rax) movl(tmp, rax);
duke@435 3589 }
duke@435 3590
duke@435 3591
duke@435 3592 void MacroAssembler::restore_rax(Register tmp) {
duke@435 3593 if (tmp == noreg) popl(rax);
duke@435 3594 else if (tmp != rax) movl(rax, tmp);
duke@435 3595 }
duke@435 3596
duke@435 3597
duke@435 3598 void MacroAssembler::fremr(Register tmp) {
duke@435 3599 save_rax(tmp);
duke@435 3600 { Label L;
duke@435 3601 bind(L);
duke@435 3602 fprem();
duke@435 3603 fwait(); fnstsw_ax();
duke@435 3604 sahf();
duke@435 3605 jcc(Assembler::parity, L);
duke@435 3606 }
duke@435 3607 restore_rax(tmp);
duke@435 3608 // Result is in ST0.
duke@435 3609 // Note: fxch & fpop to get rid of ST1
duke@435 3610 // (otherwise FPU stack could overflow eventually)
duke@435 3611 fxch(1);
duke@435 3612 fpop();
duke@435 3613 }
duke@435 3614
duke@435 3615
duke@435 3616 static const double pi_4 = 0.7853981633974483;
duke@435 3617
duke@435 3618 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
duke@435 3619 // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
duke@435 3620 // was attempted in this code; unfortunately it appears that the
duke@435 3621 // switch to 80-bit precision and back causes this to be
duke@435 3622 // unprofitable compared with simply performing a runtime call if
duke@435 3623 // the argument is out of the (-pi/4, pi/4) range.
duke@435 3624
duke@435 3625 Register tmp = noreg;
duke@435 3626 if (!VM_Version::supports_cmov()) {
duke@435 3627 // fcmp needs a temporary so preserve rbx,
duke@435 3628 tmp = rbx;
duke@435 3629 pushl(tmp);
duke@435 3630 }
duke@435 3631
duke@435 3632 Label slow_case, done;
duke@435 3633
duke@435 3634 // x ?<= pi/4
duke@435 3635 fld_d(ExternalAddress((address)&pi_4));
duke@435 3636 fld_s(1); // Stack: X PI/4 X
duke@435 3637 fabs(); // Stack: |X| PI/4 X
duke@435 3638 fcmp(tmp);
duke@435 3639 jcc(Assembler::above, slow_case);
duke@435 3640
duke@435 3641 // fastest case: -pi/4 <= x <= pi/4
duke@435 3642 switch(trig) {
duke@435 3643 case 's':
duke@435 3644 fsin();
duke@435 3645 break;
duke@435 3646 case 'c':
duke@435 3647 fcos();
duke@435 3648 break;
duke@435 3649 case 't':
duke@435 3650 ftan();
duke@435 3651 break;
duke@435 3652 default:
duke@435 3653 assert(false, "bad intrinsic");
duke@435 3654 break;
duke@435 3655 }
duke@435 3656 jmp(done);
duke@435 3657
duke@435 3658 // slow case: runtime call
duke@435 3659 bind(slow_case);
duke@435 3660 // Preserve registers across runtime call
duke@435 3661 pushad();
duke@435 3662 int incoming_argument_and_return_value_offset = -1;
duke@435 3663 if (num_fpu_regs_in_use > 1) {
duke@435 3664 // Must preserve all other FPU regs (could alternatively convert
duke@435 3665 // SharedRuntime::dsin and dcos into assembly routines known not to trash
duke@435 3666 // FPU state, but can not trust C compiler)
duke@435 3667 NEEDS_CLEANUP;
duke@435 3668 // NOTE that in this case we also push the incoming argument to
duke@435 3669 // the stack and restore it later; we also use this stack slot to
duke@435 3670 // hold the return value from dsin or dcos.
duke@435 3671 for (int i = 0; i < num_fpu_regs_in_use; i++) {
duke@435 3672 subl(rsp, wordSize*2);
duke@435 3673 fstp_d(Address(rsp, 0));
duke@435 3674 }
duke@435 3675 incoming_argument_and_return_value_offset = 2*wordSize*(num_fpu_regs_in_use-1);
duke@435 3676 fld_d(Address(rsp, incoming_argument_and_return_value_offset));
duke@435 3677 }
duke@435 3678 subl(rsp, wordSize*2);
duke@435 3679 fstp_d(Address(rsp, 0));
duke@435 3680 // NOTE: we must not use call_VM_leaf here because that requires a
duke@435 3681 // complete interpreter frame in debug mode -- same bug as 4387334
duke@435 3682 NEEDS_CLEANUP;
duke@435 3683 // Need to add stack banging before this runtime call if it needs to
duke@435 3684 // be taken; however, there is no generic stack banging routine at
duke@435 3685 // the MacroAssembler level
duke@435 3686 switch(trig) {
duke@435 3687 case 's':
duke@435 3688 {
duke@435 3689 call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dsin)));
duke@435 3690 }
duke@435 3691 break;
duke@435 3692 case 'c':
duke@435 3693 {
duke@435 3694 call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dcos)));
duke@435 3695 }
duke@435 3696 break;
duke@435 3697 case 't':
duke@435 3698 {
duke@435 3699 call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtan)));
duke@435 3700 }
duke@435 3701 break;
duke@435 3702 default:
duke@435 3703 assert(false, "bad intrinsic");
duke@435 3704 break;
duke@435 3705 }
duke@435 3706 addl(rsp, wordSize * 2);
duke@435 3707 if (num_fpu_regs_in_use > 1) {
duke@435 3708 // Must save return value to stack and then restore entire FPU stack
duke@435 3709 fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
duke@435 3710 for (int i = 0; i < num_fpu_regs_in_use; i++) {
duke@435 3711 fld_d(Address(rsp, 0));
duke@435 3712 addl(rsp, wordSize*2);
duke@435 3713 }
duke@435 3714 }
duke@435 3715 popad();
duke@435 3716
duke@435 3717 // Come here with result in F-TOS
duke@435 3718 bind(done);
duke@435 3719
duke@435 3720 if (tmp != noreg) {
duke@435 3721 popl(tmp);
duke@435 3722 }
duke@435 3723 }
duke@435 3724
duke@435 3725 void MacroAssembler::jC2(Register tmp, Label& L) {
duke@435 3726 // set parity bit if FPU flag C2 is set (via rax)
duke@435 3727 save_rax(tmp);
duke@435 3728 fwait(); fnstsw_ax();
duke@435 3729 sahf();
duke@435 3730 restore_rax(tmp);
duke@435 3731 // branch
duke@435 3732 jcc(Assembler::parity, L);
duke@435 3733 }
duke@435 3734
duke@435 3735
duke@435 3736 void MacroAssembler::jnC2(Register tmp, Label& L) {
duke@435 3737 // set parity bit if FPU flag C2 is set (via rax)
duke@435 3738 save_rax(tmp);
duke@435 3739 fwait(); fnstsw_ax();
duke@435 3740 sahf();
duke@435 3741 restore_rax(tmp);
duke@435 3742 // branch
duke@435 3743 jcc(Assembler::noParity, L);
duke@435 3744 }
duke@435 3745
duke@435 3746
duke@435 3747 void MacroAssembler::fcmp(Register tmp) {
duke@435 3748 fcmp(tmp, 1, true, true);
duke@435 3749 }
duke@435 3750
duke@435 3751
duke@435 3752 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
duke@435 3753 assert(!pop_right || pop_left, "usage error");
duke@435 3754 if (VM_Version::supports_cmov()) {
duke@435 3755 assert(tmp == noreg, "unneeded temp");
duke@435 3756 if (pop_left) {
duke@435 3757 fucomip(index);
duke@435 3758 } else {
duke@435 3759 fucomi(index);
duke@435 3760 }
duke@435 3761 if (pop_right) {
duke@435 3762 fpop();
duke@435 3763 }
duke@435 3764 } else {
duke@435 3765 assert(tmp != noreg, "need temp");
duke@435 3766 if (pop_left) {
duke@435 3767 if (pop_right) {
duke@435 3768 fcompp();
duke@435 3769 } else {
duke@435 3770 fcomp(index);
duke@435 3771 }
duke@435 3772 } else {
duke@435 3773 fcom(index);
duke@435 3774 }
