src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.hpp

Wed, 24 Apr 2013 20:13:37 +0200

author
stefank
date
Wed, 24 Apr 2013 20:13:37 +0200
changeset 5018
b06ac540229e
parent 5011
a08c80e9e1e5
child 5159
001ec9515f84
permissions
-rw-r--r--

8013132: Add a flag to turn off the output of the verbose verification code
Reviewed-by: johnc, brutisso

duke@435 1 /*
jcoomes@3540 2 * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/parallelScavenge/objectStartArray.hpp"
stefank@2314 29 #include "gc_implementation/parallelScavenge/parMarkBitMap.hpp"
stefank@2314 30 #include "gc_implementation/parallelScavenge/psCompactionManager.hpp"
stefank@2314 31 #include "gc_implementation/shared/collectorCounters.hpp"
stefank@2314 32 #include "gc_implementation/shared/markSweep.hpp"
stefank@2314 33 #include "gc_implementation/shared/mutableSpace.hpp"
stefank@2314 34 #include "memory/sharedHeap.hpp"
stefank@2314 35 #include "oops/oop.hpp"
stefank@2314 36
duke@435 37 class ParallelScavengeHeap;
duke@435 38 class PSAdaptiveSizePolicy;
duke@435 39 class PSYoungGen;
duke@435 40 class PSOldGen;
duke@435 41 class ParCompactionManager;
duke@435 42 class ParallelTaskTerminator;
duke@435 43 class PSParallelCompact;
duke@435 44 class GCTaskManager;
duke@435 45 class GCTaskQueue;
duke@435 46 class PreGCValues;
duke@435 47 class MoveAndUpdateClosure;
duke@435 48 class RefProcTaskExecutor;
duke@435 49
jcoomes@917 50 // The SplitInfo class holds the information needed to 'split' a source region
jcoomes@917 51 // so that the live data can be copied to two destination *spaces*. Normally,
jcoomes@917 52 // all the live data in a region is copied to a single destination space (e.g.,
jcoomes@917 53 // everything live in a region in eden is copied entirely into the old gen).
jcoomes@917 54 // However, when the heap is nearly full, all the live data in eden may not fit
jcoomes@917 55 // into the old gen. Copying only some of the regions from eden to old gen
jcoomes@917 56 // requires finding a region that does not contain a partial object (i.e., no
jcoomes@917 57 // live object crosses the region boundary) somewhere near the last object that
jcoomes@917 58 // does fit into the old gen. Since it's not always possible to find such a
jcoomes@917 59 // region, splitting is necessary for predictable behavior.
jcoomes@917 60 //
jcoomes@917 61 // A region is always split at the end of the partial object. This avoids
jcoomes@917 62 // additional tests when calculating the new location of a pointer, which is a
jcoomes@917 63 // very hot code path. The partial object and everything to its left will be
jcoomes@917 64 // copied to another space (call it dest_space_1). The live data to the right
jcoomes@917 65 // of the partial object will be copied either within the space itself, or to a
jcoomes@917 66 // different destination space (distinct from dest_space_1).
jcoomes@917 67 //
jcoomes@917 68 // Split points are identified during the summary phase, when region
jcoomes@917 69 // destinations are computed: data about the split, including the
jcoomes@917 70 // partial_object_size, is recorded in a SplitInfo record and the
jcoomes@917 71 // partial_object_size field in the summary data is set to zero. The zeroing is
jcoomes@917 72 // possible (and necessary) since the partial object will move to a different
jcoomes@917 73 // destination space than anything to its right, thus the partial object should
jcoomes@917 74 // not affect the locations of any objects to its right.
jcoomes@917 75 //
jcoomes@917 76 // The recorded data is used during the compaction phase, but only rarely: when
jcoomes@917 77 // the partial object on the split region will be copied across a destination
jcoomes@917 78 // region boundary. This test is made once each time a region is filled, and is
jcoomes@917 79 // a simple address comparison, so the overhead is negligible (see
jcoomes@917 80 // PSParallelCompact::first_src_addr()).
jcoomes@917 81 //
jcoomes@917 82 // Notes:
jcoomes@917 83 //
jcoomes@917 84 // Only regions with partial objects are split; a region without a partial
jcoomes@917 85 // object does not need any extra bookkeeping.
jcoomes@917 86 //
jcoomes@917 87 // At most one region is split per space, so the amount of data required is
jcoomes@917 88 // constant.
jcoomes@917 89 //
jcoomes@917 90 // A region is split only when the destination space would overflow. Once that
jcoomes@917 91 // happens, the destination space is abandoned and no other data (even from
jcoomes@917 92 // other source spaces) is targeted to that destination space. Abandoning the
jcoomes@917 93 // destination space may leave a somewhat large unused area at the end, if a
jcoomes@917 94 // large object caused the overflow.
jcoomes@917 95 //
jcoomes@917 96 // Future work:
jcoomes@917 97 //
jcoomes@917 98 // More bookkeeping would be required to continue to use the destination space.
jcoomes@917 99 // The most general solution would allow data from regions in two different
jcoomes@917 100 // source spaces to be "joined" in a single destination region. At the very
jcoomes@917 101 // least, additional code would be required in next_src_region() to detect the
jcoomes@917 102 // join and skip to an out-of-order source region. If the join region was also
jcoomes@917 103 // the last destination region to which a split region was copied (the most
jcoomes@917 104 // likely case), then additional work would be needed to get fill_region() to
jcoomes@917 105 // stop iteration and switch to a new source region at the right point. Basic
jcoomes@917 106 // idea would be to use a fake value for the top of the source space. It is
jcoomes@917 107 // doable, if a bit tricky.
jcoomes@917 108 //
jcoomes@917 109 // A simpler (but less general) solution would fill the remainder of the
jcoomes@917 110 // destination region with a dummy object and continue filling the next
jcoomes@917 111 // destination region.
jcoomes@917 112
jcoomes@917 113 class SplitInfo
jcoomes@917 114 {
jcoomes@917 115 public:
jcoomes@917 116 // Return true if this split info is valid (i.e., if a split has been
jcoomes@917 117 // recorded). The very first region cannot have a partial object and thus is
jcoomes@917 118 // never split, so 0 is the 'invalid' value.
jcoomes@917 119 bool is_valid() const { return _src_region_idx > 0; }
jcoomes@917 120
jcoomes@917 121 // Return true if this split holds data for the specified source region.
jcoomes@917 122 inline bool is_split(size_t source_region) const;
jcoomes@917 123
jcoomes@917 124 // The index of the split region, the size of the partial object on that
jcoomes@917 125 // region and the destination of the partial object.
jcoomes@917 126 size_t src_region_idx() const { return _src_region_idx; }
jcoomes@917 127 size_t partial_obj_size() const { return _partial_obj_size; }
jcoomes@917 128 HeapWord* destination() const { return _destination; }
jcoomes@917 129
jcoomes@917 130 // The destination count of the partial object referenced by this split
jcoomes@917 131 // (either 1 or 2). This must be added to the destination count of the
jcoomes@917 132 // remainder of the source region.
jcoomes@917 133 unsigned int destination_count() const { return _destination_count; }
jcoomes@917 134
jcoomes@917 135 // If a word within the partial object will be written to the first word of a
jcoomes@917 136 // destination region, this is the address of the destination region;
jcoomes@917 137 // otherwise this is NULL.
jcoomes@917 138 HeapWord* dest_region_addr() const { return _dest_region_addr; }
jcoomes@917 139
jcoomes@917 140 // If a word within the partial object will be written to the first word of a
jcoomes@917 141 // destination region, this is the address of that word within the partial
jcoomes@917 142 // object; otherwise this is NULL.
jcoomes@917 143 HeapWord* first_src_addr() const { return _first_src_addr; }
jcoomes@917 144
jcoomes@917 145 // Record the data necessary to split the region src_region_idx.
jcoomes@917 146 void record(size_t src_region_idx, size_t partial_obj_size,
jcoomes@917 147 HeapWord* destination);
jcoomes@917 148
jcoomes@917 149 void clear();
jcoomes@917 150
jcoomes@917 151 DEBUG_ONLY(void verify_clear();)
jcoomes@917 152
jcoomes@917 153 private:
jcoomes@917 154 size_t _src_region_idx;
jcoomes@917 155 size_t _partial_obj_size;
jcoomes@917 156 HeapWord* _destination;
jcoomes@917 157 unsigned int _destination_count;
jcoomes@917 158 HeapWord* _dest_region_addr;
jcoomes@917 159 HeapWord* _first_src_addr;
jcoomes@917 160 };
jcoomes@917 161
jcoomes@917 162 inline bool SplitInfo::is_split(size_t region_idx) const
jcoomes@917 163 {
jcoomes@917 164 return _src_region_idx == region_idx && is_valid();
jcoomes@917 165 }
jcoomes@917 166
duke@435 167 class SpaceInfo
duke@435 168 {
duke@435 169 public:
duke@435 170 MutableSpace* space() const { return _space; }
duke@435 171
duke@435 172 // Where the free space will start after the collection. Valid only after the
duke@435 173 // summary phase completes.
duke@435 174 HeapWord* new_top() const { return _new_top; }
duke@435 175
duke@435 176 // Allows new_top to be set.
duke@435 177 HeapWord** new_top_addr() { return &_new_top; }
duke@435 178
duke@435 179 // Where the smallest allowable dense prefix ends (used only for perm gen).