duke@435 3775 // convert FPU condition into eflags condition via rax,
duke@435 3776 save_rax(tmp);
duke@435 3777 fwait(); fnstsw_ax();
duke@435 3778 sahf();
duke@435 3779 restore_rax(tmp);
duke@435 3780 }
duke@435 3781 // condition codes set as follows:
duke@435 3782 //
duke@435 3783 // CF (corresponds to C0) if x < y
duke@435 3784 // PF (corresponds to C2) if unordered
duke@435 3785 // ZF (corresponds to C3) if x = y
duke@435 3786 }
duke@435 3787
duke@435 3788
duke@435 3789 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
duke@435 3790 fcmp2int(dst, unordered_is_less, 1, true, true);
duke@435 3791 }
duke@435 3792
duke@435 3793
duke@435 3794 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
duke@435 3795 fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
duke@435 3796 Label L;
duke@435 3797 if (unordered_is_less) {
duke@435 3798 movl(dst, -1);
duke@435 3799 jcc(Assembler::parity, L);
duke@435 3800 jcc(Assembler::below , L);
duke@435 3801 movl(dst, 0);
duke@435 3802 jcc(Assembler::equal , L);
duke@435 3803 increment(dst);
duke@435 3804 } else { // unordered is greater
duke@435 3805 movl(dst, 1);
duke@435 3806 jcc(Assembler::parity, L);
duke@435 3807 jcc(Assembler::above , L);
duke@435 3808 movl(dst, 0);
duke@435 3809 jcc(Assembler::equal , L);
duke@435 3810 decrement(dst);
duke@435 3811 }
duke@435 3812 bind(L);
duke@435 3813 }
duke@435 3814
duke@435 3815 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
duke@435 3816 ucomiss(opr1, opr2);
duke@435 3817
duke@435 3818 Label L;
duke@435 3819 if (unordered_is_less) {
duke@435 3820 movl(dst, -1);
duke@435 3821 jcc(Assembler::parity, L);
duke@435 3822 jcc(Assembler::below , L);
duke@435 3823 movl(dst, 0);
duke@435 3824 jcc(Assembler::equal , L);
duke@435 3825 increment(dst);
duke@435 3826 } else { // unordered is greater
duke@435 3827 movl(dst, 1);
duke@435 3828 jcc(Assembler::parity, L);
duke@435 3829 jcc(Assembler::above , L);
duke@435 3830 movl(dst, 0);
duke@435 3831 jcc(Assembler::equal , L);
duke@435 3832 decrement(dst);
duke@435 3833 }
duke@435 3834 bind(L);
duke@435 3835 }
duke@435 3836
duke@435 3837 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
duke@435 3838 ucomisd(opr1, opr2);
duke@435 3839
duke@435 3840 Label L;
duke@435 3841 if (unordered_is_less) {
duke@435 3842 movl(dst, -1);
duke@435 3843 jcc(Assembler::parity, L);
duke@435 3844 jcc(Assembler::below , L);
duke@435 3845 movl(dst, 0);
duke@435 3846 jcc(Assembler::equal , L);
duke@435 3847 increment(dst);
duke@435 3848 } else { // unordered is greater
duke@435 3849 movl(dst, 1);
duke@435 3850 jcc(Assembler::parity, L);
duke@435 3851 jcc(Assembler::above , L);
duke@435 3852 movl(dst, 0);
duke@435 3853 jcc(Assembler::equal , L);
duke@435 3854 decrement(dst);
duke@435 3855 }
duke@435 3856 bind(L);
duke@435 3857 }
duke@435 3858
duke@435 3859
duke@435 3860
duke@435 3861 void MacroAssembler::fpop() {
duke@435 3862 ffree();
duke@435 3863 fincstp();
duke@435 3864 }
duke@435 3865
duke@435 3866
duke@435 3867 void MacroAssembler::sign_extend_short(Register reg) {
duke@435 3868 if (VM_Version::is_P6()) {
duke@435 3869 movsxw(reg, reg);
duke@435 3870 } else {
duke@435 3871 shll(reg, 16);
duke@435 3872 sarl(reg, 16);
duke@435 3873 }
duke@435 3874 }
duke@435 3875
duke@435 3876
duke@435 3877 void MacroAssembler::sign_extend_byte(Register reg) {
duke@435 3878 if (VM_Version::is_P6() && reg->has_byte_register()) {
duke@435 3879 movsxb(reg, reg);
duke@435 3880 } else {
duke@435 3881 shll(reg, 24);
duke@435 3882 sarl(reg, 24);
duke@435 3883 }
duke@435 3884 }
duke@435 3885
duke@435 3886
duke@435 3887 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
duke@435 3888 assert (shift_value > 0, "illegal shift value");
duke@435 3889 Label _is_positive;
duke@435 3890 testl (reg, reg);
duke@435 3891 jcc (Assembler::positive, _is_positive);
duke@435 3892 int offset = (1 << shift_value) - 1 ;
duke@435 3893
duke@435 3894 increment(reg, offset);
duke@435 3895
duke@435 3896 bind (_is_positive);
duke@435 3897 sarl(reg, shift_value);
duke@435 3898 }
duke@435 3899
duke@435 3900
duke@435 3901 void MacroAssembler::round_to(Register reg, int modulus) {
duke@435 3902 addl(reg, modulus - 1);
duke@435 3903 andl(reg, -modulus);
duke@435 3904 }
duke@435 3905
duke@435 3906 // C++ bool manipulation
duke@435 3907
duke@435 3908 void MacroAssembler::movbool(Register dst, Address src) {
duke@435 3909 if(sizeof(bool) == 1)
duke@435 3910 movb(dst, src);
duke@435 3911 else if(sizeof(bool) == 2)
duke@435 3912 movw(dst, src);
duke@435 3913 else if(sizeof(bool) == 4)
duke@435 3914 movl(dst, src);
duke@435 3915 else
duke@435 3916 // unsupported
duke@435 3917 ShouldNotReachHere();
duke@435 3918 }
duke@435 3919
duke@435 3920 void MacroAssembler::movbool(Address dst, bool boolconst) {
duke@435 3921 if(sizeof(bool) == 1)
duke@435 3922 movb(dst, (int) boolconst);
duke@435 3923 else if(sizeof(bool) == 2)
duke@435 3924 movw(dst, (int) boolconst);
duke@435 3925 else if(sizeof(bool) == 4)
duke@435 3926 movl(dst, (int) boolconst);
duke@435 3927 else
duke@435 3928 // unsupported
duke@435 3929 ShouldNotReachHere();
duke@435 3930 }
duke@435 3931
duke@435 3932 void MacroAssembler::movbool(Address dst, Register src) {
duke@435 3933 if(sizeof(bool) == 1)
duke@435 3934 movb(dst, src);
duke@435 3935 else if(sizeof(bool) == 2)
duke@435 3936 movw(dst, src);
duke@435 3937 else if(sizeof(bool) == 4)
duke@435 3938 movl(dst, src);
duke@435 3939 else
duke@435 3940 // unsupported
duke@435 3941 ShouldNotReachHere();
duke@435 3942 }
duke@435 3943
duke@435 3944 void MacroAssembler::testbool(Register dst) {
duke@435 3945 if(sizeof(bool) == 1)
duke@435 3946 testb(dst, (int) 0xff);
duke@435 3947 else if(sizeof(bool) == 2) {
duke@435 3948 // testw implementation needed for two byte bools
duke@435 3949 ShouldNotReachHere();
duke@435 3950 } else if(sizeof(bool) == 4)
duke@435 3951 testl(dst, dst);
duke@435 3952 else
duke@435 3953 // unsupported
duke@435 3954 ShouldNotReachHere();
duke@435 3955 }
duke@435 3956
duke@435 3957 void MacroAssembler::verify_oop(Register reg, const char* s) {
duke@435 3958 if (!VerifyOops) return;
duke@435 3959 // Pass register number to verify_oop_subroutine
duke@435 3960 char* b = new char[strlen(s) + 50];
duke@435 3961 sprintf(b, "verify_oop: %s: %s", reg->name(), s);
duke@435 3962 pushl(rax); // save rax,
duke@435 3963 pushl(reg); // pass register argument
duke@435 3964 ExternalAddress buffer((address) b);
duke@435 3965 pushptr(buffer.addr());
duke@435 3966 // call indirectly to solve generation ordering problem
duke@435 3967 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
duke@435 3968 call(rax);
duke@435 3969 }
duke@435 3970
duke@435 3971
duke@435 3972 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
duke@435 3973 if (!VerifyOops) return;
duke@435 3974 // QQQ fix this
duke@435 3975 // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
duke@435 3976 // Pass register number to verify_oop_subroutine
duke@435 3977 char* b = new char[strlen(s) + 50];
duke@435 3978 sprintf(b, "verify_oop_addr: %s", s);
duke@435 3979 pushl(rax); // save rax,
duke@435 3980 // addr may contain rsp so we will have to adjust it based on the push
duke@435 3981 // we just did
duke@435 3982 if (addr.uses(rsp)) {
duke@435 3983 leal(rax, addr);
duke@435 3984 pushl(Address(rax, BytesPerWord));
duke@435 3985 } else {
duke@435 3986 pushl(addr);
duke@435 3987 }
duke@435 3988 ExternalAddress buffer((address) b);
duke@435 3989 // pass msg argument
duke@435 3990 pushptr(buffer.addr());
duke@435 3991 // call indirectly to solve generation ordering problem
duke@435 3992 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
duke@435 3993 call(rax);
duke@435 3994 // Caller pops the arguments and restores rax, from the stack
duke@435 3995 }
duke@435 3996
duke@435 3997
duke@435 3998 void MacroAssembler::stop(const char* msg) {
duke@435 3999 ExternalAddress message((address)msg);
duke@435 4000 // push address of message
duke@435 4001 pushptr(message.addr());
duke@435 4002 { Label L; call(L, relocInfo::none); bind(L); } // push eip
duke@435 4003 pushad(); // push registers
duke@435 4004 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug)));
duke@435 4005 hlt();
duke@435 4006 }
duke@435 4007
duke@435 4008
duke@435 4009 void MacroAssembler::warn(const char* msg) {
duke@435 4010 push_CPU_state();
duke@435 4011
duke@435 4012 ExternalAddress message((address) msg);
duke@435 4013 // push address of message
duke@435 4014 pushptr(message.addr());
duke@435 4015
duke@435 4016 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
duke@435 4017 addl(rsp, wordSize); // discard argument
duke@435 4018 pop_CPU_state();
duke@435 4019 }
duke@435 4020
duke@435 4021
duke@435 4022 void MacroAssembler::debug(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
duke@435 4023 // In order to get locks to work, we need to fake a in_VM state
duke@435 4024 JavaThread* thread = JavaThread::current();
duke@435 4025 JavaThreadState saved_state = thread->thread_state();
duke@435 4026 thread->set_thread_state(_thread_in_vm);
duke@435 4027 if (ShowMessageBoxOnError) {
duke@435 4028 JavaThread* thread = JavaThread::current();
duke@435 4029 JavaThreadState saved_state = thread->thread_state();
duke@435 4030 thread->set_thread_state(_thread_in_vm);
duke@435 4031 ttyLocker ttyl;
duke@435 4032 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
duke@435 4033 BytecodeCounter::print();
duke@435 4034 }
duke@435 4035 // To see where a verify_oop failed, get $ebx+40/X for this frame.
duke@435 4036 // This is the value of eip which points to where verify_oop will return.
duke@435 4037 if (os::message_box(msg, "Execution stopped, print registers?")) {
duke@435 4038 tty->print_cr("eip = 0x%08x", eip);
duke@435 4039 tty->print_cr("rax, = 0x%08x", rax);
duke@435 4040 tty->print_cr("rbx, = 0x%08x", rbx);
duke@435 4041 tty->print_cr("rcx = 0x%08x", rcx);
duke@435 4042 tty->print_cr("rdx = 0x%08x", rdx);
duke@435 4043 tty->print_cr("rdi = 0x%08x", rdi);
duke@435 4044 tty->print_cr("rsi = 0x%08x", rsi);
duke@435 4045 tty->print_cr("rbp, = 0x%08x", rbp);
duke@435 4046 tty->print_cr("rsp = 0x%08x", rsp);
duke@435 4047 BREAKPOINT;
duke@435 4048 }
duke@435 4049 } else {
duke@435 4050 ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
duke@435 4051 assert(false, "DEBUG MESSAGE");
duke@435 4052 }
duke@435 4053 ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
duke@435 4054 }
duke@435 4055
duke@435 4056
duke@435 4057
duke@435 4058 void MacroAssembler::os_breakpoint() {
duke@435 4059 // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
duke@435 4060 // (e.g., MSVC can't call ps() otherwise)
duke@435 4061 call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
duke@435 4062 }
duke@435 4063
duke@435 4064
duke@435 4065 void MacroAssembler::push_fTOS() {
duke@435 4066 subl(rsp, 2 * wordSize);
duke@435 4067 fstp_d(Address(rsp, 0));
duke@435 4068 }
duke@435 4069
duke@435 4070
duke@435 4071 void MacroAssembler::pop_fTOS() {
duke@435 4072 fld_d(Address(rsp, 0));
duke@435 4073 addl(rsp, 2 * wordSize);
duke@435 4074 }
duke@435 4075
duke@435 4076
duke@435 4077 void MacroAssembler::empty_FPU_stack() {
duke@435 4078 if (VM_Version::supports_mmx()) {
duke@435 4079 emms();
duke@435 4080 } else {
duke@435 4081 for (int i = 8; i-- > 0; ) ffree(i);
duke@435 4082 }
duke@435 4083 }
duke@435 4084
duke@435 4085
duke@435 4086 class ControlWord {
duke@435 4087 public:
duke@435 4088 int32_t _value;
duke@435 4089
duke@435 4090 int rounding_control() const { return (_value >> 10) & 3 ; }
duke@435 4091 int precision_control() const { return (_value >> 8) & 3 ; }
duke@435 4092 bool precision() const { return ((_value >> 5) & 1) != 0; }
duke@435 4093 bool underflow() const { return ((_value >> 4) & 1) != 0; }
duke@435 4094 bool overflow() const { return ((_value >> 3) & 1) != 0; }
duke@435 4095 bool zero_divide() const { return ((_value >> 2) & 1) != 0; }
duke@435 4096 bool denormalized() const { return ((_value >> 1) & 1) != 0; }
duke@435 4097 bool invalid() const { return ((_value >> 0) & 1) != 0; }
duke@435 4098
duke@435 4099 void print() const {
duke@435 4100 // rounding control
duke@435 4101 const char* rc;
duke@435 4102 switch (rounding_control()) {
duke@435 4103 case 0: rc = "round near"; break;
duke@435 4104 case 1: rc = "round down"; break;
duke@435 4105 case 2: rc = "round up "; break;
duke@435 4106 case 3: rc = "chop "; break;
duke@435 4107 };
duke@435 4108 // precision control
duke@435 4109 const char* pc;
duke@435 4110 switch (precision_control()) {
duke@435 4111 case 0: pc = "24 bits "; break;
duke@435 4112 case 1: pc = "reserved"; break;
duke@435 4113 case 2: pc = "53 bits "; break;
duke@435 4114 case 3: pc = "64 bits "; break;
duke@435 4115 };
duke@435 4116 // flags
duke@435 4117 char f[9];
duke@435 4118 f[0] = ' ';
duke@435 4119 f[1] = ' ';
duke@435 4120 f[2] = (precision ()) ? 'P' : 'p';
duke@435 4121 f[3] = (underflow ()) ? 'U' : 'u';
duke@435 4122 f[4] = (overflow ()) ? 'O' : 'o';
duke@435 4123 f[5] = (zero_divide ()) ? 'Z' : 'z';
duke@435 4124 f[6] = (denormalized()) ? 'D' : 'd';
duke@435 4125 f[7] = (invalid ()) ? 'I' : 'i';
duke@435 4126 f[8] = '\x0';
duke@435 4127 // output
duke@435 4128 printf("%04x masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
duke@435 4129 }
duke@435 4130
duke@435 4131 };
duke@435 4132
duke@435 4133
duke@435 4134 class StatusWord {
duke@435 4135 public:
duke@435 4136 int32_t _value;