duke@435 180 HeapWord* min_dense_prefix() const { return _min_dense_prefix; }
duke@435 181
duke@435 182 // Where the dense prefix ends, or the compacted region begins.
duke@435 183 HeapWord* dense_prefix() const { return _dense_prefix; }
duke@435 184
duke@435 185 // The start array for the (generation containing the) space, or NULL if there
duke@435 186 // is no start array.
duke@435 187 ObjectStartArray* start_array() const { return _start_array; }
duke@435 188
jcoomes@917 189 SplitInfo& split_info() { return _split_info; }
jcoomes@917 190
duke@435 191 void set_space(MutableSpace* s) { _space = s; }
duke@435 192 void set_new_top(HeapWord* addr) { _new_top = addr; }
duke@435 193 void set_min_dense_prefix(HeapWord* addr) { _min_dense_prefix = addr; }
duke@435 194 void set_dense_prefix(HeapWord* addr) { _dense_prefix = addr; }
duke@435 195 void set_start_array(ObjectStartArray* s) { _start_array = s; }
duke@435 196
jcoomes@917 197 void publish_new_top() const { _space->set_top(_new_top); }
jcoomes@917 198
duke@435 199 private:
duke@435 200 MutableSpace* _space;
duke@435 201 HeapWord* _new_top;
duke@435 202 HeapWord* _min_dense_prefix;
duke@435 203 HeapWord* _dense_prefix;
duke@435 204 ObjectStartArray* _start_array;
jcoomes@917 205 SplitInfo _split_info;
duke@435 206 };
duke@435 207
duke@435 208 class ParallelCompactData
duke@435 209 {
duke@435 210 public:
duke@435 211 // Sizes are in HeapWords, unless indicated otherwise.
jcoomes@810 212 static const size_t Log2RegionSize;
jcoomes@810 213 static const size_t RegionSize;
jcoomes@810 214 static const size_t RegionSizeBytes;
duke@435 215
jcoomes@810 216 // Mask for the bits in a size_t to get an offset within a region.
jcoomes@810 217 static const size_t RegionSizeOffsetMask;
jcoomes@810 218 // Mask for the bits in a pointer to get an offset within a region.
jcoomes@810 219 static const size_t RegionAddrOffsetMask;
jcoomes@810 220 // Mask for the bits in a pointer to get the address of the start of a region.
jcoomes@810 221 static const size_t RegionAddrMask;
duke@435 222
jcoomes@810 223 class RegionData
duke@435 224 {
duke@435 225 public:
jcoomes@810 226 // Destination address of the region.
duke@435 227 HeapWord* destination() const { return _destination; }
duke@435 228
jcoomes@810 229 // The first region containing data destined for this region.
jcoomes@810 230 size_t source_region() const { return _source_region; }
duke@435 231
jcoomes@810 232 // The object (if any) starting in this region and ending in a different
jcoomes@810 233 // region that could not be updated during the main (parallel) compaction
duke@435 234 // phase. This is different from _partial_obj_addr, which is an object that
jcoomes@810 235 // extends onto a source region. However, the two uses do not overlap in
duke@435 236 // time, so the same field is used to save space.
duke@435 237 HeapWord* deferred_obj_addr() const { return _partial_obj_addr; }
duke@435 238
jcoomes@810 239 // The starting address of the partial object extending onto the region.
duke@435 240 HeapWord* partial_obj_addr() const { return _partial_obj_addr; }
duke@435 241
jcoomes@810 242 // Size of the partial object extending onto the region (words).
duke@435 243 size_t partial_obj_size() const { return _partial_obj_size; }
duke@435 244
jcoomes@810 245 // Size of live data that lies within this region due to objects that start
jcoomes@810 246 // in this region (words). This does not include the partial object
jcoomes@810 247 // extending onto the region (if any), or the part of an object that extends
jcoomes@810 248 // onto the next region (if any).
duke@435 249 size_t live_obj_size() const { return _dc_and_los & los_mask; }
duke@435 250
jcoomes@810 251 // Total live data that lies within the region (words).
duke@435 252 size_t data_size() const { return partial_obj_size() + live_obj_size(); }
duke@435 253
jcoomes@810 254 // The destination_count is the number of other regions to which data from
jcoomes@810 255 // this region will be copied. At the end of the summary phase, the valid
duke@435 256 // values of destination_count are
duke@435 257 //
jcoomes@810 258 // 0 - data from the region will be compacted completely into itself, or the
jcoomes@810 259 // region is empty. The region can be claimed and then filled.
jcoomes@810 260 // 1 - data from the region will be compacted into 1 other region; some
jcoomes@810 261 // data from the region may also be compacted into the region itself.
jcoomes@810 262 // 2 - data from the region will be copied to 2 other regions.
duke@435 263 //
jcoomes@810 264 // During compaction as regions are emptied, the destination_count is
duke@435 265 // decremented (atomically) and when it reaches 0, it can be claimed and
duke@435 266 // then filled.
duke@435 267 //
jcoomes@810 268 // A region is claimed for processing by atomically changing the
jcoomes@810 269 // destination_count to the claimed value (dc_claimed). After a region has
duke@435 270 // been filled, the destination_count should be set to the completed value
duke@435 271 // (dc_completed).
duke@435 272 inline uint destination_count() const;
duke@435 273 inline uint destination_count_raw() const;
duke@435 274
jcoomes@810 275 // The location of the java heap data that corresponds to this region.
duke@435 276 inline HeapWord* data_location() const;
duke@435 277
jcoomes@810 278 // The highest address referenced by objects in this region.
duke@435 279 inline HeapWord* highest_ref() const;
duke@435 280
jcoomes@810 281 // Whether this region is available to be claimed, has been claimed, or has
duke@435 282 // been completed.
duke@435 283 //
jcoomes@810 284 // Minor subtlety: claimed() returns true if the region is marked
jcoomes@810 285 // completed(), which is desirable since a region must be claimed before it
duke@435 286 // can be completed.
duke@435 287 bool available() const { return _dc_and_los < dc_one; }
duke@435 288 bool claimed() const { return _dc_and_los >= dc_claimed; }
duke@435 289 bool completed() const { return _dc_and_los >= dc_completed; }
duke@435 290
duke@435 291 // These are not atomic.
duke@435 292 void set_destination(HeapWord* addr) { _destination = addr; }
jcoomes@810 293 void set_source_region(size_t region) { _source_region = region; }
duke@435 294 void set_deferred_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
duke@435 295 void set_partial_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
duke@435 296 void set_partial_obj_size(size_t words) {
jcoomes@810 297 _partial_obj_size = (region_sz_t) words;
duke@435 298 }
duke@435 299
duke@435 300 inline void set_destination_count(uint count);
duke@435 301 inline void set_live_obj_size(size_t words);
duke@435 302 inline void set_data_location(HeapWord* addr);
duke@435 303 inline void set_completed();
duke@435 304 inline bool claim_unsafe();
duke@435 305
duke@435 306 // These are atomic.
duke@435 307 inline void add_live_obj(size_t words);
duke@435 308 inline void set_highest_ref(HeapWord* addr);
duke@435 309 inline void decrement_destination_count();
duke@435 310 inline bool claim();
duke@435 311
duke@435 312 private:
jcoomes@810 313 // The type used to represent object sizes within a region.
jcoomes@810 314 typedef uint region_sz_t;
duke@435 315
duke@435 316 // Constants for manipulating the _dc_and_los field, which holds both the
duke@435 317 // destination count and live obj size. The live obj size lives at the
duke@435 318 // least significant end so no masking is necessary when adding.
jcoomes@810 319 static const region_sz_t dc_shift; // Shift amount.
jcoomes@810 320 static const region_sz_t dc_mask; // Mask for destination count.
jcoomes@810 321 static const region_sz_t dc_one; // 1, shifted appropriately.
jcoomes@810 322 static const region_sz_t dc_claimed; // Region has been claimed.
jcoomes@810 323 static const region_sz_t dc_completed; // Region has been completed.
jcoomes@810 324 static const region_sz_t los_mask; // Mask for live obj size.
duke@435 325
jcoomes@810 326 HeapWord* _destination;
jcoomes@810 327 size_t _source_region;
jcoomes@810 328 HeapWord* _partial_obj_addr;
jcoomes@810 329 region_sz_t _partial_obj_size;
jcoomes@810 330 region_sz_t volatile _dc_and_los;
duke@435 331 #ifdef ASSERT
duke@435 332 // These enable optimizations that are only partially implemented. Use
duke@435 333 // debug builds to prevent the code fragments from breaking.
jcoomes@810 334 HeapWord* _data_location;
jcoomes@810 335 HeapWord* _highest_ref;
duke@435 336 #endif // #ifdef ASSERT
duke@435 337
duke@435 338 #ifdef ASSERT
duke@435 339 public:
jcoomes@810 340 uint _pushed; // 0 until region is pushed onto a worker's stack
duke@435 341 private:
duke@435 342 #endif
duke@435 343 };
duke@435 344
duke@435 345 public:
duke@435 346 ParallelCompactData();
duke@435 347 bool initialize(MemRegion covered_region);
duke@435 348
jcoomes@810 349 size_t region_count() const { return _region_count; }
duke@435 350
jcoomes@810 351 // Convert region indices to/from RegionData pointers.