duke@435 4137
duke@435 4138 bool busy() const { return ((_value >> 15) & 1) != 0; }
duke@435 4139 bool C3() const { return ((_value >> 14) & 1) != 0; }
duke@435 4140 bool C2() const { return ((_value >> 10) & 1) != 0; }
duke@435 4141 bool C1() const { return ((_value >> 9) & 1) != 0; }
duke@435 4142 bool C0() const { return ((_value >> 8) & 1) != 0; }
duke@435 4143 int top() const { return (_value >> 11) & 7 ; }
duke@435 4144 bool error_status() const { return ((_value >> 7) & 1) != 0; }
duke@435 4145 bool stack_fault() const { return ((_value >> 6) & 1) != 0; }
duke@435 4146 bool precision() const { return ((_value >> 5) & 1) != 0; }
duke@435 4147 bool underflow() const { return ((_value >> 4) & 1) != 0; }
duke@435 4148 bool overflow() const { return ((_value >> 3) & 1) != 0; }
duke@435 4149 bool zero_divide() const { return ((_value >> 2) & 1) != 0; }
duke@435 4150 bool denormalized() const { return ((_value >> 1) & 1) != 0; }
duke@435 4151 bool invalid() const { return ((_value >> 0) & 1) != 0; }
duke@435 4152
duke@435 4153 void print() const {
duke@435 4154 // condition codes
duke@435 4155 char c[5];
duke@435 4156 c[0] = (C3()) ? '3' : '-';
duke@435 4157 c[1] = (C2()) ? '2' : '-';
duke@435 4158 c[2] = (C1()) ? '1' : '-';
duke@435 4159 c[3] = (C0()) ? '0' : '-';
duke@435 4160 c[4] = '\x0';
duke@435 4161 // flags
duke@435 4162 char f[9];
duke@435 4163 f[0] = (error_status()) ? 'E' : '-';
duke@435 4164 f[1] = (stack_fault ()) ? 'S' : '-';
duke@435 4165 f[2] = (precision ()) ? 'P' : '-';
duke@435 4166 f[3] = (underflow ()) ? 'U' : '-';
duke@435 4167 f[4] = (overflow ()) ? 'O' : '-';
duke@435 4168 f[5] = (zero_divide ()) ? 'Z' : '-';
duke@435 4169 f[6] = (denormalized()) ? 'D' : '-';
duke@435 4170 f[7] = (invalid ()) ? 'I' : '-';
duke@435 4171 f[8] = '\x0';
duke@435 4172 // output
duke@435 4173 printf("%04x flags = %s, cc = %s, top = %d", _value & 0xFFFF, f, c, top());
duke@435 4174 }
duke@435 4175
duke@435 4176 };
duke@435 4177
duke@435 4178
duke@435 4179 class TagWord {
duke@435 4180 public:
duke@435 4181 int32_t _value;
duke@435 4182
duke@435 4183 int tag_at(int i) const { return (_value >> (i*2)) & 3; }
duke@435 4184
duke@435 4185 void print() const {
duke@435 4186 printf("%04x", _value & 0xFFFF);
duke@435 4187 }
duke@435 4188
duke@435 4189 };
duke@435 4190
duke@435 4191
duke@435 4192 class FPU_Register {
duke@435 4193 public:
duke@435 4194 int32_t _m0;
duke@435 4195 int32_t _m1;
duke@435 4196 int16_t _ex;
duke@435 4197
duke@435 4198 bool is_indefinite() const {
duke@435 4199 return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
duke@435 4200 }
duke@435 4201
duke@435 4202 void print() const {
duke@435 4203 char sign = (_ex < 0) ? '-' : '+';
duke@435 4204 const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : " ";
duke@435 4205 printf("%c%04hx.%08x%08x %s", sign, _ex, _m1, _m0, kind);
duke@435 4206 };
duke@435 4207
duke@435 4208 };
duke@435 4209
duke@435 4210
duke@435 4211 class FPU_State {
duke@435 4212 public:
duke@435 4213 enum {
duke@435 4214 register_size = 10,
duke@435 4215 number_of_registers = 8,
duke@435 4216 register_mask = 7
duke@435 4217 };
duke@435 4218
duke@435 4219 ControlWord _control_word;
duke@435 4220 StatusWord _status_word;
duke@435 4221 TagWord _tag_word;
duke@435 4222 int32_t _error_offset;
duke@435 4223 int32_t _error_selector;
duke@435 4224 int32_t _data_offset;
duke@435 4225 int32_t _data_selector;
duke@435 4226 int8_t _register[register_size * number_of_registers];
duke@435 4227
duke@435 4228 int tag_for_st(int i) const { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
duke@435 4229 FPU_Register* st(int i) const { return (FPU_Register*)&_register[register_size * i]; }
duke@435 4230
duke@435 4231 const char* tag_as_string(int tag) const {
duke@435 4232 switch (tag) {
duke@435 4233 case 0: return "valid";
duke@435 4234 case 1: return "zero";
duke@435 4235 case 2: return "special";
duke@435 4236 case 3: return "empty";
duke@435 4237 }
duke@435 4238 ShouldNotReachHere()
duke@435 4239 return NULL;
duke@435 4240 }
duke@435 4241
duke@435 4242 void print() const {
duke@435 4243 // print computation registers
duke@435 4244 { int t = _status_word.top();
duke@435 4245 for (int i = 0; i < number_of_registers; i++) {
duke@435 4246 int j = (i - t) & register_mask;
duke@435 4247 printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
duke@435 4248 st(j)->print();
duke@435 4249 printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
duke@435 4250 }
duke@435 4251 }
duke@435 4252 printf("\n");
duke@435 4253 // print control registers
duke@435 4254 printf("ctrl = "); _control_word.print(); printf("\n");
duke@435 4255 printf("stat = "); _status_word .print(); printf("\n");
duke@435 4256 printf("tags = "); _tag_word .print(); printf("\n");
duke@435 4257 }
duke@435 4258
duke@435 4259 };
duke@435 4260
duke@435 4261
duke@435 4262 class Flag_Register {
duke@435 4263 public:
duke@435 4264 int32_t _value;
duke@435 4265
duke@435 4266 bool overflow() const { return ((_value >> 11) & 1) != 0; }
duke@435 4267 bool direction() const { return ((_value >> 10) & 1) != 0; }
duke@435 4268 bool sign() const { return ((_value >> 7) & 1) != 0; }
duke@435 4269 bool zero() const { return ((_value >> 6) & 1) != 0; }
duke@435 4270 bool auxiliary_carry() const { return ((_value >> 4) & 1) != 0; }
duke@435 4271 bool parity() const { return ((_value >> 2) & 1) != 0; }
duke@435 4272 bool carry() const { return ((_value >> 0) & 1) != 0; }
duke@435 4273
duke@435 4274 void print() const {
duke@435 4275 // flags
duke@435 4276 char f[8];
duke@435 4277 f[0] = (overflow ()) ? 'O' : '-';
duke@435 4278 f[1] = (direction ()) ? 'D' : '-';
duke@435 4279 f[2] = (sign ()) ? 'S' : '-';
duke@435 4280 f[3] = (zero ()) ? 'Z' : '-';
duke@435 4281 f[4] = (auxiliary_carry()) ? 'A' : '-';
duke@435 4282 f[5] = (parity ()) ? 'P' : '-';
duke@435 4283 f[6] = (carry ()) ? 'C' : '-';
duke@435 4284 f[7] = '\x0';
duke@435 4285 // output
duke@435 4286 printf("%08x flags = %s", _value, f);
duke@435 4287 }
duke@435 4288
duke@435 4289 };
duke@435 4290
duke@435 4291
duke@435 4292 class IU_Register {
duke@435 4293 public:
duke@435 4294 int32_t _value;
duke@435 4295
duke@435 4296 void print() const {
duke@435 4297 printf("%08x %11d", _value, _value);
duke@435 4298 }
duke@435 4299
duke@435 4300 };
duke@435 4301
duke@435 4302
duke@435 4303 class IU_State {
duke@435 4304 public:
duke@435 4305 Flag_Register _eflags;
duke@435 4306 IU_Register _rdi;
duke@435 4307 IU_Register _rsi;
duke@435 4308 IU_Register _rbp;
duke@435 4309 IU_Register _rsp;
duke@435 4310 IU_Register _rbx;
duke@435 4311 IU_Register _rdx;
duke@435 4312 IU_Register _rcx;
duke@435 4313 IU_Register _rax;