jcoomes@810 352 inline RegionData* region(size_t region_idx) const;
jcoomes@810 353 inline size_t region(const RegionData* const region_ptr) const;
duke@435 354
jcoomes@810 355 // Returns true if the given address is contained within the region
jcoomes@810 356 bool region_contains(size_t region_index, HeapWord* addr);
duke@435 357
duke@435 358 void add_obj(HeapWord* addr, size_t len);
duke@435 359 void add_obj(oop p, size_t len) { add_obj((HeapWord*)p, len); }
duke@435 360
jcoomes@810 361 // Fill in the regions covering [beg, end) so that no data moves; i.e., the
jcoomes@810 362 // destination of region n is simply the start of region n. The argument beg
jcoomes@810 363 // must be region-aligned; end need not be.
duke@435 364 void summarize_dense_prefix(HeapWord* beg, HeapWord* end);
duke@435 365
jcoomes@917 366 HeapWord* summarize_split_space(size_t src_region, SplitInfo& split_info,
jcoomes@917 367 HeapWord* destination, HeapWord* target_end,
jcoomes@917 368 HeapWord** target_next);
jcoomes@917 369 bool summarize(SplitInfo& split_info,
duke@435 370 HeapWord* source_beg, HeapWord* source_end,
jcoomes@917 371 HeapWord** source_next,
jcoomes@917 372 HeapWord* target_beg, HeapWord* target_end,
jcoomes@917 373 HeapWord** target_next);
duke@435 374
duke@435 375 void clear();
jcoomes@810 376 void clear_range(size_t beg_region, size_t end_region);
duke@435 377 void clear_range(HeapWord* beg, HeapWord* end) {
jcoomes@810 378 clear_range(addr_to_region_idx(beg), addr_to_region_idx(end));
duke@435 379 }
duke@435 380
jcoomes@810 381 // Return the number of words between addr and the start of the region
duke@435 382 // containing addr.
jcoomes@810 383 inline size_t region_offset(const HeapWord* addr) const;
duke@435 384
jcoomes@810 385 // Convert addresses to/from a region index or region pointer.
jcoomes@810 386 inline size_t addr_to_region_idx(const HeapWord* addr) const;
jcoomes@810 387 inline RegionData* addr_to_region_ptr(const HeapWord* addr) const;
jcoomes@810 388 inline HeapWord* region_to_addr(size_t region) const;
jcoomes@810 389 inline HeapWord* region_to_addr(size_t region, size_t offset) const;
jcoomes@810 390 inline HeapWord* region_to_addr(const RegionData* region) const;
duke@435 391
jcoomes@810 392 inline HeapWord* region_align_down(HeapWord* addr) const;
jcoomes@810 393 inline HeapWord* region_align_up(HeapWord* addr) const;
jcoomes@810 394 inline bool is_region_aligned(HeapWord* addr) const;
duke@435 395
duke@435 396 // Return the address one past the end of the partial object.
jcoomes@810 397 HeapWord* partial_obj_end(size_t region_idx) const;
duke@435 398
duke@435 399 // Return the new location of the object p after the
duke@435 400 // the compaction.
duke@435 401 HeapWord* calc_new_pointer(HeapWord* addr);
duke@435 402
duke@435 403 HeapWord* calc_new_pointer(oop p) {
duke@435 404 return calc_new_pointer((HeapWord*) p);
duke@435 405 }
duke@435 406
duke@435 407 #ifdef ASSERT
duke@435 408 void verify_clear(const PSVirtualSpace* vspace);
duke@435 409 void verify_clear();
duke@435 410 #endif // #ifdef ASSERT
duke@435 411
duke@435 412 private:
jcoomes@810 413 bool initialize_region_data(size_t region_size);
duke@435 414 PSVirtualSpace* create_vspace(size_t count, size_t element_size);
duke@435 415
duke@435 416 private:
duke@435 417 HeapWord* _region_start;
duke@435 418 #ifdef ASSERT
duke@435 419 HeapWord* _region_end;
duke@435 420 #endif // #ifdef ASSERT
duke@435 421
jcoomes@810 422 PSVirtualSpace* _region_vspace;
jcoomes@810 423 RegionData* _region_data;
jcoomes@810 424 size_t _region_count;
duke@435 425 };
duke@435 426
duke@435 427 inline uint
jcoomes@810 428 ParallelCompactData::RegionData::destination_count_raw() const
duke@435 429 {
duke@435 430 return _dc_and_los & dc_mask;
duke@435 431 }
duke@435 432
duke@435 433 inline uint
jcoomes@810 434 ParallelCompactData::RegionData::destination_count() const
duke@435 435 {
duke@435 436 return destination_count_raw() >> dc_shift;
duke@435 437 }
duke@435 438
duke@435 439 inline void
jcoomes@810 440 ParallelCompactData::RegionData::set_destination_count(uint count)
duke@435 441 {
duke@435 442 assert(count <= (dc_completed >> dc_shift), "count too large");
jcoomes@810 443 const region_sz_t live_sz = (region_sz_t) live_obj_size();
duke@435 444 _dc_and_los = (count << dc_shift) | live_sz;
duke@435 445 }
duke@435 446
jcoomes@810 447 inline void ParallelCompactData::RegionData::set_live_obj_size(size_t words)
duke@435 448 {
duke@435 449 assert(words <= los_mask, "would overflow");
jcoomes@810 450 _dc_and_los = destination_count_raw() | (region_sz_t)words;
duke@435 451 }
duke@435 452
jcoomes@810 453 inline void ParallelCompactData::RegionData::decrement_destination_count()
duke@435 454 {
duke@435 455 assert(_dc_and_los < dc_claimed, "already claimed");
duke@435 456 assert(_dc_and_los >= dc_one, "count would go negative");
duke@435 457 Atomic::add((int)dc_mask, (volatile int*)&_dc_and_los);
duke@435 458 }
duke@435 459
jcoomes@810 460 inline HeapWord* ParallelCompactData::RegionData::data_location() const
duke@435 461 {
duke@435 462 DEBUG_ONLY(return _data_location;)
duke@435 463 NOT_DEBUG(return NULL;)
duke@435 464 }
duke@435 465
jcoomes@810 466 inline HeapWord* ParallelCompactData::RegionData::highest_ref() const
duke@435 467 {
duke@435 468 DEBUG_ONLY(return _highest_ref;)
duke@435 469 NOT_DEBUG(return NULL;)
duke@435 470 }
duke@435 471
jcoomes@810 472 inline void ParallelCompactData::RegionData::set_data_location(HeapWord* addr)
duke@435 473 {
duke@435 474 DEBUG_ONLY(_data_location = addr;)
duke@435 475 }
duke@435 476
jcoomes@810 477 inline void ParallelCompactData::RegionData::set_completed()
duke@435 478 {
duke@435 479 assert(claimed(), "must be claimed first");
jcoomes@810 480 _dc_and_los = dc_completed | (region_sz_t) live_obj_size();
duke@435 481 }
duke@435 482
jcoomes@810 483 // MT-unsafe claiming of a region. Should only be used during single threaded
duke@435 484 // execution.
jcoomes@810 485 inline bool ParallelCompactData::RegionData::claim_unsafe()
duke@435 486 {
duke@435 487 if (available()) {
duke@435 488 _dc_and_los |= dc_claimed;
duke@435 489 return true;
duke@435 490 }
duke@435 491 return false;
duke@435 492 }
duke@435 493
jcoomes@810 494 inline void ParallelCompactData::RegionData::add_live_obj(size_t words)
duke@435 495 {
duke@435 496 assert(words <= (size_t)los_mask - live_obj_size(), "overflow");
duke@435 497 Atomic::add((int) words, (volatile int*) &_dc_and_los);
duke@435 498 }
duke@435 499
jcoomes@810 500 inline void ParallelCompactData::RegionData::set_highest_ref(HeapWord* addr)
duke@435 501 {
duke@435 502 #ifdef ASSERT
duke@435 503 HeapWord* tmp = _highest_ref;
duke@435 504 while (addr > tmp) {
duke@435 505 tmp = (HeapWord*)Atomic::cmpxchg_ptr(addr, &_highest_ref, tmp);
duke@435 506 }
duke@435 507 #endif // #ifdef ASSERT
duke@435 508 }
duke@435 509
jcoomes@810 510 inline bool ParallelCompactData::RegionData::claim()
duke@435 511 {
duke@435 512 const int los = (int) live_obj_size();
duke@435 513 const int old = Atomic::cmpxchg(dc_claimed | los,
duke@435 514 (volatile int*) &_dc_and_los, los);
duke@435 515 return old == los;
duke@435 516 }
duke@435 517
jcoomes@810 518 inline ParallelCompactData::RegionData*
jcoomes@810 519 ParallelCompactData::region(size_t region_idx) const
duke@435 520 {
jcoomes@810 521 assert(region_idx <= region_count(), "bad arg");
jcoomes@810 522 return _region_data + region_idx;
duke@435 523 }
duke@435 524
duke@435 525 inline size_t
jcoomes@810 526 ParallelCompactData::region(const RegionData* const region_ptr) const
duke@435 527 {
jcoomes@810 528 assert(region_ptr >= _region_data, "bad arg");
jcoomes@810 529 assert(region_ptr <= _region_data + region_count(), "bad arg");
jcoomes@810 530 return pointer_delta(region_ptr, _region_data, sizeof(RegionData));
duke@435 531 }
duke@435 532
duke@435 533 inline size_t
jcoomes@810 534 ParallelCompactData::region_offset(const HeapWord* addr) const
duke@435 535 {
duke@435 536 assert(addr >= _region_start, "bad addr");
duke@435 537 assert(addr <= _region_end, "bad addr");
jcoomes@810 538 return (size_t(addr) & RegionAddrOffsetMask) >> LogHeapWordSize;
duke@435 539 }
duke@435 540
duke@435 541 inline size_t
jcoomes@810 542 ParallelCompactData::addr_to_region_idx(const HeapWord* addr) const
duke@435 543 {
duke@435 544 assert(addr >= _region_start, "bad addr");
duke@435 545 assert(addr <= _region_end, "bad addr");
jcoomes@810 546 return pointer_delta(addr, _region_start) >> Log2RegionSize;
duke@435 547 }
duke@435 548
jcoomes@810 549 inline ParallelCompactData::RegionData*
jcoomes@810 550 ParallelCompactData::addr_to_region_ptr(const HeapWord* addr) const
duke@435 551 {
jcoomes@810 552 return region(addr_to_region_idx(addr));
duke@435 553 }
duke@435 554
duke@435 555 inline HeapWord*
jcoomes@810 556 ParallelCompactData::region_to_addr(size_t region) const
duke@435 557 {
jcoomes@810 558 assert(region <= _region_count, "region out of range");
jcoomes@810 559 return _region_start + (region << Log2RegionSize);
duke@435 560 }
duke@435 561
duke@435 562 inline HeapWord*
jcoomes@810 563 ParallelCompactData::region_to_addr(const RegionData* region) const
duke@435 564 {
jcoomes@810 565 return region_to_addr(pointer_delta(region, _region_data,
jcoomes@810 566 sizeof(RegionData)));
duke@435 567 }
duke@435 568
duke@435 569 inline HeapWord*
jcoomes@810 570 ParallelCompactData::region_to_addr(size_t region, size_t offset) const
duke@435 571 {
jcoomes@810 572 assert(region <= _region_count, "region out of range");
jcoomes@810 573 assert(offset < RegionSize, "offset too big"); // This may be too strict.
jcoomes@810 574 return region_to_addr(region) + offset;
duke@435 575 }
duke@435 576
duke@435 577 inline HeapWord*
jcoomes@810 578 ParallelCompactData::region_align_down(HeapWord* addr) const
duke@435 579 {
duke@435 580 assert(addr >= _region_start, "bad addr");
jcoomes@810 581 assert(addr < _region_end + RegionSize, "bad addr");
jcoomes@810 582 return (HeapWord*)(size_t(addr) & RegionAddrMask);
duke@435 583 }
duke@435 584
duke@435 585 inline HeapWord*
jcoomes@810 586 ParallelCompactData::region_align_up(HeapWord* addr) const
duke@435 587 {
duke@435 588 assert(addr >= _region_start, "bad addr");
duke@435 589 assert(addr <= _region_end, "bad addr");
jcoomes@810 590 return region_align_down(addr + RegionSizeOffsetMask);
duke@435 591 }
duke@435 592
duke@435 593 inline bool
jcoomes@810 594 ParallelCompactData::is_region_aligned(HeapWord* addr) const
duke@435 595 {
jcoomes@810 596 return region_offset(addr) == 0;
duke@435 597 }
duke@435 598
duke@435 599 // Abstract closure for use with ParMarkBitMap::iterate(), which will invoke the
duke@435 600 // do_addr() method.
duke@435 601 //
duke@435 602 // The closure is initialized with the number of heap words to process
duke@435 603 // (words_remaining()), and becomes 'full' when it reaches 0. The do_addr()
duke@435 604 // methods in subclasses should update the total as words are processed. Since
duke@435 605 // only one subclass actually uses this mechanism to terminate iteration, the
duke@435 606 // default initial value is > 0. The implementation is here and not in the
duke@435 607 // single subclass that uses it to avoid making is_full() virtual, and thus
duke@435 608 // adding a virtual call per live object.
duke@435 609
duke@435 610 class ParMarkBitMapClosure: public StackObj {
duke@435 611 public:
duke@435 612 typedef ParMarkBitMap::idx_t idx_t;
duke@435 613 typedef ParMarkBitMap::IterationStatus IterationStatus;
duke@435 614
duke@435 615 public:
duke@435 616 inline ParMarkBitMapClosure(ParMarkBitMap* mbm, ParCompactionManager* cm,
duke@435 617 size_t words = max_uintx);
duke@435 618
duke@435 619 inline ParCompactionManager* compaction_manager() const;
duke@435 620 inline ParMarkBitMap* bitmap() const;
duke@435 621 inline size_t words_remaining() const;
duke@435 622 inline bool is_full() const;
duke@435 623 inline HeapWord* source() const;
duke@435 624
duke@435 625 inline void set_source(HeapWord* addr);
duke@435 626
duke@435 627 virtual IterationStatus do_addr(HeapWord* addr, size_t words) = 0;
duke@435 628
duke@435 629 protected:
duke@435 630 inline void decrement_words_remaining(size_t words);
duke@435 631
duke@435 632 private:
duke@435 633 ParMarkBitMap* const _bitmap;
duke@435 634 ParCompactionManager* const _compaction_manager;
duke@435 635 DEBUG_ONLY(const size_t _initial_words_remaining;) // Useful in debugger.
duke@435 636 size_t _words_remaining; // Words left to copy.
duke@435 637
duke@435 638 protected:
duke@435 639 HeapWord* _source; // Next addr that would be read.
duke@435 640 };
duke@435 641
duke@435 642 inline
duke@435 643 ParMarkBitMapClosure::ParMarkBitMapClosure(ParMarkBitMap* bitmap,
duke@435 644 ParCompactionManager* cm,
duke@435 645 size_t words):
duke@435 646 _bitmap(bitmap), _compaction_manager(cm)
duke@435 647 #ifdef ASSERT
duke@435 648 , _initial_words_remaining(words)
duke@435 649 #endif
duke@435 650 {
duke@435 651 _words_remaining = words;
duke@435 652 _source = NULL;
duke@435 653 }
duke@435 654
duke@435 655 inline ParCompactionManager* ParMarkBitMapClosure::compaction_manager() const {
duke@435 656 return _compaction_manager;
duke@435 657 }
duke@435 658
duke@435 659 inline ParMarkBitMap* ParMarkBitMapClosure::bitmap() const {
duke@435 660 return _bitmap;
duke@435 661 }
duke@435 662
duke@435 663 inline size_t ParMarkBitMapClosure::words_remaining() const {
duke@435 664 return _words_remaining;
duke@435 665 }
duke@435 666
duke@435 667 inline bool ParMarkBitMapClosure::is_full() const {
duke@435 668 return words_remaining() == 0;
duke@435 669 }
duke@435 670
duke@435 671 inline HeapWord* ParMarkBitMapClosure::source() const {
duke@435 672 return _source;
duke@435 673 }
duke@435 674
duke@435 675 inline void ParMarkBitMapClosure::set_source(HeapWord* addr) {
duke@435 676 _source = addr;
duke@435 677 }
duke@435 678
duke@435 679 inline void ParMarkBitMapClosure::decrement_words_remaining(size_t words) {
duke@435 680 assert(_words_remaining >= words, "processed too many words");
duke@435 681 _words_remaining -= words;
duke@435 682 }
duke@435 683
jcoomes@810 684 // The UseParallelOldGC collector is a stop-the-world garbage collector that
jcoomes@810 685 // does parts of the collection using parallel threads. The collection includes
jcoomes@810 686 // the tenured generation and the young generation. The permanent generation is
jcoomes@810 687 // collected at the same time as the other two generations but the permanent
jcoomes@810 688 // generation is collect by a single GC thread. The permanent generation is
jcoomes@810 689 // collected serially because of the requirement that during the processing of a
jcoomes@810 690 // klass AAA, any objects reference by AAA must already have been processed.
jcoomes@810 691 // This requirement is enforced by a left (lower address) to right (higher
jcoomes@810 692 // address) sliding compaction.
jmasa@698 693 //
jmasa@698 694 // There are four phases of the collection.
jmasa@698 695 //
jmasa@698 696 // - marking phase
jmasa@698 697 // - summary phase
jmasa@698 698 // - compacting phase
jmasa@698 699 // - clean up phase
jmasa@698 700 //
jmasa@698 701 // Roughly speaking these phases correspond, respectively, to
jmasa@698 702 // - mark all the live objects
jmasa@698 703 // - calculate the destination of each object at the end of the collection
jmasa@698 704 // - move the objects to their destination
jmasa@698 705 // - update some references and reinitialize some variables
jmasa@698 706 //
jcoomes@810 707 // These three phases are invoked in PSParallelCompact::invoke_no_policy(). The
jcoomes@810 708 // marking phase is implemented in PSParallelCompact::marking_phase() and does a
jcoomes@810 709 // complete marking of the heap. The summary phase is implemented in
jcoomes@810 710 // PSParallelCompact::summary_phase(). The move and update phase is implemented
jcoomes@810 711 // in PSParallelCompact::compact().
jmasa@698 712 //
jcoomes@810 713 // A space that is being collected is divided into regions and with each region
jcoomes@810 714 // is associated an object of type ParallelCompactData. Each region is of a
jcoomes@810 715 // fixed size and typically will contain more than 1 object and may have parts
jcoomes@810 716 // of objects at the front and back of the region.