duke@435 4314
duke@435 4315 void print() const {
duke@435 4316 // computation registers
duke@435 4317 printf("rax, = "); _rax.print(); printf("\n");
duke@435 4318 printf("rbx, = "); _rbx.print(); printf("\n");
duke@435 4319 printf("rcx = "); _rcx.print(); printf("\n");
duke@435 4320 printf("rdx = "); _rdx.print(); printf("\n");
duke@435 4321 printf("rdi = "); _rdi.print(); printf("\n");
duke@435 4322 printf("rsi = "); _rsi.print(); printf("\n");
duke@435 4323 printf("rbp, = "); _rbp.print(); printf("\n");
duke@435 4324 printf("rsp = "); _rsp.print(); printf("\n");
duke@435 4325 printf("\n");
duke@435 4326 // control registers
duke@435 4327 printf("flgs = "); _eflags.print(); printf("\n");
duke@435 4328 }
duke@435 4329 };
duke@435 4330
duke@435 4331
duke@435 4332 class CPU_State {
duke@435 4333 public:
duke@435 4334 FPU_State _fpu_state;
duke@435 4335 IU_State _iu_state;
duke@435 4336
duke@435 4337 void print() const {
duke@435 4338 printf("--------------------------------------------------\n");
duke@435 4339 _iu_state .print();
duke@435 4340 printf("\n");
duke@435 4341 _fpu_state.print();
duke@435 4342 printf("--------------------------------------------------\n");
duke@435 4343 }
duke@435 4344
duke@435 4345 };
duke@435 4346
duke@435 4347
duke@435 4348 static void _print_CPU_state(CPU_State* state) {
duke@435 4349 state->print();
duke@435 4350 };
duke@435 4351
duke@435 4352
duke@435 4353 void MacroAssembler::print_CPU_state() {
duke@435 4354 push_CPU_state();
duke@435 4355 pushl(rsp); // pass CPU state
duke@435 4356 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
duke@435 4357 addl(rsp, wordSize); // discard argument
duke@435 4358 pop_CPU_state();
duke@435 4359 }
duke@435 4360
duke@435 4361
duke@435 4362 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
duke@435 4363 static int counter = 0;
duke@435 4364 FPU_State* fs = &state->_fpu_state;
duke@435 4365 counter++;
duke@435 4366 // For leaf calls, only verify that the top few elements remain empty.
duke@435 4367 // We only need 1 empty at the top for C2 code.
duke@435 4368 if( stack_depth < 0 ) {
duke@435 4369 if( fs->tag_for_st(7) != 3 ) {
duke@435 4370 printf("FPR7 not empty\n");
duke@435 4371 state->print();
duke@435 4372 assert(false, "error");
duke@435 4373 return false;
duke@435 4374 }
duke@435 4375 return true; // All other stack states do not matter
duke@435 4376 }
duke@435 4377
duke@435 4378 assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
duke@435 4379 "bad FPU control word");
duke@435 4380
duke@435 4381 // compute stack depth
duke@435 4382 int i = 0;
duke@435 4383 while (i < FPU_State::number_of_registers && fs->tag_for_st(i) < 3) i++;
duke@435 4384 int d = i;
duke@435 4385 while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
duke@435 4386 // verify findings
duke@435 4387 if (i != FPU_State::number_of_registers) {
duke@435 4388 // stack not contiguous
duke@435 4389 printf("%s: stack not contiguous at ST%d\n", s, i);
duke@435 4390 state->print();
duke@435 4391 assert(false, "error");
duke@435 4392 return false;
duke@435 4393 }
duke@435 4394 // check if computed stack depth corresponds to expected stack depth
duke@435 4395 if (stack_depth < 0) {
duke@435 4396 // expected stack depth is -stack_depth or less
duke@435 4397 if (d > -stack_depth) {
duke@435 4398 // too many elements on the stack
duke@435 4399 printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
duke@435 4400 state->print();
duke@435 4401 assert(false, "error");
duke@435 4402 return false;
duke@435 4403 }
duke@435 4404 } else {
duke@435 4405 // expected stack depth is stack_depth
duke@435 4406 if (d != stack_depth) {
duke@435 4407 // wrong stack depth
duke@435 4408 printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
duke@435 4409 state->print();
duke@435 4410 assert(false, "error");
duke@435 4411 return false;
duke@435 4412 }
duke@435 4413 }
duke@435 4414 // everything is cool
duke@435 4415 return true;
duke@435 4416 }
duke@435 4417
duke@435 4418
duke@435 4419 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
duke@435 4420 if (!VerifyFPU) return;
duke@435 4421 push_CPU_state();
duke@435 4422 pushl(rsp); // pass CPU state
duke@435 4423 ExternalAddress msg((address) s);
duke@435 4424 // pass message string s
duke@435 4425 pushptr(msg.addr());
duke@435 4426 pushl(stack_depth); // pass stack depth
duke@435 4427 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
duke@435 4428 addl(rsp, 3 * wordSize); // discard arguments
duke@435 4429 // check for error
duke@435 4430 { Label L;
duke@435 4431 testl(rax, rax);
duke@435 4432 jcc(Assembler::notZero, L);
duke@435 4433 int3(); // break if error condition
duke@435 4434 bind(L);
duke@435 4435 }
duke@435 4436 pop_CPU_state();
duke@435 4437 }
duke@435 4438
duke@435 4439
duke@435 4440 void MacroAssembler::push_IU_state() {
duke@435 4441 pushad();
duke@435 4442 pushfd();
duke@435 4443 }
duke@435 4444
duke@435 4445
duke@435 4446 void MacroAssembler::pop_IU_state() {
duke@435 4447 popfd();
duke@435 4448 popad();
duke@435 4449 }
duke@435 4450
duke@435 4451
duke@435 4452 void MacroAssembler::push_FPU_state() {
duke@435 4453 subl(rsp, FPUStateSizeInWords * wordSize);
duke@435 4454 fnsave(Address(rsp, 0));
duke@435 4455 fwait();
duke@435 4456 }
duke@435 4457
duke@435 4458
duke@435 4459 void MacroAssembler::pop_FPU_state() {
duke@435 4460 frstor(Address(rsp, 0));
duke@435 4461 addl(rsp, FPUStateSizeInWords * wordSize);
duke@435 4462 }
duke@435 4463
duke@435 4464
duke@435 4465 void MacroAssembler::push_CPU_state() {
duke@435 4466 push_IU_state();
duke@435 4467 push_FPU_state();
duke@435 4468 }
duke@435 4469
duke@435 4470
duke@435 4471 void MacroAssembler::pop_CPU_state() {
duke@435 4472 pop_FPU_state();
duke@435 4473 pop_IU_state();
duke@435 4474 }
duke@435 4475
duke@435 4476
duke@435 4477 void MacroAssembler::push_callee_saved_registers() {
duke@435 4478 pushl(rsi);
duke@435 4479 pushl(rdi);
duke@435 4480 pushl(rdx);
duke@435 4481 pushl(rcx);
duke@435 4482 }
duke@435 4483
duke@435 4484
duke@435 4485 void MacroAssembler::pop_callee_saved_registers() {
duke@435 4486 popl(rcx);
duke@435 4487 popl(rdx);
duke@435 4488 popl(rdi);
duke@435 4489 popl(rsi);
duke@435 4490 }
duke@435 4491
duke@435 4492
duke@435 4493 void MacroAssembler::set_word_if_not_zero(Register dst) {
duke@435 4494 xorl(dst, dst);
duke@435 4495 set_byte_if_not_zero(dst);
duke@435 4496 }
duke@435 4497
duke@435 4498 // Write serialization page so VM thread can do a pseudo remote membar.
duke@435 4499 // We use the current thread pointer to calculate a thread specific
duke@435 4500 // offset to write to within the page. This minimizes bus traffic
duke@435 4501 // due to cache line collision.