jmasa@698 717 //
jcoomes@810 718 // region -----+---------------------+----------
jmasa@698 719 // objects covered [ AAA )[ BBB )[ CCC )[ DDD )
jmasa@698 720 //
jcoomes@810 721 // The marking phase does a complete marking of all live objects in the heap.
jcoomes@810 722 // The marking also compiles the size of the data for all live objects covered
jcoomes@810 723 // by the region. This size includes the part of any live object spanning onto
jcoomes@810 724 // the region (part of AAA if it is live) from the front, all live objects
jcoomes@810 725 // contained in the region (BBB and/or CCC if they are live), and the part of
jcoomes@810 726 // any live objects covered by the region that extends off the region (part of
jcoomes@810 727 // DDD if it is live). The marking phase uses multiple GC threads and marking
jcoomes@810 728 // is done in a bit array of type ParMarkBitMap. The marking of the bit map is
jcoomes@810 729 // done atomically as is the accumulation of the size of the live objects
jcoomes@810 730 // covered by a region.
jmasa@698 731 //
jcoomes@810 732 // The summary phase calculates the total live data to the left of each region
jcoomes@810 733 // XXX. Based on that total and the bottom of the space, it can calculate the
jcoomes@810 734 // starting location of the live data in XXX. The summary phase calculates for
jcoomes@810 735 // each region XXX quantites such as
jmasa@698 736 //
jcoomes@810 737 // - the amount of live data at the beginning of a region from an object
jcoomes@810 738 // entering the region.
jcoomes@810 739 // - the location of the first live data on the region
jcoomes@810 740 // - a count of the number of regions receiving live data from XXX.
jmasa@698 741 //
jmasa@698 742 // See ParallelCompactData for precise details. The summary phase also
jcoomes@810 743 // calculates the dense prefix for the compaction. The dense prefix is a
jcoomes@810 744 // portion at the beginning of the space that is not moved. The objects in the
jcoomes@810 745 // dense prefix do need to have their object references updated. See method
jcoomes@810 746 // summarize_dense_prefix().
jmasa@698 747 //
jmasa@698 748 // The summary phase is done using 1 GC thread.
jmasa@698 749 //
jcoomes@810 750 // The compaction phase moves objects to their new location and updates all
jcoomes@810 751 // references in the object.
jmasa@698 752 //
jcoomes@810 753 // A current exception is that objects that cross a region boundary are moved
jcoomes@810 754 // but do not have their references updated. References are not updated because
jcoomes@810 755 // it cannot easily be determined if the klass pointer KKK for the object AAA
jcoomes@810 756 // has been updated. KKK likely resides in a region to the left of the region
jcoomes@810 757 // containing AAA. These AAA's have there references updated at the end in a
jcoomes@810 758 // clean up phase. See the method PSParallelCompact::update_deferred_objects().
jcoomes@810 759 // An alternate strategy is being investigated for this deferral of updating.
jmasa@698 760 //
jcoomes@810 761 // Compaction is done on a region basis. A region that is ready to be filled is
jcoomes@810 762 // put on a ready list and GC threads take region off the list and fill them. A
jcoomes@810 763 // region is ready to be filled if it empty of live objects. Such a region may
jcoomes@810 764 // have been initially empty (only contained dead objects) or may have had all
jcoomes@810 765 // its live objects copied out already. A region that compacts into itself is
jcoomes@810 766 // also ready for filling. The ready list is initially filled with empty
jcoomes@810 767 // regions and regions compacting into themselves. There is always at least 1
jcoomes@810 768 // region that can be put on the ready list. The regions are atomically added
jcoomes@810 769 // and removed from the ready list.
jcoomes@810 770
duke@435 771 class PSParallelCompact : AllStatic {
duke@435 772 public:
duke@435 773 // Convenient access to type names.
duke@435 774 typedef ParMarkBitMap::idx_t idx_t;
jcoomes@810 775 typedef ParallelCompactData::RegionData RegionData;
duke@435 776
duke@435 777 typedef enum {
coleenp@4037 778 old_space_id, eden_space_id,
duke@435 779 from_space_id, to_space_id, last_space_id
duke@435 780 } SpaceId;
duke@435 781
duke@435 782 public:
coleenp@548 783 // Inline closure decls
duke@435 784 //
duke@435 785 class IsAliveClosure: public BoolObjectClosure {
duke@435 786 public:
coleenp@548 787 virtual void do_object(oop p);
coleenp@548 788 virtual bool do_object_b(oop p);
duke@435 789 };
duke@435 790
duke@435 791 class KeepAliveClosure: public OopClosure {
coleenp@548 792 private:
coleenp@548 793 ParCompactionManager* _compaction_manager;
coleenp@548 794 protected:
coleenp@548 795 template <class T> inline void do_oop_work(T* p);
coleenp@548 796 public:
coleenp@548 797 KeepAliveClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
coleenp@548 798 virtual void do_oop(oop* p);
coleenp@548 799 virtual void do_oop(narrowOop* p);
coleenp@548 800 };
coleenp@548 801
duke@435 802 class FollowStackClosure: public VoidClosure {
coleenp@548 803 private:
duke@435 804 ParCompactionManager* _compaction_manager;
duke@435 805 public:
coleenp@548 806 FollowStackClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
coleenp@548 807 virtual void do_void();
duke@435 808 };
duke@435 809
coleenp@4037 810 class AdjustPointerClosure: public OopClosure {
duke@435 811 public:
coleenp@548 812 virtual void do_oop(oop* p);
coleenp@548 813 virtual void do_oop(narrowOop* p);
jrose@1424 814 // do not walk from thread stacks to the code cache on this phase
jrose@1424 815 virtual void do_code_blob(CodeBlob* cb) const { }
duke@435 816 };
duke@435 817
coleenp@4037 818 class AdjustKlassClosure : public KlassClosure {
coleenp@4037 819 public:
coleenp@4037 820 void do_klass(Klass* klass);
coleenp@4037 821 };
coleenp@4037 822
duke@435 823 friend class KeepAliveClosure;
duke@435 824 friend class FollowStackClosure;
duke@435 825 friend class AdjustPointerClosure;
coleenp@4037 826 friend class AdjustKlassClosure;
coleenp@4037 827 friend class FollowKlassClosure;
coleenp@4047 828 friend class InstanceClassLoaderKlass;
duke@435 829 friend class RefProcTaskProxy;
duke@435 830
duke@435 831 private:
duke@435 832 static elapsedTimer _accumulated_time;
duke@435 833 static unsigned int _total_invocations;
duke@435 834 static unsigned int _maximum_compaction_gc_num;
duke@435 835 static jlong _time_of_last_gc; // ms
duke@435 836 static CollectorCounters* _counters;
duke@435 837 static ParMarkBitMap _mark_bitmap;
duke@435 838 static ParallelCompactData _summary_data;
duke@435 839 static IsAliveClosure _is_alive_closure;
duke@435 840 static SpaceInfo _space_info[last_space_id];
duke@435 841 static bool _print_phases;
duke@435 842 static AdjustPointerClosure _adjust_pointer_closure;
coleenp@4037 843 static AdjustKlassClosure _adjust_klass_closure;
duke@435 844
duke@435 845 // Reference processing (used in ...follow_contents)
duke@435 846 static ReferenceProcessor* _ref_processor;
duke@435 847
duke@435 848 // Updated location of intArrayKlassObj.
coleenp@4037 849 static Klass* _updated_int_array_klass_obj;
duke@435 850
duke@435 851 // Values computed at initialization and used by dead_wood_limiter().
duke@435 852 static double _dwl_mean;
duke@435 853 static double _dwl_std_dev;
duke@435 854 static double _dwl_first_term;
duke@435 855 static double _dwl_adjustment;
duke@435 856 #ifdef ASSERT
duke@435 857 static bool _dwl_initialized;
duke@435 858 #endif // #ifdef ASSERT
duke@435 859
duke@435 860 private:
duke@435 861
duke@435 862 static void initialize_space_info();
duke@435 863
duke@435 864 // Return true if details about individual phases should be printed.
duke@435 865 static inline bool print_phases();
duke@435 866
duke@435 867 // Clear the marking bitmap and summary data that cover the specified space.
duke@435 868 static void clear_data_covering_space(SpaceId id);
duke@435 869
duke@435 870 static void pre_compact(PreGCValues* pre_gc_values);
duke@435 871 static void post_compact();
duke@435 872
duke@435 873 // Mark live objects
duke@435 874 static void marking_phase(ParCompactionManager* cm,
duke@435 875 bool maximum_heap_compaction);
duke@435 876
coleenp@548 877 template <class T>
coleenp@548 878 static inline void follow_root(ParCompactionManager* cm, T* p);
duke@435 879
duke@435 880 // Compute the dense prefix for the designated space. This is an experimental
duke@435 881 // implementation currently not used in production.
duke@435 882 static HeapWord* compute_dense_prefix_via_density(const SpaceId id,
duke@435 883 bool maximum_compaction);
duke@435 884
duke@435 885 // Methods used to compute the dense prefix.
duke@435 886
duke@435 887 // Compute the value of the normal distribution at x = density. The mean and
duke@435 888 // standard deviation are values saved by initialize_dead_wood_limiter().
duke@435 889 static inline double normal_distribution(double density);
duke@435 890
duke@435 891 // Initialize the static vars used by dead_wood_limiter().
duke@435 892 static void initialize_dead_wood_limiter();
duke@435 893
duke@435 894 // Return the percentage of space that can be treated as "dead wood" (i.e.,
duke@435 895 // not reclaimed).
duke@435 896 static double dead_wood_limiter(double density, size_t min_percent);
duke@435 897
jcoomes@810 898 // Find the first (left-most) region in the range [beg, end) that has at least
duke@435 899 // dead_words of dead space to the left. The argument beg must be the first
jcoomes@810 900 // region in the space that is not completely live.
jcoomes@810 901 static RegionData* dead_wood_limit_region(const RegionData* beg,
jcoomes@810 902 const RegionData* end,
jcoomes@810 903 size_t dead_words);
duke@435 904
jcoomes@810 905 // Return a pointer to the first region in the range [beg, end) that is not
duke@435 906 // completely full.
jcoomes@810 907 static RegionData* first_dead_space_region(const RegionData* beg,
jcoomes@810 908 const RegionData* end);
duke@435 909
duke@435 910 // Return a value indicating the benefit or 'yield' if the compacted region
duke@435 911 // were to start (or equivalently if the dense prefix were to end) at the
jcoomes@810 912 // candidate region. Higher values are better.
duke@435 913 //
duke@435 914 // The value is based on the amount of space reclaimed vs. the costs of (a)
duke@435 915 // updating references in the dense prefix plus (b) copying objects and
duke@435 916 // updating references in the compacted region.
jcoomes@810 917 static inline double reclaimed_ratio(const RegionData* const candidate,
duke@435 918 HeapWord* const bottom,
duke@435 919 HeapWord* const top,
duke@435 920 HeapWord* const new_top);
duke@435 921
duke@435 922 // Compute the dense prefix for the designated space.
duke@435 923 static HeapWord* compute_dense_prefix(const SpaceId id,
duke@435 924 bool maximum_compaction);
duke@435 925
jcoomes@810 926 // Return true if dead space crosses onto the specified Region; bit must be
jcoomes@810 927 // the bit index corresponding to the first word of the Region.
jcoomes@810 928 static inline bool dead_space_crosses_boundary(const RegionData* region,
duke@435 929 idx_t bit);
duke@435 930
duke@435 931 // Summary phase utility routine to fill dead space (if any) at the dense
duke@435 932 // prefix boundary. Should only be called if the the dense prefix is
duke@435 933 // non-empty.
duke@435 934 static void fill_dense_prefix_end(SpaceId id);
duke@435 935
jcoomes@917 936 // Clear the summary data source_region field for the specified addresses.
jcoomes@917 937 static void clear_source_region(HeapWord* beg_addr, HeapWord* end_addr);
jcoomes@917 938
jcoomes@918 939 #ifndef PRODUCT
jcoomes@918 940 // Routines to provoke splitting a young gen space (ParallelOldGCSplitALot).
jcoomes@918 941
jcoomes@918 942 // Fill the region [start, start + words) with live object(s). Only usable
jcoomes@918 943 // for the old and permanent generations.
jcoomes@918 944 static void fill_with_live_objects(SpaceId id, HeapWord* const start,
jcoomes@918 945 size_t words);
jcoomes@918 946 // Include the new objects in the summary data.
jcoomes@918 947 static void summarize_new_objects(SpaceId id, HeapWord* start);
jcoomes@918 948
jcoomes@931 949 // Add live objects to a survivor space since it's rare that both survivors
jcoomes@931 950 // are non-empty.
jcoomes@931 951 static void provoke_split_fill_survivor(SpaceId id);
jcoomes@931 952
jcoomes@918 953 // Add live objects and/or choose the dense prefix to provoke splitting.
jcoomes@918 954 static void provoke_split(bool & maximum_compaction);
jcoomes@918 955 #endif
jcoomes@918 956
duke@435 957 static void summarize_spaces_quick();
duke@435 958 static void summarize_space(SpaceId id, bool maximum_compaction);
duke@435 959 static void summary_phase(ParCompactionManager* cm, bool maximum_compaction);
duke@435 960
duke@435 961 // Adjust addresses in roots. Does not adjust addresses in heap.
duke@435 962 static void adjust_roots();
duke@435 963
duke@435 964 // Move objects to new locations.
duke@435 965 static void compact_perm(ParCompactionManager* cm);
duke@435 966 static void compact();
duke@435 967
jcoomes@810 968 // Add available regions to the stack and draining tasks to the task queue.
jcoomes@810 969 static void enqueue_region_draining_tasks(GCTaskQueue* q,
jcoomes@810 970 uint parallel_gc_threads);
duke@435 971
duke@435 972 // Add dense prefix update tasks to the task queue.
duke@435 973 static void enqueue_dense_prefix_tasks(GCTaskQueue* q,
duke@435 974 uint parallel_gc_threads);
duke@435 975
jcoomes@810 976 // Add region stealing tasks to the task queue.
jcoomes@810 977 static void enqueue_region_stealing_tasks(
duke@435 978 GCTaskQueue* q,
duke@435 979 ParallelTaskTerminator* terminator_ptr,
duke@435 980 uint parallel_gc_threads);
duke@435 981
duke@435 982 // If objects are left in eden after a collection, try to move the boundary
duke@435 983 // and absorb them into the old gen. Returns true if eden was emptied.
duke@435 984 static bool absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
duke@435 985 PSYoungGen* young_gen,
duke@435 986 PSOldGen* old_gen);
duke@435 987
duke@435 988 // Reset time since last full gc
duke@435 989 static void reset_millis_since_last_gc();
duke@435 990
duke@435 991 public:
duke@435 992 class MarkAndPushClosure: public OopClosure {
coleenp@548 993 private:
duke@435 994 ParCompactionManager* _compaction_manager;
duke@435 995 public:
coleenp@548 996 MarkAndPushClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
coleenp@548 997 virtual void do_oop(oop* p);
coleenp@548 998 virtual void do_oop(narrowOop* p);
duke@435 999 };
duke@435 1000
coleenp@4037 1001 // The one and only place to start following the classes.
coleenp@4037 1002 // Should only be applied to the ClassLoaderData klasses list.
coleenp@4037 1003 class FollowKlassClosure : public KlassClosure {
coleenp@4037 1004 private:
coleenp@4037 1005 MarkAndPushClosure* _mark_and_push_closure;
coleenp@4037 1006 public:
coleenp@4037 1007 FollowKlassClosure(MarkAndPushClosure* mark_and_push_closure) :
coleenp@4037 1008 _mark_and_push_closure(mark_and_push_closure) { }
coleenp@4037 1009 void do_klass(Klass* klass);
coleenp@4037 1010 };
coleenp@4037 1011
duke@435 1012 PSParallelCompact();
duke@435 1013
duke@435 1014 // Convenient accessor for Universe::heap().
duke@435 1015 static ParallelScavengeHeap* gc_heap() {
duke@435 1016 return (ParallelScavengeHeap*)Universe::heap();
duke@435 1017 }
duke@435 1018
duke@435 1019 static void invoke(bool maximum_heap_compaction);
jcoomes@3540 1020 static bool invoke_no_policy(bool maximum_heap_compaction);
duke@435 1021
duke@435 1022 static void post_initialize();
duke@435 1023 // Perform initialization for PSParallelCompact that requires
duke@435 1024 // allocations. This should be called during the VM initialization
duke@435 1025 // at a pointer where it would be appropriate to return a JNI_ENOMEM
duke@435 1026 // in the event of a failure.
duke@435 1027 static bool initialize();
duke@435 1028
coleenp@4037 1029 // Closure accessors
coleenp@4037 1030 static OopClosure* adjust_pointer_closure() { return (OopClosure*)&_adjust_pointer_closure; }
coleenp@4037 1031 static KlassClosure* adjust_klass_closure() { return (KlassClosure*)&_adjust_klass_closure; }
coleenp@4037 1032 static BoolObjectClosure* is_alive_closure() { return (BoolObjectClosure*)&_is_alive_closure; }
coleenp@4037 1033
duke@435 1034 // Public accessors
duke@435 1035 static elapsedTimer* accumulated_time() { return &_accumulated_time; }
duke@435 1036 static unsigned int total_invocations() { return _total_invocations; }
duke@435 1037 static CollectorCounters* counters() { return _counters; }
duke@435 1038
duke@435 1039 // Used to add tasks
duke@435 1040 static GCTaskManager* const gc_task_manager();
coleenp@4037 1041 static Klass* updated_int_array_klass_obj() {
duke@435 1042 return _updated_int_array_klass_obj;
duke@435 1043 }
duke@435 1044
duke@435 1045 // Marking support
duke@435 1046 static inline bool mark_obj(oop obj);
coleenp@4037 1047 static inline bool is_marked(oop obj);
coleenp@548 1048 // Check mark and maybe push on marking stack
coleenp@548 1049 template <class T> static inline void mark_and_push(ParCompactionManager* cm,
coleenp@548 1050 T* p);
stefank@5011 1051 template <class T> static inline void adjust_pointer(T* p);
duke@435 1052
coleenp@4037 1053 static void follow_klass(ParCompactionManager* cm, Klass* klass);
coleenp@4037 1054 static void adjust_klass(ParCompactionManager* cm, Klass* klass);
coleenp@4037 1055
coleenp@4037 1056 static void follow_class_loader(ParCompactionManager* cm,
coleenp@4037 1057 ClassLoaderData* klass);
coleenp@4037 1058 static void adjust_class_loader(ParCompactionManager* cm,
coleenp@4037 1059 ClassLoaderData* klass);
coleenp@4037 1060
duke@435 1061 // Compaction support.