duke@435 4502 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
duke@435 4503 movl(tmp, thread);
duke@435 4504 shrl(tmp, os::get_serialize_page_shift_count());
duke@435 4505 andl(tmp, (os::vm_page_size() - sizeof(int)));
duke@435 4506
duke@435 4507 Address index(noreg, tmp, Address::times_1);
duke@435 4508 ExternalAddress page(os::get_memory_serialize_page());
duke@435 4509
duke@435 4510 movptr(ArrayAddress(page, index), tmp);
duke@435 4511 }
duke@435 4512
duke@435 4513
duke@435 4514 void MacroAssembler::verify_tlab() {
duke@435 4515 #ifdef ASSERT
duke@435 4516 if (UseTLAB && VerifyOops) {
duke@435 4517 Label next, ok;
duke@435 4518 Register t1 = rsi;
duke@435 4519 Register thread_reg = rbx;
duke@435 4520
duke@435 4521 pushl(t1);
duke@435 4522 pushl(thread_reg);
duke@435 4523 get_thread(thread_reg);
duke@435 4524
duke@435 4525 movl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
duke@435 4526 cmpl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
duke@435 4527 jcc(Assembler::aboveEqual, next);
duke@435 4528 stop("assert(top >= start)");
duke@435 4529 should_not_reach_here();
duke@435 4530
duke@435 4531 bind(next);
duke@435 4532 movl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
duke@435 4533 cmpl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
duke@435 4534 jcc(Assembler::aboveEqual, ok);
duke@435 4535 stop("assert(top <= end)");
duke@435 4536 should_not_reach_here();
duke@435 4537
duke@435 4538 bind(ok);
duke@435 4539 popl(thread_reg);
duke@435 4540 popl(t1);
duke@435 4541 }
duke@435 4542 #endif
duke@435 4543 }
duke@435 4544
duke@435 4545
duke@435 4546 // Defines obj, preserves var_size_in_bytes
duke@435 4547 void MacroAssembler::eden_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes,
duke@435 4548 Register t1, Label& slow_case) {
duke@435 4549 assert(obj == rax, "obj must be in rax, for cmpxchg");
duke@435 4550 assert_different_registers(obj, var_size_in_bytes, t1);
duke@435 4551 Register end = t1;
duke@435 4552 Label retry;
duke@435 4553 bind(retry);
duke@435 4554 ExternalAddress heap_top((address) Universe::heap()->top_addr());
duke@435 4555 movptr(obj, heap_top);
duke@435 4556 if (var_size_in_bytes == noreg) {
duke@435 4557 leal(end, Address(obj, con_size_in_bytes));
duke@435 4558 } else {
duke@435 4559 leal(end, Address(obj, var_size_in_bytes, Address::times_1));
duke@435 4560 }
duke@435 4561 // if end < obj then we wrapped around => object too long => slow case
duke@435 4562 cmpl(end, obj);
duke@435 4563 jcc(Assembler::below, slow_case);
duke@435 4564 cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
duke@435 4565 jcc(Assembler::above, slow_case);
duke@435 4566 // Compare obj with the top addr, and if still equal, store the new top addr in
duke@435 4567 // end at the address of the top addr pointer. Sets ZF if was equal, and clears
duke@435 4568 // it otherwise. Use lock prefix for atomicity on MPs.
duke@435 4569 if (os::is_MP()) {
duke@435 4570 lock();
duke@435 4571 }
duke@435 4572 cmpxchgptr(end, heap_top);
duke@435 4573 jcc(Assembler::notEqual, retry);
duke@435 4574 }
duke@435 4575
duke@435 4576
duke@435 4577 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
duke@435 4578 void MacroAssembler::tlab_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes,
duke@435 4579 Register t1, Register t2, Label& slow_case) {
duke@435 4580 assert_different_registers(obj, t1, t2);
duke@435 4581 assert_different_registers(obj, var_size_in_bytes, t1);
duke@435 4582 Register end = t2;
duke@435 4583 Register thread = t1;
duke@435 4584
duke@435 4585 verify_tlab();
duke@435 4586
duke@435 4587 get_thread(thread);
duke@435 4588
duke@435 4589 movl(obj, Address(thread, JavaThread::tlab_top_offset()));
duke@435 4590 if (var_size_in_bytes == noreg) {
duke@435 4591 leal(end, Address(obj, con_size_in_bytes));
duke@435 4592 } else {
duke@435 4593 leal(end, Address(obj, var_size_in_bytes, Address::times_1));
duke@435 4594 }
duke@435 4595 cmpl(end, Address(thread, JavaThread::tlab_end_offset()));
duke@435 4596 jcc(Assembler::above, slow_case);
duke@435 4597
duke@435 4598 // update the tlab top pointer
duke@435 4599 movl(Address(thread, JavaThread::tlab_top_offset()), end);
duke@435 4600
duke@435 4601 // recover var_size_in_bytes if necessary
duke@435 4602 if (var_size_in_bytes == end) {
duke@435 4603 subl(var_size_in_bytes, obj);
duke@435 4604 }
duke@435 4605 verify_tlab();
duke@435 4606 }
duke@435 4607
duke@435 4608 // Preserves rbx, and rdx.
duke@435 4609 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
duke@435 4610 Register top = rax;
duke@435 4611 Register t1 = rcx;
duke@435 4612 Register t2 = rsi;
duke@435 4613 Register thread_reg = rdi;
duke@435 4614 assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
duke@435 4615 Label do_refill, discard_tlab;
duke@435 4616
duke@435 4617 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
duke@435 4618 // No allocation in the shared eden.
duke@435 4619 jmp(slow_case);
duke@435 4620 }
duke@435 4621
duke@435 4622 get_thread(thread_reg);
duke@435 4623
duke@435 4624 movl(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
duke@435 4625 movl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
duke@435 4626
duke@435 4627 // calculate amount of free space
duke@435 4628 subl(t1, top);
duke@435 4629 shrl(t1, LogHeapWordSize);
duke@435 4630
duke@435 4631 // Retain tlab and allocate object in shared space if
duke@435 4632 // the amount free in the tlab is too large to discard.
duke@435 4633 cmpl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
duke@435 4634 jcc(Assembler::lessEqual, discard_tlab);
duke@435 4635
duke@435 4636 // Retain
duke@435 4637 movl(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment());
duke@435 4638 addl(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
duke@435 4639 if (TLABStats) {
duke@435 4640 // increment number of slow_allocations
duke@435 4641 addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
duke@435 4642 }
duke@435 4643 jmp(try_eden);
duke@435 4644
duke@435 4645 bind(discard_tlab);
duke@435 4646 if (TLABStats) {
duke@435 4647 // increment number of refills
duke@435 4648 addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
duke@435 4649 // accumulate wastage -- t1 is amount free in tlab
duke@435 4650 addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
duke@435 4651 }
duke@435 4652
duke@435 4653 // if tlab is currently allocated (top or end != null) then
duke@435 4654 // fill [top, end + alignment_reserve) with array object
duke@435 4655 testl (top, top);
duke@435 4656 jcc(Assembler::zero, do_refill);
duke@435 4657
duke@435 4658 // set up the mark word
duke@435 4659 movl(Address(top, oopDesc::mark_offset_in_bytes()), (int)markOopDesc::prototype()->copy_set_hash(0x2));
duke@435 4660 // set the length to the remaining space
duke@435 4661 subl(t1, typeArrayOopDesc::header_size(T_INT));
duke@435 4662 addl(t1, ThreadLocalAllocBuffer::alignment_reserve());
duke@435 4663 shll(t1, log2_intptr(HeapWordSize/sizeof(jint)));
duke@435 4664 movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
duke@435 4665 // set klass to intArrayKlass
duke@435 4666 // dubious reloc why not an oop reloc?
duke@435 4667 movptr(t1, ExternalAddress((address) Universe::intArrayKlassObj_addr()));
duke@435 4668 movl(Address(top, oopDesc::klass_offset_in_bytes()), t1);
duke@435 4669
duke@435 4670 // refill the tlab with an eden allocation
duke@435 4671 bind(do_refill);
duke@435 4672 movl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
duke@435 4673 shll(t1, LogHeapWordSize);
duke@435 4674 // add object_size ??
duke@435 4675 eden_allocate(top, t1, 0, t2, slow_case);
duke@435 4676
duke@435 4677 // Check that t1 was preserved in eden_allocate.