duke@435 1062 // Return true if p is in the range [beg_addr, end_addr).
duke@435 1063 static inline bool is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr);
duke@435 1064 static inline bool is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr);
duke@435 1065
duke@435 1066 // Convenience wrappers for per-space data kept in _space_info.
duke@435 1067 static inline MutableSpace* space(SpaceId space_id);
duke@435 1068 static inline HeapWord* new_top(SpaceId space_id);
duke@435 1069 static inline HeapWord* dense_prefix(SpaceId space_id);
duke@435 1070 static inline ObjectStartArray* start_array(SpaceId space_id);
duke@435 1071
duke@435 1072 // Move and update the live objects in the specified space.
duke@435 1073 static void move_and_update(ParCompactionManager* cm, SpaceId space_id);
duke@435 1074
jcoomes@810 1075 // Process the end of the given region range in the dense prefix.
duke@435 1076 // This includes saving any object not updated.
jcoomes@810 1077 static void dense_prefix_regions_epilogue(ParCompactionManager* cm,
jcoomes@810 1078 size_t region_start_index,
jcoomes@810 1079 size_t region_end_index,
jcoomes@810 1080 idx_t exiting_object_offset,
jcoomes@810 1081 idx_t region_offset_start,
jcoomes@810 1082 idx_t region_offset_end);
duke@435 1083
jcoomes@810 1084 // Update a region in the dense prefix. For each live object
jcoomes@810 1085 // in the region, update it's interior references. For each
duke@435 1086 // dead object, fill it with deadwood. Dead space at the end
jcoomes@810 1087 // of a region range will be filled to the start of the next
jcoomes@810 1088 // live object regardless of the region_index_end. None of the
duke@435 1089 // objects in the dense prefix move and dead space is dead
duke@435 1090 // (holds only dead objects that don't need any processing), so
duke@435 1091 // dead space can be filled in any order.
duke@435 1092 static void update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
duke@435 1093 SpaceId space_id,
jcoomes@810 1094 size_t region_index_start,
jcoomes@810 1095 size_t region_index_end);
duke@435 1096
duke@435 1097 // Return the address of the count + 1st live word in the range [beg, end).
duke@435 1098 static HeapWord* skip_live_words(HeapWord* beg, HeapWord* end, size_t count);
duke@435 1099
duke@435 1100 // Return the address of the word to be copied to dest_addr, which must be
jcoomes@810 1101 // aligned to a region boundary.
duke@435 1102 static HeapWord* first_src_addr(HeapWord* const dest_addr,
jcoomes@917 1103 SpaceId src_space_id,
jcoomes@810 1104 size_t src_region_idx);
duke@435 1105
jcoomes@810 1106 // Determine the next source region, set closure.source() to the start of the
jcoomes@810 1107 // new region return the region index. Parameter end_addr is the address one
duke@435 1108 // beyond the end of source range just processed. If necessary, switch to a
duke@435 1109 // new source space and set src_space_id (in-out parameter) and src_space_top
duke@435 1110 // (out parameter) accordingly.
jcoomes@810 1111 static size_t next_src_region(MoveAndUpdateClosure& closure,
jcoomes@810 1112 SpaceId& src_space_id,
jcoomes@810 1113 HeapWord*& src_space_top,
jcoomes@810 1114 HeapWord* end_addr);
duke@435 1115
jcoomes@810 1116 // Decrement the destination count for each non-empty source region in the
jcoomes@930 1117 // range [beg_region, region(region_align_up(end_addr))). If the destination
jcoomes@930 1118 // count for a region goes to 0 and it needs to be filled, enqueue it.
duke@435 1119 static void decrement_destination_counts(ParCompactionManager* cm,
jcoomes@930 1120 SpaceId src_space_id,
jcoomes@810 1121 size_t beg_region,
duke@435 1122 HeapWord* end_addr);
duke@435 1123
jcoomes@810 1124 // Fill a region, copying objects from one or more source regions.
jcoomes@810 1125 static void fill_region(ParCompactionManager* cm, size_t region_idx);
jcoomes@810 1126 static void fill_and_update_region(ParCompactionManager* cm, size_t region) {
jcoomes@810 1127 fill_region(cm, region);
duke@435 1128 }
duke@435 1129
duke@435 1130 // Update the deferred objects in the space.
duke@435 1131 static void update_deferred_objects(ParCompactionManager* cm, SpaceId id);
duke@435 1132
duke@435 1133 static ParMarkBitMap* mark_bitmap() { return &_mark_bitmap; }
duke@435 1134 static ParallelCompactData& summary_data() { return _summary_data; }
duke@435 1135
duke@435 1136 // Reference Processing
duke@435 1137 static ReferenceProcessor* const ref_processor() { return _ref_processor; }
duke@435 1138
duke@435 1139 // Return the SpaceId for the given address.
duke@435 1140 static SpaceId space_id(HeapWord* addr);
duke@435 1141
duke@435 1142 // Time since last full gc (in milliseconds).
duke@435 1143 static jlong millis_since_last_gc();
duke@435 1144
stefank@4904 1145 static void print_on_error(outputStream* st);
stefank@4904 1146
duke@435 1147 #ifndef PRODUCT
duke@435 1148 // Debugging support.
duke@435 1149 static const char* space_names[last_space_id];
jcoomes@810 1150 static void print_region_ranges();
duke@435 1151 static void print_dense_prefix_stats(const char* const algorithm,
duke@435 1152 const SpaceId id,
duke@435 1153 const bool maximum_compaction,
duke@435 1154 HeapWord* const addr);
jcoomes@917 1155 static void summary_phase_msg(SpaceId dst_space_id,
jcoomes@917 1156 HeapWord* dst_beg, HeapWord* dst_end,
jcoomes@917 1157 SpaceId src_space_id,
jcoomes@917 1158 HeapWord* src_beg, HeapWord* src_end);
duke@435 1159 #endif // #ifndef PRODUCT
duke@435 1160
duke@435 1161 #ifdef ASSERT
jcoomes@930 1162 // Sanity check the new location of a word in the heap.
jcoomes@930 1163 static inline void check_new_location(HeapWord* old_addr, HeapWord* new_addr);
jcoomes@810 1164 // Verify that all the regions have been emptied.
duke@435 1165 static void verify_complete(SpaceId space_id);
duke@435 1166 #endif // #ifdef ASSERT
duke@435 1167 };
duke@435 1168
coleenp@548 1169 inline bool PSParallelCompact::mark_obj(oop obj) {
duke@435 1170 const int obj_size = obj->size();
duke@435 1171 if (mark_bitmap()->mark_obj(obj, obj_size)) {
duke@435 1172 _summary_data.add_obj(obj, obj_size);
duke@435 1173 return true;
duke@435 1174 } else {
duke@435 1175 return false;
duke@435 1176 }
duke@435 1177 }
duke@435 1178
coleenp@4037 1179 inline bool PSParallelCompact::is_marked(oop obj) {
coleenp@4037 1180 return mark_bitmap()->is_marked(obj);
coleenp@4037 1181 }
coleenp@4037 1182
coleenp@548 1183 template <class T>
coleenp@548 1184 inline void PSParallelCompact::follow_root(ParCompactionManager* cm, T* p) {
coleenp@548 1185 assert(!Universe::heap()->is_in_reserved(p),
coleenp@548 1186 "roots shouldn't be things within the heap");
johnc@4384 1187
coleenp@548 1188 T heap_oop = oopDesc::load_heap_oop(p);
coleenp@548 1189 if (!oopDesc::is_null(heap_oop)) {
coleenp@548 1190 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
coleenp@548 1191 if (mark_bitmap()->is_unmarked(obj)) {
coleenp@548 1192 if (mark_obj(obj)) {
coleenp@548 1193 obj->follow_contents(cm);
coleenp@548 1194 }
coleenp@548 1195 }
coleenp@548 1196 }
jcoomes@1746 1197 cm->follow_marking_stacks();
coleenp@548 1198 }
coleenp@548 1199
coleenp@548 1200 template <class T>
coleenp@548 1201 inline void PSParallelCompact::mark_and_push(ParCompactionManager* cm, T* p) {
coleenp@548 1202 T heap_oop = oopDesc::load_heap_oop(p);
coleenp@548 1203 if (!oopDesc::is_null(heap_oop)) {
coleenp@548 1204 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
jcoomes@1993 1205 if (mark_bitmap()->is_unmarked(obj) && mark_obj(obj)) {
jcoomes@1993 1206 cm->push(obj);
coleenp@548 1207 }
coleenp@548 1208 }
coleenp@548 1209 }
coleenp@548 1210
coleenp@548 1211 template <class T>
stefank@5011 1212 inline void PSParallelCompact::adjust_pointer(T* p) {
coleenp@548 1213 T heap_oop = oopDesc::load_heap_oop(p);
coleenp@548 1214 if (!oopDesc::is_null(heap_oop)) {
coleenp@548 1215 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
coleenp@548 1216 oop new_obj = (oop)summary_data().calc_new_pointer(obj);
coleenp@4037 1217 assert(new_obj != NULL, // is forwarding ptr?