duke@435 4678 #ifdef ASSERT
duke@435 4679 if (UseTLAB) {
duke@435 4680 Label ok;
duke@435 4681 Register tsize = rsi;
duke@435 4682 assert_different_registers(tsize, thread_reg, t1);
duke@435 4683 pushl(tsize);
duke@435 4684 movl(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
duke@435 4685 shll(tsize, LogHeapWordSize);
duke@435 4686 cmpl(t1, tsize);
duke@435 4687 jcc(Assembler::equal, ok);
duke@435 4688 stop("assert(t1 != tlab size)");
duke@435 4689 should_not_reach_here();
duke@435 4690
duke@435 4691 bind(ok);
duke@435 4692 popl(tsize);
duke@435 4693 }
duke@435 4694 #endif
duke@435 4695 movl(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
duke@435 4696 movl(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
duke@435 4697 addl(top, t1);
duke@435 4698 subl(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
duke@435 4699 movl(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
duke@435 4700 verify_tlab();
duke@435 4701 jmp(retry);
duke@435 4702 }
duke@435 4703
duke@435 4704
duke@435 4705 int MacroAssembler::biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg,
duke@435 4706 bool swap_reg_contains_mark,
duke@435 4707 Label& done, Label* slow_case,
duke@435 4708 BiasedLockingCounters* counters) {
duke@435 4709 assert(UseBiasedLocking, "why call this otherwise?");
duke@435 4710 assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
duke@435 4711 assert_different_registers(lock_reg, obj_reg, swap_reg);
duke@435 4712
duke@435 4713 if (PrintBiasedLockingStatistics && counters == NULL)
duke@435 4714 counters = BiasedLocking::counters();
duke@435 4715
duke@435 4716 bool need_tmp_reg = false;
duke@435 4717 if (tmp_reg == noreg) {
duke@435 4718 need_tmp_reg = true;
duke@435 4719 tmp_reg = lock_reg;
duke@435 4720 } else {
duke@435 4721 assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
duke@435 4722 }
duke@435 4723 assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
duke@435 4724 Address mark_addr (obj_reg, oopDesc::mark_offset_in_bytes());
duke@435 4725 Address klass_addr (obj_reg, oopDesc::klass_offset_in_bytes());
duke@435 4726 Address saved_mark_addr(lock_reg, 0);
duke@435 4727
duke@435 4728 // Biased locking
duke@435 4729 // See whether the lock is currently biased toward our thread and
duke@435 4730 // whether the epoch is still valid
duke@435 4731 // Note that the runtime guarantees sufficient alignment of JavaThread
duke@435 4732 // pointers to allow age to be placed into low bits
duke@435 4733 // First check to see whether biasing is even enabled for this object
duke@435 4734 Label cas_label;
duke@435 4735 int null_check_offset = -1;
duke@435 4736 if (!swap_reg_contains_mark) {
duke@435 4737 null_check_offset = offset();
duke@435 4738 movl(swap_reg, mark_addr);
duke@435 4739 }
duke@435 4740 if (need_tmp_reg) {
duke@435 4741 pushl(tmp_reg);
duke@435 4742 }
duke@435 4743 movl(tmp_reg, swap_reg);
duke@435 4744 andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
duke@435 4745 cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
duke@435 4746 if (need_tmp_reg) {
duke@435 4747 popl(tmp_reg);
duke@435 4748 }
duke@435 4749 jcc(Assembler::notEqual, cas_label);
duke@435 4750 // The bias pattern is present in the object's header. Need to check
duke@435 4751 // whether the bias owner and the epoch are both still current.
duke@435 4752 // Note that because there is no current thread register on x86 we
duke@435 4753 // need to store off the mark word we read out of the object to
duke@435 4754 // avoid reloading it and needing to recheck invariants below. This
duke@435 4755 // store is unfortunate but it makes the overall code shorter and
duke@435 4756 // simpler.
duke@435 4757 movl(saved_mark_addr, swap_reg);
duke@435 4758 if (need_tmp_reg) {
duke@435 4759 pushl(tmp_reg);
duke@435 4760 }
duke@435 4761 get_thread(tmp_reg);
duke@435 4762 xorl(swap_reg, tmp_reg);
duke@435 4763 if (swap_reg_contains_mark) {
duke@435 4764 null_check_offset = offset();
duke@435 4765 }
duke@435 4766 movl(tmp_reg, klass_addr);
duke@435 4767 xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
duke@435 4768 andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
duke@435 4769 if (need_tmp_reg) {
duke@435 4770 popl(tmp_reg);
duke@435 4771 }
duke@435 4772 if (counters != NULL) {
duke@435 4773 cond_inc32(Assembler::zero,
duke@435 4774 ExternalAddress((address)counters->biased_lock_entry_count_addr()));
duke@435 4775 }
duke@435 4776 jcc(Assembler::equal, done);
duke@435 4777
duke@435 4778 Label try_revoke_bias;
duke@435 4779 Label try_rebias;
duke@435 4780
duke@435 4781 // At this point we know that the header has the bias pattern and
duke@435 4782 // that we are not the bias owner in the current epoch. We need to
duke@435 4783 // figure out more details about the state of the header in order to
duke@435 4784 // know what operations can be legally performed on the object's
duke@435 4785 // header.
duke@435 4786
duke@435 4787 // If the low three bits in the xor result aren't clear, that means
duke@435 4788 // the prototype header is no longer biased and we have to revoke
duke@435 4789 // the bias on this object.
duke@435 4790 testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
duke@435 4791 jcc(Assembler::notZero, try_revoke_bias);
duke@435 4792
duke@435 4793 // Biasing is still enabled for this data type. See whether the
duke@435 4794 // epoch of the current bias is still valid, meaning that the epoch
duke@435 4795 // bits of the mark word are equal to the epoch bits of the
duke@435 4796 // prototype header. (Note that the prototype header's epoch bits
duke@435 4797 // only change at a safepoint.) If not, attempt to rebias the object
duke@435 4798 // toward the current thread. Note that we must be absolutely sure
duke@435 4799 // that the current epoch is invalid in order to do this because
duke@435 4800 // otherwise the manipulations it performs on the mark word are
duke@435 4801 // illegal.
duke@435 4802 testl(swap_reg, markOopDesc::epoch_mask_in_place);
duke@435 4803 jcc(Assembler::notZero, try_rebias);
duke@435 4804
duke@435 4805 // The epoch of the current bias is still valid but we know nothing
duke@435 4806 // about the owner; it might be set or it might be clear. Try to
duke@435 4807 // acquire the bias of the object using an atomic operation. If this
duke@435 4808 // fails we will go in to the runtime to revoke the object's bias.
duke@435 4809 // Note that we first construct the presumed unbiased header so we
duke@435 4810 // don't accidentally blow away another thread's valid bias.
duke@435 4811 movl(swap_reg, saved_mark_addr);
duke@435 4812 andl(swap_reg,
duke@435 4813 markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
duke@435 4814 if (need_tmp_reg) {
duke@435 4815 pushl(tmp_reg);
duke@435 4816 }
duke@435 4817 get_thread(tmp_reg);
duke@435 4818 orl(tmp_reg, swap_reg);
duke@435 4819 if (os::is_MP()) {
duke@435 4820 lock();
duke@435 4821 }
duke@435 4822 cmpxchg(tmp_reg, Address(obj_reg, 0));
duke@435 4823 if (need_tmp_reg) {
duke@435 4824 popl(tmp_reg);
duke@435 4825 }
duke@435 4826 // If the biasing toward our thread failed, this means that
duke@435 4827 // another thread succeeded in biasing it toward itself and we
duke@435 4828 // need to revoke that bias. The revocation will occur in the
duke@435 4829 // interpreter runtime in the slow case.
duke@435 4830 if (counters != NULL) {
duke@435 4831 cond_inc32(Assembler::zero,
duke@435 4832 ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
duke@435 4833 }
duke@435 4834 if (slow_case != NULL) {
duke@435 4835 jcc(Assembler::notZero, *slow_case);
duke@435 4836 }
duke@435 4837 jmp(done);
duke@435 4838
duke@435 4839 bind(try_rebias);
duke@435 4840 // At this point we know the epoch has expired, meaning that the
duke@435 4841 // current "bias owner", if any, is actually invalid. Under these
duke@435 4842 // circumstances _only_, we are allowed to use the current header's
duke@435 4843 // value as the comparison value when doing the cas to acquire the
duke@435 4844 // bias in the current epoch. In other words, we allow transfer of
duke@435 4845 // the bias from one thread to another directly in this situation.