coleenp@548 1218 "should be forwarded");
coleenp@548 1219 // Just always do the update unconditionally?
coleenp@548 1220 if (new_obj != NULL) {
coleenp@548 1221 assert(Universe::heap()->is_in_reserved(new_obj),
coleenp@548 1222 "should be in object space");
coleenp@548 1223 oopDesc::encode_store_heap_oop_not_null(p, new_obj);
coleenp@548 1224 }
coleenp@548 1225 }
coleenp@548 1226 }
coleenp@548 1227
coleenp@548 1228 template <class T>
coleenp@548 1229 inline void PSParallelCompact::KeepAliveClosure::do_oop_work(T* p) {
coleenp@548 1230 mark_and_push(_compaction_manager, p);
coleenp@548 1231 }
coleenp@548 1232
coleenp@548 1233 inline bool PSParallelCompact::print_phases() {
duke@435 1234 return _print_phases;
duke@435 1235 }
duke@435 1236
coleenp@548 1237 inline double PSParallelCompact::normal_distribution(double density) {
duke@435 1238 assert(_dwl_initialized, "uninitialized");
duke@435 1239 const double squared_term = (density - _dwl_mean) / _dwl_std_dev;
duke@435 1240 return _dwl_first_term * exp(-0.5 * squared_term * squared_term);
duke@435 1241 }
duke@435 1242
duke@435 1243 inline bool
jcoomes@810 1244 PSParallelCompact::dead_space_crosses_boundary(const RegionData* region,
duke@435 1245 idx_t bit)
duke@435 1246 {
jcoomes@810 1247 assert(bit > 0, "cannot call this for the first bit/region");
jcoomes@810 1248 assert(_summary_data.region_to_addr(region) == _mark_bitmap.bit_to_addr(bit),
duke@435 1249 "sanity check");
duke@435 1250
duke@435 1251 // Dead space crosses the boundary if (1) a partial object does not extend
jcoomes@810 1252 // onto the region, (2) an object does not start at the beginning of the
jcoomes@810 1253 // region, and (3) an object does not end at the end of the prior region.
jcoomes@810 1254 return region->partial_obj_size() == 0 &&
duke@435 1255 !_mark_bitmap.is_obj_beg(bit) &&
duke@435 1256 !_mark_bitmap.is_obj_end(bit - 1);
duke@435 1257 }
duke@435 1258
duke@435 1259 inline bool
duke@435 1260 PSParallelCompact::is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr) {
duke@435 1261 return p >= beg_addr && p < end_addr;
duke@435 1262 }
duke@435 1263
duke@435 1264 inline bool
duke@435 1265 PSParallelCompact::is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr) {
duke@435 1266 return is_in((HeapWord*)p, beg_addr, end_addr);
duke@435 1267 }
duke@435 1268
duke@435 1269 inline MutableSpace* PSParallelCompact::space(SpaceId id) {
duke@435 1270 assert(id < last_space_id, "id out of range");
duke@435 1271 return _space_info[id].space();
duke@435 1272 }
duke@435 1273
duke@435 1274 inline HeapWord* PSParallelCompact::new_top(SpaceId id) {
duke@435 1275 assert(id < last_space_id, "id out of range");
duke@435 1276 return _space_info[id].new_top();
duke@435 1277 }
duke@435 1278
duke@435 1279 inline HeapWord* PSParallelCompact::dense_prefix(SpaceId id) {
duke@435 1280 assert(id < last_space_id, "id out of range");
duke@435 1281 return _space_info[id].dense_prefix();
duke@435 1282 }
duke@435 1283
duke@435 1284 inline ObjectStartArray* PSParallelCompact::start_array(SpaceId id) {
duke@435 1285 assert(id < last_space_id, "id out of range");
duke@435 1286 return _space_info[id].start_array();
duke@435 1287 }
duke@435 1288
jcoomes@930 1289 #ifdef ASSERT
jcoomes@930 1290 inline void
jcoomes@930 1291 PSParallelCompact::check_new_location(HeapWord* old_addr, HeapWord* new_addr)
jcoomes@930 1292 {
jcoomes@930 1293 assert(old_addr >= new_addr || space_id(old_addr) != space_id(new_addr),
jcoomes@930 1294 "must move left or to a different space");
kvn@1926 1295 assert(is_object_aligned((intptr_t)old_addr) && is_object_aligned((intptr_t)new_addr),
kvn@1926 1296 "checking alignment");
jcoomes@930 1297 }
jcoomes@930 1298 #endif // ASSERT
jcoomes@930 1299
duke@435 1300 class MoveAndUpdateClosure: public ParMarkBitMapClosure {
duke@435 1301 public:
duke@435 1302 inline MoveAndUpdateClosure(ParMarkBitMap* bitmap, ParCompactionManager* cm,
duke@435 1303 ObjectStartArray* start_array,
duke@435 1304 HeapWord* destination, size_t words);
duke@435 1305
duke@435 1306 // Accessors.
duke@435 1307 HeapWord* destination() const { return _destination; }
duke@435 1308
duke@435 1309 // If the object will fit (size <= words_remaining()), copy it to the current
duke@435 1310 // destination, update the interior oops and the start array and return either
duke@435 1311 // full (if the closure is full) or incomplete. If the object will not fit,
duke@435 1312 // return would_overflow.
duke@435 1313 virtual IterationStatus do_addr(HeapWord* addr, size_t size);
duke@435 1314
duke@435 1315 // Copy enough words to fill this closure, starting at source(). Interior
duke@435 1316 // oops and the start array are not updated. Return full.
duke@435 1317 IterationStatus copy_until_full();
duke@435 1318
duke@435 1319 // Copy enough words to fill this closure or to the end of an object,
duke@435 1320 // whichever is smaller, starting at source(). Interior oops and the start
duke@435 1321 // array are not updated.
duke@435 1322 void copy_partial_obj();
duke@435 1323
duke@435 1324 protected:
duke@435 1325 // Update variables to indicate that word_count words were processed.
duke@435 1326 inline void update_state(size_t word_count);
duke@435 1327
duke@435 1328 protected:
duke@435 1329 ObjectStartArray* const _start_array;
duke@435 1330 HeapWord* _destination; // Next addr to be written.
duke@435 1331 };
duke@435 1332
duke@435 1333 inline
duke@435 1334 MoveAndUpdateClosure::MoveAndUpdateClosure(ParMarkBitMap* bitmap,
duke@435 1335 ParCompactionManager* cm,
duke@435 1336 ObjectStartArray* start_array,
duke@435 1337 HeapWord* destination,
duke@435 1338 size_t words) :
duke@435 1339 ParMarkBitMapClosure(bitmap, cm, words), _start_array(start_array)
duke@435 1340 {
duke@435 1341 _destination = destination;
duke@435 1342 }
duke@435 1343
duke@435 1344 inline void MoveAndUpdateClosure::update_state(size_t words)
duke@435 1345 {
duke@435 1346 decrement_words_remaining(words);
duke@435 1347 _source += words;
duke@435 1348 _destination += words;
duke@435 1349 }
duke@435 1350
duke@435 1351 class UpdateOnlyClosure: public ParMarkBitMapClosure {
duke@435 1352 private:
duke@435 1353 const PSParallelCompact::SpaceId _space_id;
duke@435 1354 ObjectStartArray* const _start_array;
duke@435 1355
duke@435 1356 public:
duke@435 1357 UpdateOnlyClosure(ParMarkBitMap* mbm,
duke@435 1358 ParCompactionManager* cm,
duke@435 1359 PSParallelCompact::SpaceId space_id);
duke@435 1360
duke@435 1361 // Update the object.
duke@435 1362 virtual IterationStatus do_addr(HeapWord* addr, size_t words);
duke@435 1363
duke@435 1364 inline void do_addr(HeapWord* addr);
duke@435 1365 };
duke@435 1366
coleenp@548 1367 inline void UpdateOnlyClosure::do_addr(HeapWord* addr)
coleenp@548 1368 {
duke@435 1369 _start_array->allocate_block(addr);
duke@435 1370 oop(addr)->update_contents(compaction_manager());
duke@435 1371 }
duke@435 1372
jcoomes@916 1373 class FillClosure: public ParMarkBitMapClosure
jcoomes@916 1374 {
jcoomes@916 1375 public:
coleenp@548 1376 FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
duke@435 1377 ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
jcoomes@916 1378 _start_array(PSParallelCompact::start_array(space_id))
jcoomes@916 1379 {
coleenp@4037 1380 assert(space_id == PSParallelCompact::old_space_id,
duke@435 1381 "cannot use FillClosure in the young gen");
duke@435 1382 }
duke@435 1383
duke@435 1384 virtual IterationStatus do_addr(HeapWord* addr, size_t size) {
jcoomes@916 1385 CollectedHeap::fill_with_objects(addr, size);
jcoomes@916 1386 HeapWord* const end = addr + size;
jcoomes@916 1387 do {
jcoomes@916 1388 _start_array->allocate_block(addr);
jcoomes@916 1389 addr += oop(addr)->size();
jcoomes@916 1390 } while (addr < end);
duke@435 1391 return ParMarkBitMap::incomplete;
duke@435 1392 }
duke@435 1393
duke@435 1394 private:
jcoomes@916 1395 ObjectStartArray* const _start_array;
duke@435 1396 };
stefank@2314 1397
stefank@2314 1398 #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP

mercurial