duke@435 4846 //
duke@435 4847 // FIXME: due to a lack of registers we currently blow away the age
duke@435 4848 // bits in this situation. Should attempt to preserve them.
duke@435 4849 if (need_tmp_reg) {
duke@435 4850 pushl(tmp_reg);
duke@435 4851 }
duke@435 4852 get_thread(tmp_reg);
duke@435 4853 movl(swap_reg, klass_addr);
duke@435 4854 orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
duke@435 4855 movl(swap_reg, saved_mark_addr);
duke@435 4856 if (os::is_MP()) {
duke@435 4857 lock();
duke@435 4858 }
duke@435 4859 cmpxchg(tmp_reg, Address(obj_reg, 0));
duke@435 4860 if (need_tmp_reg) {
duke@435 4861 popl(tmp_reg);
duke@435 4862 }
duke@435 4863 // If the biasing toward our thread failed, then another thread
duke@435 4864 // succeeded in biasing it toward itself and we need to revoke that
duke@435 4865 // bias. The revocation will occur in the runtime in the slow case.
duke@435 4866 if (counters != NULL) {
duke@435 4867 cond_inc32(Assembler::zero,
duke@435 4868 ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
duke@435 4869 }
duke@435 4870 if (slow_case != NULL) {
duke@435 4871 jcc(Assembler::notZero, *slow_case);
duke@435 4872 }
duke@435 4873 jmp(done);
duke@435 4874
duke@435 4875 bind(try_revoke_bias);
duke@435 4876 // The prototype mark in the klass doesn't have the bias bit set any
duke@435 4877 // more, indicating that objects of this data type are not supposed
duke@435 4878 // to be biased any more. We are going to try to reset the mark of
duke@435 4879 // this object to the prototype value and fall through to the
duke@435 4880 // CAS-based locking scheme. Note that if our CAS fails, it means
duke@435 4881 // that another thread raced us for the privilege of revoking the
duke@435 4882 // bias of this particular object, so it's okay to continue in the
duke@435 4883 // normal locking code.
duke@435 4884 //
duke@435 4885 // FIXME: due to a lack of registers we currently blow away the age
duke@435 4886 // bits in this situation. Should attempt to preserve them.
duke@435 4887 movl(swap_reg, saved_mark_addr);
duke@435 4888 if (need_tmp_reg) {
duke@435 4889 pushl(tmp_reg);
duke@435 4890 }
duke@435 4891 movl(tmp_reg, klass_addr);
duke@435 4892 movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
duke@435 4893 if (os::is_MP()) {
duke@435 4894 lock();
duke@435 4895 }
duke@435 4896 cmpxchg(tmp_reg, Address(obj_reg, 0));
duke@435 4897 if (need_tmp_reg) {
duke@435 4898 popl(tmp_reg);
duke@435 4899 }
duke@435 4900 // Fall through to the normal CAS-based lock, because no matter what
duke@435 4901 // the result of the above CAS, some thread must have succeeded in
duke@435 4902 // removing the bias bit from the object's header.
duke@435 4903 if (counters != NULL) {
duke@435 4904 cond_inc32(Assembler::zero,
duke@435 4905 ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
duke@435 4906 }
duke@435 4907
duke@435 4908 bind(cas_label);
duke@435 4909
duke@435 4910 return null_check_offset;
duke@435 4911 }
duke@435 4912
duke@435 4913
duke@435 4914 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
duke@435 4915 assert(UseBiasedLocking, "why call this otherwise?");
duke@435 4916
duke@435 4917 // Check for biased locking unlock case, which is a no-op
duke@435 4918 // Note: we do not have to check the thread ID for two reasons.
duke@435 4919 // First, the interpreter checks for IllegalMonitorStateException at
duke@435 4920 // a higher level. Second, if the bias was revoked while we held the
duke@435 4921 // lock, the object could not be rebiased toward another thread, so
duke@435 4922 // the bias bit would be clear.
duke@435 4923 movl(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
duke@435 4924 andl(temp_reg, markOopDesc::biased_lock_mask_in_place);
duke@435 4925 cmpl(temp_reg, markOopDesc::biased_lock_pattern);
duke@435 4926 jcc(Assembler::equal, done);
duke@435 4927 }
duke@435 4928
duke@435 4929
duke@435 4930 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
duke@435 4931 switch (cond) {
duke@435 4932 // Note some conditions are synonyms for others
duke@435 4933 case Assembler::zero: return Assembler::notZero;
duke@435 4934 case Assembler::notZero: return Assembler::zero;
duke@435 4935 case Assembler::less: return Assembler::greaterEqual;
duke@435 4936 case Assembler::lessEqual: return Assembler::greater;
duke@435 4937 case Assembler::greater: return Assembler::lessEqual;
duke@435 4938 case Assembler::greaterEqual: return Assembler::less;
duke@435 4939 case Assembler::below: return Assembler::aboveEqual;
duke@435 4940 case Assembler::belowEqual: return Assembler::above;
duke@435 4941 case Assembler::above: return Assembler::belowEqual;
duke@435 4942 case Assembler::aboveEqual: return Assembler::below;
duke@435 4943 case Assembler::overflow: return Assembler::noOverflow;
duke@435 4944 case Assembler::noOverflow: return Assembler::overflow;
duke@435 4945 case Assembler::negative: return Assembler::positive;
duke@435 4946 case Assembler::positive: return Assembler::negative;
duke@435 4947 case Assembler::parity: return Assembler::noParity;
duke@435 4948 case Assembler::noParity: return Assembler::parity;
duke@435 4949 }
duke@435 4950 ShouldNotReachHere(); return Assembler::overflow;
duke@435 4951 }
duke@435 4952
duke@435 4953
duke@435 4954 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
duke@435 4955 Condition negated_cond = negate_condition(cond);
duke@435 4956 Label L;
duke@435 4957 jcc(negated_cond, L);
duke@435 4958 atomic_incl(counter_addr);
duke@435 4959 bind(L);
duke@435 4960 }
duke@435 4961
duke@435 4962 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
duke@435 4963 pushfd();
duke@435 4964 if (os::is_MP())
duke@435 4965 lock();
duke@435 4966 increment(counter_addr);
duke@435 4967 popfd();
duke@435 4968 }
duke@435 4969
duke@435 4970 SkipIfEqual::SkipIfEqual(
duke@435 4971 MacroAssembler* masm, const bool* flag_addr, bool value) {
duke@435 4972 _masm = masm;
duke@435 4973 _masm->cmp8(ExternalAddress((address)flag_addr), value);
duke@435 4974 _masm->jcc(Assembler::equal, _label);
duke@435 4975 }
duke@435 4976
duke@435 4977 SkipIfEqual::~SkipIfEqual() {
duke@435 4978 _masm->bind(_label);
duke@435 4979 }
duke@435 4980
duke@435 4981
duke@435 4982 // Writes to stack successive pages until offset reached to check for
duke@435 4983 // stack overflow + shadow pages. This clobbers tmp.
duke@435 4984 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
duke@435 4985 movl(tmp, rsp);
duke@435 4986 // Bang stack for total size given plus shadow page size.
duke@435 4987 // Bang one page at a time because large size can bang beyond yellow and
duke@435 4988 // red zones.
duke@435 4989 Label loop;
duke@435 4990 bind(loop);
duke@435 4991 movl(Address(tmp, (-os::vm_page_size())), size );
duke@435 4992 subl(tmp, os::vm_page_size());
duke@435 4993 subl(size, os::vm_page_size());
duke@435 4994 jcc(Assembler::greater, loop);
duke@435 4995
duke@435 4996 // Bang down shadow pages too.
duke@435 4997 // The -1 because we already subtracted 1 page.
duke@435 4998 for (int i = 0; i< StackShadowPages-1; i++) {
duke@435 4999 movl(Address(tmp, (-i*os::vm_page_size())), size );
duke@435 5000 }
duke@435 5001 }

mercurial